
4 
COMBINATIONAL 

LOGIC DESIGN 
This chapter describes analysis and design of combinational logic circuits. Topics include 
BCD to seven-segment code converters, adders, subtractors, comparators, decoders, and 
multiplexers. An overview of ROMs, PLDs and hardware description languages is also 
included. 

4.1 Basic ConceDts 

Digital logic circuits can be classified into two types: combinational and sequential. A 
combinational circuit is designed using logic gates in which application of inputs generates 
the outputs at any time. An example of a combinational circuit is an adder, which produces 
the result of addition as output upon application of the two numbers to be added as inputs. 

A sequential circuit, on the other hand, is designed using logic gates and memory 
elements known as “flip-flops. ” Note that the flip-flop is a one-bit memory. A sequential 
circuit generates the circuit outputs based on the present inputs and the outputs (states) 
of the memory elements. The sequential circuit is basically a combinational circuit with 
memory. Note that a combinational circuit does not require any memory (flip-flops), 
whereas sequential circuits require flip-flops to remember the present states. A counter is 
a typical example of a sequential circuit. To illustrate the sequential circuit, suppose that 
it is desired to count in the sequence 0, 1,2, 3, 0, 1 ,. . . and repeat. In binary, the sequence 
is 00, 01, 10, 1 1, 00, 01, . . ., and so on. This means that a two-bit memory using two flip- 
flops is required for storing the two bits of the counter because each flip-flop stores one bit. 
Let us call these flip-flops with outputs A and B. Note that initially A = 0 and B = 0. The 
flip-flop changes outputs upon application of a clock pulse. With appropriate inputs to the 
flip-flops and then applying the clock pulse, the flip-flops change the states (outputs) to A 
= 0, B = 1. Thus, the count to 1 can be obtained. The flip-flops store (remember) this count. 
Upon application of appropriate inputs along with the clock, the flip-flops will change the 
status to A = 1, B = 0; thus, the count to 2 is obtained. The flip-flops remember (store) this 
count at the outputs until a common clock pulse is applied to the flip-flops. The inputs to 
the flip-flops are manipulated by a combinational circuit based on A and B as inputs. For 

I 

FIGURE 4.1 Analysis of a combinational logic circuit 
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example, consider A = 1, B = 0. The inputs to the flip-flops are determined in such a way 
that the flip-flops change the states at the clock pulse to A = 1, B = 1; thus, the count to 3 is 
obtained. The process is repeated. 

Inputs 
X Y 

0 0 
0 1 

1 0 
1 1 

4.2 

A combinational logic circuit can be analyzed by (i) first, identifying the number of inputs 
and outputs, (ii) expressing the output functions in terms of the inputs, and (iii) determining 
the truth table for the logic diagram. As an example, consider the combinational circuit in 
Figure 4.1 There are three inputs (X, Y, and Z) and two outputs (Z ,  and Z,) in the circuit. 

Let us now express the outputs F, and F, in terms of the inputs. The output F,  
of the AND gate #1 is F,  = xY. The output F2 of NOR gate #2 can be expressed as 
F2 = X + Y. The output of the XOR gate #3 is 

Because one of the inputs of the XOR gate #4 is 1, its output is inverted. Therefore, 

Finally, 

Therefore, 

Analvsis of a Combinational Lopic Circuit 

- 

F3 = X O  F,= ( X O H )  

Z , = E = X + Y .  

Z , = X O F 3 = X O ( X O x Y )  

z, = X O ( X * x y + X - x Y )  
= XO (X (X + r,, 
=XO(XY) 
=X(XY)  + X ( X r ,  
= X ( X + r ,  
=xY 

outputs 

4 z2 

0 0 
1 0 

1 0 
1 1 

TABLE 4.2 Truth Table for F 

A B C I F  
0 0 0 
0 0 1 

0 1 0 
0 1 1 

1 0 0 
1 0 1 

1 1 0 

1 1 1 1  0 
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to C 

Seven-Segment d 

Converter f 

Code 

g 
Common Cathode 

F = AB + BC + AB + BC 
= ( A  $ B ) +  (B e C )  

(a) K-map for F 

(b) Logic Diagram for the output,F 

FIGURE 4.2 K-map and the logic diagram for F 

Another way of determinig Z, is provided below: 
Z, = X O  F,= X 0 (XO XY,) = XO XO X Y =  0 0 (X y)= XY 

The Z, truth table shown in Table 4.1 can be obtained by using the logic equations for Z, 
and Z,. 

4.3 

A combinational circuit can be designed using three steps as follows: 
1) Determine the inputs and the outputs from problem definition and then derive the truth 

table. 
2) Use K-maps to minimize the number of inputs (literals) in order to express the outputs. 

This reduces the number of gates and thus the implementation cost. 
3 )  Draw the logic diagram 

'In order to illustrate the design procedure, consider the following example. 
Suppose that it is desired to design a combinational circuit with three inputs (A,  B, and 
C )  and one output F. The output F is one if A ,  B, and C are not equal ( A  # B # C); F = 0 
othenvise.First, the number of inputs and outputs are identified. There are three inputs ( A ,  
B, and C )  and one output, F. Next the truth table is obtained as shown in Table 4.2. F i n  the 
truth table of Table 4.2 is simplified using a K-map and implemented as shown in Figure 
4.2. Note that this is one of the solutions. There are more than one implementation for this 
problem. 

Design of a Combinational Circuit 

FIGURE 4.3 BCD to seven-segment code converter 
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Decimal 
Digit to be 
Displayed 

2 
4 
9 

4.4 MultiDle-Outout Combinational Circuits 

A combinational circuit may have more than one output. In such a situation, each output 
must be expressed as a function of the inputs. A digital circuit called the “code converter” 
is an example of multiple-output circuits. A code converter transforms information from 
one binary code to another. As an example, consider the BCD to seven-segment code 
converter shown in Figure 4.3. The code converter in the figure can be designed to translate 
the BCD inputs (W, X, Y,  and Z) to seven-segment code for displaying decimal digits. 
The inputs W, X, Y, and Z can be entered into the code converter via four switches as was 
discussed in Chapter 1. A combinational circuit can be designed for the code converter 
that will translate each digit entered using four bits into seven output bits (one bit for each 
segment) of the display. 

In this case, the code converter has four inputs and seven outputs. This code 
converter is commonly known as a “BCD to seven-segment decoder.” With four bits (W, 
X, Y, and Z), there are sixteen combinations (0000 through 11 11) of 1’s and 0’s. BCD 
allows only 10 (0000 through 1001) of these 16 combinations, so the invalid numbers 
(1010 through 11 1 1) will never occur for BCD and can be considered as don’t cares in K- 
maps because it does not matter what the seven outputs (a through g) are for these invalid 
combinations. 

The 7447 (TTL) is a commercially available BCD to 7-segment decodeddriver 
chip. It is designed for driving a common-anode display. A LOW output will light a segment 
while a HIGH output will turn it OFF. For normal operation, the LT (Lamp test) and BI/ 
RBO (Blanking Input / Ripple Blanking Input) must be open or conntected to HIGH. The 
7448 chip, on the other hand, is designed for driving a common-cathode display. 

BCD Input Bits I Seven-Segment Output Bits 

W X Y Z a b c d e f g  
0 0 1 0 1  1 0 1 1 0 1  
0 1 0 0 0 1  1 0 0  1 1 
1 0 0 1 1  1 1 0 0  1 1 

i) K-map for a: a = W Z + x  ii) K-map forb : b = X k Z +  W Z + f i Z  

= Z(xT+xr> + wz 
=Z(XO Y)+m 
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, I  

i) K-map for a: a = WZ+m 

iii) K, -map for c: c = X r Z +  wz 

_ _  
v) K-map for e: e = X Y Z  

ii) K-map forb : b =X?Z+ WZ+&'z 

= Z(XY+xY) + wz 
= Z ( X S  r)+ wz 

_ _  
iv) K-map for d: d =XYZ 

vii) K-map for g 
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Decimal Digit 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
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Input BCD Code Outmt Grav Code 
W x Y Z f3 h fi Al 
0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 1 
0 0 1 0 0 0 1 1 
0 0 1 1 0 0 1 0 
0 1 0 0 0 1 1 0 
0 1 0 1 0 1 1 1 
0 1 1 0 0 1 0 1 
0 1 1 1 0 1 0 0 
1 0 0 0 1 1 0 0 
1 0 0 1 1 1 0 1 

$3 or/ 
- 
Z 

viii) Logic diagram assuming both true and complemented values of the inputs are 
available. 

FIGURE 4.4 BCD to seven-segment decoder for decimal digits 2,4, and 9 

To illustrate the design of a BCD to seven-segment decoder, consider designing 
a code converter for displaying the decimal digits 2, 4, and 9, using the diagram shown in 
Figure 4.3. First, it is obvious that the BCD to seven-segment decoder has four inputs and 
seven outputs. Table 4.3 shows the truth table. 

For the valid BCD digits that are not displayed (0, 1,3,5,6,  7, 8) in this example, 
the combinational circuit for the code converter will generate 0’s for the seven output bits 
(a through g). However, these seven bits will be don’t-cares in the K-map for the invalid 
BCD digits 10 through 15. Figure 4.4 shows the K-maps and the logic diagram. 

K-map forf3 

h = W  

b) K-map forb 

f2= W + X  
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Inputs 

X Y 
0 0 
0 1 
1 0 

c) K-map forfi d) K-mapforfo 

f ,  =xy+xY f o = r z + r z  
= X @  Y = Y @ Z  

Outputs Decimal 
Value 

C S 
0 0 0 
0 1 1 
0 1 1 

Z fo 

e) Logic diagram for Example 4.1 

FIGURE 4.5 

Examde 4.1 
Design a digital circuit that will convert the BCD codes for the decimal digits (0 through 
9) to their Gray codes. 
Solution 
Because both Gray code and BCD code are represented by four bits for each decimal digit, 
there are four inputs and four outputs. Table 4.4 shows the truth table. Note that 4-bit binary 

K-maps and Logic Circuit for Example 4.1 

to Bits be { 1 -jzr, S (Sum) 

added c (Carry) 

Block Diagram of a Half-Adder FIGURE 4.6 

TABLE 4.5 Truth Table of the Half-Adder 
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Outputs Decimal 
Value 

FIGURE 4.7 Logic diagram of the half-adder 

X Y Z 

0 0 0 
0 0 1 

combination will provide 16 (24) combinations of 1’s and 0’s. Because only ten of these 
combinations (0000 through 1001) are allowed in BCD, the invalid combinations 1010 
through 11 11 can never occur in BCD. Therefore, these six binary inputs are considered 
as don’t cares. This means that it does not matter what binary values are assumed by 
X f o  for WXYZ = 1010 through 11 11. Figure 4.5 shows the K-maps and the logic 

circuit. 

C S 
0 0 0 
0 1 1 

4.5 TvDical Combinational Circuits 

0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 

This section describes typical combinational circuits. Topics include binary adders, 
subtractors, comparators, decoders, encoders, multiplexers, and demultiplexers. These 
digital components are implemented in MSI chips. 

4.5.1 
When two bits x and y are added, a sum and a carry are generated. A combinational circuit 
that adds two bits is called a “half-adder.’’ Figure 4.6 shows a block diagram of the half- 
adder. Table 4.5 shows the truth table of the half-adder. From Table 4.5, S = + 6 = x 

Binary / BCD Adders and Binary Subtractors 

oy,c=xy 

0 1 1 
1 0 2 
0 1 1 
1 0 2 
1 0 2 

Figure 4.7 shows the logic diagram of the half-adder. 
Next, consider addition of two 4-bit numbers as follows (next page): 

FIGURE 4.8 

TABLE4.6 

s ( S W  ;=m=: Adder C(0utputCany) 

Block diagram of a full adder 
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Final Carry = 0 4 
This addition of two bits will generate a sum and a carry. The carry may be 0 or 1. Also, 
there will be no previous carry while adding the least significant bits (bit 0) of the two 
numbers. This means that two bits need to be added for bit 0 of the two numbers. On the 
other hand, addition of three bits (two bits of the two numbers and a previous carry, which 
may be 0 or 1) is required for all the subsequent bits. Note that two half-adders are required 
to add three bits. A combinational circuit that adds three bits, generating a sum and a carry 
(which may be 0 or l), is called a “full adder.” Figure 4.8 shows the block diagram of a full 
adder. The full adder adds three bits, x, y ,  and 2, and generates a sum and a carry. Table 4.6 
shows the truth table of a full adder. _ _  - -  _ _  

From the truth table, S = xyz+xyz+qz++yz  = & +G) ;+ (xy + ;>) z 
Letw=;y+x>thenw=xy+xy.  Hence, S = w z + w z = w O z = x 0 y 0 z  
Also, from the truth table, C = ?yz + .xiz + xys + xyz = $y + xy)z + xy(z + i) 

where w = 

- -  

= wz +xy 
+xp) = x  B y .  Hence, C = (x 0 y ) z  + xy. 

Another form of Carry can be written as follows: 
C = $22 G z  + J$ + xyz = &z + Gz + xys + q z  + xyz+ xyz (Adding redundant terms xyz) 

=yz (x + x)+ xz 0, +?) + xy (2 + Z )  =yz  + xz + xy 
Figure 4.9 shows the logic diagram of a full adder. 
Note that the names half-adder and full adder are based on the fact that two half- 

adders are required to obtain a full adder. This can be obtained as follows. One of the two 
half-adders with inputs, x and y will generate the sum, So= x @ y and the carry, C,, = xy. The 
sum (So) output can be connected to one of the inputs of the second half-adder with z as 

FIGURE 4.9 Logic diagram of a 

yl 

c, 
= Final 

caw s. 
s, Output 

full  adder 

Y 2  X l  Y ,  x i  

1 

FIGURE 4.10 4-bit binary adder using one half-adder and three full adders 
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Y ,  x3 Y2 1 2  Y ,  X I  Y o  x o  

G 
= Flnal 

FIGURE 4.11 Four-bit binary adder using full adders 

the other input. Thus, the sum output (S) and the carry output (C, ) of the second half-adder 
will be S = x 0 y 0 z and C, = (x 0 y)z. The carry outputs of the two half-adders can be 
logically ORed to provide the carry (C) of the full adder as C = (x 0 y)z + xy. Therefore, 
two half-adders and a two-input OR gate can be used to obtain a full adder. 

A 4-bit binary adder (also called “Ripple Carry Adder”) for adding two 4-bit 
numbers x3 x, x1 x, and y ,  y2y1  yo can be implemented using one half-adder and three full 
adders as shown in Figure 4.10. A full adder adds two bits if one of its inputs C, = 0. 
This means that the half-adder in Figure 4.10 can be replaced by a full adder with its C,, 
connected to ground. Figure 4.1 1 shows implementation of a 4-bit binary adder using four 
full adders. 

From Chapter 2, addition of two BCD digits is correct if the binary sum is less 
than or equal to 1001,(9 in decimal). A binary sum greater than 1001, results into an 
invalid BCD sum; adding 01 lo2 to an invalid BCD sum provides the correct sum with an 
output carry of 1. Furthermore, addition of two BCD digits (each digit having a maximum 
value of 9) along with carry will require correction if the sum is in the range 16 decimal 
through 19 decimal. A BCD adder can be designed by implementing required corrections 
in the result for decimal numbers from 10 through 19 (1010, through 1001 12). Therefore, 
a correction is necessary for the following: 
i) If the binary sum is greater than or equal to decimal 16 (This will generate a carry of 

one) 
ii) If the binary sum is 1010, through 1 1 11,. For example, consider adding packed BCD 

numbers 99 and 38: 
1 1 1 +Intermediate Carries 

99 1001 1001 BCD for 99 
+38 001 1 1000 BCD for 38 
137 1101 000 1 invalid sum 

+0110 +0110 add 6 for correction 
0111 + 001 1 - 000 1 

w 
1 3 7 t correct answer 137 

This means that a carry (C,J is generated: i) when the binary sum, S3S,S,So= 
1010, through 11 1 1, or ii) when the binary sum is greater than or equal to decimal 16. For 
case i), using a K-map, C, ,  = S,S,+ S, S, as follows (next page): 
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S 

Hence, C,, = S,S,+ S2S3 = S, (S, + S,). Combining cases i) and ii), C, = C,+ S, 
(S, + S,). This is implemented in the Figure 4.12. 

Note that C, is the output carry of the BCD adder while C, is the carry output 
from the first binary adder. When C, = 0, zeros are added to S3S,S,S,. This situation 
occurs when S,S,S,S, is less than or equal to 1001,. However, when C,= 1, the binary 
number 01 10 is added to S,S,S,S,using the second 4-bit adder. This situation occurs when 
S,S,S,S, is greater than or equal to binary 1010 or when S,S,S,S, is greater than or equal to 
16 decimal. The carry output from the second 4-bit adder can be discarded. Note that BCD 
parallel adder for adding n BCD digits can be obtained using n BCD adders by connecting 
the output carry ( C, ) of each low BCD adder to C, of the next BCD adder. 

Next, half-subtractor and full-subtractor will be discussed. Similar to half-adder 
and full-adder, there are half-subtractor and full-subtractor. Using half- and full-subtractors, 
subtraction operation can be implemented with logic circuits in a direct manner. A half- 
subtractor is a combinational circuit that subtracts two bits generating a result (R) bit and 
a borrow (B) bit. The truth table for the half-subtractor is provided below: 

x (minuend) y (subtrahend) B (borrow) R (result) 
0 0 0 0 
0 1 1 1 
1 0 0 1 
1 1 0 0 

The borrow (B) is 0 if x is greater than or equal to y; B = 1 if x is less than y. 
From the truth table, 
A full  -subtractor is a combinational circuit that performs the operation among three bits 
x - y - z generating a result bit (R) and a borrow bit (B). The truth table for the full- 

R = x y + x = x 0 y and B = x y. 

A B 
4 4 

4-BiT ADDER 

4 SUM(BCD) 

FIGURE 4.12 BCD Adder 
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subtractor is provided below: 
X Y z B (Borrow) 
0 0 0 0 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 

R (Result) 
0 
1 
1 
0 
1 
0 
0 
1 

From the above truth table, the following equations can be obtained: 
R = x 0 y 0 z and B = x y + x z + yz. 
It is advantageous to implement addition and subtraction with full-adders since both 
operations can be obtained using a single logic circuit. 

4.5.2 Comparators 
The digital comparator is a widely used combinational system. Figure 4.13 shows a 2-bit 

Two-bit 

Comparator 

A > B  

A = B  

A < B  

FIGURE 4.13 Block diagram of a two-bit comparator 

TABLE 4.7 Truth Table for the 2-Bit Comi 

0 0 0 0 
0 0 0 1 
0 0 1 0 
0 0 1 1 
0 1 0 0 
0 1 0 1 
0 1 1 0 
0 1 1 1 
1 0 0 0 
1 0 0 1 
1 0 I 0 
1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 

-ator 

Outputs 
G E 1 

0 1 0 
0 0 1 
0 0 1 
0 0 1 
1 0 0 
0 1 0 
0 0 1 
0 0 1 
1 0 0 
1 0 0 
0 1 0 
0 0 1 
1 0 0 
1 0 0 
1 0 0 
0 1 0 
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K-map for G: 

111 

K-map for L: 

a) K-maps for the 2-bit comparator 

lk 
I+- - G 

n 

b) Logic Diagram of the 2-bit comparator 

FIGURE 4.14 Design of a 2-bit comparator 
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digital comparator, which provides the result of comparing two 2-bit unsigned numbers as 
follows: 

hJx& 

E XI XO 

0 X X 

1 0 0 

1 0 1 

1 1 0 

Input Comparison Outputs I G  E L 

Outauts 

d0 dl 4 d3 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 0 1 0 

Table 4.7 provides the truth table for the 2-bit comparator. 
Figure 4.14 shows the K-map and the logic diagram: 

1 1 1 

4.5.3 Decoders 
An n-bit binary number provides 20 minterms or maxterms. For example, a 2-bit binary 
number will generate 4 (22) minterms or maxterms. A decoder is a combinational circuit 
, when enabled, selects one of 2" minterms or maxterms at the output based on the input 
combinations. However, a decoder sometimes may have less than 2" outputs. For example, 
the BCD to seven-segment decoder has 4 inputs and 7 outputs rather than 16 (24) outputs. 

The block diagram of a 2-to-4 decoder is shown in Figure 4.15. Table 4.8 provides 

0 0 0 1 

Decoder 
E 

(Enable) 

FIGURE 4.15 Block diagram of the 2-to-4 decoder 

E G d 3  

FIGURE 4.16 Logic diagram of the 2-to-4 decoder 
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x3 - 

x 2 -  

XI- 

X0- 

Enable- 

2-to4 1 
Decoder 2 

I 

FIGURE 4.17 Implementation of a 4-to-1 6 Decoder Using 2-to-4 decoders 

the truth table. In the truth table, the symbol Xis the don’t care condition, which can be 0 or 
1. Also, E = 0 disables the decoder. On the other hand, the decoder is enabled when E = 1. 
For example, when E = 1, x, = 0, xo =0, and the output do is HIGH while the other outputs 
d,, d2, and d, are zero. Note that do = EC 5, d, = E g x , ,  d2 = Ex, z, and d3 = Ex, xo. 
Therefore, the 2-to-4 line decoder outputs one of the four minterms of the two input 
variables x, and xo when E = 1. In general, for n inputs, the n-to 2“ decoder when enabled 
selects one of 2” minterms or maxterms at the output based on :he input combinations. The 
decoder actually provides binary to decimal conversion operation. Using the truth table 
of Table 4.8, a logic diagram of the 2-to-4 decoder can be obtained as shown in Figure 
4.16. Large decoders can be designed using small decoders as the building blocks. For 
example, a 440- 16 line decoder can be designed using five 2-to-4 decoders as shown in 
Figure 4.17. 

SUM 
3 

CARRY 
--+ 

Note that the bubble 0 at the decoder 
output indicates LOW when selected. 

- 
FIGURE 4.18 Implementation of a Full-adder Using a 74138 Decoder and Two 4-input 

AND Gates 
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Commercially available decoders are normally built using NAND gates rather 
than AND gates because it is less expensive to produce the selected decoder output in its 
complement form. Also, most commercial decoders contain one or more enable inputs to 
control the circuit operation. An example of the commercial decoder is the 74HC138 or 
the 74LS138. This is a 3-to-8 decoder with three enable lines G, , G,, , and G. When 
G, = H, G,, = L and G,, = L, the decoder is enabled. The decoder has three inputs, C, B ,  
and A ,  and eight outputs Yo, Y,, Y,, ..., Y,. With CBA = 001 and the decoder enabled, the 
selected output line Y, (line 1) goes to LOW while the other output lines stay HIGH. 

Because any Boolean function can be expressed as a logical sum of minterms, a 
decoder can be used to produce the minterms. A Boolean function can then be obtained 
by logical operation of the appropriate minterms. However, since the 74138 generates a 
LOW on the selected output line, a Boolean hnction can be obtained by logically ANDing 
the appropriate minterms. For example, consider the truth table of the full adder listed in 
Table 4.6. The inverted sum and the inverted carry can be expressed in terms of minterms 
as follows: 

SUM= m(O,3,5,6), SUM= mO* m3 m, m6 
_ _ _ _  

hg& 

do d, d2 4 
1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

_ _ _ _  
CARRY = m(0, 1,2,4), CARRY = m, m, m2 m4 

Outputs 

XI XO 

0 0 

0 1 

1 0 

1 1 

Figure 4.18 shows the implementation of a full adder using a 74 138 decoder (C=X, 
B=Y, A=Z) and two 4-input AND gates. Note that the 74138 in the Manufacturer’s data 
book uses the symbols C, B, A as three inputs to the decoder with C as the most significant 

hg& 

d0 dl 4 4 
1 0 0 0 

X 1 0 0 

X X 1 0 

X X X 1 

2 -4 Encoder px,, 

Outputs 

XI XO 

0 0 

0 1 

1 0 

1 1 

FIGURE 4.19 

TABLE 4.9 

Block diagram of a 4-to-2 encoder 

Truth Table of the 4-to-2 Encoder 

TABLE 4.10 
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c) Logic diagram 

FIGURE 4.20 K-maps and logic diagram of a 4-to-2 priority encoder 

bit and A as the least significant bit. 

4.5.4 Encoders 
An encoder is a combinational circuit that performs the reverse operation of a decoder. An 
encoder has a maximum of 2" inputs and n outputs. Figure 4.19 shows the block diagram 
of a 4-to-2 encoder. Table 4.9 provides the truth table of the 4-to-2 encoder. 

From the truth table, it can be concluded that an encoder actually performs 

2 z b z  S 

FIGURE 4.21 Block diagram of a 2-to-1 multiplexer 

TABLE 4.11 Truth Table of the 2-to-1 Multiplexer 

do d, Z 
0 0 0 
0 1 0 
1 0 1 
1 1 1 
0 0 0 
0 1 1 
1 0 0 
1 1 1 
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FIGURE 4.22 (a) K-map for the 2-to- 1 MUX 

d, doiz S 

FIGURE 4.22 (b) Logic diagram of the 2-to-1 MUX 

decimal-to-binary conversion. In the encoder defined by Table 4.9, it is assumed that only 
one of the four inputs can be HIGH at any time. If more than one input is 1 at the same time, 
an undefined output is generated. For example, if d, and d2 are 1 at the same time, both xo 
and x, are 1. This represents binary 3 rather than 1 or 2. Therefore, in an encoder in which 
more than one input can be active simultaneously, a priority scheme must be implemented 
in the inputs to ensure that only one input will be encoded at the output. 

A 4-to-2 priority encoder will be designed next. Suppose that it is assumed that 
inputs with higher subscripts have higher priorities. This means that d3 has the highest 
priority and do has the lowest priority. Therefore, if do and d, become one simultaneously, 
the output will be 01 ford,. Table 4.10 shows the truth table of the 4-to-2 priority encoder. 
Figure 4.20 shows the K-maps and the logic diagram of the 4-to-2 priority encoder. 

4.5.5 Multiplexers 
A multiplexer (abbreviated as MUX) is a combinational circuit that selects one of n input 
lines and provides it on the output. Thus, the multiplexer has several inputs and only one 
output. The select lines identify or address one of several inputs and provides it on the 
output line. Figure 4.21 shows the block diagram of a 2-to-1 multiplexer. The two inputs 
can be selected by one select line, S. When S = 0, input line 0 (do) will be presented as the 
output. On the other hand, when S = 1, input line 1 (d,) will be produced at the output. 

Table 4.1 1 shows the truth table of the 2-to-I multiplexer. From the truth table, 
using the K-map of Figure 4.22 (a), it can be shown that Z = Sd, + Sd,. Figure 4.22 (b) 
shows the logic diagram. In general, a multiplexer with n select lines can select one of 2“ 
data inputs. Hence, multiplexers are sometimes referred to as “data selectors.” 

A large multiplexer can be implemented using a small multiplexer as the building 
block. For example, consider the block diagram and the truth table of a 4-to-1 multiplexer 
shown in Figure 4.23 and Table 4.12 respectively. The 4-input multiplexer can be 

FIGURE 4.23 Block-diagram Representation of a Four-input Multiplexer 
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TABLE 4.12 Truth Table of the 4-to-1 Input Multiplexer 
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FIGURE 4.24 Implementation of a Four-Input Multiplexer Using 
Mu1 tiplexers 

Only Two-input 

FIGURE 4.25 Implementation of a Boolean equation using a 4-to-1 multiplexer 

implemented using three 2-to-1 multiplexers as shown in Figure 4.24. 
In Figure 4.24, the select line So is applied as input to the multiplexers MUX 0 and 

MUX 1. This means that Zo = do or d, and Z, = d2 or d3, depending on whether So = 0 or 1. 
The select line S, is given as input to the multiplexer MUX 2. This implies that Z = Zo if S, 
= 0; otherwise Z = Z,. In this arrangement if S,So = 1 1, then Z = d3 because So = 1 implies 
that Zo = d, and Z, = d3 because S, = 1, the MUX 2 selects the data input Z,, and thus Z = 

d3. The other entries of the truth table of Table 4.12 can be verified in a similar manner. 
Multiplexers can be used to implement Boolean equations. For example, consider 

realizing f(x,y,z)= xz+ yz using a 4-to-1 multiplexer. First, the Boolean equation for f(x,y,z) 
is expressed in minterm form as follows: f(x,y,z)=xz(y+S;) + yz (x + x)= xyz + x i  ;+ xyz + 
x yz. The next step is to use two of the three variables (x,y,z) as select inputs. Suppose y 
and z are arbitrarily chosen as select inputs. The four combinations ( y z, yz,yz, yz) of the 
select inputs, y and z are then required to be factored out of minterm form for f(x,y,z) to 
determine the inputs to the 4-to-1 multiplexer as follows: f (x,y,z)= y z(x) +yz (0) +yz(x) 
+yz ( x + x) = 5 z(x) + Tz (0) +y?(x) +yz (1). Hence, the above equation for f(x,y,z) can be 
implemented using the 4-to-1 multiplexer of Figure 4.23 as follows: S,= y, So= z, do=x, 
d,=O, d2=x, d3=l. Figure 4.25 shows the implementation. 

Next, consider implementing f(a,b,c) = Em (0,2,3,7) using the 4-to-1 multiplexer 
of Figure 4.23. The first step is to obtain a table as follows: 

- 
_ _ _  - 
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a b c  f 
0 0 0  1 
0 0 1  0 6: 

0 1 0  1 
0 1 1  1 f= 1 

1 0 0  0 
1 0 1  0 f=O 

1 1 0 0  
1 1 1 1  f=c 

------------_ 

-------------- 

--------------- 

-------------__- 
Hence, the 4-to-1 multiplexer of Figure 4.23 can be connected as follows: SI=a, 

So= b, do=;, d,=l , d2=0, d3=c. Note that the inputs to the multiplexer are selected from the 
above table. For example, when ab=OO, output f= c because f=l when c=O and f=O when 
c=l. 

4.5.6 Demultiplexers 
The demultiplexer is a combinational circuit that performs the reverse operation of a 
multiplexer. The demultiplexer has only one input and several outputs. One of the outputs is 
selected by the combination of 1’s and 0’s of the select inputs. These inputs determine one 
of the output lines to be selected; data from the input line is then transferred to the selected 
output line. Figure 4.26 shows the block diagram of a 1-to-8 demultiplexer. Suppose that i 
= 1 and S2S,S0 = 010; output line d2 will be selected and a I will be output on d2. 

4.6 IEEE Standard Svmbols 

IEEE has developed standard graphic symbols for commonly used digital components 
such as adders, decoders, and multiplexers. These are depicted in Figure 4.27. 

ExamDle 4.2 
Design a combinational circuit using a decoder and OR gates to implement the function 
depicted in Figure 4.28. 

Solution 
The truth table is shown in Table 4.13. 
From the truth table, 

Z, = Cm(2,3,5, 6,7) 
z, = Zm(l,2,3,7) 

The logic diagram is shown in Figure 4.29. 

FIGURE 4.26 1-to-8 demultiplexer 
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FIGURE 4.27 IEEE Symbols 

If C = 0, Z, follows B and Z, = A  + B. 

If C =  1, Z, = A  + BandZ, = AB. 
Assume that the decoder output is HIGH when 
enabled by E = 1. 

Combinational 
Clrcult "Tp 

C 

FIGURE 4.28 Figure for Example 4.2 

ExamDle 4.3 
Design combinational circuits using full adders and multiplexers as building blocks to 
implement (a) a 4-bit adderhbtractor; add when S =O and subtract when S =l .  (b) multiply 
a 4-bit unsigned number by 2 when S=O and transfer zero to output when S=l . 
Solution 
(a) The subtraction x - y of two binary numbers can be performed using twos complement 
arithmetic. As discussed before, x - y = x + (ones complement ofy) + 1. 
Using this concept, parallel subtractors can be implemented. A 4-bit adderhubtractor is 
shown in Figure 4.30(a). Note that XOR gates ( S  and y ,  as inputs) can be used in place of 
multiplexers. 

The addedsubtractor in Figure 4.30(a) utilizes four MUX's. Each MUX has one 
select line (S) and is capable of selecting one of two lines, y,or x. 

The 4-bit adderhubtractor of Figure 4.30(a) either adds two 4-bit numbers and 
performs (x3 x2 x, x,) ADD Cy3y2 yI yo) when S = 0 or performs the subtraction operation 
(x3 x, x, x,) MINUS Cy3 y ,  y ,  yo) for S = 1. The select bit S can be implemented by a 
switch. When S = 0, each MUX outputs the true value of y ,  (n  = 0 through 3) to the 
corresponding input of the full adder FA, (n = 0 through 3). Because S = 0 (C, for FA, 
= 0), the four full adders perform the desired 4-bit addition. When S = 1 (Gin for FA, 
= l), each MUX generates the ones complement of y ,  at the corresponding input of the 
full adder FAn, Because S = C,, = 1, the four full adders provide the following operation: 

(b) Assume 4-bit output S, S, S, So. Figure 4.30(b) shows the implementation. 

_ _ _ _  
(x3x2x,x0) - b3y2yIyO) = (x3x2xIx0) + 0.'3Y2yI YO) + 
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Truth Table for Example 4.2 
&l&s 

C B A 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

0 u t p u t s 

z, z, 
0 0 
0 1 
1 1 
1 1 
0 0 
1 0 
1 0 
1 1 

FIGURE 4.29 

z, 

Implementation of Example 4.2 using a decoder and OR gates 

c2 s2 ci s, 
addition) or Borrow (for subtraction) 

FA0 Cm 

(S = 0, add) 
(S = I ,  subtract) 

co so 

FIGURE 4.30 (a) 4-bit Adder / Subtractor 

Figure 4.30 (b) Solution to Part (b) 
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FIGURE 4.31 Block-diagram Representation of a ROM 

4.7 Read-Onlv Memories (ROMs) 

Read-only memory, commonly called “ROM,” is a nonvolatile memory (meaning that it 
retains information in case of power failure) that provides read-only access to the stored 
data. A block-diagram representation of a ROM is shown in Figure 4.3 1. The total capacity 
of this ROM is 2” x m bits. Whenever an n-bit address is  placed on the address line, the 
m-bit information stored in this address will appear on the data lines. The m-bit output 
generated by the ROM is also called a “word.” 

For example, a 1K x 8 (1024 x 8)-bit ROM chip contains 10 address pins (21° = 

1024 = 1K) and 8 data pins. Therefore, n = 10 and m = 8. On the other hand, an 8K x 8 
(8 192 x 8)-bit ROM chip includes 13 address pins (213 = 8 192 = 8K) and 8 data pins. Thus, 
n = 13 and m = 8. 

A ROM is an LSI chip that can be designed using an array of semiconductor 
devices such as diodes, transistors, or MOS transistors. A ROM is a combinational circuit. 
Internally, a ROM contains a decoder and OR gates; this is illustrated in Figure 4.32. The 
OR gate of the ROM may be built using diodes. A typical 3-input diode OR gate is shown 
in Figure 4.33. Resistor R pulls the output down to a LOW level as long as all the inputs 
are LOW. However, if either input is connected to a high voltage source (3 to 5 volts), the 
output is pulled HIGH to within one diode drop of the input. Thus, the circuit operates as 
an OR gate. To illustrate the operation of a ROM, consider the 2 x 4-bit ROM of Figure 
4.34. In this system , when A,Ao= 00, the decoder output line 0 will be HIGH. This causes 
the diodes D, and Do, to conduct, and thus the output Z = Z, Z, Z ,  Z, = 001 1. Similarly, 
when A,A, = 01, the decoder output line 1 goes to high, diode D,, conducts, and the output 
will be Z = Z, Z,Z, Z, = 0100. Table 4.14 shows the truth table. ROM implementation 
offers a cost-effective solution for building circuits to perform useful tasks such as square 
root and transcendental function computations. Although diodes are not normally used for 
fabricating ROMs, the above diode-based ROM is shown for illustrative purposes. 

Figure 4.35 shows the subcategories of ROMs and their associated technologies. 
The various types of ROMs will be discussed next. 

A ROM must be programmed before it can be used. This involves placing the 
switching devices such as transistors (rather than diodes) at the appropriate intersection 
points of the row and column lines. For example, in a mask ROM the contents of the 
ROM are initialized by the manufacturer at the time of its production. This means that 
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Array of 
OR gates 

FIGURE 4.32 Internal Structure of a ROM 

'sf= C A + B  + C 

FIGURE 4.33 Diode-OR Gate 

FIGURE 4.34 Hardware Organization of a Typical 2 x 4 ROM 

TABLE 4.14 Truth Table implemented by the ROM of Figure 4.34 
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ROM 
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I I e PROM EPROM 
Bipxlar 

Mask ROM PROM Mask ROM 
and 

EAROM 
(or EEPROM 
or E~PROM) 

FIGURE 4.35 Subcategories of ROMs 

this approach is well suited for producing a standard circuit such as a bar-code generator. 
Because these types of ROMs are mass-produced, their costs are also very low. However, 
a mask ROM cannot be reconfigured by a user. That is, a user cannot alter its contents. 

Occasionally, a user may wish to develop a specific ROM-based circuit as 
demanded by the application area. In this case, a ROM that allows a user to initialize its 
contents is required. A ROM with such a flexibility is known as a PROM (programmable 
ROM). In this device, the manufacturer places a switching element along with a fusible 
link at each intersection. This implies that all ROM cells are initialized with a 1. If a user 
desires to store a zero in a particular cell, the fuse is blown at that point. This activity 
is called “programming,” and it may be accomplished by passing electrical impulses. It 
should be pointed out that in such a ROM a user can program the ROM only once. That is, 
it is not possible to reprogram a PROM once the fuse is blown. 

When a new product is developed, it may be necessary for the designer to modify 
the contents of the ROM. A ROM with this capability is referred to as an EPROM (erasable 
programmable ROM). Usually, the contents of this memory are completely erased by 
taking the EPROM chip out of the board and exposing the ROM chip to ultraviolet light. 
Typical erase times vary between 10 and 30 minutes. After erasure the ROM may be 
reprogrammed by passing voltage pulses at the special inputs. The 2764 chip is a typical 
example of an EPROM. It is a 28-pin 8K x 8 chip contained in a dual in-line package 
(DIP). It has 13 address input pins and 8 data output pins. Note that the 2764 needs 13 (213 
= 8 192) pins to address 8 I92 (8K) locations. 

The growth in IC technology allowed the production of another type ofROM whose 
contents may be erased using electrical impulses. These memory devices are customarily 
referred to as “electrically alterable ROMs” (EAROMs) or “electrically erasable PROMS” 
(EEPROMs or E2PROMs). The main advantage of an EEPROM is that its contents (one 
or more locations) can be changed without removing the chip fi-om the circuit board. Note 
that EPROMs and EAROMs are designed using only MOS transistors. 

4.8 Prowammable Logic Devices (PLDs) 

A programmable logic device (PLD) is a generic name for an IC chip capable of being 
programmed by the user after it is manufactured. It is programmed by blowing fuses. A 
PLD chip contains an array of AND gates and OR’gates. There are three types of PLDs. 
They are identified by the location of fuses on the AND-OR array. Figure 4.36 shows the 
block diagrams of these PLDs. 

The PROM was discussed in the last section. A PROM contains a number of fixed 
AND gates and programmable OR gates. The PROM can be programmed to represent 
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PROM PAL PLA 

FIGURE 4.36 Types of PLDs 

Standard multiple-input OR gate symbol Multiple-input OR gate symbol used in PLA 

+++D- 
Standard =D-= multiple-input AND gate symbol Multiple-input AND gate symbol used in PLA 

FIGURE 4.37 Multiple input AND and OR Gate Symbols for PLA 

Boolean functions in sum of products (minterms) form. The PAL, on the other hand, 
includes programmable AND gates and fixed OR gates. The PAL can be programmed 
to implement Boolean hnctions as a logical sum (OR) of product terms. Finally, the 
PLA (programmable logic array) includes several AND and OR gates, both of which are 
programmable. The PLA is very flexible in the sense that the necessary AND terms can 
be logically ORed to provide the desired Boolean functions. Let us explain the basics of 
PLAs. In order to illustrate a PLA, a special AND gate or OR gate symbol with multiple 
inputs will be utilized as shown in Figure 4.37. The internal structure of a typical PLA is 
shown in Figure 4.38. The AND array of this system generates the required product terms, 
and the OR array is used to OR the product terms generated by the array. As in the case of 
the ROM, these gate arrays can be realized using diodes, transistors, or MOS devices. The 
significance of a PLA is explained in the following example. 

Consider the PLA shown in Figure 4.39. This PLA has three inputs, A ,  B, and 
C. The AND generates from product terms A B, A C, BC, and AC. These product terms 
are logically summed up in the OR array, and the outputs Z,,, Z , ,  and Z, are generated. 
Note that the dot in the figure indicates the presence of a switching element such as a 
diode or transistor. The use of PLAs is very cost-effective when the number of inputs in a 

_ _  _ _  
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- 
FIGURE 4.38 Internal Structure of a PLA 

AND array 

outputs 

A 

B 

C 

z, = AB+BC 

Z, = AB+AC 

Z,=AC+BC 

FIGURE 4.39 

Nine 
inputs 

-I 

A PLA with Three Inputs, Four Product Terms, and Three Outputs 

W =  AE + BC 

X = CD + FE 

Y =  FG f HI 

FIGURE 4.40 A PLA with Nine Inputs, Six Product Terms, and Three Outputs 
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FIGURE 4.41 PLA Implementation of Example 4.3 

combinational circuit realized by a ROM is very high and all input combinations are not 
used. For example, consider the following multiple output functions: 

W + A E + B C  
X= CD + FE 
Y = FG + H I  

To implement these Boolean functions in a ROM, a 512 x 3 array is needed 
because there are nine inputs (A through r )  (29 = 5 12) and three outputs (W,  X ,  Y), but the 
same functions can be realized in a PLA using six product terms, nine inputs, and three 
outputs, as shown in Figure 4.40. Therefore, a considerable savings in hardware can be 
achieved with PLAs. 

ExamDle 4.4 
Implement Example 4.2 using PLAs. 
Solution 
From Example 4.2, 
Z,(A, B, C) = - C m(2,3,5,6,7)  

= CBZ + ZBA + CBA + CBX + CBA 

ZdA, B, C) = _ _  C m ( l , 2 , 3 ,  7 )  
= c BA + CBA + CBA + CBA 

Figure 4.41 shows the PLA implementation. 

4.9 

Both mask programmable and field programmable PLAs are available. Mask programmable 
PLAs are similar to mask ROMs in the sense that they are programmed at the time of 
manufacture. Field programmable PLAs (FPLAs) on the other hand, can be programmed 
by the user with a computer-aided design (CAD) program to select a minimum number of 
product terms to express the Boolean functions. 

There are three types of commercially available Field Programmable Devices 
(FPDs). These are Simple PLD (SPLD), Complex PLD (CPLD), and Field Programmable 
Gate Array (FPGA). Among all SPLDs, PALs are widely used. SPLD uses EPROM 
technology to implement the switches. Note that PAL is a registered trademark of Advanced 
Micro Devices, Inc. (AMD). PALs were introduced by Monolithic Memories (a division 

Commerciallv Available Field Promammable Devices (FPDsl 
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FIGURE 4.42 Pinout for PAL 16L8 

of AMD) in 1970. The PAL chips are usually identified by a two-digit number followed 
by a letter and then one or two digits. The first two-digit number specifies the number of 
inputs whereas the last one or two digits define the number of outputs. The fixed number 
of AND gates are connected to either an OR or a NOR gate. The letter H indicates that the 
output gates are OR gates; the letter L is used when the outputs are NOR gates; the letter C 
is used when the outputs include both OR and NOR gates. Note that OR outputs generate 
active HIGH whereas NORs provide active LOW outputs. On the other hand, OR-NOR 
gates include both active HIGH and active LOW outputs. 

For example, the PAL1 6L8 is a 20-pin chip with a maximum of 16 inputs, up to 
8 outputs, one power pin, and one ground pin. The 16L8 contains 10 nonshared inputs, six 
inputs that are shared by six outputs, and two nonshared outputs. Figure 4.42 shows the pin 
diagram of the PALl6L8. Note that PEEL ( Programmable Electrically Erasable Logic) 
devices or Erasable PLDs such as 18CV8 or 16V8 are available for instant reprogramming 
just like an EEPROM. These devices utilize CMOS EEPROM technology. These erasable 
PLDs use electronic switches rather than fuses so that they are erasable and reprogrammable 
like EEPROMs. 

Due to advent in IC technology, larger PLDs (CPLDs) using SPLDs are designed. 
The SPLDs cannot be used for larger digital-design applications. Therefore, CPLD (complex 
PLD) chips are designed by the manufacturers such as Altera and Xlinix to accomplish this. 
A typical CPLD contains several PLDs (each PLD containing AND and OR gates with 
EEPROM or EPROM or Flash memory to implement the programmable switches) along 
with all the interconnections in the same chip. The IC manufacturers such as Altera and 
Xlinix also took a different approach for handling larger applications. They devised FPGA 
(Field Programmable Gate Array) chips which can be programmed at the user’s location. A 
typical FPGA chip contains several smaller individual logic blocks (SRAM, multiplexers, 
gates, and flip-flops) along with all interconnections in a single chip. The FPGA does 
not use EEPROM technology to implement the switches; the programming information 
is stored in SRAM (discussed in chapter 5). The SRAM is normally programmed to store 
a look-up table containing the combinational circuit hnctions (truth table) for the logic 
block. The combinaional logic section and the programmed multiplexers provide the flip- 
flop input equations and the output of the logic block. Application of either CPLD or 
FPGA depends on the user’s choice. Typical examples of CPLD and FPGA chips include 
Altera Corporation’s EPM7032LC44-6(36 user 11’0 pins) and EPF 1 OK 1 OPLCC(84 user 
I/O pins) respectively. Products can be developed using either one from conceptual design 
via prototype to production in a very short time. FPGAs are very popular these days. 

4.10 Hardware DescriDtion Lanmaee (HDL) 

Hardware Description Languages (HDLs) such as VHDL or Verilog along with CAD 
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(Computer-aided design) tools, allow CPLDs and FPGAs to be programmed with millions 
of gates in a short time. A CAD system contains a number of tools that are used to design 
a logic circuit. These tools are used in the following sequence: 

1. A “Schematic Capture” tool is the first step which is used to design the logic 
circuit using truth tables. Truth tables are normally used for a small logic function that can 
be part of a larger circuit. The word schematic means a logic diagram in which logic gates 
along with their interconnections is shown. Alternatively, the logic circuit can also be 
designed by a set of waveforms in a timing diagram. The CAD system uses a “Waveform 
Editor” to draw the timing diagram. The CAD System can then automatically translate this 
timing diagram to a logic diagram showing logic gates along with their interconnections. 

2. The next step is called “Synthesis”. The “Synthesis” CAD tool generates a set. 
of logic expressions describing the functions required to obtain the circuit. These initial 
logic expressions are not in an optimal form. Based upon the designer’s input of these 
initial logic expressions, the CAD system utilizes logic optimization during “Synthesis” to 
generate a minimum number of equations for obtaining a better circuit. 

3. The third step is the “Functional Simulation”. A Functional Simulator” tool 
is to verify the correct operation of the circuit being designed. A “Timing Simulator” 
can be used for precise simulations that takes into consideration timing details of the 
implementation technology of the final logic circuit. 

Computer-aided design (CAD) software can be used to program CPLD and 
FPGA chips. Typical PLD programming languages are PALASM (Advanced Micro 
Devices, Inc.), ABEL (Data I/O Corporation, Inc.), VHDL (U.S. Department of Defense) 
and Verilog (Cadence Design Systems). ABEL stands for Advanced Boolean Expression 
Language while PAL Assembler is abbreviated as PALASM. ABEL is supported by a 
PLD language translator. The purpose of the translator is to provide the fuse pattern from 
the program written in ABEL in terms of the fuse pattern of a PLD. Note that most PLDs 
can be programmed using the sum of minterms form. The ABEL translator can minimize 
the equations in sum of minterms or in almost any other format. ABEL is basically a high- 
level language for hardware design similar to software design language such as Pascal or C. 

VHDL and Verilog are PLD programming languages like ABEL for designing 
both Combinational and Sequential circuits. VHDL is an acronym for VHSIC Hardware 
Description Language. VHSIC stands for Very High Speed Integrated Circuits. The design 
of VHDL evolved from the United States Department of Defense (DOD) VHSIC program. 
VHDL is based on Ada programming language. The design of VHDL started in 1983 
and after going through several versions was formally accepted as an IEEE ( Institute of 
Electrical and Electronics Engineers) standard in 1987. 

Verilog ( developed by Design Automation in 1984 and later acquired by Cadence 
Design Systems), another hardware design language, is also popular. Verilog is not an 
acronym. Verilog (syntax based mostly on C and some Pascal) is easier to learn compared 
to VHDL (syntax based on Ada). Verilog provides more features than VHDL to support 
large project development. At present, both VHDL and Verilog have approximately equal 
market share. Typical Compilers / Simulators for VHDL and Verilog can be downloaded 
from the Internet. 

In order to design systems using HDL, two levels of abstractions or their 
combinations are used. These are Structural, and Behavioral. The structural level can be 
used to describe a schematic or a logic diagram (gates and interconnections) of a system. 
This level makes the designer’s task easy for hardware implementation. A “Hierarchical” 
structural model can be used by the designer to decompose a large digital system into 
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smaller blocks or modules. The designer can define a block that is used repeatedly. This 
common block can be used by other blocks in the HDL program to accomplish the desired 
task. 

The Behavioral level, on the other hand, is used to describe a system in terms 
of what it does and how it behaves rather than in terms of its components and their 
interconnections. Boolean expressions are used to accomplish this. Behavioral level 
is typically used to describe sequential circuits, although it can also be used to describe 
combinational circuits. The flow of data in Behavioral model can be represented via 
concurrent or sequential statements. Concurrent statements are executed in parallel as soon 
as data is available at the inputs while sequential statements are executed in the order 
that they are written. Behavioral model uses either sequential statements or concurrent 
statements. The first method is useful in describing complex digital systems. When 
behavioral model is described by concurrent statements, it is called Dataflow modeling. 
The dataflow modeling describes a digital circuit in terms of its function and flow of data 
through the circuit. 

An HDL design program can be written and simulated using software tools 
provided by manufacturers such as SynaptiCAD (Verilogger Pro), Xlinix (ModelSim 
simulator / webpack 4.2), and Altera (Quartus 11). These software packages are owned 
and remain the property of the respective manufacturers as indicated. They are protected 
by international copyrights, and the terms and conditions of the agreements set forth in the 
web sites of the manufacturers. 

Verilogger Pro 8.3 can be downloaded from the web site www.syncad.com. This 
version allows the user to compile and simulate Verilog programs. However, some features 
such as save, import, export, and equation-based waveform generation are disabled. 
ModelSim simulator / webpack 4.2 can be downloaded from Xlinix’s web site. This Xlinix 
software package can be used to compile and simulate VHDL programs. Simulation can 
be performed on the HDL design program in order to test it. An HDL program called “test 
bench” can be written to test an HDL design. A test bench program allows the designer to 
monitor the output(s) based on application of appropriate inputs. These outputs can then 
be verified for correctness. Test results can be represented in terms of both waveform and 
tabular form. The waveform typically contains timing diagrams to graphically show the 
relationship between time, inputs, and outputs. 

Verilog and VHDL along with examples for synthesizing Combinational circuits 
and Sequential circuits are discussed in Appendix I and Appendix J respectively. 

OUESTIONS AND PROBLEMS 

4.1 Find function F for the following circuit: 

Y xhF 
4.2 Express the following fhctions F,  and F2 in terms of the inputs A ,  B, and C. What 

is the relationship between F,  and F,? 
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4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

4.10 

4.11 
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A =  

B -  
C- 

Given the following circuit: 

ED- 
(a) 
(b) Derive the truth table. 
(c) 
(d) 

Determine the function F of the following logic diagram and then analyze the 
function using Boolean identities to show that F = A + B. 

Derive the Boolean expression for F(A, B, C, D). 

Determine the simplified expression for F(A, B,  C, D )  using a K-map. 
Draw the logic diagram for the simplified expression using 
NAND gates. 

Draw a logic diagram to implement F = ABCDE using only 3-input AND gates. 

Draw a logic diagram using two-input AND and OR gates to implement 
the following function F = P(P + Q)(P + Q + R)(P + Q + R + S) without any 
simplification; then analyze the logic circuit to verify that F = P. 

Design a combinational circuit with three inputs (A,  B, C) and one output (F). 
The output is 1 when A + C = 0 or AC = 1; otherwise the output is 0. Draw a logic 
diagram using a single logic gate. 

Design a combinational circuit that accepts a 3-bit unsigned number and 
generates an output binary number equal to the input number plus 1. Draw a logic 
diagram. 

Design a combinational circuit with five input bits generating a 4-bit output that 
is the ones complement of four of the five input bits. Draw a logic diagram. Do 
not use NOT, NAND, or NOR gates. 
Design a combinational circuit that converts a 4-bit BCD input to its nines 
complement output. Draw a logic diagram. 

Design a BCD to seven-segment decoder that will accept a decimal digit in BCD 
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4.12 

4.13 

4.14 

4.15 

4.16 

4.17 

and generate the appropriate outputs for the segments to display a decimal digit 
(0-9). Use a common anode display. Turn the seven segment OFF for non-BCD 
digits. Draw a logic circuit. What will happen if a common cathode display is 
used? Comment on the interface between the the decoder and the display. 

Design a combinational circuit using a minimum number of full adders to decrement 
a 6-bit signed number by 2. Assume 6-bit result. Draw a logic diagram using the 
block diagram of a full adder as the building block. 

Design a combinational circuit using full adders to multiply a 4-bit unsigned 
number by 2. Draw a logic diagram using the block diagram of a full adder as the 
building block. 

Design a combinational circuit that adds two 4-bit signed numbers and generates 
an output of 1 if the 4-bit result is zero; the output is 0 if the 4-bit result is nonzero. 
Draw a logic circuit using the block diagram of a 4-bit binary adder as the building 
block and a minimum number of logic gates. 

Design a 4 x 16 decoder using a minimum number of 74 138 and logic gates. 

Design a combinational circuit using a minimum number of 74138s (3 x 8 
decoders) to generate the minterms m,, m5, and m, based on four switch inputs 
S3, S2, S1, SO. Then display the selected minterm number (1 or 5 or 9) on a seven- 
segment display by generating a 4-bit input ( W,  X, K Z) for a BCD to seven- 
segment code converter. Ignore the display for all other minterms. Note that these 
four inputs ( W, X, Y, Z) can be obtained from the selected output line (1 or 5 
or 9) of the decoders that is generated by the four input switches (S3, S2, S I ,  
SO). Use a minimum number of logic gates. Determine the truth table, and then 
draw a block diagram of your implementation using the following building blocks 
(Figure P4.16): 

c decoder 
74138 4 

Converter 
Z - 

Figure P4.16 

_ -  
F ,  (A,  B, C )  = AB C + ABC F,(A, B,C) = = ABC + ABC + ABC 

Draw a logic diagram using a decoder and external gates. Assume that the 
decoder outputs a HIGH on the selected line. 
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4.18 

4.19 

4.20 

4.21 

4.22 
4.23 

4.24 

4.25 

4.26 

4.27 

4.28 
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Draw a logic diagram using a 74138 decoder and external gates to implement the 
following: 
F,(A,B, C) = Cm( 1, 3,4), F,(A,B, C) = h ( O , 2 , 4 , 7 ) ,  
F,(A,B,C) ='Cm(O, 1,3,5,6),  F,(A,B,C) = Cm(2,6) 

Determine the truth table for a hexadecimal-to-binary priority encoder with line 0 
having the highest priority and line 15 with the lowest. 

Implement a digital circuit to increment (for C,, = 1) or decrement (for C, = 0) a 4- 
bit signed number by 1 generating outputs in twos complement form. Note that C,, 
is the input carry to the full adder for the least significant bit. Draw a schematic: 
(a) Using only a minimum number of full adders and multiplexers. 
(b) Using only a minimum number of full adders and inverters. Do not use any 
multiplexers. 

Implement each of the following using an 8-to-1 multiplexer: 
(a) F(A, B, C, 0) = ABC + JBD + A B c  + ACD 
(b) F(W,X, Y, Z) = Z m(2,3,6,7,8,9,  12, 13, 15) 

What are the main logic elementdgates in a ROM chip? 
Design a combinational circuit using a 16 X 4 ROM that will increment a 4-bit 
unsigned number by 1. Determine the truth table and then draw a block diagram 
of your implementation showing the addresses and their contents in binary along 
with one Output Enable (OE) input. 

What are the basic differences among PROM, PLA, PAL and PEEL? 

What is the technology used to fabricate EPROMs and EEPROMs? 

Design a 4K x 8 EPROM ( with two enable lines, and @ ) based system to 
display the squares of BCD digits on seven segment displays using a minimum 
number of 74LS47 BCD to seven segment converters. Each BCD digit will be 
input to the EPROM via switches. The square of a particular BCD number will 
be displayed in BCD each time the 4-bit number is input to the EPROM via the 
switches. Draw a block diagram of your implementation showing the contents of 
memory along with addresses in hex. 

Design a 4-bit adder/subtractor (Example 4.3) using only full adders and 
EXCLUSIVE-OR gates. Do not use any multiplexers. 

Design a combinational circuit using a minimum number of full adders, and logic 
gates with one BCD to seven-segment converter and one seven-segment display, 
and which will perform A plus B or A minus B ( A and B are signed numbers), 
depending on a mode select input, M. If M = 0, addition is carried out; if 
M = 1, subtraction is carried out. Assume A = A, A, A, A, A, and B = B, B, B2 
B, B, ( Two 5-bit numbers). The circuit will be able to carry out the subtraction 
even if A < B. Use an LED to indicate the sign of the result ( LED ON for negative 
result and LED OFF for positive result). The result of the operation should always 
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appear in BCD form on the single seven-segment display. Assume that the result 
will be in the range of 0 through t 9  in decimal and - 1  through -9 in decimal. For 
example, if five-bit addition or subtraction provides a result of 101 11 in binary, 
the circuit will take the two’s complement of the number, and will display minus 
(Sign LED ON) 9 on the single seven-segment display. The Overflow bit (V) 
should be indicated by another LED ( LED ON for V= 1 and LED OFF for V=O). 
Do not use any multiplexers. 




