digital
electronics

DeMYSTiFieD

—t

DIGITAL LOGIC and interfacing
made EASY

—$

Loaded with circuit design
"PROBLEMS" to work out
L

EXPERIMENTS you can DO
for less than $10

L
LOTS of quizzes and FINAL EXAMS
to map your understanding
and progress

“:g Myke Predko

7SN

= 4

Digital Electronics

Demystified

http://dx.doi.org/10.1036/0071441417

Demystified Series

Advanced Statistics Demystified
Algebra Demystified

Anatomy Demystified

Astronomy Demystified

Biology Demystified

Business Statistics Demystified
Calculus Demystified

Chemistry Demystified

College Algebra Demystified
Differential Equations Demystified
Earth Science Demystified
Electronics Demystified
Everyday Math Demystified
Geometry Demystified

Math Word Problems Demystified
Physics Demystified

Physiology Demystified
Pre-Algebra Demystified
Pre-Calculus Demystified

Project Management Demystified
Robotics Demystified

Statistics Demystified
Trigonometry Demystified

7SN

Digital Electronics
Demystified

MYKE PREDKO

McGRAW-HILL

New York Chicago San Francisco Lisbon London
Madrid Mexico City Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/0071441417

The McGraw-Hill Companies

Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of
America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

0-07-147124-3
The material in this eBook also appears in the print version of this title: 0-07-144141-7.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occur-
rence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner,
with no intention of infringement of the trademark. Where such designations appear in this book, they have been
printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for
use in corporate training programs. For more information, please contact George Hoare, Special Sales, at
george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act
of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse
engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or
sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may
be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY
WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any
inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-
Hill has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or
similar damages that result from the use of or inability to use the work, even if any of them has been advised of the
possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such
claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071441417

http://dx.doi.org/10.1036/0071441417

ﬂ Professional

Want to learn more?

We hope you enjoy this
McGraw-Hill eBook! If
you’d like more information about this book,
its author, or related books and websites,
please click here.

http://dx.doi.org/10.1036/0071441417

PART ONE
CHAPTER 1

CHAPTER 2

For more information about this title, click here

CONTENTS

Preface

Acknowledgment

Introduction to Digital Electronics

The Underpinnings of

Digital Electronics

Boolean Arithmetic, Truth Tables and Gates

The Six Elementary Logic Operations

Combinatorial Logic Circuits: Combining
Logic Gates

Sum of Products and Product of Sums

Waveform Diagrams

Quiz

Effectively Optimizing Combinatorial

Circuits

Truth Table Function Reduction

Karnaugh Maps

Boolean Arithmetic Laws

Optimizing for Technology

Quiz

ix

xiii

14
17
21
25

29
32
36
40
45
50

http://dx.doi.org/10.1036/0071441417

@,—

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CONTENTS

Creating Digital Electronic
Circuits 53
Basic Electronic Laws 57
Capacitors 64
Semiconductor Operation 69
Logic Gate Input and Output 78
Simple Digital Logic Circuit Development 87
Testing a Simple TTL Inverter 91
Quiz 97
Number Systems 100
Base 16 or Hexadecimal Numbers 104
Binary Coded Decimal 107
Gray Codes 111
Quiz 115
Binary Arithmetic Using Digital
Electronics 118
Adders 122
Subtraction and Negative Numbers 129
Magnitude Comparators and Bus

Nomenclature 135
Multiplication and Division 138
Quiz 144
Practical Combinatorial Circuit
Implementation 146
Race Conditions and Timing Analysis 150
Quick and Dirty Logic Gates 153
Dotted AND and Tri-State Logic Drivers 156
Combining Functions on a Net 159
Quiz 161

CONTENTS _\®

CHAPTER 7 Feedback and Sequential Circuits 164
Flip Flops (RS and JK) 168
Edge Triggered Flip Flops 173
Latches Versus Registers 178
Reset 180
Quiz 184
Test for Part One 186
PART TWO Digital Electronics Applications 197
CHAPTER 8 Oscillators 199
Transistor Astable Oscillators 202
Ring Oscillators 204
Relaxation Oscillators 206
Crystals and Ceramic Resonators 208
555 Timer Chip 211
Delay Circuits 219
Quiz 223
CHAPTER 9 Complex Sequential Circuits 225
Counters 228
Shift Registers 231
Linear Feedback Shift Registers 234
Hardware State Machines 237
Quiz 240
CHAPTER 10 Circuit Interfaces 243
Address and Data Decoders 247
Multi-Segment LEDs 250
Pulse Width Modulation 253
Button “Debouncing” 258
Switch Matrix Keypad Interfacing 262

Quiz 265

®'_ CONTENTS
CHAPTER 11 Reading Datasheets 268
Chip Operating Characteristics 270
IEEE Logic Symbols 272
Power Usage and Fanouts 274
Quiz 275
CHAPTER 12 Computer Processors and Support 277
IEEE754 Floating Point Numbers 281
Memory Types 283
Power Supplies 287
Programmable Logic Devices 298
Quiz 301
CHAPTER 13 PC Interfacing Basics 303
The Parallel (Printer) Port 306
Video Output 309
Synchronous Serial Interfaces
(SPI, I2C, Microwire) 314
Asynchronous Serial Interfaces 317
RS-232 Electrical Standards 322
Quiz 325
Test for Part Two 327
Final Exam 336
APPENDIX Answers to Quiz, Tests, and
Final Exam 357
Index 361

PREFACE

Philosophy is sometimes described as the study of what people take for
granted. It examines the reasons why people make assumptions about things
in their lives by understanding the relationships between the basic “truths”
that are used to come up with these assumptions. This analysis takes a very
precise logical path that is scientific in nature. For example, the following
statement can be broken down into a set of simple truths and the
relationships between them plotted out and understood to allow philosophers
to carry on the natural thought process (such as what is a body that has three
“extensions’ with a “‘thinking substance”).

Thus, extension in length, breadth and depth, constitutes the nature of corpor-
eal substance; and thought constitutes the nature of thinking substance. For all
else that may be attributed to body presupposes extension, and is but a mode of
this extended thing; as everything that we find in mind is but so many diverse
forms of thinking. Descartes

Surprisingly enough, the rules that were developed for understanding
philosophic statements like the one above were applied in the 1930s and
1940s to help define how electrical circuits could be designed that would
be used in the first electronic computers. One of the elements of the success
of this effort was to reduce the electronic logic “truths” into two simple
electrical states.

These two electrical states are often represented as two numbers that can
be manipulated using “binary arithmetic.”” Binary arithmetic was formally
described by the English mathematician George Boole in the middle of the
19th century and is often referred to as ‘““Boolean arithmetic™ or “Boolean
algebra’ as a way to perform mathematical operations on numbers that only
have two values (0 or ““1”). These two values are manipulated within
electronic computers and other devices built from “digital electronics.”

Over the past 60-plus years, digital logic circuits, processing binary
signals have been miniaturized, sped up and integrated together to create
the fantastic electronic gadgets that we take for granted. Despite their

_\3

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

o’_ Preface

complexity, they operate using the basic rules and circuits that are explained
in this book. After working through this book, not only will you understand
how these products are designed but you will also have some experience in
designing and working through the problems of implementing them on
your own.

This book was written for people that would like to learn about digital
electronics without taking a formal course. After working through this book,
along with a reasonably good understanding of the subject as well as some of
the background material needed to create electronic circuits, it can also serve
as a supplemental text in a classroom, tutored or home-schooling
environment. The book should also be useful for career changers who need
to refresh their knowledge in electronics and would like to better understand
what are the different facets of current digital electronic products.

This introductory work contains an abundance of practice quiz, test and
exam questions. They are all multiple-choice and are similar to the sorts of
questions used in standardized texts. There is a short quiz at the end of every
chapter. The quizzes are “open-book.” You may (and should) refer to the
chapter texts when taking them. When you think you’re ready, take the quiz,
write down the answers and then give your list of answers to a friend. Have
the friend tell you the score, but not which questions you got wrong. The
answers are listed in the back of the book. Stick with a chapter until you get
most of the answers correct.

This book is divided into two parts. At the end of each part is a multiple-
choice test. Take these tests when you’ve completed with the respective
sections and have taken all the chapter quizzes. The section tests are ““‘closed-
book™, but the questions are not as difficult as those in the quizzes. A
satisfactory score is three-quarters of the answers correct. Again, answers
are in the back of the book.

There is a final exam at the end of this course. It contains questions drawn
uniformly from all the chapters in the book. Take it when you have finished
both sections, both section tests and all of the chapter quizzes. A satisfactory
score is at least 75% correct answers.

With the section tests and the final exam, as with the quizzes, have a friend
tell you your score without letting you know which questions you missed.
That way, you will not subconsciously memorize the answers. You can check
to see where your knowledge is strong and where it is not.

I recommend that you complete one chapter a week. An hour or two daily
ought to be enough time for this. As part of this work, you should notice that
I have given a number of suggestions on how you could implement the
described circuits to see exactly how they work. When you’ve worked
through this material, you can use this book as a permanent reference.

Preface —\0

Now, work hard, but be sure to have fun and look to see where you can
use the information provided here to help you to understand how the
complex electronic devices of modern society are implemented using digital
logic devices that are just capable of following simple rules of logic.

myke

This page intentionally left blank

ACKNOWLEDGMENT

I would like to thank my wife, Patience, for her love and support and
willingness to become the first person to have worked through the material in
this book. Without her support, suggestions, love, and willingness to
understand what “fanout” means, this book and its material would never
have been possible.

—E&

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

This page intentionally left blank

PART ONE

Introduction to
Digital Electronics

This page intentionally left blank

CHAPTER

The Underpinnings

of Digital Electronics

If you were asked to define what a bit is, chances are you would probably do
a pretty good job, saying something like:

A bit 1s something that can only have two values: on or off.

Instead of ““on or off ’, you might have used terms for two values like ““one or
zero”, “high or low voltage”, “up or down”, “empty or full” or (if you fancy
yourself as being erudite) “dominant or recessive”. All of these terms are
correct and imply that the two values are at opposite extremes and are easily
differentiated.

When you think of “bits”, you are probably thinking of something in
a wire or an electronic device contained within a computer, but when the

concept of binary (two state) logic was first invented, the values that were

_\e

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

PART ONE Intro to Digital Electronics

applied were tests to see if a statement was “‘true” or ““false”. Examples of
true and false statements are:

e The sun always rises in the East. (true)
e Dogs live at the bottom of the ocean like fish. (false)

Looking at these simple statements determining if they are true or false seems
to reduce the information within to an extreme degree. The truthfulness of
a statement can be combined with another statement to help determine if
a more complex postulate is true. If you consider the following ‘‘true”
statements:

A dog has fur over its body.

A dog has four legs.

Animals have four legs and fur.

Humans have two legs.

A snake has scales on its body.

A reptile’s body has scales or smooth skin.

and combining them together, you can make some surprisingly complex
“assertions” from these data using three basic operations. These three
basic operations consist of “AND” which is true if all the statements com-
bined together by the AND are true, “OR’ which is true if any of the com-
bined statements are true and “NOT” which is true if a single statement is
false. To differentiate these three operations from their prose synonyms,
I will capitalize them (as well as other basic logic operations) throughout
the book. These operations are often called “logic operations’ because they
were first used to understand the logic of complex philosophical statements.

From the seven statements above and using these three basic operations,
you can make the following true assertions:

e Humans are not dogs.
e A dogis an animal.
e A snake is a reptile.

The first statement is true because we know that a human has two legs
(violating a condition that is required for the definition of a dog to be true).
This is an example of the “‘negation” or “NOT” operation; the assertion is
true if the single input statement is false:

The room is dark because the lights are not on.

The NOT function is often called an “Inverter” because it changes the value
of the input from high to low and vice versa.

CHAPTER 1 Digital Electronics —\0
The second assertion, “A dog is an animal”, is true because both of the

two statements concerning animals are true when applied to dogs (which

have four legs and fur). This is an example of the “AND” operation; the

assertion is true if and only if the input statements are true. The AND

operation has two or more input statements. In trying to differentiate bicycles

and motorcycles from cars, you might make the assertion which uses the
AND operation:

A car has four wheels and a motor.

The last assertion, “A snake is a reptile”, is true because one of the two
statements giving the necessary characteristics for a reptile is true. This is an
example of an “inclusive or” (usually referred to as just “OR”’) operation; the
assertion is true if any of the input statements are true. Like the “and”
operation, OR can have two or more input statements. If you’re a parent,
you will be familiar with the assertion:

During the course of a day, a baby eats, sleeps, cries or poops.

I use this example to illustrate an important point about the “OR” operation
that is often lost when it is used in colloquial speech: if more than one input
statement is true, the entire assertion is still true. As incredible as it sounds to
someone who has not had children yet, a baby is very capable of performing
all four actions listed above simultaneously (and seemingly constantly).

I'm making this point because when we speak, we usually use the
“exclusive or’ instead of ““inclusive or” to indicate that only one of two
actions can be true. An example statement in which an “‘exclusive or’ is used
in everyday speech could be:

Tom is at a restaurant or the movies.

This is an example of “exclusive OR” because Tom can only be at one of the
two places at any given time. I will discuss the “‘exclusive or’” operation in
more detail later in this chapter, but for now try to remember that an
assertion using the “OR” operation will be true if one or more of the input
statements are true.

So far I have been working with ““bits” of “binary” information contained
in “‘statements’ and ‘“‘assertions”. You are probably wondering why a term
like ““bit electronics™ or “binary electronics” is used instead of ‘“‘digital
electronics”. ‘“Digital” comes from the Latin word for ‘“fingers” and
indicates that there are many discrete signals that are at one of two values.
Naming the circuitry “bit electronics” or ‘“‘binary electronics” would imply
that it can only work with one piece of information; digital electronic circuits

0’_ PART ONE Intro to Digital Electronics
can process many bits of information simultaneously, either as separate
pieces of information or collections of large amounts of data.

In the first few pages of this book, I have introduced you to the concept of
the “bit”, the “digit”, the “NOT”, “AND” and “OR” operations along with
the “exclusive OR”. Different combinations of these concepts are the basis
for the majority of the material presented through the remainder of this book
and any course in digital electronics. I suggest that you read over this chapter

and make sure you are completely comfortable with the terms and how they
work before going on.

Boolean Arithmetic, Truth Tables and Gates

In the introduction to this chapter, I demonstrated the operation of the three
operations “AND”, “OR” and “NOT”, which can be used to test input
values (which are in the form of two state “bits’’) and produce assertions
based on the state of the input bits. The verbose method I used could be used
with digital electronics, but you will find that it is cumbersome and not
intuitively obvious when you are working with electronic circuits.
Fortunately, a number of different tools have been developed to simplify
working with logic operations.

The first tool that simplifies how logic operations are expressed is known
as “‘Boolean arithmetic” (or sometimes as ‘“‘Boolean logic’), a branch of
mathematics where a mathematical expression is used to express how bit
inputs can be transformed into an output using the three operations
presented in the introduction. Boolean arithmetic was first described by the
English mathematician Charles Lutwidge Dodgson, whom you may be
familiar with by his nom de plume Lewis Carroll, and expanded upon by
George Boole, in the mid 19th century, as a way of understanding, proving or
disproving complex philosophical statements. Boole demonstrated that a
statement, involving bits of data and the AND, OR or NOT operations
could be written in the form:

Result = Datal operation Data2 {operation Data3...}

The braces (““{* and ’}”") are often used to indicate that what’s inside them is
optional and the three periods (**...”) indicate that the previous text can be
repeated. Using these conventions you can see that a Boolean arithmetic
statement is not limited to just one operation with two input bits—they can
actually be very lengthy and complex with many bit inputs and multiple
operations.

CHAPTER 1 Digital Electronics —\0
To demonstrate how a Boolean arithmetic statement could be articulated,
I can write the proof that a dog is an animal in the form:

Result = (Does Dog have 4 Legs) AND (Does Dog have Fur)

If both statements within the parentheses are true, then the “Result” will
be true.

This method of writing out assertions and the logic behind them is quite a
bit simpler and much easier to understand, but we can do better. Instead of
writing out the true or false statement as a condition, it can be expressed in
terms of a simple ““variable” (like “X”’). So, if we assign “A” as the result of
testing if dogs have four legs and “B’ as the result of testing if dogs have fur,
we can write out the Boolean arithmetic equation above as:

Result = A AND B

To further simplify how a logic operation is written out, the basic characters
7“4 and “!” can be used instead of AND, OR and NOT, respectively.
AND behaves like a binary multiplication, so along with the *“*-” character,
you may see an “x” or “*”. The OR operation may be represented as ““|”.
The ampersand (“&”) for AND and “|” for OR are often used because
they are the same symbols as are used in most computer programming
languages. When I write out Boolean arithmetic equations throughout the
book, I will be using the ., “+” and “‘!” characters for the three basic
logic operations instead of the full words.

An important advantage of converting a statement into a simple equation
is that it more clearly shows how the logic operation works. If the variables
“A” and “B” were just given the values of “true” or “false”, the “Result” of
the equation above could be written out in the form shown in Table 1-1. This
i1s known as a “‘truth table and it is a very effective way of expressing how a

Boolean operator works. The truth table is not limited to just three inputs,

Table 1-1 “AND” operation truth table using
Gray code inputs.

Input “A” | Input “B” | “AND” Output

False False False
False True False
True True True

True False False

(g’_ PART ONE Intro to Digital Electronics
and a function with more than one Boolean operator can be modeled in this
way. Functions with more than one output can be expressed using the truth
table, but I don’t recommend doing this because relationships between inputs
and outputs (which I will discuss in greater detail later in the book) can be
obscured.

One other thing to notice about the truth table is that I have expressed the
inputs as a “Gray code”, rather than incrementing inputs. Gray codes are
a technique for sequencing multiple bits in such a way that only one bit
changes from one state to the next. Incrementing inputs behave as if the
inputs were bits of a larger binary number and the value of this number is
increased by one when moving from one state to the next. The truth table
above, for the “AND” gate could be written out using incrementing inputs
as Table 1-2.

In many cases, truth tables are introduced with incrementing inputs, but I
would like to discourage this. Incrementing inputs can obscure relationships
between inputs that become obvious when you use Gray codes. This
advantage will become more obvious as you work through more complex
logic operations and are looking for ways to simplify the expression.

The OR operation’s truth table is given in Table 1-3, while the NOT
operation’s truth table is shown in Table 1-4.

The OR operation would be written in Boolean arithmetic, using the “+”
character to represent the OR operation as:

Output =A+B

e

and the NOT operation (using the character) is written out in Boolean

arithmetic as:

Output = 1A

Table 1-2 “AND” operation truth table using
incrementing inputs.

Input “A” | Input “B” | “AND” Output

False False False
False True False
True False False

True True True

CHAPTER 1 Digital Electronics —\0
Table 1-3 “OR” operation truth table using
Gray code inputs.

Input “A” | Input “B” | “OR” Output
False False False
False True True
True True True
True False True

Table 1-4 “NOT” operation truth
table using Gray code inputs.

Input | “NOT” Output

False | True

True | False

Sometimes, when a signal is NOTted, its symbol is given either a minus sign
(“—=*) or an underscore (*°_"’) as its first character to indicate that it has been
inverted by a NOT operation.

The final way of expressing the three basic logic operations is graphically
with the inputs flowing through lines into a symbol representing each
operation and the output flowing out of the line. Figures 1-1 through 1-3
show the graphical representations of the AND, OR and NOT gates,

respectively.
A
B D— Output

Fig. 1-1. “AND” gate.

A —3
B ' Output

Fig. 1-2. “OR” gate.

A —w— Output

Fig. 1-3. “NOT” gate.

Ql_ PART ONE Intro to Digital Electronics

The graphical representation of the logic operations is a very effective way
of describing and documenting complex functions and is the most popular
way of representing logic operations in digital electronic circuits. When
graphics are used to represent the logic operations, they are most often
referred to as “‘gates”, because the TRUE is held back until its requirements
are met, at which point it is allowed out by opening the gate. “Gate” is the
term I will use most often when describing Boolean arithmetic operations in
this book.

If you were to replace the lines leading to each gate with a wire and the
symbol with an electronic circuit, you can transfer a Boolean arithmetic
design to a digital electronic circuit directly.

The Six Elementary Logic Operations

When you look at a catalog of digital electronics chips, you are going to
discover that they are built from ANDs, ORs and NOTs as well as three
other elementary gates. Two of these gates are critically important to
understand because they are actually the basis of digital logic while the third
is required for adding numbers together.

TTL logic is based on the “NAND” gate which can be considered a
“NOTted AND” —the output of an AND gate is passed through a NOT gate
as shown in Fig. 1-4. Instead of drawing the NAND gate as an AND gate
and NOT gate connected together as in Fig. 1-4, they are contracted into the
one symbol shown in Fig. 1-5. It’s truth table is in Table 1-5.

When writing out the NAND function in Boolean arithmetic, it is
normally in the form:

Output =!(A - B)

which is a literal translation of the operation—the inputs are ANDed together
and the result is NOTted before it is passed to the Output.

A e
)——I »—Out ut
B = P

Fig. 1-4. “NAND” gate made from “AND” and “OR” gates.

utpu
B— p

Fig. 1-5. “NAND” gate.

CHAPTER 1 Digital Electronics

Table 1-5 “NAND” operation truth table.

Input “A” | Input “B” | “NAND” Qutput
False False True
False True True
True True False
True False True

A —
5 Output

Fig. 1-6 “NOR” gate.

You will see the small circuit on various parts in different electronic
devices, both on inputs and outputs. The small circle on the NAND gate
is the conventional shorthand symbol to indicate that the input or output of
a gate is NOTted.

In case you didn’t note the point above, the NAND gate is the basis for
TTL logic, as I will explain later in the book. Being very comfortable with
NAND gates is very important to being able to design and use TTL
electronics. This is a point that I find is not stressed enough in most
electronics courses and by having a strong knowledge of how NAND gates
work as well as how they are implemented you will better understand what
is happening within your digital electronics circuits.

If you are going to be working with CMOS logic, in the same way you
should be comfortable with the NAND gate for TTL, you should be familiar
with the “NOR” gate (Fig. 1-6). The NOR gate can be considered to be a
contraction of the OR and NOT gates (as evidenced by the circle on the
output of the OR gate) and operates in the opposite manner as the OR gate,
as shown in Table 1-6. When using NOR operations in Boolean arithmetic, a
similar format to the NAND gate is used:

Output =! (A + B)

The last elementary logic gate that you will have to work with is the
“Exclusive OR” (Fig. 1-7) with Table 1-7 being its truth table. The

@’_ PART ONE Intro to Digital Electronics

Table 1-6 ““NOR” operation truth table.

Input “A” | Input “B” | “NAND” Qutput
False False True
False True False
True True False
True False False

A —
’ Output
B—3

Fig. 1-7. “XOR” gate.

Table 1-7 “Exclusive OR” operation truth table.

Input “A” | Input “B” | “Exclusive OR” Output
False False False
False True True
True True False
True False True

Exclusive OR (also referred to as “Ex-OR” or “XOR”’) only returns a True
output if only one of its inputs is true. If both inputs are the same, then the
Exclusive OR outputs False. The Boolean arithmetic symbol for Exclusive
OR is often a caret (“"”’) as is used in computer programming languages

or a circle with an “x” character in it ®. Writing a Boolean statement with
the Exclusive OR would be in the format:

Output =A " B

Table 1-8 summarizes the six elementary gates along with their Boolean
arithmetic symbols and formats, graphical symbols and truth tables.

CHAPTER 1 Digital Electronics _\@

Table 1-8 Summary of the six elementary logic operations.

Gate Boolean Boolean Graphic symbol Truth table
arithmetic | arithmetic
symbols equation
AND L& * x | Out=A-B o)—owu | A B | Out
—_— —_— + R
F F | F
F T | F
T T | T
T F | F
OR +, | Out=A+B : 4' Output A B | Out
— S
F F | F
F T | T
T T | T
T F | T
NOT - Out="A A —>0— oupu A | Out
— + ——
F | T
T | F
NAND . Out= g::)— Output A B | Out
'(A-B) -— — + -
F F | T
F T | T
T T | F
T F | T
NOR I+ Out=!(A+B) | A JDO— o | A B | Out
B—12 _ - 4+ ——
F F | T
F T | F
T T | F
T F | F
Exclusive | *, © Out=A"B ’;:)D— Output A B | Out
OR - - + -
F F | F
F T | T
T T | F
T F | T

PART ONE Intro to Digital Electronics

@’_
Combinatorial Logic Circuits:
Combining Logic Gates

As I hinted at in the previous section, multiple gate functions can be
combined to form more complex or different Boolean logic functions. Wiring
together multiple gates are used to build a complex logic function that only
outputs a specific value when a specific combination of True and False inputs
are passed to it is known as ‘‘combinatorial logic”. The output of a
combinatorial logic circuit is dependent on its input; if the input changes
then the output will change as well.

When 1 wrote the preceding paragraph, 1 originally noted that
combinatorial logic circuits produce a “True” output for a given set of
inputs. This is incorrect, as there will be some cases where you will require
a False output in your application. I made the definition a bit more
ambiguous so that you do not feel like the output has to be a single, specific
value when the input consists of the required inputs. It is also important to
note that in a combinatorial logic circuit, data flows in one direction and
outputs in logic gates cannot be used as inputs to gates which output back to
themselves. These two points may seem subtle now, but they are actually
critically important to the definition of combinatorial logic circuits and using
them in applications.

An example of a combinatorial circuit is shown in Fig. 1-8. In this circuit,
I have combined three AND gates, a NOR gate, a NOT gate and an XOR
gate to produce the following logic function:

output = (& - B)- (2 +C))) " ((A+C)-B)

This combinatorial circuit follows the convention that inputs to a gate (or a
chip or other electronic component) are passed into the left and outputs

|
I) _)]D_ Output

Fig. 1-8 Combinatorial circuit built from multiple logic gates.

CHAPTER 1 Digital Electronics _\@
exit from the right. This will help you “‘read” the circuit from left to right,
something that should be familiar to you.

While seeing a series of logic gates, like the one in Fig. 1-8, seems to be
overwhelming, you already have the tools to be able to work through it and
understand how it works. In the previous section, I noted that gates could
be connected by passing the output of one into an input of another; a
combinatorial circuit (like Fig. 1-8) is simply an extension of this concept
and, being an extension, you can use the same tools you used to understand
single gates to understand the multiple gate operation.

I should point out that the two broken lines on the left side of Fig. 1-8
(leading down from “A” and *““B”’) indicate that these lines are not connected
to the lines that they intersect with. You will find that it can be very difficult
to design logic circuits without connected and separate lines from becoming
confused. In Fig. 1-9, I have shown a couple of the conventional ways of
drawing intersecting lines, depending on whether or not they connect or
bypass each other. Probably the most intuitively obvious way of drawing
connecting and bypassing lines is to use the dot and arc, respectively. I tend
not to because they add extra time to the logic (and circuit) diagram drawing
process. As you see more circuit diagrams, you will see the different
conventions used and you should be comfortable with recognizing what each
means.

Connecting Wires Bzeassing Wires

. “Opening” Drawn
Connected Wires Indicating No

/ Drawn Overlapping / Connection

) Arc Drawn to
Connected Wires Indicate No

"/ Indicated with Dot a‘/ Connection

Fig. 1-9. Different representations for wires that connect or bypass.

@’_ PART ONE Intro to Digital Electronics
Inzuts_ @
| o
\ ®
—I_J@ _)‘D Output

Fig. 1-10. Combinatorial circuit with logic gate outputs marked.

When I am faced with a complex combinatorial circuit, the first thing I do
is to mark the outputs of each of the gates (Fig. 1-10) and then list them
according to their immediate inputs:

Output 1 =A-B
Output 2 =!(A+ Q)
Output 3 =12
Output4=1 -3
Output 5=B - 2
Output 6 =475

After listing them, I then work through a truth table, passing the outputs
of each gate along until I have the final outputs of the complete function
(Table 1-9). In keeping with my comments of the previous section, I have
used a three bit Gray code for the inputs to this circuit.

Before going on, there are two points that I would like you to keep in the
back of your mind. First, this is actually quite an efficient methodology for
decoding combinatorial circuits that you are given the design for. Designing
a logic gate circuit that responds in a specific manner is actually quite a
different process and I will be devoting the rest of this chapter as well as the
next to explaining the design and optimization of combinatorial circuits.
Once you have finished with Chapter 2, you might want to revisit the example
circuit in Fig. 1-8 and see how effectively you can reduce its complexity and
the number of logic gates needed to implement it.

The second point that you should be aware of is the example circuit that
I used in this section is actually quite unwieldy and does not conform to the
typical methods used to design most practical combinatorial digital electronic
circuits. In the next section, I will present you with the conventional methods
for specifying and documenting combinatorial circuits.

CHAPTER 1 Digital Electronics _\Q

Table 1-9 Decoding the response of the combinatorial circuit in Fig. 1-8.

Inputs 1=A:B =!A+C) | 3=!2| 4=1-3|5=B-2|6=4"5

A|B|C

F | F | F | False True False False False False
F | F | T | False False True False False False
F | T| T | False False True False False False
F | T | F | False True False False True True
T | T | F | True False True True False True
T|T|T]| True False True True False True
T | F | T | False False True False False False
T | F | F | False False True False False False

Sum of Products and Product of Sums

Presenting combinatorial circuits as a collection of gates wired together
almost randomly, like the circuit shown in Fig. 1-8, is sub-optimal from
a variety of perspectives. The first is, the function provided by the
combinatorial circuit is not obvious. Secondly, using a variety of different
gates can make your parts planning process difficult, with only one gate out
of many available in a chip being used. Lastly, the arrangement of gates will
be difficult for automated tools to combine on a printed circuit board
(“PCB”) or within a logic chip. What is needed is a conventional way of
drawing combinatorial logic circuits.

The most widely used format is known as ““sum of products’. Earlier in the
chapter, I presented the concept that the AND operation was analogous to
multiplication just as the OR operation is to addition. Using this
background, you can assume that a “sum of products” circuit is built from
AND and OR gates. Going further, you might also guess that the final
output is the “OR” (because addition produces a “‘sum’’) with the gates that

@’_

PART ONE Intro to Digital Electronics

AND Gate
(“Product”) Inverter on

Inputs \ / AND Output
A) D .
I
B
| OR Gate
c 1 | (“Sum”)
— \ Output
Dc |/

N

Fig. 1-11. Example “sum of products” combinatorial logic circuit.

Inverter on
AND Input

convert the inputs being “AND” gates (a ‘“product” is the result of a
multiplication operation). An example “sum of products” combinatorial
logic circuit is shown in Fig. 1-11.

In this circuit, the inputs are ANDed together and the result is passed
to an OR gate. In this circuit, the output will be “True” if any of the inputs
to the OR gate (which are the outputs from the AND gates) are true. In
some cases, to make sure that the inputs and outputs of the AND gates are
in the correct state, they will be inverted using NOT gates, as I have shown
in Fig. 1-11.

Figure 1-11 has one feature that I have not introduced to you yet and that
is the three input OR gate on the right side of the diagram. So far, I have only
discussed two input gates, but I should point out that three input gates can be
built from multiple two input gates, as I show in Fig. 1-12, in which two, two
input AND gates are combined to form a single three input AND gate.
A three input OR gate could be built exactly the same way.

A three input NAND or NOR gate is a bit trickier, as Fig. 1-13 shows. For
this case, the output of the NAND gate processing “A” and “B” must be
inverted (which can be accomplished with a NAND gate and both inputs tied
together as I show in Fig. 1-13) to make its output the same as an “AND”".
The NAND gate’s function is to first AND its inputs together and then invert
them before driving out the output signal. As I will explain in greater detail
in the next chapter, an inverted output, when it is inverted, becomes a
“positive”” output and I use this rule to produce the three input NAND gate.
A three input NOR gate would be built in exactly the same way as a three
input NAND gate.

CHAPTER 1 Digital Electronics _\Q

To Build a 3 Input AND:

A

L
B m— _)— Output
o

Use two, 2 Input ANDs:

"
B —
c _)— Output

Fig. 1-12. 3 Input AND gate built from 2 input AND gates.

To Build a 3 Input NAND:

A

_l_ﬁ
B Output
o

Use three, 2 Input NANDs:

A —L NAND Used as an Inverter

B :)_E j_l_ :))_ ot

Fig. 1-13. 3 Input AND gate built from 2 input AND gates.

Along with having a “‘sum of products” combinatorial logic circuit that
outputs a True when one of the intermediate AND gates outputs True, there
is the complementary “‘product of sums” (Fig. 1-14), which outputs False
when one of its intermediate OR gates outputs False.

While product of sums combinatorial circuits can produce the same
functions as sum of product combinatorial circuits, you will not see as many
product of sum combinatorial circuits in various designs because they rely on
what I call “‘negative logic”’. Most people cannot easily visualize something
happening because the inputs do not meet an expected case, which is exactly
what happens in a product of sums combinatorial logic circuit.

To demonstrate how a sum of product combinatorial logic circuit
is designed, consider the messy combinatorial logic circuit I presented

@,—

PART ONE Intro to Digital Electronics

OR Gate

« M Inverter on
(“Product”) OR Output

Inputs /
A
B
c AND Gate
(“Product”)

Dc 4"\ _)— Output
AN

Fig. 1-14. Example “product of sums” combinatorial logic circuit.

Inverter on
OR Input

in the previous section (see Fig. 1-8). To understand the operation of
this circuit, I created a large truth table (Table 1-9) and listed the outputs
of each of the intermediate gates and finally discovered that the function
output True in three cases that can be directly translated into AND
operations by assuming that in each case the output was true and the input
conditions were all true. To make all three inputs True to the AND gates
when the input is False, I invert them and came up with the three statements
below:

A.B-IC
A-B-C
A-B-IC

These three AND statements can be placed directly into a sum of products
combinatorial circuit, as shown in Fig. 1-15.

Looking at Fig. 1-15, you’ll probably notice that this circuit has the same
total number of gates as the original circuit—and, assuming that each three
input gate is made up of two, two input AND gates, it probably requires four
more gates than the original circuit shown in Fig. 1-8. The only apparent
advantage to the sum of product format for combinatorial logic circuit is that
it is easier to follow through and see that the output is True for the three
input conditions I listed above.

In the following chapters, I will introduce you to combinatorial logic circuit
optimization as well as explain in more detail how digital electronic gates
are actually built. It will probably be surprising to discover that the sum

CHAPTER 1 Digital Electronics _\@

Inputs
A

L = O—
— D s

| Output

S -

Fig. 1-15. Original combinatorial circuit built in “sum of products” format.

of product combinatorial logic circuit format leads to applications that
are more efficient (in terms of total gate or transistor count along with
speed and heat dissipation) than ones using less conventional design
methodologies.

Waveform Diagrams

So far in this chapter, I have shown how logic functions can be presented as
English text, mathematical equations (Boolean arithmetic), truth tables and
graphical circuit diagrams. There are actually two more ways in which the
logic data can be presented that you should be familiar with. The first method
is not one that you will see a lot of except when debugging microprocessor
instructions from a very low level, while the second is one that you will have
to become very familiar with, especially when the digital electronic signals
pass from the combinatorial logic shown here to more complex circuits that
have the ability to “store” information.

The first method, the “state list” consists of a list of text columns for each
state of the circuit. The state list is really a compressed form of the truth table
and is best suited for displaying a fairly large amount of numerical data.
Going back to the example circuit of Fig. 1-8, and Table 1-9, I could express
the truth table as the series of columns below. Note that I have used the
numeric values “1”” for True and “0” for False because they are easier to

PART ONE Intro to Digital Electronics

differentiate than “T”” and “F” over a number of rows.

ABC123456 < — Signals being displayed
000010000
001001000
011001000
010010010
110101101
111101101
101001000
100001000

As I said, not a lot of information is obvious from the state list. Some format-
ting could be done to make the inputs and outputs better differentiated,
but for the most part, I don’t recommend using state lists for most digital
electronics applications. Where the state list is useful is in debugging state
machine or microcontroller applications in which you have added hardware
to the data, address and control busses to record how the device responds to
specific inputs.

The state list is not ideal for this type of application, but it’s better than
nothing.

The other method, which is not only recommended as a circuit analysis
and design tool but is also one you should be intimately familiar with is the
“waveform diagram”. Waveforms are electrical signals that have been
plotted over time. The original waveform display tool was the oscilloscope;
a drawing of a typical oscilloscope’s display is shown in Fig. 1-16.

Voltage

I NN
T[T

Waveform 1

H
u)

Waveform 2

s
=

LN IR

Time

Fig. 1-16. Basics of an oscilloscope screen.

CHAPTER 1 Digital Electronics _\@

The features of the two “waveforms” displayed on the oscilloscope screen
can be measured by placing them against the “‘graticule markings” on the
display. These markings (usually just referred to as “graticules” and etched
onto the glass screen of the oscilloscope) are indicators of a specific passage
of time or change in voltage. Along with the “‘gross” graticules, most
oscilloscopes have finer markings, to allow more accurate measurements by
moving the waveforms over them.

Oscilloscopes are very useful tools for a variety of different applications,
which contain varying voltage levels (which are known as “analog” voltage
levels). They can be (and often are) used for digital logic applications but they
are often not the best tool because digital waveforms only have two levels,
when applied to electronics: digital signals are either a high voltage or a low
voltage. The timing of the changes of these two voltage levels is more
interesting to the designer.

So instead of thinking of digital waveforms in terms of voltage over time,
in digital electronics, we prefer to think of them as states (High/Low, True/
False, 1/0) over time and display them using a waveform diagram like the one
shown in Fig. 1-17. When designing your digital electronics circuit, you will
create a waveform diagram to help you understand how the logic states will
be passed through the circuit; later, when you are debugging the circuit, you
will be comparing what you actually see with this diagram to see if your
assumptions about how the circuit would operate are correct. The different
signals shown in Fig. 1-17 are samples of what you will see when you are
designing your own application circuit.

S I | g)
e UL T L

Signal 4

Signal 5

r
Signal 6 _L

Fig. 1-17. Digital waveforms.

@’_ PART ONE Intro to Digital Electronics
Signal C _ H H H H_
Signal B o H L

Signal A

1

5

6 (O/P)

Fig. 1-18. Digital waveforms of Fig. 1-8 example combinatorial logic circuit.

The waveform diagram is the first tool that will help you optimize your
circuit. Before writing up this section, I was planning on the diagrams I
wanted to include with it and one was a waveform representation of the first
example combinatorial logic circuit’s operation from Table 1-9. The thin
vertical lines indicate the edges of each state.

After drawing out Fig. 1-18, it was obvious that signals ““1”” and ““4” (from
the marked circuit diagram Fig. 1-8) were redundant. Looking back at the
diagram for the circuit, I realized that the AND gate with output 4 and
inverter with output 3 could be completely eliminated from the circuit—the
output of AND gate 1 could be passed directly to the XOR gate (with
output 6).

The waveform diagram shown in Fig. 1-18 is what I call an “‘idealized
waveform diagram” and does not encompass what is actually happening in a
physical circuit. Looking at Fig. 1-18, you will see that I have assumed that
the switching time for the gates is instantaneous. In real components,
switching time is finite, measurable and can have a significant impact to your
application’s ability to work. This is discussed in more detail in later chapters.
Finally, this circuit does not allow for basic errors in understanding, such as

CHAPTER 1 Digital Electronics

what happens when multiple gate outputs are passed to a single gate input—
your assumption of this type of case may not match what really happens in
an actual circuit.

In this chapter, I have introduced you to the basic concepts of
combinatorial logic circuits and the parts that make them up. In the next
chapter, I will start working through some of the practical aspects of
designing efficient digital electronic circuits.

1. Which of the following statements is true?

(a)

(b)

(©)
(d)

Negative logic is the same as reverse psychology. You get some-
body to do something by telling them to do what you don’t
want them to do

Using the logic definition, “A dog has four legs and fur”, a cat
could be accurately described as a dog

“High” and ““Higher” are valid logic states

Assertions are the same as logic operations

2. Boolean arithmetic is a:

(a)
(b)

(©)
(d)

way to express logic statements in a traditional mathematical
equation format

terrible fraud perpetrated by philosophers to disprove things
they don’t agree with

very difficult calculation used in astronomy

fast way to solve problems around the house

3. The truth table using “‘incrementing input” for the OR gate is cor-
rectly represented as:

(a)

Input “A” | Input “B” | “OR” Output

False True True
True False True
False False False

True True True

_\@

Quiz

PART ONE Intro to Digital Electronics

@,—

®) Input “A” | Input “B” | “OR” Output
False False False
False True True
True False True
True True False
© Input “A” | Input “B” | “OR” Output
False False False
False True True
True False True
True True True
@) Input “A” | Input “B” | “OR” Output
False False False
False True False
True False False
True True True

4. When writing a logic equation, which symbols are typically used to
represent optional operations?

(a) {and}
(b) <and>
(c) (and)

(d) [and]

CHAPTER 1 Digital Electronics _\@
5. If the output of an Exclusive OR gate was passed to a NOT gate’s

input, the NOT gate output would be “True” if:

(a) Input “A” was True and input “B” is False

(b) There is only one input and the output would be True if the

input was False
(¢) A dot was placed on the output of the Exclusive OR symbol
(d) Both inputs were at the same state (either True or False)

6. Boolean arithmetic statements are similar to:
(a) Verbal descriptions of what the logic is to do
(b) HTML, the language used to program an internet web page
(¢) Simple mathematical equations
(d) The holes punched into computer cards

7. When decoding a combinatorial logic circuit diagram, you

(a) Write out the Boolean arithmetic equation for the function and
list the output for each possible input

(b) Start slamming your forehead on your desk

(c) Give each gate’s output a unique label and list their outputs for
each changing circuit input as well as outputs for other gates
in the circuit

(d) Rearrange the gates in the diagram to help you understand
what the function is doing

8. “Sum of product” combinatorial logic circuits are popular

because:

(a) They are the most efficient way of designing circuitry

(b) Their operation can be quickly seen by looking at the circuit
diagram

(¢) They dissipate less heat than other design methodologies

(d) They are more robust and allow for more reliable product
designs

9. When trying to debug a digital clock circuit, what tool is not recom-
mended?
(a) Truth tables
(b) Boolean arithmetic
(c) State lists
(d) Graphical circuit diagrams

@’_ PART ONE Intro to Digital Electronics
10. Waveform diagrams display:

(a) Logic state changes over time

(b) Switching times of digital electronic gates

(c) Problems with line impedance
(d) Voltage variances in a logic signal over time

CHAPTER

ffectively Optimizing
ombinatorial Circuits

In the first chapter, I introduced you to the basic theory behind digital
electronics: binary data is manipulated by six different simple operations.
With this knowledge, you actually have enough information to be able to
design very complex operations, taking a number of different bits as input.
The problem with these circuits is that they will probably not be “optimized”
in order to minimize the number of gates, the speed which the digital
electronic circuit responds to the inputs and finally, whether or not the circuit
is optimized for the technology that it will be implemented in.

These three parameters are the basic measurements used to determine
whether or not a circuit is effectively optimized. The number of gates should
be an obvious one and you should realize that the more gates, the higher the
chip count and cost of implementing the circuit as well as the increased
complexity in wiring it. Right now, connections between logic gates are just
black lines on paper to you—but when you start trying to wire circuits that

_\@

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@’_ PART ONE Intro to Digital Electronics
you have designed, you will discover first hand that simplifying the wiring of
a circuit often reduces costs more than reducing the number of chips would
indicate. Small improvements in the complexity of a circuit can have
surprising cost ramifications when you look at the overall cost of the
application. You may find that eliminating 1% of the gates in an application
will result in as much as a 10-20% overall reductions in product cost. These
savings are a result of being able to build the circuit on a smaller PCB or one
which requires fewer layers (which can reduce the overall product cost
dramatically). If the application is going to use a programmable logic
technology, you may find that with the optimized circuit, lower cost chips can
be substituted into the design. Fewer gates in an application also results in
less power being dissipated by the circuit, requiring less cooling and a smaller
power supply.

The speed that signals pass through gates is not infinite; standard TTL
requires 8 billionths of a second (called a ‘“‘nanosecond” and uses the
abbreviation “‘ns’’) to pass a signal through a “NAND” gate. The term given
to this time is known as the ‘“‘gate delay”. Halving the number of gates
a signal has to pass through (which is halving the number of gate delays) will
double the speed in which it can respond to a changing input. As you work
with more complex circuits, you will discover that you will often have to
optimize a circuit for speed or else you may have to use a faster (and
generally more expensive) technology.

The last parameter, what I call “technology optimization”, on the surface
may seem more intangible than the other two parameters as well as have its
measurements use the other two parameters, but when working with physical
devices, it is the most important factor in properly optimizing your
application. Before moving on and considering your circuit “done”, you
should look at how it will actually be implemented in the technology that you
are using and look for optimizations that will reduce the actual number of
gates and gate delays required by the application.

You can consider logic optimization to be a recursive operation,
repeatedly optimizing all the different parameters and measurements. Once
you have specified the required logic functions, you should look at how it will
be implemented in the actual circuit. Once you have converted it to the actual
circuit, you will then go back and look for opportunities for decreasing the
number of gates, speeding up the time the signal passes through the gates
and again look for technology optimizations. This will continue until you
are satisfied with the final result.

To illustrate what I mean, in this chapter, I will look at a practical
example, a simple home burglar alarm. In Fig. 2-1, I have drawn a very basic
house, which has two windows, a door and power running to it. Sensors, on

CHAPTER 2 Combinatorial Circuits _\@
Alarm Signals are

Positive Active:

“P” - Power Out

“D” - Door Open

“W1” - Top Window Open
“W2” - Bottom Window Open

Fig. 2-1. Home alarm logic.

Table 2-1 Home alarm truth table.

P D Wl W2 Alarm Response
0O 0 0 O

0 0 0 1

0O 0 1 O Sound Alarm
o 0 1 1

0O 1 0 O

0O 1 0 1

0 1 1 0 Sound Alarm
o 1 1 1

1 0 0 O

1 0 0 1 Sound Alarm
1 0 1 O Sound Alarm
1 0 1 1 Sound Alarm
11 0 O

11 0 1 Sound Alarm
1 1 1 0 Sound Alarm
11 1 1 Sound Alarm

the windows, door and power are passed to an alarm system. When the
alarm system was designed a table of the different possible combinations
of inputs was generated (Table 2-1), with the combinations that would cause
the alarm to sound indicated. As I have noted in Fig. 2-1, the alarm
inputs are positive active, which means I can represent them as being active
with a “1”.

In this fictional house, I assumed that the upper window (“W1”’) should
never be opened —if it were opened, then the alarm would sound. Along with
this, I decided that if the power failed and either of the windows were opened,
then the alarm failed; this would be the case where the power to the house
was cut and somebody forced open the window. Table 2-1 shows the cases
where the alarm should sound and you will notice that the cases where the

@’_ PART ONE Intro to Digital Electronics
alarm should sound are either a single event in the table, or a case where three
are grouped together.

After building the table, you should also create a sum of products equation
for the function:

Alarm State =(IP-!D-W1 -W2)
+(P-D-wWl-w2)
+(P-!D-W1-wW2)
+((P-!D-wWl-w2)
+(P-!D-W1-W2)
+(P-D-lWl-wW2)
+(P-D-Wl-!wW2)
+(P-D-W1-W2)

You could also draw a logic diagram using the gate symbols that I introduced
in the first chapter. I found that this diagram was very complex and very dif-
ficult to follow. If you were to try it yourself, you would discover that the
logic diagram would consist of 12 NOTs, 24 two input ANDs (knowing
that a single four input AND can be produced from three two input
ANDs) and seven two input OR gates with the maximum gate delay being
eleven (the number of basic TTL gates the signal has to pass through). At
first take, this alarm function is quite complex.

Looking at Table 2-1 and the sum of products equation, you will be hard
pressed to believe that this home alarm circuit can be significantly optimized,
but in this chapter, I will show how these four alarm inputs and eight alarm
events can be reduced to fit in the most basic TTL chip there is.

Truth Table Function Reduction

I like to tell new circuit designers to approach optimizing a logic circuit by
first looking for opportunities in its truth table. This may not seem like
a useful tool (especially in light of Table 2-1), but it can be as effective a tool
as any of the others presented in this chapter. It can also be used as a useful
verification tool for making sure that an optimized logic circuit will perform
the desired function. The drawback to the truth table function reduction is
that it tends to be the most demanding in terms of the amount of rote effort
that you will have to put into it.

CHAPTER 2 Combinatorial Circuits _\Q
Table 2-2 Gray code home alarm truth table.

D Wl W2 Alarm Response
0 0

Sound Alarm
Sound Alarm

Sound Alarm
Sound Alarm
Sound Alarm
Sound Alarm
Sound Alarm
Sound Alarm

PR RPRPRPRPRPRPRPRPROOOOOOO ORUJ

COoOO0ORRPRREERERERLRRELEOOO
CORHRHPHPEPROOOOR KRR REO
OHrHOORHFHROOKRRFROOR RO

In the introduction to this chapter, the initial truth table I came up with
didn’t seem very helpful. The reason for this is something that I will harp
upon throughout this book — listing logic responses to binary input is not
very effective, because of the large number of states that can change at any
given time. If you look at Table 2-1, you will see that going from the state
where P=0, D=W1=W2=1 to P=1, D=WI1=W2=0 involves the
changing of four bits. While this is a natural progression of binary numbers
and probably an intuitive way of coming up with a number of different input
states, it is not an effective way to look at how a logic circuit responds to
varying inputs.

A much better method is to list the output responses in a truth table that is
ordered using Gray codes, as I have shown in Table 2-2. Gray codes are a
numbering system in which only one bit changes at a time: they are explained
in detail along with how they are generated in Chapter 4. When you are
listing data, regardless of the situation, you should a/ways default to using
Gray code inputs instead of incrementing binary inputs, as I have shown
in Table 2-1.

Taking this advice, I recreated the home alarm system truth table using
Gray codes in Table 2-2. When you look at Table 2-2, you should notice that
the ““discontinuities” of Table 2-1 have disappeared. The bit patterns which
“Sound Alarm” group together quite nicely.

Looking at each value which “Sound Alarm”, you’ll notice that each
pair has three bits in common. To illustrate this, in Table 2-3, I have circled
the bit which is different between each of the four pairs. In each of these

@’_ PART ONE Intro to Digital Electronics

Table 2-3 Uncommon bits in “Sound Alarm” pairs.

g

D Wl W2 Alarm Response
0

Sound Alarm
Sound Alarm

Sound Alarm
Sound Alarm
Sound Alarm
Sound Alarm
Sound Alarm
Sound Alarm

FFRRERPRPRPRPRPRPRPRPREPROOOOOOOO

Ocacﬂqliba e H‘HII'O o o

O P OORFPROORROOR K

cﬂ‘li’w H‘HI:'O corRrRRRPROO

Table 2-4 Home alarm truth table with don’t care

g

bits replaced with an “x”.

P D Wl W2 Alarm Response
0O 0 0 O

0 0 0 1

0 0 1 1

0 x 1 0 Sound Alarm
0O 1 1 1

0O 1 0 1

0O 1 0 O

1 1 0 O

1 1 x 1 Sound Alarm
1 x 1 0 Sound Alarm
1 0 x 1 Sound Alarm
1 0 0 O

pairs, to sound the alarm we have very specific requirements for three bits,
but the fourth bit can be in either state.

Another way of saying this is: for the alarm to sound, we don’t care what
the fourth bit is and it can be ignored when we are determining the sum of
products equation for the logic function. To indicate the “don’t care” bit, in
Table 2-4, I have combined the bit pairs and changed the previously circled
bits with an “x”’. This ““x”” indicates that the bit can be in either state for the
output to be true. By replacing the two truth table entries with a single one

with the don’t care bit indicated by an “x’” you should see that something
magical is starting to happen.

CHAPTER 2 Combinatorial Circuits _\@
The obvious observation is that the table is shorter, but you should notice
that the number of events which “Sound Alarm™ has been halved and they

are less complex than the eight original events. The sum of products equation
for the bits shown in Table 2-4 is:

Alarm State = (IP- W1 - lwW2)
+(P-D-W2)
+ (P -Wl-'w2)
+(P-!D-W2)

This sum of products expression will require four NOT gates, eight AND
gates and three OR gates and the maximum gate delay will be nine. This
has reduced the total gate count to less than 50% of the original total and
this logic equation will operate somewhat faster than the original.

This is pretty good improvement in the logic circuit. You should be asking
yourself if we can do better. To see if we can do better, I rearranged the data
in Table 2-4 so that the “Sound Alarm” events with common don’t care bits
were put together and came up with Table 2-5.

When I put the “Sound Alarm” events that had the same don’t care bits
together, I noticed that in each of these cases, two of the remaining bits were
in common and one bit changed in the two events (which I circled in
Table 2.5).

In Table 2-5, you may have noticed that the single changing bit of the
original Gray code input sequence has been lost; this is not a problem.
The Gray code sequence has served its purpose—it has indicated the initial
input patterns which are common with its neighbors. In complex truth tables,
you may have to rearrange bit patterns multiple times to find different

Table 2-5 Optimized home alarm truth table rearranged
with don’t care event bits moved together.

D Wl W2 Alarm Response
0 0 0

Sound Alarm
Sound Alarm

P
0
0

0
0
X
X
0 1
0 1
0 1
1 1
1 Sound Alarm
1 Sound Alarm
1

0

ONX X OO0 O R R RLREFEO
O PR OORRFEOOR

@’_ PART ONE Intro to Digital Electronics

Table 2-6 Reoptimized home alarm truth table

[TERL)

with “don’t care” bits replaced with an “x”.

D Wl W2 Alarm Response
0

Sound Alarm

Sound Alarm

PR PR OOONX OO0 ofu
ONX PR P RELEX OOoOo
OX OO0 ORrR K FHOO
O OOR R ORR

commonalities. When you do this, don’t worry about *“loosing data”; the
important bit patterns are still saved in the active bit patterns.

Table 2-6 shows what happens when the second don’t care bit is indicated.
Since the two events which “Sound Alarm” do not have common don’t care
bits, we can’t repeat this process any more. The two events from Table 2-6
can be written out as the sum of products:

Alarm State = (W1 - lW2)
+ (P -W2)

This optimized ““Alarm State” truth table has reduced our component count
to one NOT gate, two AND gates and one OR gate and executes in five gate
delays—quite an improvement from the original 43 gates and 11 gate delays!

Depending on how cynical you are, you might think that I “cooked up”
this example to come up with such a dramatic improvement. Actually, the
application shown here was my first attempt at coming up with a logic circuit
to demonstrate how optimization operations of a logic circuit are performed;
you will find similar improvements as this one when you start with a basic
logic circuit and want to see how much you can reduce it.

Karnaugh Maps

Using truth tables is an effective but not very efficient method of optimizing
digital logic circuits. A very clever French mathematician, Maurice
Karnaugh (pronounced ‘“‘carno”) came up with a way to simplify the truth
table optimization process by splitting the truth table inputs down the middle
and arranging the two halves perpendicularly in order to display the

CHAPTER 2 Combinatorial Circuits _\Q
relationships between bits more effectively. These modified truth tables are

called “Karnaugh Maps™ and are best suited for single bit output functions

with three to six input bits.

My description of what a Karnaugh map is may sound cursory, but it is
actually very accurate. A standard truth table can be considered to be a single
dimensional presentation of a logic function and when it is properly
manipulated, relationship between active outputs can be observed as I
showed in the previous section. The problem with this method is that it is
fairly labor intensive and will burn up a lot of paper. Karnaugh maps present
the data in a two-dimensional ‘““field” which allows for quick scanning
of active output bits against their inputs, to find basic relationships between
them.

An example of converting a three input logic function from a truth table to
a Karnaugh map is shown in Fig. 2-2. The initial logic function would be:

Output =(1a-!B-C) +(la-B-!0)
+@&-B-!10)+(R&A-B-0)
+@&-1B-0)

To create the Karnaugh map, I created a two by four matrix, with the rows
being given the two different values for “A” and the columns given the four
different values for “B” and “C”. Note that the columns are listed as a two
bit Gray code—this is an important feature of the Karnaugh map and, as
I have pointed out, an important tool to being able to optimize a function.

Once the two axes of the Karnaugh map are chosen, the outputs from the
truth table are carefully transferred from the truth table to the Karnaugh
map. When transferring the outputs, treat the Karnaugh map as a
two-dimensional array, with the “X” dimension being the inputs which

Original Truth Table

A|lB C Qutput

OjJo o0 0

oOjo 1 1

o1 1 0

oOj1 O 1 i

111 o 1 Equivalent Karnaugh Map

1]1 1 1 BC

110 1 1 A 00 01 11 10

110 o 0 0 0O 1 0 1

1 0 1p 1 1

_TCqumn to Strip Out
OQutputs in a
2 Dimensional
Field

Fig. 2-2. Converting a truth table to a Karnaugh map.

@’_ PART ONE Intro to Digital Electronics
weren’t stripped out and the “Y” dimension being the inputs which were
stripped out from the truth table. When you are first starting out, this will be
an operation in which you will tend to make mistakes because it is unfamiliar
to you. To make sure you understand the process, it is a good idea to go back
and convert your Karnaugh map into a truth table and compare it to your
original truth table.

When you have created the Karnaugh map for your function, it is a good
idea to either photocopy it or write it out in pen before going on. I am
suggesting this action because, just as you did with the truth table, you are
going to circle outputs which have the same unchanging bit patterns. As you
circle the outputs, chances are you are not going to see the most effective
groups of bits to circle together, or you will find that you have made a
mistake in circling the bits. A photocopy or list in ink will allow you to try
again without having to redraw the Karnaugh map.

For the example shown in Fig. 2-2, the Karnaugh map has three circles put
on it, as shown in Fig. 2-3. Each circle should result in combining two input
sets together and making at least one bit into a ““don’t care”.

Correctly circling bits can be difficult to understand, but there are
a few rules that can be applied to it. First, each circle must be around
a power of two number of bits—you cannot circle three bits (as shown in
Fig. 2-4 for this example). Secondly, it is not a problem if circles overlap over
specific bits. I should point out that there is the case for redundant
circles (Fig. 2-5). If a circle is drawn and all the circled bits are enclosed in
another circle, then the enclosed circle is redundant. Thirdly, remember that
when you are circling bits that you want to circle a power of two number of
bits, not just two. In Fig. 2-6, I have modified the three bit Karnaugh map
with the outputsat A=0and B=C=1and A=1and B=C=0 beinga “1”

BC

00 01 11 10
0 1 0 1
0 1 I 1

1 0 '1
0«1 1 1

Three Bits Circled

Fig. 2-4. Incorrectly circling an odd number of bits in the example Karnaugh map.

CHAPTER 2 Combinatorial Circuits

_\®

BC

00 01 11 10
0 1 0 1
0 1 @D 1

Redundant Circle

Fig. 2-5. Redundant circles on the example Karnaugh map.

Two Circles Around
Four Bits

Fig. 2-6. Karnaugh map showing that more than two bits can be circled at the same time.

BC

00 01 11 10
0 1 0 1
11 0 .1

Circle Linking BitC =0
Across Karnaugh Map

Fig. 2-7. Circle extending outside the apparent boundaries of the Karnaugh map.

and found that I could circle two groups of four bits. In each of these cases, I
have made two bits ““‘don’t care”.

Finally, saying that a Karnaugh map is like a two-dimensional array is
inaccurate—it is actually a continuum unto itself, with the tops and sides
being connected. When you draw out your Karnaugh map, you may find that
the bits which can be circled (meaning ones with similar patterns) are on
opposite ends of the Karnaugh map. This is not a problem as long as there
are matching bits.

Once you have the outputs circled, you can now start writing out the
optimized equation. As an exercise, you might want to look at the example
Karnaugh maps in Figs. 2-3, 2-6 and 2-7. The output equations for these
figures are:

Output, o3 =('B-C)+(B-!C)+(A-C)
Output2A06 =A-C
Output, o7 =('B-C)+(B-!C)+(A-!C)

PART ONE Intro to Digital Electronics

:

=

COoOrRrRFPRPRPROOOORRREE OOl
=

O F OO F OO OO OIN

Alarm Response

Sound Alarm
Sound Alarm

g Alarm Karnaugh Map

Sound Alarm
Sound Alarm
Sound Alarm
Sound Alarm
Sound Alarm
Sound Alarm

PFRPRPRPRPRRPRPRPRPRFPOOOOOOOO|NU
OO OO FFEFRFEFRRERFEREOOO OO

Fig. 2-8. Home alarm truth table to Karnaugh map.

In this chapter, I wanted to show how the different optimizing tools are
used for the home alarm system presented in the chapter introduction.
The alarm system’s functions can be optimized using the Karnaugh map
shown in Fig. 2-8. In Fig. 2-8, I have drawn the circles around the two
groups of four active output bits which are in common and result in the
logic equation

Alarm Response = (P-W2)+ (W1 -!wW2)

which is identical to the equation produced by the truth table reduction and
a lot less work.

Before going on, I want to just say that once you are comfortable with
Karnaugh maps, you will find them to be a fast and efficient method of
optimizing simple logic functions. Becoming comfortable and being able to
accurately convert the information from a truth table to a Karnaugh map
will take some time, as will correctly circling active outputs to produce the
optimized sum of products circuit. Once you have mastered this skill, you will
find that you can go directly to the Karnaugh map from the requirements
without the initial step of writing out the truth table.

Boolean Arithmetic Laws

One of the ways of optimizing circuits is look through their output equations
and try to find relationships that you can take advantage of using the rules
and laws in Table 2-7. These rules should be committed to memory as quickly
as possible (or at least written down on a crib sheet) to help you with

CHAPTER 2 Combinatorial Circuits

Table 2-7 Boolean arithmetic laws and rules.

—@

Rule/law Boolean arithmetic example
AND identity function A-1=A

OR identity function A+0=A
Output reset A-0=0
Output set A+1=1
Identity law A=A

AND complementary law A-1A=0

OR complementary law A+1A=1
AND idempotent law A-A=A

OR idempotent law A+A=A
AND commutative law A-B=B-A
OR commutative law A+B=B+A

AND associative law

(A-B)-C=A-(B-C)=A-B-C

OR associative law

(A+B)+C=A+B+C)=A+B+C

AND distributive law

A-B+C)=(A-B)+(A-C)

OR distributive law

A+B-C)=(A+B)-(A+0C)

De Morgan’s NOR theorem

(A+B)=!A-1B

De Morgan’s NAND theorem

I(A-B)=!A+!B

optimizing logic equations without the need of truth tables or Karnaugh
maps. Many of these rules and laws will seem self-evident, but when you are
working at optimizing a logic equation in an exam, it is amazing what you
will forget or won’t seem that obvious to you.

@’_ PART ONE Intro to Digital Electronics

When I talk about using the laws and rules in Table 2-7 to simplify a logic
equation, I normally use the term “reduce” instead of “optimize”. The
reason for thinking of these operations as a reduction is due to how much the
logic equation shrinks as you work through it, trying to find the most efficient
sum of products expression.

The two identity functions are used to indicate the conditions where an
input value can pass unchanged through an AND or OR gate. The output
set, reset and complementary laws are used to output a specific state when
a value is passing through an AND or OR gate. The idempotent laws can be
summarized by saying that if an input passes through a non-inverting gate,
its value is not changed.

The remaining laws—commutative, associative and distributive—and
De Morgan’s theorems are not as trivial and are extremely powerful tools
when you have a logic equation to optimize. The commutative laws state that
the inputs to AND and OR gates can be reversed, which may seem obvious,
but when you have a long logic equation that is written in an arbitrary format
(not necessarily in sum of product format), you can get confused very easily
as to what is happening. It’s useful to have a law like this in your back pocket
to change the logic equation into something that you can more easily
manipulate.

To demonstrate the operation of these laws, we can go back to some of the
logic circuits described in the Karnaugh map examples of the previous
section. Looking at Fig. 2-3, the initial sum of products logic equation
would be:

Ooutput =(A-!B-C) +(a-B-10)+
A-B-0)+@A-B-0O)+
(aA-B-10)

Using the AND associative law, I can rewrite this equation with the A term
separate from the B and C terms to see if there are any cases where the B and
C terms are identical.

Output =A-(!B-C) +!A-(B-!C)+
A-(B-C)+2A-(B-0O)+
A-(B-10)

By doing this, I can see that the inside terms of the first and third products
are identical. Along with this, I can see that the second and fifth products

CHAPTER 2 Combinatorial Circuits _\Q
are also identical. Using the OR distributive law, I can combine the first and
third terms like:
a-(IB-C)+Aa-(B-0C)
=(a+2)-('B-0)
Using the OR complementary law, I know that A OR !A will always be true.
This is actually a clear and graphic example of the ““don’t care” bit; regardless
of the value of this bit, the output will be true so it can be ignored. The partial
equation of the two terms reduces to:
('a-'B-C)+A-('B-C)
=1-('B-Q)
The 1 ANDed with !B AND C can be further reduced using the AND iden-
tity law (1 AND A equals A):
A-(IB-C)+A-(IB-C)
=(B-0)
This can be repeated for the second and fifth terms:
(a-B-l0)+(@A-B-10)
=(8-C)
If you go back to the original logic equation, you will see that the fourth term
(A -B-C) has not been reduced by combining it with another term. It can
actually be paired with the third term (A-!B-C) by rearranging the two
terms (using the AND commutative law) so that part of the terms operating
on two bits are in common (A - C). Once this is done, the third and fourth
terms can be reduced as:
(A-B-C)+(@&A-B-1C)
=(@a-10)
After doing this work, the optimized or reduced sum of product logic
equation for this function is

Output =(IB-C)+(B-!C)+(A-C)

which is identical to what was found using the Karnaugh map.

Looking at the reduced logic equation, you should have noticed
that there are two terms that will output a ““1” at the same time ((!B-C)
and (A-C) with A=1, B=0 and C=1). This is not a problem because the
OR gate (even though the symbol that I use is a “+”") will only output a 1,
regardless of how many true inputs it has. This was mentioned when the

@’_ PART ONE Intro to Digital Electronics
Karnaugh maps were presented, but I wanted to reinforce that the same issue
is present when you are reducing logic equations.

Before moving on, let’s go back to the home alarm logic equation and see
if it can be reduced in the same way as the example above. Starting with the
sum of products logic equation:

Alarm State=(P-!D- W1l -!W2)
+(P-D-W1-'wW2)
+(P-!D- Wl -wW2)
+(P-!D-W1-'wW2)
+(P-!D-W1-W2)
+(P-D-!Wl-wW2)
+(P-D-W1-!W2)
+(P-D-W1-W2)
We can bring out the “P”” values from the products and look for similarities
in the remaining bracketed values and combine them using the associative,
distributive, complementary and AND identity laws. I can see that the first
and fourth, second and seventh can be combined, resulting in the logic
equation:
Alarm State = (ID-W1 - wW2)
4+ (D-Wl-wW2)
+(@-!D- Wl -w2)
+((P-!D-W1-W2)
4+ (P -D-Wl-w2)
+(P-D-W1-W2)
Bringing “W1” to the forefront allows the combination of the third and
fourth and fifth and sixth terms of the logic equation above, resulting in
the new equation:
Alarm State = (ID-W1 - !W2)
+(D-Wl-'w2)
+(P-!D-W2)
+(P-D-W2)
We have eliminated half the terms and, of those remaining, they are 25%

smaller. Looking at the new logic equation, we can see that by combining
the first and second terms (making “D” a don’t care bit in the process)

CHAPTER 2 Combinatorial Circuits _\@

Table 2-8 Testing optimized home alarm logic equation.

P D Wl W2 Alarm W1@ W2 D @2 R
0 0 0 O 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1
0 1 1 0 1 1 0 1
0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 O 0 0 0 0
1 1 0 O 0 0 0 0
1 1 0 1 1 0 1 1
11 1 1 1 0 1 1
1 1 1 o0 1 1 0 1
1 0 1 0 1 1 0 1
1 0 1 1 1 0 1 0
1 0 0 1 1 0 1 0
1 0 0 O 0 0 0 0

and combining the third and fourth terms (“D” again is the don’t care bit)
we end up with:

Alarm State = (W1 - !'W2) + (P -W2)

which is, again, the logic equation found by optimizing the function using
truth tables or Karnaugh maps.

Personally, I tend to optimize logic equations using the Boolean arithmetic
laws and rules listed in Table 2-7. Once a reduced sum of products equation
has been produced, I then go back and compare its outputs in a truth table
with the required outputs. In doing this, I present the values for each product
(AND) and the final sum (OR) in separate columns, as shown in Table 2-8.

Optimizing for Technology

If you review the laws in Table 2-7 and correlate them to the text in the
previous section, you’ll see that I missed the last two (De Morgan’s theorem).
These two laws are not typically used during basic logic equation reduction
because they typically involve converting part of an equation into an NAND
or NOR gate, which is important when finally implementing a logic function
in actual electronics. Another important aspect of optimizing for technology
is adding functions out of the leftover gates in your circuit; by looking at how
differently a logic circuit could be implemented, you may be able to add
functionality to your circuit, without adding any cost to it.

@’_ PART ONE Intro to Digital Electronics

Table 2-9 XOR gate truth table.

A B A"B
0 0 0
0 1 1
1 1 0
1 0 1

So far in the book, I haven’t discussed the ‘““Exclusive OR” (XOR) gate in
a lot of detail, but it is vital for implementing binary adders, as I will show
you later in the book. In the first chapter, I presented the XOR gate with the
truth table shown in Table 2-9.

You should probably be able to create the logic equation for the XOR
table as:

Output =(!A-B)+ (A -!B)

which does not seem like a very likely candidate for optimization. Similarly,
you probably would have a hard time believing that the following logic
equation would perform the same function:

Output =!((A-B) 4+ (& + B))

But, using De Morgan’s theorem as well as the other rules and laws from
Table 2-7, I can go through the manipulations shown in Table 2-10 to
show that they are equal, as well as count out the gates required by intermedi-
ate steps to give you a list of different implementations of the XOR gate.
Each intermediate step in Table 2-10 is an implementation of the XOR
gate that you could implement using the number of gates listed to the right
of the terms.

It’s interesting to note that a total of five gates is required for each
implementation — this is not something that you can count on when you are
working at optimizing a circuit.

The basic gate used in TTL is the “NAND” gate: this means that the three
basic gates (AND, OR and NOT) are built from multiples of it, as I've shown
in Fig. 2-9. The basic gate for CMOS is the NOR gate, and Fig. 2-10 shows
how the three basic gates are implemented for it. The three gate NAND and
NOR equivalencies for the OR and AND gates, respectively, are perfect
examples of De Morgan’s theorem in operation. These implementations

CHAPTER 2 Combinatorial Circuits _\m

Table 2-10 Different implementations of the XOR gate.

Terms NOTs | ANDs | ORs | NANDs | NORs
('A-B)+(A-!B) 2 2 1 0 0
1A -B)-!(A-!B)) 2 0 0 3 0
(A+!B)-('{A+B)) | 2 0 2 1 0
((A-B)+('A-!B)) 2 2 0 0 1
(A-B)+!(A+B)) | 0 1 0 0 2

o O— :
Output

A —3 A
5 } Output OR Output
.

A
A —DO— Output _ED— NOT Output

Fig. 2-9. Implementing the three basic gates using NAND gates.

can be checked against De Morgan’s theorem and the rules and laws
presented in Table 2-7.

By understanding how gates are implemented in chips, we can now look at
how to optimize the gates to provide the fastest possible operation of the
logic function. Using the example of the XOR gate, we can graphically show
how the gate is implemented using ANDs, ORs and NOTs and how these
gates are implemented as NAND gates in TTL chips (Fig. 2-11).

Looking at the bottom logic diagram of Fig. 2-11, you can see that
there are two sets of NAND gates wired as inverters together. Going back to
Table 2-7, we can see that a doubly inverted signal is the same signal, so we
can eliminate these two sets of NOT gates, as shown in Fig. 2-12. The
resulting XOR circuit will pass signals through three NAND gates, which

®’_ PART ONE Intro to Digital Electronics

L)—oum A
B P ’ D)— AND Output
-] ;

A — Output A)
B — utpu B —2 D—OR Output

A —%— Output A | ’ NOT Output

Fig. 2-10. Implementing the three basic gates using NOR gates.

XOR Built from NOT, AND and OR Gates

Ach,l)—u

Output

XOR Built from NAND Gates

Fig. 2-11. XOR gate built from sum of products equation and converted to NAND gates.

counts as three “gate delays”. This is an example of what I call “technology
optimization”: the logic circuit has been reduced to its bare minimum,
taking advantage of the operation of the basic logic gates that make up the
technology that it is implemented in.

Before moving on, I want to take one more look at the home alarm circuit
that has been discussed throughout this chapter. I made a pretty bold
statement at the start of the chapter, saying that it could be reduced to fit into
the most basic TTL chip available—let’s see how honest I was being.

The (repeatedly) optimized logic equation for the home alarm system was:

Alarm State = (W1 - !'W2)+ (P -W2)

CHAPTER 2 Combinatorial Circuits

—@
" - I : I : Output
A>T >»d7»d=

XOR Built from NAND Gates with Redundant Gates
Marked and Removed Below

| Output

B

Fig. 2-12. Optimized XOR gate built from NAND gates.

Alarm Circuit Built from NOT, AND and OR Gates

P
|

)13
\\//Vv;— Dc . |)—lﬁD Output

P | H ;B}—D(“t
i — oy vem— D o B

Alarm Circuit Directly Built from NAND Gates

Fig. 2-13. Home alarm logic circuit built using AND, OR and NOT gates and converted to
NAND gates.

which could be first implemented in two AND, one OR and one NOT gate,
as shown in Fig. 2-13 and converted to just NAND gates. You may have
noted in Fig. 2-13 the remarkable similarity between the home alarm logic
diagram and the XOR logic diagram—as I’ve shown in Fig. 2-14, the logic
function reduces to just four NAND gates (one less than the XOR gate
built out of NAND gates).

The final home alarm logic function requires four two input NAND
gates—which is just what the 7400, the most basic TTL chip, provides. Every
TTL chip, except for this one and a derivative revision, has more than four

@,—

Quiz

P

PART ONE Intro to Digital Electronics

EeR B R

Home Alarm Logic Built from NAND Gates with
Redundant Gates Marked and Removed Below

P
|
WA — Output
W2 —

Fig. 2-14. Optimixed alarm circuit built from NAND gates.

gates built into them because they provide additional functions requiring
multiple NAND gates. I was not exaggerating when I said that the home
alarm logic function could be reduced to the most basic TTL chip available.
In the next chapter, I will introduce you to the operation of TTL chips that
provide the basis for digital electronic logic functions.

1.

The three parameters that are used to measure the optimization of

a digital electronic circuit are:

(a) Cost, speed and complexity

(b) Gate delay, gate count and technology optimization

(c) Gate count, number of gate delays a signal must pass through
and technology optimization

(d) Gate count, number of connections a signal must pass through
and technology optimization

If TTL logic has a gate delay of 8 ns and the signal passing through
an XOR gate built from NAND gates has to go through 9 gates and
the shortest path is five gate delays, the time required for a signal to
pass through the gates is:

(a) 40ns

(b) 8ns

CHAPTER 2 Combinatorial Circuits —\®
(¢) indeterminate
(d) 24ns

3. When writing out a truth table, the inputs should be listed:
(a) Using a “Gray code”
(b) Using a “binary progression”
(c) In alphabetical order
(d) In order of importance

4. The “don’t care” bit in a truth table is:

(a) Indicated by a “‘d¢” and replaces the common bits in two true
sets of inputs

(b) Indicated by an “x”” and replaces the common bits in two true
sets of inputs

(c) Indicated by a *““dc” and replaces the uncommon bits in two
true sets of inputs

(d) Indicated by an “x” and replaces the uncommon bits in two
true sets of inputs

5. When optimizing a logic function you can expect:
(a) That the number of chips that are required is reduced from the
initial design
(b) That the optimized function runs faster than the initial design
(c) Cheaper chips can be used than in the initial design
(d) Answers (a) through (c) are all possible and it might not be able
to optimize the circuit from the initial sum of products equation

6. Karnaugh maps are:
(a) Tools designed to help you find your way around a digital
electronic circuit
(b) A tool that will help you optimize a logic function
(c) The most efficient method of optimizing logic fuctions
(d) Hard to understand but must be used in every logic function
design

7. The sum of products logic equation
Output =(A-!B-C)+(!A-!B-C)

can be reduced to:

) A-C
(b) A -IB
(c) C-IB

d) C

@,—

8.

10.

PART ONE Intro to Digital Electronics

Which of the following pairs of Boolean arithmetic laws cannot be
used together?

(a)
(b)
(©)
(d)

Identity and De Morgan’s theorem
Associative and idempotent
Complementary and commutative

All the laws and rules can be used together

The NAND equivalent to an AND gate is:

(a)
(b)
(©
(d)

Built from two NAND gates and requires two gate delays
for a signal to pass through

Built from three NAND gates and requires two gate delays for
a signal to pass through

Built from three NAND gates and requires three gate delays for
a signal to pass through

Built from one NAND gate as well as a NOT gate and requires
two gate delays for a signal to pass through

Technology optimization is defined as:

(a)
(b)

(©
(d)

Designing the circuit which uses the fewest number of chips and
signals pass through it as fast as possible

Implementing logic functions to take advantage of the base
logic of the logic technology used as well as using any leftover
gates

Finding the most efficient digital electronic technology to use
for the application

Designing circuitry that dissipates the least amount of heat to
perform a desired function

CHAPTER

Creating Digital

Electronic Gircuits

In the previous chapters, I introduced you to the basic Boolean arithmetic
theory behind decoding and design combinatorial circuits; binary data is
manipulated by simple operations to produce a desired output. Before going
on and showing you how these basic operations are extended to create
complicated functions and products, I want to take a step back and look at
basic electrical theory and semiconductor operation and how they are applied
to digital electronics. While digital electronics work with ““ones and zeros™, it
is still built from the basic electronic devices that are outlined in the
beginning of this chapter. It is impossible to work successfully with digital
electronics without understanding basic electrical theory and how simple
electronic devices work.

For many people, this chapter will be a review, but I still urge you to read
through this chapter and answer the quiz at the end of it. While you may be
familiar with electrical rules and device operation, you may not be so
comfortable understanding how they are used to create digital electronics.

_\®

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

PART ONE Intro to Digital Electronics

@’_

Switch
== Power Source Voltage

- Positive Load Connection
. Positive
— POWET

— Source LOAD

Negative

Negative Load Connection

0 Voltage
—— Ground

Fig. 3-1. Basic circuit diagram.

The most basic rule of electricity is that it can only move in a “‘closed
circuit” (Fig. 3-1) in which a “power source” passes electricity to and then
pulls it from a /load. The power source has two connections that are marked
with a “+” (“positive””) and “—" (“negative”) markings to indicate the
“polarity” of the power source and the power source symbol consists of a
number of pairs of parallel lines with the longer line in each pair representing
the positive connection. The black lines connecting the power source to the
load represent wires. When basic electricity is presented, this “load” is most
often a lightbulb, because it turns on when electricity passes through it. As
well as being a lightbulb, the load can be electrical motors, heater elements or
digital electronic chips or any combination of these devices.

In the “electrical circuit” (or ‘“‘schematic diagram”) shown in Fig. 3-1 you
can see that I have included a switch, which will open or close the circuit.
When the switch is closed, electricity will flow through from the power
source, to the load and back. If the switch is open or the wires connecting the
power source to the load are broken, then electricity will not flow through
the load.

As you are probably aware, electricity consists of electrons moving
from the power source through the wires to the load and back to the power
source. There are actually two properties of electricity that you should be
aware of and they are analogous to the two properties of water flowing
through a pipe. Voltage is the term given to the pressure placed on the
electrons to move and current is the number of electrons passing by a point
at a given time.

In the early days of electrical experimentation, it was Benjamin Franklin
who postulated that electricity was a fluid, similar to water. As part of this
supposition, he suggested that the electrical current flowed from the positive
power supply connection to the negative. By suggesting that electrical current

CHAPTER 3 Digital Electronic Circuits _\@
flowed from positive to negative, he started drawing electrical wiring
diagrams or schematics (like the one in Fig. 3-1) with the electrical energy at

the positive power supply connection being at the highest state. As the
electrical current “flowed down” the page to the negative connection of the

power supply, the energy of the electricity decreased. This method of drawing
electrical circuits is clever and intuitive and caught on because it described

what was happening in it.

Unfortunately, Franklin’s suggestion that electrical current flowed from
the positive to negative connections of the power source through the load was
wrong. As we now know, electrons that make up electricity flow from the
negative to positive connections of the power supply. This discovery was
made about 150 years after his kite in a lightning storm experiment, so the
notion that electrical current flowed from positive to negative was widely
accepted and was never really challenged. For this reason, you should keep in
mind that “‘electrical current flow” takes place in the opposite direction
to “‘electron flow” in electrical circuits. This point trips many people new to
electronics and I should state emphatically that the direction of current flow
follows Franklin’s convention.

Looking at the bottom right hand corner of Fig. 3-1, you will see a funny
set of lines attached to the wiring lines—this is the circuit’s “ground”
connection. The circuit ground is another invention of Benjamin Franklin. If
there is ever a large amount of electricity that finds its way into the circuit, it
will have an “‘escape route” to prevent damage to the circuit’s components
or hurting anybody working with the circuit. The ground connection was
literally a metal spike driven into the ground and connected to a home or
barn’s lightning rod. In modern structures, the “ground” is a connection to
the metal pipe bringing in water.

Another term commonly used for a circuit’s wire connections or wiring
lines is “‘nets”. The term originated when circuit analysis was first done on
complex networks of wiring. It is used to describe the individual wiring
connections in a circuit. I will use this term along with “wiring” and “‘lines”
in this book interchangeably.

Like power supplies, many load devices also have connections that
are marked with a positive (“+”) and negative (“—’") connections.
When discussing the positive and negative connections of a basic two-wire
load device, I like to use the terms, anode and cathode to describe the positive
and negative connections of the load, respectively. The load’s anode
must always be connected to the positive terminal of the power supply
and the load’s cathode must always be connected to the negative terminal
of the power supply. Reversing these connections may result in the device
not working or even going so far as literally “burning out”. To keep

@’_ PART ONE Intro to Digital Electronics
the terms anode and cathode straight, I remember that a ““cathode ray tube”
(i.e. your TV set) involves firing electrons, which are negative, at a
phosphorus screen.

More complex load devices, like logic chips, also have positive and
negative connections, but these connections are normally called Vee or Vdd
for the positive connection or Gnd and Vss for the negative (ground)
connections.

When working with most basic digital electronic circuits, the binary
value ““1” is applied to a high, positive voltage (usually close to the voltage
applied to the Vcc or Vdd pin of the chip). The binary value “0” is applied
to low voltage (very close to the ground voltage level of the chip). This
is generally considered intuitively obvious and can be easily remembered
that a ““1”” input is the same as connecting an input to the power supply and a
“0” input is the same as connecting an input to ground (resulting in “0
voltage). Similarly for outputs, when a ““1”* is output, you can assume that the
chip can turn on a light. These conventions are true for virtually all basic
electronic logic technologies; when you get into some advanced, very high
speed logic, you may find that chips are designed with different operating
conditions.

To simplify wiring diagrams, you will see many cases where the positive
power connection and negative power connection are passed to terminal
symbols to simplify the diagram and avoid the additional complexity of
power and ground lines passing over the page and getting confused with the
circuit “‘signal’ lines.

When you are wondering how to connect an electronic device to its power
supply, you can use Table 3-1 as a quick reference.

Table 3-1 Power wiring reference.

Positive (“‘+”°) connection | Negative (“‘—”’) connection | Comments

Red wire Black wire Wires connected to and
between devices

Anode Cathode Diodes and capacitors

Vee Gnd TTL

vdd Vss CMOS

CHAPTER 3 Digital Electronic Circuits

—@
Basic Electronic Laws

Before starting to build your own digital electronics circuits, you should
make sure that you are very familiar with the basic direct current electricity
laws that govern how electricity flows through them. Don’t worry if you have
not yet been exposed to any direct current electrical theory, it’s actually
pretty simple and in the introduction to this chapter, I gave you a quick run
down of how direct current circuits operate. 'm sure you were able to get
through that without too many problems.

To make sure that you are clear on what direct current (also known as
“DC”) is, it consists of electricity running in a single direction without any
changes. Alternating current (““‘AC”) continuously changes from positive to
negative (as shown in Fig. 3-2). AC is primarily used for high-power circuitry
and not for any kind of digital electronics, except as something that is
controlled by it. Digital electronics is powered by direct current,
which consists of a fixed voltage which does not change level or polarity,
as AC does.

As I indicated in the introduction, there are two components to electricity:
voltage is the “pressure” applied to the electrons and current is the number of
electrons that flow past a point or a set amount of time. I use the terms
“pressure’” and “flow” to help you visualize electricity moving in a wire as
being the same as water flowing through a pipe. Using a water/pipe analogy
can help you visualize how electricity moves and changes according to the
conditions it is subjected to.

It should be obvious that the more pressure you apply to water in a pipe,
the more water will pass through it. You can demonstrate this with a garden
hose and a tap. By partially closing the tap, you are restricting the flow of the
water coming from it, and the stream will not go very far from the end of the
hose and very little water will flow out. When you completely open the tap,
the water will spray out considerably further and a lot more water will be
passing out the end of the hose. Instead of saying that you are closing the tap,

+ Voltage

I
Peak to Peak
t Ampllitude

- Vo|tage «~Period~

Fig. 3-2. Alternating current.

@’_ PART ONE Intro to Digital Electronics
why don’t you think of the closing tap as resisting the flow of water through
the pipe and into the hose? This is exactly analogous to the /oad in a circuit
converting electrical energy into something else. Electricity coming out of the
load will be at a lower pressure (or voltage) than the electricity going into the
load and the amount of current will be reduced as well.

When you visualized the pipe/tap/hose analogy, you probably considered
that all the resistance in the circuit was provided by the tap —the pipe and the
hose did not impede the water’s flow in any way. This is also how we model
how electricity flows in wires; the wires do not cause a drop in voltage and do
not restrict the amount of current that is flowing in them. If you think about
it for a moment, you will probably realize that this assumption means that
the wires are “‘superconductors”; any amount of electricity and at any voltage
could be carried in the wires without any loss.

The wires that you use are certainly not superconductors, but the
assumption that the wires do not impede the flow of electricity is a good one
as their resistance in most circuits is usually negligible. By assuming that the
wires are superconductors, you can apply some simple rules to understand
the behavior of electricity in a circuit.

Going back to the original schematic diagram in this chapter (see Fig. 3-1),
we can relate it to the pipe/tap/hose example of this section. The circuit’s
power supply is analogous to the pipe supplying water to the tap (which
itself is analogous to the electrical circuit’s load). The hose provides the
same function as the wires bringing the electrical current back to the power
supply.

In the pipe/tap/hose example, you should be able to visualize that the
amount of water coming through the hose is dependent on how much the tap
impedes the water flow from the pipe. It should be obvious that the less the
tap impedes the water flow, the more water will come out the hose. Exactly
the same thing happens in an electrical circuit; the “load” will impede or
“resist” the flow of electricity through it and, in the process, take energy from
the electricity to do something with it.

The most basic load that can be present in a circuit is known as the
“resistor” (Fig. 3-3), which provides a specified amount of resistance,

Resistor Lead Resistor Body Resistor Lead
(wire)
Value “Bands” Tolerance Band

Fig. 3-3. Basic resistor.

CHAPTER 3 Digital Electronic Circuits _\®
measured in “ohms”, to electricity. The ‘‘schematic symbol” is the jagged line
you will see in various schematic diagrams in this book and in other sources.
The schematic symbol is the graphic representation of the component and
can be used along with the graphic symbol for a gate in a schematic diagram.
In traditional resistors, the amount of resistance is specified by a number
of colored bands that are painted on its sides—the values specified by these

bands are calculated using the formula below and the values for each of the
colors listed in Table 3-2.

Resistance=((BandlColorValue x 10)+(Band2ColorValue))
% lOBand3ColorValueoth

In the introduction to the chapter, I stated that power supplies provide elec-
trons with a specific “pressure” called voltage. Knowing the voltage applied

Table 3-2 Resistor color code values.

Color Band color value | Tolerance
Black 0 N/A
Brown | 1 1%
Red 2 2%
Orange | 3 N/A
Yellow | 4 N/A
Green 5 0.5%
Blue 6 0.25%
Violet 7 0.1%
Gray 8 0.05%
White 9 N/A
Gold N/A 5%
Silver N/A 10%

@’_ PART ONE Intro to Digital Electronics
to a load (or resistor), you can calculate the electrical current using Ohm’s
law which states:

The voltage applied to a load is equal to the product of its resistance and the
current passing through it.

This can be expressed mathematically as:
V=1xR

X342

where “V” is voltage, “R” is resistance and is current. The letter i is
used to represent current instead of the more obvious “C” because this char-
acter was already for specifying capacitance, as I will explain below. Voltage
is measured in “‘volts”, resistance in ““ohms” and current in “amperes’. For
the work done in this book, you can assume that ohms have the units of
volts/amperes and is given the symbol ©; you can look up how these values
are derived, but for now just take them for what I’ve presented here. With
a bit of basic algebra, once you know two of the values used in Ohm’s
law, you can calculate the third.

Voltage, current, resistance, and, indeed, all the electrical values that you
will see are part of the “SI” (Systéme Internationale), and its values are
governed by SI standards. Each time a unit deviates by three orders of
magnitude from the base value, the units are given a prefix that indicates the
magnitude multiplier and these multipliers are listed in Table 3-3. For
example, one thousandth of a volt is known as a “millivolt”. The actual
component values are normally given a single letter symbol that indicates its
value. Most electronic devices, like resistors are given a two digit value that is
multiplied by the power of ten which the symbol indicates. For example,

1342
1

Table 3-3 Systéme Internationale magnitude of prefixes and symbols.

Power multiplier | Prefix | Symbol | Power multiplier | Prefix | Symbol

10° kilo | k 10°° milli | m
108 mega | M 1076 micro | p
10° Giga G 10°° nano n
102 tera T 1012 pico p

10" peta P 10715 femto | f

CHAPTER 3 Digital Electronic Circuits

+ S
. Voltage “Drop
I
Resistor 1 Across FieSiStor 1
I
Voltage ‘fDrop”

Resistor 2 Across Fiesistor 2

-+

Fig. 3-4. Electrical circuit with two resistors in series.

thousands of units are given the prefix “k’, so a resistor having a value of
10,000 ohms is usually referred to as having a value of *“10 kohms”, or most
popularly “10k”.

Looking at more complex circuits, such as the two resistor “‘series’ circuit
shown in Fig. 3-4, you must remember that individual measurements must be
taken across each resistor’s two terminals; you do NOT make measurements
relative to a common point. The reason for making this statement is to point
out that the voltage across a resistor, which is also known as the “voltage
drop”, is dependent on the current flowing through it.

Using this knowledge, you can understand how electricity flows through
the two series resistors in Fig. 3-4. The voltage applied to the circuit causes
current to flow through both of the resistors and the amount of current is
equal to the current passing through a single resistor value which is the sum
of the two resistors. Knowing this current, and an individual resistor’s value,
you can calculate the voltage drop across each one. If you do the
calculations, you will discover that the voltage drop across each resistor is
equal to the applied voltage.

This may be a bit hard to understand, but go back to the pipe/tap/hose
example and think about the situation where you had a pipe/tape/pipe/tap/
hose. In this case, there would be a pressure drop across the first tap and then
another pressure drop across the second tap. This is exactly what happens in
Fig. 3-4: some voltage “drops” across Resistor 1 and the rest drops across
Resistor 2. The amount of the drop across each resistor is proportional to its
value relative to the total resistance in the circuit.

To demonstrate this, consider the case where Resistor 1 in Fig. 3-4 is
5Sohms and Resistor 2 is 8§ ohms. Current has to flow through Resistor 1
followed by Resistor 2, which means that the total resistance it experiences is
equivalent to the sum of the two resistances (13 ohms). The current through
the two resistors could be calculated using Ohm’s law, as voltage applied
divided by Resistor 1 plus Resistor 2. The general formula for calculating

@’_ PART ONE Intro to Digital Electronics
equivalent the resistance of a series circuit is the sum of the resistances, which
is written out as:

Re:R1+R2+...

Knowing the resistor values, the voltage drop across each resistor can be
calculated as its fraction of the total resistance; the voltage across
Resistor 1 would be 5/13ths of the applied voltage while the voltage across
Resistor 2 would be 8/13ths of the applied voltage. Dividing the resistor
values into the individual resistor voltage drops will yield the same current
as dividing the applied voltage by the total resistance of the circuit.

Adding the two resistor voltage drops together, you will see that they total
the applied voltage. This is a useful test to remember when you are checking
your calculations, to make sure they are correct.

The properties of series resistance circuits are summed up quite well as
Kirchoff’s voltage law, which states that ““the sum of the voltage drops in a
series circuit is equivalent to the applied voltage and current is the same at all
points in the circuit.”

Along with being able to calculate the amount of current passing through
a series resistor circuit and the voltage drop across each resistor, you can also
calculate the voltage across each resistor in a parallel resistor circuit like
Fig. 3-5 as well as the current through all the resistors. To do this, you have
to remember Kirchoff’s current law, which states that “the sum of the
currents through each resistance is equivalent to the total current drawn by
the circuit and the voltage drops across each resistor is the same as the
applied voltage.”

With each resistor in parallel, it should be fairly obvious that the voltage
drop across each one is the same as the applied voltage, and the current
flowing through each one can be calculated using Ohm’s law. It should also

+
I
Resistor 1 Resistor 2 $
I
—— Current Through Current Through
Resistor 1 Resistor 2
-

Fig. 3-5. Electrical circuit with two resistors in parallel.

CHAPTER 3 Digital Electronic Circuits _\®

be obvious that the current drawn from the power source is equivalent to the
sum of the currents passing through each resistor.

If you were to calculate some different current values for different
resistances, you would discover that the general formula for the equivalent
resistance was:

Re =1/(1/R)+(1/Ry +...)

For the simple case of two resistors in parallel, the equivalent resistance can
be expressed using the formula:

Re =(Ry XRy)/(R; +Ry)

Complex resistor circuits, made up of resistors wired in both series and
parallel, like the one shown in Fig. 3-6, can be simplified to a single equiva-
lent resistor by applying the series and resistor formulas that I have presented
so far in this section. When doing this, I recommend first finding the equiva-
lent to the series resistances and then the equivalent to the parallel resistances
until you are left with one single equivalent resistance.

The last piece of basic electrical theory that I would like to leave you with
is how to calculate the power dissipated by a resistor. When you took
Newtonian physics, you were told that power was the product of the rate at
which something was moving and the force applied to it. In electrical circuits,
we have both these quantities, voltage being the force applied to the electrons
and current being the rate of movement. To find the power being dissipated
(in watts), you can use the simple formula:

P=vVxi

RS
RS ReS
<

+

R2 x (R3 + R4
+

R3 + R4
AN

Step 1. Step 2. Repeat Step 1 and Step 2
Combine Series Combine Parallel until there is a Single
Resistances into a Resistances into a Resistance Equivalent
Single Equivalent Single Equivalent to the Resistance of the
Resistor Resistor “Network”

Fig. 3-6. Reducing the multiple resistor “network™ into a single equivalent resistor.

@’_ PART ONE Intro to Digital Electronics
or, if you don’t know one of the two input quantities, you can apply Ohm’s
law and the formula becomes:

P =V?/R

2xR

=i
I must point out that when you are working with digital electronics, most
currents in the circuits are measured somewhere between 100 pA to 20 mA.
This seemingly small amount of current minimizes the amount of power
that is dissipated (or used) in the digital electronic circuits. I'm pointing
this out because if you were to get a book on basic electronics you would dis-
cover that the examples and questions will usually involve full amperes of
current—not thousands or tens of thousands as I have noted here. The
reason why basic electronics books work with full amps is because it is easier
for students to do the calculations and they don’t have to worry about work-
ing with different orders of magnitude.

So far in these few initial pages of this chapter, I have gone through the
same amount of material that is presented in multiple courses in electrical
theory. Much of the background material has been left out as well as
derivations of the various formulas. For the purposes of working with digital
electronics, you should be familiar with the following concepts:

1. Electricity flows like water in a closed circuit.
The amount of current flow in a circuit is proportional to the
amount of resistance it encounters.
3. Voltage across a load or resistance is measured at its two terminals.
4. Voltage is current times resistance (Ohm’s law).
5. Power is simply voltage times current in a DC circuit.

The other rules are derivations of these basic concepts and while I don’t
recommend trying to work them out in an exam, what you do remember
can be checked against the basic concepts listed above.

Capacitors

When working with digital electronic circuits, it is very important for you to
understand the purpose and operation of the capacitor. Many people shy
away from working at understanding the role of capacitors in digital
electronics because the formulas that define their response to an applied

CHAPTER 3 Digital Electronic Circuits _\@
voltage do not seem to be intuitive and many of them are quite complex.
Further reducing the attractiveness of understanding capacitors is that they
do not seem to be a basic component of digital electronics, and when they are
used their value and wiring seems to be simply specified by a datasheet or an
application note. I must confess that these criteria used to apply to me and
I never understood the importance of capacitors in digital electronics until
I was reviewing failure analysis of a 4 MB memory chip. As I will show,
a dynamic RAM memory element (along with a MOSFET transistor) is
essentially a capacitor, and the failure analysis of the chips showed how the
differences in these capacitors affected their operation. One of the major
conclusions of the failure analysis was that the memory chip wasn’t so much
a digital electronic device as a massive array of four million capacitors. This
example is meant to show the importance of understanding the operation of
capacitors and how they influence digital electronic circuits—being comfor-
table with the information in this section is more than good enough to use
and successfully specify capacitors in digital electronic circuits.

The capacitor itself is a very simple energy storage device; two metal plates
(as shown in the leftmost capacitor symbol in Fig. 3-7) are physically
separated by a “dielectric”” which prevents current from flowing between
them. The dielectric is an insulator (“‘dielectric’ is a synonym for “insulator’)
material which enhances the metal plates’ ability to store an electric charge.

The capacitor is specified by the amount of charge it is able to store. The
amount of charge stored in a capacitor (which has the symbol “C”) is
measured in “‘farads” which are ‘“coulombs” per volt. One coulomb
of electrons is a very large number (roughly 6.2 x 10'®) and you will find
that for the most part you will only be working with capacitors that can store
a very small fraction of a coulomb of electrons.

Knowing that farads are in the units of coulombs per volt, you can find the
amount of charge (which has the symbol “Q’) in a capacitor by using
the formula:

Q=CxV
| Plate | + |
Dielectric
| Plate | |
Non-Polarized Polarized Capacitor Polarized Capacitor
Capacitor with Anode with Cathode
Indicated with “+” Indicated with

Curved Line
Fig. 3-7. Capacitor symbol.

PART ONE Intro to Digital Electronics

@,—

Unpolarized Tantalum Electrolytic

(Ceramic Disk (Polarized) (Polarized)

or Polyester) T
A

2 7 m
¢ H
Capacitor i 3 !
Value Stamp 5 S [|
(See Text) £ + 5 &
u g
o, 2 m

" O

Positive ” Nedati
egative —!

Lead Load

(Anode) (Cathode)

Fig. 3-8. Capacitor appearance and markings.

The fraction of a coulomb that is stored in a capacitor is so small, that the
most popularly used capacitors are rated in millionth’s (‘“‘microfarads” or
“uF”) or trillionth’s (“‘picofarads” or “pF’’) of farads. Microfarads are com-
monly referred to as “mikes” and picofarads are often known by the term
“puffs”. Using standard materials (such as mica, polyester and ceramics),
it is possible to build capacitors of a reasonable size of 1 microfarad
(one millionth of a farad) but more exotic materials are required for
larger value capacitors. For larger capacitors, the dielectric is often a liquid
and the capacitor must be wired according to parameter markings
stamped on it, as I have indicated in Fig. 3-8. These are known as “‘polar-
ized” capacitors and either a “4+”° marking or a curved plate (as shown in
Fig. 3-7) is used to indicate how the capacitor is wired in the schematic.
Like other polarized components, the positive connection is called an
“anode” and the negative a ““‘cathode”. Along with the markings, you should
remember that the anode of a polarized two lead component is always longer
than the cathode. The different lead lengths allow automated assembly equip-
ment to distinguish between the two leads and determine the component’s
polarity.

Capacitors have two primary purposes in digital electronic circuits. The
first is as a voltage “filter”” (Fig. 3-9), reducing “‘spikes’ and other problems
on a wire carrying current. This use is similar to the use of a water tower in a
city; the water tower is filled due to the pressure of the water being pumped
into the community. Water is continually pumped to both houses and the
water tower, but in times of high usage (like during the day when people are
watering their lawns and washing their cars), water from the tower
supplements the pumped water to keep the pressure constant. During the

CHAPTER 3 Digital Electronic Circuits

Input Voltage == __I__ == To Load
I C

Fig. 3-9. Power supply filter using capacitor.

R
AN J_ Output Signal
I C

Input Signal

Fig. 3-10. Low-pass filter built from resistor and capacitor.

night, when few people are using water, the pumped water is stored in the
water tower, in preparation for the next day’s requirements.

When you look at digital electronic circuits, you will see two types of
capacitors used for power filtering. At the connectors to the power supply,
you will see a high value capacitor (10 uF or more) filtering out any “ripples”
or “spikes” from the incoming power. “Decoupling” capacitors of 0.047 uF
to 0.1 pF are placed close to the digital electronic chips to eliminate small
spikes caused when the gates within the chips change state.

Large capacitors will filter out low-frequency (long-duration) problems on
the power line while the small capacitors will filter out high-frequency (short-
duration) spikes on the power line. The combination of the two will keep the
power line “clean” and constant, regardless of the changes in current demand
from the chips in the circuit.

The capacitor’s ability to filter signals is based on its ability to accept or
lose charge when the voltage across it changes. This capability allows voltage
signals to be transformed using nothing more than a resistor and a capacitor,
as in the “low-pass filter”” shown in Fig. 3-10. This circuit is known as a low-
pass filter because it will pass low-frequency alternating current signals more
readily than high-frequency alternating current signals.

In digital electronics, we are not so much concerned with how a capacitor
affects an alternating current as how it affects a changing direct current.
Figure 3-11 shows the response, across Fig. 3-10’s low-pass filter’s capacitor
and resistor, to a digital signal that starts off with a low voltage “‘steps”™ up to
“V’” and then has a falling step back to 0V.

In Fig. 3-11, I have listed formulas defining the voltage response across the
resistor and capacitor to the rising and falling step inputs. These formulas are

®’_ PART ONE Intro to Digital Electronics

Vce

0 Volts Input Signal

Vi
iOutput = Vo x e'/ RC Output Signal
(Voltage
0 Volts \ AcCross

Output = Ve - Vee x e/ ¢ Capacitor)

Vce
Mtput =Vce x et/ RC Voltage
0 Volts Across
Resistor
KOutput =_-Vccxel/RC
-Vce

Fig. 3-11. Resistor/capacitor circuit response to changing input.

found within introductory college electricity courses by knowing that the
voltage across the capacitor can be defined by using the formula:

Ve(t) = Qc(t)/C

which simply states that the voltage across a capacitor at some point in time
is a function of the charge within the capacitor at that point of time. The
charge within the capacitor is supplied by the current passing through the
resistor and the resistor limits the amount of current that can pass through
it. As the voltage in the capacitor increases, the voltage across the resistor
falls and as the voltage across the resistor falls, the amount of current that
is available to charge the capacitor falls. It is a good exercise in calculus to
derive these formulas, but understanding how this derivation works is not
necessary for working with digital electronics.

There are two things I want to bring out from the discussion of low-pass
filters. The first is that the response of the low-pass filter is a function of the
product of the resistance and capacitance in the circuit. This product is
known as the “RC time constant’ and is given the Greek letter “tau” () as
its symbol. Looking at the formulas, you should see that by increasing the
value of t (either by using a larger value resistor or capacitor) the response
time of the low-pass filter is increased.

This has two ramifications for digital electronics. The first should be
obvious: to minimize the time signals take to pass between gates, the
resistance and capacitance of the connection should be minimized. The
second is more subtle: the resistor—capacitor response can be used to delay a
signal in a circuit. This second issue with resistor—capacitor circuits is actually

CHAPTER 3 Digital Electronic Circuits _\@
very useful in digital electronics for a number of different applications that I
will discuss later in the book.
This is a very short introduction to capacitors and their operation in
(digital) electronic circuits. Before going on, I would like to reinforce what

I’ve said about their importance and recommend that you follow up this
section’s material by working through a book devoted to analog electronics.

Semiconductor Operation

Over the past 100 years, we have refined our ability to control the electrical
properties of materials in ways that have made radios, TVs and, of course,
digital electronic circuits possible. These materials have the ability to change
their conductance, allowing current to pass through them under varying
conditions. This ability to change from being an insulator to a conductor has
resulted in these materials being called “‘semiconductors™, and without them
many of the basic devices we take for granted would be impossible.

The most basic electronic semiconductor device is the “diode”. The
electrical symbol and a sketch of the actual part is shown in Fig. 3-12. Diodes
are a “‘one-way’’ switch for electricity; current will pass easily in one direction
and not in the other. If you were to cut a silicon diode in half and look at its
operation at a molecular level, you would see that one-half of the silicon was
“doped” (infused with atoms) with an element which can easily give up
electrons, which is known as an “N-type”’ semiconductor. On the other side
of the diode, the silicon has been doped with an element that can easily accept
electrons, a ““P-type” semiconductor.

Schematic Symbol

Line Corresponds to "Band" on

Component
Anode —H— Cathode
————)
Current Direction

Actual Part Appearance

Anode l mmm Cathode

Band at end of diode
Indicates polarity and
Direction of Current Flow

Fig. 3-12. Diode symbol.

PART ONE Intro to Digital Electronics

@,—

Photons Electrons
\ Released Flowing
Electron g?_rnglgh
Potential \, ——t — — Potential
Material
N'-t_ype P-type
Silicon Silicon

Fig. 3-13. Diode operation.

When a voltage is applied to the diode, causing electrons to travel from the
atoms of the N-type semiconductor to the atoms of the P-type, the electrons
“fall” in energy from their orbits in the N-type to the accepting orbit spaces
in the P-type, as shown in Fig. 3-13. This drop in energy by the electron is
accompanied by a release in energy by the atoms in the form of photons. The
“quanta” of photon energy released is specific to the materials used in the
diode—for silicon diodes, the photons are in the far infrared.

The voltage polarity applied to the diode is known as ‘““bias”. When the
voltage is applied in the direction the diode conducts in, it is known as
“forward biased”. As you might expect, when the voltage is applied in the
direction the diode blocks current flow, it is known as “‘reverse biased”. This
IS an important point to remember, both for communicating with others
about your designs and for understanding the operation of transistors, as
explained below.

To keep the thermodynamic books balanced, the release in energy in terms
of photons is accompanied by a corresponding voltage drop across the diode.
For silicon diodes, this drop is normally 0.7 volts. The power equation I gave
earlier (P =YV x 1) applies to diodes. When large currents are passed through
the diode and this is multiplied by 0.7V, quite a bit of power can be
dissipated within the diode.

If voltage is applied in the opposite direction (i.e. injecting electrons into
the P-type side of the diode), the electrons normally do not have enough
energy to rise up the slope and leave the orbits of the P-type atoms and enter
the electron-filled orbits of the N-type atoms. If enough voltage is applied,
the diode will “break down” and electrons will jump up the energy slope. The
break down voltage for a typical silicon diode is 100V or more—it is
quite substantial.

CHAPTER 3 Digital Electronic Circuits

Qutput +

Output
Input LYY,

SVAYRL
Qutput -

Fig. 3-14. “‘Full wave rectifier”’ using four diodes.

Voltage

Input Current
Limiting
Resistor

Regulated

Output

Zener
Diode

Fig. 3-15. Zener diode voltage regulator.

A typical use for a diode is to “‘rectify” AC to DC, as shown in Fig. 3-14,
in which a positive and negative alternating current is converted using the
four diodes to a “lobed” positive voltage signal, which can be filtered using
capacitors, as discussed in the previous section.

Along with the simple silicon diode discussed above, there are two other
types of diodes that you should be aware of. The first is the “Zener” diode
which will break down at a low, predetermined voltage. The typical uses for
the Zener diode is for accurate voltage references (Zener diodes are typically
built with 1% tolerances) or for low-current power supplies like the one
shown in Fig. 3-15. The symbol for the Zener diode is the diode symbol with
the bent current bar shown in Fig. 3-15.

Building a power supply using this circuit is actually quite simple: the
Zener diode’s break down voltage rating will be the “‘regulated output” and
the ““voltage input” should be something greater than it. The value of the
current limiting resistor is specified by the formula

Ritimic = (vin _VZener)/iapp

where “i,,," is the current expected to be drawn (plus a couple of tens of
percent margin). The power rating of the Zener diode should take into
account the power dissipated if i,,, was passing through it.

_\@

Q’_ PART ONE Intro to Digital Electronics

As 1 will discuss later in this chapter, there are a lot of inexpensive
power regulators that are a lot more efficient than the Zener diode one shown
in Fig. 3-15. If you do the math for a typical application (say 9 volts in,
5.1 volt Zener diode and a 20 mA current draw), you will find that at best it is
60% efficient (which is to say 60% of the power drawn by the Zener regulator
circuit and the application is passed to the application, and can often be as
low as 25%). The reason for using the Zener diode regulator is its low cost,
very small form factor and extreme robustness. Most practical applications
will use a linear regulator chip.

The other type of diode that I want to mention in this section is one that
you are already very familiar with —the light-emitting diode or LED. As its
name implies, this diode emits light (like a light bulb) when a current passes
through it. In Fig. 3-16, note that the LED symbol is the same as the diode’s
symbol, but with light rays coming from it. The most common package for
the LED is also shown in Fig. 3-16 and it consists of a rounded cylinder
(somewhat like “R2D2” from Star Wars) with a raised edge at its base with
one side flattened to indicate the LED’s cathode (negative voltage
connection).

There are a few points that you should be aware of with regard to LEDs.
In the past few years, LEDs producing virtually every color of the rainbow
(including white) have become available. I must point out that LEDs can
only produce one color because of the chemistry of the semiconductors used
to build them. You may see advertisements for two or three color LEDs, but
these devices consist of two or three LEDs placed in the same plastic package
and wired so that when current passes through its pins in a certain direction,
a specific LED turns on.

Schematic Symbol

“Light Rays” : Wt
Indicating LED /)/\/ Line Corresponds to "Flat" on

I | component’s base

—
Current Direction

Actual Part Appearance

“Flat” on side of diode
Indicates polarity and
Direction of Current Flow

Fig. 3-16. LED symbol.

CHAPTER 3 Digital Electronic Circuits _\@

The brightness of a LED cannot be controlled reliably by varying the
current passing through it, as you would with a light bulb. LEDs are designed
to provide a set amount of light with current usually in the range of 5 to
10 mA. Reducing the current below 5 mA may dim its output or it may turn it
off completely. A much better way to dim a LED is to use “pulse wave
modulation” (PWM), in which the current being passed to the LED is turned
on, and faster than the human eye can perceive, with varying amounts of
on and off time to set the LED’s brightness. I will discuss PWMs later in
the book.

Finally, when I first introduced diodes, I noted that silicon diodes output
photons of light in the far infrared and have a 0.7 volt drop when current
passes through them. To produce visible light, LEDs are not made out of
silicon, they are made from other semiconductor materials in which the
energy drop from the N-type semiconductor to the P-type semiconductor
produces light in the visible spectrum. This change in material means that
LEDs do not have silicon’s 0.7V drop; instead, they typically have a 2.0V
drop. This is an important point because it will affect the value of the current
limiting resistor that you put in series to make sure the LED’s current limit
rating is not exceeded or that it does not allow too much current in the circuit
to pass through it, resulting in an unnecessary current drain.

It is always a source of amazement to me how many people do not
understand how transistors work. For the rest of this section, I will introduce
you to the two most common types of transistors and explain how they work
as well as what applications they are best suited for. Understanding the
characteristics of the two types of transistors is critical to understanding how
digital logic is implemented and how you can interface it to different
technologies.

As I explain the operation of the “bipolar” transistor, I will endeavor to
keep to the “high level” and avoid trying to explain transistor operation
using tools like the ‘“‘small signal model”, which is intimidating and
obfuscates the actual operation of the device. Instead, I want to introduce
you straight to the “NPN bipolar transistor” by its symbol and typical
package and pinout for a small scale (low-power) device in Fig. 3-17.

As you have probably heard, a bipolar transistor can be considered a
simple switch or a voltage amplifier, but you are probably mistaken on how it
is controlled and how it actually works. The transistor is not voltage
controlled (as you may have been led to expect); it is actually current
controlled. The amount of current passing through the ‘“base” to the
“emitter”” controls the amount of current that can pass from the “collector”
to the emitter. The amount of current that can be passed through the
collector is a multiple (called ““beta” and given the symbol ““8” or hgg) of the

PART ONE Intro to Digital Electronics

Collector
Lettering || TO-92 Package
Lo Part
ic = ipX hFe Number
i EBC
Base
ie = ib+ iC
Emitter

Schematic Symbol

Fig. 3-17. NPN transistor symbol with parameters.

current flowing through the base; the bipolar transistor is actually an
amplifier — a small amount of current allows a greater amount to flow. The
simple formulas for the relationship between the base and collector currents
are listed in Fig. 3-17.

I must point out that these formulas apply while the maximum collector
current is in the “small signal” or “‘linear’” operating range. As a physical
device, a transistor can only allow so much current to flow through it; as it
reaches this limit, increases in the transistor’s base current will not result in a
proportional increase in collector current. This operating region is known as
the “non-linear” or “‘saturation’ region and what happens in this situation
can be easily understood by looking at what happens in a cross section of a
transistor (Fig. 3-18).

A Dbipolar transistor consists of a P-type semiconductor sandwiched
between two N-type semiconductors. This structure forms a reverse biased
diode and no current can flow through it. With no current being injected into
the NPN bipolar transistor, the P-type semiconductor is known as the
“depletion region” because it does not have any electrons. When current is
passed to the device, electrons are drawn through the P-type semiconductor
via the emitter N-type semiconductor. As electrons are drawn into the P-type
semiconductor, the properties of the P-type semiconductor change and take
on the characteristics of the N-type semiconductors surrounding it and
becomes known as the ‘“‘conduction region”. The more electrons that are
drawn from the P-type semiconductor, the larger the conduction region
bridging the two pieces of N-type semiconductor and the greater amount of
current that can pass from the collector to the emitter. As more electrons are

CHAPTER 3 Digital Electronic Circuits _\@

Transistor “Off”) _ .
Depletion Region

[0}
Collector o Emitter
(Positive) _| N-type f N-type I_(Negative)

Base
. “« » (No Current)
Transistor “On “Depletion Region” Shrinking

[0))
Collector 3 |— Emitter
(Positive) _| N-type E>‘ N-type (Negative)
o

“Conduction Region” grows

Base with Base Current
(Current drawing electrons)

Fig. 3-18. NPN transistor operation.

Emitter
Lettering || TO-92 Package
Part
ie = ib+ ic Number
i EBC
Base

ic = ipX hre

Collector

Schematic Symbol

Fig. 3-19. PNP transistor symbol with parameters.

drawn from the P-type semiconductor, the conduction region grows until
the entire P-type semiconductor of the transistor becomes “‘saturated”.

The PNP bipolar transistor (Fig. 3-19) operates in the complete opposite
way to the NPN transistor. It is built from an N-type semiconductor between
two P-type semiconductors and to create a conduction region, electrons are
injected into the base instead of being withdrawn, as in the case of the
NPN bipolar transistor. As in the NPN bipolar transistor, the amount of
collector current is a multiple of the base current (and that multiple is
also called B or hgg).

@’_ PART ONE Intro to Digital Electronics

Aluminum Contacts

£ B .
N-type

Well

Fig. 3-20. Side view cross section of NPN bipolar transistor in an integrated circuit.

Metal Gate

Silicon Oxide Insulator

Gate Drain

Source

N-type N-type

Conduction Region

Fig. 3-21. N-channel MOSFET side view showing features during operation.

Bipolar transistor hgg values can range anywhere from 50 to 500 and the
amount of collector current they can handle ranges from a few tens of
milliamps to tens of amps. As well as discrete (single) devices being
inexpensive, they respond to changes in inputs in extremely short time
intervals. You may think they are perfect for use in digital electronics, but
they have two faults that make them less than desirable. First, the base
current is actually a source of power dissipation in the device, which is
usually not an issue when single transistors are used, but is of major concern
when thousands or millions are used together in a highly complex digital
electronic system.

Secondly, they take up a lot of chip “real estate’” and are very expensive to
manufacture. Figure 3.20 shows the side view of an NPN bipolar transistor
built on a silicon chip. Instead of butting together different types of
semiconductor, it is manufactured as a series of “wells”, which are doped
with the chemicals to produce the desired type of semiconductor by repeated
operations. As many as 35 process steps are required to produce a bipolar
transistor.

The N-channel enhancement “‘metal oxide silicon field effect transistor”
(MOSFET) does not have these faults—it is built using a much simpler
process (the side view of the transistor is shown in Fig. 3-21) that only
requires one doping of the base silicon along with the same bonding of

CHAPTER 3 Digital Electronic Circuits _\@
aluminum contacts as the bipolar transistor. N-channel MOSFETs (as they
are most popularly known) require nine manufacturing processes and take a
fraction of the chip real estate used by bipolar transistors.

The N-channel MOSFET is not a current-controlled device, like the
bipolar transistor, but a voltage-controlled one. To “turn on” the MOSFET
(allow current to flow from the “‘source” to the “drain” pins), a voltage is
applied to the “gate”. The gate is a metal plate separated from the P-type
silicon semiconductor substrate by a layer of silicon dioxide (most popularly
known as “‘glass’). When there is no voltage applied to the gate, the P-type
silicon substrate forms a reverse biased diode and does not allow current flow
from the source to the drain. When a positive voltage is applied to the gate of
the N-channel MOSFET, electrons are drawn to the substrate immediately
beneath it, forming a temporary N-type semiconductor ‘“‘conduction region”,
which provides a low-resistance path from the source to the drain. MOSFET
transistors are normally characterized by the amount of current that can pass
from the source to the drain along with the resistance of the source/drain
current path.

The symbol for the N-channel MOSFET, along with its complementary
device, the P-channel MOSFET are shown in Fig. 3-22. The P-channel
MOSFET creates a conduction region when a negative voltage is applied to
its gate. MOSFET transistors come in a variety of packages and some can
handle tens of amps of current, but they tend to be very expensive.

MOSFETs do not have the issues of bipolar transistors; their gate widths
(the measurement used to characterize the size of MOSFET devices) are, at
the time of this writing, as small as 57nm in high-performance micro-
processors and memory chips. The voltage-controlled operation of
MOSFETs ecliminates the wasted current and power of the bipolar
transistor’s base, but while MOSFETs do not have the disadvantages of
bipolar transistors, they do not have their advantages.

MOSFET transistors do not have a small signal/linear operating region;
they tend to change from completely off to completely on (conducting) with a

N-channel Enhancement P-channel Enhancement
MOSFET MOSFET
D D

|]
GJtIS GJ:L

Fig. 3-22. MOSFET schematic symbols.

®’_ PART ONE Intro to Digital Electronics
very small intermediate range. MOSFETs also tend to operate at slower
speeds than bipolar devices because the gates become capacitors and “‘slow
down” the signals, as I showed in the previous section. This point has become
somewhat moot as modern MOSFET designs are continually increasing in
speed, providing us with extremely high-speed PCs and other electronic
devices. Finally, it is difficult to manufacture MOSFETs with high current
capabilities; while high current MOSFETs are available, they are surprisingly
expensive.

The characteristics of the two types of transistors give way to the
conclusion that bipolar transistors are best suited to situations where a few
high current devices are required. MOSFET transistors are best suited for
applications where large numbers of transistors are placed on a single chip.

Today, for the most part, digital electronic designs follow these guidelines,
but we are left with an interesting legacy. Despite being much simpler
structurally and cheaper to manufacture, MOSFET transistors were only
perfected in the late 1960s, whereas bipolar technology had already been
around for 20 years and it was able to become entrenched as the basis for
many digital electronic devices and chips. For this reason, you must be
cognizant of the operating characteristics of bipolar transistors as well as
those of MOSFET transistors. In the next section, many of these differences
will become apparent.

Logic Gate Input and Output

If you have worked with digital electronics before, you probably have made a
few assumptions about how the circuitry works and how you can
demonstrate how digital electronic devices work. Chances are many of
these assumptions are with regard to how gate and chip inputs and outputs
work as well as how to properly interface them together and to different
electronic devices. These assumptions are generally made on the evidence of
by what somebody has seen with a voltmeter or logic probe and do not look
at the underlying circuitry and how it works. In this section, I will give you
a detailed introduction to the input and output pins on digital electronics
and how they should be wired.

When we talk about digital electronics, we should identify the different
technologies used. “Transistor to transistor logic”” (TTL) is based on NPN
bipolar transistors. TTL chips have the part number prefix “74” (i.e. a chip
with four, two input NAND gates known as the “7400”"). There are actually
quite a few different technology chip families based on the 74xx “‘standard”

CHAPTER 3 Digital Electronic Circuits _\®
pinout and operation and the technology is indicated by letter codes
following the ““74”’; a chip marked with “74LS00” is a low-power, Shotkey
four two-input NAND gate chips. Many of these technologies used with the
7400 series of chips are based on bipolar transistors, but some are based on
MOSFET technology. These MOSFET technology based chips have the 74
prefix and a technology letter code containing a “C” (i.e. “C”, “HC”,
“HCT”). Along with being used in 7400 series form factors, MOSFET
devices are used in the 4000 series of logic chips. Understanding which type
of transistor is used in a logic chip is critical to being able to successfully
interface it to other chips or input/output devices.

When the term “TTL” is used, it is referring to bipolar transistor logic in
the 7400 series. “CMOS” indicates MOSFET transistor logic used in the
74C00 and 4000 chip logic series.

Probably the biggest erroneous assumption that people have about digital
logic is that TTL circuitry is voltage controlled. In the previous section, I
emphasized the notion that bipolar transistors are current controlled and not
voltage controlled. I'm sure that many people will argue with me and say that
when they put a voltage meter to the input of a TTL gate, they saw a high
voltage when a ““1”’ was being input and a low voltage when a 0’ was input.
I won’t argue with what they have seen; although I will state that the
conclusion that TTL logic is voltage controlled made from these observations
is incorrect.

The standard TTL input consists of an NPN bipolar transistor wired in the
unusual configuration shown in Fig. 3-23. On the left side of this diagram, I
have drawn a two input TTL gate which is implemented with a two emitter

Vce

Modeled vcc

Gate
Actual Input

Current
Gate Input to TTL
Input Inout Gate
Current P
Inputs to TTL

Gate

Fig. 3-23. Actual and model TTL input circuits.

PART ONE Intro to Digital Electronics

@,—

“High,, or “LOW” °r
“1” Gate Vee “0” Gate vcc
Input ourent Input

Gate

No
Open _ Current
Inouts to TTL
P - - Gate
No Current
Path
Through Current
Input Pins. Path
Current is Through
passed to Input'Plns,
Gate Logic Keeping
Current from
Gate Logic

Fig. 3-24. Current control operation of TTL inputs.

NPN transistor —as unusual as this type of transistor sounds, they really do
exist. To understand how the input works, I replaced the two emitter
NPN transistor with the three diode equivalent “model” on the right side of
Fig. 3-23.

Normally, an NPN transistor passes current from its base to the emitter,
but when wired in the TTL input configuration, the base current does not
have a path through the transistor’s emitters and passes through the
transistor’s collector to the gate logic. Figure 3.24 shows this situation along
the other case where one of the input transistor’s emitter’s is tied to ground
and the base current passes through the emitter and not the collector. The
logic connected to the input NPN transistor’s collector responds depending
on whether or not current is available from the collector.

Obviously a simple switch, connected to ground, will allow current to pass
through the emitter but you are probably wondering how other logic devices
can control this device. A typical logic device output looks like Fig. 3-25 and
consists of two transistors: one that will connect the output to the device
power and one that will connect the output to the device ground. This
transistor path to ground will provide the emitter current path of the chip.
When the output is a high voltage (the top transistor is on and the bottom
one is off), no current will flow into the TTL input gate because of the reverse
diode nature of the emitter input pin.

The TTL output shown in Fig. 3-25 is known as a “‘totem pole” output
because of its resemblance to its namesake. If you were to connect a totem
pole output to a TTL input and measured the voltage at the input or output
pins, you would see a high voltage, which the gate connected to the input

CHAPTER 3 Digital Electronic Circuits

——@

Vce
“High”
Output Output
Control Pin, can
Current Either Source
or Sink
Current
“Low”
Output
Control
Current

Fig. 3-25. TTL “totem pole” output.

Output
Pin,

NPN
Output Transistor
Control Can ONLY
Current Pull Pin to
| Ground

Fig. 3-26. TTL open collector output.

would respond to as a “1”’. When a low voltage is output, the TTL gate will
respond as if a ““0”” was input. What you are not measuring is the current flow
between the two pins.

There are two terms used in Fig. 3-25 that I should explain. When a
transistor is connected to the power supply of a chip and is turned on, it is
said to be ““sourcing’ current. When a transistor is connected to ground and
is turned on, the transistor is said to be a current “sink’. I will use these terms
throughout the book and you will see in other books and references any time
a device is either supplying (“‘sourcing’) or taking away (‘‘sinking’’) current.

There is another type of output which does not source any current and is
known as the open collector output (Fig. 3-26). This output typically has two
uses. The first is it can pull down voltages which are greater than the positive
voltage applied to the chip. Normally these voltages are less than 15V and
can only source 10 to 20mA. For higher currents and voltages, discrete
transistors must be used.

By not sourcing any current, these outputs can be “‘ganged” together in
parallel, as I have shown in Fig. 3-27. This circuit is known as a “dotted
AND” because it only outputs a 1 if all the outputs are “high” and each

PART ONE Intro to Digital Electronics

@,—

Effective “Gate”
Output. Only

Output High if All Open

Control groellaci:é%r Outputs

Current \l

Output L —®

Control

Current “Dotted” Outputs
of Open Collector

—_— Outputs

Output —9

Control «

Current |

Output L

Control

Current :l

Fig. 3-27. Multiple “open collector” outputs combined to form a “dotted AND” gate.

transistor is “off ” and not pulling the common output line to ground. Note
that there must be a pull up resistor connected to the output to provide a
high-voltage, low-current source. Dotted AND gates are useful in a variety of
different situations ranging from circuits where an arbitrary number of
outputs can control one line or where digital outputs and buttons are
combined. (I will discuss this in more detail later in the book.)

Totem pole outputs are the recommended default gate output because you
can easily check voltage levels between intermediate gates in a logic string. As
I will show later in this chapter, you cannot use a voltmeter or logic probe to
check the logic levels if a TTL gate is driven by an open collector output.
Along with this, a CMOS input is connected to an open collector (or open
drain, as I will discuss below) output. Then there will be no high voltage for
the gate to operate. The only cases where an open collector/open drain
output should be used is when you are wiring a dotted AND gate or are
switching an input that is operating at a voltage different from the
gate’s power.

TTL output pins are internally limited to only sink or source around
20 mA of current, which limits the number of inputs that it can drive. If you
were to do the math, you would discover that when a TTL input is pulled
low, 1.075mA of current is passed through the output pin (this was found
by assuming the base/emitter voltage of a transistor is 0.7 volts and the

CHAPTER 3 Digital Electronic Circuits _\®
current limiting resistor connected to the input transistor’s base is 4 k, which
is typical for TTL inputs.

Along with the totem pole and the open collector outputs, there is also the
“tri-state driver”” output, which cannot only source or sink current but can be
turned “‘off ” to electrically isolate itself from the circuit that it is connected
to. I will discuss tri-state drivers later in the book, when I present busses and
multiple devices on the same line.

Knowing that each TTL input requires a current sink of just over 1 mA
and most TTL outputs can sink up 20mA, you might expect the maximum
number of TTL inputs driven by a single output (which is called “fanout”) to
be 18 or 19. The actual maximum fanout is 8 to ensure that there is a
comfortable margin in the output to be able to pull down each output in a
timely manner. Practically, I would recommend that you try to keep the
number of inputs driven by an output to two and never exceed four. Some
different technologies that you work with, do not have the same electrical
drive characteristics and may not be designed to pull down eight inputs of
another technology; so, to be on the safe side, always be very conservative
with the number of inputs you drive with a single output.

Re-reading the last sentence of the previous paragraph, you might wonder
if any potential low-drive situations could be improved by wiring multiple
outputs together. This must be avoided because of the danger that the gates
will switch at different times, resulting in large currents passing through the
gate output circuitry, and not through the net the outputs are connected to.

The CMOS logic gate input (Fig. 3-28) is quite a bit simpler than the TTL
gate input and much easier to understand. The CMOS input and, as I will
explain, the output, consist of a balanced P-channel MOSFET and an
N-channel MOSFET wired as a very high gain amplifier. The slightest
positive or negative voltage applied to this input circuit will cause the

Vdd Vdd
Clamping J& P-Channel
Diode ~ MOSFET
=
L Inverted
Buffered
Input — Input
=
. yaN L N-Channel
Clamping MOSFET
Diode
— — Vss

Fig. 3-28. Basic CMOS input/output circuit.

®’_ PART ONE Intro to Digital Electronics

“0” Input “1” Input

P-Channel Current P-Channel
MOSFET Sourced MOSFET
ON Through OFF

-I—>

P-Channel
MOSFET
“1” Output “0” Output
Current
Sunk
ZS N-Ch | ZS N-Ch | Through
- anne - anne
MOSFET MOSFET mgggg’}e'
OFF ON

Fig. 3-29. CMOS gate response for different inputs.

appropriate transistor to turn on and either source current (in the case where
a negative voltage is applied and the P-channel MOSFET turns on) or sink
current (a positive voltage will turn on the N-channel MOSFET). This
operation can be seen in Fig. 3-29.

One interesting aspect of the two MOSFET transistors that I have
shown wired as an inverter is that they not only provide the ability to
sense and respond to voltage inputs, but as the voltage controls transistor
switches, they are also effective totem pole output circuits as well. Not only
are MOSFET transistors much easier to place on a piece of silicon
semiconductor and can be placed in a smaller amount of surface area
but also gates built from them are also much simpler than their TTL
counterparts.

When the P-channel MOSFET is removed from the output of a CMOS
gate, its output is said to be “open drain”. This term refers to the drain of the
N-channel MOSFET that is not connected to a transistor which can source
current in just the same way as an “open collector” TTL output transistor
and does not have a transistor which can source current. The CMOS logic
open drain output works exactly the same way as the TTL open collector
output.

The two “clamping diodes” are placed in the circuit to hold the voltages to
within Vdd (power input) and Vss (ground) and are primarily there to protect
the P-channel and N-channel MOSFETs from damage from static electricity.
These diodes also provide you with the ability to power a CMOS chip
through its input pins; when no voltage is applied to Vdd but there is a
high-voltage input to one or more input pins, the clamping diodes will
allow current to pass to the internal MOSFETs and power the circuit. This
is usually an undesirable side effect and one that you should watch for.

CHAPTER 3 Digital Electronic Circuits _\@
The clamping diode function is provided in TTL by the diode and the bipolar
transistor emitter that makes up a TTL gate input. Whereas CMOS

logic requires additional diodes built into the circuitry, TTL has this function

built in.

Unlike TTL, CMOS logic is voltage controlled; there is no path for current
to enter or leave the MOSFET’s gate circuitry. This has some interesting side
effects that you should be aware of. The first is that while at first glance of the
inverter operation in Fig. 3-29 it appears that there is no current flow if the
output of the CMOS input transistors was another CMOS gate, there
actually is a very small amount of change passed to the gates of the transistor
from Vdd when the P-channel MOSFET is turned on and this charge is sunk
to Vss when the N-channel MOSFET is turned on. This transfer of charge
grows with the number of CMOS gates as well as the speed that the gates
switch; the faster they switch the more charge that is transferred over time.
As I discussed at the start of this chapter, the measurement of charge
movement over time is current.

Earlier in the book, I said that the basic gate used in CMOS logic circuits is
the NOR gate (just as the NAND gate is the basic gate used in TTL). Before
leaving this chapter, I would like to show you the circuit used by a CMOS
NOR gate (Fig. 3-30). If you trace through the operation of the four
MOSFETs that make up this circuit, you will discover that the only time
both P-channel MOSFETs are on (and voltage/current from Vdd is passed to
the “Output”) is when the two inputs are low, which matches the expected
operation of the NOR gate.

The reason why the NOR gate was selected for use as the basic
CMOS logic gate has to do with how MOSFETs and other circuits are put

£¥1

Input A

Input B—4

£¥1

—‘—J— Output
L

7

Fig. 3-30. CMOS NOR gate.

@’_ PART ONE Intro to Digital Electronics
down on a silicon semiconductor. The NOR gate is the most efficient while
the NAND (which would make the basic building blocks of TTL and CMOS
logic the same) cannot be accomplished as easily and in as small amount
of space.

The last point I want to make about inputs and outputs is how to wire
them when you want to hold them at a specific state (high/“1” or low/*0”).
While you could connect the pins directly to power (for a high input) and
ground (for a low input), I want to show you the recommended way of doing
this and explain why you should go through the extra effort. Connecting the
input to high value is accomplished using a 10 k resistor (called a “pull up™),
as I show in Fig. 3-31. This circuit will allow input to be temporarily wired to
ground (for testing or circuit debug), without causing a short circuit
(a low-resistance path between positive and negative power voltage).

Providing a ““pull down” (connection to ground) is not quite so simple; the
single resistor pull up of Fig. 3-31 is input into an inverter, as shown in
Fig. 3-32. This circuit allows the pull up to be connected to ground for testing
and debug (changing the input of the gate to a high from a solid low) just as
in the pull up case.

g Optidﬁ'él'"/' """ .
i Switch]

. i Tying to_|_§
Logic__‘.erama =

Output

Fig. 3-31. The best method of implementing a “pull up”.

Output of Inverter

is Low due to Pull Up
10k Resistor
>
+Opiional]
: Switch
Tying to
., Ground =

Fig. 3-32. Recommended way to “pull down” a logic input.

CHAPTER 3 Digital Electronic Circuits _\Q

If you have followed the gate explanations up to this point, you might be
feeling like these methods of tying the gates to pull ups and pull downs is
“overkill”. I admit that these methods may seem more complex than just
wiring the inputs to positive or negative power, but there are a number of
reasons for specifying that pull ups and pull downs are wired in this way. For
TTL, to make an input high all the time it can be simply left unconnected and
to pull it down it can be pulled directly to ground; the 1 mA of current that
will flow through the gate to ground should not be an excessive amount of
current. For CMOS logic, the input pin can be tied directly to Vdd (positive
power) for a high input and Vss (negative power) for a low input—there will
be no current flow in either case. It is important to understand the three
reasons why I recommend using the pull up resistor or the pull up resistor
and inverter.

First, as I said above, it allows you to temporarily change the input value
by connecting the resistor voltage to negative voltage without worrying about
damaging any part of the circuit. Secondly, it allows simple test equipment to
change the state of the input pin for testing without potentially overloading
the circuit or the tester. This is a very important consideration when you are
designing a product for mass production. Finally, this method can be used
for both TTL and CMOS logic without regard to what type of logic is being
used. I realize that going through the rigor of following these recommenda-
tions increases the complexity of a circuit as well as increasing the number of
gates required, its cost and power consumption. In many cases, you will not
feel that it is necessary, but if you decide to forgo using pull ups and inverted
pull ups, make sure you understand what are the tradeoffs and the risks of
the decision.

Simple Digital Logic Circuit Development

Many people do not realize that it is quite easy to build sample digital
electronic logic circuits that demonstrate the concepts that have been
presented to you as well as let you try out your own simple experiments. If
you have, or are taking, a course in digital electronics, it probably includes a
well-equipped laboratory in which you worked through a number of
experiments. You do not need to replicate this laboratory at home if you
wish to experiment with digital electronics. As I will show in this chapter, you
can come up with a very capable digital logic circuit test kit for less than $20
and use parts available in modest electronics stores (like ““Radio Shack”).

PART ONE Intro to Digital Electronics

’_

Chances are, you are familiar with a variety of different electrical power
sources: the ones that comes to mind first are batteries. There are a confusing
number of different batteries that you can choose from, ranging from simple
“AA” batteries that cost a few cents to the batteries used in the
International Space Station that weigh (on Earth) 1200 pounds and cost
over $200,000 each. Along with batteries, electricity can also be produced by
generators, solar cells and fuel cells. Within your home you can access
electrical power very conveniently through outlets in the walls, although this
power is alternating current (““AC’) and not the direct current (“DC”)
required for digital logic. AC power coming from the sockets in your home
will have to be reduced and rectified into DC.

When you are experimenting with simple electronics, I think it’s best to use
a power source that is definitely “low end”; ‘‘alkaline” and rechargeable
nickel-metal hydride (“NiMH”) batteries are widely available to power your
experiments. TTL digital electronic chips generally operate between 4.5 and
5.5 volts—you could come up with a combination of batteries that will
provide 5 volts to your circuit, or convert a 9 volt radio battery output to 5
volts using a “‘regulator”. Rather than going through this effort and potential
expense for TTL, I am going to recommend that you use CMOS digital logic
chips that can be powered by 9 volts directly.

A 9 volt battery “clip” (Fig. 3-33) will cost you just a few cents and a bag
of them can be bought for a dollar or so. For the purposes of the digital logic
circuit test kit, you should look for a 9 volt battery clip that either has wire’s
individual strands soldered together (the ends of the wires will look silver,
shiny and attached together) or has a single strand. The wires will be covered

'“

Fig. 3-33. 9 volt battery clip with red (positive) and black (negative) wires attached to it.

CHAPTER 3 Digital Electronic Circuits _\®’
in a red and black plastic insulation and the strands will poke out the ends for
a 1/4 inch or so.

Make sure the strands of the 9 volt battery clip wires are either soldered
together or the wires consist of a single strand, because the wires from the
battery clip will be pushed into holes and clamped by copper springs to
provide power for the test circuits. Loose, individual strands break easily, can
short with other loose wires or become a tangled mess, none of which are
good things.

The battery clip is only one part of the wiring that will be used with the
digital logic circuit test kit. By itself, the battery clip brings power out of the
9 volt battery conveniently, but is difficult to work with when you are working
with chips and even moderately complex circuitry. The ‘““breadboard” and
wiring kit (Fig. 3-34) provide a customizable platform in which chips and
other electronic components can be inserted into and easily wired together.

“Breadboards” allow you to simply and quickly wire up your own
prototyping circuits. From the top, a breadboard looks like a sea of holes,
but if you were to “peel back™ the top (Fig. 3-35), you would see that the
holes are actually interconnected, with the central groups of holes connected
outwards and the outermost two sets of holes connected along the length of
the breadboard.

The central holes are spaced so that DIP chips can be placed in
the breadboard and wired into the circuit easily. The outside two rows

Fig. 3-34. Breadboard with a wiring kit.

@,—

PART ONE Intro to Digital Electronics

Interior Connections Exterior

ﬁEE O0Ooo GooEn ooooa

ﬁEE O0OoG o@oER GEEGEE O

Fig. 3-35. “Breadboard” with interior connections shown.

of holes, I use as power ‘“buss bars” and connect the power source to
them directly.

Along with the breadboard, you can either buy a pre-cut and stripped
wiring kit (shown in Fig. 3-34) or a roll of 24-gauge solid core wire and some
needle nose pliers, wire clippers and maybe some wire strippers. For
convenience, I usually go with the wiring kit as it costs just a few dollars.

Along with buying the battery clip, breadboard and wiring kit, you should
also buy:

—_

SEYXNN R W=

5 or so LEDs in a 5mm package

10 or so 1k, 1/4 watt resistors

10 or so 0.01 uF ceramic capacitors

One 555 oscillator/monostable chip

5 or so SPDT switches, that can be inserted into the breadboard
One 74C00 quad two-input NAND gates chips
One 74C02 quad two-input NOR gates chips
One 74C04 hex inverter chip

One 74C08 quad two-input AND gates chip
One 74C32 quad two-input OR gates chip
One 74C74 dual D-flip flop chip.

All these parts should cost you less than $20 and are available at a fairly wide
variety of sources including:

Radio Shack (http://www.radioshack.com)

Digi-Key (http://www.digikey.com)

Mouser Electronics (http://www.mouser.com)

Active Components (http://www.active-electronics.com).

http://www.radioshack.com
http://www.digikey.com
http://www.mouser.com
http://www.active-electronics.com

CHAPTER 3 Digital Electronic Circuits _\®

You will not require any test equipment (such as a Digital Multi-Meter) for
this kit and the sample circuits that I will present in this book.

Testing a Simple TTL Inverter

So far I have used the term “load” when I've described the electronic devices
that are to be used in a circuit, but before going on, I want to familiarize you
with the basic, ““dual in-line package™ “chip” (Fig. 3-36). The “chip” consists
of a rectangular plastic box which has a series of metal pins (or connections)
coming out from the two long sides. These pins are the electrical connections
that are to be made to make up the digital logic circuits as well as provide
power to the chip. As I have shown in Fig. 3-36, there can be one or two ““pin
1’ indicators on each chip (not all chips have both indicators) and the pins
are numbered by going counterclockwise around the top of the chip.
Before leaving this chapter, I would like to show both how easy it is to
create a simple circuit to test out ideas and parts of applications as well as
demonstrate how the TTL gate works. You should have a pretty good idea of
how to wire in the chip, but you probably have some questions on how to
create useful inputs and outputs to see what’s happening. The output will
simply consist of a resistor and a LED —when the chip’s output is high, the
LED will be on. Providing the same function for the input, a LED that is on

14 Pin DIP Pack_age Photograph of a TTL
Layout and Pin Digital Logic Chip in a
Numbering Scheme “DIP” Package

Pin Opposite
Pin 1is
Positive Power~ Pin 14

“Pin 1™

Indicators o

Pin 1 Pin2 Pin 7

Pin 9 Pin 8

Last Pin
on Pin 1 Side
is Ground

Fig. 3-36. Integrated circuit “dual in-line package” (“DIP”’) — aka a ““chip.”

PART ONE Intro to Digital Electronics

Vcc
470
> When “Vcc” is +5 Volts:
“1”is 3.4 to 3.6 Volts
“0” is 0.0 to 0.2 Volts
SPST)
Switch 470

I\. £ : E ‘..' 3
Logic Input- \ A
Circuit Built on-
a Breadboard

Fig. 3-37. Switch input circuit with LED.

when the input is high is a bit more difficult and uses the circuit shown in
Fig. 3-37.

This input circuit probably seems to be much more complex than I have
led you to believe is necessary, but there are some requirements that were
important for this circuit to meet so that it could be used in a variety of
different situations. The first requirement was that it had to work for both
TTL (using 5 volt power) as well as CMOS logic (powered from 5 to 9 volts).
By providing a direct path to ground, the low voltage requirement of CMOS
logic and the current path to ground for TTL was provided. Next, it had to
light a LED when the input was high and turn it off when the input was low;
the switch will provide a zero impedance current path for the current from
the positive power to bypass the LED. Finally, it had to be easy for you to
wire and check over in case it doesn’t seem to be working properly.

In Fig. 3-37, along with the logic input circuit schematic, I have included a
photograph of the completed circuit built on a breadboard. In the
photograph, notice that I have clipped the LED and resistor leads to keep
the circuit as neat as possible on the breadboard. I strongly recommend that
you keep components as close to the surface of the breadboard as possible to
minimize your confusion when you are starting to build more complex
circuits.

To demonstrate the operation of the inverter, you can build the circuit
shown in the left side of Fig. 3-38 on your breadboard using the wiring
diagram on the right side of Fig. 3-38. When the input LED is on, the output
LED will be off and vice versa. If one or the other LED does not light, then
first check your wiring followed by the polarity of the LEDs—the flat side of

CHAPTER 3 Digital Electronic Circuits _\®’

w
o
Vce)
Q
o
o
Y
470 Q
@)
=
2
SPST ! =5
Switch ey
‘=2
o
—
O
Q
- 3
5 O
& =

Fig. 3-38. Putting the input with an inverter.

the LED must be connected to the negative voltage (Vss) connection of your
circuit.
To build the inverter test circuit, you will need the following parts:

Breadboard

9 volt battery

9 volt battery clip

74C04 CMOS hex inverter chip

Two Smm LEDs

Two 470 Q2 1/4 watt resistors

1k 1/4 watt resistor

0.01 uF capacitor (any type)

Breadboard mountable switch (Digi-Key EG1903 suggested).

The only part that you might have some problems finding is the breadboard
mountable switch (the EG1903 is a single-pole, double-throw switch with
three posts 0.100 inch apart). This part is fairly unique and if you don’t want
to go through the trouble of ordering the part from Digi-Key, you can either
add wires to another switch or simply connect the circuit to the Vss
connection to simulate the switch closing (in this case, the LED will go off
indicating a low input, just as if a switch were in circuit).

The 74Cxx family of chips are CMOS logic that are pin and output current
compatible with 74LSxx TTL chips. The 74C04 used in the circuit shown in
Fig. 3-38 demonstrates the operation of the NOT gate (or inverter) to quite
good effect. The 74C04 does not demonstrate the operation of a TTL gate all

=9 \olt 4.7k $2.2k 150
I Battery >

ZTX649
Gate | g
Input ZTX649 |

:1N4148

1N41 48!
_[ZTX649

1.5k

PART ONE Intro to Digital Electronics

N

Fig. 3-39. Circuit to demonstrate inverter operation.

00000 OOOO0OO0 00000 OOOOo0 opooo
OOO0O0O0 OOOO0OO0 00000 ooooo ol ooo
DoOoOoO00O0O0O0O0O0O0000O0O0OOOOOOdOoOon,
0O0000000000000 e 000000000
DO000o0o0ooSwitch @Vve er\nnnnngnn
ODooooooon oOlnput DoDOOOCOOOO
oooooooool/nput n...........;nnnnnnznn
O e O[S 00N O00L0O00ESs gresannoon

. O DOO00O000D00GgG: 0GS8888000000

Potentiometer |o 000 C#mnd 0000CGEE80688888800

Input :::nnnnnnngnnngnnnngnnnnnrmmv
ORONOQOROO0-O00R@OOROO0RO0GCIE0n
ugnﬂm ‘gﬁnnﬁ OuEoo o000z ooooo
OOO@aO, B0000 00000 DOOOO0 ooooo

+ 9 Volt

Battery Connection

Fig. 3-40. Breadboard wiring diagram for the TTL inverter circuit.

that well, so if you have a few moments, I suggest that you build the circuit
shown in Fig. 3-39 (wired according to Fig. 3-40) and test it out—externally,
it will seem to work identically to the 74C04 circuit shown in Fig. 3-38, but
there are a few differences that you can experiment with.

The parts that you will need for this circuit are:

Breadboard
9 volt battery
9 volt battery clip

Four 2N3904 NPN bipolar transistors
Two 1N914 (or equivalent) silicon diodes

Two 5mm LEDs
150 €2 1/4 watt resistor

CHAPTER 3 Digital Electronic Circuits _@’

Two 470 2 1/4 watt resistors

1k 1/4 watt resistor

1.5k 1/4 watt resistor

2.2k 1/4 watt resistor

4.7k 1/4 watt resistor

100k 1/4 watt resistor

10k potentiometer

Breadboard mountable switch (Digi-Key EG1903 suggested).

Going through the circuit, you can see that current flows through the circuit
in two different directions, as shown in Figs. 3-41 and 3-42. When the input is

Current

Flow
Input =———
Output
A “fied” to
Ground

L1

Fig. 3-41. TTL inverter with a ““1” or floating input.

>

Current

Flow
Input
Pulling
Current
from
Transistor Output

x “tied” to
Vce

L1

Fig. 3-42. TTL inverter with a “0” input.

@’_ PART ONE Intro to Digital Electronics

ZTX649

—

l/ZTX649
é ZTX649 I\

1N4148

10k

Potentiometer 1N4148

ZTX649

Fig. 3-43. Circuit to test current draw for TTL operation.

“high” (LED on) and you follow the current path, you will see that the
current will ultimately turn on the bottom right transistor, connecting the
gate’s output pin to ground (“low” voltage output). When current is drawn
from the TTL input pin (Fig. 3-42), the current that ultimately turned on the
bottom right transistor is taken away, resulting in a different path for
currents within the gate. This change in current flow ultimately turns on the
top right transistor, effectively tying the output to power and driving out a
“high” voltage.

Once you have built the circuit and tested it, you can now look at the
operating aspects of it by putting a potentiometer in the circuit, as I have
shown in Fig. 3-43, and adjust it until the LED either flashes on and off or
dims. If you have a digital multi-meter (DMM), you will find that the
threshold current is about 1 mA, with a voltage across the potentiometer of
around 0.5 volts.

The final aspect of this experiment is to wire the inverter’s input as shown
in Fig. 3-44 and alternatively connect the input (passing through the 100 k
resistor) to the power in or ground. You will find that the LED never turns
on regardless of the switch position. If you were to measure the voltage at the
100 k resistor, you would see that it is connected directly to the power and
ground connections, but the circuit seems to ignore the ground connection.
The 100k resistor prevents the 1 mA of current passing through to ground,
resulting in the LED being turned on. If you were to repeat this experiment
with the 74C04, you would see the LED turning on and off according to the
voltage at the 100k resistor.

CHAPTER 3 Digital Electronic Circuits _\Q

i—g Volt 4.7k é2.2k 150

T Battery

ZTX649

100k

1

ZTX649

SPDT ZTX649

Switch 100k 1 N4148!
1k

x1N4148

ZTX649

r

1.5k

Fig. 3-44. Circuit to test voltage control of TTL operation.

In this chapter, I have given you a brief tutorial in basic electronics, an
introduction to semiconductors and a method that you can use to build test
circuits to experiment with digital electronics. In these few pages, I have
covered the material included in several high school and college courses. It
was not my intention to overwhelm you, but provide you with enough
information to understand what is happening in a digital electronic circuit as
well as give you a few basic rules to help you avoid problems, or if things
aren’t working as you would expect, to have some ideas on where to look for
the problems.

1. Electricity must:
(a) Change polarity 60 times a second
(b) Flow between the planets
(c) Be equal in all parts of a circuit
(d) Flow in a closed, continuous loop

2. Every electrical circuit has three parts:
(a) Breadboards, batteries and electronic parts
(b) Power source, load and conductors

Quiz

@’_ PART ONE Intro to Digital Electronics
(¢c) Intelligence, compassion and a sense of humor
(d) Speed, power (or torque) and corporeal form

3. In the water pipe/tap/hose example, if you were to partially close
the tap:
(a) Water would stream out faster from the hose
(b) The tap would get hot in your hand from the friction of the
water passing through it
(c) The amount of water leaving the hose would decrease
(d) The water leaving the hose would stream further

4. In a single resistor circuit, if you apply 9 volts and measure 100 mA
flowing through it, the resistance value is:

(a) 9 ohms
(b) 900 ohms
(¢) 90 ohms

(d) 1,111 ohms

5. The equivalent resistance of a 10 ohm and 20 ohm resistor in

parallel:

(a) Is always zero
(b) 30 ohms

(¢) 7.5 ohms

(d) 6.7 ohms

6. A diode is said to be “forward biased” when:

(a) A positive voltage is applied to the “bar” painted on the side of
the diode

(b) Electrons are injected into the P-type semiconductor of the
diode

(c) Current flows into the diode through the end which doesn’t
have a band painted on it

(d) More than 0.7 volts is applied to it

7. If a bipolar transistor with an hgg of 150 had a “‘small signal oper-
ating region” base current of 1 pA to 1 mA, what base current would
be required to allow 10 mA collector current?

(a) This is impossible to answer because 10mA collector current
is greater than 1 mA.

(b) 1ImA

(c) 67pA

(d) 667pnA

CHAPTER 3 Digital Electronic Circuits _\®

8. The basic TTL gate is:
(a) The NOT gate
(b) The AND gate
(c) The NOR gate
(d) The NAND gate

9. Totem pole outputs are best used:
(a) When there are multiple outputs tied together as a “‘dotted
AND”
(b) To drive electric motors
(c) As the default output type used in digital electronic circuits
(d) When high-speed operation of the digital electronic circuit is
required

10. The dual in-line package:
(a) Is a standard method for packaging digital electronic chips
(b) Is used because part numbers cannot be stamped on bare chips
(c) Allows for an easy visual check to see whether or not the part
was damaged by heat
(d) Facilitates effective cooling to the chip inside

CHAPTER

Number Systems

Working through the book to this point, you should be comfortable with
combining multiple single bit values together in a variety of different ways to
perform different combinatorial circuit functions. Along with being able to
meet the basic requirements, you should be able to optimize the circuit to the
fewest number of gates that is available within the technology that you are
going to use. This skill is very useful in itself, but it is only scratching the
surface of what can be done with digital electronics; most data consists of
more than a single bit (which can have only two values) to process, and
working with multiple single bits of data can be cumbersome. What is needed
is a methodology for combining bits together so they can represent larger
values that can be simply expressed.

The solution to this issue is to combine bits in exactly the same way as a
10-value character is combined to produce the decimal numbers that you are
familiar with. While on the surface, combining bits does not seem to be
directly analogous to decimal numbers, by using the same method that
decimal numbers are produced, multi-bit numbers (which are most often
described as ‘“‘binary’’) numbers can be produced.

In primary school, you learned that the four-digit number “1,234” was
built out of four digits, any of which could have the 10 values “0”’, <17, ©“2”,

@’_

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

CHAPTER 4 Number Systems _\c@
“37, 947, <57, 6, <77, 8 and ““9”. When listing the different values for a

digit, zero is stated because the number 10 is actually a two digit number.

The number of different values for each digit is referred to as its ““base” or

“radix”. It is important to note that the first value is always zero and the last

value is the base minus one.

When expressing each digit, its value was stated by the “‘column” it was in
“ones”, “tens”, “hundreds”, “thousands”, etc.). For example, the second
column of “1,234” is the “hundreds” column and in 1234, there are two
hundreds.

In high school, you would have been introduced to the concept of
exponents and instead of expressing each digit in the number by the column,
you would express it by the digit multiplier. So, 1,234 could now be written
out as:

1 Thousand =1 x 1,000 =1 x 10°
2 Hundreds = 2 x 100 = 2 x 10°
3 Tens =3x10=23x 10"

4 Ones =4x1=4x10°

The beauty of expressing a number in this way is that each digit’s multiplier is
mathematically defined as a power of the base. Using this format, it is pos-
sible to create a numbering system using single bits to represent ‘“‘binary”
numbers.

For example, four bits could be put together with the bit containing the
least significant digit labelled ““Bity”, the second least significant as “Bit;”,
the second most significant as “Bit,”” and the most significant as “Bit;”. The
term significance when applied to bits is used to express the magnitude of the
bit’s multiplier. For example, Bit,, which is multiplied by 2° or 1, has less
significance than Bit; which is multiplied by 2° or 8.

Using the same exponent format as was used to define the decimal number
1,234, the four-bit binary number could be defined as:

Bit, x 2°
Bit, x 2°
Bit, x 2*
Bit, x 2°

and written out in a similar format to a decimal number. Collectively, the
number is written out as a series of ones and zeros, in a similar manner to
that of a decimal number.

.@’_ PART ONE Intro to Digital Electronics

Many books go into great length trying to explain how to convert a
decimal number to a binary number. I won’t go into the same amount of
detail because the algorithm to do this is really quite simple: you simply start
at some most power of two and work your way down, writing out a “‘1”” for
each time the subtraction the power of two results in a positive number or
zero and a ‘0 when the difference is negative.

Written out as part of a “C” program, converting a decimal number to a
character four-bit binary number is accomplished by the following
statements:

for(i1=4;i!=0;1—-)
if (Decval — (2 xx(1 —1)))> =0)
{ //Can Take Away Digit Value
DecVal = DecVal — (2 (1 — 1));
Bit[i—1]="1";
} else //Result of subtraction is negative
Bit[i—1]="0"; //Can't take away value

Note that I start at “4” and subtract one for the actual bit value in the exam-
ple code above.

Demonstrating the algorithm, consider the case where you wanted to
express the decimal number “11”" as a four-bit decimal. In Table 4-1, I have
listed each step of the program with the variable values at each step.

Converting binary numbers to decimal is very easy because the power of
two of each digit that has a value of *“1”” are summed together. The “C” code

Table 4-1 Converting decimal 11 to binary 1011.

‘Bit’ variable | i | DecVal | DecVal — ((2 ** (i — 1))

XXXX 4 | 11 3 (Positive)
1xxx 3 3 -1

10xx 2 3 1 (Positive)
101x 1 1 0 (Positive)

1011 0] 0 N/A

CHAPTER 4 Number Systems _\q&)

Table 4-2 Converting binary 0110 to decimal 6.

“Bit> variable | i | Bit[i — 1] != 0? | DecVal

0110 4 | No 0

0110 3 | Yes 4 (DecValue + (2 ** (3 - 1)))
0110 2 | Yes 6 (DecValue + (2 ** (2 - 1)))
0110 1 | No 6

0110 0| NJA 6

to convert a value in “Bit” to a decimal value is:

DecvVal =0; // Initialize the Decimal
Value Variable
for (I =4;i>=0;1—-) // Repeat for four bits
if(Bit[i —1]==*1") // Add Digit Value if Digit Not 0

DecValue = DecValue + (2 x x(1 — 1));

In Table 4-2, I have listed the process of converting the binary number
0110 to decimal and you should note that I have highlighted the bit that is
being tested.

Before going on, I would like to point out that there can be a lot of
confusion with regards to using binary numbers with decimal numbers or
numbers of different bases. To eliminate the confusion, you should always
identify the binary numbers by placing a percentage sign (“%”) or
surrounding it with the letter B> and two single quotes (“’”’). Using these
conventions, the bit pattern converted in Table 4-1 would be written out as
%0110 or B’0110°. The % character put before a binary number is a common
assembly language programming convention. The letter “B” and the single
quotes around the number is the format used in “C” programming and will
be the convention that I use in this book.

Another area of confusion with regards to binary numbers is how they are
broken up for easier reading. Each group of three digits in a decimal number

[T3E2]

is usually separated from other groups of digits by use of a comma (**,” in
North America and a period or dot (*.”’) in Europe and other parts of the
world). When working with binary numbers, instead of separating each three

digit group with a punctuation character, it is customary to use a blank to

@’_ PART ONE Intro to Digital Electronics
separate four digit groups. Using the conventions outlined here, the eight bit
number 10111101 would be written out as:

B'1011 11071’

This is the binary number format convention that I will use for the rest of
the book.

Base 16 or Hexadecimal Numbers

As I will show in this and the next section, having programming experience is
a two-edged sword — it will help you understand certain concepts (such as the
“bit” and some data structures like the ones presented in this and the next
section), but it will blind you to other opportunities. The goal of these
sections is to illustrate how bits can be grouped together to make your design
efforts more efficient as well as making it easier for you to both see
possibilities for the design and articulate them to other people.

Creating binary numbers from groups of bits, as I demonstrated in the
introduction to this chapter, is quite easy to do, but can be very cumbersome
to write out as well as transfer correctly. You may also have difficulty in
figuring out exactly how to express the number, asking should it be passed
along starting from the most significant or least significant bit. At the end of
this chapter’s introduction, I left you with the number B’1011 1101’ and you
should agree that telling somebody its value is quite cumbersome; for
example, you might say something like, “The eight bit, binary number,
starting with the most significant bit is one, zero, one, one, one, one, zero
and one.”

It is much more efficient to combine multiple bits together into a single
entity or digit.

The most popular way of doing this is to combine four bits together as a
“hexadecimal” digit which has 16 different values. This numbering system
has a base of 16. If you are familiar with programming, chances are you are
familiar with hexadecimal digits (which is often contracted to the term
“hex”), which I have listed out with their decimal and binary equivalents
in Table 4-3.

To create a way of expressing the 16 values, the first 10 hexadecimal values
are the same as the 10 decimal number values, with the following six being
given letter codes. This is why I included the ‘“‘phonetic” values for the
hexadecimal values greater than 9; the letter names “B’, ““C”” and “D”’ can be
easily confused, but their phonetic representations are much clearer.

CHAPTER 4 Number Systems _\@
Table 4-3 Hexadecimal digits with binary, decimal equivalents
and phonetic values.

Decimal | Binary | Hex | Phonetic | Decimal | Binary | Hex | Phonetic
0 B’0000” | 0 Zero 8 B’1000° | 8 Eight

1 B’0001” | 1 One 9 B’1001” | 9 Nine

2 B’0010° | 2 Two 10 B’1010° | A Able

3 B0011” | 3 Three 11 B’1011" | B Baker

4 B’0100* | 4 Four 12 B’1100° | C Charlie
5 B0101” | 5 Five 13 B’1101" | D Dog

6 B0110° | 6 Six 14 B’1110° | E Easy

7 BO111” | 7 Seven 15 B’1111" | F Fox

I tend to place a lot of importance to using conventions when expressing
letters. You may be tempted to make up your own letter codes or use the
aviation phonetic alphabet (Table 4-4) when communicating hexadecimal
values to other people (““AF” could be “Apple-Frank™ or “Alpha-Foxtrot”
instead of “Able-Fox”). I would like to discourage this for two reasons: the
first is that the person you are talking to will have to mentally convert your
words into letters and then hex digits — this process is complicated when
unexpected words are used. Secondly, I prefer using the phonetic codes in
Table 4-3 for hex values and the aviation phonetic codes for letter codes.

Multi-digit hexadecimal numbers are written out in a similar way as
decimal or binary numbers with each digit multiplied by 16 to the power of
the number of value’s position. For a 16 bit number (four hexadecimal
digits), the digit multipliers are listed below:

HexDigits; x 16°= HexDigit; x 4,096
HexDigit, X 16%= HexDigit, X 256
HexDigit, x 16°= HexDigit; x 16
HexDigit, x 16°= HexDigit, x 1

To indicate a hex number, you should use one of the programming conven-
tions, such as putting the prefix “0x0” or ““$” at the start of the hexadecimal

PART ONE Intro to Digital Electronics

Table 4-4 Aviation phonetic codes.

Letter | Phonetic | Letter | Phonetic Letter | Phonetic
A Alpha J Juliet S Sierra

B Beta K Kilo T Tango

C Charlie L Lima U Uniform
D Delta M Mike \Y% Victor

E Echo N November | W Whiskey
F Foxtrot | O Oscar X X-Ray
G Gulf P Papa Y Yankee
H Hotel Q Quebec V4 Zulu

I India R Romeo

value. The same formatting convention used with binary numbers (X'##,
where “## are the hex digits) could also be used. For this book, I will be
expressing hexadecimal numbers in the format 0x0## which is visually very
different from binary numbers, which should help to immediately differen-
tiate them.

To convert a decimal number to a character 16 bit hexadecimal number,
you can use the “C” algorithm shown below. Note that I have used the C
modulo (“%?”’) operation which returns the remainder from an integer
division operation and not its dividend.

for(i=16;1i! =0;1=1—4)
{
if (Decval/(16 x (1<<(i — 8)))) > 9)
Hex[(i/4) — 1] = (DecVal/(16 x (1<<(i —8)))— 10+ "A";
else
Hex[(1/4) — 1] = (DecVal/(16 x(1<<(1 —8)))+ 0";
DecValue = DecValue%(16 * (1<<(i — 8));

} /] rof

CHAPTER 4 Number Systems _\@
Going the other way, to convert a four hexadecimal digit number to decimal
you can use the algorithm:

Decval = 0;
for(i=4;1!'=0;1—-)
if((Hex[1 — 1] >= “A")&&(Hex[i — 1] <= “F"))
DecVal = (DecvValue *x 16)+ (Hex[1i —1]— "A" +10);
else
DecVal = (DecvValue x 16)+ (Hex[I —1]— "07);

Many books provide a conversion table between binary, hexadecimal and
decimal numbers, but I would like you to be familiar with the conversion
algorithms written out above as well as buy yourself an inexpensive scientific
calculator which has ability to convert between base systems. The ability to
convert between the base systems is actually quite simple and available in
many basic scientific calculators which cost $10 or less. Understanding
how to convert between base systems and having an inexpensive calculator
will enable you to perform the conversions faster and with more flexibility
than using a table, which is limited in the number of different values it can
present.

If you are familiar with numbers in different languages, then you will know
that the prefix “hex” actually refers to the number “‘six” and not “16”. The
actual prefix for 16 is the term ““sex” and in the early days of computers, this
was (obviously) a source of some amusement. When IBM introduced the
System/360, in the early 1960s, the company was uncomfortable with
releasing something that was programmed in “‘sexadecimal”, fearing that it
might upset some users. To avoid any controversy, all documentation for the
System/360 was written using the 16 bit “hexadecimal” numbering system
presented here. The System/360 was a wild success, becoming the first
“computer for the masses” and many people’s first experience in program-
ming and electronics. The term “hexadecimal” became the popular term for
16 bit numbers and displaced the more correct ‘“‘sexadecimal.”

Binary Coded Decimal

In the early days of programming, data structures were often the result of a
curious blend of trying to come up with a data format that best suited the
programmer and what best suited the current hardware. One of the more

@a’_ PART ONE Intro to Digital Electronics
Table 4-5 Decimal digits with binary and BCD
decimal equivalents.

Decimal | Binary BCD | Decimal | Binary | BCD

0 B’0000” | O 8 B’1000° | 8

1 B’0001” | 1 9 B’1001” | 9

2 B’0010° | 2 10 B’1010” | Invalid
3 B0011” | 3 11 B’1011” | Invalid
4 B’0100* | 4 12 B’1100* | Invalid
5 B0101” | 5 13 B’1101” | Invalid
6 B0110° | 6 14 B’1110° | Invalid
7 BO111” | 7 15 B’1111" | Invalid

enduring structures that came from this time is the “binary coded decimal”
(most often referred to by its acronym “BCD”’) which used four bits, like
hexadecimal values, but only allowed the values of zero through nine rather
than the full 16 values that were possible (as shown in Table 4-5). The reason
for using this data structure has largely disappeared in computer systems, but
it is still a viable and useful method of handling data in digital electronics and
one that you should keep in your “hip pocket” when you design circuits.

The original reason for using the BCD data format in computer
programming was its elimination of the need to add code to the program
to convert a binary or hex number into decimal. The code storage required
for the conversion was expensive and the processors were nowhere near as
possible as what is available today. Using decimal values was actually an
optimal way of processing data in these old systems.

The lasting legacy of this is the number of standard chips that can process
BCD values just as easily as other standard chips can process hexadecimal
values and will allow you to design circuitry that works with decimal values
just as easily as if you were working with hex values.

While this is getting a bit ahead of things, I want to give the example of
designing a delay that holds back a signal for 100 seconds. Using traditional
binary logic, which only works with bits that are a power of two, you would
have to design a circuit that compares a counter value and indicates when the

CHAPTER 4 Number Systems _\qp
value “100” was reached and reset itself. When using digital electronic chips

that are designed for BCD values, the comparator function is not required, as

each BCD digit cannot be greater than ““9”” and, cascaded together, they can

only count to a maximum value of ““99” to “00”.

This may seem like a trivial example, but you will find a number of cases
like this one where you will have to create circuits that work on base 10 data
and by using chips which are designed for BCD values, the complexity of
your work will be greatly reduced.

Going back to Table 4-5, the production of the ‘““invalid” indication is
worthy of some discussion as it provides a good example of how gate
optimization is not always as straightforward as you might expect.

In most BCD chips, if the value of 10 or more is passed in the binary bits,
then the value is converted to zero and a carry indication is output. Using the
tools presented in Chapter 2, you should be able to derive the sum of
products formula for the positive active “invalid” indicator as:

Invalid = (A3 -2A2)+ (A3 -A2)

and using the conversion formulas of Chapter 2, you would simplify the
“invalid” formula above to:

Invalid =A3 - (A2 +Al)

Figure 4-1 shows the AND/OR gates for this function along with the
“NAND equivalent” function beneath it. The NAND equivalent was chosen
by assuming that the function would be implemented in TTL. While this
circuit looks a bit complex, if you follow it through, you will find that it
provides the same function as the AND/OR combination above it.

It will probably surprise you to find out that this circuit is not optimal by
any measurement: you can do better in terms of the number of gates, the time

Initial Function
A3
—5 Invalid
A1—

“NAND Equivalent” Function

A3

Invalid
A2)’ BCD
A1

Fig. 4-1. Basic circuit for detecting values over 9 with reduction.

@o’_ PART ONE Intro to Digital Electronics
it takes a signal to pass through the gates and in providing a constantly timed
output. The circuit at the bottom half of Fig. 4-1 will respond in two gate
delays if A3 changes and in four gate delays if A2 changes. For many circuits,
this is not a problem, but when you are working with high-performance
designs, a variable output delay can result in the application not working
correctly and being almost impossible to debug.

A much better approach to optimizing the circuit is to work at
converting it to the basic gate used by the technology that you are working
with and then optimizing this. Going back to the original “Invalid”
equation:

Invalid = (A3 -A2)+ (A3 -A2)

I can convert the OR to a NAND, by inverting its two parameters (according
to De Morgan’s theorem), ending up with:

Invalid = !(!(a3-22)-!(A3-A2))

It is probably astounding to see that the function provided by the
mess of NAND gates in Fig. 4-1 can be reduced to the three simple gates
required by the formula above. Along with reducing the number of gates,
you should also notice that the maximum number of gate delays is two,
regardless of which bit changes.

Looking at the NAND circuits in both diagrams, you are probably
at a loss as to how you could reduce the NAND circuit in Fig. 4-1 to the three

Binary Gray Code

Bit , Bit

[]

)

Fig. 4-2. Simple digital electronic circuit to convert a binary number to a Gray code.

Bit

CHAPTER 4 Number Systems _\QD
gates of the optimized circuit. Personally, I would be surprised if
you could; when I look at the two circuits, they look like they provide
completely different functions.

What I want to leave you with is an example of how looking at a logic
function from different perspectives can result in radically different circuits
with surprisingly different parameters. In the first case, I reduced three gates
to two, to end up with six NAND gates, while in the second, I avoided
reducing the basic function and converted it directly to a much more efficient
three NAND gate circuit.

In going through this exercise to produce the “invalid” output for BCD,
I hope that you can apply this knowledge for creating circuits that work
with different base systems than just a power of two. In some cases, you may
have to work with numbers that are base 9 or 13 and using the example here,

you should have some idea of how to keep the values within certain
“bounds”.

Gray Codes

I hope I have convinced you of the usefulness of using Gray codes for inputs
when you are illustrating how digital electronic logic functions respond to
inputs. I must point out, however, that Gray codes were originally created for
a much different function — they were designed for use in position sensors as
the single changing bit allowed hardware to be designed to respond to a
single changing bit and not the potentially several bits of a binary sequence.
By only changing one bit at a time, absolutely precise positioning of marking
sensors (causing all changing bits being sensed at the exact same instant)
was not required.

Gray codes were invented by Frank Gray of Bell Labs in the mid 1950s
and has a “hamming value” of 1. The hamming value is the number of bits
that change between one value and the next. A four bit binary number can
have all four bits change as it increments or decrements; a Gray code never
has more than one bit change during incrementing or decrementing
operations.

Chances are, you would not have any trouble coming up with a two bit
Gray code (b’00°, b’01°, b’11” and b’10’) and in a pinch, you would be able to
come up with a three bit Gray code (b’000°, b’001°, b’011°, b’010°, b’110°,
b’111°, b’101” and b’100’). I suspect that if you were given the task of coming
up with any more bits than this, you would be stumped.

@’_

PART ONE Intro to Digital Electronics

In trying to come up with a way of explaining how Gray codes worked,
I noticed that when a new most significant bit was set, the previous values
were ORed with this bit, but written out in reverse order. In some texts,
this property is recognized by calling Gray codes a binary reflected
code. Looking at Table 4-6, you can see that I created a four bit

Table 4-6 Building Gray codes from previous value.

Binary value | Gray code | Comments
B’0000° B’0000° 1 bit Gray code, Gray code = binary value
B’0001° B’0001° 1 bit Gray code, Gray code = binary value
B’0010’ B0011° 2 bit Gray code, last value of bit 1 (B’1”) list ORed
B’0011° B’0010° 2 bit Gray code, first value of bit 1 (B’0’) list Used
B’0100° B’0110° 3 bit Gray code, last value of bit 2 (B’10”) list ORed
B’0101° B0O111° 3 bit Gray code, next last value of bit 2 bit (B’11")

list ORed
B0110° B’0101° 3 bit Gray code, next last value of bit 2 (B’01°) list ORed
BO111’ B’0100’ 3 bit Gray code, first value of bit 2 (B’00) list ORed
B’1000° B’1100° 4 bit Gray code, last value of bit 3 (B’100°) list ORed
B’1001° B’1101° 4 bit Gray code, next last value of bit 3 (B’101°) list ORed
B’1010° B’111T° 4 bit Gray code, next last value of bit 3 (B’111°) list ORed
B’1011° B'1110° 4 bit Gray code, next last value of bit 3 (B’110’) list ORed
B’1100° B’1010° 4 bit Gray code, next last value of bit 3 (B’010’) list ORed
B’1101° B’1011° 4 bit Gray code, next last value of bit 3 (B’011°) list ORed
B’1110° B’1001° 4 bit Gray code, next last value of bit 3 (B’001°) list ORed
B’1111° B’1000° 4 bit Gray code, first value of bit 3 (B’000”) list ORed

CHAPTER 4 Number Systems _\®
Gray code by taking the eight values of the three bit code, reversing them and

setting bit 3.
This could be written out as a computer program algorithm as:

for (1=1;1 < #Bits;i++) //Loop Around for Each Code
if(l==1) // —Trivial Initial Case
{
GrayCode[0] = 0; GrayCode[l]=1;
} else { //Copy Previous Codes with
//New MSB Set
forG=1l<<(@-1)k=((1<<{lA-1)—-1);
i<(@<<i);j++k—-)
GrayCode[j] = (1 << (1 — 1)) + GrayCode[k];
} //fi

This code demonstrates how Gray codes are produced, but is not the
optimal method for producing Gray codes (it is actually an “order n,”
algorithm, which means that every time the number of bits is doubled,
the amount of time required to produce the values is quadrupled). Along
with this, it is not easy to create digital logic hardware that will create
these codes.

Fortunately, individual binary codes can be converted to Gray codes using
the circuit shown in Fig. 4-2, which simply implements the formula:

Gray Code = Binary " (Binary >> 1)

Going the other way (from Gray code to binary) is a bit more complex and
while it uses n — 1 (where “‘n” is the number of bits) XOR gates, like convert-
ing binary codes to Gray codes, the output of each XOR gate is required as
an input to the next least significant bit, as shown in Fig. 4-3. The output of
the circuit is not correct until the most significant bit has passed through each
of the XOR gates to the least significant bit.

To perform the data conversion a simple formula cannot be used. Instead

the following algorithm is required:

GrayCode = Binary; Shift =1;

While((GrayCode >> Shift)! = 0)

@o’_ PART ONE Intro to Digital Electronics
Gray Code Binary
Bit, Bitp,

Bitn.- 1 D Bitn- 1
o

°

°
Bit, _|_)D Bit,
Bit, /D Bit
0 7

Fig. 4-3. Digital electronic circuit to convert a Gray code to a binary number.

Bit

{
GrayCode = GrayCode " (GrayCode >> Shift);
Shift =Shift*x2;

} /] elihw

I find it very difficult to explain exactly how this code works, except to
say that with each iteration of the while loop, the “Gray code” value
gets shifted down more and more to move the most significant bits into
position for XORing with the less significant bits. To convince yourself
that the algorithm works, you might want to perform a ‘“thought
experiment” on it and list the changing value of “Gray code” as I have
done in Table 4-7.

In this chapter, more than anywhere else in the book, I have used sample
computer programs to show how different values can be produced. This is a
somewhat different approach to explaining how multi-bit binary data
conversions are implemented and one that takes advantage of the ubiquity
of the personal computer and the ability of most technical students to
perform even rudimentary programming.

Using computer code to help demonstrate how the conversions are done
should also give you another method for processing binary values as well as
of testing formulas and optimizations. I always find it useful to have a
number of different ways to solve a problem, or test a potential solution,

CHAPTER 4 Number Systems

Table 4-7 Working through the shifting values of the Gray code convention algorithm.

Initial bit values | Shift =1 bit values | Shift =2 bit values | Shift =4 bit values

B7 B7 B7 B7

B6 B6 * B7 B6 “ B7 B6 © B7

B5 B5 * B6 B5 “ B6 * B7 B5 * B6 * B7

B4 B4 * B5 B4 " B5 " B6 “B7 | B4 " B5 " B6 " B7

B3 B3 " B4 B3 “"B4 "B5"B6 | B3 " B4 " B5 " B6 " B7

B2 B2 “ B3 B2 “"B3“B4 “B5 | B2 " B3 " B4 " B5
" B6 " B7

Bl Bl " B2 Bl "B2"B3"B4 | Bl “"B2"B3"B4"
B5 “ B6 * B7

BO BO * Bl BO "Bl “"B2"B3 | BO "Bl “"B2 “"B3 "
B4 “ B5 " B6 * B7

and 1 suggest that along with the various tools and computer
algorithms presented in this book that you try to come up with methods
for yourself that will help you design and test digital electronic circuits more
efficiently.

1. If you had a number system that was base 5, the most significant
value in a digit would be:
(a) 6
(b) 10
(c) 4
(d 5
2. The eight bit binary equivalent to decimal 47 is:

(a) 0010 1111
(b) B’0010 1111°

_\®

Quiz

@a’_ PART ONE Intro to Digital Electronics
(c) 101111
(d) 101111

3. The third most significant digit in the decimal number “1234” is:
(a) The hundreds column
(b) 3
() 1
(d) No digit can be the third most significant

4. To verbally tell somebody the hex number value 0x04AC you
would say:
(a) “Four-Able-Charlie”
(b) ‘““Hexadecimal Four-Eh-See”
(¢) ““Hexadecimal Four-Apple-Charlie”
(d) “Hexadecimal Four-Able-Charlie”

5. The decimal number “123” in hexadecimal is:

(a) 0x0123
(b) BO111 1011°
(c) 7B
(d) 0x07B
6. The four bit hexadecimal number 0x01234 expressed in decimal is:
(a) 1,234
(b) 4,660
(c) B’0001 0010 0011 0100
(d) 0x04D2

7. Binary coded decimal is defined as:
(a) Ten bits providing ten different values
(b) Four bits providing ten numeric values and six control codes
(¢) Four bits providing ten numeric values
(d) Five bits with each bit providing two values for a total of 10

8. BCD should:
(a) Never be used
(b) Used with circuits that operate with base 10 numbers
(c) Only be used when you’ve run out of binary chips
(d) Used when values are not expected to exceed 9

9. B’0110’ in binary, using the formula Gray code = binary * (binary >
1) can be converted to the Gray code:
(a) B’1010°
(b)y B0O110»°

CHAPTER 4 Number Systems (117)
- a

) B010I’
d) B0l

10. The Gray code B’0010’ corresponds to the binary value:
(a) B0011’
(b) Unknown because more data is required
(c) B’1101°
(d) B0010’

CHAPTER

Binary Arithmetic
Using Digital
Electronics

Before going into showing how basic binary arithmetic operations are
performed in digital electronic circuits, I thought it would be useful to review
how you would perform basic arithmetic operations. Before discussing how
many binary arithmetic operations there are, some different characteristics of
binary numbers should be discussed. I realize that much of the material in
this chapter introduction is a review of work that you first did in grade
school, but often when confronted with situations that require you to develop
binary arithmetic operations in digital electronics, this basic information can
easily be forgotten and standard devices that provide this function are often
overlooked.

®’_

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

CHAPTER 5 Binary Arithmetic _\QD

Table 5-1 Necessary decimal addition pairs to memorize.

0+0

0+1 | 1+1

0+2 | 1+2 | 2+2

0+3 | 143|243 | 3+3

0+4 | 144 | 244 | 344 | 444

O0+5 [1+5| 245 | 3+5|4+5]| 5+5

O0+6 | 1+6 | 24+6 | 346 | 446 | 5+6 | 6+6

O+7 | 1+7 | 247 | 347 | 447 | 5+7 | 6+7 | T+7

O0+8 | I+8 | 2+8 | 3+8 | 4+8 | 5+8 | 6+8 | 7T+8 | 8+8

0+9 | 149 [249 | 349 | 449 | 5+9 | 64+9 | 7T4+9 | 849 | 9+9

When you first learned to add decimal numbers together, you probably
were required to memorize all 100 different combinations of single digit
parameters when only 55 are really required. In Table 5-1, I have listed the 55
pairs which have to be memorized; the remaining 45 pairs do not have to be
memorized because of the commutative law which states:

A+B=B+A

and means that the number pairs like ““4 4+ 7 and “7+4” are equivalent.

The result of adding each of these two parameters produces either a single
digit or double digit sum. The double digit sum indicates that the value of the
result is greater than could be represented in a single digit of the number
base. For decimal numbers, the maximum value that can be represented by a
single digit is 9. Looking at the general case, the maximum value that can
be represented by a number system is the base minus one. So, for the binary
number system (base 2), the maximum value is “1”’; for hexadecimal
(base 16), the maximum value is ““15” (or “0x0F”’).

The leftmost digit of a double digit number is known as the ““carry” digit.

In Chapter 4, I showed how multi-digit numbers are made up of single
digit values multiplied by powers of their base. Knowing the sums of the
55 addition pairs of Table 5-1, multi-digit numbers can be added together

@o’_ PART ONE Intro to Digital Electronics
Step 1: Write Out Problem Step 4%: Add Remaining Tens
567
+ 468 1
2 5@7"“1”is Carry from Tens

. Additi
Step 2: Add Ones (Least) + 468 Addhen

L s 35
L Significant Digits) - step, 5: Add First two

567 “1” is Carry from 67 Hundreds
+ 468 the Ones Addition 7
5 a7
Step 3: Add First Two Tens + 468
7. Values 35
“7"is the sum of 6 + 1 Step 6: Add Remaining two
“1” and “6” are Removed 67 Hundreds
+ 468 from Problem 1y
— 8@

+ 468
1,035

-~ Sum of Addition Operation

Fig. 5-1. The process steps used to add two three digit numbers together.

by working through pairs of numbers, as I show in Fig. 5-1. This is a rather
pedantic way of showing addition and I’'m sure that when you add two multi-
digit numbers together, you are much more efficient, but when you were
learning, this was probably the process that you went through.

While saying that you are much more efficient, it really comes down to the
idea that you are able to recognize that one plus another number is the same
as incrementing the other number. You are still only adding one digit at a
time and the carry is “rippling” to the next significant digit. Carry “ripple” is
an important concept that will be discussed in more detail in the next section.

Subtraction has many of the same issues as addition, but with some
additional complexities. The first being that you cannot simplify your
memorization of the 100 pairs of subtracted parameters as you did for
addition; the commutative law does not apply to subtraction as it did for
addition. For example,

6—4£4—6

Next, if the number being taken away is greater than the original number,
the result (or ‘“‘difference’) could be less than 0 or ‘“‘negative”. There is a
very big question on how to represent that negative number. Typically, it
is represented as a value with a “minus” or “‘subtraction” sign in front of
it, e.g. ‘=27,

The minus sign is only used when the digit cannot ““borrow” from the next
significant digit, as shown in Fig. 5-2. The result of 25 minus 9 is 16, with the
ones borrowing 10 from the tens column (the next significant digit) to allow
the operation to proceed without a negative result.

CHAPTER 5 Binary Arithmetic

_\@9

Step 1: Write out Problem Step 4: Subtract Ones
25 lis
-9 72
? -9
Step 2: Ones Digits Operation 6
25 Results in Negative Step 5: Subtract Tens
- 9 Number 1is
? 72
Step 3: “Borrow” 10 from] g—Difference of Subtraction
1., More Significant Operation
2z Digitand Add to
- 9 Ones

?

Fig. 5-2. Multi-digit subtraction with borrowing.

Subtraction can also be expressed as adding a negative value and can be
written out as:

A—B=A+(-B)

This should not be a surprise to you unless you consider the following philo-
sophical question: What would happen if infinity was arbitrarily defined as
one million (1,000,000)? Instead of adding a minus sign to our value to
make it negative, we could subtract it from ““infinity”.

For example, if we had the problem:

8—5=8+(—5)

we could define “—5” as one million subtract 5 or “999,995”. Now, going
back to the addition of the negative number and substituting in 999,995
for “—5" we get:

8—5=28+(=5)
=8+4999,995
—1,000,003

Since a million is defined as infinity and has no meaning, it can be taken away
from the result, leaving us with the difference of 8§ minus 5 being *“3”. This
method may seem to be overly complex, but I will show you how this applies
to digital electronics later in the chapter.

Like addition, the method presented here for subtraction is carried out a
single digit at a time with the need to borrow from the next more significant
digit being similar to passing the carry digit in addition. Like the “‘ripple
carry” in addition, the ““borrow” in subtraction can also be thought of as a
“ripple” operation.

PART ONE Intro to Digital Electronics

Multiplication and division have, not surprisingly, many of the same issues
and when I discuss them later in this chapter, I will review them with you.
Before reading the section discussing multiplication and division, I suggest

that you review these operations and try to think of how they can be
accomplished using digital electronics.

Adders

The circuit shown in Fig. 5-3 will add two bits together and output the sum
(““‘S”) bit along with a carry (““C”) bit, if both inputs are “1”” and the sum is
“2”, which is greater than the maximum number that can be represented
by the number base (which is 1 for binary). Table 5-2 is a truth table, showing
the output of each bit for different input values. You should be able to see
that the “sum” bit is 1 when one or the other (but not both) of the two input
bits is 1 and the ““carry” bit is 1 only when both input bits are 1.

1/2 Adder

Fig. 5-3. Half adder circuit.

Table 5-2 Half adder operation truth table.

“A” input | “B” input | “Sum” bit | “Carry” bit
0 0 0 0
0 1 1 0
1 1 0 1
1 0 1 0

CHAPTER 5 Binary Arithmetic

1/2 Adder

i 7

' |

| C

| I D— Cout

1/2 Adder

Fig. 5-4. Full adder circuit.

The adder is the first practical use most people have for the XOR gate and
its function can be seen very clearly in Table 5-2 for the sum bit. Along with
the XOR gate providing the function for the sum bit, you should also
recognize that the carry bit is the output of a simple AND gate.

This simple digital electronic circuit is known as a “half adder” because it
will handle half the operations required of the general case addition circuit.
The ““full adder” (Fig. 5-4) starts with a half adder and adds another bit
(which is the less significant bit’s ““carry’ output) to its sum. Put another way,
the full adder adds three individual bits together (two bits being the digit
inputs and the third bit assumed to be carry from the addition of the next
least-significant bit addition operation, known as “C;,”).

You can analyze the operation of the full adder to check on its operation.
The sum bit is 1 only if one or three of the input bits is 1. In the half adder, I
showed that the sum bit could be written out as:

Sum =AQ®B

and should only be ““1”” if only one of the two inputs was 1. To understand
the logic required to produce the sum bit for the three bit full adder, I created
Table 5-3 in which the XOR output of the A and B inputs was given a single
column entry. From the data presented in this table, you can see that the sum
could be expressed as:

Sum=(AQB)®C

@o’_ PART ONE Intro to Digital Electronics

Table 5-3 Full adder sum bit operation truth table.

GGA ® B” “Cin” bit G‘Sumﬂﬂ bit

0 0 0

0 1 1

which, if you look back at Fig. 5-4, is exactly how it is implemented in the
“full adder™.

The carry output bit is 1 if two or three of the input bits are 1. As an
exercise, you may wish to create a truth table and reduce it down to see if you
can match the carry gate logic of Fig. 5-3, but you can write out and reduce a
sum of products equation quite easily:

Carry=(@A-B-!IC;,)+(Aa-B-C;,)
+@A-B-C;y)+(@A-B-Cip)
=(1Cin-(2-B) +(Cin - (2-B))

+(Cin-(A-B)y+(IC, - (1A -B)
= ((ICsp +Cin) - (B~ B)) + (Cip - (B - 1B))
+(Ci, - (A -B))
=(a-B)+(Cin-((A-B)+(A-!B))

Knowing that

(('a-B)+(A-B)) = ARB
the equation for the carry output of the full adder can be written out as:
Carry = (A-B)+ ((lA®B) - C;,)

CHAPTER 5 Binary Arithmetic

A0
BO

re T |
A1 } 3 _"_I_\) s1
B1 } S| / S

Fig. 5-5. Three bit “ripple adder” circuit.

which is exactly the carry logic circuit shown in Fig. 5-2. This type of analysis
is useful to do when you are trying to puzzle out what a circuit is doing or
to confirm that it is doing exactly what you expect it to do. It is also good
practice of using the logic equation optimization skills first presented in
Chapter 2.

Multiple full adders can be chained together (like in Fig. 5-5) to
produce a multi-bit adder in which the carry results for each bit “ripples”
through the various adder circuits. For most applications, this “‘ripple
carry adder” can be used safely, but in something like your PC’s processor,
where quite a few bits are required and the adder is expected to execute
quickly, the time required for the carry to ripple through the adders is
prohibitive.

The solution to this problem is the “carry look-ahead” adder in which
each bit takes not only the appropriate bits for input but also all the least
significant bits that can affect the bit. The length of time the carry look-ahead
adder needs to produce a sum is generally independent of the number of bits
in the operation (unlike the time the ripple adder requires to produce a sum
which is a function of the number of bits). Table 5-4 lists the different inputs
and expected outputs for a three bit carry look-ahead adder. Reducing the

@,—

PART ONE

Intro to Digital Electronics

Table 5-4 Carry look-ahead adder input/output truth table.
A2 | B2 | A1 | B1 | A0 | B0 SO0 | S1 | S2 | Carry
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 1 1 0 1 1 0 0
0 0 0 1 1 1 0 0 1 0
0 0 0 1 0 1 1 1 0 0
0 0 0 1 0 0 0 1 0 0
0 0 1 1 0 0 0 0 1 0
0 0 1 1 0 1 1 0 1 0
0 0 1 1 1 1 0 1 1 0
0 0 1 1 1 0 1 0 1 0
0 0 1 0 1 0 1 1 0 0
0 0 1 0 1 1 0 0 1 0
0 0 1 0 0 1 1 1 0 0
0 0 1 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 1 0
0 1 1 0 0 1 1 1 1 0
0 1 1 0 1 1 0 0 0 1
0 1 1 0 1 0 1 1 1 0
0 1 1 1 1 0 1 0 0 1

(continued)

CHAPTER 5 Binary Arithmetic

Table 5-4 Continued.

A2 | B2 | A1 | B1 | A0 | BO SO0 | S1 | S2 | Carry
0 1 1 1 1 1 0 1 0 1
0 1 1 1 0 1 1 0 0 1
0 1 1 1 0 0 0 0 0 1
0 1 0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1 1 0
0 1 0 1 1 1 0 0 0 1
0 1 0 1 1 0 1 1 1 0
0 1 0 0 1 0 1 0 1 0
0 1 0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 0 1 0
0 1 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0 1
1 1 0 0 0 1 1 0 0 1
1 1 0 0 1 1 0 1 0 1
1 1 0 0 1 0 1 0 0 1
1 1 0 1 1 0 1 1 0 1
1 1 0 1 1 1 0 0 1 1
1 1 0 1 0 1 1 1 0 1
1 1 0 1 0 0 0 1 0 1
1 1 1 1 0 0 0 0 1 1
1 1 1 1 0 1 1 0 1 1

(continued)

PART ONE

Table 5-4 Continued.

Intro to Digital Electronics

A2 | B2 | A1 | B1 | A0 | B0 S0 | S1 | S2 | Carry
1 1 1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 0 1 1
1 1 1 0 1 0 1 1 0 1
1 1 1 0 1 1 0 0 1 1
1 1 1 0 0 1 1 1 0 1
1 1 1 0 0 0 0 1 0 1
1 0 1 0 0 0 0 1 1 0
1 0 1 0 0 1 1 1 1 0
1 0 1 0 1 1 0 0 0 1
1 0 1 0 1 0 1 1 1 0
1 0 1 1 1 0 1 0 0 1
1 0 1 1 1 1 0 1 0 1
1 0 1 1 0 1 1 0 0 1
1 0 1 1 0 0 0 0 0 1
1 0 0 1 0 0 0 1 1 0
1 0 0 1 0 1 1 1 1 0
1 0 0 1 1 1 0 0 0 1
1 0 0 1 1 0 1 1 1 0
1 0 0 0 1 0 1 0 1 0
1 0 0 0 1 1 0 1 1 0
1 0 0 0 0 1 1 0 1 0
1 0 0 0 0 0 0 0 1 0

CHAPTER 5 Binary Arithmetic _\@
information from this table, I have listed the equations for the three sum bits
and the carry bit below:

S0 = (AO®BO)

S1 =((A0®B0)-(A1®B1))
+ ((21®B1) - (A0 + B0))
+ ((A1®B1) - (A0 - B0))

S2 = ((A2®B2) - (A2 - B2))
+ (1(A2®B2) 4+ (A1 -B1l)) + (/(a2 - B2)
4+ (A1®B1) - (A0 - B0O))

Carry = (A2 -B2) 4+ ((A2®B2) - (Al - B1))

+(A2®B2) - (A1®B1) - (A0 - BO))

It was a major effort on my part to reduce the equations for each sum bit and
the carry bit. To do this, I used the truth table reduction method discussed in
Chapter 2. To reduce the number of terms in the resulting sum of products
equations, I first deleted all the instances where the specific bit was not
“1”—in every case, this reduced the number of instances by half. Next,
I worked at combining instances that were similar and found that rather
than combining “don’t care” bits, I found a number of places where two
bits were XORed together. In the resulting equations, I kept the “XOR”
terms in, even though when the “technology optimization” stage of the devel-
opment effort is completed, these gates will be reduced to the technology’s
basic gates.

If you read through the equations and try to understand them, you will
find that they do make a kind of sense. Obviously, as more bits are added to
the carry look-ahead adder, the circuit becomes much more complex. Despite
this complexity, the carry look-ahead is the most efficient way to provide an
adder circuit for large bit words in fast applications.

Subtraction and Negative Numbers

As you might expect, binary subtraction has many of the same issues as
addition, along with a few complexities that can make it harder to work with.
In this section, I will introduce some of the issues in implementing a practical
“subtracter” as well as look at some ways in which subtraction can be
implemented easily with an existing addition circuit.

@o’_ PART ONE Intro to Digital Electronics
To make sure we’re talking the same language, I want to define the terms

that I will be using to describe the different parts of the subtraction
operation. The “horizontal” arithmetic equation:

Result =A—B
can be written out ““vertically” as:

A < — Minuend
—B < — Subtrahend

Result < — Difference

The “minuend” and “‘subtrahend” terms are probably something that you
forgot that you learned from grade school. I use them here because they
are less awkward than referring to them as the ‘“value to be subtracted
from” and the ‘““value subtracted”. The term “‘difference” as being the result
of a subtraction operation is generally well understood and accepted.

When you carry out subtraction operations, you do it in a manner that
is very similar to how you carry out addition; each digit is done individually
and if the digit result is less than zero, the base value is “borrowed” from
the next significant digit. With the assumption that subtraction works the
same way as addition, you could create a “half subtracter’”, which is
analogous to the half adder and could be defined by the truth table shown
in Table 5-5

The ““difference” bit is simply the minuend and subtrahend XORed
together, while the “borrow” bit (decrementing the next significant digit) is
only true if the minuend is 0 and the subtrahend is 1. The borrow bit can be
defined as the inverted minuend ANDed with the subtrahend. The equations

Table 5-5 “‘Half subtracter” defining truth table.

Minuend | Subtrahend | Difference | Borrow

0 0 0 0

CHAPTER 5 Binary Arithmetic

1/2 Subtracter

Fig. 5-6. Half subtracter circuit.

1/2 Subtracter

Bin

1/2 Subtracter

Fig. 5-7. Full subtracter circuit.

for the half subtracter are listed below and the subtracter building block is
shown in Fig. 5-6.

Difference = Minuend ® Subtrahend

Borrow = IMinuend - Subtrahend

The small circle on the single input indicates that the value is inverted before
being passed into the gate. This convention avoids the need for putting a full
inverter symbol in the wiring diagram of a digital circuit and is often used in
chip datasheets to indicate inverted inputs to complex internal functions.

Two half subtracters can be combined into a “‘full subtracter™, just as two
half adders can be combined to form a full adder (Fig. 5-7). In Fig. 5-7, I have
labeled the two half subtracters, so that their operation can be listed in Table
5-6, to test the operation of the full subtracter.

PART ONE Intro to Digital Electronics

Table 5-6 Full subtracter operation truth table.

Bin | Minuend (“M”) | Subtrahend (“‘S’’) D1 | B1 | D | B2 | Bout
0 0 0 0 0 0|0 0
0 0 1 1 1 1 |0 1
0 1 1 0 0 0|0 0
0 1 0 1 0 1 |0 0
1 1 0 1 0 0|0 0
1 1 1 0 0 1 1 1
1 0 1 1 1 0|0 1
1 0 0 0 0 1 1 1

Like the ripple adder, full subtracters can be chained together to create a
multi-bit subtracter circuit (Fig. 5-8) and a ““borrow look-ahead” (to coin a
phrase) subtracter could be designed, but instead of going through the pain
of designing one, there is another option and that is to add the negative of the
subtrahend to the minuend.

In the introduction to this chapter, I introduced the idea of negative
numbers as being the value being subtracted from an arbitrary large number
and showed an example that produced “—5”" in a universe where infinity was
equal to one million. When you first went through this example, you might
have thought that this was an interesting mathematical diversion and an
illustration as to how negative and positive numbers converge when they
approach infinity. This concept, while seemingly having little application in
the “real world™, is very useful in the digital domain.

In the digital domain, the term “infinity’’ can be replaced with “word size”
and if the most significant bit of the word is considered to be the “‘sign” bit,
positive and negative numbers can be expressed easily. In Table 5-7, I have
listed the decimal, hex as well as the positive and negative values which take
into account that a negative number can be written as:

—A =Word Size — A

This negative value is known as a “two’s complement” negative number
and is the most commonly used negative bit format used. There is a “one’s

CHAPTER 5 Binary Arithmetic

MO 1 A
| D
S0 i ,) D| 0

e
e) IS s >
X T
st ! 7 o [D| >
I
|_ ________ I I I
T T I

Fig. 5-8. Three bit “ripple subtracter” circuit.

complement” number format, but it does not avail itself as efficiently as
two’s complement to allow for easier subtraction and addition of negative
numbers.

Looking at the formula above, you are probably confused as to why it
would be used because it requires both a subtraction operation as well as an
addition operation to carry out one subtraction operation. Negating a
number in two’s complement format does not actually require a subtraction
operation; it can be done by inverting each bit (XORing each bit with 1) and
then incrementing the result. Using the values of Table 5-7, you can
demonstrate how a positive value is negated.

For example, to negate the value “5”, the following steps are used:

1. Each bit of the number is XORed with “1”. B’0101° becomes
B’1010’.

2. The XORed result is incremented. B’1010’ becomes B’1011°, which is
6(_557.

The opposite is also true: the individual bits can be inverted and the result

incremented to convert a negative two’s complement value to a positive.
Once the value has been negated, it can be simply added to the other

parameter, as I show in Fig. 5-9. There are three things that you should be

@a’_ PART ONE Intro to Digital Electronics

Table 5-7 Different ways of representing a four bit number.

Binary value | Decimal value | Hex value | Two’s complement value
B’0000’ 0 0x00 0
B’0001” 1 0x01 1
B’0010° 2 0x02 2
B0011” 3 0x03 3
B’0100° 4 0x04 4
B’0101° 5 0x05 5
B0110° 6 0x06 6
B0O111° 7 0x07 7
B’1000’ 8 0x08 -8
B’1001° 9 0x09 =7
B’1010° 10 0x0A —6
B’1011° 11 0x0B =5
B’1100° 12 0x0C —4
B’1101 13 0x0D -3
B’1110° 14 0x0E -2
B'1111 15 0xOF -1

aware of before leaving this section. The first is the use of the “V” shaped
mathematical function symbols in Fig. 5-9; these symbols indicate that two
parameters are brought together to form one output. I use this symbol when
a group of bits (not just one) are passing through the same operation.

You might be wondering why instead of simply inverting the individual
bits of the value to be converted to a negative two’s complement value,
I XOR the bits with the value 1. The reason for doing this is in the interests

CHAPTER 5 Binary Arithmetic _\c@

Add/Subtract Control Parameter2

“0” for Addition
“1” for Subtraction
‘. Parameter1

Carry/Borro ‘
v WG\ +

Sum/Difference

Fig. 5-9. Integrated adder/subtracter circuit.

of practicality and looking ahead. In Fig. 5-9, I show a circuit in which two
parameters can be added together or one can be subtracted by the other —the
“switch” control for which operation is selected. If a 1 is passed to the
“Parameter2” circuitry, each bit of Parameter2 is XORed with 1, inverting
each bit and a 1 is passed to the Parameter2 adder, which increments the
value. If a zero is passed to the Parameter2 circuitry, the bits of Parameter2
are not inverted and zero is added to the output of the XOR function,
resulting in an unchanged value of Parameter2 being passed to the adder with
Parameterl. To net it out, if a “1”° is passed to this circuit, Parameter2 is
subtracted from Parameterl; if a “0” is passed to the circuit, the two
parameters are added together.

The last point to note is that the “carry” output of the final adder is a
negated ““borrow’ output when the subtraction operation is taking place. To
integrate the operation of the ‘“‘carry/borrow” bit with the add/subtract
switch bit, this bit is set when a carry or borrow of the next significant word is
required, regardless of the operation.

Magnitude Comparators and
Bus Nomenclature

Along with being able to add and subtract binary values, you will find the
need to compare binary values to determine whether or not a value is less

@o’_ PART ONE Intro to Digital Electronics
than, equal to or greater than another value. Just as if this were a
programming requirement, to test two binary values together, you would
subtract one from the other and look at the results. An important issue when
comparing a value made up of multiple bits is specifying how it is to be
represented in logic drawings and schematic diagrams. In the previous
section I touched on both these issues, in this section, I want to expand upon
them and help you to understand a bit more about them.

When you are comparing two binary values, you are comparing the
magnitude of the values, which is where the term “magnitude comparator”
comes from. The typical magnitude comparator consists of two subtracters
which either subtract one value from another and vice versa or subtract one
value from another and then compare the result to zero. In either case, the
magnitude comparator outputs values indicating which value is greater than
the other or if they are equal.

Figure 5.10 shows a basic comparator, which consists of two subtracters
utilizing the negative addition discussed in the previous section. The
differences are discarded, but the !borrow outputs are used to determine if
the negative value is greater. If the !borrow outputs from the two

Parameter1 Parameter2

v

-Parameter1 -Parameter2
!
P1 > P2 j IBorrow
1Borrow
P1=P2 _CIZ Discard Discard
Parameter2 - Parameter1 Parameter1 - Parameter2
P2 > P1 —o<}

Fig. 5-10. Comparator built from two subtracters.

CHAPTER 5 Binary Arithmetic —\CE
subtracters are both equal to ““1”, then it can be assumed that the two values
are equal.

If one value is subtracted from the other to determine if one is
lower than the other and if the value is not lower (i.e. !borrow is not zero),
the result can then be compared to zero to see if the value is greater than
or equal to the other. This method is probably less desirable because it tends
to take longer to get a valid result and the result outputs will be valid at
different times. Ideally, when multiple outputs are being produced by a
circuit, they should all be available at approximately the same time (which
is the advantage of the two subtracter circuit shown in Fig. 5-10 over
this one).

If you are working with TTL and require a magnitude comparator, you
will probably turn to the 7485, which is a four bit magnitude comparator
consisting of two borrow look-ahead subtracters to ensure that the outputs
are available in a minimum amount of time and are all valid at approximately
the same time.

In Fig. 5-10 (as well as the multi-bit subtracter shown in the previous
section), I contained related multiple bits in a single, thick line. This very
common method of indicating multiple related bits is often known as a
“bus”. Other methods include using a line of a different color or style. The
advantage of grouping multiple bits that function together like this should be
obvious: the diagram is simpler and it is easier to see the path that related
bits take.

When I use the term “‘related bits”, I should point out that this does not
only include the multiple bits of a binary value. You may have situations
where busses are made up of bits which are not a binary value, but perform a
similar function within the circuit. For example, the memory control lines for
a microprocessor are often grouped together as a bus even though each
function is provided by a single bit (memory read, memory write, etc.) and
they are active at different times.

As well as indicating a complete set of related bits, a bus may be broken up
into subsets, as shown in Fig. 5-11. In this diagram, I have shown how two
four bit magnitude comparators can be ‘“ganged” together to provide a
comparison function on eight bits. The least significant four bits are passed to
the first magnitude comparator and the most significant four bits are passed
to the second magnitude comparator. The bits are typically listed as shown
in Fig. 5-11, with the most significant bit listed first and separated from the
least significant bit by a colon. In very few cases will you see the width of the
bus reduced to indicate a subset of bits as I have done in Fig. 5-11;
most design systems will keep the same width for a bus, even if one bit is
being used in it.

PART ONE Intro to Digital Electronics

@,—

Magnitude
. Comparator
A7:0 A0y |, ComP
B7:0 Mll———Jpi530
B3:0 RA <RB
RA=RB |—
RA>RB |—
O A<B
{em— A=B
0= A>B
:mtlatl Magnitude
nputs Comparator
P AT gl aso Comparator
psso Outputs
. ~ RA<RB |—-
B7:4 RAz RE —-
RA>RB |—-=-

>
VA
[ssjlovius)

Fig. 5-11. Cascading two four bit comparators.

Before going on, I want to make some comments about Fig. 5-11 as it
provides a function that is often required when more bits must be operated
on than is available by basic TTL or CMOS logic chips. To carry out the
magnitude comparison operation on eight bits, I used two four bit magnitude
comparator chips (modeled on the 7485) with the initial state inputs (marked
“Initial Inputs” on Fig. 5-11) to start the chip off in the “neutral” state as if
everything “upstream” (before) was equal to each other and the chip’s bits
as well as any ‘“downstream” (after) bits will determine which value is
greater or if the two values are equal. This is a typical method for combining
multiple chips to provide the capability to process more bits than one chip is
able to.

Multiplication and Division

As you’ve read through this chapter, you should have noticed that there are
usually many different ways of implementing different digital electronics
functions. Each of the different implementation methods have their own
advantages and tradeoffs—it is up to the application designer to understand
what are the important ones. Nowhere is this more true than when you start
discussing multiplication and division; there are a number of different
methods of performing these arithmetic operations, each with their own
characteristics.

CHAPTER 5 Binary Arithmetic _\c@

Off the top of my head, I can come up with five different ways to multiply
two binary numbers together. Before listing the different methods, I should
make sure that I have defined the terms used in multiplication. The
“multiplicand” is the value that is multiplied by the “multiplier” and
typically remains static. The “multiplier” is the number of times that the
multiplicand is added together to form the result or “product”.

It should go without saying that if you had to multiply by a power of 2 (i.e.
1, 2, 4, 8, 16, etc.) a true multiplication operation is not required at all; the
operation can be accomplished by shifting the multiplicand. For example to
multiply a value by 4, you would simply shift the value to the left two times.
Division is the same, except the value is shifted to the right.

Understanding the basic terms “multiplier” and “multiplicand” leads to a
second method to implement a multiplication function in software—the
multiplicand is added multiplier number of times to the product. It can be
written out in “C” as:

Product =0; //Clear result accumulator
for (1 =0;1 <Multiplier;i++)
//Repeatedly add Multiplicand
Product = Product +Multiplicand;
This method is painfully slow (especially for large multiplier values) and is
difficult to implement in combinatorial digital logic. It is also different
from the method which you were taught in school in which the multiplicand

is shifted up by the radix for each digit of the multiplier. Using this method,
“123” decimal is multiplied by “24” decimal in the format:

123
X 45
615

+ 492 < —Sum Products of each digit
5535

In the first line of the solution, I multiplied the multiplicand 123" by the
least significant digit of the multiplier followed by multiplying the multipli-
cand by 10 (the radix) followed by the next significant digit of the multiplier.
Once the multiplicand has been multiplied by each digit of the multiplier
(along with the appropriate multiplication of the digit position), each product
is added together to get the final result.

This method lends itself extremely well to working within binary systems.
Rather than multiplying the multiplicand repeated by the radix for each digit,

@o’_ PART ONE Intro to Digital Electronics
the multiplicand is simply shifted to the right (which is multiplying by two)

for each bit of the multiplier. If the multiplier bit is zero, then the value added
to the product is zero. The binary multiplication operation for 123 by 45 is:

B'01111011’
x B'00101101’
B'01111011’ < —Bit 0 of Multiplier is not Zero
B'00000000’ < —Bit 1 of Multiplier is Zero
B'01111011’ < —Bit 2
B'01111011’ < —Bit 3
B'00000000’ < —Bit 4
B'01111011’ < —Bit 5
B'00000000’ < —Bit 6
+ B'00000000’ < —Bit 7

B’0001010110011111’ < —Product (5,535 Decimal)

This is much more efficient than the previous version in terms of execution
time and not significantly more complex than the other version. The “C”
code that implements it is:

Product = 0; //Clear result accumulator

for(i=0; i <log2 Multiplier);i++)

{
if (Multiplier &1l)==1) //If LS Bit Set, Add Current
Product = Product +Multiplicand; //to Product
Multiplier =Multiplier >>1; //Shift down Multiplier
Multiplicand =Multiplicand << 1; //Shift up
//Multiplicand
} /] rof

The first version is known as “Order n”” because it loops once for each value
of the multiplier. The shift and add version shown directly above is known as
“Order log,” because it executes the log, of the word size of the multiplier.
For the eight bit multiplication example shown here, for the first method,
up to 255 loops (and addition operations) may have to be executed. For
the second example, a maximum of 8 loops (one for each bit, which is a
simple way to calculate log, of a number) is required.

CHAPTER 5 Binary Arithmetic _\@

The final method of multiplying two numbers together is known as
“Booth’s algorithm™ and looks for opportunities to reduce the number of
addition operations that are required by rounding the multiplier up and then
adjusting the product by subtracting the multiplier’s zero bits that were
ignored. For the example given in this section (123 multiplied by 45), Booth’s
algorithm would recognize that 45, B’00101101° rounds up to 64
(B’01000000’). Multiplying a binary number by 64 is the same as shifting
left six times.

To adjust the product, the basic multiplicand (multiplied by 1) along with
all the instances where the multiplier has bit value of zero (in this case, bits
one and four) have to be taken away from the rounded up value. For this
example, the multiplication operation would look like:

(B'01111011" << 6)—B'01111011" —(B'01111011" << 1)
—(B'01111011" << 4)
= B/01111011000000’
- B'01111011"
— B'011110110
— B/011110110000
B’01010110011111’

which is the same result as we got above for a bit less work. Booth’s algo-
rithm can produce a product in fewer, the same or more addition/subtraction
operations as the previous method, so care must be taken to make sure that it
is only used when it is going to provide an advantage.

Each of the three methods presented so far requires the ability to “loop”
through multiple iterations. This is a problem for most digital electronic
circuits, as it not only requires a “‘clock’ to synchronize the operations but it
will also most likely take up more time than is desired. When a digital logic
multiplier is designed, it typically looks something like Fig. 5-12. This circuit
is wired to add all the multiplicand bits together for each possible multiplier
values.

The multiplier bits are taken into account by ANDing them with each of
the multiplicand bits. If a multiplier bit is zero, then the shifted up
multiplicand bits are not passed to the multi-bit adders.

There are a couple points about the multi-bit adders that you should be
aware of. The first is that the maximum number of input bits for the adders
used in the multiplier circuit is the number of bits in the multiplicand plus the
log, value of the multiplier. Secondly, as drawn, the adders are connected
in a “ripple” configuration—a commercial circuit would probably wire the

@’_ PART ONE Intro to Digital Electronics
"

Cout
O—f
Cin
— [

I |_I C-(i:n I
H)_I;.C‘"I
D—— %
+ P4

.

|

I ||_I_)| Il
= T
H—

O

|

| |

Multiplicand

o T—

\;D =

Bit2 = | |
V

|

Bl 0 Bit1

— P2

+ —P1

PO

Bit3 Multiplier

Fig. 5-12. Four bit multiplier circuit.

adders together as a carry look-ahead to minimize the time required for the
multiplication operation to take place.

Before leaving the topic of multiplication, I should point out that all the
methods presented here will handle multiplication of two’s complement
negative numbers “‘natively”. This is to say that no additional gates must be
added to support the multiplicand or multiplier being negative.

Division is significantly more difficult to implement and is very rarely
implemented in low-cost devices. Handling negative values considerably
complicates the division operation and in this section, as well as most
commercial solutions, negative values cannot be used for the dividend or
divisor. To avoid the hardware complexities of division, software intensive
solutions are normally done such as a repeated subtraction:

Quotient = 0; //Clear result accumulator
while (Dividend >= Divisor) //Repeat Subtraction
{

Dividend = Dividend — Divisor;
Quotient = Quotient +1;
} /] elihw

CHAPTER 5 Binary Arithmetic _\@
The bit shifting method shown for multiplication can also be used, but before
comparisons can start, the divisor should be shifted up the word size of the
dividend. To follow the bit shifting division code listed below you might

want to do a thought experiment and single step through it with arbitrary
values to see exactly how it works:

Quotient =0; //Clear result accumulator
Divisor = Divisor << DividendWordSize;
DivisorPos = l<<DivendendWordSize;
//Current Divisor Bit Shift
while (DivisorPos! = 0)
//Repeat While Divisor Shifted

{

if (Dividend >=Divisor) //Can you take away current

{
Dividend = Dividend — Divisor;
Quotient = Quotient + DivisorPos;

Yo/ fi

Divisor =Divisor >>1; //Shift Down Divisor
DivisorPos = DivisorPos >> 1;

} /) elihw

At the end of both these division algorithms, “Quotient” contains the quoti-
ent of the division operation and “Dividend” contains the remainder.

The bit shifting division algorithm could be implemented using digital
electronic gates as I demonstrated for the bit shifting multiplication
algorithm, but you will find that it is quite a bit more complex than the bit
shifting multiplication application in Fig. 5-12. This does not mean that there
are some tricks you cannot implement if a division operation is required.

For example, if you wanted to divide a value by a known, constant value,
you could multiply it by its fraction of 256 (rather than the typical 1) and
then divide by 256 (which is accomplished by shifting right by eight bits).
For example, dividing 123 by 5 would be accomplished by multiplying 123
by 51 (256 divided by 5) and shifting the product (6,273) to the right by 8 bits
to get the result 24. While this method seems like it’s complex, it is actually
quite easy to implement in digital electronics.

@’_

Quiz

PART ONE Intro to Digital Electronics

6 — 5 is the same as:

(@ 6+(-5)
b) 5-6
©) 999999

(d B1111 1111

In a universe where infinity (the highest possible number) is one
million (1,000,000); “—11” could be represented as:

(a) Only —11
(b) 999,988
(c) 999,989
(d) 89

A “half adder™:

(a) Can perform an addition operation on two bits

(b) Can add half the bits together of an addition operation

(c) Combines the “carry” outputs of a “full adder” to produce the
correct result

(d) Is built from half the number of gates as a full adder

A “‘ripple adder” is not used in a PC or workstation processor

because:

(a) Tts complexity can affect the operation of other arithmetic
functions

(b) The result is often wrong by one or two bits

(¢) The delay required for the signal to pass through the gates can
be unacceptably long

(d) It cannot handle the 32 or 64 bit addition operations required

B’10’—B’01’ passed through two full subtracters produces the
result:

(a) Cannot be done because a borrow operation is required

(b) B’01’ with borrow =1

(c) B’10’ with borrow =0

(d) B’0I’ with borrow=0

Converting the four bit, two’s complement value “—4” to a positive
number by inverting each bit and incrementing the result produces
the bit pattern:

(a) B’0100°

CHAPTER 5 Binary Arithmetic _\@
(b) Which is five bits long and is invalid

(c) B001I’
() B’1100°

7. Busses are made up of:
(a) Multiple bits of a single value
(b) Multiple bits passing to the same subsystem of the application
(c) The highest speed signals in the application
(d) Related bits

8. Multiplying two four bit numbers by repeated addition:
(a) Will require up to 4 addition operations
(b) Will require up to 15 addition operations
(c) Cannot be implemented in digital electronics
(d) Is the fastest way of performing binary multiplication

9. Multiplying a binary number by 16 can be accomplished by:
(a) Clearing the least significant four bits
(b) Shifting left four bits
(c) Shifting right four bits
(d) Setting the least significant four bits

10. Dividing an eight bit value by the constant value 6 is best accom-

plished by:

(a) Using the repeated subtraction method

(b) Using the bit shifting method

(c) Shifting the value to the right by two and then shifting the value
to the right by 1 and adding the two values.

(d) Multiplying by 256/6 (42) and shifting the product to the right
by 8 bits

CHAPTER

Practical
Combinatorial Gircuit
Implementation

When you are designing your first application that is built from digital
electronics, you will probably feel like you have just joined a never-ending
role-playing game in which all the other players know more than you do.
Later in the book, I will present some ideas on how to read a datasheet and
what to look for in it, but for now, I would like to discuss a number of the
options that you should be aware of and are thinking about when you first
start designing your application.

Using the role-playing game analogy with digital electronics may seem to
be facetious, but there are actually a lot of similarities that you should be
aware of. First and foremost, each digital electronic chip that you can choose
from has a number of characteristics that you will have to be aware of and

®’_

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

CHAPTER 6 Circuit Implementation _\@

Table 6-1 Important characteristics of a digital electronic chip.

Characteristic Comments
Function Gate type, chip function
Bits The number of bits per gate input or number of bits used

by the function

Gates/functions | What does the chip do and how many are there

Technology Electronic standard chip is implemented
Output type Gate output type

Dependencies Issues to be aware of

Manufacturer Who makes the chip/where can it be purchased

choose from when you are specifying the parts used in your application.
When choosing between the parts, it might be a good idea to come up with a
card, similar to the cards used in role-playing games to explain the different
characters, characteristics and strengths and weaknesses. A sample card for
a digital electronic device might look something like Table 6-1.

The “function” of the chip is a brief description of the gates provided by
the chip or the digital logic function provided by the chip (such as an adder or
a magnitude comparator). At this point in the book, you might feel that it is
sufficient to specify a chip for a needed function, but the following
characteristics are critical for you to understand that you need to be able
to select the right chip for the right application.

When I have presented simple gates, they have all (with the exception of
the NOT gate) two inputs. Along with two inputs, there are a number of
different inputs for a variety of different types of gates. For example, in
standard TTL, you can get NAND gates with two, three, four and eight
inputs. Four and eight bit adders as well as different chips with different bit
counts are also available. When selecting a chip for an application, you
should be cognizant of the bit options that are available to minimize the
number of chips required.

The basic TTL chips have four two input gates and six one input gates, but
if the number of bits changes, then the number of gates within the chip
changes (or the plastic package type and the number of pins changes). As
surprising as it seems, many complex functions can have more than one built

@a’_ PART ONE Intro to Digital Electronics
into the package. Like the number of bits, the number of functions within the
chip will help you plan out how many chips you will need in the application.

So far in the book, I have really just indicated that there are two types of
technology used for standard logic devices. In actuality, there are dozens and
in Table 6-2, I have listed the most popular ones with their input, output and
operating characteristics. For the different varieties of “TTL”, “C”, “AC”

Table 6-2 Digital logic technologies with electrical characteristics.

Chip type Power supply Gate | Input “0” “1” Output
delay | threshold | output output sink

TTL Vee= 8ns N/A 03V 33V 12mA
4.5t055V

L TTL Vee= 15ns | N/A 03V 34V SmA
4.5t0 55V

LS TTL Vee= 10ns | N/A 0.3V 34V 8 mA
4.5t0 55V

S TTL Vee= Sns N/A 0.5V 34V 40 mA
4.75 to 5.25V

AS TTL Vee= 2ns N/A 03V Vee—-2V 20mA
451055V

ALS TTL Vee= 4ns N/A 0.3V Vee—-2V 8§ mA
451055V

F TTL Vee= 2ns N/A 0.3V 3.5V 20 mA
4.5t0 55V

C CMOS Vee= S0ns | 0.7 Vce 0.1 Vee | 0.9 Ve 3.3mA*
3to 15V

AC CMOS | Vce= 8ns 0.7 Vec 0.1V Vec—0.1V | 50mA
2to6V

HC/HCT Vee= 9ns 0.7 Vce 0.1V Vee—0.1V | 25mA
2to 6V

4000 vdd = 30ns | 0.5Vdd | 0.1V Vdd—-0.1V | 0.8 mA*
3to 15V

CHAPTER 6 Circuit Implementation _\@
and “HC/HCT” logic families, the part number starts with ““74”” and for the

“4000” series of CMOS chips, it has a four digit part number, starting

with “4”. Table 6-2 lists the different aspects of the different types of logic

chips that you will want to work with.

The “output sink™ currents are specified for a power voltage of 5 volts. If
you increase the power supply voltage of the indicated (with a “**) CMOS
parts, you will also increase their output current source and sink capabilities
considerably.

In Table 6-2, I marked TTL input threshold voltage as ‘““not applicable”
(N/A) because, as you know, TTL is current driven rather than
voltage driven. You should assume that the current drawn from the TTL
input is 1 mA for a ““0” or “low” input. CMOS logic is voltage driven, so the
input voltage threshold specification is an appropriate parameter.

The output current source capability is not specified because many early
chips were just able to sink current. This was all that was required for TTL
and it allowed external devices, such as LEDs, to be driven from the logic
gate’s output without any additional hardware and it simplified the design of
the first MOSFET-based logic chips. The asterisk (“*”’) indicates that the
sink current specification is for 5 volts power; changing the power supply
voltage will change the maximum current sink capability as well.

There are three basic output types: totem pole, open collector and the tri-
state driver (which is presented later in this chapter). In cases where multiple
outputs are combined, different output types should never be combined due
to possible bus contention.

Virtually all of the electrical dependencies that you should be aware of are
listed in Table 6-2, but you may have a number of operating dependencies
(such as making sure CMOS inputs are tied high or low) or physical design
issues that you should be aware of. “Physical design” is the process of
designing a printed circuit board with internal connections built into it that
have the chips soldered onto it. The primary chip dependencies that you
should be aware of when designing a printed circuit board are the location
and type of the chip’s pins as well as any heat removal (i.e. heat sinks)
requirements that the chip may have.

Finally, you should know who makes the part and where you can purchase
it. This point is often overlooked, but you will find many manufacturers that
advertise parts that are seemingly designed just for your application. The first
problem that you encounter is that your company has a policy of only buying
parts that are available from multiple sources or you may discover that
the manufacturer is not considered to be reliable and production quantity
parts are difficult to come by. For your first designs, it is a good rule to only
use parts that are easily obtainable and, ideally, built by multiple sources.

@o’_ PART ONE Intro to Digital Electronics
This may make the design operation a bit more difficult and the final product

larger than it could have been, but chances are the product will go through
manufacturing very smoothly and with few difficult ““hiccups™.

Race Conditions and Timing Analysis

As you begin to create digital electronic circuits that are more and more
complex and run faster and faster, you are going to discover that they are
going to stop working or they are going to start working unpredictably. In
trying to find the problem, you will probably look at different parts of the
circuit, ranging from the power supply to the wiring and maybe rebuilding it
several times to see if it is being affected by other electrical devices running
near the application. At some point you will give up and build as well as
redesign the circuit, only to discover that the problem is still there.

So what’s the problem? Chances are you have encountered a ‘“race
condition”, which is normally defined as ““A condition in digital electronics
where two or more signals do not always arrive in the same order.”
Personally, I use a slightly different definition for race condition which states
that ““A race condition occurs in any digital electronic circuit where the
output to input response time changes according to the inputs passed to it.”
My definition is a bit more specific and should give you some ideas on where
to look for the problem.

Simply put, a race condition is a case where an expected event does not occur.

To illustrate the issue, assume that the application consists of a circuit that is
designed to respond to an internal value at a specific time. If the digital
electronics used to produce this internal value does not always complete
within the specified time, what happens in the circuit that uses this value for
input? Chances are the circuit will respond incorrectly, resulting in the
problem that you are trying to debug.

An example circuit that has the capability of producing a race condition
is shown in Fig. 6-1.

A _)D (o)
= > -

Fig. 6-1. Example race condition circuit.

CHAPTER 6 Circuit Implementation _\@9

Figure 6-2 is the waveform output of this circuit to a three bit incrementing
signal and, in it, I have indicated the output bits (“O1” and “O2”’) and
indicated where the operation of the circuit is “correct” (O2 is valid after O1)
as well as a possible race condition (when O1 is valid after O2). I have also
indicated times, using a shaded block, when both of the XOR inputs are
changing and there could be a “glitch” caused by both inputs changing state
simultaneously, at which time the output of the XOR gate is unknown.

The glitch produced by the XOR gate is an excellent example of a race
condition. As I presented earlier in the book, the XOR gate is typically made
up of five NAND gates in the configuration shown in Fig. 6-3. If one input
changes, then the output will change state to either ““1”” or ““0” without any
glitches, but what happens when the two inputs change state simultaneously?

Quickly thinking about it, you might think that the output doesn’t change
state, but consider what happens at the NAND gate level of the XOR gate.

A M M rerri

I e N pnan IR nm e T

c__| .

O1_ L [T L_ILr Tl T

02" _ T
01 Valid After 02 C|)32ro\’/J§|rd (a)f‘t)::?)ti?n:

Possible Race Condition

- XOR Transition “Glitch”

Fig. 6-2. Example race circuit wave forms.

A Output
B utpu

L

D— Output
: u

Fig. 6-3. XOR gate TTL implementation.

A——_ ——
o

(@’_ PART ONE Intro to Digital Electronics

Table 6.3 XOR gate input change study.

Gate delay | Input “A” | Input “B” | G1 | G2 | G3 | G4 | Output
~1 1 0 o [1 |1 |o |1

0 0 1 o [1 |1 |o |1

1 0 1 1 jo |1 |1 |o

2 0 1 1 o |o |1 |1

Table 6-3 lists the NAND gate outputs for the different gates as I've marked
them in Fig. 6-3. To help illustrate what’s happening, I use “gate delays” as
the time increments of this study. In Table 6-3, the initial conditions are one
gate delay before the two inputs change value. The inputs change value at
gate delay “0”.

According to this study, at gate delay 1, the output will be a “0”* because
the direct inputs from A and B to G3 and G4 have changed at gate delay 0,
but the inverted inputs from G1 and G2 have not. It won’t be until gate delay
2 that the inputs to NAND gates G3 and G4 have stabilized. Thus, the time
from gate delay 1 to gate delay 2 will result in generally unknown logic levels,
which are normally characterized by the term “‘glitch™.

Going back to Fig. 6-2, you can probably observe what I mean by
the race condition, but I'm sure it seems very subtle. Actually, this is the
point that I want to make: race conditions are very subtle and are very
difficult to observe. For this section, I spent quite a bit of time with a 74C85
(quad XOR gate), a PIC16F627A (Microchip PIC Microcontroller to
produce the “A”, “B” and “C” inputs to the circuit) and an oscilloscope
trying to capture the events shown in Fig. 6-2. I gave up after about 5 hours
of trying to capture the event on the oscilloscope in a way that it would be
easily seen.

Race conditions are dependent on part mix, applied voltage and ambient
conditions. You may find some sample circuits which never have the problem
while others will never seem to work right. Finding the actual event is
extremely difficult and only after doing a thorough timing analysis of
the circuit will you find the opportunity for a race condition to occur.
The prevention for this problem is quite simple—figure out what your worst
case gate delay is through the circuit and only sample data after this time

CHAPTER 6 Circuit Implementation _\®
(even add a 10% margin to make sure there is no chance of marginal
components causing problems).

Avoiding the opportunity is why chip designers work at making sure
multiple outputs are active at the same time for changing inputs. Looking at
the “A”/“B”/“C” waveform of Fig. 6-2, you might have thought that it is
impossible to achieve the signals at precisely the same time, but it is very
likely that if a single gate is producing incrementing outputs, the “‘edge” of
each output bit will be precisely aligned with each other and will cause the
glitch on the output of the XOR gate.

The process of determining what is the worst case gate delay is the same
process 1 used for finding the ““glitch” in the XOR gate and is known as
“timing analysis”. It is unusual for somebody to work through this analysis
by hand as I have done, except for very simple circuits. When timing analysis
is done on a commercial product, it is normally done using a logic simulator,
which can find the longest delays and report on any problems.

Quick and Dirty Logic Gates

One of the most frustrating aspects of designing digital electronic circuits is
that when you are almost finished, you often discover that you are a gate or
two short and you are left with the question of whether or not you should
add another chip to the circuit. The major problem with adding another chip
to the circuit is the requirement for additional space to place the chip in the
circuit. Along with the need for additional space, adding another chip will
add to the costs of the application and the difficulty in assembling it. In
Chapter 2, I discussed that by using the Boolean arithmetic laws and rules,
you could produce various functions using different gates than the ones that
are ‘“‘best suited” for the requirements. In the cases where there are no
leftover gates available, a gate can be ““cobbled” together with a few resistors,
diodes and maybe a transistor. These simple gates are often referred to as
being “MML” or “Mickey Mouse logic”” technology because they can
generally be used in most situations and with different logic families when a
quick and dirty solution is required.

To be used successfully, they must be matched to the inputs and outputs of
the different logic families that you are using and should not result in long
switching times, which will affect the operation of the application, or large
current draws, which could damage other components. As a rule of thumb,
do not use one of the simple gates presented here between differing

PART ONE Intro to Digital Electronics

@’_

10k
10k Output
Input

Fig. 6-4. RTL inverter.

technology gates; you will find that operation of different technologies can
often be incompatible when you are adding resistors, diodes and transistors
like the ones used in the sample gates presented here. Another rule of thumb
is to make sure that each MML gate only drives one input—you can get into
trouble with input fan-outs and multiple gate current sinking requirements
very quickly. Along with trying to satisfy these requirements, there are cases
where you will find that the MML gate will require at least as many pins as
adding another chip and will be more difficult to wire. Generally speaking,
adding MML gates to your application should be considered a ‘““last” resort,
not something you design in right from the start.

The most basic MML gate is the “inverter’” and should not be a surprise.
Figure 6-4 shows the circuit for the MML inverter, built out of two 10k
resistors and an NPN transistor. This inverter is actually a basic “RTL”
(resistor—transistor logic) technology device and outputs a high voltage,
when it is not being driven by any current. When current is passed to
the gate, the transistor turns on and the output is pulled to ground
(with good current sinking capability).

This circuit (as well as the other MML gates I discuss in this section)
cannot handle high voltage or current inputs and outputs as well as
commercially available logic gates and need to be “buffered”. The need for
buffering the MML’s gate inputs and output is an important point to note
when considering using an MML gate in an application. As a rule, MML
gates must be placed in the middle of a logic “‘string” rather than at the input
or output ends to ensure that if you are expecting certain characteristics (such
as the ability to drive a LED), standard TTL or CMOS technology gates will
provide you with it.

The inverter circuit can be simply modified by adding another transistor
and resistor, as shown in Fig. 6-5, to create an RTL NOR gate. The RTL
NAND gate is shown in Fig. 6-6. The NOR gate is considered the basis
of RTL technology.

Implementing an AND or OR gate in MML is a bit more complex
and requires a good understanding of the input/output parameters

CHAPTER 6 Circuit Implementation

_\®

10k
10k

Gate Inputs Gate Output
= 10k

Fig. 6-5. RTL NOR gate.

10k
10k

Gate Inputs Gate Output
10k

Fig. 6-6. RTL NAND gate.

A u Output

-
B P

Fig. 6-7. MML OR gate.

of the logic families. In Fig. 6-7, I have shown a sample design for an
OR using two diodes and a resistor. The use of a 470 ohm resistor is
probably surprising, but it was chosen to allow the gate to be used with both
CMOS and TTL logic. In this case, if neither input has a high voltage, then
the output will pull the input to ground. If the input is a CMOS gate, then the
input will behave as if it were tied to ground. The 470 ohm resistor will allow
the TTL input current to pass through ground and it will behave as if the
input was at a low logic level. When the resistor is connected to a CMOS
input, it will be effectively tying the input to ground, even though no current
is flowing through it. In either case, when one of the inputs is driven high, the
input pin will be held high and the gate connected to the output of the OR
gate will behave as if a high logic level was applied to it.

An MML AND gate (Fig. 6-8) is the simplest in terms of the number of
components. The diode and resistor work together to provide a high voltage

PART ONE Intro to Digital Electronics

@,—

A W Output

L1
B N

Fig. 6-8. MML AND gate.

when both inputs are high, but when one of them is pulled low, the voltage
level will be pulled down and current drawn from the input gate it is
connected to.

While the MML AND presented in Fig. 6-8 will work in virtually any
application, you may find that you will want to use a 470 ohm resistor in the
circuit and a 10k one in CMOS logic applications. The reason for doing this
is to minimize the current drawn by the application; with a 470 ohm resistor,
roughly 10 mA will be drawn when the output of the gate is low. This current
draw decreases to 100 uA when a 10k resistor is used instead for the resistors
in these two gates.

Dotted AND and Tri-State Logic Drivers

You may feel constrained by the rule that you can only have one driver on a
single line (or net). In Chapter 3, I introduced you to the concept of the
“dotted AND” bus in which there was a common pull up on the net along
with a number of transistor switches, each one of which could “pull” the net
to a low voltage/logic level (and draw the current from any TTL gates inputs
connected to the dotted AND). The dotted AND works reasonably well and
has the advantage that it can control output voltages greater than the power
applied to the logic chips. Some more subtle advantages are that more than
one output can be active (tying the net to ground) and the operation of the
bus will not be affected and TTL open collector and CMOS logic open drain
outputs can be placed on the bus along with mechanical switches and other
devices which can pull the bus to ground.

The dotted AND bus’s main disadvantage is its inability to source
significant amounts of current. Smaller value pull up resistors can be used,
but this increases the amount of current passed to ground when one of the
open collector transistors is on. The dotted AND can be considered to be
quite inefficient if it is low for a long period of time, because it is passing
current directly to ground. The inability to source large amounts of current

CHAPTER 6 Circuit Implementation

_\@

Vee Effective Operation
Output i
Circut 0 Qutp
ry Output T Pin
Enable g
Input | -
Tri-State Control
Output
Pin

Logic Symbol

_D.:E Signal I~ Output

to h
; Output T Pin

Tri-State Control

Fig. 6-9. Tri-state driver circuit diagram and operation.

is a drawback when high-speed signals are involved is the major disadvantage
of the dotted AND bus. Changing an input from a high to a low, especially
when there are some relatively large capacitances on the net, the switching
time can become unreasonably slow.

A common error made by new circuit designers when they are adding
a dotted AND bus to their designs is forgetting to add the pull up resistor.
If the resistor has been forgotten, then the bus will never have a “high”
voltage (although it will have a “low” voltage that can be detected). You will
find that TTL inputs connected to a dotted AND but not having a pull up
will work correctly, but CMOS logic inputs will not.

Another solution to the problem of wanting to have multiple drivers on the
same net is to use “‘tri-state’ drivers (Fig. 6-9). These drivers can “‘turn off”
the transistors as effectively as if a switch were opened (the diagram marked
“Effective Operation” in Fig. 6-9).

The left-hand side of circuit diagram of Fig. 6-9 shows how the tri-state
driver works. If the tri-state control bit is inactive, the outputs of the
two AND gates will always be low and the NPN output transistors can never
be turned on. This “inactive’ state is also known as the ‘“high impedance
state”. When the tri-state control bit is active, then a high to either the top or
bottom NPN transistor will allow the output to behave as an ordinary TTL
output.

This ability to “turn off” allows multiple drivers, such as I have
shown in Fig. 6-10, to be wired together. In this case, if data was to be
placed on the net from Driver “B”, the “Ctrl A” line would become inactive
(the “high impedance state’), followed by the “Ctrl B” line becoming
active. At this point, the bus would be driven with the data coming from
Driver “B”.

PART ONE Intro to Digital Electronics

@,—

Driver “A”
“A” \ Receiver
— > Input
Ctrl A
g —
Driver “B”
Ctrl B

Fig. 6-10. Multiple tri-state drivers on a single net.

It is important that only one tri-state driver is active at one time
because the voltage on the common net will be indeterminate, as will be
the logic level. You may be thinking that the term “‘indeterminate” to be
the case when two drivers are active and are attempting to drive the net
at different levels. This is true, but it is often also the case if two
different drivers are driving at the same level: CMOS logic and TTL
drivers will attempt to drive the net to different voltage levels and even TTL
will not give repeating answers when you are trying to understand what
is happening. The technical term for the situation where two tri-state
drivers are active at the same time is ‘“‘bus contention” and it should
be avoided at all costs—only one driver should be active on the net at any
one time.

At the start of this section, I noted that there could be more than one
output active on a net at the same time. Note that when I say “multiple active
outputs”, I mean more than one driver pulling the net low. I do not
recommend this to be part of the design, however; multiple active outputs are
impossible to differentiate and you will have problems figuring out which bits
are active and what signal is being sent (with multiple outputs active, state
changes from one output will most likely be masked by the active operation
of others).

Before leaving this section, I do want to point out that tri-state drivers can
be used on a dotted AND bus. This is probably surprising, considering the
dire warnings I have put in regarding bus contention. The trick to adding a
tri-state driver to a dotted AND bus is that it is normally disabled and only a
low voltage can be put on the net by the tri-state driver. High values are
output by simply disabling the tri-state driver and letting the net’s pull up
provide the high voltage.

CHAPTER 6 Circuit Implementation

— @
Combining Functions on a Net

As a purely intellectual exercise, it can be interesting to see how many
functions you can build into a single digital electronics net. From a practical
point of view, cramming multiple functions on a single line will minimize the
amount of effort that must be expended to build a prototype application.
Many products carry out multiple functions on a single line; generally, this is
done to allow the manufacture and sale of simpler products. Whatever the
motivation, “‘stretching’” a logic technology to allow multiple functions on a
single net requires a strong knowledge of the technology’s electrical
parameters and the technology’s normal operating conditions. The most
important thing to remember is that the input/output devices attached to the
net must be properly coordinated to make sure that data is read and written
at the right times.

The most obvious ways of connecting two drivers together is to use dotted
AND and tri-state drivers on a “bus”, as I discussed in the previous section.
These methods work well and should be considered as the primary method of
implementing multiple devices on the net. The other methods discussed here
work best for specific situations; but there is no reason why you can’t modify
your design to take advantage of these specific instances.

When interfacing the bi-directional digital I/O pin to a CMOS driver and a
CMOS receiver (such as a memory with separate output and input pins), a
resistor can be used to avoid bus contention at any of the pins, as is shown in
Fig. 6-11.

Using this wiring, when the bi-directional I/O pin is driving an output, it
will be driving the “Data In” pin register, regardless of the output of the
“Data Out” pin. If the bi-directional and “Data Out” pins are driving
different logic levels, the resistor will limit the current flowing between the
bi-directional and the memory “Data Out” pin. The value received on the
“Data In” pin will be the bi-directional device’s output.

When the bi-directional digital I/O is receiving data from the memory,
the I/O pin will be put in “input” (or “high impedance) mode and the

Bi-Directional 1/0 Device
Digital Logic
Device
1
Data Out
Data In

Fig. 6-11. Combining CMOS input and output pins to create a bidirectional bus.

(@’_ PART ONE Intro to Digital Electronics

Vce

Bi-directionall| I/O Device
Digital Logic
Device 100K
Momentary
"Closed"
Button
10K
1} fl Data I/O

Fig. 6-12. Adding a button to a CMOS bidirectional net.

“Data Out” pin will drive its value to not only the bi-directional device’s 1/O
pin, but the “Data In” pin, as I noted above. In this situation, the “Data In”
pin should not be latching any data in; the simplest way to ensure this is to
make the digital I/O pin part of the I/O control circuitry. This is an important
point because it defines how this circuit works. A common use for this
method of connection data in and data out pins is used in memory chips that
have separate data input and output pins.

User buttons can be placed on the same net as logic signals as Fig. 6-12
shows.

When the button is open or closed, the bi-directional logic device can drive
data to the input device, the 100 k and 10 k resistors will limit the current flow
between Vce and ground. If the bi-directional logic device is going to read the
button “high” (switch open) or “low” (switch closed) it will be driven on the
bus at low currents when the pin is in “Input Mode”. If the button switch is
open, then the 100 k resistor acts like a “pull up” and a ““1” is returned. When
the button switch is closed, there will be approximately a half volt across the
10 k resistor, which will be read as a “0”".

The button with the two resistors tying the circuit to power and ground is
like a low-current driver and the voltage produced is easily “overpowered”
by active drivers. Like the first method, the external input device
cannot receive data except when the bi-directional device is driving the
circuit. A separate clock or enable should be used to ensure that input data is
received when the bi-directional device is driving the line.

This method of adding a button to a net can be extrapolated to work with
a switch matrix keyboard (presented later in the book), although the circuit
and interface operation will become quite complex. Secondly, a resistor/
capacitor network for “debouncing” the button cannot be used with this
circuit as it will ““‘slow down” the response of the bi-directional device driving

CHAPTER 6 Circuit Implementation _\@

the data input pin and will cause problems with the correct value being
accepted.

For both of these methods of providing multiple features to a single net,
you should only use CMOS logic as it is voltage controlled and not current
controlled, like TTL. You may be able to use TTL drivers with these circuits,
but they may be unreliable. To avoid problems with invalid currents being
available to TTL receivers, just use the latter two circuits with CMOS digital
logic.

Designing a circuit in which multiple functions are provided on a single net
for an application is not always possible or even desirable. Like any design
feature implemented in an application, before trying to combine multiple
functions on a single net, you should understand the benefits as well as the
costs. When it is possible, you can see some pretty spectacular results; my
personal record was for a LCD driver in which I was able to combine five
functions on a single net— LCD Data Write, LCD Data Read, Data In
Strobe, Data Ready Poll and configuration switch poll.

1. What parameter is not listed in the chip characteristic card?
(a) Input fanout
(b) Number of gates built into the chip
(c) Electrical dependencies
(d) Maximum operating speed

2. What is not a typical digital electronic output pin type?
(a) Totem pole
(b) Open collector
(c) High-current
(d) Tri-state driver

3. Other than the XOR gate, are any other of the six basic I/O gates
capable of producing race conditions just by themselves?
(a) Each one is capable of producing a race condition under certain
circumstances

(b) The NOR Gate in TTL
(c) The AND Gate in CMOS Logic
(d) No

Quiz

(@’_ PART ONE Intro to Digital Electronics
4. What is not a factor in determining if a marginal circuit and
component will produce a race condition?
(a) Ambient temperature
(b) Net length
(c) Power voltage
(d) The phases of the moon

5. Mickey Mouse logic should be used:
(a) Never
(b) When you are in a hurry to get the application finished
(c) When you have board space, cost and available gate constraints
that preclude adding a standard chip
(d) When there is a need to pass a CMOS output to a TTL input

6. Each item is an advantage of a dotted AND bus except:

(a) The dotted AND bus can have tri-state drivers on it as well as
mechanical switches

(b) The dotted AND bus can control voltages greater than the
chip’s Vdd/Vss

(c) The dotted AND bus is cheaper than one manufactured with
tri-state drivers

(d) The dotted AND bus can consist of CMOS logic as well as TTL
drivers

7. When tri-state drivers are inactive, another term that is used to
describe the state is:
(a) High resistance
(b) High impedance
(c) Low current output
(d) Driver isolation

8. When should multiple tri-state drivers be active?
(a) When more current is required on the net
(b) When more speed is required on the net
(c) When the receiver detects an ambiguous logic level
(d) Never

9. When adding a push button to a net, can the 100 k resistor connected
to positive power and the 10k resistor connected to positive power
be swapped?

(a) Yes
(b) No

CHAPTER 6 Circuit Implementation _\@)

10.

(¢) Only if TTL receivers and drivers are used.
(d) Yes, if you can ensure that the signals passing between the
digital devices are still within specified operating margins.

When putting a receiver and driver on the same net, can the
current limiting resistor be wired between the bi-directional logic
device and the “Data In” pin, leaving a direct connection between
the bi-directional logic device and “Data Out™?

(a) Yes. There aren’t any cases where it wouldn’t work

(b) Yes, if the resistor value is within 1k and 10k

(¢) Yes, for certain technologies of CMOS logic

(d) No. This will cause bus contention

CHAPTER

Feedback and
Sequential Circuits

This chapter’s title probably seems like a bit of a misnomer; you are probably
wondering what feedback has to do with digital electronics? When I use the
term “‘feedback’, I am using it in the most literal sense, past state data are
used to maintain current state data. These circuits built from the theory that I
am going to provide in this chapter are commonly known as “‘memory
devices”. For digital electronic circuits to store information, that information
will continually move through the circuit and is used to determine what the
future value of the circuit is. Feedback is critical to provide digital electronics
with the ability to “‘remember” previous states and data.

When you first hear the term ‘““feedback”, you probably think of an
amplifier with its microphone input brought close to its speaker output
(Fig. 7-1). You also probably involuntarily wince at the thought of the term
“feedback™ because it brings back the memory of the horrible sound the
amplifier made when the microphone was too close. This type of feedback

@’_

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

CHAPTER 7 Sequential Circuits _\®
Sound Waves
Passing from

Speaker to
Microphone

Microphone Speaker

Amplifier

Fig. 7-1. Analog feedback.

:)__ Oscillator
)3] Output

Combinatorial Circuit
That "Feeds Back" onto
Itself

Fig. 7-2. Digital feedback circuit.

cannot save information; the uncontrolled amplification of the signal distorts
and destroys information in a very short order.

When I introduced combinatorial circuits at the start of the book, I noted
that an important part of combinatorial circuits was that data could only
travel in one path; no outputs were passed back to earlier inputs in a logic
chain, like the one shown in Fig. 7-2. The reason for specifying that outputs
were not to be passed to inputs was to make sure that an inadvertent
oscillator, known as a ‘“‘ring oscillator” (Fig. 7-3), was not created.

You should know that the inverter in Fig. 7-3 is going to invert its input.
The problem arises when the input is tied to the output, as it is in this case.
When the input is passed to the inverter, it outputs the inverted value, which
is then immediately passed back to the input and the gate inverts the value
again, and again, and so on.

PART ONE Intro to Digital Electronics

Oscillator
Output

@,—

Fig. 7-3. Ring oscillator.

10k Resistor Here

—I>G >C Output

Ve Double Throw, Single Pole

L. .__|_ Switch Note: to prevent Backdriving the

Left Inverter, Use CMOS gates
and place the 10k resistor between
the Left Inverter’s Output and

the switch (in the position shown

in the diagram).

Fig. 7-4. Single switch debounce circuit.

The ring oscillator is probably the simplest oscillator that you can build
and the period of the oscillation runs at literally the speed of the technology’s
gate delay times the number of gate delays. If the ring oscillator shown in Fig.
7-3 was built from TTL (which has a gate delay of 8ns) you would see a
“square wave” with a period of 62.5 MHz. One of the functions that ring
oscillators perform is the measurement of a logic technology’s gate delay.

Extrapolating from what has been discussed here, you could build a simple
memory circuit using the two inverters and a double throw switch, wired as
shown in Fig. 7-4. This circuit is used to “‘debounce’ a switch input. As I will
discuss in later chapters, when a mechanical switch is thrown, the physical
contacts within the switch literally bounce against each other before a hard,
stable contact is made. This bouncing can cause quite a bit of grief when you
are trying to respond to a single switch movement.

The circuit in Fig. 7-4 will pass a signal continuously between the two
inverters (the output of the two inverters is the same as the input, so there is
no chance for a ring oscillator) until the switch comes in contact with
a connection that forces the state to change. If the switch was originally at the
ground position, the signal coming from the inverter to its left would be
a “0”. When the switch was moved to the “Vcc” position, the signal going
to the inverter to the right would be changed and its output would change.

CHAPTER 7 Sequential Circuits _\@

The beauty of this circuit is that when the switch is in between contacts, the
output state of the circuit remains constant.

When the switch is not touching either contact, the two inverters are
maintaining the previous bit value and the circuit behaves essentially as
a memory device.

There is a downside to the button debounce circuit in Fig. 7-4 and that is
when the switch is thrown, it connects the left inverter output to the opposite
power supply that it is driving out. This is known as ‘“‘backdriving” and it
should always be avoided.

Backdriving a gate will shorten its life in the best case and could burn it out
in very short order. As noted in Fig. 7-4, you should only use CMOS
inverters (which are voltage, rather than current controlled) and place the
10k resistor between the switch and the output of the left inverter. By using
this circuit, there will be no chance that the left inverter’s output is tied
directly to power or ground (which will be the opposite value that it’s at) and
the 10k resistor will limit the amount of current that is passed. I did not put
the resistor into Fig. 7-4 as it is a basic circuit that I have seen in a number of
references and I wanted to point out that it does backdrive a gate output and
there are ways of avoiding this problem.

The other term used in this chapter’s title, ‘“‘sequential circuits”, is used to
identify the class of digital electronic circuits that have memory devices
within them and use their data, along with combinatorial circuits, to produce
applications. A digital clock (Fig. 7-5) is an excellent example of a sequential
circuit. The data output from the memory circuits of the clock are passed to

1Hz
Oscillator Time Output o
Memory Formatter o

/P o/P D|sp|ay
RST .
Time Update
Circuit

R
C

L

- 4 Time Set

_| Button

Fig. 7-5. Digital clock circuit.

@a’_ PART ONE Intro to Digital Electronics
combinatorial logic circuits and the outputs of the combinatorial circuits are
passed back to the inputs of the “‘time memory” circuits.

Any time memory circuits, like the ones presented in this chapter, are used
in a digital electronics application, the circuit is called a “‘sequential circuit”.

Flip Flops (RS and JK)

The best analogy I can find for a simple, one bit ‘“memory device” is the two
coiled relay of Fig. 7-6. The relay coil does not have a return spring that only
one coil pulls against; when the relay’s wiper is placed in a position it stays
there. This memory device is set to one of two states, depending on which
relay coil was last energized, pulling the wiper contact into connection with it.
Once electricity to the coil is stopped, the memory device will stay in this state
until the other coil is energized and the wiper is pulled towards it. This device
works very similarly to the most basic electronic memory device that you will
work with, the “reset-set” (RS) “flip flop”.

The term “flip flop” is indicative of the operation of the memory device: it
is either “flipped” to one value or “flopped” to another. Where the relay
device relies on friction to keep the saved value constant, the electronic
memory unit takes advantage of feedback to store the value. Digital feedback
can only be one of two values, so its use in circuits probably seems like it is
much more limited than that of analog feedback. This is true, except when it
is used as a method to store a result in a circuit like the “NOR flip flop”,
shown in Fig. 7-7. Normally, the two inputs are at low voltage levels, except
to change its state, in which case one of the inputs is raised to a high logic
level.

If you are looking at this circuit for the first time, then it probably seems
like an improbable device, one that will potentially oscillate because if the
output value of one gate is passed to the other and that output is passed to

Vpower

High Set
?lll__ Saved High/Low
— e ca— Voltage
Low Set ;Pm

Fig. 7-6. Relay-based “flip flop” circuit.

CHAPTER 7 Sequential Circuits

_\@

Input A FIFA
('R") Output
Input B _Output
('S")
F/IF B

Fig. 7-7. NOR-based RS flip flop.

Flip Flop Reset Flip Flop Saving Reset
R=1 Q=0 R=0 Q-0
$=0 Q= $=0 Q=1
Flip Flop Set Flip Flop Saving Set
R=0 Q=1 R=0 Q=1
s=1 Q=0 s-0 Q=0

Fig. 7-8. RS flip flop state changes.

the original, it seems logical that a changing value will loop between the two
gates. Fortunately, this is not the case; instead, once a value is placed in this
circuit, it will stay there until it is changed or power to the circuit is taken
away. Figure 7-8 shows how by raising one pin at a time, the output values of
the two NOR gates are changed.

When the “R” and ““S” inputs to their respective NOR gates are low, there
is only one signal left that will affect the output of the NOR gates and that is
output of the other NOR gate. When “Q”” is low, then a low voltage will be
passed to the other NOR gate. The other NOR gate outputs a high voltage
because its other input is low. This high signal is passed to the original

Qo’_ PART ONE Intro to Digital Electronics
NOR gate and causes it to output a low voltage level, which is passed to the
other NOR gate and so on....

The outputs of the flip flop are labeled as “Q” and “ Q”. “Q” is the
positive output while ©“_Q” is the negative value of “Q” — exactly the same as
if it were passed through an inverter. The underscore character (““_”) in front
of the output label (“‘Q”) indicates that the signal is inverted (the same as if
an exclamation mark (““!”) is used for an inverter’s output). When you look
at some chip diagrams, you will see some inputs and outputs that have the
underscore before or on the line above the pin label.

The “R” and *S” input pins of the flip flop are known as the “‘reset” and
“set” pins, respectively. When the “R” input is driven high the “Q’ output
will be low and when ““S” is high the “Q” output will be driven high. These
values for ““Q” will be saved when “R” and “S” are returned to the normal
low voltage levels. “Qy” and “ Qg are the conventional shorthand to
indicate the previous values for the two bits and indicates that the current
values of “Q” and ““_Q” are the same as the previous values. Truth tables are
often used to describe the operation of flip flops and the truth table for the
NOR RS flip flop is given in Table 7-1.

In Table 7-1, I have marked that if both “R” and ““S” were high, while the
outputs are both low, the inputs were invalid. The reason why they are
considered invalid is because of what happens when R and S are driven low.
If one line is driven slower than the other, then the flip flop will store its state.
If both R and S are driven low at exactly the same time (not a trivial feat),
then the flip flop will be in a ““‘metastable” state, Q being neither high nor low,
but anything that disturbs this balance will cause the flip flop to change to
that state. The metastable state, while seemingly useless and undesirable is
actually very effective as a “‘charge amplifier”” — it can be used to detect very

Table 7-1 NOR RS flip flop truth table.

R|S|Q | _Q Comments

0 | 0| Qo | _Qo | Store current value

1 1010 1 Reset flip flop

0 (1|1 0 Set flip flop

1 110 0 Invalid input condition

CHAPTER 7 Sequential Circuits _\@0

FIF A
Input A
("R”) Output
Input B _Output
("S")
FIFB

Fig. 7-9. NAND-based RS flip flop.

Table 7-2 NAND RS flip flop truth table.

R|S|Q |_Q Comments

010711 1 Metastable input state

0O (1|0 1 Reset flip flop

1101 0 Set flip flop

1 1 | Qo | _Qo | Save current value

small charges in capacitors. This is an important mode of operation that is
taken advantage of for DRAM and SDRAM memories.

Along with building a flip flop out of NOR gates, you can also build one
out of NAND gates (Fig. 7-9). This circuit works similarly to the NOR gate,
except that its metastable state occurs when both inputs are low, and the
inputs are active at low voltage levels, as I have shown in Table 7-2, which is
the NAND RS flip flop’s truth table.

You can build your own NOR RS flip flop, which has its state set
by two switches as I show in Fig. 7-10 and is wired according to Fig. 7-11.
I suggest that you test out the circuit in as many different ways as possible —
especially investigating the metastable and post-metastable states. Unless you
were to wire the R and S inputs to one switch, you will find it impossible to
achieve the metastable state. The parts that are needed to build the RS flip
flop are listed in Table 7-3.

Before going on, there is one additional point about flip flops that may not
be immediately obvious but will be something that you will have to consider

\@’_ PART ONE Intro to Digital Electronics

St“R” Switch

l”—(\/\,’—_‘
x~

}?J

o

=

=

g

114 74002 | ,, L

|||L

Fig. 7-10. NOR RS flip flop test circuit.

o000 00200 00000 o000 ooooon
mnoo0 O00WYNDO 00000 s0s00 oooon

LR* Switch 2+ Q° LEDD S 25 iy

L

oDpooCS,oTno I ooon ooo
oooor'S” Switch nnnnﬁﬁn o
ooo

o

Lu

OB oo0onosEsSSESTSTs

[0 0 0 oS
ODooo[CEm|oon

opooogoon
0o \“\DE—E—E—E—ED?DDDDDDDDDDD

o000 _onononon

Oo0000 _nonononon

=1

+ 9 Volt
Battery

Fig. 7-11. NOR RS flip flop test circuit wiring.

in your career as a designer of digital electronic devices; when power is
removed, the flip flops will lose the bit information contained within them.
The term used to describe this phenomena is “volatility’’; flip flops are
considered ‘““volatile” devices. Flash memory (like the flash used in your PC)
does not lose its information when power is shut off and is known as
“non-volatile” memory.

CHAPTER 7 Sequential Circuits _\@

Table 7-3 Parts needed to build NOR gate based RS flip flop.

Part Description

74C02 CMOS quad, 2 input NOR gate
4 x LEDs Any color

4 x 1k resistors 1/4 watt

2 x breadboard mountable switches | Digikey EG1903-ND

0.01 uF capacitor Any type

Breadboard

9 volt battery with clip

Edge Triggered Flip Flops

The RS flip flop is useful for many ad hoc types of sequential circuits in which
the flip flop state is changed asynchronously (or whenever the appropriate
inputs are active). For most advanced sequential circuits (like a micro-
processor), the RS flip flop is a challenge to work with and is very rarely used.
Instead, most circuits use an “edge triggered” flip flop which only stores a bit
when it is required. You will probably discover the edge triggered flip flop
(which may also be known as a “‘clocked latch’) to be very useful in your
own applications and easier to design with than a simple RS flip flop.

The most basic type of edge triggered flip flop is the “JK” (Fig. 7-12),
which provides a similar function to the RS flip flop except that it changes
state when the “‘clock”™ input is “rising” (changing from “0” to “1”), as
shown in the waveform diagram of Fig. 7-13.

There are a few points about Fig. 7-13 that should be discussed. I have
assumed that in the initial state for this example, the output value “Q” is ““1”".
When the first rising edge of the clock (‘““Clk”) is encountered, both J and K
are 1, so Q “toggles” or changes state. Next, when the rising edge of the clock
is encountered, J is 1 and K =0, so Q becomes 1 and the opposite is true for
the next rising edge. In the final rising edge, both J and K are 0 and the
value of Q remains the same. There is no metastable state for the JK flip flop.
The operation of the JK flip flop is outlined in Table 7-4.

PART ONE Intro to Digital Electronics

J — Q = Output
Clk
—— _Q=_Output
K _Q=_Outp
Symbol
— 1y Ql—
— Clk
— K QF—
Fig. 7-12. Edge triggered JK flip flop.
J
K
Clk I_
Q_
/ J=1,K=0
Initial Both J/K “17, Q=1
State, Q=1Q
Q=1 J=0
K=1
Q=0 JK=0
Q Unchanged

Fig. 7-13. Edge triggered JK flip flop operating waveform.

Just as a small circle on an input or an output of a logic gate indicates that
the value is inverted, the clock pin on some chip diagrams is indicated by
a small triangle. This convention helps minimize the clutter present in a logic
diagram.

The JK flip flop is useful in general digital electronics applications, but it
does not provide the necessary function for a computer register. Ideally,

CHAPTER 7 Sequential Circuits _\®

Table 7-4 JK flip flop truth table. “Q”
and “_Q” change when a rising clock
edge is received.

J|K|Q _Q | Comments

010 | Qo Qo | No change

0|11]0 1 Reset flip flop

110 |1 0 Set flip flop

1|1 | _Qo| Qo JK flip flop toggles

Data Bit to “D” - Data Bit Out .
be Stored Datagitin Q[StoredBit
“Edge Triggered”
Data Stored r Flip Flo
o:“{i:allﬁ:g Edge” P P

“Clock”
Line |_|

Fig. 7-14. “D” flip flop.

a clocked register’s block diagram is quite simple (Fig. 7-14), consisting of
a data line passed to the flip flop along with a ““clock” line. While the data
line stays constant, the contents of the flip flop doesn’t change. When the
clock line goes from high to low, the data is stored in the flip flop — this is
known as a ‘“falling edge clocked flip flop” or a “falling edge clocked
register’” and it is probably the most common type of flip flop that you will
work with.

The edge triggered flip flop (Fig. 7-15) is based on the RS flip flop. Instead
of always calling this circuit a “‘falling edge triggered flip flop” or “‘clocked
register”, this circuit is normally known as a ““D flip flop”’. The organization
of the flip flops used in this circuit may seem complex, but their operation is
actually quite simple: the two “input” flip flops ““‘condition” the clock and
data lines and only pass a changing signal when the clock is falling, as I show
in Fig. 7-16. To try and make it easier for you to understand, I have marked
the outputs of the RS flip flops in Fig. 7-15 and showed the waveforms
at these points.

@’_ PART ONE Intro to Digital Electronics

Q1
Q2
C(R)
Qo
D(S)
Fig. 7-15. D flip flop logic diagram.
D(S)
C(R) 1 | 10
fo Low On P
L “Right” Flip Flop L
“R” Input, Driving
its Output Low
Qo
Low On
“Right” Flip Flop
“S” Input, Driving
Q1 its Output High
Q2

Note Slight Delay
For Signal to Pass
Through D Flip Flop

Fig. 7-16. D flip flop operating waveform.

CHAPTER 7 Sequential Circuits _\@

Note that in Fig. 7-16, I have marked the flip flop states before the first
clock pulse as being “‘unknown” (in Fig. 7-14, the initial state was assumed).
This is actually a very important point and one that you will have to keep in
mind when you are designing your own circuits. You cannot expect a flip flop
to be at a specific state unless it is set there by some kind of “‘reset” circuit
(which is discussed in the next section). The output of the edge triggered flip
flop stays “‘unknown’ until some value is written in it. If you look at the
signals being passed to the right flip flop (Output QO0), you will see that
the inputs are unknown until the ““data’ line becomes low, at which point the
two inputs to the right flip flop become high and the “unknown’ bit value is
stored properly in the flip flop.

The first value written into the D flip flop is “zero”, the ““data” line’s value
for the write is changed before the ‘“‘clock™ line goes negative. When the
“clock™ line goes low, it forces out a ““1”” to be passed to the “right” flip flop,
keeping it in its current state. The operation of the edge triggered flip flop
should become very obvious if you were to build it (it would require two
74C00s).

I find the D flip flop to be the flip flop that I build into my circuits most
often. It is simple to work with and can interface to microcontrollers and
microprocessors very easily. It is, however, quite awkward to wire, especially
when you want to work with the “full circuit”, which is shown in Fig. 7-17.
This circuit not only has data stored on the rising edge of the clock line
but also two other lines ““_Clr”” and “_Pre” will force the flip flop’s output
to a “0” (low voltage) or a “1” (high voltage), respectively, when they are
pulled low. This allows for a number of different options for using the D flip
flop in your circuit that can allow you to pull off some amazing feats of
digital logic.

If you want to experiment with this circuit using two input NANDs
(74C00s), I must warn you that it will be quite difficult and complex for you
to wire. If you were to use three gates to produce one three input NAND
gate, 18 NAND gates would be required to implement the full D flip flop
function, which would require four and a half 7400 chips. To demonstrate the
operation of the circuit, you could build it out of two 7410 (three, three input
NAND gates) or be lazy like I am and just use one 74LS74 (Fig. 7-18) to
experiment with the different functions of the full D flip flop.

The 7474 chip consists of two D flip flops with both the “Q” and “_Q”
outputs passed to the chip pins. All four inputs shown in Fig. 7-18 (Data
and Clock as well as two pins that provide you with the ability to set or reset
the state of the flip flop without the use of the data or clock pins) are
provided for each of the two flip flops built into the chip. The 7474 is a very
versatile chip and can be used for a wide range of applications.

PART ONE Intro to Digital Electronics

_Pre

=
=

/

L

D
Fig. 7-17. Logic diagram of full D flip flop with negative active preset
and negative active clear pins.

7474

Vcc CLR2 o LK2 _PR2 _Q2
|14| |13| |12| 11 |10| |9| |8|

|;.'—L|_L|t ?q

>
|_ PR

L | |
Ll =21 =1 [l L[] Led [
CIR1 DI _CLKI PRI QI Q@ Gnd

Fig. 7-18. 7474 dual D flip flop chip pinout.

Latches Versus Registers

Two terms that are often used interchangeably are ‘“‘register’” and “latch”.
In the previous section, I introduced you to the “‘register”’, which is another

CHAPTER 7 Sequential Circuits _\®
term for an edge triggered flip flop. When you look at parts lists and
datasheets, you will see parts that are identified as “registers” and others as
“latches” and these parts will have the same pinouts with no obvious
differentiation in operation between the devices. Furthermore, I have found
many chip manufacturers that have labeled their parts as “latches” when in
fact they were “‘registers” and vice versa.

Quite simply put, “registers” are flip flops that store data when the
rising (low to high or 0 to 1) or falling (high to low or 1 to 0) edge
(whichever is used by the device) is received on the ‘“‘clock” (or, my
abbreviation, “Clk”) pin. Registers are aptly named because they are
normally used as simple data storage devices for microprocessor memory.
Latches are often used in microprocessor applications to save an address on a
multi-purpose bus.

The best analogy for the “latch” that I can think of is a latch on a barn
door: when the latch is not engaged, animals and whatever can wander in.
Once the latch is closed, what is in the barn stays in. The “latch” flip flop
works similarly to this; with one state of the clock line, the input data is
passed to the output directly and can be changed at any time (i.e. there isn’t
any storage) but once the clock line changes state, the last value of the data is
stored in the latch until the clock changes value.

In the previous section, I introduced you to the edge triggered D flip
flop “‘registers”. The D flip flop “latch” is actually quite a bit simpler
(Fig. 7-19), but what is interesting about it is that it doesn’t work anything
like its edge triggered cousin. In Fig. 7-20, I have drawn a data input along
with a clock and the “Q” (output pin) values for an edge-triggered D flip flop
register and a D flip flop latch.

You will probably be surprised to see that waveforms for the two memory
devices are completely different. The edge triggered D flip flop register
stores data in a very consistent and logical way — every time the clock pin

Q = Output
Clk ——

_Q=_Output

Fig. 7-19. D flip flop latch.

@’_

Reset

PART ONE Intro to Digital Electronics

0 [

(Register)

(Ql_atch) I_I

Fig. 7-20. D flip flop latch operating wave form.

rises, the value of “D” is stored in the flip flop and nothing changes until the
next rising edge of the clock pin.

The latch, on the other hand, seems to operate more like an AND gate
than a memory storage device. The storage function tends to be obfuscated in
the example of Fig. 7-20 because in many cases, I show the D pin changing
state before the clock line returns low. This is an important point because
many people consider the two devices to be interchangeable and this is simply
not the case. Latches and registers have different applications and it is critical
for you to understand what they are. You cannot put a latch chip in place of
a register simply because they are pin compatible; you must make sure that
the incoming data does not change state until the clock goes low.

Interestingly enough, latches do not need as much time to save data as
a register; there are 9 fewer gate levels for a signal to pass through and even
though I show the data save operations being instantaneous in Fig. 7-20,
they are not. The latch can take as little as one-third of the time to save
data as a register and only requires two gate delays before passing the data
along (after which the data can be stored). This makes the latch an important
chip for working with microprocessors with a “multiplexed” address bus.

If you cycle the power to any flip flop, you will have noticed that the initial
““state’ (or value) can be either “0” (LED off) or ““1”” (LED on), with no way
of predicting which value it will be. This is normal because when power is
applied to the flip flop it will start executing in the metastable state, and for

CHAPTER 7 Sequential Circuits _\@0

any kind of imbalance in the circuit (e.g. residual charge or induced voltage)
on the inputs of either NAND/NOR gate, the flip flop will respond and this
will be its initial state. Often, this random initial state is not desired — instead,
the circuitry should power up into a specific known state for it to work
properly. This is why throughout this chapter I have taken pains to note that
the initial state of a flip flop is not known. You may find that an application
with one flip flop usually powers up the same way; if you were to do
a statistical analysis of the power up values, you might even find that a single
power up state approaches 100%, but you cannot guarantee this for all
occurrences of the chip, or even that all other similar chips in the same
application circuit will power up the same way.

Specifying the state when the circuit is powered up is known as
“initialization” (just as it is for programming) and is required for more
than just sequential logic circuits. Initialization normally takes place when
the application is ‘“‘reset”, or waiting to start executing. To avoid confusion
later, I should point out there are two types of “reset’” described in this book
when 1 talk about digital circuits. Earlier, when I was talking about simple
combinatorial circuits, I also called a “low” or “0” voltage level “reset”” (and
“high” or ““1”* as “set””). Now, when the term “‘reset” is used, I am describing
the state when the circuit is first powered up or stopped to restart it from the
beginning. When you read the term “‘reset” later in the book (as well as in
other books), remember that if a single bit or pin is being described, the term
“reset” means that it is “0” or at a low level. If a sequential circuit (like a
microcontroller) is “held reset” or “powering up from reset”, I mean that it is
being allowed to execute from a known state.

The “_CLR” pin on the full D flip flop (like the 7474) is known as
a “‘negative active control’” and is active when the input is at a “0”” logic level.
To make this pin active during power up, yet allow the chip to function
normally, a resistor/capacitor network on the TTL input pin delays the rise
of the pin (as shown in Fig. 7-21) so that the pin is active low while
power is good. When the signal on *“_ CLR” goes high, and the clear function
is no longer active, the chip can operate normally, with it being in an initial
known state.

The time for the RC (resistor/capacitor) network to reach the threshold
voltage can be approximated using the equation:

Delay time =2.2 xR x C

When you work with microprocessors and microcontrollers, you will want to
implement a more sophisticated reset circuit. Many microprocessor manufac-
turers recommend an analog comparator based reset circuit like the one
shown in Fig. 7-22. This circuit controls an open collector (or open drain)

@’_ PART ONE Intro to Digital Electronics

i R
Input Signal AN Output Signal

2.2xRC c
Power Up
Delay
Input Signal

Vce .
__Output = Voc x '/ R¢ Output Signal
(Voltage
0 Volts \ Across

Output = Vee - Vee x e/ R¢ Capacitor)

Vce

0 Volts

Fig. 7-21. RC network operation.

Reset Signal to

Vee Microprocessor

Fig. 7-22. Block diagram of commercial reset control chip.

transistor output pin that will pull down a negative active reset pin when
power dips below some threshold value. This circuit is often available as
a ‘“‘processor reset control” chip and is put into the same black plastic
package as a small transistor (known as a TO-92).

Processor reset control chips are available for a very wide variety of
different “cut off ”” voltages, ranging from 2.2 volts and upwards. Figure 7-23
shows the operation of the internal parts of the processor reset control chip
when the input voltage drops below the set value; the comparator stops
outputting a ““1”” and a delay line is activated. This delay line is used to filter
out any subsequent ‘“‘glitches” in the power line and makes sure that the
power line is stable before allowing the processor to return from reset and
continue executing. When the comparator outputs a low value or the delay
line is continuing to output a low value, the output of the NAND gate they
are connected to is high and it turns on the open collector output transistor,
pulling the circuit to ground.

The Panasonic MNI1381 line of chips is a very popular processor
reset control and can be used to control a sequential circuits reset using

CHAPTER 7 Sequential Circuits

—E&

1 1
Vce i . A
Power [Operating 1
Below . Threshold |
Operating | | Voltage !
Threshold + 1
Comparator j
Qutput !
1 : 1
Delay H
Qutput l
| |
RST
1 1
ouT

| i\ Microprocessor
Reset from Vcc “Dip”
Complete, Microprocessor
can Resume Operation

Fig. 7-23. Reset circuit operation.

Vce

310k

Reset Signal to
Manual Microprocessor
F Reset
Button

Fig. 7-24. Practical microprocessor reset circuit.

a circuit similar to the one shown in Fig. 7-24. This circuit will take
advantage of the RC network delaying the rise of the control signal, provide
you with the ability to reset or stop the operation of the micro-
processor and halt the operation of the robot if the battery falls below
a safe minimum.

If you power on and off a circuit quickly, you may find that it does not
power up properly. This is due to the capacitor in the reset circuit not
discharging fully — it may take as much as 10 seconds for it to discharge
completely. This was actually an issue with the original IBM PC; if you had a
situation where the PC “hung”, you would have to power down and wait at
least 15 seconds to make sure that the reset circuit would allow the computer
to power up properly.

@’_

Quiz

PART ONE Intro to Digital Electronics

Feedback in digital electronics:

(a) Is built into every gate

(b) Must always be avoided

(c) Can be used to store bit data

(d) Is only used in radio interface circuitry

Ring oscillators can be used:

(a) In digital watches

(b) To measure the gate delay of a logic technology

(¢) To test the operation of a combinatorial circuit

(d) Only when current limiting resistors are in place to protect gate
outputs

What do the letters “R” and ““S” stand for in the RS flip flop?
(a) ““‘Recessive” and “‘Static”

(b) “Reset” and ““Set”

(¢) “Rothchild” and ““Stanislav”

(d) “Receive” and “Send”

What is the “metastable state” of a flip flop?

(a) When it has started to oscillate

(b) The time between when the inputs change the output is correct

(c) The state in which the outputs of a flip flop are half way
between “0” and ““1”” and can be easily ““pushed’ into a specific
state

(d) The state in which “Qq” is unknown

“Toggling” a bit means:

(a) Setting (making the output a 1) of a bit
(b) Leaving the bit in its current state

(¢) Inverting the bit’s state

(d) Resetting (making the output a 0) of a bit

A “Register” can be used in:

(a) Nowhere, it is a thought experiment used to show feedback in
a digital application

(b) Just computer processors

(c) Just sequential digital electronics application

(d) Just about any digital electronics application

CHAPTER 7 Sequential Circuits _\®

7.

10.

The “_Pre” pin of a D flip flop will:
(a) Set the bit

(b) Reset the bit

(¢) Nothing

(d) Toggle the state of the bit

Which formula specifies the RC network response to a sudden
voltage input?

(a) V=22xRxC

(b) V=Vcc — Vee x e VRE

(c) V=Vcecxe VRCE

(d V=ixR

Why are latches like barn doors?

(a) They provide a secure environment for what’s inside them
(b) They are both relatively heavy

(¢) They allow free passage until the latch is engaged

(d) They are the fastest method for passing things in and out

Which application is a latch best suited for?

(a) Main memory in a computer system

(b) Bicycle lock combinations

(c) Stopping and saving data mid-stream

(d) Temporary storage of data in a microprocessor

‘@

Test for Part One

Do not refer to the text when taking this test. You may draw diagrams or use
a calculator if necessary. A good score is at least 38 correct answers. Answers
are in the back of the book. It’s best to have a friend check your score the first
time so you won’t memorize the answers if you want to take the test again.

1. The assertion “John is going to go out with the boys tonight or date
Mary” is an example of:
(a) Negative logic
(b) The AND operation
(¢) The inclusive OR operation
(d) The exclusive OR operation

2. Which symbol does not represent AND, OR or NOT?

(a) ek
(b) %
(C) ‘G+’3
(d) G‘!”

By—

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

Test for Part One _\QB

3.

How would you create a three input NOR gate from two input NOR

gates?

(a) Invert each input by passing them to a two input NOR gate and
then combining it like the three input AND gate

(b) Pass two inputs to a NOR gate and pass this input to a second
NOR gate along with the remaining input and invert the final
result

(c) Pass two inputs to a NOR gate, use a second NOR gate to
invert this NOR gate’s output and pass this result, along with
the third input to a third NOR gate

(d) Pass two inputs to a NOR gate and pass this input to a second
NOR gate along with the remaining input

“Product of sums” combinatorial logic circuits are not as common

as “‘sum of products” because:

(a) They rely on ‘“negative logic”, which makes their operation
more difficult to understand by simply looking at the circuit

(b) They are not as fast as product of sums combinatorial
circuits

(c) Automated design tools are typically not programmed to work
with product of sums circuits

(d) Product of sums combinatorial logic circuits cannot produce
the same functions as sum of product combinatorial logic
circuits

Which one of the following statements is false?

(a) Combinatorial logic circuits are drawn with inputs entering the
gates from the left and exiting from the right

(b) Outputs from some of the gates in the combinatorial are passed
back so that they are part of their own inputs

(c) Combinatorial logic circuits can be designed to have true or
false outputs for given inputs

(d) The function of the individual gates in a combinatorial logic
circuit does not change, even if the gates are used to provide a
function which is radically different

Idealized waveform diagrams do not show:

(a) Potential “glitches” caused by gates changing state

(b) Delays in gates, responding to changes in inputs

(c) What happens with wiring problems such as when multiple
outputs are connected to the same input

(d) All of the above

188

10.

* SEm

7.

PART ONE Intro to Digital Electronics

If an application has a critical speed requirement, you should design
your circuit:

(a)
(b)

(©)
(d)

To be as simple as possible, as this will minimize the delay a
signal has passing through the circuit

With as few gate delays as possible, while keeping an eye on the
number of gates required as well as whether or not it can be
efficiently implemented in the technology that you are using
Using the fastest technology available

Using computerized design systems

The NOR equivalent to an AND gate is:

(a)
(b)
(©
(d)

Built from two NOR gates and requires two gate delays for a
signal to pass through

Built from three NOR gates and requires three gate delays for a
signal to pass through

Built from three NOR gates and requires two gate delays for a
signal to pass through

Built from one NOR gate as well as a NOT gate and requires
two gate delays for a signal to pass through

When circling “1”” outputs in a Karnaugh map:

(a)
(b)
(©)
(d)

A maximum of two bits can only be circled at one time

No bits can be circled more than once

Each circle should be around a power of two number of bits
Single bits on one side of a the map cannot be circled with bits
on the other side

The four bit Karnaugh map

AB

00 | O | 11| 10

CD-00]| 0 0 1 0

01 |1 1 1 |1

1110 1 1 0

10 | 1 0 I |1

has the optimized sum of product equation:

(a)
(®)

Output=(/B-!D) + (!A -1B) + (C-D) + (B-!C-D)
Output = (A-B) + (IC-D) + (B-D) + (IB-C-ID)

Test for Part One _\69

(c) Output = (IC-!D) + (A-B) + (B-D) + (IB-C-ID)
(d) Output = (A-B) + (/C-D) + (B-!D) + (IB-C-D)

11. Benjamin Franklin postulated:
(a) Electricity flows from positive to negative
(b) Lightning is dangerous
(c) Keys had to be charged before they would open doors
(d) Thomas Edison unfairly copied his work

12. The term “net” is used for:
(a) Wires in a circuit and lines on a circuit diagram
(b) Indicating the active signal lines of an ethernet cable
(¢) A search tool through which information is passed through and
relevant “hits” sticks to
(d) Nylon webbing used to protect a circuit against falling metal
components.

13. Knowing Ohm’s law and the resistance of a load and the voltage of
a battery powering it, you can determine:
(a) The current passing through it
(b) The amount of water coming through an analogous pipe/tap/
hose
(c) Its equivalent parallel resistance
(d) The Thevenin equivalent circuit

14. Using the SI numbering methodology and symbols, 10,000,000 volts
would be written out as:
(a) 10 million V
(b) 10MV
(c) 10pv
(d) 10,000,000V

15. The voltage drop across a resistor in a series circuit:
(a) Cannot be calculated
(b) Is proportional to the power dissipated in the circuit
(c) Is always zero
(d) Is proportional to the resistor’s value relative to the total
resistance in the circuit multiplied by the applied voltage

16. Ifa 10 ohm and 20 ohm resistor are in series, the equivalent resistance:
(a) Cannot be calculated without knowing the voltage applied
(b) 300hms
(c) 7.50hms
(d) 6.70hms

@’_

17.

18.

19.

20.

21.

22.

PART ONE Intro to Digital Electronics

A 0.01 puF capacitor is most often used in:

(a) Radio applications; it has no use in digital electronics
(b) Decoupling digital electronic chips

(¢c) Filtering power supply “noise”

(d) Ballast in fluorescent lighting

The value at a given time for the capacitor voltage in a resistor—
capacitor low-pass filter circuit responding to a rising step input is:
(a) Infinite

(b) Defined by the formula V(t)=V — V x e /*

(c) Defined by the formula V(t)=V x e /"

(d) Zero; the capacitor has no voltage drop across it

The NOR gate was chosen as the basic CMOS logic gate because:

(a) It can be built most efficiently using MOSFET transistors

(b) It provides the fastest logic functions in CMOS logic

(c) It helps the circuit designer differentiate the functions provided
by TTL and CMOS logic circuitry

(d) The NOR gate minimizes the power lost in the chip

Which statement is not a reason cited for using resistor pull ups and

resistor/NOT gates for pull downs?

(a) The resistor can be connected to negative voltage without
damaging the circuit

(b) Test equipment can easily change the state of logic pin
inputs

(c) TTL and CMOS logic operate optimally with these circuits

(d) The resistor pull ups and resistor/NOT gate pull downs will
work for both TTL and CMOS logic

If a silicon diode was passing 2 A of current, it would be dissipating:
(a) 14 watts of power

(b) 0.2watts of power

(c) Owatts of power

(d) 1.4watts of power

In a 5volt powered circuit, you have two LEDs in series and want to
pass approximately 5 mA through them. What is the best current
limiting resistor value should you use?

(a) 47ohms
(b) 100k ohms
(¢) S5ohms

(d) 1kohms

Test for Part One _\em

23. A bipolar transistor is best suited for:
(a) Radios and high-fidelity sound systems
(b) Small, high-density chips
(c) Memory circuits
(d) Low-power, high-density chips

24. The basic CMOS logic gate is:
(a) The NOT gate
(b) The AND gate
(c) The NOR gate
(d) The NAND gate

25. TTL is:
(a) Sound controlled
(b) Resistor controlled
(c) Current controlled
(d) Voltage controlled

26. When a TTL input is low:
(a) Current is being drawn from it
(b) A low voltage is being applied to it
(¢) A “0” is being passed to it
(d) Electrons are being drawn from the emitter of the input gate’s
NPN transistor

27. TTL/CMOS logic outputs:
(a) Can be used to drive neon lamps
(b) Can source/sink roughly 20 mA
(c) Cannot be used with different technology inputs
(d) Are limited to driving inputs less than 20 m away

28. “Fanout” is the term applied to:
(a) The number of outputs that can be driven by one input
(b) The number of fans required to cool a set number of chips
(c) The speed a signal travels through multiple paths of a logic
chain
(d) The number of inputs that can be driven by one output

29. CMOS logic has the following characteristics:
(a) They are low speed, low power
(b) Require just about no power, regardless of the speed they
operate at

@’_

31.

32.

33.

34.

35.

PART ONE Intro to Digital Electronics

(c) The current required is a function of the speed of operation
(d) Require less power than TTL because MOSFETSs cannot be
packed as tightly as bipolar transistors

LEDs are used in beginner digital electronic circuits:
(a) To indicate analog voltage levels

(b) To indicate a part is overheating

(¢) To indicate input and output binary values

(d) To communicate with other circuits

The difference between 74Cxx and 74xx chips is:

(a) The 74Cxx is built from CMOS logic while the 74xx is TTL

(b) Signals in the 74Cxx propagate at the speed of light (as
indicated by the “C” in the part number)

(c) The 74xx can work from 5 to 9 volts while the 74Cxx can only
work with 5 volts

(d) The 74Cxx is built with a “compacted” chip

Gray codes were invented:

(a) To make your life miserable

(b) For simplifying Boolean logic statements

(¢) For simplifying the task of determining the position of a device
(d) As a method of counting that was faster than binary

Adding 6 to 5 and getting the result 11 is the same as:

(a) Adding 7 to 4 and getting the result 11

(b) Adding 3 to 4 and getting the result 7 because in both cases, a
prime number is produced

(c) Adding 5 to 6 using the commutative law and getting the
result 11

(d) Adding 6 to 5, writing down ““1”” and then “10 x 17 because
a carry digit is produced

The term “‘ripple” as applied to addition and subtraction is:

(a) The carry and borrow bits

(b) The result of the two single digit operation passed to the next
significant digit

(¢) The affect the operation has on its surrounding digits

(d) The oscillations caused by the need to carry and borrow data

Using the negated addition for subtraction, the borrow (negated
carry) bit for the operation 5 — 6 is:

(a) Not required

b)) 1

Test for Part One —\‘.@

() 0
(d) Indeterminate

36. A small circle on a gate’s input indicates:
(a) That the signal can only be used for output.
(b) That the signal is inverted before being passed to the gate
(¢) Only open collector drivers can be used with this input
(d) The I/O can be used for monitoring the passage of the signal
output in the gate

37. Magnitude comparators are based on:
(a) Three initial input state values
(b) Two four bit inputs
(c) Two subtracters
(d) One subtracter and one adder

38. Cascading chips is usually required because:
(a) Faster speed is required than a single chip can provide
(b) More bits must be processed than a single chip can handle
(c) The only chips that can provide all the necessary function
require too much power
(d) It minimizes the cost of a circuit

39. Dividing a binary number by 8 can be accomplished by:
(a) Clearing the least significant three bits
(b) Shifting left three bits
(c) Shifting right three bits
(d) Setting the least significant three bits

40. Mickey Mouse logic solutions should be placed in the circuit:
(a) In the middle of a logic string
(b) On the inputs of a logic string
(c) On the outputs of a logic string
(d) Where high-current I/O is required

41. The resistor used in the Mickey Mouse logic AND gate shown in
Fig. Test 1-1 should be:
(a) 10k for TTL applications
(b) 10k for CMOS applications
(c) The complementary one specified by the diode’s manu-
facturer
(d) Power rated for the load current of the application

@’_

42.

43.

44.
45.
46.

47.

PART ONE Intro to Digital Electronics

A W Output

L1
B N

Fig. Test 1-1.

Each item below is a disadvantage of a dotted AND bus except:

(a) High power consumption when the output is low

(b) The dotted AND bus has a slower response than tri-state
buffers

(c) The dotted AND bus is cheaper than one manufactured with
tri-state drivers

(d) It is very difficult to find open collector output chips

When providing multiple functions to a net, what logic technology/
technologies should be used?

(a) Just CMOS

(b) Just TTL

(c) CMOS receivers and TTL drivers

(d) TTL receivers and CMOS drivers

Sequential circuits contain:
(a) Memory devices

(b) Power supplies

(¢) Input and output devices
(d) CMOS logic

Backdriving gates can:

(a) Simplify your application design

(b) Speed up gate operation

(c) Change the input of a downstream device
(d) Burn out the gate’s output transistors

What is the difference between “Q,”" and ““_Qy”?

(a) There is no difference

(b) “Q” is correct earlier than ““ Qg

(¢) “Qp” is current state of the flip flop and *“_Q,” is the previous
(d) “ Qg is the inverted value of “Q,”

The “_CIr” pin of a D flip flop will:
(a) Set the bit

(b) Reset the bit

(c) Nothing

Test for Part One _\@
(d) Toggle the state of the bit

48. Which full D flip flop input pin is typically connected to the RC
delay circuitry?

() D
(b) Clk
(c) _CIr
(d) _Pre

49. Which application is a register best suited for?
(a) Main memory in a computer system
(b) Permanently storing access passwords
(c) LED output states
(d) Temporary storage of data in a microprocessor

50. ““Volatile memory’’ means:

(a) The contents of the memory device will not be lost when power
is taken away

(b) The contents of the memory device will be lost when power is
taken away

(¢) The memory device is made up of a liquid which will evaporate
if the chip package is broken

(d) Data is stored as patterns of a condensed gas

This page intentionally left blank

PART TWO

Digital Electronics
Applications

This page intentionally left blank

CHAPTER

In‘theintroduction to the previous chapter of this book, I presented you with
a simple block diagram of a “‘complete” digital electronic device: the digital
clock. This device has all three of the necessary components for a functional,
“stand alone” device: combinatorial logic for converting binary data as
required; a memory function which “‘remembers” the last state it was in; and
a clock or ““oscillator’” which synchronizes the functions together. The science
of oscillator design is extremely rich and, as I will show in this chapter, there
are a lot of options that you can choose from to make sure your application
operates most efficiently.

It could also be argued that there is a fourth component to producing a
complete, stand alone digital device — the power supply. Power supply design
is a facet of electronics which is just as rich and sophisticated as digital
electronics or any other major study in electronics. While I introduce you to
some of the basic types of power supplies that are available to you later in the
book, this does little more than just scratch the surface of this complex topic.

The application’s “clock” is a set of repeating pulses (ideally with the same
“on” and “off” time) which is input into the sequential circuits of an
application to carry out the operations within them. Figure 8-1 shows an
ideal digital electronic clock waveform with the important features marked

Oscillators

_@

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

@0’_ Part Two Digital Electronics Applications

Duty Cycle
(Ideal 50%) 1
Frequency = Beriod

Clock Period

Subsequent Clock Cycle Periods and
Duty Cycles MUST be as constant as
possible.

Fig. 8-1. Features of a clocking signal.

on it. The frequency output of a clock is measured in ‘“hertz” (cycles per
second), which is the reciprocal of the time the pulse is on added to the time
the pulse is off:

Frequency = 1/(Time “On” 4+ Time “Off")

A rather obvious example of this would be a 1 pulse per second signal that is
used to drive the sequential circuits of a timekeeping clock. The term ““clock”
is probably confusing, as the digital “‘clock™ that I have defined is only
very rarely used to tell the time. The clock signal that I am discussing
in this section is used to drive the digital counters of the timepiece.

The ““clock™ in a digital circuit is driven from an “oscillator” that uses
some form of feedback to toggle the clock line in a consistent manner.
In this book, you will find that I use the terms “‘clock” and ‘“oscillator”
interchangeably, with the clock or oscillator signal being responsible for
the operation of the digital circuit.

In Fig. 8-1, I noted the important features of a clock signal to be its
constant period as well as its 50% duty cycle. If the clock is not constant and
you were to look at the operation of the clock and the digital circuit on an
oscilloscope, you would see the signals blur as they “jittered” back and forth.
The shortened or lengthened features of a clock waveform are called “‘jitter”
and are shown in Fig. 8-2. Jitter is a problem from a couple of perspectives.
First, it makes it very difficult to observe the operation of a circuit using an
oscilloscope, making it hard to debug an application. Secondly, the
combinatorial logic parts of sequential circuits are often designed to have
completed their bit data processing by the time the clock has completed; a
shortened clock cycle, like the one shown in Fig. 8-2 could result in incorrect
data being stored in a circuit.

CHAPTER 8 Oscillators _\e@

Clock Waveform

S I SN gy Ny SNy SN iy SNy SN gy S

Shortened Low
on Clock Signal

Fig. 8-2. Clock waveform with “jitter.”

D Flip Flop
|_ D ab— _ 1 1 —
Output Waveform
S I I I I e i
Input Waveform | Q]

Fig. 8-3. Clock divide by 2 conditioning circuit.

Incorrect logic operation caused by jitter is extremely difficult to capture
on an oscilloscope or a logic analyzer. If you have errors and have a clock
with jitter, you would be well advised to assume that the jitter is the problem
and look towards another clocking scheme. Jitter is often caused by voltage
transients caused by different parts of a digital electronic circuit changing
state; often it can be reduced or eliminated by providing better noise filtering
between the oscillator circuit and the digital logic devices.

In Fig. 8-1, I indicated that the ideal ““duty cycle” of a clock signal is 50%.
I will discuss duty cycles in more detail later in the book when I present
PWMs, but for now, you should understand that the duty cycle is the
percentage of the period in which the waveform is high. Ideally, the clock
should have a 50% duty cycle (be high for half the period) to minimize
harmonics, simplify using an oscilloscope or logic analyzer to observe the
operation of the circuit and, because some digital electronic devices (most
notably microprocessors) poll both the high and low of the clock signal, to
help speed up its operation.

In some oscillator circuit designs, the output does not come close to having
a 50% duty cycle and in these cases, some kind of signal “conditioning” is
required. The most basic way of ensuring the clock signal has a 50% duty
cycle is to use an edge triggered D flip flop as I show in Fig. 8-3. The D flip flop
(called a “‘toggle flip flop”” when wired this way) will only change its output
when a triggering edge on the input clock has been received. The only
drawback to this circuit is that it halves the frequency of the clock, so, in some
cases, to use this circuit you will have to double the clock output frequency.

There are many different designs of oscillators that you can choose from.
In this chapter I will introduce you to many of the most common ones along
with their characteristics and the formulas required to work with them.

@’_ Part Two Digital Electronics Applications

Transistor Astable Oscillators

When I was growing up, all educational and hobbyist circuits were built up
from individual transistors — it wasn’t until the mid to late 1970s that
“building block” chips such as the 555, LM339, LM386, and LM741 started
to be commonly used in circuits. These chips are all very configurable, but
none offer the range of operation and low cost of discrete transistors. The
term “‘astable” indicates that the oscillator circuit is never stable; its output
will continue to switch from high to low and back again. The science of
oscillators can be thought of as “taming” the oscillator in terms of frequency,
duty cycle and jitter.

A very common and relatively simple oscillator circuit that I am going to
examine is the basic ‘“‘relaxation oscillator” circuit shown in Fig. 8-4.
Included in Fig. 8-4 are the defining formulas for the time that the output is
high and low as well as an important formula indicating that the value of R1
and R2 (the time defining resistors) must be the transistor hgg multiplied by
the value of the pull up resistors (Rpu). If R1 or R2 is less than this product,
then you will find that the oscillator will not start reliably and not run at
a constant frequency.

The operation of the relaxation oscillator is illustrated in Figs. 8.5 through
8.7. In Fig. 8-5, I show an initial condition where one transistor is on and the
other is off. In this case, the capacitor by the on transistor is charging because
its cathode is being pulled to ground by the “on” transistor. The other
capacitor is unable to be charged because the transistor connected to its
cathode is off, holding the voltage at the cathode at the same voltage as the
anode.

In Fig. 8-6, the capacitor that was charging in Fig. 8-5 has finished and any
current passing through the resistor is passed to the other transistor, turning
it on. By turning on this transistor, the capacitor’s cathode connected to its
collector is now tied to ground and it is able to be charged. With this
capacitor now charging, the current that was once available to the

Outputyyg, = Qloy = 0.69 x R1 x C1

RpuSR1 3R2 3Rpu Output ,, = Q1y, =0.69 x R2 x C2

— _C|2 Output R1=R2 = hg x Rpu
C1 L Q1

|||— N

Fig. 8-4. Basic transistor relaxation oscillator.

CHAPTER 8 Oscillators

High Low V

Fig. 8-5. Relaxation oscillator charging right-side capacitor.

3

Charging Charged

Low V

Fig. 8-6. Relaxation oscillator discharging right side.

High V

Fig. 8-7. Relaxation oscillator charging left side.

transistor’s base to turn it on is no longer available and the transistor turns
off. This raises the collector of this transistor to the applied voltage and,
along with this, the cathode of the capacitor connected to it. This places the
charge in the capacitor tied to the collector of the transistor just turned off at
a voltage higher than the applied voltage, so its charge is now passed to the
transistor that was just turned on. In the final case (Fig. 8-7), the operation of

@’_ Part Two Digital Electronics Applications

. .] Oscillator
e - Collector

[f - : : T T J 1 Waveform
b s | b, SPRPRNITTTY I B URSPSPPR [b IRV I e

T L e i+ =+ I—|—I L e ==+ LI e |
:' .:.f...:. _.__ Transistor
. . I : : 1] Driver Collector
: : T : : L_] Waveform
— e e] e[g

i) [Scopel.CH1 5 V 2.5mS

Bh[ScopelCH2, 5 Y, 2.5 mS (IR

Fig. 8-8. Relaxation oscillator waveforms.

the oscillator circuit is the mirror image of the initial conditions shown in
Fig. 8-5. When the charging capacitor is finished, its current is passed to the
transistor that is currently turned off and the process repeats itself.

The output of this oscillator is probably nothing that you would expect —
Fig. 8-8 is an oscilloscope display of a sample NPN transistor relaxation
oscillator output as well as the collector voltage. The duty cycle of the
waveform is nowhere close to 50% (which means it will have to be
conditioned by some kind of circuit, like the one in Fig. 8-3. However, this
circuit is quite good in terms of accuracy, with very little jitter.

The drawbacks to using a transistor oscillator like the one presented in this
section include the unusual waveform output and the use of discrete analog
components for timing the oscillator. The unusual waveform output makes
the need for some kind of signal condition mandatory when working with
digital electronics and the use of analog components makes the frequency
output quite imprecise. The characteristics of the transistor-based oscillator
make it best suited for low-cost applications where clocking accurate to 20%
is acceptable.

Ring Oscillators

In the previous chapter, I introduced the concept of “‘ring oscillators™ as
being a digital electronic device in which an inverted output signal is fed back

CHAPTER 8 Oscillators _\QB
to the input of a combinatorial circuit and showed that it could be

created inadvertently (Fig. 8-9) or purposely using a single logic inverter

(Fig. 8-10). One of the useful characteristics of the ring oscillator is that it will

always produce a 50% duty cycle and its output is literally the maximum

speed of the technology.

I should say that the ring oscillator’s maximum output is the maximum
speed of the technology. In Fig. 8-10, I have drawn two ring oscillators, the
first outputting the signal from a single inverter — the period of the output of
this circuit will be 1 gate delay. In the lower diagram of Fig. 8-10, I show that
you are not limited to just running at the technology’s maximum speed; by
adding an even number of additional inverters to the ring oscillator, the
output signal’s period can be lengthened.

The ring oscillator’s actual frequency output can be “tuned” by varying
the number of inverters in the ring oscillator along with the technology used
in the inverters. Knowing this, along with a couple of operating rules,
provides you with an inexpensive, high-speed oscillator that is quite reliable
and robust.

|—|))_ Oscillator
| b DC Output

\ /

Combinatorial Circuit
That "Feeds Back" onto
Itself

Fig. 8-9. Inadvertent ring oscillator.

Oscillator
Output

Period = 1 Gate Delay

—DC DC DG DC Oscillator
Output

Period = 3 Gate Delays

Fig. 8-10. Ring oscillators using gate delays for frequency determination.

®’_ Part Two Digital Electronics Applications

The first of the operating rules should not be surprising because I have
alluded to it in the text above: the number of inverters in a ring oscillator
should always be odd. If an even number of inverters is used in a ring
oscillator, there will be no signal which cannot be resolved (which is the cause
of the “‘astable” operation of an oscillator) and the circuit will not oscillate.
The second operating rule is that no other functions should be used by the
leftover gates in the chip and the chip’s power pins should have both small
(0.1 uF or less) and large (1.0 uF or greater) decoupling and filter capacitors
on its power supply. The oscillating gates within the chip are experiencing
significant transients which could affect the operation of other devices in the
application.

While I have only used ring oscillators a couple of times over the years,
they are fascinating circuits to build and watch executing. The ring oscillator
is what I consider to be a “hip pocket™ circuit: something to be pulled out
only when nothing else seems to work or have the characteristics that you
require.

Relaxation Oscillators

The most basic type of logic chip based oscillator is the ‘‘relaxation”
oscillator which feeds back the output of an inverter through a ‘“‘resistor/
capacitor” (“RC”) network to delay the switching of the oscillator. The basic
circuit and its defining output equation is given in Fig. 8-11.

In this circuit, the R1 and C network are driven by the first inverter and the
characteristic ““RC” response is fed back to the first inverter’s input. When
the voltage on the capacitor reaches the threshold voltage of the left inverter
input, the inverter changes state and drives a new output voltage. This
voltage is again passed through the R1, C network and delayed until the
threshold voltage is reached again.

CMOS Inverters

Dc Dc Oscillator Output

Frequency =1/(2.2*R1*C)
R2=10*R1

R1

|_

c

R2

Fig. 8-11. CMOS logic technology relaxation oscillator.

CHAPTER 8 Oscillators _\e@

Oscillator
= Output

Capacitor :
Charge/Discharge.
Cycle - .

Ch1: 5Wolt 250 us :
CShd SWelt 250ns

Fig. 8-12. CMOS relaxation oscillator waveform.

In Fig. 8-12, I have shown the voltage waveforms at the R1, R2 and C
junction of this circuit as well as the output voltage signal. Note that the R1,
R2 and C junction voltage exceeds the Vcc/Gnd (45 volts and 0.0 volt) limits.
This is due to the capacitor being connected to the output driver.

Having the capacitor wired to the output driver “moves” the charge (and
the capacitor voltage) by Svolts each time the state changes. Observing
the circuit’s operation from the capacitor, the output value changes the
charge within the capacitor until it is back at the threshold voltage for the
CMOS inverter, which is 2.5volts (one-half applied power). You can see
in Fig. 8-12 that the transitions take place every time the voltage across
the capacitor is at 2.5 volts relative to Gnd.

CMOS inverters are used in this circuit because they are voltage controlled
rather than current controlled and this makes the oscillator’s operation easier
to understand. A TTL inverter cannot be used in this circuit because of the
current drain operation required by the input when a “0” is input will affect
the operation of the oscillator. A Schmidt trigger input device (i.e. the
74HC14) could be used, but it is not necessary because the reference voltage
of the capacitor is changing with every transition.

You may want to test out this circuit with a 74C04 or 74HC04 with a 4.7k
resistor, a 47k resistor and 0.1 uF capacitor to create an oscillator that
produces a clock signal of approximately 1kHz. I say that the output is

®’_ Part Two Digital Electronics Applications

“approximately”” 1kHz because of the tolerances of the parts used in the
circuit. For the circuit used to produce the signal shown in Fig. 8-12, I used a
0.1 pF tantalum capacitor for the “C” in the relaxation oscillator circuit. This
is probably not a “correct” use of a tantalum capacitor, as they can have
tolerances approaching 30% of their rated value — I only used it because
I have a lot of them around. Along with the tolerance of the capacitor, there
are also the tolerances of the resistors in the circuit to consider as well. These
tolerances result in the opportunity for the actual clock signal to be “out” by
40% or more.

Your immediate response may be to add a potentiometer (variable
resistor) into the circuit and ““tune” it to the exact frequency that you want.
Personally, I would discourage this practice as it involves a lot of work
(especially if production parts are involved), which will drive up the cost of
the product. If you are using a simple RC relaxation oscillator in your
application, then additional costs are something that you would want to
avoid. The relaxation oscillator is adequate for many applications where a
low-cost oscillator of an approximate value is required. Like the NPN
transistor astable oscillator, I recommend that the circuit should not be used
in any applications where any kind of precision is required.

Another aspect of this circuit that you must be aware of is the potential for
large current transients within the chip that are produced to change and
discharge the capacitor. These transients are similar to the transients
discussed in the ring oscillator. For most circuits, this is not a problem, but if
you have other sensitive circuits built into an application, you will want to
keep the relaxation oscillator (as well as any other oscillators in the circuit) as
electrically removed as possible from the other chips by using both large and
small decoupling and filtering capacitors. Also like in the ring oscillator,
as a rule of thumb, no other gates should be used in a chip if it is being used
as an oscillator.

Crystals and Ceramic Resonators

For the best clock accuracy, a quartz crystal should be used in an oscillator
circuit like the one shown in Fig. 8-13. A quartz crystal is a piezo-electric
device that provides a constant delay between one side of the piece of quartz
within the part to the other. The term piezo-electric refers to the property of
quartz (and some other compounds) to mechanically deform when a current
is applied to it or produce a voltage potential when it is mechanically
deformed.

CHAPTER 8 Oscillators _\@9

In an oscillator, the quartz crystal will have a voltage applied to one end of
it and this will cause the quartz crystal to deform. The rate at which this
deformation takes place is known and will cause a voltage potential to be
produced at the other end of the quartz crystal after a known delay. This
voltage is used as a feedback value to an inverter built into the oscillator
circuit. The NPN bipolar transistor-based inverter can be seen in Fig. 8-13.

The circuit in Fig. 8-13 is somewhat “fiddly” to build and to get working
reliably. There are some formulas that can be used to specify the different
resistor, capacitor and inductor values, but, personally, I would never use this
circuit in my own applications. This is why I did not put in any component
values on the diagram; instead, I would use the inverter-based oscillator
shown in Fig. 8-14. In this circuit, instead of understanding a circuit well
enough to specify the correct different analog values, you can simply put a
crystal across the input and output of a CMOS inverter.

The capacitors and resistors are necessary to ensure that the oscillator
runs reliably and there are not any large over- or under-voltage spikes
(caused by the operation of the piezo-electric producing its own voltage
output). For most MHz range oscillator circuits, 15-33 pF capacitors are

XTAL
1

Output

Fig. 8-13. Crystal oscillator circuit.

CMOS Inverters
Oscillator Output

R1

XTAL
—

L I

Fig. 8-14. CMOS logic gate crystal oscillator circuit.

@0’_ Part Two Digital Electronics Applications

adequate, 1-10 M2 for R1 and 100 to 100k for R2 is appropriate. You
may find that depending on the frequency of the crystal that you choose and
how it is wired, you may have to vary these parts.

The second inverter in the circuit is not “strictly”” required, but I like to
have it in place to ensure the crystal is not “loaded down” by other devices
and the operation of the oscillator doesn’t change. Any large loads on the
output side of the oscillator’s primary inverter will affect the amount of
current/voltage available to the crystal to pass the signal to the other side
(and the oscillator’s frequency will drop or the oscillator won’t work at all).

Changing the capacitance on the inverter output side of the primary
inverter results in small (1-2%) changes to the output and to help ensure the
absolutely correct frequency output is produced a variable capacitor is used
in place of the fixed capacitors. I do not feel this is practical and the nominal
0.01% or less error rate of the crystal should be accepted. I realize that there
are applications (like digital clocks) where these changes are critical, but for
the most part you should not have to “tune” the oscillator for the
application.

Crystals work quite well, although there are two drawbacks that you
should be aware of. Crystals are relatively expensive parts (especially
compared to the RC network relaxation oscillator). You can pay up to $10
for a crystal (although you can pay less than 1$ for common frequencies). In
addition, the oscillator is somewhat “fragile” and can be easily damaged by
rough handling. A relatively new device that can be used in place of a crystal
and does not have these shortcomings is the “ceramic resonator”. A ceramic
resonator is used in a very similar way to a quartz crystal (Fig. 8-15), but it is
usually much less expensive and very rugged. I use ceramic resonators almost
exclusively for clocking all my microcontroller applications. Despite the
somewhat poorer accuracy of the parts (they are usually accurate to 0.5%),
they really are the part of choice for most applications.

Many designers eschew the use of oscillators built from discrete parts as
I have shown in this section. These circuits are rarely used because of the
difficulty in specifying the correct parts for an application, the cost of the
crystals and the potentially large amount of “‘real estate” that they can take
up. Instead, oscillators are usually implemented using some kind of “‘canned”

74HCO04 Inverters
Oscillator Output

R
Resonator

Fig. 8-15. Ceramic resonator oscillator.

CHAPTER 8 Oscillators _\@
Vdd a10 Q8 Q9 Reset [Min Ifout I2out
1 1 [[2] [FF] [[o] [F1

D

L e =1 et =1 el L1 L&l
Q12 Q13 Q14 Q6 Q5 Q7 Q4 Vss

Fig. 8-16. CMOS 4060 chip pinout.

solution. These parts are designed to take up the same “footprint’ as an eight
or 14 pin “DIP” package and normally have four pins — power, ground,
oscillator output and oscillator enable.

One of the most common chips used in digital logic applications is the
CMOS 4060 (shown in Fig. 8-16). This chip can be used with the different
oscillator types listed in this section and the “divide by” outputs are very
handy in many circuits (often eliminating the need for separate counters).
The crystal, ceramic resonator and relaxation oscillator circuits that I have
shown in this chapter can be used with this part. The “Q4” through “Q13”
outputs are divided by counters (i.e. “Q4” is the clock divided by 2 to the
4 or 16 times).

When using the 4060, note that Pin 11 is the input to the inverter used in
the oscillator circuits shown in this chapter, Pin 10 is output of the first
inverter and input of the second inverter while Pin 9 is the output of the
second inverter. If Pin 12 (“‘Reset”) is pulled high, the oscillator is stopped
and the counters in the chip are reset.

555 Timer Chip

The 555 timer chip is probably the most versatile non-programmable part I
have ever seen. Over the past 40 years, many people have created at least
hundreds probably thousands of applications that have used this chip in
ways I’'m sure the original designer never would have thought possible; the
original function of the chip was to provide a regular train of pulses. In this
section, I will show how the chip is used in a circuit, along with some of the
tricks that can be performed with it.

\@’_ Part Two Digital Electronics Applications

Gnd 8] Vee
Trigger2 Discharge
5] Threshold
Control Voltage

Fig. 8-17. 555 pinout.

In the previous sections, I have shown you the “pinout” of a
number of different components — each one of them having a unique
form factor. The 555 is usually built into an eight pin ‘“dual in-line
package” that is commonly used for chips. In Fig. 8-17, I have put in
an “overhead” view of the 555, along with a photograph of an actual 555
chip.

Looking at the labels for each of the pins, most of them do not make a lot
of sense. What should jump out at you is the “Gnd” (ground) at Pin 1 and
the “Vee” (positive power) at Pin 8. These two pins are used to provide
power for the part; they match the power pins I've presented elsewhere
for digital devices elsewhere in the book.

To try and get a better understanding of a chip, one of the first things I do
is look for its block diagram and try to understand it. In Fig. 8-18, I have
drawn out the block diagram for the 555 timer.

There should be two parts to the block diagram that you should recognize
immediately. The first is the transistor at the bottom middle of the diagram.
This transistor is wired in an open collector configuration and is acting as a
switch that will pass current to ground. The next piece that you should
recognize is the voltage divider running along the left side of the block
diagram that I have separated out into Fig. 8-19. If you were to work out the
voltages at ““Vcontrol” and “Vtrig”, you would discover that they are at 2/3
Vee and 1/3 Ve, respectively. This is actually an important clue as to how the
chip works.

One aspect of the 555’s voltage divider circuit that you may find confusing
is its connection to an outside pin called “Control Voltage”. As I have shown
in Fig. 8-20, this connection allows the circuit designer to change the voltage

CHAPTER 8 Oscillators

_\®

8 - Vcc 4 - Reset
5k
6 Reset
Threshold +>-=1 -
5 B R Q
Control
Voltage 5k S _Q {>c 3
. RS Flip Flop Output
2 .+
Trigger
5k Threshold: When > 2/3 Vcc,
Discharge Transistor On

7 Output Low
Discharge :l
Trigger: When < 1/3 Vcg,

Discharge Transistor Off
Output High

1 - Gnd

Fig. 8-18. 555 block diagram.

Vce
5k
Control B
Voltage Vcontrol = 2/3 Vcc
5k
Vtrig = 1/3 Vcc
5k

Fig. 8-19. 555 voltage reference/voltage divider.

levels of the voltage divider circuit. Rather than “Vcontrol” being 2/3 Vcc, it
can now be any value (less than Vcc) that the designer would like. Changing
“Vcontrol” also changes “Vtrig” to 1/2 “Vcontrol”, as I have shown in
Fig. 8-20.

@’_ Part Two Digital Electronics Applications

Vce
Vcontrol
5k
Vcontrol
5k
Vtrig = 1/2 Vcontrol
5k

Fig. 8-20. Modified 555 operating voltage threshold.

_>+ >-=1 Infuts o] output

L L L
H L H
\ “+” Voltage L H L
1 1] 1] 1 H H L
Vref— —_[— — “” Voltage
T i T i
A
! ! ! ! ! Comparator
Output

Fig. 8-21. Voltage comparator operation.

The voltages at the “Vcontrol” and “Vtrig” are passed to two triangular
boxes with a “+” and “—”" along with a funny looking equation. These
boxes are representations for voltage “‘comparators’ and, as I have shown in
Fig. 8-21, the comparators output a high voltage level when the voltage at the
“+” input is greater than the voltage at the *“—" input. The 555 uses the two

CHAPTER 8 Oscillators _\QB
comparators to continuously compare two external voltage levels
to “Vcontrol” and ““Vtrig” and pass the results to a box labeled “RS flip
flop™.

The 555’s RS flip flop saves an indication of which comparator last
passed a high voltage to it. If the comparator connected to the ““threshold”
pin of the 555 and “Vcontrol” of the voltage divider output a high voltage,
then the flip flop will output a high voltage at *“_Q’, which turns on the
transistor at the bottom of the block diagram. If the other comparator passes
a high voltage to the “RS flip/flop”, then the voltage at “_Q” is driven low
and the transistor is turned off. This is a fairly complete explanation of how
the 555 works and I'm sure that you are at least as confused as you were
when I first showed you the block diagram of the chip. The individual parts
are quite easy to understand, but I’'m sure you’re mystified how they work
together.

When I described the operation of the 555 chip, I neglected to take
into account the components that would be wired to it. The timing delay
that is integral to the operation of the 555 is produced by resistors
and capacitors wired in the “RC networks™ that I have described earlier
in the book. What I didn’t go into detail on in the previous sections of
the book is that as you change the value of the resistor or capacitor in
the circuit, you will change the delay produced by the two components
(Fig. 8-22).

In Fig. 8-23, I have drawn a 555 oscillator circuit; when this circuit starts
running, the 555 will be an ‘“astable” oscillator with the output toggling,

Vce
0 Volts =] Input Signal
Vce
(\ Small RC
0 Volts Value
——————————— Ve
A Large RC
0 Volts Value
Slow “Rise” (Output
of Voltage Never
Across Capacitor Reaches

Input Level)

Fig. 8-22. RC network operation for ranging values of RC.

®’_ Part Two Digital Electronics Applications

Vce Vce

\{cc 5 "
| = e T T T =
| 1
I '
6 : P _Reset :

i |>——R Q
=L © © .
S 3

g J_ 1 é S _Q] Output

e | e RS Flip Flop 1
S e S .
® © .
RZE , é !
7 | 1
L 1
| El 1
1

Fig. 8-23. 555 astable oscillator.

according to the values R1, R2 and C. The 555’s output times are defined
by the formulas:

Thignh = 0.693 xCx(R1 +R2)

Tiow = 0.693 xCxR2

Period = 0.693 xCx(R1 4+ 2R2)
Frequency = 1.443/(Cx(R1 + 2R2))

When choosing the resistor and component values for working with the 555
timer, you should only use components that are within the ranges listed
below:

10k <R < 14M
100pF < C < 1,000pF

3

The 0.01 uF capacitor wired to the “control voltage” pin of the 555
(in Fig. 8-23) is used as a ‘““filter” for the internal voltages. This capacitor
works very similarly to the logic circuit’s decoupling capacitor; if the input
voltage changes, the capacitor will absorb or release charge to keep the
voltage as even as possible.

To get a better idea of how the 555 timer works as an oscillator, in
Fig. 8-23, I labeled the RC voltage (“‘A”), the RS flip flop output (“B” —
which is in the inverted 555 output), the “threshold” comparator voltage

CHAPTER 8 Oscillators

_\@

0 Volts

®

c |

o_ | |

Fig. 8-24. 555 astable operation.

p——

(““C”) and the “‘trigger” comparator voltage (“D”). Figure 8-24 shows the
waveforms for each of these parts marked in Fig. 8-23, so you can see the
changing RC waveform, the output from the two comparators and the action
of the RS flip flop.

Before going on, I want to share with you some of the more clever and
useful circuits that have been created using the 555 timer. The few I will
show in this chapter are just a small fraction of the number that is possible or
has already been developed. If you are in a used book store, you should look
for a copy of Don Lancaster’s ““555 Timer Cookbook™; it will really open
your eyes to the incredible variety of applications this chip can help
implement.

When stretching the envelope and using the 555 timer in a way that it
wasn’t originally designed for, you generally look at the different input pins
and see how they can be given a completely different function. If you wanted
to make a circuit that drove out a tone for a set amount of time, you could
use two cascaded 555 timers (or a single 556, which consists of two
555 timer chips in a single package) or the circuit shown in Fig. 8-25.

When this circuit is first turned on, the voltage at Pin 4 (the RS flip flop
reset pin) is low, stopping the circuit from oscillating. When the momentary
on button is pressed, current is passed to the 10 uF capacitor, charging it and
driving up the voltage on Pin 4. This happens quite quickly and when Pin 4
reaches the logic threshold to stop holding the RS flip flop reset, then the 555
will start oscillating, driving out a signal that oscillates at 464 times per
second.

@3’_ Part Two Digital Electronics Applications

é %31
— 0.47 uF
RS Flip Flop | W

_l Push Button at Pin 4 Starts astable Oscillator
= and runs for roughly 2.2 x RC after Button is released

Fig. 8-25. 555 tone output.

This tone will stay on as long as the button is pressed and then will
continue until the 10 uF capacitor discharges through the 100k resistor. By
varying the values for these two parts, you can vary the length of time the 555
continues to oscillate. Remember the rule of thumb that is used to
approximate the time for an RC network, like this one, to discharge:

Tdischarge =2.2xRxC

I take advantage of the ability of the human ear to distinguish between dif-
ferent sounds and categorize them with a circuit design for a continuity tester
that you will probably find is a lot more useful than the simple instrument
built into your digital multi-meter.

This continuity tester circuit shown in Fig. 8-26, is useful in a variety of
different situations. Instead of just driving out a simple tone when an
electrical path between the two probes has been found, it provides you with
different tones and sounds, based on the resistance between the probes as well
as an indication of whether or not a diode is between the probes. Because the
circuit is self-powered, you can use it with circuits that are already working,
without worrying about having a valid ground connection.

When there is no connection between the leads, the 5.1k resistor is part of
the RC network that provides the delay for the 555 timer wired as an astable
oscillator. With no connections, you will find that the oscillator outputs a
tone that is at about 440 cycles per second (“‘hertz” or ““Hz”). If there is a
direct connection (or short circuit) between the two probes the 5.1 resistor is

CHAPTER 8 Oscillators

Red Black v
Probes g\g 9V4 gx{gg gl
9V rft-—-—=-—=-—=-=----—=-—=-[=-==--¥]
| 9 Volt
é 4.7k ; é + |Battery
B o =
C 7 E=

é s _Q o

1
]
1
1
]
I
RS Flip Flop |
]
1
1
]
1
1

Fig. 8-26. 555 based continuity tester.

not used in the delay and the frequency output is around 880 hertz, there is a
full octave difference between the two signals.

What I like about this circuit is that you get a different frequency based on
the resistance across the probes — the probe resistance is in parallel with the
5.1k resistor, changing its frequency and the frequency output from it. This
can be useful in finding “almost” short circuits such as a “‘just touching”
connection rather than a hard soldered connection or a ‘“high impedance
short”, when you expect no connection at all. In addition, try out a diode in a
forward biased and reversed bias connection; you will be able to hear a
noticeable difference here as well.

Delay Circuits

Another basic function of the 555 is use as a “‘monostable”. In the previous
section, I alluded to this function and noted that the 555 could do more than
just be part of the ‘“astable” oscillator which will run for ever — the
monostable, on the other hand, will only execute once and requires
triggering. The monostable is very useful for a variety of different
applications and works similarly to digital logic chips that can provide a
similar delay. Figure 8-27 shows the 555 wired as a monostable generator
and Fig. 8-28 shows the response waveforms to the input pulse.

\@D’_ Part Two Digital Electronics Applications

9V 9V °\%
8
L —
1
§R=100k| é
ol e
>
el Ty ©
gIl é Output
=l o RS Flip Flop |
C= 21 Lf !
10pE] ' é ® !
= I |
| |
Input @ | :
L e e e e e e e e e e e e e e e o= o4
1

Fig. 8-27. 555 monostable circuit.

Input Pulse /: |

(

“Debounce Pulse”
width = 1.1 x RC

@ © O

| |

™ First “Bounce” of ~ Capacitor
Switch Starting Charged
Capacitor Charging to 2/3 Vce

Fig. 8-28. 555 monostable operation waveforms.

When the input goes low, the pulse output from the 555 timer is
determined using the formula:
Toulse = 1.1XRxC
=1.1x100kx10puF =1.1 seconds
The 555’s RS flip flop is initially “reset”, and the transistor that passes capa-

citor charge to ground is turned on. When the input (“‘A”’) goes low and the
“trigger” input receives a low voltage input, its comparator signal (“E”) goes

CHAPTER 8 Oscillators _\@
high, changing the state of the RS flip flop (““C”) and changing the state of
the output pin. When the RS flip flop state changes again, the transistor is

turned off and the capacitor charges through the resistor. The capacitor
charges according to the formula:

Output =Vcc —Vececx e t/RC

until its voltage reaches 2/3 Vcc. When it reaches 2/3 Vce, the “‘threshold”
comparator (“D’’) goes high and the RS flip flop changes state again,
changing the value of the output pin (“‘C). At this point, the 555 is back
to its original state.

This circuit works quite well except for one point — the input pulse must
always be shorter than the calculated output pulse. If the input pulse is
longer than the calculated output pulse duration, you will find that the
output will stay active, but it will pulse periodically. When the capacitor
charges to 2/3 Vcc and the input is low down, both of the comparators will be
driving a high voltage to the RS flip flop. This is an invalid condition for the
RS flip flop and the output from the flip flop is “indeterminate”, resulting in
the transistor tying the capacitor to ground periodically. To avoid this
behavior, you should always make sure that the length of time for the pulse
output from the 555 is longer than the expected input.

Instead of using the 555 timer as a monostable delay generator, there are a
number of logic chips that perform the same function using a resistor and
capacitor. The 74123 incorporates two monostable delays that are
programmed using a resistor and capacitor. The 74123 and other logic
family chips have the advantage that the voltage level transitions do not
cause as much disruption to the surrounding circuitry.

In some applications, there is a delay that is either more precise, shorter or
longer than can be practically created using the RC-controlled monostables
that I have presented so far. In the next chapter, I will be introducing you to
“counters’ which will either count continuously or stop when a specific value
has been reached. The counter, driven by one of the oscillators presented
in this chapter, is used to produce either a very long or very precise delay.

For shorter delays, there are two methods that you can consider. The first
method is to use a “‘canned” delay line. These components usually consist of
an inverting buffer, driving a long copper line. At different points along the
line, inverting ‘““taps” are put in place to drive out the signal. Figure 8-29
shows how these components are used.

When you see an actual “delay line”” component, you will probably refer
to it as a ““chip”. I hesitate to do so because I consider a chip to be simply a
silicon chip bonded to a ‘“‘lead frame” and “‘encapsulated” in some manner.
In a delay line component (or “module”), the wire delay is wound in a coil

Part Two Digital Electronics Applications

o 0o %

Tap1 Tap2 Tap3 TapN

Input

TapN Delay = (2x Inverter Gate Delay) + (1 nsec/ft * Coil Length)

Fig. 8-29. Delay circuit.

with the tap inverter inputs soldered to it at different intervals. The actual
device requires very high precision mechanical assembly (more than a
standard plastic encapsulated chip) and any errors in assembly or
encapsulation will result in a useless part.

The wire in the part passes the digital signal to the various taps within the
part, with a delay of roughly 1 nanosecond per foot (30 cm) of wire. When
you design high-speed applications, this rule of thumb is very important
when you are designing high-speed digital electronic circuits. Chances are
you will ask that the traces on PCBs are “‘routed” with 0.1 inch (2.54 mm)
precision to ensure that parallel signals all ““show up’’ at the same place at the
same time in the high-speed application circuit.

The advantage of the delay line module is that timing delay can be very
precise. Custom-made delay line modules are available (the manufacturer
solders the taps at specified points in the coil rather than at standard
positions), which can be critical in some applications. This high level of
assembly/encapsulation precision has a price that you will have to pay. If you
can buy a 74L.S04 for less than a quarter in single units, you should not be
surprised to discover that a delay line module will cost you over $10.00. The
delay line provides you with the best control over different delays required in
a circuit, but at quite a significant cost. Delay line modules should only
be considered if no other options are available to you when you are designing
a circuit.

Another method of delaying signals is to take advantage of the natural
delays of digital electronic gates and simply ‘“‘chain” a number of them
together to get a needed delay. In Fig. 8-30, I have shown a 20, 40 and 60 nsec
delay built out of a 74L.S04 TTL chip.

The advantage of this method is that it is quite low cost and reasonable
precision can be built into the circuit. When you are designing delays for your
applications, you should consult with the technology operational character-
istics chart that I provided earlier in the book (see Table 6-2).

Working with different technologies, you should be able to get quite
accurate delays quite inexpensively. The disadvantage of this method is that

CHAPTER 8 Oscillators _\@)
74L.S04 (10 nsec delay per gate)
Input

Tap1 Tap2 Tap3
TapN Delay = N * 20 nsec
Fig. 8-30. Using logic gates for specific delays.

it can take up a lot of space on a board (at which point the canned delay line
may have to be considered).

Quiz

1. An ideal digital electronic clock waveform has:
(a) A constant period with a 50% duty cycle
(b) A selectable speed range
(c) A period that is less than the gate delay of the logic technology
being used with it
(d) A varying period that takes advantage of the operation of the
combinatorial circuitry in the sequential circuit

2. Each of the following are important characteristics of astable
oscillators except for
(a) Period
(b) litter
(c) Duty cycle
(d) Power required

3. If the R1 or R2 resistor values are less than the product of hgg and
Rpu, the NPN transistor relaxation oscillator will:
(a) Not be reliable and may not start up
(b) Not work correctly
(c) Get very hot because the transistors are continuously in
saturation
(d) Produce a perfect, 50% duty cycle output
4. The practice of putting ring oscillators in leftover gates:

(a) Helps minimize the cost of a digital electronics application
(b) Helps synchronize other gates in the chip

@’_ Part Two Digital Electronics Applications

10.

(¢) Should only be done if there is an odd number of inverting
gates left in the chip
(d) Should be strenuously discouraged

A relaxation oscillator has an R1 value of 10k, C of 0.1 pF and R2
equal to 1k. What frequency will it oscillate at?
(a) It won’t oscillate

(b) 4.54 kHz
(c) 4.54 MHz
(d) 4.54 Hz

What type of application is the relaxation oscillator best suited for?
(a) High power

(b) High cost, not requiring accurate operation

(¢) Low cost, high accuracy

(d) Low cost, not requiring accurate operation

Canned oscillators are used because:

(a) They are more accurate than discrete component solutions
(b) They are cheaper than discrete oscillator solutions

(c) They are simple and accurate

(d) They are more reliable than discrete component solutions

The only type of oscillator that the 4060 cannot implement is:
(a) Ring oscillator

(b) Relaxation oscillator

(¢) Crystal/ceramic resonator oscillator

(d) NPN transistor relaxation oscillator

Increasing the value of a resistor or capacitor in a 555 astable
oscillator will:

(a) Lower its operating frequency

(b) Raise its operating frequency

(c) Increase the output voltage

(d) Lower the output voltage

Connecting six 74AS inverters (gate delay 2 ns) end to end will
produce a delay circuit that is:

(a) 24ns
(b) 12ns
(c) 72ns

(d) 48ns

CHAPTER

Complex Sequential

Circuits

As the saying goes: “You now know enough to be dangerous.”” You should
be fairly comfortable with working with logic functions and equations, have
an understanding of electronics and how to interface logic chips (of different
families together), understand the basics of memory and have gone through a
number of clocking schemes. I’'m sure that you now feel you are ready to start
bringing these pieces together into some interesting applications. I'm sure
that you have some ideas of things you would like to have your hand at
designing. Before being set free to wreak havoc on an unsuspecting world,
I want to spend some time presenting you with some chips and tools that will
make your plans for world domination much easier. In this chapter, I want to
go through some of the subsystems that are available in chips that will make
your design work easier.

In Chapter 7, I introduced you to the digital clock block diagram shown in
Fig. 9-1. There shouldn’t be any part of this diagram that is a surprise to you;
the “time memory” consists of a number of flip flop registers that are reset

_\@

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

PART TWO Digital Electronics Applications

1Hz C
Oscillator Time Output 4
Memory Formatter o

1P o/P Display
_RST :
Time Update
Circuit
R
C
= 4 Time Set
_| Button

Fig. 9-1. Digital clock block diagram.

upon power up. The “time update circuit” consists of an adder along with
logic and a user push button to determine what the nexr time will be. The
“output formatter’” consists of logic to decode the time memory and display
it on a set of LEDs. Finally, the 1 Hz clock can be produced a number of
different ways that are covered in the previous chapter.

While I must admit that it would be cool to see a digital clock designed
using two input logic gates, I want to point out that there are a number of
commonly available chips that provide major subsystems needed for such an
endeavor. For the rest of this book I will be focusing on these chips and how
they are interconnected to form ‘‘real world” applications.

Virtually all of these chips are sequential circuits in their own right;
consider a “counter” chip that increments its internal memory devices each
time a rising clock edge is received. The counter chip consists of several flip
flop bits and combinatorial logic that processes input data, provides the value
increment and outputs the data in a specific format. These functions are very
similar to that provided by the digital clock in Fig. 9-1.

To show what I mean, consider the sequential circuit block diagram
in Fig. 9-2. Superficially, the diagram has a very strong resemblance to
Fig. 9-1 because many of the same basic functions and capabilities are
required in both instances.

The ‘“‘state memory’ is the current operating state of the chip. The term
““state’ simply means at what operating point the chip is at. For a counter or
other arithmetic function chip, the term ‘‘state” probably seems somewhat
grandiose, but it is an accurate way of describing the current value in a
counter. For a microprocessor, the term ‘state memory” is almost an
understatement, as it includes not only the program counter (which points to
the next instruction to execute) but also data and status register information.

CHAPTER 9 Complex Sequential Circuits

_\@

Clock/
Oscillator/ g
Timebase/ State Output | Circuit
Trigger Memory Formatter Output
IIP oP r
RST
= Next State
| Update Circuit
Reset
Input Control
Formatter Circuitry
Circuit
Input

Fig. 9-2. General case sequential circuit.

The state memory can be reset (as shown in the previous chapter) and,
more importantly, it is usually the only point in which the clock/oscillator
input is received. The philosophy behind most sequential circuits is that the
combinatorial logic processing input, output and the next state information,
regardless of the circumstances, will be available in time for the next active
clock cycle. The term normally used to describe this methodology of design is
“synchronous” because a central clock is keeping track of the operations
within the chip.

This philosophy is currently under challenge from scientists interested in
investigating ‘“‘asynchronous” digital logic design. This effort involves
designing sequential circuits that are not “paced” by a central clock, but
the length of time of each operation. For example, moving data from one
register to another should take much less time than an instruction which
stores data in the main memory. Asynchronous digital logic design holds the
promise of faster computers that use much less power because the only active
circuitry are the required gates and flip flops of the current time — nothing
else needs to be active, nor do other circuits need to be clocked.

The “‘next state update circuit” and “input formatter” blocks process the
current bit data and any relevant input for storage in the state memory. In
Fig. 9-1, I combined both of these functions into the ‘“‘time update circuit”
because the only input required for this clock is whether or not the “time set
button™ is pressed — if it is, then the time update circuit will increment the
hours, minutes and seconds stored in the digital clock’s “time memory”’.

The “input formatter” circuitry can be processing different inputs
controlling what the next state is going to be — this is why I link it to the
“next state update circuit”. For a counter, this information could be the

@3’_ PART TWO Digital Electronics Applications
direction the counter executes in or whether or not the counter counts in
binary or BCD.

The output formatter converts data into the required output and provides
appropriate drivers for the function. Note that I have drawn a link to this
box from the “‘reset control circuitry’” despite my statement earlier that only
the state memory could be reset. The reason for drawing in this link is to
indicate that the chip may have tri-state drivers and these are held in a high
impedance (“‘off) condition while reset is active.

As you work through the material in the rest of the book, try to see how
the described chip functions fit in with this model. You might have a better
model to work with that makes more sense to you and if this is the case use it.
The model that’s presented here allows me to visualize what is happening in
an application, and it would be arrogant of me to assume that it works for
everyone else.

Counters

One of the most useful functions that you will use when you develop digital
electronic circuits is the counter. The counter is actually a smaller piece of
many complex chips, as it provides a basic way of maintaining the current
operating state along with a method of progressing to the next one. The basic
counter circuit consists of a set of flip flops that drive into and are driven
from an adder. A counter circuit is shown in Fig. 9-3.

The use of “‘edge triggered” flip flops is a very important aspect of the
circuit shown in Fig. 9-3 and one that you should keep in mind. When
the “counter clock” changes state, the output value of the adder (which is the
D flip flop value plus 1) is presented to the inputs of the D flip flop register
bits as the next value to be saved.

Edge Triggered
D Flip Flop
Counter S Adder
Clock Carry
DO-Dn QO0-Qn
—
~ 8 Counter
© Output
<
511 ”

Fig. 9-3. Basic counter circuit.

CHAPTER 9 Complex Sequential Circuits

_\@

Counter
Clock Dc

Level Triggered vcc Level Triggered
“D” Latches Adder “D” Latches
Clk cin Clk

“Q” Outputs » “A” Inputs “Q” Outputs
“D” Inputs “S” Outputs|—»“D” Inputs
J__ “B” Inputs

Fig. 9-4. Counter circuit built from level triggered flip flops.

If an edge triggered flip flop register wasn’t used in the circuit, then you
would have to use latches and design the counter something like the one
shown in Fig. 9-4. In this circuit, [have put in two latches, each one ““out of
phase’ with each other. This is to say that when the clock is high, one latch is
storing the data while the other is passing through the value presented at its
inputs. When the clock changes value, the latches change from passing data
to storing and vice versa. This method of implementing a counter is
unnecessarily complex and potentially very slow — the extra set of flip flops
will slow down the performance of the counter and limit its maximum speed.

The counter circuit of Fig. 9-3 can be built using a 74C174 hex D flip flop
and a 74C283 four bit adder circuit. The circuit shown in Fig. 9-5 will
demonstrate how the counter works. When the term “‘floating” is used with
respect to pins, it means that the pins are left unconnected.

When you try out this circuit, the first thing that you will probably notice
is that when you press the button, the LEDs will not “increment” by 1, but
by 2, 3 or even 4. The reason for this is known as “switch bounce”. Earlier in
the book, I showed a two inverter circuit for eliminating switch bounce,
and later I will discuss a number of other strategies for minimizing the
problem. For now, if you wire a 0.1 uF tantalum capacitor as shown in
Fig. 9-5, you should minimize this problem (although you will probably not
eliminate it).

The counter circuit should work well for you. As with the previous
projects, a single chip can be used where multiple required. The counter chip
that I usually work with is the 74L.S193 (Fig. 9-6) which combines a four bit
D flip flop register and adder along with the ability to decrement the result.
Later in the book, I will show how this chip can be used with others to
“cascade” from a 4 bit counter to an 8 and 16 bit counter.

PART TWO Digital Electronics Applications

8—

Ve C1 - C2 as Close to Vce Vce
‘174/283 Vcc as
Possible
C3 0.1 uF - See
470 Text 74C174 74C283
9 1
Clk Cir B1 - B3 Pulled
| C3 | - Down Cin 7
t) D5 - D6 and Cout Floating
Q5 - Q6 Floatin
_ % CR£=E g 1
D4 Q4

10

470 D3 Q3

5

— D2 Q2
F D1 Q1

<
Q
o
<
Q
o

Fig. 9-5. Discrete component counter.

_BORROW
Vec DA CLR™ OUT _CARRY LOAD DC DD

[Te] 751 [F4] [7s] [72] [ir] [3o] [7o7]

|

) 4 Bit Counter

L el s el el el 21 Lel
DB QB QA DOWN UP aoc Qb Gnd

_BORROW OUT/_CARRY - Active when Output 0000 or 1111
Counting According to Active
Clock ("'DOWN?” or “UP”)

Fig. 9-6. 74193 counter chip pinout.

The ““_Carry” out bit of the 74193 can be passed from one counter to the
clock input of another to provide the ability to count more bits, as I show in
Fig. 9-7. The carry bit can be thought of as an overflow to the more significant
counter, indicating that it should increment its value. If by looking at this
circuit you recognize it as being similar to the “ripple” adder presented earlier

CHAPTER 9 Complex Sequential Circuits

_\@9

Counter D Flip Flop Adder
Clock [Carry
f .
3 | .
—~ 2 Bit0
[” <
1
D Flip Flop
> To Bit2 Clock
— D Q
— Bit1
“1 ”

Fig. 9-7. Ripple counter block diagram.

in the book, go to the head of the class. This circuit is known as a “‘ripple
counter” and does not have the same high speed as a counter built from look-
ahead carry adders.

Along with the 74193, you might want to consider the 74161 counter,
which can only count up and changes to the count value must be clocked in
(the 74193 allows changes to the count value asynchronously, which is to say
without the clock). The 74160 and 74192 chips are identical to the 74161 and
74193, respectively, but only count up to 9 and are known as ‘“‘decade”
counters. The 74160 and 74192 are useful in circuits in which the digits
0 through 9 are required for counting.

Shift Registers

Most intersystem (or intercomputer) communications are done serially. This
means that a byte of data is sent over a single wire, one bit at a time, with the
timing coordinated between the sender and the receiver. So far in this book, if
you were to transfer a number of bits at the same time, you would send them
in ““parallel”, one connection for each bit. The basis for serial communica-
tions is the ““shift register”’, which converts a number of “‘parallel” bits into a
time-dependent single string of bits and converts these strings of bits back

®’_ PART TWO Digital Electronics Applications
Parallel to Serial to

Serlal Data Parallel Data BO
ConverS|on Conversion E;

EXR |Bl| 5215354 B5] B6] 5] B3

B4
Serial Data EZ
Transmission B7

Fig. 9-8. Parallel to serial and back to parallel conversions.

/

Multiple Data Lines

c D0—|> I>—Do)
k3 0
Q
D1 D1 =
3 D> > §
e o> S>—o
-— D2 D2
© &
8 D3—|> I>—D3 o
5 D
= D4—I> I>—D4 8
© :
L D5—I> I>—D5 a
Serial Data X Do X D1 X D2 X D3 X D4 X D5 X
Transmitter Single Data Line Receiver
Shift Register Shift Register

Driver Receiver

Fig. 9-9. Parallel vs. serial transmission hardware block diagrams.

into a set of parallel bits. Figure 9-8 shows this process with eight parallel
data bits being converted into a bit stream and transmitted to a receiver,
which “recreates’ the eight bits back into their parallel data format.

The differences between serial and parallel data transfers are shown in
Fig. 9-9. To send six bits in parallel, a half dozen transmitting ““drivers” and
an equal number of “receivers” are required. To send six bits serially, just a
single driver and receiver is required, but the sending circuit must have a
“shift register transmitter’” and the receiving circuit must have a ‘shift
register receiver”’. The parallel data can be sent in the time required for just
one bit while the serial data requires enough time to send each of the six bits
individually.

It probably looks like transmitting data serially requires a lot of overhead
and it slows down the data transfer. There are a number of factors to consider
before making this assumption. The first is that most chips are not made out
of individual logic gates as the simple chips presented here so far; they are

CHAPTER 9 Complex Sequential Circuits

_\®

|
D af——Sdata

Ctrl Clk
Sdata X D0 X D1 X D2 X D3 X
Ctrl _/ \
Clk [M I TIt_IlL
Shift Shift Data Out Serial Line Idle
Register
Load

Fig. 9-10. Parallel to serial conversion hardware.

usually very dense circuits consisting of thousands of gates, with the impact
of adding serial shift registers being very minimal. Another issue to consider
is that it can be very difficult to synchronize all the parallel bits to “arrive’ at
the receiver at the same time in high-speed circuits. Finally, multiple wires
can take up a lot of space and be quite expensive; if chips or subsystems could
have shift registers built into them, then it often makes sense (both practical
and economic) that data be transferred serially.

The circuit that converts the parallel data into the serial stream is quite
simple. Figure 9-10 shows a circuit along with a waveform showing how the
circuit works. Four bits are first loaded in parallel into a series of four flip
flops. These four flip flops can be driven with data either from an external
source or from the next significant bit depending on the “Ctrl” bit state. If
“Ctrl” is high, when the “CIk” (“‘clock”) is cycled, the data in the D3:0 bits
are stored in the four flip flops. If “Ctrl” is low, when “Clk” is cycled, each
bit is updated with its next significant bit and data is shifted out, least
significant bit first.

The process of each bit of data ““passing” through each of the flip flops is
known as “‘shifting”. As can be seen in Fig. 9-10 that four data bits are
*“shifted”” out on the ““Sdata” line in ascending order, with the “CIk™ line
specifying when a new bit is to be shifted out. If this method was used to

PART TWO Digital Electronics Applications

BYy—
Sdata —D3
Sdata X_Do_X_D1 XDz _X_D3 X
E—Dz Ck — L T1T T1L T1
° D3 Do3 X DO X D1 X D2 X D3

| — D1 D2 Do2 X Do3 X D0 X D1 X
D1 Do1 X Do2 X Do3 X DO X D1
X

WDO DO _Do0 X Dot X Do2_X Do3

Clk

Fig. 9-11. Serial to parallel conversion hardware.

D2

>

DO

transmit data between two digital devices, it would be known as
‘“synchronous serial data transmission”’.

Receiving “Sdata” is accomplished by simply using four flip flops wired
with their outputs wired to the next input, as I’ve shown in Fig. 9-11. The
same clock that is used to shift out the data from the transmitter should be
used to shift in the data in the receiver. Along with the circuit used to shift in
the data, I have included a waveform diagram for you to take a look at in
Fig. 9-11. One potentially confusing aspect of the waveforms is my use of
the “DoX” convention to indicate the previous values within the receiver.
These bits will be shifted out in a similar manner as to how the data was
shifted in.

There are a number of very common synchronous data protocols that are
used in computer systems to provide simple interfaces to common
peripherals. These interfaces, which include ‘“Microwire”, “SPI” and
“I2C”, are very easy and relatively fast ways of adding peripherals such as
analog to digital converters and external memory to microcontrollers and
complete computer systems. In fact, your PC has an I12C processor peripheral
bus for controlling power supplies and monitoring the processor’s chip
temperature.

Linear Feedback Shift Registers

One of the most interesting logic devices you can work with is the “linear
feedback shift register” (““LFSR”). It is built from a shift register along with
two or more XOR gates modifying the contents of the register as shown in
Fig. 9-12. This circuit can be used to “pseudo-randomize” data, encrypt and

CHAPTER 9 Complex Sequential Circuits

_\®

] [— Serial
SerlalL—) DJ' Output

Input

Fig. 9-12. Basic linear feedback shift register (LFSR).

decrypt serial data and provide very good serial data integrity checking. You
may have heard the term “cyclical redundancy check (““CRC”’) when applied
to data transmission; this is a type of linear feedback shift register. Linear
feedback shift registers can also be implemented fairly easily in software with
a microcontroller or microprocessor, although it is in hardware where the
device is the most efficient.

The simple LFSR illustrated in Fig. 9-12 feeds back bits 5 and 7 of the shift
register through XOR gates to the input. This changes the bit values in the
shift register according to the formula:

Bit, = Bit;, XOR (BitsXOR Bit,)
The LFSR is typically used for three purposes:

1. Creating a ““‘checksum’ value known as a cyclical redundancy check
(CRC), which is a unique value or ‘“‘signature” for a string of bits.
Both the transmitter and receiver will pass the data through LFSRs
and, at the end of the process, the CRC produced by the transmitter
will be compared to the CRC produced by the receiver. If there is a
difference in the CRCs, then the receiver will request that the trans-
mitter resend the data.

2. Encrypting a string of bits. LFSRs can be used as an encryption/
decryption tool with part of the encryption being the initial value in
the LFSR. The value output from the LFSR is dependent on the
initial value loaded into the LFSR. Decrypting data is also accom-
plished by using an LFSR, but configured as the complementary
function.

3. Producing “pseudo-random’ numbers. One of the most challenging
computer tasks that you will be given is to come up with a series of
random numbers. Computers are designed to be ‘‘deterministic”,
which means that what they are doing at any given time can be
calculated mathematically. This property is important for most
applications (nobody wants a computer to boot differently each
time or to have a word processing program that responds randomly
to keystrokes), but it is a problem for many applications which rely
on the pseudo-random numbers for animated displays or “lifelike”
responses to user input.

PART TWO Digital Electronics Applications

@,—

X X X X X X X X
C7 6 5 4 3 2 1 0
Polynomial Number - LFSR Equation = 1 + x* + x*+ x°+ x° >

Bit Numbering Used for Calculator Simulation

Fig. 9-13. Eight bit LFSR with defining polynomial expression.

In all of these applications, the LFSR is an ideal choice as a solution because
it can be built very simply from just a few gates (meaning low cost and fast
operation). The LFSR can also be implemented in software, as I will show
below.

If you were going to express this LFSR to somebody else, you could send
a graphic something like Fig. 9-13, or you could express it in
the “polynomial” format like:

flx)=1+x"+x" +x°4%°

The polynomial format is the traditional way of expressing how an LFSR
works and is used by mathematicians to evaluate an LFSR operation.
There are a few important facts about LFSRs that you should be aware of:

1. The LFSR can never have the value zero in it. If it contains zero,
then none of the internal bits will ever become set.

2. The ideal LFSR implementation will be able to produce 2" —1
different values. It should be obvious that the one value that cannot
be produced is zero.

3. A poorly specified LFSR may have the situation where it ends out
with a value of zero.

The operation of a single shift of the 8§ bit LFSR in Fig. 9-13 can be
modeled using the “C” function:

int SingleLFSRShift (intx)
{ //Shift the “CurByte” Value
// with the polynomial 1+ x™4 4+ x™5 4 x™6 +x™8

int LowBit; //XOR'd Low Bit

CHAPTER 9 Complex Sequential Circuits _\@

LowBit =x >> 7; // x8" Term
LowBit = LowBit " (x >> 5); // x6" Term
LowBit = LowBit " (x >> 4); // " x"5" Term
LowBit = LowBit " ((x >> 3)&l); // Vx4 Term

return((x << 1)+ LowBit) &0x0FF; Return shifted 8 Bit value
} // End SingleLFSRShift

Hardware State Machines

The hardware state machine circuit was originally designed to allow designers
to create a complex application using a simple, single ROM, a few register
bits and some basic logic gates instead of a complex sequential circuit design
or a processor-based solution. State machines are not widely used in modern
applications because the costs of the parts needed to make up the circuit can
very easily exceed that of a microcontroller. Almost ironically, hardware
state machines are used as the control mechanism for most modern computer
systems because they are fairly easy to design, program and debug. The use
of hardware state machines (which are typically referred to as just “state
machines’) as the control mechanism for computer processors has given a
new importance to the understanding of state machines.

The typical “‘state machine” is shown in Fig. 9-14. This circuit consists of
an ROM (usually EPROM) which has part of its output data fed back as a
“state address”. Other address lines are used as circuit inputs and the state
machine changes its state address based on these inputs.

ROM

Inputs Latch|Addr Data| Latch| Outputs
%_RST A RD %_RST A
; _CSs

| {>cState Address |

Fig. 9-14. General case hardware state machine.

!
||H

Clock

@3’_ PART TWO Digital Electronics Applications

The clock is used to pass the new address to the ROM and then pass the
output from the ROM to the output and input state circuits. The two latches
are operated 180° out of phase to prevent “glitches” from the ROM changing
state from invalidly affecting any output circuits. A single edge triggered
register is not typically used with the state machine because toggling inputs
while the ROM is being accessed could result in invalid data being passed
into the latches.

As few output bits are used as the “‘state address’ as possible. The reason
for this is to maximize the number of outputs and minimize the number of
states which have to be programmed. Each state requires two to the number
of inputs to function. Each state responds differently according to the inputs
it receives.

A typical application for state machines is a traffic light. If a press-button
crossing light, as shown in Fig. 9-15, is considered, a state machine circuit,

like that shown in Fig. 9-16 could be used.

Red

Yellow
Button

Green

State —
Machine [__

o

Walk

A\ 4

Don't
Walk

Fig. 9-15. Traffic light state machine block diagram.

_Red—j:D_Don,t
— Yellow Walk

ROM — Green Walk
Button Latch|Addr| Data [Latch
%_RST A _RD %_RST A
T ‘ ffcs I ‘
1 Hz | {>cState Address |

Clock
Fig. 9-16. Traffic light state machine circuit.

CHAPTER 9 Complex Sequential Circuits _\®
In normal operation (which is known as “‘state 0”’), the green light is on

and the button is not pressed. If the button is pressed, then execution jumps

to state 1, which turns on the yellow light for 5 seconds (states 2, 3, 4 and 5),

after which the red light is put on for 26 seconds (states 6-31). If the button

is pressed during states 7-31, then execution jumps to state 6 to reset
the timer.

Table 9-1 ROM programming for simple traffic light state machine.

State Button | New state | Green | Yellow | Red | Comments

B’00000” | 1 B’00000’ 1 0 0 Power up

B’00000* | O B’00001° 0 1 0 Power up/button press
B’00001” | x B’00010° 0 1 0 Yellow LED on
B’00010” | x B’00011 0 1 0 Yellow LED on
B’00011” | x B’00100° 0 1 0 Yellow LED on
B’00100* | x B’00101° 0 1 0 Yellow LED on
B00101" | x B’00110° 0 1 0 Yellow LED on
B’00110” | x B’00111” 0 1 0 Yellow LED on
B’00111” | x B’01000’ 0 0 1 Red LED on

B’01000* | 1 B’01001” 0 0 1 Red LED on

B’01000* | O B00111° 0 0 1 Red LED on/reset Ctr
B’01001° | 1 B’01010° 0 0 1 Red LED on

B’01001° | O B00111° 0 0 1 Red LED on/reset Ctr
B’11111° | 1 B’00000’ 0 0 1 Return to green
B’11111" | O B’00111” 0 0 1 Red LED on/reset Ctr

@’_

Quiz

PART TWO Digital Electronics Applications

To keep the circuit simple, I want to use an eight bit data bus ROM with
six inputs (five state, one button). This means that 2**6 (or 64) states are
required in the ROM. These states are listed in Table 9-1. The reset on the
input address latch is used to reset the state to 0 on the power up. The button
is assumed to be “pressed” if a “0” is returned.

Table 9-1 would then be converted into bits and burned into the ROM.
An “x” means both input states have the same result on outputs.

This application is reasonable to code and build, but a problem arises with
very complex state machines (ones that require tens of inputs and hundreds
of different states). These state machines are normally hard coded into a
custom chip rather than built out of discrete parts like I have shown for this
application. The reason for placing it within a chip is to give more outputs as
well as more states in a custom application. The depth and the width of the
data in “‘real” applications is better suited to custom chips which can have
non-custom memories added much more easily than in the situation where
only commercial chips are used.

In the example above, I have used a state machine with a one second clock.
Obviously in this situation there can be problems (such as the missed input
if the button is pressed for less than 1 second and it isn’t released after it is
pressed). This function makes state machines unattractive for rapidly
changing inputs and any kind of sophisticated real-time processing of inputs
is simply not economical to do with the state machine. When I say “‘not
economical”’, I am thinking in terms of the memory and properly
programming the many states.

1. In the sequential circuit block diagram where is the clock signal
passed to?
(a) To the “state memory” and “‘output formatter” blocks
(b) To just the “state memory” block
(¢) To the “input formatter” block
(d) To the “reset control circuitry’ block

2. Asynchronous digital logic design is being pursued because:
(a) It will result in simpler chip designs
(b) Circuitry designed under this philosophy will be easier to
interface to

CHAPTER 9 Complex Sequential Circuits _\@9
(c) The end of performance gains using traditional design

methodologies is in sight
(d) It offers faster operations with less power usage

3. Why are edge triggered registers used for counters instead of latches?
(a) It will result in simpler circuit designs
(b) Circuitry designed under this philosophy will be easier to inter-
face to

(c) Less power is required
(d) It offers faster operations with less power usage

4. Ripple counters are:
(a) Always the fastest way to implement counters
(b) Usually more complex electronically than other counter designs
(c) Always the slowest way to implement counters
(d) Similar to ripple adders in operation

5. What are advantages of serial data transmission over parallel data
transmission?
(a) Reduced number of drivers and receivers
(b) Faster data transmission
(c) Lower product costs
(d) Higher product quality

6. Where is serial data transmission not used?
(a) The internet
(b) Broadcasting stations to TVs/radios
(c) Keyboard to PC interface
(d) PCI bus interfaces

7. Linear feedback shift registers are built from:
(a) The system architectural drawings
(b) The high-speed circuits to support communications
(c) Shift registers and XOR gates
(d) The basic system serial interface

8. When the value of a linear feedback shift register equals zero:
(a) The operation has completed
(b) Either the initial and input values are zero or there is a problem
with the LFSR design
(c) There was an error in encrypting a message
(d) Power has been removed from the circuit

@’_ PART TWO Digital Electronics Applications
9. Hardware state machines are rarely used except in:

(a) Computer processors

(b) Military and space applications

(¢) High-performance custom logic applications
(d) Situations where old ROMs are easily available

10. State machines are normally built:
(a) Out of discrete chips and ROM chips
(b) In complex custom chips
(¢) On specially designed carrier PCBs
(d) With the checksum of the ROM printed on them

CHAPTER

For a sequential digital electronic circuit to be effective, it has to interface
with something. This something could be a person or it could be other digital
electronic circuits. If you were to look at different interfaces for either case
(human or machine), you will discover that as the function of the circuit
increases in sophistication, so does the interface. The reasons for this increase
in interface complexity can be attributed to an increased amount of data to
present as well as an increased number of operating parameters to choose
from and select. The challenge is to come up with a way of adding these user
and device interfaces simply, effectively and not affect the operation of the
central sequential circuit.

Simple logic level switches and individual LEDs for each bit are perfect
examples of the types of interfaces that I am talking about; to add these
devices to your application, you generally don’t require any types of busses
nor do you need to have any special communications protocols for
communicating with the devices. These interfaces are simple to add and
modify to an application.

The problem with simple logic level switches and LEDs connected to each
bit is that they cannot be very descriptive; nor are they very efficient methods
of transferring data. An eight bit system is quite manageable, but it becomes

Circuit Interfaces

_\@)

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

\@’_ PART TWO Digital Electronics Applications

very difficult when there are tens, hundreds or even thousands of bits to
control and monitor. Early computers started out using simple switches and
lights for input and output, respectively, but quickly outgrew them and began
using printers, teletypes and punch cards to get state information from the
computer. Today’s computer systems have very sophisticated input and
output capabilities, requiring the power of a processor that would have been
identified as a “‘supercomputer’ 10 years ago or less.

An example of a complex interface that you would be hard pressed (if it
were possible at all) to create digital electronics for is the Hitachi 44780 based
LCD module (Fig. 10-1). The controller hardware is fairly complex and must
be accurately timed. The LCD module works like a ““teletype’ or a single line
TV display — as you write characters to it, a “‘cursor’” will move to the right,
to prepare for the next character. The character interface consists of the eight
data bits and three I/O pins listed in Table 10-1.

Fig. 10-1. Sample LCD output.

Table 10-1 Hitachi 44780 pin interface.

Pins | Description/function

1 Ground

2 Vce

3 Contrast voltage

4 “RS” — _instruction/register select
5 “RW” — _write/read select

6 “E” clock

7-14 | Data I/O pins

CHAPTER 10 CGircuit Interfaces

Data l ' 'l

RIW | yI

RIS | '

E N
s

Fig. 10-2. LCD write waveform.

I typically attach a series of pins to the 14 connector pins so that the LCD
can be easily mounted on a breadboard. In some LCDs, you may discover
that there are 16 connector holes with the extra two holes used for
backlighting. Some other LCD modules have two rows of seven or eight
pins. For the ease of creating the experiments in this book and wiring them
to the breadboard you should just use LCD modules that have a single row
of pins.

Wiring the LCD to the hardware is quite straightforward as you will see in
the waveform diagram (Fig. 10-2). The only unexpected aspect of the
interface circuit is a potentiometer used to set the ““‘contrast voltage used by
the LCD. The potentiometer is wired as a voltage divider, with the contrast
voltage pin connected to the wiper of the potentiometer. Depending on the
type of LCD that you are using, you will find that the voltage producing
the best contrast will either be high or low, depending on the technology used
in the LCD.

To communicate with the LCD, you will have to send the data words
listed in Table 10-2 via the LCD interface. These bytes are commands that set
the operating mode of the LCD or command it to perform some other
operation. In Table 10-2, I have listed the different commands, along with
the “RS” and “RW?” lines that are used to control them. To clock in the
command, the “E” bit must have a high value (‘*‘1””) written to it and then
a low value (““07).

Data displayed on the LCD is, for the most part, ASCII and you can pass
ASCII characters directly from the hardware to the LCD. I say that the LCD
can display ASCII “for the most part” because you will find that some
characters are not supported (such as the backslash, ““\”") and if you go
outside the normal ASCII character limits, you will see Japanese characters
on the display. If you were to send a carriage return, line feed or any of the
other ASCII terminal command characters, you would discover that they

@’_ PART TWO Digital Electronics Applications

Table 10-2 Hitachi 44780 based LCD command set.

RS | RW | D7 | D6 | DS | D4 | D3 | D2 | D1 | DO | Instruction/description

4 5 14 13 12 | 11 10 |9 8 7 LCD I/O Pins

0 0 0 0 0 0 0 0 0 1 Clear Display (Takes
up to 5 ms)

0 0 0 0 0 0 0 0 1 * Move Cursor to “Home”
(5 ms)

0 0 0 0 0 0 0 1 ID | S ID =1, Increment Cursor
after Write

S =1, Shift Display
after Write

0 0 0 0 0 0 1 D C B D=1, Turn on Display
C=1, Cursor On
B =1, Cursor Blink

0 0 0 0 0 1 SC | RL | * * SC =1, Shift Display
after Write

RL =1, Shift Display
to Right

0 0 0 0 1 DL | N F * * Reset the 44780 Interface
Length DL =1,8 Bits/
DL =0,4 Bits

N =1, Two Display
Lines

F=1, 5x10 Font
(Normally 0)

0 0 0 1 A A A A A A Move Cursor to Graphic
RAM Address
B'AAAAAA’

0 0 1 A A A A A A A Move Cursor to LCD
Position BAAAAAAA’

0 1 BF | * * * * * * * Poll LCD “Busy Flag”
(Active “17)

1 0 D D D D D D D D Write Data to the LCD

1 1 D D D D D D D D Read Data from LCD
at Current Cursor

* “Don’t Care”.

CHAPTER 10 Circuit Interfaces _\@
result in a strange character being displayed. If you want to provide more
“terminal”’-like functions to the 44780 based LCD you will have to write
them yourself and add them to your application.

Most commands execute in 160 us or less with the display clear and move

cursor to home commands can take up to 5ms. The initialization process for
the LCD is:

1. Wait more than 15ms after power is applied.

2. Write 0x030 to LCD and wait 5ms for the instruction to
complete.

3. Write 0x030 to LCD and wait 160 pus for instruction to complete.

4. Write 0x030 AGAIN to LCD and wait 160us or Poll the Busy
Flag.

5. Set the Operating Characteristics of the LCD:

Write “Set Interface Length”

Write 0x010 to disable display shifting

Write 0x001 to clear the display

Write ““Set Cursor Move Direction’ setting cursor behavior bits

Write ““Enable Display/Cursor’” & “Enable display and optional
cursor’.

The LCD could be controlled by a state machine, but there would be a
significant amount of work to do this (and the state machine would be
quite large). Along with the eight bit interface, the LCD can also be
controlled by a four bit interface; each character and eight bit instruction
is passed in four bit blocks through the D7:4 pins, but this interface would
probably be even more difficult to create for the LCD module.

Address and Data Decoders

When you have decided upon the interfaces to your application, you will
probably have to determine the best method of selecting which device is
active at any time. The method that would make the most sense is to use the
same method that a microprocessor uses: output a bit value, selecting
the device and one control bit to activate the interface device. Depending on
the resources available, the section bits may consist of a number of bits, each
one passed to a different interface device, or a binary value, which is decoded
into a specific control bit.

PART TWO Digital Electronics Applications

Address x Write Address X:X Read Address x
Data | Datavaiid } YT

w T
"RD |

Fig. 10-3. Memory bus reads and writes.

Ideally, the signal being passed to the interface device would look
something like Fig. 10-3 — an “Address” value is passed to the device and
after a data “set up” time, a Read (“_RD”’) or Write (“_WR”) line becomes
active. A “Read” action polls the interface device and returns the value to the
sequential circuit. A “Write” action does the exact opposite: it sends a value
from the sequential circuit to the interface device.

You should notice that the timing of the read and write operations
are quite a bit different. The short “Read” pulse is indicative of the expected
operation of the device being accessed; once it receives the “Read Address”
which selects the device, it takes some time to prepare the data before it
can be read out. Similarly, when writing data, the _WR line is active
for a surprisingly long period of time to allow the interface device to pass
the data internally and prepare the interface circuitry to correctly store
the data.

The interface read and write operations are good examples of situations
where the latches rather than registers are used. When the RD and _WR
signals become active, data should be passed through them as quickly as
possible rather than being held on a rising or falling value of the signal edge.
For most applications, this need for taking advantage of every possible
picosecond of time for data transfer is not needed, but you will find that it’s a
good idea to work with a standard design interface that will work in all
situations.

Following this philosophy, rather than providing an individual bit to each
interface device, how about a binary ‘“‘address” that can be decoded to an
individual address using a ““decoder” like the 74139 (Fig. 10-4) that converts
a two bit value into four individual active low outputs. The 74139 contains

CHAPTER 10 Circuit Interfaces _\@
Vce _2G 2A 2B 2Y3 2Y2 2Y1 2Y0
[Tel 751 [[331 [72] [F1] [To] [5]

)

L e L1 e L1 el 21 L&l
_1G 1A 1B 1Y3 1Y2 1Yt 1Y0 Gnpd

Y# is Active Low When _G# Pulled Low
#=(Bx2)+(Ax1) 74139

Fig. 10-4. 74139 dual 2 to 4 decoder chip pinout.

#A] [Zf EJ— #Y0 = |(I_#Gel#AeI4B)
#BTDO — iq Yo— #Y1 = |(I#Ge#A®I#B)
|—._|j_ #Y2

(!
(!
I i
i

I(#_Gel#Ae#B)

|
T e — #Y3=I(# _GetAe#B)

_#HG —D>o

Fig. 10-5. 2 to 4 decoder logic diagram.

two “two to four” decoders like the ones shown in Fig. 10-5. Decoders (also
known as ‘“‘demultiplexors’) convert binary values into individual output
lines and are primarily used to decode memory addresses to individual chips.

The resulting “interface” is essentially a computer “‘bus and will allow
you to add standard computer interfaces to your circuit, probably with no
modification. You might have been wondering why I went through the effort
of providing an interface select function along with the RD and WR
signals — you may be thinking that a single pin that both selects the
device as well as initiate the read or write would be enough; the philosophy of
interfacing like in a computer is only so useful. This is true if you are going
to only work with custom-designed interfaces, but there are a lot of
standard interfaces (including the various ones presented in this chapter)
designed for being accessed by computer systems that you will want to
take advantage of.

PART TWO Digital Electronics Applications

@’_
Multi-Segment LEDs

I think you would be hard pressed to find somebody in the industrialized
world that has never seen a ‘“‘seven-segment’” LED display (Fig. 10-6) before.
It first became popular in the 1970s and is used in almost literally everything
from digital clocks to car instruments. Seven-segment LEDs can be found
virtually everywhere, being used not only in digital watches but also in
kitchen appliances, cars, instruments and, of course, in videocassette
recorders (VCRs). The flashing ““12:00” on a clock or VCR created using
seven-segment LEDs is the symbol of a person’s inability to handle the latest
in technology.

In Fig. 10-6, I have shown the appearance of the seven-segment LED
display — it can be put in the same “footprint” as a 0.300 inch” wide 14 pin
DIP package, but some of the pins (““N/C” for “no connect”) are not present.
The “DP”’ LED stands for the “decimal point”.

The seven-segment LED display can be wired as either a ““‘common anode”
or “common ‘“‘cathode”; in this experiment we will be using ‘“‘common
anode”, wired as shown in Fig. 10-7. For this part, the two “common’ pins
are connected to all (and occasionally some) of the anodes of the eight LEDs
built into the display. This simplifies the wiring you will have to do somewhat
and makes working with multiple displays a bit easier, as I will show in a later
experiment.

Despite its commonality, the seven-segment LED display is not trivial to
work with. There are a number of chips on the market that make the
component easier to work with in some applications, but when you are
working with your own sequential circuits, you will find that these “canned”
functions never quite do what you hope for.

a[a]Common
£[] b
f b
Common |:
g g
c
e (¢}]DP
e d d
[ODP:I

Fig. 10-6. Seven-segment LED display with pinout.

CHAPTER 10 Circuit Interfaces _\@

Common Common

3 14
I I
= RS RS = RS RS = RS
a b c d e f g DP
1 13 10 8 7 2 11 9

Fig. 10-7. Common anode seven-segment LED display internal wiring.

a a a a a a a a

f b b b b f b f f b f b f b
9 9 9 9 9 9 9

e ® c e c ® c e c c e c ®
d d d d d d d

Fig. 10-8. Lit seven-segment LED display elements for different numbers.

As you are probably aware, by turning on each of the different LEDs with
their unique values individually, you can create a multiple-digit display.
Figure 10.8 shows how by turning on different LED segments, the display
can be used to display the 10 numeric characters. Along with the 10 numbers,
there are a number of letters that can be displayed, although only a few of
them look exactly like the characters they are supposed to represent. If you
want to display letters as well as numbers, then you will have to use a LED
with more segments — these are available as either 16-segment displays or as
matrixes of LEDs that display the character as a multi-dot “font” like on
your computer screen.

Each LED in the display can be wired conventionally to control whether
or not they are turned on or off. Controlling individual LEDs in a single
display is quite easy. It gets quite a bit more difficult when you have to
display different values on multiple LED displays. To convert incoming bits
to meaningful characters on the display, you will have to pass the bit values
through a combinatorial circuit, like the one shown in Table 10-3 for the first
four decimal digits.

In Table 10-3 in the “Comments” column, you can see that I have noted
any commonalities between different equations and noted that segment “B”
is always active for all four digits. I should point out that coming up with the
equations for each of the segments is good practice for working with Boolean
arithmetic equations, but it is much easier and simpler to buy a seven-
segment LED driver. The 7447 chip is commonly used for decoding the
incoming bits and driving the LEDs and is an excellent solution when there is

@,—

PART TWO Digital Electronics Applications

Table 10-3 Seven-segment LED display combinatorial specification

for the first four decimal characters.

Segment | “0” | “1” | “2” | “3” | Terms Comments

A 1 1 1 (A0 -'A1) + Al Same as “d”

B 1 1 1 1 1 Always on

C 1 1 1 A1+ (A0-Al)

D 1 1 1 (!A0- 'Al)+ Al | Same as “a”

E 1 1 A0

F 1 (A0 -1A1) Uses AND from
“a” & “d’

G 1 1 Al

First Digit Displayed Second Digit Displayed

B

E g
5

FouFth Digit Displayed Third Digit Displayed

Fig. 10-9. Scanning through four seven-segment LED displays.

only one seven-segment LED display outputting information from the
application.

When multiple LED displays are required, instead of providing multiple-
digit drivers, a single-digit driver is used and different values are passed to it
for different displays very quickly. Figure 10-9 shows a four-digit LED
display with each digit having a different value. Each digit is turned on
momentarily to display its value and then switched off for the next digit. The
eye’s visual persistence ignores the flickering if the sequencing is done fast

CHAPTER 10 Circuit Interfaces _\@)

Up to Eight 7 Segment LEDs

Common
Cathode
Segment ~+-Digit
Anodes Display
Controls
. Serial Data Data
Sequential [-
Logic _cs MAX7219
. . Data Clock
Circuit

Fig. 10-10. Using a Maxim MAX7219 seven-segment LED controller chip.

enough and it appears that all the digits are on simultaneously, even though
they are displaying different values.

As a rule of thumb, each display should be active 50 or more times per
second. The slower each display is flashed on and off, the more likely the
human eye will pick up the flashing. A flashing multi-character display is not
attractive and could cause headaches in some people (especially if the
displays are very bright). The time each display is turned on must be as equal
as possible. If one display is on for a longer period of time than the others,
then it will appear brighter and, conversely, a display active for a shorter
period of time will appear dimmer. When working with multiple displays, in
order to meet the 50 times per second guideline, you are actually going to
have to loop through your individual display action 50 times per second
multiplied by the number of displays. So, for a four-digit display, you will
have to loop 200 times per second and each digit will be on for 5 ms at a time.
There are some chips, such as the very popular Maxim MAX7219
(Fig. 10-10), which can control multiple seven-segment LED displays. This
chip takes care of all the driving and timing requirements for the displays; the
only catch is that you must shift in the desired value for the display.

Pulse Width Modulation

Despite showing how logic gates and other digital devices are built from
simple analog components, they do not handle working with analog
voltages very well. There are some circuits that will produce a valid analog
(an arbitrary voltage, not just logic “high” and “low”) voltage but they do
not work very well if the circuit has to drive a high current device. Instead of
varying the voltage level to provide varying levels of power, I produce a

PART TWO Digital Electronics Applications

@’_

Wi |
|7 Period 4'

Duty Cycle = 100% * Pulse Width
Period

Fig. 10-11. PWM waveform features.

Clock T — PWM Period
PWM Period pata Counter
r Load Overflow
|13 _PWM
_— L “On”" Period S-R | Output
D>
“On” Period —[°== Counter s FIF o
— |

Fig. 10-12. PWM generator block diagram.

string of timed pulses known as a “pulse width modulated” (“PWM?) signal
(Fig. 10-11). A PWM signal is a repeating signal that is “on” for a set period
of time that is proportional to the voltage being output. I call the “on time”
the “pulse width” in Fig. 10-11 and the “duty cycle” is the percentage of time
the ““on time” is relative to the PWM signal’s “period”.

To output a PWM signal, there are several possible methods. One way is
to use two counters that have a common clock. When one counter overflows,
it resets itself and the second counter. Until the second counter overflows, the
output of the circuit is set to “1”. When the second counter overflows, the
output of the circuit is reset until the first counter overflows and the process is
repeated. Figure 10-12 shows how this type of circuit could be implemented.

This PWM generator circuit uses counters that are reloaded (from the
“Data” pins) upon an ‘“‘Overflow” positive pulse. The “PWM Period
Counter” (the ‘“first counter”) runs continuously and when it overflows
(reaches the final count), it resets and reloads the count value for not only
itself but also for the second counter (the ‘ *“On” Period Counter’).

When the PWM Period Counter resets, it ““Sets” the S-R flip flop, driving
the “PWM Output” high for the start of the PWM signal output. The “On”
Period Counter is reset and reloaded by the PWM Period Counter and runs
until it overflows. When the “On” Period Counter Overflows, the PWM

CHAPTER 10 CGircuit Interfaces

_\®

5550|\22ir|1|2tsé?ble 7415191
(10 kHz) Counter
_| 4Bits
0-14 74Ls85- 4Bt
. Magnitude
Input Comparator
" LED/Motor
Input A
_| 4Bits
- 0-15 -
4 Switch
PWM |
Control

Fig. 10-13. Another PWM generator circuit design block diagram.

Output is halted and it also stops running until the PWM Period Counter
reloads it, which resets the “Overflow” output and allows the Counter to
drive the “On” Period Counter once more.

Another type of PWM generator is shown in Fig. 10-13. The counter
output will be continuously compared against a bit value and when the bit
value is greater than the counter value, a “1” will be output. The block
diagram for the circuit that I envisioned is shown in Fig. 10-13 and can be
built quite easily as I show in this section.

When you study Fig. 10-13, there will probably be one point that won’t
make sense to you: I show that the counter ranges from 0 to 14 and not 0 to
15, as you would expect for the typical four-bit counter. [wanted the counter
to reset itself at 14 rather than 15 so that when the binary values were
compared, a 100% duty cycle could be produced as well as a 0% duty cycle
by outputting a ““1”” when the set value was greater than the counter value.
If the counter ran from 0 to 15 then the circuit would not be able to produce a
PWM with a 100% duty cycle.

To produce the bit range from 0 to 14, I used the 74 x 191 chip counting
down and tying the “_LOAD” pin to the “_RIPPLE” pin and driving the
inputs to 14. The “_R” (“Ripple” Output) pin becomes active when the chip
is “rolling over” from one extreme to another and the “_LD” pin moves the
value at the input pins into the counter’s latches when it is active. Normally,
when a four-bit counter is “rolling over” as it counts down it goes from 0 to
15, but by tying the *“ R’ pin to the ©“_ LD” (negative active “‘Load”) pin of
the 74 x 191, you can load in a new value when the counter reaches 0 and is
about to roll over. This feature is ideal for this application as it ensures the
count stays in the range of 0 to 14.

PART TWO Digital Electronics Applications

@’_

cc Vce
16 — 12
10 uF 001 0.01 i
g uF uF - by 13
I e I -
— — —_— Ve — a _LD
Vce
9V0|t 15 nA 1
Battery T E I3 16VCC
1 10 a 9
Vee nc B~ 2 BO IN:A=B _AL
I e T O : 0.01
4 I 14 >n o 2 R S ke
~ G Qd
= = | 1 To) —
< J J_— 4 8 B3 g -
3 =
0.01 — = 10 | 5
oF 555 DIP 7] VR N
Switch 3l, AR S0
— 15 A<B ~
A3 e
fr — IN: A <B
0.01 vee J__ Most Significant Bit 4 2
0.01 _ o _

L'k
L

Fig. 10-14. Sample PWM generator circuit schematic.

Converting the block diagram to a schematic one is very straightforward
(Fig. 10-14) and wiring it onto the PCB’s breadboard is tight but not really a
challenge (Fig. 10-15). The PWM output value is specified by the four-
position DIP switch. I placed 0.01 pF decoupling capacitors on all of the
power inputs of each of the chips. These decoupling capacitors are very
important when working with the standard (not CMOS) 555 because it can
place large transients on the power line.

I used TTL chips (powered by 5volts from the 78L05 regulator) rather
than CMOS chips because I found that it is difficult locating 74C85 chips.
An advantage of using TTL instead of CMOS for this circuit was that I could
simply pull the comparator inputs to ground without the need of a pull up
resistor. If you build this circuit with CMOS chips, make sure that you have
10k pull up resistors on the DIP switch to ensure a high voltage is passed to
the comparator.

Once you have built the circuit, you will find that the LED’s brightness
will be dependent on the value on the DIP switch. It will be confusing, as
the value on the DIP switch will seem to be the opposite to the behavior of
the PWM. When all the switches are “on”, the LED will be off and, for
what seems to be a “large” value, the LED will be dim. When all the switches
are “off” the LED will be full on. This confusion is a result of the “on”
marking indicating when the switches are closed, not when the signal is a *““1”’
or “high” (which is often extrapolated to being “on’’) — when the switches

CHAPTER 10 CGircuit Interfaces

O0J0 00000 OS000 OO0O00G
qaﬁ O0OQQO @S000 ooooo
ndooooooo
ooo o oo o
nnnnnnnFn 8] oo

geooooog afcx=Nalulalsl

. . (L

| 1= L= = B) U e gt g e gy = gy = gy e gy = gy = = T
nﬁeggggnnn ooooooooo
oeeuooooon nnnﬁnnnnnnnnn

(elc0Tal ooooofCcE00000000Gaca

RR qnnpnqnnF?nn?nqqqnnn??aﬂn

Hgd/ gnnﬁn NpoOpo DO0ooG-

E OO0OO0 OOOpoO ooooo
\+9Volt
Battery

Fig. 10-15. Sample PWM generator circuit wiring diagram.

are closed (“on’), the comparator input is pulled to ground and has the
value “0”.

For all PWM circuits (not just the two I've shown here), you must
remember that the effective frequency is the input clock frequency divided by
the counter value. For the example circuit shown here, the 10 kHz signal is
divided by 15 (how many cycles the 74L.S191 counts before resetting) so the
resulting output signal frequency is 667 Hz, which is still faster than the
human eye can perceive a flashing LED, but much lower than required for
some DC motors. PWMs are commonly used to control the speed of electric
motors and if the PWM frequency is within the audible range of human
hearing, you will hear a definite ““whine” from the motors. The solution to
this problem is to either run the PWM at frequencies above human hearing
(greater than 18 kHz) or below the range of human hearing (60 Hz or below).

The lower PWM frequencies should not be an issue to produce, but the
higher ones can be a challenge, especially if more bits are used in the counter.
For example, to create a 20kHz PWM output signal, you will have to
provide a 300 kHz clock for a 15-value PWM and 5.1 MHz for a 255-value
PWM! You may find that to get a practical circuit, you will have to find a
compromise between the number of bits used in the PWM for the signal level
and the speed of the oscillator that is going to be used with it.

An interesting feature of a PWM is how it can save you power. If you were
to run the PWM with a 75% duty cycle, what do you think the average power

®’_ PART TWO Digital Electronics Applications
output would be? If you answered 75%, then you didn’t go back in the book
to look up the power formula. Power is defined by the formula:

P=VxXx1

and substituting in values from Ohm’s law, it can be also expressed as:

2

P=vV’/R=1i? xR

From these formulas, it should be obvious that if the voltage is high only
three-quarters of the time, the power dissipated by the device being driven
by the PWM is nine-sixteenths or 56% of the total power used by PWMs run-
ning with a 100% duty cycle. This means that, along with providing the abil-
ity to “throttle” direct current devices, a PWM can also result in significant
power savings as well.

Finally, you might be confused that I gave you two quite different
implementations of the PWM circuit; I did this to show you that there is
almost always more than one solution to any problem. I normally
recommend that new designers come up with three solutions to a problem
before going ahead and implementing something. Having three solutions to
choose from will allow you to compare features and drawbacks and choose
the solution that is best for the application.

Button ““Debouncing”

I consider the issue of debouncing switches and buttons to be one of the most
important and vexing problems that you will have to deal with when you are
developing applications that work with operator input. Most people think
that electrical connections happen instantaneously; you might be surprised to
discover that the contacts within a switch actually bounce a few times before
the switch makes a constant contact. This is shown in the oscilloscope picture
in Fig. 10-16.

Earlier in the book, I showed you a simple method of debouncing a switch
input by creating a small memory device from two inverters. A major
drawback of this circuit is that it “backdrives” the outputs of one of the
inverters, but this problem can be eliminated through the use of CMOS
inverters and a 10 k current limiting resistor. Even with this fix in place, there
is another problem to consider when deciding whether or not to use this
circuit — finding double throw push buttons can be difficult. This circuit is
well suited for double throw switches but, from the practical difficulty of
finding double throw buttons, it becomes impractical.

CHAPTER 10 Circuit Interfaces _\®

Button
Input

Tkt S Velk 100as L b b i

Fig. 10-16. Button bounce waveform.

Vce
Momentary
On Pushbutton b > Debounced
or Switch . - Output

.|
| | Schmitt Trigger
—_— Inverter

Fig. 10-17. Simple button debounce circuit.

The debounce circuit that I recommend you use is shown in Fig. 10-17.
This circuit consists of a resistor—capacitor network that charges over a given
amount of time or discharges quickly through a closed switch or button.
Figure 10-18 shows the filtering of the bouncing; it is not perfect, but it is
much better than what we started with.

The inverter with the funny symbol in Fig. 10-17 is called a *“‘Schmitt
Trigger Input Inverter” and provides an extra measure of filtering of the
button input. Schmitt trigger inputs are designed to change state on the rising
or falling edge of a signal with “hysteresis”, as shown in Fig. 10-19.

@o’_ PART TWO Digital Electronics Applications
Button Pressed

Input | | Switch “Bounces”
Signal |

. Filtered Input from
RC Filtered \ RC Network
Input

Fig. 10-18. RC network button debounce operation.

50% of Signal A
Voltage Threshold Glitch” in

Input \ S\ <Signa| /_
Signal ____ / _/ /

—— e - ——ee

Standard Response | i i |
(No Hysteresis) | L I |

Standard Logic
Response t0 jf—n——

Response with “Glitch”

Hysteresis
Logic with Hysteresis Logic with Hysteresis Logic with Hysteresis |
Low to High Threshold High to Low Threshold Built in Ignores “Glitch

Fig. 10-19. Schmitt trigger input operation.

“Hysteresis” is the property of the Schmitt trigger inputs in which the
threshold point for the rising edge of the signal is different than the falling
edge. Looking at Fig. 10-19, you can see that the rising edge threshold is
above the “normal gate voltage threshold”, while the falling edge threshold
is less.

These changing threshold values are the reason for the strange symbol on
the inverters, indicating Schmitt trigger inputs. Figure 10.20 shows the input
versus the gate response on an “X-Y” chart. The “X” axis is the input
voltage with rising voltages to the right and the “Y” axis represents the
response of the Schmitt trigger input. By following the numbers, you can see
the response of the input and that it forms the same symbol that I put on the
inverter gates. For comparison, a traditional logic gate does not use this
symbol — the response threshold is the same for rising and falling edge
signals.

Another method of debouncing button inputs is to use a 555 or
monostable circuit. In Fig. 10-21, I show a 555 wired as a monostable,
driving out a pulse from a button press. The internal waveforms of the circuit

CHAPTER 10 CGircuit Interfaces

Input ® 0 O\
Signal #/ —

Response with
Hysteresis

e} Q

Standard “Y-T” Plots of Input
and Hysteresis Response
Q0

[7°
0000V

“X-Y” Plot of Input and
Hysteresis Response

Fig. 10-20. Schmitt input hysteresis.

Vce

Debounced
Button
Pulse

3

RS Flip Flop

Fig. 10-21. 555 button debounce circuit.

are shown in Fig. 10-22, which shows that any subsequent bouncing of the
button after it makes its first connection are ignored by the circuit as the
pulse is being output. If you work out the pulse time from R and C, you’ll
discover that the pulse time is roughly 1 second in length. This should be long
enough for a single button press to be registered and the user to remove his
fingers. Obviously, this delay is too long to implement multiple buttons or
even any kind of data entry functions in the circuit. To do this, you should
consider the next section.

PART TWO Digital Electronics Applications

@’_

1
Button Press = II I | I |‘\ Button Release

ﬂ
|

Wl m— 1

“Debounce Pulse”
width = 1.1 x RC

® © 0 ® ©

~N)
N First “Bounce” of Capacitor
Switch Starting Charged
Capacitor Charging to 2/3 Vee

Fig. 10-22. 555 button debounce circuit waveform.

Switch Matrix Keypad Interfacing

As I ended off the previous section, you cannot use simple button debouncing
techniques to implement a large number of buttons or even a keyboard for
data entry. Just so there’s no confusion, I consider a “large number of
buttons” to be four or more; providing individual debounce circuits for
anything more than a couple of buttons is expensive and time consuming.
Along with the cost and time involved, you will also have to come up with
some way of prioritizing the button inputs and recognizing non-standard
keys like “‘shift”” and ‘“‘control”.

The keys and buttons in PC keyboards and numeric keypads are arranged
in “rows” and ‘“‘columns” and they can be drawn out in such a way that they
look like a ““‘matrix”. A “momentary on” switch is placed at the intersection
of each row and column, as shown in Fig. 10-23. This “switch matrix”
provides the ability to “scan” a large number of button inputs with a
relatively small number of lines. Your PC’s 104/105 keyboard usually has a
22 by 7 matrix connection to a microcontroller, which scans through the keys
and reports any key presses using the algorithms presented in this section.
Keyboards with a 100 keys or more are an extension of the four-button key
matrix shown in Fig. 10-23 and have the same concerns and issues to watch
out for.

You probably cannot see immediately how the individual keys or
buttons of the switch matrix shown in Fig. 10-23 can be polled, but the
operation will probably become clearer when you see the resistors and
transistors I’ve added to the switch matrix in Fig. 10-24.

CHAPTER 10 CGircuit Interfaces

Row0

/ H /7
Row1

/7 7/

Col0 Col1
Fig. 10-23. Simple switch matrix.

PE L

Row1

N—

Column0 Control

Column1 Control

[,

Fig. 10-24. Switch matrix with 1/O circuitry.

In this case, by connecting one of the columns to ground, if a switch is
closed, the pull down on the row will connect the line to ground. When the
row is polled by an I/O pin, a “0”” or low voltage will be returned instead of a
*“1” (which is what will be returned if the switch in the row that is connected
to the ground is open due to the pull up on it). To scan the keyboard, the
column transistors are turned on, one at a time, and while the column
transistor is on and the column is pulled to ground, the rows are compared to
a logic level of “0”, which would indicate that the button is pressed.

This methodology for handling switch matrix keypad scans I've
outlined here probably seems pretty simple. Depending on your familiarity
with programming and different microprocessors and microcontrollers, you
will probably realize that implementing these functions could be done
even simply in assembly language programming or “C”. You should
also realize that this code would be quite difficult to implement just using
logic chips.

To avoid the complexities of trying to develop TTL logic that will carry
out the functions described in the pseudo-code presented above, I normally

\@’_ PART TWO Digital Electronics Applications

Vec OQut0 Out! Out2 Out3 _OE DA Col0 Colf
[e] [77] [we] [75] [3a] [i57 [72] [77] [70]

)

Ll el 11 e a1 el L[L[l L=
Row0O Row1 Row2 Row3 Osc Key Col3 Col2 Gnd
Mask

Fig. 10-25. 74C922 switch matrix keypad decoder chip pinout.

4x4 Switch
Matrix Keypad 74C922
Dat:
Row0 - DA —’A\?a&illable
Row3 Out0 - Out3 » Data

IO e —

Col0 - Col3 Cosc
Key

Mask | =

Fig. 10-26. Basic 74C922 wiring.

use the 74C922 keypad decoder chip (Fig. 10-25). This chip can be used to
debounce and encode up to 32 buttons (although 16 is the normal maximum)
and carries out button debouncing internally as well as keeping track of two
currently held-down keys when new keys are pressed. The 74C922 is quite
easy to wire to a four by four (16 button) switch matrix keypad, as shown in
Fig. 10-26. By ““doubling up” rows of sensors of the 74C922, you can add
a number of additional keys to the application. In the next section, I will
show how this is done to create a 20 button input device (with up to
32 possible).

The two capacitors are used to create a relaxation oscillator within the
chip that is used to ‘‘scan” through the buttons as well as provide a

CHAPTER 10 CGircuit Interfaces

“debounce” delay count for the application. The two capacitor values are
calculated as:

Cosc = Scan Rate/10 K
Ckbd = 10 *Cosc

I like a debounce interval of 20 ms: plugging this into the formulas above,
I get a value of 2 uF and 20 uF. When I build my own applications, I tend
to have a lot of 10 uF (for power filtering) and 1 uF (for MAX232 RS-232
level converters) electrolytic capacitors on hand. I have not found any prob-
lems with using these components and I would recommend that you use them
as well to avoid having to stock multiple capacitor values for different
applications.

1. What are ideal sequential circuit interfaces?
(a) LCDs
(b) Individual switches and LEDs
(c) Keyboards
(d) USB flash disks

2. What is the suggested digital electronics interface to an Hitachi
44780 controlled LCD display?
(a) Hardware state machine
(b) Microcontroller
(¢) Sequential circuit
(d) Combinatorial circuit

3. Is a bus “Read” or “Write” faster?
(a) Write is faster
(b) Read is faster
(c) Using a synchronous clocked circuit, they take the same
amount of time
(d) Read is slower due to the need to retrieve data from the inter-
face device

4. Seven-segment LED displays have a common:
(a) LED anode or cathode
(b) Segment pins

_\®

Quiz

@’_ PART TWO Digital Electronics Applications
(c) LED drivers built into the package

(d) Pin interface that is used by all devices, regardless of the num-
ber of digits in the package

5. Multiple seven-segment LED displays show different values by

using:

(a) Linear feedback shift registers that have encoded the bit pat-
terns

(b) Turning on each individual digit with its unique value periodi-
cally

(c) Multiple LED driver circuits that drive the value for its respec-
tive digit to the LED display

(d) Multiple bits of memory, one for each segment, which are
loaded according to the display value

6. For a PWM circuit running its logic at Svolts and a duty cycle of
67%, what is the “on” voltage level of the output signal?
(a) 0.67volts
(b) 5Svolts
(c) 2/3volts
(d) 3.35volts

7. The power dissipated by a PWM running with a 20% duty cycle will
be what fraction of a 100% duty cycle?

(a) 0.04
(b) 40%
(c) 04
(d) 400%
8. A 555 monostable with R=100k and C of 4.7 uF will output a
pulse of:

(a) Approximately 0.5s
(b) Approximately 4.7 s
(c) Approximately 1.1s
(d) Insufficient data given to determine the pulse width

9. Rows and columns in a switch matrix keypad have what connected
to them?
(a) The rows have a transistor connected to ground and the
columns have a capacitor
(b) The columns have transistors connected to ground and the rows
are left open

CHAPTER 10 Circuit Interfaces _\@

(c) The columns are left open and the rows have a transistor con-
nected to ground

(d) The columns have transistors connected to ground and the rows
have pull up resistors

10. The 74C922 reads a switch matrix keypad by:

(a) Pulling the columns of a switch matrix keypad to ground and
scanning the rows for pulled down bits

(b) Driving a 1kHz square wave on the rows and polling the
columns for the signal

(c) Using an internal microprocessor

(d) Measuring the capacitances of individual lines and looking for
changes

CHAPTER

Reading Datasheets =

I’ve never understood why college and university courses do not give an
introductory course in reading digital electronic device datasheets. Despite
how prepared you are for them, you will feel quite overwhelmed the first time
you have to look through a number of datasheets trying to find a part that
meets your requirements. When I first started working with electronics,
datasheets were generally quite poor, with only a few standout companies
providing good documentation for their chips. Fortunately, this has changed
over the past 10 years, the Internet and the capability of downloading good-
quality datasheets being almost a marketing tool to help engineers select the
parts they are going to use in their designs.

Personally, I find it more daunting to look at datasheets over the Internet
because they are generally encoded as Adobe Acrobat pdfs that take a while
to load and you can never flip the pages on the screen as fast as you would
like. To make matters worse, it can be very difficult to put multiple datasheets
up on a computer display to allow you to compare the features of the
different chips. This difficulty gives rise to the most important recommenda-
tion that I can make about downloading datasheets from the Internet — print
them out! I have several binders of printed out datasheets for parts that
I often use. By printing them out, I have immediate access to them and I can

@l_

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

CHAPTER 11 Reading Datasheets _\@
flip back and forth between pages effortlessly. It is my opinion that
documentation shouldn’t be “paperless”.

The first sheet of the datasheet is usually a one page description of the part.
It normally contains:

1. Part number

High-level part description

Part pinout

Common/related/pin compatible parts
Important chip features

6. Basic operations truth table

el

When looking at a datasheet, you should first check out the part number of
the datasheet versus what you are interested in. This means that you should
be checking not only the numeric code for the device but also the high-level
identifier and the technology identifier. For example, if you were looking for
a low-power TTL dual input NAND gate and looked up the datasheet based
on a web search for “TTL dual input NAND”, you could see such diverse
part numbers as:

74LS00
74C00
54L500
74W00
74ALS03

with the question being: Which is the one that you want?

For these parts the high-level identifier is the “74” or ““54”. In this book,
I have focused on the 74 series of logic — but if you look at 54" series logic
you will see that its operation is identical and may decide to go ahead and
order the parts. This could be a big problem because ““54” series parts are
military-grade chips and they tend to cost 10 times that of standard “74”
series logic and do not necessarily have the same pinout as ““74” series chips.
The technology identifier is the letter code between the high-level identifier
and the part number. In the list of five chips above, I have presented
traditional TTL low-power logic (“LS”), CMOS logic (*“C), advanced
Shottkey low power (‘““ALS”) and single gate CMOS (““W”’). The danger of
not reading the datasheet’s part number is that you could end up ordering the
wrong part number, resulting in higher than expected costs and lost time
looking up and reordering the correct part.

Always read through the datasheet’s first page high-level part number
description. This can range from a single sentence to four or five bulleted

@o’_ PART TWO Digital Electronics Applications
items. Like the part number check, this should just be a filter operation,
resulting in you making sure the part will do essentially what you want
it to do.

The part pinout is something that is critical to know when you are wiring
a circuit. Except for the wiring experiments presented in this book, I have
listed only a few part pinouts because a part’s pinout may vary between
manufacturers of the same part and they may vary according to the
packaging type. The part pinout may also change according to packaging
technology. It isn’t unusual to see a pin through hole (PTH) packaged
chip with a specific pinout but its surface mount technology (SMT)
sibling having extra pins or different connections to different pin numbers.
I’'m sure that both of these statements are a bit hard to understand;
you might be thinking that the part numbers are standard. I wish I could tell
you how many times I have been bitten by these two little traps. Circuit
design systems also make assumptions about part pinouts based on the
pinouts from specific manufacturers and don’t bother checking the pinouts
from others.

The important chip features listed on the front page of the datasheet will
not list the features of the chip to the lowest possible level, but it will give you
some ideas about how the chip works and if there are any issues that could be
a problem with you using the chip in your application.

A lot of times you will discover that a part will not have exactly the
functions that you want but, by checking the datasheet, it may list related
parts that provide a similar function that you can take a look at. Finally,
for very simple chips, the front page of the datasheet will present you
with truth tables describing the operation of the chip or the different parts
of the chip.

The front page of a chip’s datasheet can be incredibly useful to you and by
spending a few minutes familiarizing yourself with it, you can decide whether
or not the chip is appropriate for your application without having to delve
into the minutia of the following pages.

Chip Operating Characteristics

An important feature of the datasheet is the ““operating characteristics’ for
the chip. This section of the datasheet explains such operating parameters as:

1. Input pin voltage thresholds and currents
2. Output voltages along with current source and sinking capabilities

CHAPTER 11 Reading Datasheets

_\@9

Test Vee
Point
o
To Unit R,
Under
Test

Fig. 11-1. Sample chip test circuit.

3. Gate delay timing
4. Expected input and output pin line impedances
5. Miscellaneous operating information.

Each chip datasheet lists the logic thresholds, along with their characteristics
when subjected to different parameters. Often you will see a two-axis graph,
with a curve showing the chip characteristic response to the changing input
parameters. This part of the drawing should not be difficult to understand
but what can be confusing is the small schematic marked as a “‘test circuit”
that often accompanies the graph. An example of such a schematic is shown
in Fig. 11-1; it shows the circuit that was connected to the pin while the test
was taking place. These test circuits simulate other circuits connected to
the chip, helping to ensure that the chip is operating as it would in a typical
application.

The output voltage and current characteristics are really a function of
the logic technology used and not unique to the individual chip’s pins.
If you were to read other datasheets of chips built from the same
technology you would discover that the output parameters are the same
between the two chips and, by extrapolation, all the chips built from this
technology. If you were to search the manufacturer’s web site, you would
discover that this information has been published for all parts in the
technology family and the information in the chip’s datasheet is really
redundant. The reason why the information is repeated in the individual
chip’s datasheets is to minimize the amount of cross-checking that you will
have to do.

The previous comment could be made about gate delay timing but there
is a wrinkle in the specification in the datasheet. Is the quoted ‘“‘gate delay”
for the chip function or for the individual basic technology gate (i.e. the
“NAND” gate for TTL)? Normally, the datasheet will list the chip

@’_ PART TWO Digital Electronics Applications
function gate delay instead of the basic technology gate delay because the
actual gate delay is probably less than the product of the basic gate delay time
multiplied by the number of gates the signal has to pass through.

As you learn more about electronics, you learn that not only do wire
connections have resistance but they also have capacitance and impedance.
All these factors affect the transmission of data signals and are known by the
term ‘‘characteristic impedance”. Printed circuit boards (PCBs) have a
characteristic impedance of 55 (the coax cable that sends signals to your
TV has a characteristic impedance of 75%). The input and output pins
must be designed to match with the 55Q PCB characteristic impedance to
ensure that signals pass between pins as efficiently as possible.

All these chip characteristics and any miscellaneous data that the chip
manufacturer feels important enough to include should be read through and
understood in order to best wire a chip into your application circuit.

IEEE Logic Symbols

When you look at some datasheets, you will see the function of the chip
described using a graphical system that is different from the one that I have
used in this book. Instead of unique shapes for each gate, they are
represented as a rectangular block like the one in Fig. 11-2. These blocks are
part of the “IEEE Standard Graphic Symbols for Logic Functions”. This
standard is often used to describe the operation of a chip instead of the
graphical symbols that I have used in the book.

The IEEE gate definition contains a single character to indicate what the
function is. Table 11-1 lists the basic characters and their functions. For
negated outputs and inputs, the gate pin modifiers presented in Fig. 11-3
are used. Note in Table 11-1, only the four unique gate functions are listed —
NAND and NOR gates are represented with the gate modifiers shown
in Fig. 11-3.

Output

Inputs Logic Function

Fig. 11-2. Basic IEEE logic gate symbol.

CHAPTER 11 Reading Datasheets

Table 11-1 Four basic IEEE
logic functions.

IEEE gate symbol | Gate type
& AND
| OR
! NOT
" XOR
Normal
— Normal Input Output =
— (Assuming (Assuming —
Inputs to Left) Outputs to
Right)
N Active Low Input Inverted b——
Output
Bi-Directional ; N
<> . Active Low
1/0 Pin Output
Clock/Dynamic Bi-Directional
—D <>
Input I/0 Pin

Fig. 11-3. 1EEE logic gate pin modifiers.

For the complete IEEE logic symbol definition, I suggest that you
download and printout ANSI/IEEE Std 91a-1991 from:

http://www.ee.ic.ac.uk/pcheung/teaching/eel_digital/logic symbols.pdf

This document outlines the conventions used to identify each of the
different functions used to describe different logic functions in the IEEE
standard format. This method of presenting chip functions may seem to be
rather difficult to decode when you first see it, but after you’ve worked with it
a while, it will become second nature to you.

Having said this, I would suggest that you avoid working with these
symbols until you are very familiar with working with digital electronics.
The standard graphic symbols have been well thought out and are

http://www.ee.ic.ac.uk/pcheung/teaching/ee1_digital/logic symbols.pdf

@’_ PART TWO Digital Electronics Applications
immediately recognizable when you are first learning to work with digital
electronics and logic gates. The IEEE symbols can be difficult to
distinguish when you are first starting out and you can very easily get

yourself into trouble if you misread a symbol or forget the purpose of a
pin modifier.

Power Usage and Fanouts

An important consideration for selecting a chip is the amount of power
dissipated. This information is necessary not only for the individual gate but
also for the complete application. The sum of all the power is the total power
needed by the application and this value will dictate the power methodology
used as well as the cooling requirements for the final product. While not
explicitly a correlation, you will find that the more power a logic technology
uses, the more external inputs that can be driven (this is the technology’s
“fanout™).

When you look at a chip’s current (which is related to its power)
consumption, remember to look at not only the current required to power the
gate but also at maximum input sinking and output sourcing or sinking.
These currents should all be added together to get the worst-case power
consumed by the chip. I have seen a number of products where the designer
expressed the power consumption by what he thought was a “typical case”
and found out that the actual current consumption is somewhat higher and
the specified power supply did not have sufficient margin for the product
to work reliably.

Along with the current consumption, the datasheet should also specify
the number of input pins the chip’s output pins can drive. It is important to
note that the number of input pins quoted is the same technology as the chip.
When you are mixing technology, you will have to understand the
input current requirements of the input pins and, as “‘a rule of thumb”,
make sure that the total current drawn by the input pins does not exceed 50%
of the total sinking current capability of the output pin. This will ensure
that the logic functions will be at the correct levels regardless of the
circumstances.

Actually, I would recommend that for your first applications, you never
drive more than three inputs from a single output and strive to drive no more
than two outputs in the design. Marginal signals due to overloaded output
pins are very difficult to recognize from the failure symptoms and difficult
to confirm when the problem is suspected.

CHAPTER 11 Reading Datasheets

_\®
Quiz

1. What isn’t on the first page of the datasheet?
(a) Part number
(b) Part pinout
(¢) Chip cost
(d) Important chip features

2. What is the technology identifier in the part number “74S174”?

(a) 174
(b) 74
(c) 74S
d S

3. What parameter isn’t a chip operating characteristic?
(a) Gate delay timing
(b) Chip logic function
(¢) Input pin voltage thresholds and currents
(d) Expected input and output pin line impedances

4. The chip gate delay specification
(a) Is for ideal conditions
(b) Is for the basic technology gate delay
(c) Is for the chip function
(d) Is for the NAND gate delay

5. 1EEE symbols
(a) WiIill replace the standard graphical symbols
(b) Represent negative output functions by placing a symbol on the
output pin
(c) Isused to define all chips
(d) Are only used for basic logic gates

6. Starting out using IEEE symbols
(a) Is a bad idea as the symbols are not immediately recognizable
(b) Is the recommended way to learn about digital electronics
(c) Will help you design highly optimized digital electronics
circuits
(d) Will encourage you to buy from manufacturers that properly
document their products

@’_ PART TWO Digital Electronics Applications
7. When planning for the current consumption of a product, which
current specification should be ignored?
(a) Standby current
(b) Output low current sink

(¢) Input low current drain
(d) None

8. The maximum number of inputs a single output can drive is:
(a) Determined by the total current drawn by the inputs
(b) Three in all cases
(c) The output sink current specification divided by the average
input current drain
(d) Infinite

CHAPTER

Computer Processors

and Support

I’'m sure that you realize that computer processors are really just a great big
sequential circuit, but I'm sure that you have no idea where to start
understanding how they work. Traditional computer processors are designed
using a selection of six or so basic design philosophies that give them different
characteristics. In this chapter, I will introduce you to the different issues that
have to be confronted in designing computer processors, along with some of
the technologies that have been developed to support them.

From a high level, computer processor architects choose from making the
processors “RISC” (“Reduced Instruction Set Computers” —pronounced
“risk”) based or “CISC” (““‘Complex Instruction Set Computers’) based.
CISC processors tend to have a large number of instructions, each carrying
out a different permutation of the same operation (accessing data directly,
through index registers, etc.) with instructions perceived to be useful by the
processor’s designer while RISC systems minimize the instruction set, but
give them as much flexibility and access as much of the memory in the system

_\@

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

®’_ PART TWO Digital Electronics Applications
as possible. CISC processors also have the same requirement, but by
definition, they are designed to simplify the amount of manipulation that is
required by the programmer. Both computer types have their advantages and
disadvantages — the RISC tends to be easier to design and executes
instructions faster while the CISC tends to be easier to program but may be
cumbersome in implementing some functions.

The second option processor designs have came from a competition
between Harvard and Princeton universities to come up with a computer
architecture that could be used to compute tables of naval artillery shell
distances for varying elevations and environmental conditions. Princeton’s
response was for a computer that had common memory for storing the
control program as well as variables and other data structures. It was best
known by the chief scientist’s name “John Von Neumann™. Figure 12-1 is a
block diagram of the Princeton architecture. The “Memory Interface Unit™ is
responsible for arbitrating access to the memory space between reading
instructions (based upon the current Program Counter) and passing data
back and forth with the processor and its internal registers. In contrast,
Harvard’s response (Fig. 12-2) was a design that used separate memory
banks for program storage, the processor stack and variable RAM.
By separating the data and program memories and avoiding the need
to arbitrate data movements between them, there was an opportunity
for programs to execute faster in Harvard’s computer.

It may at first seem that the Memory Interface Unit of the Princeton
architecture is a bottleneck between the processor and the variable/ RAM
space—especially with the requirement for fetching instructions at the
same time. In many Princeton architected processors, this is not the case
because of the time required to execute an instruction is normally used

Memory
Space

. Instruction
Program Decode
ROM

Data, Memory

Variable 2997 Interface Processor and
RAM Ctrl | Unit Built-In Registers
Stack
RAM

Fig. 12-1. Princeton processor architecture.

CHAPTER 12 Processors and Support

_\®

Control
Space Data
Addr Instruction
Program| G| Decode Register
Memory l Space
PC Stack
Data
Proqessor and Addr
Register »
Interface Ctri

Fig. 12-2. Harvard processor architecture.

to fetch the next instruction (this is known as ‘‘pre-fetching”). Other
processors (most notably the processor in your PC) have separate program
and data “caches” that can be accessed directly while other address accesses
are taking place.

The Princeton architecture won the competition because it was better suited
to the technology of the time. Using one memory was preferable because of
the unreliability of then current electronics (this was before transistors were in
widespread general use): a single memory and associated interface would have
fewer things that could fail. The Harvard architecture is really best for
processor applications that do not process large amounts of memory from
different sources (which is what the Von Neumann architecture is best at) and
be able to access this small amount of memory very quickly.

Once the processor’s instruction set philosophy and architecture have been
decided upon, the design of the processor is then passed to the engineers
responsible for implementing the design in silicon. Most of these details are
left ““‘under the covers” and do not affect how the application designer
interfaces with the application. There is one detail that can have a big effect
on how applications execute, and that is whether or not the processor is a
“hardcoded” or “microcoded” device. Each processor instruction is in fact a
series of instructions that are executed to carry out the instruction. For
example, to load the accumulator in a processor, the following steps could
be taken:

1. Output Address in Instruction to the Data Memory Address Bus
Drivers.

2. Configure Internal Bus for Data Memory value to be stored in
Accumulator.

3. Enable Bus Read.

@o’_ PART TWO Digital Electronics Applications
4. Compare Data read in to zero or any other important conditions

and set bits in the “STATUS” Register.
5. Disable Bus Read.

A microcoded processor is really a computer processor within a processor.
In a microcoded processor, a “‘state machine” executes each different instruc-
tion as the address to a subroutine of instructions. When an instruction is
loaded into the “Instruction Holding Register”, certain bits of the instruction
are used to point to the start of the instruction routine (or microcode) and
the “uCode Instruction Decode and Processor’ Logic executes the microcode
instructions until an “instruction end” is encountered. This is shown
in Fig. 12-3.

A “hardwired” processor uses the bit pattern of the instruction to access
specific logic gates (possibly unique to the instruction) which are executed as
a combinatorial circuit to carry out the instruction. Figure 12-4 shows how

Program
Program Counter
Memory
Processor Control
Instruction Holding Instruction uCode
Register "uCode" Instruction
Memory Decode
Instruction Ctr &
Clock "Processor" |

I Microcontroller "Instruction Decode"

Fig. 12-3. Microcoded or state machine processor instruction decode circuitry.

Program

Program
Memory 9

Counter

Processor Control

| Instruction Holding

/DE Mu. \

Register .
Execution
. Logic
Instruction
Clock
L Hardwired "Instruction Decode" N

Fig. 12-4. Hardwired processor instruction decode circuitry.

CHAPTER 12 Processors and Support _\@0
the instruction loaded into the Instruction Holding Register is used to initiate
a specific portion of the “Execution Logic” which carries out all the functions
of the instruction.

Each of the two methods offers advantages over the other. A microcoded
processor is usually simpler than a hardwired one to design and can be
implemented faster with less chance of having problems at specific
conditions. If problems are found, revised “‘steppings” of the silicon can be
made with a relatively small amount of design effort. The hardwired
processor tends to execute instructions much faster but is much harder to
modify.

IEEE754 Floating Point Numbers

When I introduced binary numbers earlier in the book, I discussed binary
integers, but I did not discuss how binary “‘real” numbers were produced or
how they were manipulated in workstation processors. It should not be a
surprise to discover that binary floating point numbers are analogous to
decimal floating point numbers.

For example, if you were going to convert decimal 7.80 to binary,
you would first convert the value equal to or greater than one to binary.
Decimal 7 becomes B’0111°, leaving decimal 0.80 to convert. This is
accomplished by knowing that decimal fraction digits are multiplied by
negative exponents of the base 10. The same methodology can be used for
binary numbers.

To convert decimal 0.80 to a binary fraction, I will start with the exponent
*“—1” which is equal to 0.5 decimal and test to see if it can be removed from
the fraction. Since it can, my binary number becomes B’0111.1" with a
remainder of 0.30. Going to the next negative exponent (“—2"°), I discover
that I can subtract this value, giving me the binary value B’0111.11".
Continuing this on for another four bits, the binary value is B’0111.110011°.
It’s interesting to see that the binary number is irrational; the bit pattern will
change the smaller the fraction that is calculated even though the decimal
number ends at the first digit after the decimal point.

This method can be expressed as the “C” function, which converts the
floating point number to a binary string:

BinaryFraction(float Value, char® BinaryValue)
{ // Convert the Floating Point Value to
// astringpointed to by BinaryValue

@’_ PART TWO Digital Electronics Applications

int i, k;
int j = 0;
BinaryValue(j ++) = "B’; BinaryValue(j ++)="\"";
// Initialie Binary String
for(i =0; (2<<i) < =vVvalue; i+ +);
//Find Most Significant Bit
// of Value’s Integer Value

for(;il!=-1; 1i—-)
if ((Value —(2<<i))>=0)
{ // Take Away Binary Value

Value =Value — (2<<i);
BinaryValue (j ++4+)="17;
} else // Can’t take anything away
BinaryValue (J ++4+)= "07;
BinaryValue (J++4)="."; //Find fractional value
// to 4 digits
for(I=1,k=0; k<4; i++,k++)
if (Value — (1 /(2<<i)) >=0)
{ // Can take away binary fraction
Value =Value — (1 / (2<<1));
BinaryValue (3 +4)="17;
} else
BinaryValue(j ++)= "0";
BinaryValue(j++)="\""; //Close Binary String
BinaryValue(j ++) = "\0";
} // End BinaryFraction
This operation can be performed within high-performance processors (like
the Intel Pentium), but instead of producing a string of characters represent-
ing binary data, they generally put them into the IEEE754 format, which

stores the floating binary value in a format which is similar to that of
“Scientific Notation:

(Sign) Mantissa x 2™ (Exponent Sign) Exponent

The “Mantissa’ is multiplied by the signed exponent to get values less than
or greater than one.

CHAPTER 12 Processors and Support _\®

Table 12-1 IEEE754 data sizes.

Data format Data range Data size
Long word +/—9.2(10**18) 8 Bytes
Packed BCD +/—10**17 8 Bytes
Single precision real +/—10**38 to +/— 10**—-38 4 Bytes

Double precision real +/—10**308 to +/— 10**—308 8 Bytes

Extended precision real | +/— 10%¥*4932 to +/— 10**—4932 | 10 Bytes

Table 12-1 lists the data formats supported by the Intel Pentium. These
different formats give you a lot of flexibility to work with a wide range of
numbers in different applications. All the number formats can be processed
together, with the final result being in the most accurate format (i.e. a “word”
and “‘single precision” combined together will have a result as a single
precision number).

Memory Types

A number of different memory types are currently available. In this
introduction, I will first show you three different technologies and discuss
where (and why) they are used in a computer system. The boot up,
non-volatile memory used in a computer system is based on ultraviolet light
“Erasable PROM” (“EPROM?”) program memory (Fig. 12-5) and was first
introduced in the late 1960s. An EPROM memory cell consists of a transistor

Metal Layer

[Control] SiO; Insulating
Float Layer

Silicon Substrate

Py ———

Fig. 12-5. MOSFET EPROM memory cell.

@’_ PART TWO Digital Electronics Applications
that can be set to be always “on” or “off”’. Figure 12-5 shows the side view of
the EPROM transistor.

The EPROM transistor is a MOSFET-like transistor with a “floating”
gate surrounded by silicon dioxide above the substrate of the device. ““Silicon
dioxide™ is best known as “‘glass” and is a very good insulator. To program
the floating gate, the “Control” gate above the floating gate is raised to a
high enough voltage potential to have the silicon dioxide surrounding it to
“break down” and allow a charge to pass into the floating gate. With a
charge in the floating gate, the transistor is turned “on” at all times, until the
charge escapes (which will take a very long time that is usually measured in
tens of years).

An improvement over UV erasable EPROM technology is “Electrically
Erasable PROM” (“EEPROM"’). This non-volatile memory is built with the
same technology as EPROM, but the floating gate’s charge can be removed
by circuits on the chip and no UV light is required. There are two types of
EEPROM available. The first type is simply known as “EEPROM” and
allows each bit (and byte) in the program memory array to be reprogrammed
without affecting any other cells in the array. This type of memory first
became available in the early 1980s.

In the late 1980s, Intel introduced a modification to EEPROM that was
called “Flash™. The difference between Flash and EEPROM is Flash’s use of
a bussed circuit for erasing the cells’ floating gates rather than making each
cell independent. This reduced the cost of the EEPROM memory and
speeded up the time required to program a device (rather than having to erase
each cell in the EEPROM individually, in Flash the erase cycle, which takes
as long for one byte, erases all the memory in the array).

For high-speed storage, data is saved in ““Static Random Access Memory”
(““SRAM”’) which will retain the current contents as long as power is applied
to it and is known as ““volatile” memory. This is in contrast to the “EPROM”
or Flash, which does not loose its contents when power is taken away but
cannot have its contents changed as easily as “SRAM?”. Each bit in a
SRAM memory array is made up of the six transistor memory cell, as shown
in Fig. 12-6. This memory cell will stay in one state until the “Write Enable”
transistor is enabled and the write data is used to set the state of the
SRAM cell.

The SRAM cell could be modeled as the two inverters shown in Fig. 12-7.
Once a value has been set in the inverters’ feedback loop it will stay there
until changed. Reading data is accomplished by asserting the read enable line
and inverting the value output (because the “read” side contains the inverted
“write” side’s data). The driver to the SRAM cell must be able to
“overpower” the output of the inverter in order for it to change state.

CHAPTER 12 Processors and Support

—E&

Vce
Write p) q Read
Enable | Enable
Write 1 f 1 Read

Pl
i
T

Fig. 12-6. MOSFET SRAM cell.

Write Inverter
Ejile Output = Write
Write _|_|_' Read
Data Eji'e
‘ L [| Read
Data
Inverter

Output = !(!Write) = Write

Fig. 12-7. Equivalent circuit to SRAM cell.

To Sense Amps/

Drivers
Input/
Output _”:
Control
—1__ Memory
~—] Capacitor

Fig. 12-8. DRAM memory cell.

The outputs of the inverters are usually current limited to avoid any
backdriving concerns.

Large, inexpensive and reasonably high-speed memory can be built from
“Dynamic Random Access Memory” (“DRAM?) cells. You may have heard
the term ‘“Single Transistor Memory Cells” for descriptions of DRAM
and that’s actually a pretty good description of each cell, which is shown
in Fig. 12-8.

@’_ PART TWO Digital Electronics Applications

In DRAM memory cell, the transistor is used as a switch to allow a charge
to be moved into or out of the capacitor. For a write, the transistor is turned
on and a charge is either pushed into or pulled out of the capacitor. When the
transistor is turned off, the charge is trapped in the capacitor and cannot
change until the transistor is turned on again.

A DRAM read is accomplished by turning on the transistor and any
charge that is in the capacitor will leak out and will be detected and amplified
by a “Sense Amplifier”’. The “Sense Amp” is a metastable flip flop that will
be set to the state of the capacitor when the transistor switch is closed. Before
the transistor is turned on when writing to the cell, the sense amp will be set
to a specific state to load the correct charge into the capacitor.

In a DRAM memory chip, the cells are arranged in rows and columns,
as shown in Fig. 12-9. To address each cell within the chip, a row/column
address for the element in the array has to be provided. Usually, to save pins
on the DRAM chips, the row and column address lines are shared
(multiplexed) together so that during a read or a write, first the “Row” is
selected and then the “Column”.

The row is selected first so that if a write is taking place the sense amp for
the row can be set to the specific value. All the other sense amps are set in
their metastable state. When the Column address is latched in, the transistors
for the array row are turned on. Next, when the row address is available, the
“Input”/*“Output Control” transistor is turned on, then the read/write takes

N
Sense
Amp
U P e
Py
L [L£L | £ | L | L& ®Q
- B B B B Sense 85}
A ~
"i "i —|i "i "i-'- = =c
I ||| |Z >g%
- B B B B Sense =
Amp o
T
I ||| |Z ° =
- - - - - []
[}
~
\ /

Vv
Column Enable

Fig. 12-9. DRAM cell array.

CHAPTER 12 Processors and Support

Inm mgoing

_\@

"Stack"

Fig. 12-10. Data stack operation.

place. For the cells not being written to, the sense amps will not only read
what the charge is in the capacitor but will also “refresh” it as well.

This is a very good thing in DRAM because the capacitor is actually a MOS
transistor built into the chip, acting as a capacitor. Over time, any charge
in this capacitor will leak away into the silicon substrate. By periodically
“refreshing” the charge by performing a read (which will cause the sense amps
to amplify the charge), the contents of the memory will never be lost.

Refreshing is typically done by enabling all the transistors in a column
(without first specifying a row) and letting the sense amps do their thing. A
read of an incrementing column address is usually implemented in the
DRAM support hardware and is known as a “CAS (“Column Address
Strobe’”) Only Refresh”. In the original PC, 5% of the processor bandwidth
was lost due to DRAM refresh requirements. To overcome these potential
deficiencies, PC designers have come up with a few hardware features.

Along with being arranged as simple, single-dimensional arrays of data,
memory can also be built into “‘stacks” (Fig. 12-10). Processor stacks are a
simple and fast way of saving data during program execution. Stacks save
data in a processor the same way you save papers on your desk and is known
as “last in/first out” (“LIFO”) memory. As you are working, the work piles
up in front of you and you do the task that is at the top of the pile.

Power Supplies

It is surprising to many people that you can add a simple voltage regulator to
power your projects for just a few dollars; cheaper than a set of rechargeable
batteries. Voltage regulators, powered by an AC/DC “Wall wart” power
converter, will convert one DC voltage to another that can be used by
the electronics in your circuit and, more importantly, will be tolerant of
changes in the AC supply and the current load. In this section, I will

288

* SEm

introduce you to some simple power supply circuits that have the following
characteristics:

PART TWO Digital Electronics Applications

1. They are safe for their users and designers.
They are relatively efficient in terms of the amount of power that is
lost converting voltage levels.

3. They provide very accurate voltage levels, independent of the voltage
input or the current required by the application.

4. They are inexpensive.

5. Their design can be optimized for the application that they are
providing power for.

6. These supplies source up to 1 amp of current.

The power supply ideas presented here are very appropriate for the simple
circuits discussed in this book; the 250 watt power supply used for your
PC requires methodologies and circuits for producing this much power
that are quite a bit different than what is required for the simple power
supplies presented here. Advanced degrees are normally required for properly
designing high current power supplies that work at high efficiencies.

There are some semiconductor-based circuits, like Zener diode power
supplies (Fig. 12-11) that do lend themselves to being modeled using water
analogs. The Zener diode power supply works as a shunt regulator —applying
a specified amount of current to a circuit at a rated voltage and shunting the
rest away as wasted power.

When the term “‘shunt” is used, it is simply saying that excess voltage and
current is turned away from the circuit. This concept can be illustrated with
a water pressure regulator created from a catch basin with a hole at the
bottom; water coming out of the hole is at a pressure which is determined
by the depth of water in the basin. To maintain this depth (and bottom
pressure), even though water is being drawn from the hole at the bottom,
“source” water is continually poured into the basin. More water is pouring in
than is expected to exit through the hole in the bottom, with the excess
leaking out over the side. This is exactly how the Zener diode works, except

;U

—— 9 Volt
——— Battery
5.1 Volt
Zener
Diode 330

Fig. 12-11. Zener 5.1 volt regulated power supply to LED.

CHAPTER 12 Processors and Support _\@
that extra current does not ‘“leak out over the side” but is passed (or
“shunted”) through the diode. The diode itself is expected to be reverse

biased when it is wired into the circuit and it will pass current through it to
maintain a set voltage level at its anode (positive terminal). This property is

known as “breakdown’ and it is not unique to the Zener diode. All diodes

will “breakdown” when a high enough reverse bias voltage is applied to

them. The breakdown voltage for a Zener diode is usually specified to be in

the range of 1.5-25 volts where the breakdown voltage for a typical diode

(say the 1N4148/1N914 that I usually use) is 75-100 volts.

Specifying a Zener diode for use as a power supply in an application isn’t
very difficult but it will require you to understand what your incoming power
specifications are as well as what the required current is for the circuit being
powered. The powered circuit’s voltage should be the same as the rating of
the Zener diode. For 5 volt circuits, I use a Zener diode rated at 5.1 volts.
Specifying the resistor that is to be used with the Zener diode as well as the
Zener diode’s power rating can be somewhat complex. Care must be taken to
ensure that the circuit has enough current to be powered in all circumstances,
including if the input power “sags” (if it is powered by a battery that is
discharging). To do this, some kind of “margins” must be designed into
the circuit.

For this experiment, I would like to use a 5.1 volt Zener diode to act as a
power supply for a LED circuit requiring approximately 10 mA to light the
LED. The circuit is shown in Fig. 12-11 and, before it can be assembled, the
value for the Zener diode’s current limiting resistor ‘R’ must be determined.
For a Zener diode power supply to be 100% efficient in terms of current (no
current is shunted through the Zener diode), R’ must be chosen so that the
voltage drop through it will allow the same amount of current as the powered
circuit uses to pass through it. In this application, I am going to assume that
the LED has a 2 volt drop, so using the basic electrical formulas, I can
determine the current through the LED:

i=V/R
=(5.1Vv—-2V)/330Q
=9.39mA

Assuming that the battery produces an even 9V, the value of R can be
calculated:

R=V/i
=(9V—5.1V)/9.39 mA
=415 Q

@o’_ PART TWO Digital Electronics Applications
There are no standard 415 Q resistors available, but I can make a 420
resistor using a 200 2 and a 220 2 in series. This will result in a current of
9.29mA (a difference of about 1% from the targeted value).

When I described the Zener diode regulator as acting like a basin of water
in which the unused current was simply lost, I'm sure that many people
grimaced because they knew of devices which are much better at regulating
fluid pressure. If this book was written in the 1980s (or earlier) just about
everybody would know about the commonly used fluid regulator that is used
in older cars called a carburetor (Fig. 12-12). Virtually all cars built in the
past 15 years have utilized some form of computer-controlled *“fuel injection”
which relies on active, rather than passive, control of the fuel being passed to
the engine.

The carburetor is a very clever device that only provides fuel on demand.
In Fig. 12-12, I have drawn the situation where no fuel is being drawn from
the carburetor—a ““float” is connected to a simple valve that closes when the
fuel in the bowl that the float is in is full. When fuel is drawn from the bowl,
the fuel level within the bowl drops (along with the float) and the valve opens,
allowing more fuel into the bowl (Fig. 12-13). The carburetor is quite efficient
and very simple in operation.

The carburetor acts as a regulator, just providing the volume of fuel
(current) as required and the shallow bowl will result in lower pressure
(pressure regulation) than what was available from the high-pressure
source (the fuel pump). An electrical version of the carburetor would look

High Pressure
Fluid Source Valve
/ Closed

—
Low
Pressure

=— "Regulated"
Output
Flow

Fig. 12-12. Carburetor with no fluid being drawn from the bowl.

High Pressure
Fluid Source Valve Open

t Fuel Entering Bowl
d % Low
> Pressure

=— "Regulated”
Output
Flow

Fig. 12-13. Carburetor in operation.

CHAPTER 12 Processors and Support _\@0

like Fig. 12-14; current from the high voltage source is switched through a
PNP bipolar transistor, with the control of the transistor being the output of
the comparator. The comparator’s inputs are the current voltage level of the
regulator’s output and the specific “output” voltage which comes from some
kind of voltage reference. The voltage reference is usually a Zener diode that
has a miniscule amount of current passing through it; the comparator does
not need a lot of current to operate.

Adding the current and temperature “‘crowbar” sensors is implemented
something like in Fig. 12-15. When either the current output or temperature
exceeds the preset limits, the reference voltage is pulled to ground using an
NPN transistor (remember that the voltage reference is very low current so
this can be done safely). In some regulators, if the current or temperature
parameters are exceeded, they “latch’ the failing state until power is removed
and the crowbar conditions are reset. The need for the current sense and shut
down should be pretty obvious to you; if the current drawn exceeds the

High Voltage
Source Transistor

Voltage b ("Valve")
Reference Comparator

Regulated
Voltage Out

Fig. 12-14. Linear voltage regulator block diagram.

Current Sensor
High Voltage @,

Source “1” Output When
Current > Max

Transistor
("Valve")

Voltage
Reference

Comparator

Regulated
Voltage Out

1l

2x Vref

Temperature Dependent
Resistor (Resistance Vref
Decreases With
Temperature)

Comparator

Fig. 12-15. Complete linear voltage regulator circuit.

@’_ PART TWO Digital Electronics Applications

maximum rating for the PNP transistor, it could be damaged. The
temperature sensor may be a bit more unexpected but shouldn’t be surprising
when you consider what is happening in the regulator when it is transforming
a high voltage into a lower one. The difference between the input voltage
and the regulated voltage multiplied by the current being drawn by the circuit
being regulated is the power dissipated by the regulator. For example, if you
had a 12 volt voltage source and a 5 volt regulator providing 200 mA current,
the power being dissipated by the regulator would be 1.4 watts. This level of
power dissipation could damage the internal circuitry of the regulator or, at
the very least, raise the temperature of the part so that it does not work as
designed.

The most popular linear voltage regulators that provide the crowbar
features are the 78xx and 78Lxx series. The 78xx (or the LM2940 series of
regulators which have the same pinout and package) shown in Fig. 12-16
(“xx’” standing for the voltage, so a 5 volt regulator is a ““7805°’) can normally
source up to 500 mA and up to 1 A with heat sinking. The heat sink is used to
dissipate the power and keep the temperature within the regulator less than
125°C, which is the crowbar temperature. For lower current applications
(up to 100mA), the 78Lxx (Fig. 12-17) can be used. For either device, the
input voltage should be at least 2 volts above the regulated output voltage.
When wiring the regulator in circuit, you should include at least 10 uF of
capacitance on the input and a 0.1 pF capacitor on the output.

While the Zener diode and linear power supplies presented so far in this
chapter are useful and easy to work with, they do have two concerns that can
make them problematic when they are being used in a battery-powered
application. First off, they require a higher voltage than the regulated output;
this can be an issue when you want to use very simple power like two AA cells

O

780x 780x__,
Label Label

Input Output
Gnd

Fig. 12-16. 780x voltage regulator chip pinouts.

CHAPTER 12 Processors and Support _\@

for a digital electronics circuit. Secondly, they are not terribly efficient. It isn’t
unusual for 80% or more of the power input to the Zener diode power supply
to be lost and 40% or more lost in the linear power supply. What is required
is a power supply circuit that is very efficient and will “‘step up” voltages.

While these two requirements seem impossible, they can actually be
achieved very easily through the use of the ‘“switch mode power supply”
(SMPS). The basic SMPS circuit (Fig. 12-18) is quite simple and relies on the
energy storing characteristic of the inductor or ““coil”’. While the capacitor
stores energy in the form of charge, the coil stores energy in the form of a
magnetic field which is maintained by current running through the coil.
When this current is shut off, the magnetic field produces a voltage “‘spike”
(which I called ‘“kickback™ when discussing magnetic devices) that can be
used as the basis for an output voltage.

Using the circled letters in Fig. 12-18, I have drawn the waveforms
(Fig. 12-19) that you can expect to see in the SMPS. The “Control” signal is a
PWM produced by a ‘“voltage controlled oscillator” (VCO). A voltage
controlled oscillator oscillates at a different frequency based on the voltage
at an input. The input to the VCO used in the SMPS is the output voltage

78L0x

78L0x
Lati Label
78L0x %\\\

Label

Output Gnd Input

Fig. 12-17. 78L0x voltage regulator chip pinouts.

VCO

Fig. 12-18. Basic switch mode power supply (SMPS).

PART TWO Digital Electronics Applications

@’_
Q)

~_ N N N

N I I\
© Regulated Output
Ground (0 Volts)

Fig. 12-19. Switch mode power supply operating waveforms.

of the power supply; the VCO frequency will change according to the power
supply output to ensure the output stays as stable as possible at the required
voltage. The output of the VCO is the base of a transistor that periodically
pulls one side of the coil to ground, allowing current to flow through it. When
the transistor connected to the coil is turned off, current flow through the coil
stops and the magnetic field “‘kicks back™, producing a higher voltage.

The operation of the VCO PWM output along with the coil’s response and
the output voltage is shown in Fig. 12-19. When the VCO is turning on the
transistor, the coil (symbol “L”’) is tied to ground and current flows through it.
When the transistor is off, the coil kickback can be seen and any voltage
greater than the current voltage output from the supply passes through
the diode and is stored in the output capacitor. As I said above, if the
output voltage is more or less than the target voltage, the VCO frequency
changes along with the transistor control PWM, bringing the output voltage
into line.

To determine the correct coil value as well as the PWM parameters, the
following three formulas are used once the output voltage (“V,u’) is known
along with the expected output current draw (“I,,”") and the input voltage
(“Vin”). These formulas are used repeatedly until the values for “L” (the coil
value), “T,,” (time the transistor is on) and “Tyg” (time the transistor is off)
are values that can be produced by reasonable hardware.

Tpeak = 2 X Iy X (Voue/Vin)
Tors = L X Tpeax/(Voue — Vin)
Ton = (Vout/vin) -1
Designing an SMPS is not a trivial exercise. While you may think you can do
it using something like a 555 timer, I'm going to recommend that you use a

commercially available chip that provides the function for you, like the
LT1173-5. This chip can be used to create 5 volts (neccesary TTL and

CHAPTER 12 Processors and Support

3 Volt to 5 Volt Step-Up Circuit g -
1N5818 °© 2 =
3 Volts A0 1 o 5 Volts . »n < O
in >t out [1[71[61[51
L[
llim Vin SW1
Sense 5
LT1174CN8-5 100 uF
Gnd SW2
— e e O
L T2 (3]1[4]
& = = Q]
= S = =2
n »

Fig.12-20. LT1174CNS8-5 switch mode power supply controller chip pinout and sample circuit.

many CMOS logic chips) from 3 volts, as shown in the basic circuit in
Fig. 12-20.

With the appropriate regulator selected, you now have to find a source of
DC current to power the application and regulator. By far the most popular
way of providing power to an electronic device is by simply plugging it into a
wall socket.

I must caution you that the power coming out of your wall socket can conceivably
destroy your application, cause a fire or hurt you (e.g. burns or electrocution).
Despite the fact that it is commonly used for appliances, light and electronic
devices in the home, electricity is not to be trifled with.

The circuits provided below may not be appropriate for where you live. The
information provided here is strictly “rule of thumb” and is primarily written
for use in North America. If you are going to design a power supply for a specific
country’s use, make sure you understand what are the characteristics of the
local power supply, along with any laws or regulations that are appropriate
when connecting to it.

Power coming from your wall sockets (“‘the mains”), comes in as either a 110
or 220 volts “‘peak-to-peak™ as a ‘‘sine wave” with a frequency of 50
or 60 cycles per second (or “hertz” (“Hz”)). In North America, power is
provided at 110120 volts peak-to-peak voltage (typically 115 volts) at 60 Hz.
Different countries around the world will use different peak-to-peak voltage
levels and operating frequencies.

This power coming in is normally provided by a *“‘socket”, which is built
into your walls. Figure 12-21 shows the layout of the socket and labels the

@’_ PART TWO Digital Electronics Applications
individual connections. ““Live” or “Hot” is the incoming alternating voltage
sine wave shown in Fig. 12-21. “Neutral” is the return path for this current,
while “Ground” is a shunt to “earth ground” if the circuit is damaged and
the live voltage is passed to the neutral connection. If these three signals are
being wired manually by convention, ‘“Live” is black, ‘““Neutral” is white and
“Ground” is Green.

Because the AC voltage coming from the ‘“mains™ is so high and has
positive and negative voltage components, it has to be converted into a lower
DC voltage for the electronics. This is done in three stages. The first is
reducing the voltage from more than 100 volts to 15 volts or less using a
“transformer”. A transformer (Fig. 12-22) is a device made up of two coils
that share their magnetic field. When current is passed through one coil, the
second coil will produce an ‘““inducted” voltage and current, which can be
used to power the circuit. Figure 12-22 also gives the relationship between the
voltage and current on the secondary side coil based on the number of turns
for each coil.

Note that the current is inversely proportional to the turns ratio. In North
America (which has 110volts AC), an 8:1 transformer is often used. This
means that with 110 volts in, there will be 14 volts out. For 220 volts, a 16:1
transformer should be used for the same voltage output.

While the voltage has been lowered, it is still “AC” and it is still going
positive and negative. This voltage has to be “‘rectified” into a straight

"Neutral” "Live"

Power In

"Ground"

Fig. 12-21. North American wall plug.

"Secondary"
Side

Electrical Characteristics:

Turns Primar econdary Current

= Voltage Primar =S
Turns Secondary = Voltage Secondary = Primary Current

Fig. 12-22. AC voltage transformer operation.

CHAPTER 12 Processors and Support _\@

DC voltage. This is done using diodes in either a “half wave” or “full wave”
rectifier. Full wave rectifiers transform the positive and negative “lobes” of
the AC circuit into a positive voltage, whereas the half wave rectifier ““clips”
the negative wave (providing half the total power available to the circuit).
Inputting the rectified signal directly from the diodes into a voltage regulator
should not be attempted; instead, a filtering electrolytic capacitor or a few
tens of pF should be used. The filtered signal output from the full wave
rectifier was shown in Chapter 3.

As long as the rectified signal does not drop below the minimum voltage of
the Voltage Regulator, the regulated DC voltage output will be constant. The
filtering cap should be a minimum of 10 pF with a good rule of thumb being
that for digital circuits; a 20 pF capacitor is required for each Amp of current
drawn. For DC electric motors, this value increases to 100 uF per amp drawn
to help prevent inductive “‘kickback™ “‘spikes” from being driven back
through the transformer to the mains circuit.

Using the transformer, full wave rectifier, an electrolytic filter capacitor
and a 7805 voltage regulator, a 45 volt 0.5 amp power supply for digital logic
applications could be created, as shown in Fig. 12-23. The voltage regulator
converts the rectified transformer-reduced AC voltage into a voltage that can
be used by the digital logic.

There are a few things to note in Fig. 12-23. The first is that the mains
ground is connected to the case and not to the “digital ground”. In any DC-
powered circuit, the negative terminal of the full wave rectifier can be called
“digital ground”, but should be left “floating” relative to “earth ground”,
which is provided by the AC plug. In this case, “‘digital ground” is simply a
common negative terminal for the circuit. I have put a “fuse” in the power
line, which will cut out in high current draw situations (like short circuits).

Vce
LED
"Power On"f
Indicator
220
= Vce
el T@—l
:D\/\ 14:1 10pF 0.1 F
| — Neutral Winding
AC Plug Gnd Ratio —— = = =

Fig. 12-23. Sample AC to 5 volt DC power supply for digital electronics.

®’_ PART TWO Digital Electronics Applications
It is rated at 0.1 amps, which may seem low, but remember that current
output is inversely proportional to the turns ratio of the transformer:
0.1 amps at 110 volts translates into 1.4 amps at 8 volts at the output.
Without this fuse, very large (and very dangerous) currents could build up
inside the circuit. For example, 2 amps at 110 volts translates to 28 amps at 8
volts or 224 watts of power. Along with the fuse, the “Switch” in the circuit
should be one that is certified for switching AC voltages. AC switches usually
have a mechanical assembly inside them that “‘snaps” the switch contacts on
and off. This minimizes “‘arcing’ within the switch. This may seem hard to
believe, but if you look inside an AC switch while it is opening or closing, you
will see a blue spark and sometimes hear a “pop”. This is caused by high
inductive voltages produced by the transformer coils that “kickback’™ when
the AC power is shut off.

If you do build mains power supply circuits, like this one, I recommend
that you use 14-gauge stranded wire for all connections. Connections should
consist of soldered connections (not household ‘“Marette” connectors) for
safety. ““Heat shrink tubing” should be placed over all solder joints and bare
wire. As well, only UL/CSA (or the local country testing organization)
approved plugs, wires, switches, fuse holders and transformers should be
used in a properly grounded metal case.

If any of these terms are unfamiliar to you or you doubt your ability to build the
circuit safely, then don’t build it!

Programmable Logic Devices

Programmable logic devices (““PLDs’’) are chips which have logic gates and
flip flops built in, but are not interconnected. The application designer will
specify how the gates and flip flops are interconnected in order to create a
portion of the application’s circuit. Most people feel that programmable logic
devices are a relatively new invention, but they have been around for many
years. It has only been quite recently (in the last 10 years or so) that reusable
chip technology (i.e. EPROM and flash)-based PLDs have been available at
prices hobbyists and small companies could afford.

There are several types of PLDs. The first is the simple array of logic gates
and devices that are built of this type are known as “PALs” and “GALs”
(I generically refer to them as “PALs”). The chips themselves are quite
simple and relatively easy to design circuits for. These circuits are normally
arranged as a ‘“‘sum of products”™ in which signals on the chip can be easily

CHAPTER 12 Processors and Support
D}

D)
D)
D)

LV AYRVIVAY

XK KXKX

Fig. 12-24. Simple unprogrammed programmable logic device (PLD).

interconnected to form more complex logic functions. The chips are normally
blocked out as a series of inputs and outputs, as shown in Fig. 12-24.

The vertical lines or ““busses” in Fig. 12-24 are referenced to the gates and
I/O pins they are connected to.

To form logic functions, the “sum of products” is used. In Fig. 12-24, a
simple 4 /O, 12 gate PAL is shown. Every output is driven on a bus in both
positive as well as negative format. Connections are made between the gates
and the busses to create logic functions.

For example, the “XOR” gate which is characterized by:

AXORB=A"B
= _AAND BOR A AND _B
=(A%*B)+(A*_B)

which is not often available in standard logic. Taking Fig. 12-24 and
connecting the busses to the different I/O pins and gates within the PAL,
I can implement the XOR gate, as shown in Fig. 12-25.

Note in Fig. 12-25, that an I/O pin changes from an input to an output by
simply connecting it directly to a gate output. This feature allows the pins to
be used as either input or output.

Options for PALs include varying numbers of inputs to the internal AND
and OR gates. For the PLD shown in Fig. 12-25, I have left open the option
that any of the pins can be used for any purpose. This is a bit unusual and,
normally in PALs, the number of inputs to a gate is restricted. Another

PART TWO Digital Electronics Applications

A * B

[B) I:i ?

= 11
D)

BitA

BitB

VY VRVIVAY

A~ B

Fig. 12-25. PLD programmed as an XOR gate.

option is to include built in flip flops to store states and turn the PAL from a
combinatorial circuit into a sequential one.

PALs may seem simple, but they can result in large decreases in the chip
count for an application. In some cases, PALs may be more expensive than
the chips they replace, but they reduce application power and board space
chip requirements. These savings could result in all-over product savings. It is
not unusual for 10 TTL chips to be replaced by a single PAL, resulting in
huge PCB and power supply cost savings.

At the high end of the programmable logic device family range, some
devices are virtually “ASICs” (“‘Application Specific Integrated Circuits™)
and use the same programming language (“VHDL”) and development tools
as ASICs. These complex parts generally have their functions broken up into
“macros”. An ASIC/PLD macro can be an AND, or XOR not, logic gate,
flip flops or collections of functions (such as multiplexors and arithmetic logic
units) which simplify the task of circuit development and eliminate the need
for wiring individual gates into basic functions.

The high-end programmable logic device’s programming information is
often directly transferable to the technology. This allows initial production to
use programmable logic devices that require little cost to program and, when
the design is qualified, ASICs can be built at a chip foundry for reduced per
unit costs.

Programmable logic devices have the advantage of being able to
implement fast (less than 10ns) logic switching, but they do not have the
ability to store more than a few bits of data.

CHAPTER 12 Processors and Support _\@0

Often, programmable logic devices are used in proprietary circuits because
their functions cannot be easily traced and decoded.

Programmable logic devices and ASIC development tools are generally
function text based as opposed to graphically based applications (like a
schematic drawing). This means that a text format, like the “XOR’’ definition
above, must be used to define the functions. Most “compilers” for these
statements are intelligent enough to pick the best gates within the device to
work with and pick the best paths without your intervention. They are
typically much more sophisticated (and expensive) than the compilers used
for converting high-level program statements into instructions for a
processor.

Quiz

1. The choices in processor design are:
(a) Intel vs AMD vs PowerPC
(b) CISC vs RISC, Princeton architecture vs Harvard architecture,
hardcoded instruction execution vs state machine instruction
execution
(c) TTL vs CMOS logic
(d) Speed vs minimal power consumption

2. Microcoded instructions are:
(a) Short instructions which take less time to execute
(b) Coded instructions that cannot be read by spies
(¢c) Instructions that are specific to a microprocessor
(d) State machine instructions outlining the steps needed to execute
an instruction

3. Decimal 47.123 in binary is:
(a) Invalid; you cannot perform this conversion
(b) B’101111.00011111°
(c) B’lI111.101111°
(d) Ox02F.1F7

4. Which statement is false? “Flash” memory cells:
(a) Are designed from EPROM memory cells
(b) Can be erased by applying an electrical voltage
(c) Are built from flip flops
(d) Are limited to 256 bits in size

@,—

10.

PART TWO Digital Electronics Applications

DRAM Memory is:

(a) Faster than SRAM memory

(b) Less expensive per bit than SRAM memory

(¢) More reliable than SRAM memory due to “‘refreshing”
(d) More expensive per bit than SRAM memory

What is not a feature of the DC/DC power regulators presented in
the book?

(a) They will convert AC to DC directly

(b) They have current limiting capability

(c) They have temperature limiting capability

(d) They have voltage “Brown out Reset” capability

With 12 volts coming in, the current limiting resistor for a 5 volt, 200
mA Zener diode:

(a) Insufficient information to calculate the resistor’s parameters
(b) 3.5, 10 watt

(c) 350 2, 1 watt

(d) 35,2 watt

A switch mode regulator needs the following components to work:
(a) Capacitors, diodes and inductor

(b) Capacitor, diode and PWM driver

(¢) Capacitors, diode, transistor, PWM driver and inductor

(d) Comparator, PWM driver, transistor and inductor

“PAL” is the acronym for:

(a) Pound and lever

(b) Peripheral aspect light

(c) Partial AND logic

(d) Programmable array logic

VHDL is used for:

(a) Defining PLD electrical parameters
(b) Defining PLD gate requirements
(c) Defining PLD gate operations

(d) Defining PLD speed parameters

CHAPTER

=PC Interfacing Basics

From a practical point of view, chances are you will be designing an interface
or enhancement to your PC. Most modern commercial devices utilize USB
ports, but you can still do a lot of interesting projects with the “‘legacy”
interfaces built into the PC. Along with this, a basic understanding of
your PC will help you understand how commercial products are designed and
may give you some ideas as to how you can design your own complex
applications.

The PC ““core” circuitry consists of the microprocessor, memory, the
interrupt controller and a DMA controller, as shown in Fig. 13-1. This set of
hardware can run any program or interface with hardware attached to this
“local bus”. While you may think of processor memory in terms of the
megabytes that were advertised when you bought the PC, there are actually
three different types of memory that are accessed.

The term “‘local memory” is kind of a loosely defined term that I use to
describe memory on the PC’s motherboard and not on external cards or
subsystems. There are a number of different kinds of memory used on the
motherboard, each with a different set of characteristic features. The first
type, “ROM” (“‘Read Only Memory”) is fairly slow and can only be read;
it contains the PC start up (“boot”) code. Next, there is what I will call

_\cﬁ)

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

PART TWO Digital Electronics Applications

@’_

p—|—|—>
Processor[«|= Local Bus
— |~ to External
] Peripherals
< |—> (Including
Int t
Bus | nterrupts)
Clock)
228
p (2] [5]
S|l
oRAM I <15 £
=II 8
-
ROM N
DMA[*—
8237 [—|>

Fig. 13-1. PC major device block diagram.

Bus
coc J UL UL UULLULLLL

|L2] brRAM | ROM |

Fig. 13-2. PC memory access time comparison.

“main memory”’, which is measured in tens or hundreds of megabytes
(and was prominently advertised when you bought your PC) and is
moderately fast.

The PC’s processor itself has ‘“‘cache memory” which runs at the
processor’s speed and, ideally, all execution takes place from this area as
this will help speed up the operation of the PC. Figure 13-2 shows the number
of clock cycles for the different cases of the PC’s processor reading from
cache memory (at full local bus clock speed), main memory (which has 50 ns
access time DRAMs) and ROM (150 ns access time). The importance of
being able to run entire applications from cache memory should be obvious
to you.

“DMA” stands for “Direct Memory Access’” and consists of a hardware
device that can be programmed to create addressing and control signals to
move data between devices within the system without involving the
processor. DMA is most typically used in the PC for moving data to and
from the disk drives.

Interrupts are hardware events, passed to the “8237 interrupt controller”
chip that requests the PC’s processor to stop what it is currently doing and

CHAPTER 13 PC Interfacing Basics _\qb

respond to the external request. This request does not have to be responded
to immediately and it is up to the programmer’s discretion to decide how to
respond to the request.

All PC systems have multiple busses for system expansion and improved
communications. Before going too much further, I should list the
characteristics of what a computer bus is. A computer bus is defined as
having:

1. A method for the controlling microprocessor to provide addresses
bus hardware for both memory and I/O access.

2. The ability of the cards to request interrupt and DMA processing by
the controlling microprocessor.

3. The ability to enhance the operation of the PC.

In a modern PC, there are usually three primary busses, each one delineated
by the access speed they are capable of running at and the devices normally
attached to them (see Fig. 13-3). The three busses have evolved over time to
provide data rates consistent for the needs of the different devices. You might
consider that there is a problem with cause and effect, but the busses and
devices attached to them have sorted themselves out over the years.

The “Front Side Bus” (usually referred to by its acronym “FSB”’) runs at a
very high speed specific to the processor. This is used by the processor to
access DRAM memory directly as well as provide an interface to the system
peripherals.

The “PCI” (“Personal Computer Interface”) Bus. This bus is not only a
staple of all modern PCs but is also available on many other system
architectures as well. This allows PCI bus cards to be used across a number of

Pentium
MPU

Py
HH
Z||®

ISA (8 MHz)

| Keyboard/
Mouse

"North
Bridge" [|

<
g
@
o

(S)DRAM
Memory

"South | _| Serial

Bridge"

— Parallel

Front Side Bus

PCI Bus (33 MHz)
j |

Disks

II — Diskette
| Slots []]

Fig. 13-3. Modern PC block diagram.

®’_ PART TWO Digital Electronics Applications
different systems and eliminates the need for designers and manufacturers to
replicate their products for different platforms. PCI is somewhat of a
“hybrid” bus, with some internal features of the PC (notably video and hard
file controllers) using the PCI busses built into the copper traces on the
motherboard as well as providing access to adapter cards in “‘slots”. PCI is
notoriously difficult to create expansion cards for. Along with the fairly high
data rate speed (33 and 66 MHz), there are data transfer protocols which
generally require an ASIC to decode and process bus requests.

The last bus interfaces the “legacy’ interfaces of the PC together and is
known as the “Industry Standard Architecture” (“ISA’) bus. This bus
typically has a data transfer speed of 125 ns — the same as the original PC/AT.
When you are interfacing digital electronic devices to your PC, chances are
the interface will be connected to this bus.

The Parallel (Printer) Port

When hardware is to be interfaced with the PC, often the first method chosen
is the “Parallel” (Printer) port. If I was being introduced to the PC for the
first time, I would probably look at this method first as well, but as I have
learned more about the PC, using the parallel port would actually be one of
the /ast methods that I would look at. The parallel port is really the most
difficult interface in the PC to use because it is really device (printer) specific,
has a limited number of I/O pins and is very difficult to time operations with
accuracy. The only reason why I would see applications using a parallel port
for interfacing is because, electronically, it does not need a level translator
and can connect directly to TTL/CMOS logic.

In the 1970s, the Centronics Corporation developed a 25 pin “D-Shell”
connector standard for wiring a computer to their printers. The early printer
interfaces in the PC, after sending a byte, would wait for a handshaking line
to indicate that the printer was ready for the next character before sending
the next one. As you could imagine, this method was very slow and took up
all the PC’s cycles in printing a file.

This “pinout” very quickly became a standard in the computer industry.
This connector consisted of an eight-pin data output port with strobe, four
control lines passed to the printer and five status lines from the printer, as
shown in Fig. 13-4. By the time the PC was being developed, this interface
was the de facto industry standard and was chosen by IBM to help make the
PC an “Industry” standard. When the printer port for the PC was being

CHAPTER 13 PC Interfacing Basics

——&

Data Bus
Data (DQ Data
Latch Pins Buffer
2-9
(Base+0) _Strb - (Base+0)
—OE S?ctl &
17
. Init
Control NS Control
Register P& FDXT |sn§n Buffer
(Base+2) i o - Bit 1] (Base+2)
i Bit 0
PE—— I1E(r)ror o'l>
wh—g|
Bit 4 -Sido Status
Busy |_Bit4 Buffer
oL 1% (Base+1)
—l 1l :
Parallel éﬁd Bit 6
PortIRQ |18-25 D
| _/-]=_ @

Fig. 13-4. PC parallel port wiring and pinout.

developed, little thought was given to enhancing the port beyond the then
current standard level of functionality.

To improve the functionality of the printer port, IBM, when designing the
PC/AT, changed the eight data bit output only circuitry to allow data bits
to be output as well as read back. This was accomplished by using
pulled up open collector outputs that were passed from the “Data Latch™ of
Fig. 13-4, to the 25 pin D-Shell connector and on to the “Data Buffer””, which
could read the eight bits and see if anything was changed.

When a read of the eight data bits takes place, the eight output bits
should all be “High” to allow the parallel port’s pull ups and the open
collector outputs of the peripheral device to change the state of the pins.
The bi-directional data capability in the PC/AT’s parallel port allowed
hardware to interface to the PC to be very easily designed. Further
enhancing the ease in which devices could be designed to work with the
parallel port was the standard timing provided by the PC/AT’s ISA bus
and BIOS.

Surprisingly, given this background, the biggest problem today with
interfacing to the parallel port is timing signals properly. Depending on the
different PCs that I have experimented with, I have seen parallel I/O port
read and write timings from about 700ns to less than 100ns. When you
design your interface to the IBM PC, you can either ignore the actual timings
of the parallel port and execute signals that are many milliseconds long,
“tune” the code to the specific PC you are working with or add a time delay

®’_ PART TWO Digital Electronics Applications
function, like a 555 wired as a monostable that the PC can poll from the
printer port to properly time its I/O operations.

There are three registers that you will have to access from your PC
program to control the parallel port. The “Control Register”, provides an
operating control to the external device as well as to the internal interrupt
function of the parallel port. The “Status Buffer” is read to poll the status
bits from the printer. The last register, called ““Data”, allows eight bits to be
written or read back from the parallel port. Starting at a parallel port (known
as “LPT” in the PC), the registers are addressed as shown in Table 13-1
relative to a ““‘Base’ address which is at 0x0378 and 0x0278 for “LPT1”” and
“LPT2”, respectively.

When the parallel port passes data to a printer, the I/O pins create the
basic waveform shown in Fig. 13-5. It is important to note that the Printer
BIOS routines will not send a new character to the printer until it is no longer
“Busy”. When “Busy” is no longer active, the “Ack” line is pulsed active,
which can be used to request an interrupt to indicate to data output code that

Table 13-1 PC LPT port registers.

Register | Address Function

Data Base + 0 | Read/Write 8 Data Bits

Status Base + 1 | Poll the Printer/Peripheral Status

Control | Base + 2 | Write Control Bits to Printer/Peripheral and LPT Port Hardware

/

Data : — : / :
1 1 /I 1
_Strobe _/ 1l !
| | |
_Busy | | II [T
| | | |
_Ack I ! |
Poll for Send I Wait for Data Byte Print
"Busy" Data to Complete

Complete * Byte

Fig. 13-5. PC parallel port write operation waveform.

CHAPTER 13 PC Interfacing Basics _\@@
the printer is ready to accept another character. The timing of the circuit for

printer applications is quite simple, with 0.5us minimum delays needed
between edges on the waveforms in Fig. 13-5.

Video Output

The first computer CRT display was the “vector” display in which the “X-Y”’
deflection plates moved the electron beam to a desired location on the screen
and then drew a line to the next location. This was repeated until the entire
image was drawn on the screen (at which time the process started over). This
was popular in early computers because only a modest amount of processing
power and video output hardware was needed to draw simple graphics.
Because of the way the vector displays operated, a complex image was often
darker than and could ““flash”” more than a “raster” (TV-like) display because
a simple image would require fewer vector “‘strokes’ and could be refreshed
more often. Vector displays enjoyed some popularity in early computer video
displays (including video games), but really haven’t been used at all for over
10 years.

Today, a more popular method of outputting data from a computer is to
use a “‘raster’ display, in which an electron beam is drawn across the cathode
ray tube in a regular, left to right, up and down, pattern. When some detail of
the image is to be drawn on the screen, the intensity of the beam is increased
when the beam passes a particular location on the screen, which causes the
phosphors to glow more brightly, as shown in Fig. 13-6. If you have an old

Electron Beam
e ~ Path = =— =

— e .

- =< |__Horizontal
TTTTL =T "Retrace”
— T —e — e —Ne— e—=e —

_ - — — — X)
= —e— — v _wv _3yx - Vertical
—_—,= o - —w — .S Retrace

_ -\\ J

Beam Intensity
Increased

Fig. 13-6. Video raster.

PART TWO Digital Electronics Applications

@’_

Data
Rate
Clock

}

Address Synch
Generator

VRAM

To Monitor

Character Shift
Generator | Register

Fig. 13-7. Basic computer video driver circuit.

black and white TV (or monochrome computer monitor), chances are you
can increase the “brightness”/““‘contrast” controls on a dark signal to see the
different features I've shown above.

All raster computer output hardware consists of a shift register fed by data
from a “Video RAM” (“VRAM?”). In Fig. 13-7, the data to be output is read
from the VRAM and then passed to a character generator, which converts
the data from the Video RAM into a series of dots appropriate for the
character. This series of dots is then shifted out to the hardware that drives
the raster on the video monitor. If graphical data is output, then the
“Character Generator” is not needed in the circuit and the output from the
VRAM is passed directly to the shift register. The shift register may also be
connected to a “DAC” (“Digital Analog Converter’’), which converts the
digital data into a series of analog voltages that display different intensities of
color on the display.

The addresses for each byte’s data to be transferred to the display are
accomplished by using an ‘“Address Generator”, which controls the
operation of the display (Fig. 13-8). The Address Generator divides the
“data rate” (the number of “‘pixels” displayed per second on the screen) into
character-sized ‘“‘chunks” for shifting out, resets address counters when the
end of the line is encountered and also outputs “Synch’ information for the
monitor to properly display data on the screen.

The circuit in Fig. 13-8 shows an example address generator for an 80
character by 25-row display. This circuit resets the counters when the end of
the line and ““field” (end of the display) is reached. At the start of the line and
“field”, horizontal and vertical synch information is sent to the monitor so
the new field will line up with the previous one.

I have presented this information on standard video inputs to give you
some background on how “NTSC” televisions work and what their input

CHAPTER 13 PC Interfacing Basics

_\@9

Data Clock

Column or » Row
Counter
Reset

Counter
Reset

VSynch » <10 |» HSynch

v v

\ AdderV /
v

VRAM Address

Fig. 13-8. Video RAM address generator.

Analog Data Digital Data
nmn n-..
06V

| I
| | Digital
I 53.3 us Vglltlaage

Threshold
| |
CRT Display Output

Fig. 13-9. Analog and digital video data output.

signals look like. “NTSC