
INTEL 8086

021,

This chapter covers the Intel 8086 in detail. Intel’s 32-bit microprocessors are based on the
Intel 8086. Therefore, the 8086 provides an excellent educational tool for understanding
Intel 32- and 64-bit microprocessors. Because the 8086 and its peripheral chips are
inexpensive, the implementation costs of 8086-based systems are low. This makes the
8086 appropriate for thorough coverage in a first course on microprocessors. Thus, the
8086 is covered in detail in this chapter.

All,

The 16-bit word at the even address 02000,, is A102,,. Next, consider a word
stored at an address 301 5 1 ,, as follows:

Low byte of the word High byte of the word

I 2EI6 ’ I 4 6 ,
Address 30 15 1 ,, Address 301 52,,

The 16-bit word stored at the odd address 30151 ,, is 462E3,,.
The 8086 always reads a 16-bit word from memory. This means that a word instruction
accessing a word starting at an even address can perform its function with one memory
read. A word instruction starting at an odd address, however, must perform two memory
accesses to two consecutive memory even addresses, discarding the unwanted bytes of
each. For byte read starting at odd address N, the byte at the previous even address N - 1
is also accessed but discarded. Similarly, for byte read starting at even address N, the byte
with odd address N + 1 is also accessed but discarded.

For the 8086, register names followed by the letters X, H, or L in an instruction
for data transfer between register and memory specify whether the transfer is 16-bit or 8-
bit. For example, consider MOV AX, [START] . If the 20-bit address START is an even
number such as 02212,,, then this instruction loads the low (AL) and high (AH) bytes of

367

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

368 Fundamentals of Digital Logic and Microcomputer Design

the 8086 16-bit register AX with the contents of memory locations 02212,, and 02213,6,
respectively, in a single access. Now, if START is an odd number such as 02213,,, then the
MOV AX, [START] instruction loads AL and AH with the contents of memory locations
02213,, and 02214,,, respectively, in two accesses. The 8086 also accesses memory
locations 022 12,, and 0221 5 , , but ignores their contents.

Next, consider MOV AL, [START 1 . If START is an even number such as 301 56,,,
then this instruction accesses both addresses, 30156,, and 30157,,, but loads AL with the
contents of 30156,, and ignores the contents of 30157,,. However, if START is an odd
number such as 30157,,, then MOV AL, [START] loads AL with the contents of 30157,,.
In this case the 8086 also reads the contents of 30156,, but discards it.

The 8086 is packaged in a 40-pin chip. A single +5 V power supply is required.
The clock input signal is generated by the 8284 clock generatoddriver chip. Instruction
execution times vary between 2 and 30 clock cycles.

There are four versions of the 8086. They are 8086,8086- 1,8086-2, and 8086-4.
There is no difference between the four versions other than the maximum allowed clock
speeds. The 8086 can be operated from a maximum clock frequency of 5 MHz. The
maximum clock frequencies of the 8086- 1, 8086-2 and 8086-4 are 10 MHz, 8 MHz and 4
MHz, respectively.

The 8086 family consists of two types of 16-bit microprocessors, the 8086 and
8088. The main difference is how the processors communicate with the outside world.
The 8088 has an 8-bit external data path to memory and I/O; the 8086 has a 16-bit external
data path. This means that the 8088 will have to do two READ operations to read a 16-bit
word from memory. Similarly, two write operations are required to write a 16-bit word into
memory. In most other respects, the processors are identical. Note that the 8088 accesses
memory in bytes. No alterations are needed to run software written for one microprocessor
on the other. Because of similarities, only the 8086 will be considered here. The 8088 was
used in designing IBM’s first personal computer.

An 8086 can be configured as a small uniprocessor (minimum mode when the
MN/m pin is tied to HIGH) or as a multiprocessor system (maximum mode when the
MN/m pin is tied to LOW). In a given system, the MN/m pin is permanently tied
to either HIGH or LOW. Some of the 8086 pins have dual functions depending on the
selection of the MN/m pin level.

In the minimum mode (MN/m pin HIGH), these pins transfer control signals
directly to memory and I/O devices; in the maximum mode (MNm pin LOW), these
same pins have different functions that facilitate multiprocessor systems. In the maximum
mode, the control functions normally present in minimum mode are assumed by a support
chip, the 8288 bus controller.

Due to technological advances, Intel introduced the high-performance 801 86
and 80188, which are enhanced versions of the 8086 and 8088, respectively. The 8-MHz
80 186/80188 provides two times greater throughput than the standard 5-MHz 808618088.
Both have integrated several new peripheral functional units, such as a DMA controller, a
16-bit timer unit, and an interrupt controller unit, into a single chip. Just like the 8086 and
8088, the 80186 has a 16-bit data bus and the 80188 has an 8-bit data bus; otherwise, the
architecture and instruction set of the 801 86 and 801 88 are identical. The 801 86/80188 has
an on-chip clock generator so that only an external crystal is required to generate the clock.
The 80186/80188 can operate at either a 6- or an 8-MHz internal clock frequency. The
crystal frequency is divided by 2 internally. In other words, external crystals of 12 or 16 MHz
must be connected to generate the 6- or 8-MHz internal clock frequency. The 801 86/80 188

Intel 8086 369

is fabricated in a 68-pin package. Both processors have on-chip priority interrupt controller
circuits to provide five interrupt pins. Like the 8086/8088, the 80186/80188 can directly
address one megabyte of memory. The 80186/80188 is provided with 10 new instructions
beyond the 808618088 instruction set. Examples of these instructions include INS and
OUTS for inputting and outputting a string byte or string word.

The 80286, on the other hand, has added memory protection and management
capabilities to the basic 8086 architecture. An 8-MHz 80286 provides up to 6 times greater
throughput than the 5-MHz 8086. The 80286 is fabricated in a 68-pin package. The
80286 can be operated at a clock frequency of 4, 6, or 8 MHz. An external 82284 clock
generator chip is required to generate the clock. The 82284 divides the external clock by
2 to generate the internal clock. The 80286 can be operated in two modes, real address
and protected virtual address. Real address mode emulates a very high-performance 8086.
In this mode, the 80286 can directly address one megabyte of memory. In virtual address
mode, the 80286 can directly address 16 megabytes of memory. Virtual address mode
provides (in addition to the real address mode capabilities) virtual memory management as
well as task management and protection. The programmer can select one of these modes
by loading appropriate data in the 16-bit machine status word (MSW) register by using the
load instruction (LMSW).

The 80286 was used as the microprocessor of the IBM PC/AT personal computer.
An enhanced version of the 80286 is the 32-bit 80386 microprocessor. The 80386 was used
as the microprocessor in the IBM 386PC. The 80486 is another 32-bit microprocessor. It
is based on the Intel 80386 and includes on-chip floating-point circuitry. IBM’s 486 PC
contains the 80486 chip. Other 32-bit and 64-bit Intel microprocessors include Pentium,
Pentium Pro, Pentium 11, Celeron, Pentium 111, Pentium 4 and Merced.

Although the 8086 seems to be obsolete, it is expected to be around for some time
from second sources. Therefore, a detailed coverage of the 8086 is included. A summary
of the 32- and 64-bit microprocessors is then provided.

9.2 8086 Main Memorv

The 8086 uses a segmented memory. There are some advantages to working with the
segmented memory. First, after initializing the 16-bit segment registers, the 8086 has to
deal with only 16-bit effective addresses. That is, the 8086 has to manipulate and store
16-bit address components. Second, because of memory segmentation, the 8086 can be
effectively used in time-shared systems. For example, in a time-shared system, several
users may share one 8086. Suppose that the 8086 works with one user’s program for, say,
5 milliseconds. After spending 5 milliseconds with one of the other users, the 8086 returns
to execute the first user’s program. Each time the 8086 switches from one user’s program
to the next, it must execute a new section of code and new sections of data. Segmentation
makes it easy to switch from one user program to another.

The 8086’s main memory can be divided into 16 segments of 64K bytes each
(16 x 64 KB = 1 MB). A segment may contain codes or data. The 8086 uses 16-bit
registers to address segments. For example, in order to address codes, the code segment
register must be initialized in some manner (to be discussed later): A 16-bit 8086 register
called the “instruction pointer” (IP), which is similar to the program counter of a typical
microprocessor, linearly addresses each location in a code segment. Because the size of
the IP is 16 bits, the segment size is 64K bytes (2’7. Similarly, a 16-bit data segment
register must be initialized to hold the segment value of a data segment. The contents of

3 70 Fundamentals of Digital Logic and Microcomputer Design

certain 16-bit registers are designed to hold a 16-bit address in a 64-Kbyte data segment.
One of these address registers can be used to linearly address each location once the data
segment is initialized by an instruction. Finally, in order to access the stack segment, the
8086 16-bit stack segment (SS) register must be initialized; the 64-Kbyte stack is addressed
linearly by a 16-bit stack pointer register. Note that the stack memory must be a readwrite
(RAM) memory. Whenever the programmer reads from or writes to the 8086 memory
or stack, two components of a memory address must be considered: a segment value and,
an address or an offset or a displacement value. The 8086 assembly language program
works with these two components while accessing memory. These two 16-bit components
(the contents of a 16-bit segment register and a 16-bit offset or IP) form a logical address.
The programmer writes programs using these logical addresses in assembly language
programming.

The 8086 includes on-chip hardware to map or translate these two 16-bit
components of a memory address into a 20-bit address called a “physical address” by
shifting the contents of a segment register four times to left and then adding the contents of
IP or offset. Note that the 8086 contains 20 address pins, so the physical address size is 20
bits wide.

Consider, for example, a logical address with the 16-bit code segment register
contents of 2050,, and the 16-bit 8086 instruction pointer containing a value of 0004,,.
Suppose that the programmer writes an 8086 assembly language program using this logical
address. The programmer assembles this program and obtains the object or machine code.
When the 8086 executes this program and encounters the logical address, it will generate
the 20-bit physical address as follows: If 16-bit contents of IP = 0004,6, 16-bit contents
of code segment = 2050,,, 16-bit contents of code segment value after shifting logically 4
times to the left = 20500,,, then the 20-bit physical address generated by the 8086 on its
20-pin address is 20504,, . Note that the 8086 assigns the low address to the low byte of a
16-bit register and the high address to the high byte of the 16-bit register for 16-bit transfers
between the 8086 and main memory. This is called Little-endian byte ordering.

9.3 8086 Repisters

As mentioned in Chapter 6, the 8086 is divided internally into two independent units: the
bus interface unit (BIU) and the execution unit (EU). The BIU reads (fetches) instructions,
reads operands, and writes results. The EU executes instructions already fetched by the
BIU. The 8086 prefetches up to 6 instruction bytes from external memory into a FIFO
(first-in-first-out) memory in the BIU and queues them in order to speed up instruction
execution. The BIU contains a dedicated adder to produce the 20-bit address. The bus
control logic of the BIU generates all the bus control signals, such as the READ and
WRITE signals, for memory and I/O. The BIU also has four 16-bit segment registers:
the code segment (CS), data segment (DS), stack segment (SS), and extra segment (ES)
registers.

All program instructions must be located in main memory, pointed to by the 16-
bit CS register with a 16-bit offset contained in the 16-bit instruction pointer (IP). Note
that immediate data are considered as part of the code segment. The SS register points
to the current stack. The 20-bit physical stack address is calculated from the SS and SP
(stack pointer) for stack instructions such as PUSH and POP. The programmer can create
a programmer’s stack with the BP (base pointer) instead of the SP for accessing the stack
using the based addressing mode. In this case, the 20-bit physical stack address is calculated

Intel 8086 371

from the BP and SS. The DS register points to the current data segment; operands for most
instructions are fetched from this segment. The 16-bit contents of a register such as the
SI (source index) or DI (destination index) or a 16-bit displacement are used as offsets for
computing the 20-bit physical address.
The ES register points to the extra segment in which data (in excess of 64 KB pointed to
by the DS) is stored. String instructions always use the ES and DI to determine the 20-bit
physical address for the destination.

The segments can be contiguous, partially overlapped, filly overlapped, or
disjointed. An example of how five segments (SEGMENT 0 through SEGMENT 4), may
be stored in physical memory is shown in Figure 9.1. In this example, SEGMENTs 0 and
1 are contiguous (adjacent), SEGMENTs 1 and 2 are partially overlapped, SEGMENTs 2
and 3 are filly overlapped, and SEGMENTs 2 and 4 are disjointed.

Every segment must start on 16-byte memory boundaries. Typical examples of
values of segments should then be selected based on physical addresses starting at 00000,,,
OOOIO,,, 00020,,, 00030,,, . . ., FFFFO,,. A physical memory location may be mapped into
(contained in) one or more logical segments. Many applications can be written to simply
initialize the segment registers and then forget them.

A segment can be pointed to by more than one segment register. For example, the
DS and ES may point to the same segment in memory if a string located in that segment
is used as a source segment in one string instruction and a destination segment in another
string instruction. Note that, for string instructions, a destination segment must be pointed
to by the ES. One example of four currently addressable segments is shown in Figure
9.2.

The EU decodes and executes instructions. It has a 16-bit ALU for performing
arithmetic and logic operations. The EU has nine 16-bit registers: AX, BX, CX, DX, SP,

Fully overlapped

Partially overlapped -

Contiguous

Physical L - U
memoly .T T .T ? .T

FIGURE 9.1

FIGURE 9.2

OOOOOH 20000H 40000H 60000H 80000H

An Example of 8086 Memory Segments

SS 0080 offset!
+ 00800..

ES 0070 OffS$ 1-1 00700~0

DS 0060

CS 0050 offset

Four currently addressable 8086 segments

address

372 Fundamentals of Digital Logic and Microcomputer Design

BP, SI, and DI, and the flag register. The 16-bit general registers AX, BX, CX, and DX can
be used as two 8-bit registers (AH, AL; BH, BL; CH, CL; DH, DL). For example, the 16-
bit register DX can be considered as two 8-bit registers DH (high byte of DX) and DL (low
byte of DX). The general-purpose registers AX, BX, CX, and DX perform the following
functions:

The AX register is 16 bit wide whereas AH and AL are 8 bit wide. The use of AX
and AL registers is assumed by some instructions. The I/O (IN or OUT) instructions
always use the AX or AL for inputtingloutputting 16- or 8-bit data to or from an I10
port. Multiplication and division instructions also use the AX or AL.
The BX register is called the “base register.” This is the only general-purpose register
whose contents can be used for addressing 8086 memory. All memory references
utilizing this register content for addressing use the DS as the default segment
register.
The CX register is known as the counter register because some instructions, such as
SHIFT, ROTATE, and LOOP, use the contents of CX as a counter, For example, the
instruction LOOP START will automatically decrement CX by 1 without affecting
flags and will check to see if (Cx) = 0. If it is zero, the 8086 executes the next
instruction; otherwise, the 8086 branches to the label START.
The DX register, or data register, is used to hold the high 16-bit result (data) (LOW
16-bit data is contained in AX) after 16 x 16 multiplication or the high 16-bit dividend
(data) before a 32 t 16 division and the 16-bit remainder after the division (16-bit
quotient is contained in AX).
The two pointer registers, SP (stack pointer) and BP (base pointer), are used to access
data in the stack segment. The SP is used as an offset from the current SS during
execution of instructions that involve the stack segment in external memory. The SP
contents are automatically updated (incremented or decremented) due to execution of
a POP or PUSH instruction. The BP contains an offset address in the current SS. This
offset is used by instructions utilizing the based addressing mode.
The two index registers, SI (source index) and DI (destination index), are used in
indexed addressing. Note that instructions that process data strings use the SI and
DI index registers together with the DS and ES, respectively, in order to distinguish
between the source and destination addresses.
The flag register in the EU holds the status flags, typically after an ALU operation. The

DX

stacicpointer[Tl
Base pointer Code segment

Source index Data segment
Destination index D1 SS Stack segment

FLAGS - ES Extra segment
EU BIU

FIGURE 9.3 8086 Registers

Intel 8086 3 73

EU sets or resets these flags to reflect the results of arithmetic and logic operations.
Figure 9.3 depicts the 8086 registers. It shows the nine 16-bit registers in the

EU. As described earlier, each one of the AX, BX, CX, and DX registers can be used as
two %bit registers or as one 16-bit register. The other registers can be accessed as 16-
bit registers. Also shown are the four 16-bit segment registers and the 16-bit IP in the
BIU. The IP is similar to the program counter. The CS register points to the current code
segment from which instructions are fetched. The effective address is derived from the CS
and IP. The SS register points to the current stack. The effective address is obtained from
the SS and SP. The DS register points to the current data segment. The ES register points
to the current extra segment where data is usually stored.

Figure 9.4 shows the 8086 flag register. The 8086 has six one-bit status flags. Let
us now explain these flags.

AF (auxiliary carry flag) is set if there is a carry due to addition of the low nibble into
the high nibble or a borrow due to the subtraction of the low nibble from the high
nibbleof a number.
This flag is used by BCD arithmetic instructions; otherwise, AF is zero.
CF (carry flag) is set if there is a carry from addition or a borrow from subtraction.
OF (overflow flag) is set if there is an arithmetic overflow (i.e., if the size of the result
exceeds the capacity of the destination location). An interrupt on overflow instruction
is available to generate an interrupt in this situation; otherwise, it is zero.
SF (sign flag) is set if the most significant bit of the result is one; otherwise, it is
zero.
PF (parity flag) is set if the result has even parity; PF is zero for odd parity of the
result.
ZF (zero flag) is set if the result is zero; ZF is zero for a nonzero result.

The 8086 has three control bits in the flag register that can be set or cleared by the

Setting DF (direction flag) causes string instructions to auto-decrement; clearing
DF causes string instructions to auto-increment.
Setting IF (interrupt flag) causes the 8086 to recognize external maskable
interrupts; clearing IF disables these interrupts.
Setting TF (trap flag) puts the 8086 in the single-step mode. In this mode, the
8086 generates an internal interrupt after execution of each instruction. The user
can write a service routine at the interrupt address vector to display the desired
registers and memory locations. The user can thus debug a program.

programmer:
1.

2.

3.

9.4 8086 Addressing Modes

The 8086 provides various addressing modes to access instruction operands. Operands
may be contained in registers, within the instruction op-code, in memory, or in 110 ports.
The 8086 has 12 addressing modes, which can be classified into five groups:

1. Register and immediate modes (two modes)
2. Memory addressing modes (six modes)
3. . Port addressing mode (two modes)
4. Relative addressing mode (one mode)
5. Implied addressing mode (one mode)

Note that in the following, symbol () is used to indicate the contents of an 8086
register or a memory location.

3 74

9.4.1 Register and Immediate Modes
Register mode. The addressing modes are illustrated utilizing 8086 instructions with
directives of a typical assembler. In register mode, source operands, destination operands,
or both may be contained in registers. For example, MOV AX, BX moves the 16-bit
contents of BX into AX. On the other hand, MOV AH, BL moves the 8-bit contents of BL
into AH.
Immediate mode. In immediate mode, 8- or 16 bit data can be specified as part of the
instruction. For example, MOV C X , 5 0 6 2 8 moves the 16-bit data 5062,, into register
cx.

Fundamentals of Digital Logic and Microcomputer Design

9.4.2 Memory Addressing Modes
The EU has direct access to all registers and data for register and immediate modes.
However, the EU cannot directly access the memory operands. It must use the BIU to
access memory operands. For example, when the EU needs a memory operand, it sends
an offset value to the BIU. As mentioned before, this offset is added to the contents of a
segment register after shifting it four times to the left, generating a 20-bit physical address,
For example, suppose that the contents of a segment register is 2052,, and the offset is
0020,,. Now, in order to generate the 20-bit physical address, the EU passes this offset to
the BIU. The BIU then shifts the segment register four times to the left, obtains 2052016
and then adds the 0020,, offset to provide the 20-bit physical address 2054016.

Note that the 8086 must use a segment register whenever it accesses the memory.
Also, every memory addressing mode has a standard default segment register. However, a
segment override instruction can be placed before most of the memory operand instructions
whose default segment register is to be overridden. For example, I N C BYTE PTR
[START] will increment the 8-bit contents of a memory location in DS with offset START

by 1. However, segment DS can be overridden by ES as follows: I N C ES : BYTE PTR
[START 1 . Segments cannot be overridden for stack reference instructions (such as PUSH
and POP). The destination segment of a string segment, which must be ES (if a prefix is
used with a string instruction, only the source segment DS can be overridden) cannot be
overridden. The code segment (CS) register used in program memory addressing cannot be
overridden. The EU calculates an offset from the instruction for a memory operand. This
offset is called the operand’s effective address, or EA. It is a 16-bit number that represents
the operand’s distance in bytes from the start of the segment in which it resides.

The various memory addressing modes will now be described.
1. Memory Direct Addressing. In this mode, the effective address is taken directly from

the displacement field of the instruction. No registers are involved. For example,
MOV BX, [START] , or MOV BX, OFFSET START moves the contents of the
20-bit address computed from DS and START to BX. Some assemblers use square
brackets around START to indicate that the contents of the memory location(s) are at
a displacement START from the segment DS. If square brackets are not used, then the
programmer may define START as a 16-bit offset by using the assembler directive,
OFFSET.

Register Zndirect Addressing. The effective address of a memory operand may be
taken directly from one of the base or index registers (BX, BP, SI, DI). For example,
consider MOV CX, [BX] . If (DS) = 2000,,, (BX) = 0004,,, and (20004,,) = 0224,,,
then, after MOV C X , [B X] , the contents of CX are 0224,,. Note that the segment
register used in MOV C X , [BX] can be overridden, such as MOV CX, ES : [BX] .
Now, the MOV instruction will use ES instead of DS. If (ES) = lOOO,, and (10004,,)

2.

Intel 8086 375

= OOO2,,, then, after MOV CX, ES : [BX] , the register CX will contain 0002,,. Note
that in the above, symbol () is used to indicate the contents of an 8086 register or a
memory location.
Based Addressing. In this mode, the effective address is the sum of a displacement
value (signed 8-bit or unsigned 16-bit) and the contents of register BX or BP. For
example, MOV AX , 4 [BX 1 moves the contents of the 20-bit address computed from a
segment register and BX + 4 into AX. The segment register is DS or SS. The content
of BX is unchanged. The displacement (4 in this case) can be unsigned 16-bit or signed
8-bit. This means that if the displacement is 8-bit, then the 8086 sign extends this to
16-bit. Segment register SS is used when the stack is accessed; otherwise, this mode
uses segment register DS. When memory is accessed, the 20-bit physical address is
computed from BX and DS. On the other hand, when the stack is accessed, the 20-bit
physical address is computed from BP and SS. Note that BP may be considered as the
user stack pointer while SP is the system stack pointer. This is because SP is used by
some 8086 instructions (such as CALL subroutine) automatically.
The based addressing mode with BP is a very convenient way to access stack data. BP
can be used as a stack pointer in SS to access local variables. Consider the following
instruction sequence (arbitrarily chosen to illustrate the use of BP for stack):

PUSH BP I Save BP
MOV BP, SP I Establish BP
PUSH CX , Save CX
SUB SP, 6 I Allocate 3 words of

, stack for local variables
MOV -4[BP], BX ; Push BX onto stack using BP
MOV -6[BP], AX ; Push AX onto stack using BP
MOV -8[BP], DX ; Push DX onto stack using BP
ADD SP, 6 I Deallocate stack
POP cx , Restore CX
POP BP , Restore BP

This instruction sequence can be depicted as follows:
High address

k % i p Bp=Sp

Temporary stack for local
variables

..:‘.-I
1 SP (top of stack)
Low address

BP-6
BP-8

Zndexed Addressing. In this mode, the effective address is calculated from the sum of
a displacement value and the contents of register SI or DI. For example, MOV AX ,
VALUE [S 1] moves the contents of the 20-bit address computed from VALUE, SI
and the segment register into AX. The segment register is DS. The content of SI is
unchanged. The displacement (VALUE in this case) can be unsigned 16-bit or signed
8-bit. The indexed mode can be used to access a table.
Based Zndexed Addressing. In this mode, the effective address is computed from the
sum of a base register (BX or BP), an index register (SI or DI), and a displacement. For
example, MOV AX, 4 [BX] [S I 3 moves the contents of the 20-bit address computed
from the segment register and (BX) + (SI) + 4 into AX. The segment register is DS.
The displacement can be unsigned 16-bit or signed 8-bit. This mode can be used to
access two-dimensional arrays such as matrices.

3 76 Fundamentals of Digital Logic and Microcomputer Design

6. String Addressing. This mode uses index registers. SI is assumed to point to the
first byte or word of the source string, and DI is assumed to point to the first byte
or word of the destination when a string instruction is executed. The SI or DI is
automatically incremented or decremented to point to the next byte or word depending
on DF. The default segment register for source is DS, and it may be overridden; the
segment register used for the destination must be ES, and can not be overridden. An
example is MOVS WORD. If (DF) = 0, (DS) = 300OI6, (SI) = OO2O,,, (ES) 5000,6, (DI)
= 0040,,, (30020) = 30,,, (30021) = 05,,, (50040) = O6,,, and (50041) = 20,,, then, after
this MOVS, (50040) = 30,,, (50041) = 05,,, (SI) = 0022,,, and (DI) = 0042,,.

9.4.3 Port Addressing
Two I/O port addressing modes can be used: direct port and indirect port. In either case,
8- or 16-bit I/O transfers must take place via AL or AX respective1y.h direct port mode,
the port number is an 8-bit immediate operand to access 256 ports. For example. I N AL ,
0 2 moves the contents of port 02 to AL. In indirect port mode, the port number is taken
from DX, allowing 64K bytes or 32K words of ports. For example, suppose (DX) = 0020,
(port 0020) = 0216, and (port 0021) = 03,,, then, after IN AX, DX, register AX contains
0302,,. On the other hand, after I N AL, DX, register AL contains 02,,.

9.4.4 Relative Addressing Mode
Instructions using this mode specify the operand as a signed %bit displacement relative to
IP. An example is JNC START. This instruction means that if carry = 0, then IP is loaded
with the current IP contents plus the %bit signed value of START; otherwise, the next
instruction is executed.

An advantage of relative mode is that the destination address is specified relative
to the address of the instruction after the conditional Jump instruction. Since the 8086
conditional Jump instructions do not contain an absolute address, the program can be placed
anywhere in memory which can still be executed properly by the 8086. A program which
can be placed anywhere in memory, and can still run correctly is called a “relocatable”
program. It is a good practice to write relocatable programs.

9.4.5 Implied Addressing Mode
Instructions using this mode have no operands. An example is CLC, which clears the carry
flag to zero.

9.5 8086 Instruction Set

The 8086 has approximately 117 different instructions with about 300 op-codes. The
8086 instruction set contains no-operand, single-operand, and two-operand instructions.
Except for string instructions that involve array operations, 8086 instructions do not permit
memory-to-memory operations. Appendices F and H provide 8086 instruction reference
data and the instruction set (alphabetical order), respectively. The 8086 instructions can be
classified into eight groups:

1. Data Transfer Instructions 2. Arithmetic Instructions
3. Bit Manipulation Instructions
5. Unconditional Transfer Instructions 6. Conditional Branch Instructions
7. Interrupt Instructions

4. String Instructions

8. Processor Control Instructions
Let us now explain some of the 8086 instructions with numerical examples. Note that

Intel 8086 3 77

TABLE 9.1 8086 Data Transfer Instructions
General Puruose

MOV d, s
PUSH d
POP d
XCHG medreg, mendreg
XLAT

IN A, DX or Port
OUT DX or Port, A

[d] - [s] MOV byte or word
PUSH word into stack
POP word off stack
[mendreg] + [mendreg]; No mem to mem.
AL 6 [20 bit address computed from AL, BX, and DS]

Input /Output
Input byte or word
Output byte or word

Address Object
LEAreg, mem LOAD Effictive Address
LDSreg, mem LOAD pointer using DS
LESreg, mem LOAD pointer using ES

LAHF LOAD AH register from flags
SAHF STORE AH register in flags
PUSHF PUSH flags onto stack
POPF POP flags off stack
d = “mem” or “reg” or “segreg,” s = “data” or “ mem” or ‘:reg” or “segreg,” A = AX or AL

Flag Transfer

in the following examples , symbol () is used to indicate the contents of a register or a
memory location.

9.5.1 Data Transfer Instructions
Table 9.1 lists the data transfer instructions. Note that LEA is used to load 16-bit offset to a
specified register; LDS and LES are similar to LEA except that they load specified register
as well as DS or ES. As an example, LEA BX, 3000H has the same meaning as MOV
BX,3000H. On the other hand, if (SI)=2000H, then LEA BX,4[SI] will load 2004H into
BX while MOV BX,4[SI] will initialize BX with the contents of memory
locations computed from 2004H and DS. The LEA instruction can be useful when
memory computation is desirable.

In Table 9.1, there are 14 data transfer instructions. These instructions move
single bytes and words between a register, a memory location, or an I/O port. Let us
explain some of the instructions in Table 9.1.

MOV C X , DX copies the 16-bit contents of DX into CX. MOV AX, 2025H moves
immediate data 2025H into the 16-bit register AX. MOV CH, [BX] moves the 8-bit
contents of a memory location addressed by BX in segment register DS into CH. If
(BX) = 0050H, (DS) = 2000H, and (20050H) = 08H, then, after MOV CH, [BX 3 , the
contents of CH will be 08H. MOV START [BPI , CX moves the 16-bit (CL to first
location and then CH) contents of CX into two memory locations addressed by the
sum of the displacement START and BP in segment register SS. For example, if (CX)
= 5009H, (BP)=0030H, (SS) = 3000H, and START = 06H, then, after MOV START
[BPI , CX, (30036H) = 09H and (30037H) = 50H.
LDS S I , [0 0 1 O H] loads SI and DS from memory. For example, if (DS) = 2000H,
(20010) = 0200H, and (20012) = OlOOH, then, after LDS S I , [OOlOH], SI and DS
will contain 0200H and 01 OOH, respectively.
In the 8086, the SP is decremented by 2 for PUSH and incremented by 2 for POP. For

378 Fundamentals of Digital Logic and Microcomputer Design

example, consider PUSH [BX]. If (DS) = 2000,,, (BX) = 0200,,, (SP) = 300016, (ss) =

4000,,, and (20200) = 0120,,, then, after execution of PUSH [BX] , memory locations
42FFF and 42FFE will contain 01 ,, and 2O,,, respectively, and the contents of SP will
be 2FFE,,.
XCHG has three variations: XCHG reg, reg and XCHG mem, reg or XCHG reg, mem.
For example, XCHG AX, BX exchanges the contents of 16-bit register BX with the
contents of AX. XCHG mem, reg exchanges 8- or 16-bit data in mem with 8-or 16-bit
reg.
XLAT can be used to employ an index in a table or for code conversion. This instruction
utilizes BX to hold the starting address of the table in memory consisting of 8-bit data
elements. The index in the table is assumed to be in the AL register. For example,
if (BX) = 020OI6, (AL) = 04,,, and (DS) = 3000,,, then, after XLAT, the contents of
location 30204,, will be loaded into AL. Note that the XLAT instruction is the same as
MOV AL, [AL] [BX I . As mentioned before, XLAT instruction can be used to convert
from one code to another. For example, consider an 8086-based microcomputer with
an ASCII keyboard connected to Port A and an EBCDIC printer connected to Port B.
Suppose that it is desired to enter numerical data via the ASCII keyboard, and then
print them on the EBCDIC printer. Note that numerical data entered into this computer
via the keyboard will be in ASCII code. Since the printer only understands EBCDIC
code, an ASCII to EBCDIC code conversion program is required. The ASCII codes
for numbers 0 through 9 are 30H through 39H while the EBCDIC codes for numbers
0 to 9 are FOH to F9H (Table 2.6). The EBCDIC codes for the numbers 0 to 9 can be
stored in a table starting at an offset 2030H , data can be input from the keyboard using
IN AL, PORTA, convert this ASCII data to EBCDIC using XLAT instruction, and
then output to Port B using OUT PORTB, AL. The instruction sequence for the code
conversion program is provided below:

MOV BX,2000H ;Initialize BX
IN AL , PORTA ;Input ASCII data
XLAT ;Obtain EBCDIC code from table below
OUT PORTB,AL ;Output to EBCDIC Printer
ORG 2030H
DB OF0,0F1,0F2,0F3,0F4,0F5rOF6,0F7,0F8,0F9

Consider fixed port addressing, in which the 8-bit port address is directly specified
as part of the instruction. I N AL, 38H inputs 8-bit data from port 38H into AL. IN
AX, 38H inputs 16-bit data from ports 38H and 39H into AX. OUT 3 8H , AL outputs
the contents of AL to port 38H. OUT 3 8H, AX, on the other hand, outputs the 16-bit
contents of AX to ports 38H and 39H.
For variable port addressing, the port address is 16-bit and is specified in the DX
register. Assume (DX) = 3 124,, in all the following examples.

IN AL, DX inputs 8-bit data from 8-bit port 3124,, into AL.
IN AX , DX inputs 16-bit data from ports 3 12416 and 3 125,, into AX.
OUT DX, AL outputs 8-bit data from AL into port 3124,,.
OUT DX, AX outputs 16-bit data from AX into ports 3124,, and 3125,,.

Variable port addressing allows up to 65,536 ports with addresses from OOOOH to
FFFFH. The port addresses in variable port addressing can be calculated dynamically
in a program. For example, assume that an 8086-based microcomputer is connected
to three printers via three separate ports. Now, in order to output to each one of the
printers, separate programs are required if fixed port addressing is used. However,

Intel 8086 3 79

with variable port addressing, one can write a general subroutine to output to the
printers and then supply the address of the port for a particular printer in which data
output is desired to register DX in the subroutine.

9.5.2 Arithmetic Instructions
Table 9.2 shows the 8086 arithmetic instructions. These operations can be performed
on four types of numbers: unsigned binary, signed binary, unsigned packed decimal, and
signed packed decimal numbers. Binary numbers can be 8 or 16 bits wide. Decimal
numbers are stored in bytes; two digits per byte for packed decimal and one digit per byte
for unpacked decimal with the high 4 bits filled with zeros.

Let us explain some of the instructions in Table 9.2.
Consider ADC mendreg , mem/reg. This instruction adds source and destination data
along with the carry flag, and stores the result in destination. There is no ADC mem
, mem instruction. All flags in the low byte of the Flag register are affected. For
example, if (AX) = OO2O,,, (BX) = 03001,, CF = 1, (DS) = 2020,,, and (20500) =

0100,,, then, after ADC AX, [BX] , the contents of register AX = 0020 + 0100 + 1 =

0121,,; CF = 0, PF = 0 (Result with odd Parity), AF = 0, ZF = 0 (Nonzero Result), SF
= 0 (Most Significant bit of the result is zero), and OF = 0.
Consider SBB m e d r e g , mem/reg. This instruction subtracts source data and the
carry flag from destination data, and stores the result in destination. There is no SBB
mem , mem instruction. All flags in the low byte of the Flag register are affected. For
example, if (CH) = 0316, (DL) = 02,,, and CF = 1, then, after SBB CH,DL, the contents
of register CH = 03 - 02 - 1 = OO,,.

1 1 1 1 1 1 1 + Intermediate Carries
Using two’s complement subtraction, (CH) = 0000 001 1 (+3)
Add two’s complement of 3 (DL plus CF) = + 11 1 1 1101 (-3)

--_____________________
Final Carry -1 0000 0000

Final carry is one’s complemented after subtraction to reflect the correct borrow.
Hence, CF = 0. Also, PF = 1 (Even parity; number of 1’s in the result is 0 and 0 is an
even number), AF = 1, ZF = 1 (Zero Result), SF = 0 (Most Significant bit of the result
is zero), and OF = C, 0 C, = 1 0 1 = 0.
The Compare (CMP) instruction subtracts source from destination providing no
result of subtraction; all status flags are affected based on the result. Note that the
SUBTRACT instruction provides the result and also affects the status flags. Consider
CMP DH, BL . If prior to execution of the instruction, (DH) = 40H and (BL) = 30H
then after execution of CMP DH, BL, the flags are: CF = 0, PF = 0, AF = 0, ZF = 0, SF
= 0, and OF = 0; result 10H is not provided. Suppose it is desired to find the number of
matches for an 8-bit number in an 8086 register such as DL in a data array of 50 bytes
in memory pointed to by BX in DS. The following instruction sequence with CMP
DL, [BX] rather than SUB DL, [BX] can be used :

MOV AL, 0

MOV CX,50 ;

START : CMP DL, [BXI ;
JZ MATCH ;

JM P COWN
MATCH : INC AL

Clear AL to 0, AL to hold number of
matches
Initialize array count
Compare the number to be matched in DL
with a data byte in the array.If there i s
a match, ZF=l. Branch to label MATCH.
Unconditional jump to label DCWN.
increment AL to hold number of matches.

3 80 Fundamentals of Digital Logic and Microcomputer Design

TABLE 9.2 8086 Arithmetic Instructions

Addition

ADD a, b

ADC a, b

INC regimem

AAA ASCII adjust for addition

DAA

Add byte or word

Add byte or word with carry

Increment byte or word by one

Decimal adjust [AL], to be used
after ADD or ADC

Subtraction

SUB a, b

SBB a, b

DEC regimem

NEG reg/mem

CMP a, b

AAS ASCII adjust for subtraction

DAS

Subtract byte or word

Subtract byte or word with borrow

Decrement byte or word by one

Negate byte or word

Compare byte or word

Decimal adjust [AL] after SUB or SBB

MUL regimem Multiply byte or word unsigned for byte

I M U L regimem Integer multiply byte or word
(signed)

[AX] - [AL] . [memireg]

for word

[DX][AX] + [AX] . [me&
reg1

Division

nIv regimem Divide byte or word unsigned “,=I
16 + 8 bit; [AX] + [mem/regl
[AH] t remainder IDIV regimem Intcger divide byte or word (signed)

[AL] t quotient
[DXAX]

32+16 bit; [DX:AX]+ [mem/regl
[DX] t remainder
[AX] t quotient

AAD

CBW

CWD

ASCII adjust for division

Convert byte to word

Convert word to double word

a = “reg” or “mem,” b = “reg” or “mem” or “data.”

DOWN : INC BX ; Increment BX to point to next data byte.
LOOP START ; Decrement CX by 1, go back to START if

; CX #O.If CX = 0, go to the next
; instruction

; A L contains the number of matches

Intel 8086 38 1

In the above, if SUB DL, [BX] were used instead of CMP DL, [BX] , then
the number to be matched needed to be loaded after each subtraction because the
contents of DL would have been lost after each SUB. Since we are only interested in the
match rather than the result, CMP DL, [BX 3 instead of SUB DL, [BX] should be
used in the above.

Numerical data received by an 8086-based microcomputer from a terminal is usually
in ASCII code. The ASCII codes for numbers 0 to 9 are 30H through 39H. Two
8-bit data items can be entered into an 8086-based microcomputer via a keyboard.
The ASCII codes for these data items (with 3 as the upper nibble for each type) can
be added. AAA instruction can then be used to provide the correct unpacked BCD.
Suppose that ASCII codes for 2 (32,& and 5 (35,J are entered into an 8086-based
microcomputer via a keyboard. These ASCII codes can be added and then the result
can be adjusted to provide the correct unpacked BCD using the AAA instruction as
follows:

ADD CL, DL ; (CL) = 32,, = ACSII f o r 2
(DL) = 35,, = ASCII f o r 5

; R e s u l t (CL) = 67,,
MOV AL, CL ; Move ASCII r e s u l t

; i n t o AL b e c a u s e AAA
; a d j u s t s only (AL)

AAA (AL) = 07, u n p a c k e d
; BCD f o r 7

Note that, in order to print the unpacked BCD result 07,, on an ASCII printer, (AL) =

07 can be ORed with 30H to provide 37H, the ASCII code for 7.
In case of an invalid BCD digit after addition, AAA instruction can be used to obtain
correct unpacked BCD as follows:

ADD BH, DL ;

MOV AL, BH ;

AAA

(BH) = 38,, = ACSII f o r 8
(DL) = 37,, = ASCII f o r 7

R e s u l t (BH) = 6F,,
Move ASCII r e s u l t
i n t o AL b e c a u s e AAA ge t s r i d . o f 6 i n
t h e u p p e r 4 b i t s of AL, a n d a d d s 6 t o
F f o r BCD c o r r e c t i o n t o p r o v i d e t h e
correct u n p a c k e d BCD f o r 5,(AL) = 05,
w i t h CF=1 so t h a t correct r e s u l t i s
15 decimal

DAA is used to adjust the result of adding two packed BCD numbers in AL to provide
a valid BCD number. If, after the addition, the low 4 bits of the result in AL is greater
than 9 (or if AF = l), then the DAA adds 6 to the low 4 bits of AL. On the other hand.
if the high 4 bits of the result in AL are greater than 9 (or if CF = I) , then DAA adds
60H to AL.
DAS may be used to adjust the result of subtraction in AL of two packed BCD numbers
to provide the correct packed BCD. While performing these subtractions, any borrows
from low and high nibbles are ignored, For example, consider subtracting packed BCD
55 in DL from packed BCD 94 in AL:
Packed BCD 55 = 0101 0101, and Packed BCD 94 = 1001 0100,.

Packed BCD 94 = 1001 0100
Add Two's complement of 0101 0101 = 1010 101 1

Ignore Carry -+ 1 001 1 I 1 1 I = 3FH

3 82 Fundamentals of Digital Logic and Microcomputer Design

I FFFF

.

FFFE

The invalid BCD digit (F) in the low 4 bits of the result can be corrected by subtracting
6 from F:
Low Nibble = FH = 11 11

-6 = l o 1 0

Ignore Carry 4 1 1001 This will provide the correct BCD result of 39.

The following 8086 instruction sequence will accomplish this:
SUB AL,DL ; [AL] = 3FH
DA S : [A L] = 39

For 8-bit by 8-bit signed or unsigned multiplication between the contents of a memory
location and AL, assembler directive BYTE PTR can be used. Example: IMUL BYTE
PTR[BX]. On the other hand, for 16-bit by 16-bit signed or unsigned multiplication
between the 16-bit contents of a memory location and register AX, assembler directive
WORD PTR can be used. Example: MUL WORD PTR[SI].
Consider 16 x 16 unsigned multiplication, MUL WORD PTR [BX] . If (BX) = 0050H,
(DS) = 3000H, (30050H) = 0002H, and (AX) = 0006H, then, after MUL WORD PTR
[BX] , (DX) = OOOOH and (AX) = 000CH.

MUL m e d r e g provides unsigned 8 x 8 or unsigned 16 x 16 multiplication. Consider
MUL BL. If (AL) = 20,, and (BL) = 02,,, then, after MUL BL, register AX will contain
0O4Ol6.
I M U L m e d r e g provides signed 8 x 8 or signed 16 x 16 multiplication. As an example,
if (CL) = FDH = -310 and (AL) = FEH = -2,,, then, after IMUL CL, register AX
contains 0006H.
Consider IMUL DH. If (AL) = FF,, = - l l o and (DH) = 02,,, then, after I M U L DH,
register AX will contain FFFE,, (-2,0) .
D I V m e d r e g performs unsigned division and divides (AX) or (DX:AX) registers by
reg or mem. For example, if (AX) = 000516 and (CL) = O2,,, then, after D I V CL, (AH)
= 01 I 6 = Remainder and (AL) = 02,,, Quotient.
Consider D I V BL. If (AX) = 0009H and (BL) = 02H, then, after D I V BL,

(AH) = remainder = 0 1 H
(AL) = quotient = 04H

I D I V m e d r e g performs signed division and divides 16-bit contents of AX by an 8-bit
number in a register or a memory location, or 32-bit contents of DX:AX registers by
a 16-bit number in a register or a memory location. Consider IDIV CX. If (CX) = 2
and (DXAX) = -Sl0 = FFFFFFFB,,, then, after this IDIV, registers DX and AX will
contain:

Note that in the 8086, after IDIV, the sign of remainder is always the same as the
dividend unless the remainder is equal to zero. Therefore, in this example, because the
dividend is negative (-510), the remainder is negative (-1 ,o).

Intel 8086 383

For 16-bit by 8-bit signed or unsigned division of the 16-bit contents of AX by 8-bit
contents of a memory location, assembler directive BYTE PTR can be used. Example:
IDIV BYTE PTR[BX]. On the other hand, for 32-bit by 16-bit signed or unsigned
division of the 32-bit contents of DXAX by 16-bit contents of a memory location,
assembler directive WORD PTR can be used. Example: MUL WORD PTR[SI].
Consider I D I V WORD PTR [BX] . If (BX) = 0020H, (DS) = 2000H, (20020H) =

0004H, and (DX) (AX) = 0000001 lH, then, after I D I V WORD PTR [BX] ,
(DX) = remainder = OOOlH
(AX) = quotient = 0004H

Consider CBW. This instruction extends the sign from the AL register to the AH
register. For example, if AL = F1 ,,, then, after execution of CBW, register AH will
contain FF,, because the most significant bit of F1 16 is 1. Note that the sign extension
is very useful when one wants to perform an arithmetic operation on two signed
numbers of different lengths. For example. the 16-bit signed number 002OI6 can be
added with the 8-bit signed number El , 6 by sign-extending E l as follows:

0020, ,=0000 0 0 0 0 0 0 1 o o o o 0 (3 2 , ~)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (+1 lo)
Sign
extension

E l , , $ l 1 1 1 1 1 111 1 1 1 0 0001(-3110)

WWWW
Ignore / O 0 0 1
carry

Another example of sign extension is that, to multiply a signed 8-bit number by a
signed 16-bit number, one must first sign-extend the signed 8-bit into a signed 16-bit
number and then the instruction I M U L can be used for 16 x 16 signed multiplication.
For unsigned multiplication of a 16-bit number by an 8-bit number, the 8-bit number
must be zero extended to 16 bits using logical instruction such as AND before using
the MUL instruction.
CWD sign-extends the AX register into the DX register. That is, if the most significant
bit of AX is 1, then FFFF,, is stored into DX.
AAD converts two unpacked BCD digits in AH and AL to an equivalent binary number
in AL after converting them to packed BCD. AAD must be used before dividing two
unpacked BCD digits in AX by an unpacked BCD byte. For example, consider
dividing (AX) = unpacked BCD 0508 (58 Packed BCD) by (DH) = 07H. (AX) must
first be converted to binary by using AAD. The register AX will then contain 003AH
= 58 Packed BCD. After D I V DH, (AL) = quotient = 08 (unpacked BCD), and (AH)
= remainder 02 (unpacked BCD).
AAM adjusts the product of two unpacked BCD digits in AX. If (AL) = 03H (unpacked
BCD for 3) = 00000011, and (CH) = 08H (unpacked BCD for 8) = 0000 IOOO,,
then, after MUL CH, (AX) = 000000000001 1000, = 0018H, and, after using AAM,
(AX) = 00000010000001 00, = unpacked 0204. The following instruction sequence
accomplishes this:

MUL CH
AAM

Note that the 8086 does not allow multiplication of two ASCII codes. Therefore,
before multiplying two ASCII bytes received from a terminal, one must make the
upper 4 bits of each one of these bytes zero, multiply them as two unpacked BCD
digits, and then use AAM for adjustment to convert the unpacked BCD product back to

3 84 Fundamentals of Digital Logic and Microcomputer Design

ASCII by ORing the product with 3030H. The result in decimal can then be printed on
an ASCII printer.

9.5.3 Bit Manipulation Instructions
The 8086 provides three groups of bit manipulation instructions. These are logicals, shifts,
and rotates, as shown in Table 9.3. The operand to be shifted or rotated can be either 8- or
16-bit. Let us explain some of the instructions in Table 9.3

Consider AND B H , 8 F H . If prior to execution of this instruction, (BH) = 72H, then
after execution of AND B H , 8 F H , the following result is obtained :

(BH)= 72H= 0111 0010
AND 8 F H = 1000 1111

(BH) = 0000 0010
ZF = 0 (Result is nonzero), SF = 0 (Most Significant Bit of the result is 0), PF = 0
(Result has odd parity). CF, AF, and OF are always cleared to 0 after logic operation.
The status flags are similarly affected after execution of other logic instructions such
as OR, XOR, NOT, and TEST.
The AND instruction can be used to perform a masking operation. If the bit value in
a particular bit position is desired in a word, the word can be logically ANDed
with appropriate data to accomplish this. For example, the bit value at bit 2 of an 8-
bit number 0100 IY 10 (where unknown bit value of Y is to be determined) can be
obtained as follows: 0 1 0 0 1 Y 1 0 -- 8-bit number

AND 0 0 0 0 0 1 0 0-- Masking data

0 0 0 0 OY 0 0--Result
-____-_-_____________

If the bit value Y at bit 2 is I , then the result is nonzero (Flag Z=O); otherwise, the
result is zero (Flag Z=1) . The Z flag can be tested using typical conditional JUMP
instructions such as JZ (Jump if Z=1) or JNZ (Jump if Z=O) to determine whether Y

TABLE 9.3 8086 Bit Manipulation Instructions
Lo picals

NOT medreg
AND a, b
OR a, b
XOR a, b
TEST a, b

SHLiSAL medreg, CNT

SHWSAR medreg, CNT

ROL medreg, CNT

NOT byte or word
AND byte or word
OR byte or word
Exclusive OR byte or word
Test byte or word

Shift Iogical/arithmetic left byte or word
Shift logical/arithmetic right byte or word

Rotate left byte or word

Sh ijk

Rotates

ROR medreg, CNT

RCL medreg, CNT

Rotate right byte or word
Rotate through carry left byte or word

RCR medreg, CNT
a = “reg” or “mem,” b = “reg” or “mem” or “data,” CNT = number of times to be shifted.

Rotate through carry right byte or word

If CNT > 1, then CNT is contained in CL. Zero or negative shifts and rotates are illegal.
If CNT = 1 then CNT is immediate data. Up to 255 shifts are allowed.

Intel 8086 385

is 0 or 1. This is called masking operation. The AND instruction can also be used
to determine whether a binary number is ODD or EVEN by checking the Least
Significant bit (LSB) of the number (LSB=O for even and LSB=1 for odd).
Consider OR DL , AH . If prior to execution of this instruction, [DL] = A2H and [AH]
= 5DH, then after exection of OR DL , AH , the contents of DL are FFH. The flags
are affected similar to the AND instruction. The OR instruction can typically be used
to insert a 1 in a particular bit position of a binary number without changing the
values of the other bits. For example, a 1 can be inserted using the OR instruction at
bit number 3 of the 8-bit binary number 0 1 1 1 0 0 1 1 without changing the values
of the other bits as follows:

OR
0 1 1 1 0 0 1 1 -- 8-bit number
0 0 0 0 1 0 0 0 -- data for inserting a 1 at bit number 3

0 I 1 1 1 0 1 1 --Result
Consider XOR CX, 2 . If prior to execution of this instruction, (CX) = 2342H,
then after execution of XOR CX, 2 , the 16-bit contents of CX will be 2340H. All
flags are affected in the same manner as the AND instruction. The Exclusive-OR
instruction can be used to find the ones complement of a binary number by XORing
the number with all 1's as follows:

0 1 0 I 1 1 0 0 - - 8-bit number
XOR 1 1 1 1 1 1 1 I - - data

..........................
1 0 10 0 0 I 1 -- Result (Ones Complement of the

8-bit number 0 1 0 1 1 1 0 0)
TEST CL, 05H logically ANDs (CL) with 00000101, but does not store the result in
CL. All flags are affected.
Consider SHR mendreg, CNT or SHL mendreg, CNT. These instructions are logical
right or left shifts, respectively. The CL register contains the number of shifts if the
shift is greater than 1. If CNT = 1, the shift count is immediate data. In both cases, the
last bit shifted out goes to CF (carry flag) and 0 is the last bit shifted in. For example,
SHL BL,l logically shifts the contents of BL one bit to the left. Note that the shift
count '1' is immediate data. Now prior to execution of this instruction, if (BL) = A1 ,,
and CF = 0, then after SHL Bl,l, the contents of BL are 42,, and CF = 1.
Consider the 8086 instruction sequence,

MOV CL,2 ; shift count 2 is moved into CL
SHR DX,CL; Logically shifts (DX) twice to right

Prior to execution of the above instruction sequence, if (DX) = 97,, and CF = 0, then
after execution
of the above instruction sequence, (DX) = 25,, and CF = 1.

Figure 9.5 shows SAR mendreg, CNT or SAL mendreg, CNT. Note that a true arithmetic
left shift does not exist in 8086 because the sign bit is not retained after execution of
SAL. Also, SAL and SHL perform the same operation except that SAL sets OF to 1 if
the sign bit of the number shifted changes during or after shifting. This will allow one
to multiply a signed number by 2" by shifting the number n times to left; the result
is correct if OF = 0 while the result is incorrect if OF = 1. Since the execution time
of the multiplication instruction is longer, multiplication by shifting may be more
efficient when multiplication of a signed number by 2" is desired.

386 Fundamentals of Digital Logic and Microcomputer Design

SAR SAL

FIGURE 9.5 8086 SAR and SAL instructions

ROL ROR
150~7 . . . 1 0 15or7 . . . 0

. .

FIGURE 9.6 8086 ROR and ROL instructions

RCL RCR

fl .,.,., ,~ 1 0

F 1 5 G . . . 4
u

FIGURE 9.7 8086 RCL and RCR instructions

ROL medreg, CNT rotates [medreg] left by the specified number of bits (Figure 9.6).
The number of bits to be rotated is either 1 or contained in CL. For example, if CF =

0, (BX) = 0010,,, and (CL) = 03 ,h then, after ROL BX, CL, register BX will contain
0080,, and CF = 0. On the other hand, ROL BL, 1 rotates the 8-bit contents of BL
1 bit to the left. ROR medreg, CNT is similar to ROL except that the rotation is to the
right (Figure 9.6).
Figure 9.7 shows RCL medreg , CNT and RCR medreg , CNT .

9.5.4 String Instructions
The word “string” means that an array of data bytes or words is stored in consecutive
memory locations. String instructions are available to MOVE, COMPARE, or SCAN for a
value as well as to move string elements to and from AL or AX. The instructions, listed in
Table 9.4, contain “repeat” prefixes that cause these instructions to be repeated in hardware,
allowing long strings to be processed much faster than if done in a software loop.
Let us explain some of the instructions in Table 9.4.

MOVS WORD or BYTE moves 8- or 16-bit data from the memory location
addressed by SI in DS to the memory location addressed by DI in ES. SI and
DI are incremented or decremented depending on the DF flag. For example, if
(DF) = 0, (DS) = 1000,,, (ES) = 3000,,, (SI) = 0002,,, (DI) = 0004,,, and (10002)
= 1234,,, then, after MOVS WORD, (30004) = 1234,,, (SI) = 0004,,, and (DI) =

TABLE 9.4 8086 String Instructions

R E P

REPE/REPZ.

REPNE/REPNZ

MOVS BYTE/WORD

CMPS BYTE/WORD

SCAS BYTE~WORD

LODS BYTE/WORD

STOS BYTE/WORD

Repeat MOVS or S T O S until CX = 0
Repeat CMPS or SCAS until ZF = 1 or C x = 0
Repeat CMPS or SCAS until ZF = 0 or CX = 0
Move byte or word string
Compare byte or word string
Scan byte or word string
Load from memory into AL or AX
Store AL or AX into memory

Intel 8086 387

OOO6,,. Assuming (10002,J = 1234)6, the following 8086 instruction sequence
will accomplish the above:

CLD ; D F = 0
MOV A X r l O O O H ; D S = l O O O H
MOV D S , A X

MOV BXr3000H ; E S = 3000H
MOV E S , B X
MOV SIr0002H ; I n i t i a l i z e SI t o OOOZ,,
MOV DI r0004H ; I n i t i a l i z e D I t o 0004,,
MOVS WORD

Note that DS (source segment) in the MOVS instruction can be overridden while
the destination segment, ES is fixed, cannot be overridden. For example, the
instruction ES: MOVS WORD will override the source segment, DS by ES while
the destination segment remains at ES so that data will be moved in the same
extra segment, ES.
REP repeats the instruction that follows until the CX register is decremented to
0. For example, the following instruction sequence uses LOOP instruction for
moving 50 bytes from source to destination:
MOV CX,50 ; Initialize CX to 50
BACK: MOVSB ; Move a byte from source array to destination

LOOP BACK ; array in the direction based on DF. LOOP
: decrements CX by 1
: and goes to label BACK if CX f O . If CX =

; 0,goes to the next instruction. Thus, 50 bytes
; are moved

The above instruction sequence can be replaced using REP prefix as follows:

MOV CX,50 ; Initialize CX to 50
REPMOVSB ; Move a byte from source array to destination

; array in the direction based on DF. REP
; decrements CX by 1
: and executes MOVSB 50 times.

; Thus, 50 bytes are moved.
A REPE/REPZ or REPNE/REPNZ prefix can be used with CMPS or SCAS to
cause one of these instructions to continue executing until ZF = 0 (for the REPNE/
REPNZ prefix) or cx = 0. REPE and REPZ also provide a similar purpose. If
CMPS is prefixed with REPE or REPZ, the operation is interpreted as “compare
while not end-of-string (CX # 0) or strings are equal (ZF = I).” If CMPS is
preceded by REPNE or REPNZ, the operation is interpreted as “compare while
not end-of-string (CX # 0) or strings not equal (ZF = O).” Thus, repeated CMPS
instructions can be used to find matching or differing string elements.
If SCAS is prefixed with REPE or REPZ, the operation is interpreted as “scan
while not end-of-string (CX # 0) or string-element = scan-value (ZF = 1)” This
form may be used to scan for departure from a given value. If SCAS is prefixed
with REPNE or REPNZ, the operation is interpreted as “scan while not end-of-
string (CX # 0) or string-element is not equal to scan-value (ZF = O).” This form
may be used to locate a value in a string.
Consider SCAS WORD or BYTE. This compares the memory with AL or AX. If
(DI) = 0000,,, (ES) = 2000,,, (DF) = 0, (20000) = 05,,, and (AL) = 03,,, then, after

388 Fundamentals of Digital Logic and Microcomputer Design

SCAS BYTE, DI will contain 0001 1 6 because (DF) = 0 and all flags are affected
based on the operation (AL) - (20000).
CMPS WORD or BYTE subtracts without any result (affects flags accordingly)
8- or 16-bit data in the source memory location addressed by SI in DS from the
destination memory location addressed by DI in ES. SI and DI are incremented
or decremented depending on the DF flag. For example, if (DF) = 0, (DS) =

lOOO,,, (ES) = 3000,,, (SI) = 0002,,, (DI) = 0004,,, (10002) = 1234,,, and (30004)
= 1234,, then, after CMPS WORD, CF = 0, P F = 1, A F = 1 , Z F = 1, S F = 0 , OF =

0, (10002) = 1234,,, and (30004) = 1234, 6 , (SI) = 0004,,, and (DI) = 0006,,.
LODS BYTE or WORD loads a byte into AL or a word into AX respectively from
a string in memory addressed by SI in DS ; SI is then automatically incremented
or decremented by 1 for a byte or by 2 for a word based on DF. For example, prior
to execution of LODS BYTE, if (SI)= 0020H, (DS) = 3000H, (30020H) = 05H,
DF = 0, then after execution of LODS BYTE, 05H is loaded into AL; SI is then
automatically incremented to 0021H since DF = 0. STOS BYTE or WORD, on
the other hand, stores a byte in AL or a word in AX respectively into a string
addressed by DI in ES. DI is then automatically incremented or decremented by
1 for a byte or by 2 for a word based on DF.

9.5.5 Unconditional Transfer Instructions
Unconditional transfer instructions transfer control to a location either in the current
executing memory segment (intrasegment) or in a different code segment (intersegment).
Table 9.5 lists the unconditional transfer instructions.

The 8086 CALL instructions provide the mechanism to call a subroutine into
operation while the RET instruction placed at the end of the subroutine transfers control
back to the main program. There are two types of 8086 CALL instruction. These are
intrasegment CALL (IP changes, CS is fixed), and intersegment CALL (both IP and CS
are changed). Intrasegment or Intersegment CALL is defined by the various operands of
the CALL instruction. For example, the three operands NEAR PROC, mem16, and reg16
define intrasegment CALLS to a subroutine. Upon execution of the intrasegment CALL
with any of the three operands, the 8086 pushes the current contents of IP onto the stack;
the SP is then decremented by 2. The saved IP value is the offset that contains the next
instruction to be executed in the main program. The 8086 then places a new 16-bit value (
Offset of the first instruction in the subroutine) into IP. The three types of operands of the
intrasegment CALL will be discussed next.

Consider CALL NEAR PROC. The assembler directive NEAR specifies the
CALL instruction with relative addressing mode. This means that NEAR determines a 16-
bit displacement, and the offset is computed relative to the address of the CALL instruction.
With 16-bit displacement, the range of the CALL instruction is limited to -32766 to + 32765
(0 being positive). As an example, consider the following 8086 instruction sequence:
CODE SEGMENT

ASSUME C S :CODE, D S : DATA, SS : STACK

TABLE 9.5 8086 Unconditional Transfers

CALL reg/mem/disp 16 Call subroutine

RET or RET disp 16 Return from subroutine

JMP disp8/disp 16 /reg1 6/mem16 Unconditional jump

Intel 8086 389

MULT I
HLT
PROC NEAR

_ _ _ _ _ _
RE T

MULTI ENDP
CODE ENDS

A
subroutine called MULTI is also resident in the same code segment named CODE. Since
this subroutine is in the same code segment as the main program containing the CALL
instruction, the contents of CS are not altered to access it. Use of the assembler directive
NEAR in the statement MULTI PROC NEAR tells the 8086 assembler that the main
program and the subroutine are located in the same code segment.

The instructions CALL meml6 and CALL reg16 specify a memory location or a
16-bit register such as BX to hold the offset to be loaded into IP. Thus, these two CALL
instructions use indirect addressing mode. An example of CALL meml6 is CALL [BX]
which loads the 16-bit value stored in the memory location pointed to by BX into IP. The
physical address of the offset is calculated from the current DS and the contents of BX.
The first instruction of the subroutine is contained in the address computed from new IP
value and current CS. Next, typical examples of CALL reg16 are CALL BX and CALL
BP; these instructions load the 16-bit contents of BX or BP into IP. The starting address
(physical address) of the subroutine is computed from the new value of IP and the current
CS contents. Note that intrasegment CALL instructions are used when the main program
and the subroutine are located in the same code segment.

Intersegment CALL instructions are used when the main program and the
subroutine are located in two different code segments. The two intersegment CALL
instructions are CALL FAR PROC and CALL mem32. These instructions define a new
offset for IP and a new value for CS. Upon execution of these two instructions, the 8086
pushes the current contents of IP and CS onto the stack, the new values of IP and CS are
then loaded. For example consider CALL FAR PROC which loads the new value of IP
from the next two bytes, and the new value of CS from the following two bytes. As an
example, consider the following 8086 instruction sequence:
CODE SEGMENT

In the above, the main program is located in a segment named CODE.

ASSUME CS :CODE, DS : DATA, SS :STACK
_ _ _ _ _ _ _ _ _ _ _ _

CODE
SUBR
MULT I

HLT
ENDS
SEGMENT
PROC FAR

3 90 Fundamentals of Digital Logic and Microcomputer Design

ASSUME CS : SUBR

- - -_
RE T

MULTI ENDP
SUBR ENDS

In the above, the main program is located in a segment named CODE. A
subroutine called MULTI is in a segment named SUBR. Since this subroutine is in a
different code segment from the CALL instruction, the contents of CS must be altered to
access it. Use of the assembler directive FAR in the statement MULTI PROC FAR tells
the 8086 assembler that the main program and the subroutine are located in different code
segments. When the assembler translates the CALL instruction, it will assign the value of
SUBR to CS, and will place the offset of the first instruction of the subroutine in SUBR as
the IP value in the instruction.

CALL FAR [SI] stores the pointer for the subroutine as four bytes in data memory.
The location of the first byte of the four-byte pointer is specified indirectly by one of the
8086 registers (SI in this case). In this example, the 20-bit physical address of the first byte
of the four-byte pointer is computed from DS and S1. Finally, CALL FAR [BX] pushes
CS and IP onto stack and loads IP and CS with the contents of four consecutive bytes
pointed to by BX.

RET instruction is usually placed at the end of a subroutine which pops IP
(pushed onto the stack by the intrasegment CALL instruction) or both IP and CS (pushed
onto the stack by the intersegment CALL instruction), and returns control to the main
program. RET disp 16, on the other hand, adds 16-bit value (disp 16) to SP after placing
the return address into IP (for intrasegment CALL) or into IP and CS ((for intersegment
CALL). The main objective of inclusion of the 16-bit displacement operand with the RET
instruction is to discard the parameters that were saved onto the stack before execution of
the subroutine CALL instruction.

Similar to the CALL instruction, the jump instruction in Table 9.5 can be either
intrasegment JMP (Jump within the current code segment; only IP changes) or intersegment
JMP (Jump from one code segment to another code segment; both CS and 1P contents are
modified). Intrasegment Jump can have an operand with a short label, near label, reg16 or
meml6. For example, the short label and near label operands use relative addressing mode.
This means that the Jump is performed relative to the address of the JMP instruction. For
jumps with short label, IP changes and CS is fixed. JMP d i s p 8 adds the second object
code byte (signed 8-bit displacement) to (IP + 2), and (CS) is unchanged. With an 8-bit
signed displacement, jump with a short label operand is allowed in the range from -128 to
f 127 (0 being positive) from the address of the JMP instruction. Near label operand allows
a JMP instruction to have a signed 16-bit displacement with a range -32K to +32K bytes
from the address of the JMP instruction. An example of JMP short label or near label is
JMP START. The 8086 assembler automatically computes the value of the displacement
START at assembly time. The programmer does not have to worry about it. Based upon
the displacement size of START (in this case), the assembler determines whether the JMP
is to be performed with short or near label.

JMP reg16 or JMP meml6 specifies the JUMP address respectively by the 16-
bit contents of of a register or a memory location. The range for this JMP is from -32K to
+32K bytes from the address of the JMP. An example of JMP reg16 is JMP SI which

Intel 8086

k d
Name Alternate Name

(JUMP if result zero)
J E disp 8 J Z displ
(JUMP if equal)
J N E disp8 J N Z disp 8

39 1

Unsipned
Name Allernate Name

J E disp8 J Z disp8
(JUMP if equal)
J N E disp8 J N Z dim8

(JUMP if zero)

(JUMP if greater)

J G E disp8 JNL disp8
(JUMP if greater or
equal)
J L disp8 JNGE disp8
(JUMP if less than)

J L E disp8 J N G disp8
(JUMP if less or

(JUMP if not less or
equal)

(JUMP if not less)

(JUMP if not greater or
equal)

(JUMP if not greater)

(JUMP knot equal) (JUMP if not zero) I (JUMP knot equal) (JUMP if not zero)
J G disp8 JNLE disp8 I J A disp8 J N B E disp8

(JUMP if above)

JAE displ JNB disp8
(JUMP if above or
equal)
J B disp8 J N A E disp8
(JUMP if below)

J B E disp8 J N A disp8
(JUMP if below or

(JUMP if not below or
equal)

(JUMP if not below)

(JUMP if not above or
equal)

(JUMP if not above)

copies the contents of SI into IP. SI contains the 16-bit displacement. The 8086 computes
the physical address from the current CS value and the new IP value. An example of JMP
meml6 is JMP [DI] which uses the contents of DI as the address of the memory location
containing the offset. This offset is placed into IP. The physical address is computed from
this IP value and the current code segment value.

The intersegment JMP instruction includes operands with far label and mem32.
Jump with far label uses a 32-bit immediate operand ; the first 16 bits are loaded into IP
while the next 16 bits are loaded into CS. An example of JMP with far label is JMP FAR
BEGIN (or some 8086 assemblers use JMP FAR PTR BEGIN) which unconditionally
branches to a label BEGIN in a different code segment.

Finally, JMP mem32 indirectly specifies the offset and the code segment values.
IP and CS are loaded from the 32-bit contents of four consecutive memory locations; each
memory location contains a byte. As an example, JMP FAR [S I 3 loads IP and CS with
the contents of four consecutive bytes pointed to by SI in DS.

9.5.6 Conditional Branch Instructions
All 8086 conditional branch instructions use %bit signed displacement. That is, the
displacement covers a branch range of -128 to +127, with 0 being positive. The structure
of a typical conditional branch instruction is as follows:

If condition is true,
then IP - IP + disp8,
otherwise IP - IP + 2 and execute next instruction.

There are two types of conditional branch instructions. In one type, the various
relationships that exist between two numbers such as equal, above, below, less than, or
greater than can be determined by the appropriate conditional branch instruction after a
COMPARE instruction. These instructions can be used for both signed and unsigned
numbers. When comparing signed numbers, terms such as “less than” and “greater than”
are used. On the other hand, when comparing unsigned numbers, terms such as “below
zero” or “above zero” are used.

Table 9.6 lists the 8086 signed and unsigned conditional branch instructions.
Note that in Table 9.6 the instructions for checking which two numbers are “equal” or

3 92 Fundamentals of Digital Logic and Microcomputer Design

TABLE 9.7 8086 Conditional Branch Instructions Affecting Individual Flags
J C disp8
J N C disp8
J P disp8
JNP disp8
J O disp8
J N O disp8
J S disp8
JNS disp8
J Z disp8
J N Z disp8

JUMP if carry, i.e., CF = 1
JUMP if no carry, is . , CF = 0
JUMP if parity, i.e., PF = 1
JUMP if no parity. i.e., PF = 0
JUMP if overflow, i.e., OF = 1
JUMP if no overflow, i t . , OF = 0
JUMP if sign, i.e., SF = 1
JUMP if no sign, i t . . SF = 0
JUMP if result zero, i.e.. ZF = 1
JUMP if result not zero, i.e., ZF = 0

TABLE 9.8
following.

8086 Instructions To Be Used after CMP A, B ; a and b are data in the

Signed “a ” and “b ” Unsigned “a“ and “b”
J G E disp8 i f a 2 b JAE disp8 i f a r b
J L disp8 i f a < b J B displ i f a < b
J G disp8 i f a > b J A disp8 i f a > b
JLE disp8 i f a s b JBE dispd i f a s b

“not equal” are the same for both signed and unsigned numbers. This is because when two
numbers are compared for equality, irrespective of whether they are signed or unsigned,
they will provide a zero result (ZF = 1) if they are equal and a nonzero result (ZF = 0) if
they are not equal. Therefore, the same instructions apply for both signed and unsigned
numbers for “equal to” or “not equal to” conditions. The second type of conditional branch
instructions is concerned with the setting of flags rather than the relationship between two
numbers. Table 9.7 lists these instructions.

Now, in order to check whether the result of an arithmetic or logic operation is
zero, nonzero, positive or negative, did or did not produce a carry, did or did not produce
parity, or did or did not cause overflow, the following instructions should be used: JZ,
JNZ, JS, JNS, JC, JNC, JP, JNP, JO, JNO. However, in order to compare two signed
or unsigned numbers (a in address A or b in address B) for various conditions, we use CMP
A, B, which will form u - b. and then one of the instructions in Table 9.8.

Now let us illustrate the concept of using the preceding signed or unsigned
instructions by an example. Consider clearing a section of memory word starting at B up to
and including A, where (A) = 3000,, and (B) = 2000,, in DS = lOOO,,, using the following
instruction sequence:

MOV AX, lOOOH
MOV DS, AX ;Initialize DS
MOV BX, 2000H
MOV CX, 3000H

AGAIN: MOV WORD PTR[BX], OOOOH
INC BX
INC BX
CMP CX, BX
JGE AGAIN

JGE treats CMP operands as twos complement numbers. The loop will terminate
when BX = 3002H. Now, suppose that the contents of A and B are as follows: (A) = 8500,,
, (B) = 0500,,

In this case, after CMP CX, BX is first executed,

Intel 8086 393

8500 - 0500
8000,,
1000000000000000
t
SF = 1, i.e., a negative number

Because SOOO,, is a negative number, theloop terminates.
The correct approach is to use a branch instruction that treats operands as unsigned

numbers (positive numbers) and uses the following instruction sequence:
MOV AXllOOOH
MOV DS,AX ; initialize DS
MOV BX10500H
MOV CX,8500H

INC BX
INC BX
CMP CX,BX
JAE AGAIN

AGAIN : MOV WORD PTR[BX], OOOOH

JAE will work regardless of the values of A and B.
Also, note that addresses are always positive numbers (unsigned). Hence,

unsigned conditional jump instruction must be used to obtain the correct answer. The
above examples are shown for illustrative purposes.

9.5.7 Iteration Control Instructions
Table 9.9 lists iteration control instructions. All these instructions have relative addressing
modes.

LOOP disp8 decrements the CX register by 1 without affecting the flags and then
acts in the same way as the JMP dsp8 instruction except that if CX z 0, then the JMP is
performed: otherwise, the next instruction is executed.

LOOPE (Loop while equal) / LOOPZ (Loop while zero), on the other hand,
decrements CX by 1 without affecting the flags. The contents of CX are then checked for
zero, and also the zero flag (ZF), that results from execution of previous instruction, is
checked for one. If CX # 0 and ZF = 1, the loop continues. If either CX = 0 or ZF = 0, the
next instruction after the LOOPE or LOOPZ is executed. The following 8086 instruction
sequence compares an array of 50 bytes with data byte OOH. As soon as a match is not
found or end of array is reached, the loop exits. LOOPE instruction can be used for this
purpose. The following 8086 instruction sequence illustrates this:

.

MOV SI, START ; Intialize SI with the starting
; offset of the array

TABLE 9.9

LOOP disp8

LOOPE/LOOPZ dispd

8086 Iteration Control Instructions

Decrement CX by 1 without affecting flags and branch to label if
CX * 0; otherwise, go to the next instruction.
Decrement CX by 1 without affecting flags and branch to label
if CX * 0 and ZF = 1; otherwise (CX=O or ZF=O), go to the next
instruction.
Decrement CX by 1 without affecting flags and branch to label if
CX * 0 and ZF = 0; otherwise (CX=O or ZF=l), go to the next
instruction.
JMP if register CX =O.

LOOPNE/LOOPNZ disp8

J C X Z disp8

394 Fundamentals of Digital Logic and Microcomputer Design

DEC SI
MOV CX,50 ; Initialize CX with array count

CMP BYTE PTR[SI],OOH ; Compare array element with OOH
LOOPE BACK

BACK: INC SI ; Update pointer

LOOPNE (LOOP while not equal) / LOOPNZ (Loop while not zero) is similar to
LOOPE / LOOPZ except that the loop continues if CX # 0 and ZF = 0. On the other hand,
If CX = 0 or ZF = 1, the next instruction is executed. The following 8086 instruction
sequence compares an array of 50 bytes with data byte OOH for a match. As soon as a match
is found or end of array is reached, the loop exits. LOOPNE instruction can be used for this
purpose. CX=O and ZF=O upon execution of the CMP instruction 50 times in the following
would imply that data byte OOH was not found in the array. The following 8086 instruction
illustrates this:

MOV SI, START ; Intialize SI with the starting offset of

DEC SI
MOV CX,50 ; Initialize CX with array count

CMP BYTE PTR[SI],OOH ; Compare array element with OOH
LOOPNE BACK

; the array

BACK: INC SI ; Update pointer

JCXZ START jumps to label START if CX = 0. This is normally used to skip a loop
(instruction sequence arbitrarily chosen inside the loop) as follows:

JCXZ DOWN ; If CX is already 0, skip
; the loop

; 16-bit contents of
; addressed by SI

; next value

; Loop until
; c x = o

BACK: SUB WORD PTR[SI], 4 ; Subtract 4 from the

ADD SI, 2 ; Update SI to point to

LOOPBACK ; Decrement CX by 1 and

DOWN: .

9.5.8 Interrupt Instructions
Table 9.10 shows the interrupt instructions. I N T n is a software interrupt instruction.
Execution of I N T n causes the 8086 to push current CS, IP , and Flags onto the stack, and
loads CS and IP with new values based on interrupt type n; an interrupt service routine is
written at this new address. I R E T at the end of the service routine transfers control to the
main program by popping old CS, IP, and flags from the stack.

The interrupt on overflow is a type 4 (n = 4) interrupt. This interrupt occurs if
the overflow flag (OF) is set and the I N T O instruction is executed. The overflow flag

TABLE 9.10 8086 Interrupt Instructions

I N T n Software interrupt instructions
(n can be 0-255,,)
I N T O Interrupt on overflow
I R E T Interrupt return

(INT 32,, - 255,, available to the user.)

Intel 8086 395

is affected, for example, after execution of a signed arithmetic (such as IMUL, signed
multiplication) instruction. The user can execute an I N T O instruction after the IMUL.
If there is an overflow, an error service routine written by the user at the type 4 interrupt
address vector is executed.

Interrupt instructions are discussed in detail later in this Chapter.

9.5.9 Processor Control Instructions
Table 9.11 shows the processor control functions. Let us explain some of the instructions
in Table 9.1 1. . ESC mem places the contents of the specified memory location on the data bus

at the time when the 8086 ready pin is asserted by the addressed memory device.
This instruction is used to pass instructions to a coprocessor such as the 8087 math
coprocessor which shares the address and data bus with the 8086.
LOCK prefix allows the 8086 to ensure that another processor does not take control
of the system bus while it is executing an instruction which uses the system bus.
LOCK prefix is placed in front of an instruction so that when the instruction with the
LOCK prefix is executed, the 8086 outputs a LOW on the LOCK pin of the 8086 for
the duration of the next instruction. This Lock signal is connected to an external bus
controller which prevents any other processor from taking over the system bus. Thus
the LOCK prefix is used in multiprocessing.
WAIT causes the 8086 to enter an idle state if the signal on the TEST input pin is not
asserted. This means that the 8086 will remain in the idle state until its TEST pin
is asserted. The WAIT instruction can be used to synchronize the 8086 with other
external hardware such as the 8087 (Math coprocessor).

-
-

9.6 8086 Assembler-DeDendent Instructions

Some 8086 instructions do not define whether an 8-bit or a 16-bit operation is to be executed.
Instructions with one of the 8086 registers as an operand typically define the operation as
8-bit or 16-bit based on the register size. An example is MOV CL, [BX] , which moves an
8-bit number with the offset defined by [BX] in DS into register CL; MOV CX, [BXI , on
the other hand, moves a 16-bit number from offsets (BX) and (BX + 1) in DS into CX

Instructions with a single-memory operand may define an 8-bit or a 16-bit
operation by adding B for byte or W for word with the mnemonic. Typical examples are

TABLE 9.1 1 8086 Processor Control Instructions
Set carry CF + 1
Clear carry CF - 0
Complement carry, CF - CF

STC
CLC
CMC
STD Set direction flag
CLD Clear direction flag
STI Set interrupt enable flag
CL I
N O P No operation
HLT Halt
WAIT
ESC mem
LOCK

-

Clear interrupt enable flag

Wait for TEST pin active
Escape to external processor
Lock bus during next instruction

3 96 Fundamentals of Digital Logic and Microcomputer Design

MULB [BX] and I D I V W [ADDR] . The string instructions may define this in two ways.
Typical examples are MOVSB or MOVS BYTE for 8-bit and MOVSW or MOVS WORD for
16-bit. Memory offsets can also be specified by including BYTE PTR for 8-bit and WORD
PTR for 16-bit with the instruction. Typical examples are INC BYTE PTR [BXI and INC
WORD PTR [B X] .

9.7 Typical 8086 Assembler Pseudo-Instructions or Directives

One of the requirements of typical 8086 assemblers such as MASM (discussed later) is that
a variable’s type must be declared as a byte (8-bit), word (16-bit), or double word (4 bytes
or 2 words) before using the variable in a program. Some examples are as follows:

BEGIN DB 0 ;BEGIN is declared as a byte offset with contents zero.
START DW 25F1H ;START is declared as a word offset with contents 25FlH.
PROG DD 0 ;PROG is declared as a double word (4 bytes) offset with

zero contents.
Note that the directive DD is not used by all assemblers. In that case, one should

use the directive DW twice to declare a 32-bit offset.
The EQU directive can be used to assign a name to constants. For example, the

statement NUMB EQU 2 1 H directs the assembler to assign the value 21H every time it
finds NUMB in the program. This means that the assembler reads the statement MOV BH ,
NUMB as MOV BH, 21H. As mentioned before, DB, DW, and DD are the directives used
to assign names and specific data types for variables in a program. For example, after
execution of the statement ADDR DW 2050H the assembler assigns 50H to the offset
name ADDR and 20H to the offset name ADDR + 1. This means that the program can use
the instruction MOV BX , [ADDR] to load the 16-bit contents of memory starting at the
offset ADDR in DS into BX. The DW sets aside storage for a word in memory and gives
the starting address of this word the name ADDR.

As an example, consider 16 x 16 multiplication. The size of the product should
be 32 bits and must be initialized to zero. The following will accomplish this:

Multiplicand DW 2A0 5H
Multiplier DW 052AH
Product DD 0

Some versions of MASM assembler such as version 5.1 0 use directive AT to assign a value
to an 8086 segment.
The 8086 addressing mode examples for the typical assemblers are given next:

MOV AH, BL Both source and destination are in register

MOV C H , 8 Source is in immediate mode and

MOV AX, [START] Source is in memory direct mode and

MOV C H , [B X] Source is in register indirect mode and

MOV [S I] , AL Source is in register mode and destination is

MOV [D I] , BH Source is in register mode and destination is

mode.

destination is in register mode.

destination is in register mode.

destination is in register mode.

in register indirect mode.

in register indirect mode.

3 97 Intel 8086

MOV BH, VALUE [DI] Source is in register indirect with
displacement mode and destination is
in register mode. VALUE is typically
defined by the EQU directive prior to this
instruction.

MOV AX, 4[DI] Source is in indexed with displacement
mode and destination is in register mode.

MOV S I , 2[BP] [DI] Source is in based indexed withdisplacement
mode and destination is in register mode.

OUT 30H, AL Source is in register mode and destination is
in direct port mode.

IN AX, DX Source is in indirect port mode and
destination is in register mode.

In the following paragraphs, more assembler directives such as SEGMENT, ENDS,
ASSUME, and DUP will be discussed.

9.7.1 SEGMENT and ENDS Directives
A section of a an 8086 program or a data array can be defined by the SEGMENT and ENDS
directives as follows:

START SEGMENT
x1 DB OFlH
x2 DB 50H
x3 DB 25H
START ENDS

The segment name is START (arbitrarily chosen). The assembler will assign
a numeric value to START corresponding to the base value of the data segment. The
programmer must use the 8086 instructions to load START into DS as follows:

MOV EX, START
MOV DS, EX

Note that all segment registers except CS must be loaded via a 16-bit general
purpose register such as BX. A data array or an instruction sequence between the SEGMENT
and ENDS directives is called a logical segment. These two directives are used to set up
a logical segment with a specific name. A typical assembler allows one to use up to 31
characters for the name without any spaces. An underscore is sometimes used to separate
words in a name, for example, PROGRAM BEGIN.

9.7.2 ASSUME Directive
As mentioned before, at any time the 8086 can directly address four physical segments,
which include a code segment, a data segment, a stack segment, and an extra segment. The
8086 may contain a number of logical segments containing codes, data, and stack. The
ASSUME directive assigns a logical segment to a physical segment at any given time. That
is, the ASSUME directive tells the assembler what addresses will be in the segment registers
at execution time.

For example, the statement ASSUME CS : PROGRAM 1 , DS : DATA 1, SS :
STACK 1 directs the assembler to use the logical code segment PROGRAM -1 as CS,
containing the instructions, the logical data segment DATA-l as DS, containing data, and
the logical stack segment STACK -1 as SS, containing the stack.

-

398

9.7.3
The DUP directive can be used to initialize several locations to zero. For example, the
statement START DW 4 DUP (0) reserves four words starting at the offset START
in DS and initializes them to zero. The D U P directive can also be used to reserve several
locations that need not be initialized. A question mark must be used with DUP in this
case. For example, the statement BEGIN DB 1 0 0 DUP (?) reserves 100 bytes of
uninitialized data space to an offset BEGIN in DS. Note that B E G I N should be typed in the
label field, DB in the OP code field, and 1 0 0 D U P (?) in the operand field.

Fundamentals of Digital Logic and Microcomputer Design

DUP, LABEL, and Other Directives

A typical example illustrating the use of these directives is given next:
DATA-1
ADDR-1
ADDR-2
DATA-1
STACK-1

STACK-TOP

STACK-1
CODE-1

SEGMENT
DW 3005H
DW 2003H
ENDS
SEGMENT
DW 60 DUP (0)

LABEL WORD

ENDS
SEGMENT
ASSUME CS: CODE-1, DS: DATA-1,
MOV AX, STACK-1
MOV SS, AX
LEA SP, STACK-TOP
MOV AX, DATA-1
MOV DS, AX
LEA SI, ADDR-1
LEA DI, ADDR-2

Assign 60 words
of stack with zeros
Define stack
as 16-bit
words.

SS: STACK-1

-
t Main program

- t body

CODE-1 ENDS -

Note that LABEL is a directive used to the allocate stack from the next location
after the top of the stack. The statement STACK TOP LABEL WORD allocates the stack
for local variables from the next address after STACK TOP. In this example, 60 words are
set aside for the stack. The WORD in this statement indicates that PUSH into and POP
from the stack are done as words.

Also note that in the above, ASSUME directive tells the assembler to use the logical
segment names CODE-], DATA-I, and STACK-I as the code segment, data segment,
and stack segment, respectively. The extra segment can be assigned a name in a similar
manner. When the instructions are executed, the displacements in the instructions along
with the segment register contents are used by the assembler to generate the 20-bit physical
addresses. The segment register, other than the code segment, must be initialized before it
is used to access data. The code segment is typically initialized upon hardware reset or by
using ORG.

When the assembler translates an assembly language program, it computes the
displacement, or offset, of each instruction code byte from the start of a logical segment
that contains it. For example, in the preceding program, the CS: CODE-I in the ASSUME
statement directs the assembler to compute the offsets or displacements by the following
instructions from the start of the logical segment CODE-1. This means that when the
program is run, the CS will contain the 16-bit value where the logical segment CODE-1
is located in memory. The assembler keeps track of the instruction byte displacements,
which are loaded into IP. The 20-bit physical address generated from CS and IP are used

Intel 8086 399

to fetch each instruction. Some versions of MASM use directive AT to assign a segment
value.

Note that typical 8086 assemblers such as Microsoft and Hewlett-Packard
HP64000 use the ORG directive to load CS and IP. For example, CS and IP can be
initialized with 2000H and 0300H as follows:
For Microsoft 8086 Assembler (some versions)
For HP64000 8086 Assembler ORG 2000H:0300H

ORG 2 0 0 0 0 3 0 OH

9.7.4 8086 Stack
Each 8086 stack segment is 64K bytes long and is organized as 32K 16-bit words. The
lowest byte (valid data) of the stack is pointed to by the 20-bit physical address computed
from current SP and SS. This is the lowest memory location in the stack (Top of the Stack)
where data is pushed. The 8086 PUSH and POP instructions always utilize 16-bit words.
Therefore, stack locations should be configured at even addrsesses in order to minimize the
number of memory cycles for efficient stack operations. The 8086 can have several stack
segments; however, only one stack segment is active at a time.

Since the 8086 uses 16-bit data for PUSH and POP operations from the top of the
stack, the 8086 PUSH instruction first decrements SP by 2 and then the 16-bit data is written
onto the stack. Therefore, the 8086 stack grows from high to low memory addresses of the
stack. On the other hand, when a 16-bit data is popped from the top of the stack using the
8086 POP instruction , the 8086 reads 16-bit data from the stack into the specified register
or memory, the 8086 then increments the SP by 2. Note that the 20-bit physical address
computed from SP and SS always points to the last data pushed onto the stack. One can
save and restore flags in the 8086 using PUSHF and POPF instructions. Memory locations
can also be saved and restored using PUSH and POP instructions without using any 8086
registers. Finally, One must POP registers in the reverse order in which they are PUSHed.
For example, if the registers BX, DX, and SI are PUSHed using

PUSH BX
PUSH DX

PUSH S I

then the registers must be popped using
POP SI
POP DX

POP BX

9.8 8086 Delav routine

Typical 8086 software delay loops can be written using MOV and LOOP instructions.
For example, the following instruction sequence can be used for a delay loop of 20
millisecond:

MOV CX,count
DELAY: LOOP DELAY

The initial loop counter value of “count” can be calculated using the cycles required to
execute the following 8086 instructions (Appendix F):

MOV reghmm (4 cycles)
LOOP label (1 7/5 cycles)

Note that the 8086 LOOP instruction requires two different execution times.
LOOP requires 17 cycles when the 8086 branches if the CX is not equal to zero after

400 Fundamentals of Digital Logic and Microcomputer Design

autodecrementing CX by 1. However, the 8086 goes to the next instruction and does not
branch when CX = 0 after autodecrementing CX by 1, and this requires 5 cycles. This
means that the DELAY loop will require 17 cycles for (count - 1) times, and the last
iteration will take 5 cycles.

20 m sec For 2-MHz 8086 clock, each cycle is 500ns. For 20 ms, total cycles = =

40,000. The loop will require 17 cycles for (count - 1) times when CX # 0 and 5 cycles
will be required when no branch is taken (CX = 0). Thus, totai cycles including the MOV
= 4+17x(count - 1) + 5= 40,000. Hence, count = 2353,, = 0931 , 6 . Therefore, CX must be
loaded with 2353,,or 0931,,.

Now, in order to obtain delay of 20 seconds, the above DELAY loop of 20
millisecond can be used with an external counter. Counter value = (20 sec) / (20 msec)
= 1000. The following instruction sequence will provide an approximate delay of 20
seconds:

MOV D X , 1 0 0 0 ;Initialize counter f o r 20 second delay
BACK: MOV C X , 2 3 5 3
DELAY: LOOP DELAY ;20msec delay

DEC DX
J N E BACK

Next, the delay time provided by the above instruction sequence can be calculated.
From Appendix F, the cycles required to execute the following 8086 instructions:

MOV reg / imm (4 cycles)
DEC reg16 (2 cycles)
J N E (1 6/4 cycles)

As before, assuming 4-MHz 8086 clock, each cycle is 25011s. Total time from the
above instruction sequence for 20-second delay = Execution time for MOV DX + 1000 *
(20 msec delay) + 1000 * (Execution time for DEC) + 999* (Execution time for JNE for
Z = 0 when DX # 0) + (Execution time for JNE for Z = 1 when DX = 0) = 4 * 250ns +
1000 * 20msec + 1000 * 2 * 250ns + 999 * 16 * 250ns + 4 * 250ns c: 20.0045 seconds
which is approximately 20 seconds discarding the execution times of MOV DX, DEC, and
JNE.

ExamDle 9.1
(a)
i). D I V CH ii). CBW iii). MOVSW Assume the following data
prior to execution of each of these instructions independently (assume that all numbers are
in hexadecimal): (DS) = 2000H, (ES) = 4000H, (CX) = 0300H, (AX) = 0091H, (20300H)
= 05H, (20301H) = 02H, (40200H) = 06H, (40201H) = 07H, (SI) = 0300H, (DI) = 0200H,
DF = 0.
(b) Write an 8086 assembly language program for each of the following C language
program structures:
i). if (x >= y)

Determine the effect of each of the following 8086 instructions:

x = x + 10;
else y = y - 12;

Assume x and y are addresses of two 16-bit signed integers.
ii). sum = 0;

for (i=O; i<=9; i=i+l)
sum = sum + a[i];

Assume sum is the address of the 16-bit result.
Solution

Intel 8086 40 1

(a>
i) .
after D I V CH, (AH) = remainder = 01H and (AL) = quotient = 48,, = 30H.
ii).
is 91H, the sign bit is 1. Therefore, after CBW, (AX) = FF91H
iii). Before MOVSW,

Before unsigned division, CH contains 03,, and AX contains 145,0. Therefore,

CBW sign-extends the AL register into the AH register. Because the content of AL

Source String Destination String
(SI) = 0300H, (DS) = 2000H
Physical address = 20300H

(DI) = 0200H, (ES) = 4000H
Physical address = 40200H

After MOVSW, (40200H) = 05H, (40201H) = 02H. Because DF = 0, (SI) = 0302H, (DI)
= 0202H

(b)
i) .
memory locations addressed by offsets BX and SI in segment register, DS:

Assume addresses x and y are initialized with the contents of the 8086

MOV AX, [BX] ; Move [XI into AX
CMP AX, [SI] ; Compare [XI with [y]
JGE TEN
SUB WORD PTR[SI],12 ; Execute else part
JMP FINISH

TEN: ADD WORD PTR[BX],10 ; execute then part
FINISH: HLT ; Halt

ii).
BX contains the offset of sum :

Assume register s 1 holds the address of the first element of the array while

MOV CX,lO ;initialize CX
MOV WORD PTR [BX] ,O ; sum = 0

ADD [BX],AX
ADD SI,2
LOOP AGAIN
HLT

AGAIN: MOV AX, [SI]

Examde 9.2
(a) Write an 8086 assembly program to find (X2)/255 where X is an 8-bit signed number
stored in CH. Store the 16-bit result onto the stack. Initialize SS and SP to lOOOH and
2000H respectively.
(b) What are the remainder, quotient, and registers containing them after execution of the
following 8086 instruction sequence?

MOV AH, OFFH
MOV AL, OFFH
MOV CX, 2
IDIV CL

Solution
(a)
CODE SEGMENT

ASSUME
MOV
MOV
MOV
MOV
IMUL
MOV
DIV
PUSH
HLT

CS:CODE, SS:STACK
AX, lOOOH
SS, AX

AL, CH
CH
CL, 255
CL
AX

SP, 2000;

Initialize SS
to lOOOH
Initialize SP to 2000H
Move X into AL
Compute X2and store in AX
Since XZand255 are both positve, use
unsigned division. Remainder in AH
and quotient in AL. Push AX to stack

402 Fundamentals of Digital Logic and Microcomputer Design

CODE ENDS
STACK SEGMENT
STACK ENDS

MOV AH, OFFH ; AH = FFH
MOV AL, OFFH ; AL = FFH, hence AX = FFFFH = -1
MOV CX, 2 ; AX / CL = -1/2
IDIV CL

AH AL

(b)

FFH I OOH 1
8-bit remainder 8-bit
= -1 10 quotient =

0

ExamDle 9.3
Write an 8086 assembly language program to add two 16-bit numbers in CX and DX and
store the result in location 0500H addressed by DI.
Solution
Microsoft (R) Macro Assembler Version 6.11 10/25/04 23:54:48
ex93 .asm Page 1 - 1

0000 DATA SEGMENT
GO00 DATA ENDS
0000 CODE SEGMENT

0000 B8 ---- R MOV AX, DATA ;Initialize DS
0003 8E D8 MGV DS, AX
0005 BF 0500 MOV DI, 0500H
0008 03 CA ADD CX, DX ;Add
OOOA 89 OD MOV [DII ,CX ;Store
OOOC F4 HLT
O O O D CODE ENDS

ASSUME CS : CODE, DS : DATA

END
Microsoft (R) Macro Assembler Version 6.11 10/25/04 23:54:48
ex93.asm Symbols 2 - 1
Segments and Groups:

N a m e Size Length Align Combine
Class

CODE 16 Bit O O O D Para Private
DATA 16 Bit 0000 Para Private

0 Warnings
0 Errors

ExamDle 9.4
Write an 8086 assembly language program to add two 64-bit numbers. Assume SI and DI
contain the starting offsets of the numbers. Store the result in memory pointed to by DI.
Solution
Microsoft (R) Macro Assembler Version 6.11 11/08/04 23:20:22
ex94. asm Page 1 - 1

0000 PRGG-CODE SEGMENT

0000 B8 ---- R MOV AX, DATA-ARRAY
ASSUME CS:PROG-CODE, DS:DATA-ARRAY

Intel 8086 403

0003 8E D8
0005 BA 0004
0008 BE 0000
OOOB BF 0008
OOOE F8
OOOF 8B 04
0011 11 05
0013 46
0014 46
0015 47
0016 47
0017 4A
0018 75 F5
OOlA F4
OOlB
0000
0000 OA71
0002 F218
0004 2F17
0006 6200
0008 7A24
OOOA 1601
OOOC 152A
OOOE 671F
0010

START:

MOV DS,AX
MOV DX, 4
MGV S1,OOOOH
MOV DI,0008H
CLC
MGV AX, [SI]
ADC [DII ,AX
INC SI
INC SI
INC DI
INC DI
DEC DX
JNZ START
HLT

PROG-CODE ENDS
DATA-ARRAY SEGMENT
DATAl DW OA71H

DW OF218H
DW 2F17H
DW 6200H

DATA2 DW lA24H
DW 1601H
DW 152AH
DW 671FH

DATA-ARRAY ENDS
END

;Initialize DS
;Load 4 into DX
;Initialize SI
;Initialize DI
;Clear Carry
;Load DATAl
;Add with carry
;Update pointers
;by 2 for WORD
;Update pointers
;by 2 for WORD
;decrement
;branch

;DATA1 low

;DATA1 high

:DATA2 low

;DATA2 high

Microsoft (R) Macro Assembler Version 6.1111/08/04 2 3 : 2 0 : 2 2
ex94 .asm Symbols 2 - 1
Segments and Groups:

N a m e Size Length Align Combine
Class

DATA-ARRAY 16 Bit 0010 Para Private
PROG-CODE 16 Bit OOlB Para Private
Symbols:

DATAl Word 0000 DATA-ARRAY
DATA2 Word 0008 DATA-ARRAY
START L Near OOOF PROG-CODE

N a m e Type Value Attr

0 Warnings
0 Errors

Examde 9.5
Write an 8086 assembly language program to multiply two 16-bit unsigned numbers to
provide a 32-bit result. Assume that the two numbers are stored in CX and DX.

Solution
Microsoft (R) Macro Assembler Version 6.11 11/03/04 16:18:45
ex95. asm Page 1 - 1

0000 CODE-SEG SEGMENT

0000 8B C2 MOV AX, DX ;Move first data
0 0 0 2 F7 El MUL CX ; [DX] [AX] <-- [AX] * [CX]
0004 F4 HLT
0005 CODE-SEG ENDS

ASSUME CS:CODE-SEG

END
Microsoft (R) Macro Assembler Version 6.11 11/03/04 16:18:45
ex95. asm Symbols 2 - 1

404 Fundamentals of Digital Logic and Microcomputer Design

Segments and Groups:
N a m e Size Length Align Combine

Class
COVE-SEG 16 Bit 0005 Para Private

0 Warnings
0 Errors

ExamDle 9.6
Write an 8086 assembly language program to clear 50,, consecutive bytes starting at offset
1000H. Assume DS is already initialized.
Solution
Microsoft (R) Macro Assembler Version 6.11 11/03/04 01:32:04
ex9-6. asm Page 1 - 1

0000 CODE-SEG SEGMENT

0000 BB 1000 MOV BX, lOOOH ;initialize EX
0003 B9 0032 MOV CX, 50 ;initialize loop count
0006 C6 07 00 START: MOV BYTE PTR[BX],OOH ;clear memory byte
0009 43 INC BX ;update pointer
OOOA E2 FA LOOP START ;decrement CX and loop
0OOC F4 HLT ;halt
OOOD CODE-SEG ENDS
0000 DATA-SEG SEGMENT
0000 DATA-SEG ENDS

ASSUME CS:CODE-SEG,DS:DATA-SEG

END
Microsoft (R) Macro Assembler Version 6.11
01: 32:04
ex9-6. asm
Symbols 2 - 1
Segments and Groups:

11/03/04

N a m e

CODE-SEG
DATA-SEG
Symbols :
Name

START
0 Warnings

0 Errors

Size Length Align Combine Class

16 Bit OOOD Para Private
16 Bit 0000 Para Private

Type Value Attr

L Near 0006 CODE-SEG

ExamDle 9.7
Write an 8086 assembly program to implement the following C language program loop:
sum = 0;
f o r (i = O ; i < = 9 9 ; i = i + 1)
sum = sum + x[i] * y[i];
The assembly language program will compute b y i wherexi andyi are signed 8-bit numbers
stored at offsets 4000H and 5000H respectively. Initialize DS to 2000H. Store 16-bit result
in DX. Assume no overflow.
Solution
Microsoft (R) Macro Assembler Version 6.11 11/03/04 13:44:38
ex97. asm Page 1 - 1

0000 CODE SEGMENT

Intel 8086 405

0000
0003
0005
0008
OOOB
OOOE
0011
0013
0015
0017
0018
0019
001B
OOlC
0000
0000

B8 2000
8E D8
B9 0064
BB 4000
BE 5000
BA 0000
8A 07
F6 2C
03 DO
43
46
E2 F6
F4

ASSUME
MOV
MOV
MOV
MOV
MOV
MOV

START: MOV
IMUL
ADD
INC
INC
LOOP
HLT

CODE ENDS
DATA SEGMENT
DATA ENDS

END

CS:CODE,DS:DATA
AX, 2000H ;Initialize
DS,AX ;Data Segment
cx, 100 ;Initialize loop count
BX, 4000H ;Initialize pointer of Xi
SI, 5000H ;Initialize pointer of Yi
DX, OOOOH ;Initialize sum to 0
ALr [BXI ;Load data into AL
BYTE PTR [SI] ;Signed 8x8 multiplication
DX, AX ;Sum XiYi
BX ;Update pointer
SI ;Update pointer
START ;Decrement CX & loop

;End program

Microsoft (R) Macro Assembler Version 6.11 11/03/04 13:44:38
ex97 .asm Symbols 2 - 1
Segments and Groups:
N a m e Size Length Align Combine Class

CODE 16 Bit O O l C Para Private
DATA 16 Bit 0000 Para Private
Symbols :

N a m e Type Value Attr
START L Near 0011 CODE

0 Warnings
0 Errors

ExamDle 9.8
Write an 8086 assembly language program to add two words; each contains two ASCII
digits. The first word is stored in two consecutive locations with the low byte pointed to
by SI at offset 0300H, while the second word is stored in two consecutive locations with
the low byte pointed to by DI at offset 0700H. Store the unpacked BCD result in memory
location pointed to by DI. Assume that each unpacked BCD result of addition is less than
or equal to 09H.
Solution
Microsoft (R) Macro Assembler Version 6.11 11/09/04 12:00:57
9-8. asm Page 1 - 1

0000

0 0 0 0

0003
0005

0008
OOOB.
OOOE

0010
0012
0013

B8 2000

8E D8
B9 0002

BE 0300
BF 0700
8A 04

02 05
37
88 05

CODE SEGMENT
ASSUME
MOV

MOV
MOV

MOV
MOV

START: MOV

ADD
AAA
MOV

CS:CODE,DS:DATA
AX, 2000H ;initialize

DS , AX ;at 2000H
cx, 2 ;initialize

SI, 0300H ;initialize SI
DI, 0700H ;initialize DI
AL, [S I I ;load data into

; AL
ALr [DII ;perform addition

;ASCII adjust
[DII rAL ;store result

;data segment

loop count

406 Fundamentals of Digital Logic and Microcomputer Design

0015 46
0016 47
0017 E2 F5

INC SI
INC DI
LOOP START

0019 F4 HLT
OOlA CODE ENDS
0000 DATA SEGMENT
0000 DATA ENDS

END
Microsoft (R) Macro Assembler Version 6.11
9-8. asm
Segments and Groups:

CODE 16 Bit
DATA 16 Bit
Symbols:

START L Near

N a m e Size

N a m e Type

0 Warnings

0 Errors

;update pointer
;update pointer
;decrement CX &

;loop
;halt

11/09/04 12:00:57
Symbols 2 - 1

Length Align Combine Class
OOlA Para Private
0000 Para Private

Value Attr
OOOE CODE

ExamDie 9.9
Write an 8086 assembly language program to compare a source string of 50,, words pointed
to by an offset lOOOH in the data segment at 2000H with a destination string pointed to by
an offset 3000H in the extra segment at 4000H. The program should be halted as soon as a
match is found or the end of the string is reached.
Solution
Microsoft (R) Macro Assembler Version 6.11
E9-9. ASM

11/06/04 15:09:33
Page 1 - 1

0000

0000
0003
0005
0008
OOOA
OOOD
0010
0013

0014

0016
0017
0000
0000
0000
0 0 0 0

B8 2000
8E D8
B8 4000
8E CO
BE 1000
BF 3000
B9 0032
FC

F2/ A7

CODE

F4
CODE
DATAl
DATAl
DATA
DATA

SEGMENT
ASSUME CS:CODE,DS:DATA,ES:DATAl
MOV AX,2000H ;Initialize
MOV DS,AX ;Data Segment at 2000H
MOV AX, 4000H ;Initialize
MOV ES,AX ;ES at 4000H
MOV SI,1000H ;Initialize SI at lOOOH FOR DS
MOV DI,3000H ;Initialize DI AT 3000H FOR ES
MOV CX,50 ;Initialize CX
CLD ;Clear DF SO THAT

;SI and DI will
;autoincrement
;after compare

;until compared words are equal
REPNE CMPSW ;Repeat CMPSW until CX=O or

HLT ;Halt
ENDS
SEGMENT
ENDS
SEGMENT
ENDS
END ;End program

Microsoft (R) Macro Assembler Version 6.11 11/06/04 15:09:33
E9-9. ASM Symbols 2 - 1
Segments and Groups:

CODE 16 Bit 0017 Para Private
N a m e Size Length Align Combine Class

Intel 8086 407

DATA1
DATA

0 Warnings
0 Errors

1 6 Bit 0000 Para Private
1 6 Bit 0000 Para Private

ExamDle 9.10
Write a subroutine in 8086 assembly language which can be called by a main program in
the same code segment. The subroutine will multiply a signed 16-bit number in CX by a
signed 8-bit number in AL. The main program will perform initializations (DS to 5000H,
SS to 6000H, SP to 0020H and BX to 2000H), call this subroutine, store the result in two
consecutive memory words, and stop. Assume SI and DI contain pointers to the signed
8-bit and 16-bit data respectively. Store 32-bit result in a memory location pointed to by
BX.
Solution
Microsoft (R) Macro Assembler Version 6 . 1 1
9-l0.asm

11/09/04 12:31:12
Page 1 - 1

0000 CODE

0000
0003
0005
0008
OOOA
OOOD
0010
0013
0 0 1 6
0018
OOlA
OOlD
OOlF
0022
0023
0023
0024
0026
0027
0027
0000
0000
0000
0000

B8 5000
8E D8
B8 6 0 0 0
8E DO
BC 0020
BB 2000
BE 0000
BF 0004
8A 04
8B OD
E8 0 0 0 6
89 17
89 47 02
F4

98
F7 E9
C3

MULTI

MULTI
CODE
DATA
DATA
STACK
STACK

SEGMENT
ASSUME CS:CODE, DS:DATA,SS:STACK
MOV AX, 5000H
MOV DS, AX
MOV AX, 6000H
MOV SS, AX
MOV SP, 0020H
MOV BX, 2000H
MOV SI, OOOOH
MOV DI, 0004H
MOV AL, [SI]
MOV CX, [DI]
CALL MULTI
MOV [BX], DX
MOV [BX+2], AX
HLT
PROC NEAR
CBW
IMUL CX
RET
ENDP
ENDS
SEGMENT
ENDS
SEGMENT
ENDS
END

Aicrosoft (R) Macro Assembler Version 6 . 1 1
9-10 .asm
Segments and Groups:

N a m e Size
Class
CODE 1 6 Bit
DATA 1 6 Bit
STACK 1 6 Bit
Procedures, parameters and locals:

N a m e Type Value
MULTIP Near 0023

0 Warnings

0 Errors

; Initialize Data Segment at
; 5000H
; Initialize SS at
; 6000H
; Initialize SP at 0020H
; Initialize BX at 2000H
; Initialize SI
; Initialize DI
; Move 8-bit data
; Move 16-bit data
; Call MULTI subroutine
; Store high word of result
; Store low word of result
; Halt
; Must be called from
; Sign extend AL
; [DX] [AX] < - - [AXl*[CXl
; Return
; End of procedure

11/09/04 12:31:12
Symbols 2 - 1

Length Align Combine

0027 Para Private
0000 Para Private
0000 Para Private

Attr
CODE Length= 0004 Private

408

Examde 9.1 1
Write an 8086 assembly program that converts a temperature (signed) from Fahrenheit
degrees stored at an offset contained in SI to Celsius degrees. The program stores the 8-bit
integer part of the result at an offset contained in DI. Assume that the temperature can be
represented by one byte and, DS is already initialized. The source byte is assumed to reside
at offset 2000H in the data segment, and the destination byte at an offset of 3000H in the
same data segment. Use the formula: C = (F-32)/9 x 5
Solution

Fundamentals of Digital Logic and Microcomputer Design

Microsoft (R) Macro Assembler Version 6.11 11/10/04 14:28:58
9-ll.asm
0000 CODE

0000 BE 2000
0003 BF 3000
0006 8A 04
0008 98
0009 83 E8 20
OOOC B9 0005
OOOF F7 E9
0011 B9 0009
0014 F7 F9

0016 88 05
0018 F4
0019 CODE
0000 DATA
0000 DATA

Page 1 - 1
SEGMENT
ASSUME CS:CODE,DS:DATA
MOV SI,2000H
MOV DI,3000H
MOV AL, [SI]
CBW
SUB AX,32
MOV CX,5
IMUL CX
MOV CX, 9
IDIV CX

MOV [DIl,AL
HLT
ENDS
SEGMENT
ENDS
END

Microsoft (R) Macro Assembler Version 6.11
9-11 . a m
Segments and Groups:

Class
N a m e Size

; Initialize source pointer
; Unit. destination pointer
; Get degrees F
; Sign extend
; Subtract 32
; Get multiplier
; Multiply by 5
; Get divisor
; Divide by 9 to get
; Celsius
; Put result in destination
; stop
; End segment

11/10/04 14:28:58
Symbols 2 - 1

Length Align Combine

CODE 16 Bit 0019 Para Private
DATA 16 Bit 0000 Para Private
0 Warnings

0 Errors

Example 9.12
Write an 8086 assembly language program to multiply two 8 bit signed numbers stored
in the same register; AH holds one number and AL holds the other number. Store the 16-
bit result in DX.
Solution
Microsoft (R) Macro Assembler Version 6.11
EX10-12 .ASM

10/24/04 13:19:45
Page 1 - 1

0000 PROG-CODE SEGMENT

0000 F6 EC IMUL AH ; (AH) * (AL) --> (AX)
ASSUME CS:PROG-CODE,DS

0002 8B DO MOV DX,AX ;Store result in DX
0004 F4 HLT
0005 PROG-CODE ENDS

END

Microsoft (R) Macro Assembler Version 6.11 10/24/04 13:19:45

Intel 8086 409

EX10-12.ASM Symbols 2 - 1
Segments and Groups:

PROG-CODE 16 Bit OOOA Para Private
N a m e Size Length Align Combine Class

0 Warnings

0 Errors

Example 9.13
Write an 8086 assembly language program to move a block of 16-bit data of length loo,,
from the source block starting at offset 0200H to the destination block starting at offset
0300H from low to high addresses.
Solution
Microsoft (R) Macro Assembler Version 6.11 11/16/04 16:31:36
EX91 3. ASM Page 1 - 1

0 0 0 0

0000
0003
0005
0008
OOOA
OOOD

0010
0013

0014
0016
0017
0000
0000
0 0 0 0
0000

CODE

B8 1000
8E D8
BB 2000
8E C3
BE 0200
BF 0300

B9 0064
FC

F3/ A5
F4

CODE
DATA
DATA
DATAl
DATA1

SEGMENT
ASSUME CS:CODE, DS:DATA, ES:DATAl
MOV AX, lOOOH ;INITIALIZE DS
MOV DS, AX
MOV BX, 2000H ;INITIALIZE ES
MOV ES, BX
MOV SI, 0200H ;INITIALIZE SOURCE
MOV DI, 0300H ;INITIALIZE DESTINATION

MOV CX, 100 ;INITIALIZE LOOP COUNTER
CLD ;CLEAR DF FOR LOW

REP MOVSW ;MOVE STRING WORD
HLT
ENDS
SEGMENT
ENDS
SEGMENT
ENDS
END

POINTERS

;TO HIGH ADDRESS

Microsoft (R) Macro Assembler Version 6.11
EX91 3. ASM

11/16/04 16:31:36
Symbols 2 - 1

Segments and Groups:

N a m e Size Length Align Combine Class

CODE 16 Bit 0017 Para Private
DATAl 16 Bit 0000 Para Private
DATA 16 Bit 0000 Para Private

0 Warnings

0 Errors

Examole 9.14
Write an 8086 assembly language program that will perform : 5 x X + 6 x Y + (Y/8) -
(BP)(BX) where X is an unsigned 8-bit number stored at offset OlOOH and Y is a 16-bit
signed number stored at offsets 0200H and 0201H. Neglect the remainder of Y/8. Store
the result in registers BX and BP. BX holds the low 16-bit of the 32-bit result and BP holds
the high 16-bit of the 32-bit result.
Solution

410 Fundamentals of Digital Logic and Microcomputer Design

Microsoft (R) Macro Assembler Version 6.11 11/16/04 15:36:15
9-14.asrn

0000 CODE

OOOC B8 1000
0003 8E D8
0005 BE 0100
0008 BF 0200
OOOB 8A 04
O O O D BB 0000
0010 B1 05
0012 F6 El

0014 03 D8
0016 BD 0000

0019 8B 05
OOlB B1 03
OOlD D3 F8
OOlF 99

0020 03 D8
0022 13 EA
0024 8B 05
0026 B9 0006
0029 F7 E9
002B 03 D8
0 0 2 D 13 EA
002F F4
0030 CODE
0000 DATA
ocoo DATA

Page 1 - 1

SEGMENT
ASSUME CS:CODE, DS:DATA
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MUL

A D D
MOV

MOV
MOV
SAR
CWD

ADD
ADC
MOV
MOV
IMUL
ADD
ADC
HLT
ENDS
SEGMENT
ENDS
END

AX, lOOOH
DS, AX
SI, OlOOH
DI, 0200H

BX, 0

CL

ALr [SII

CL, 5

BX, AX
BP, 0

AX, [DII
CL, 3
AX, CL

BX, AX
BP, DX
AX, [DII
CX, 6
cx
BX, AX
BP, DX

;Initialize DS

;Pointer to X
;Pointer to Y
;Move X to AL
;Clear 16-bit sum to zero

;Unsigned MUL
;[AX] = 5*X
;Sum 5*X with BX
;Convert 5*X to unsigned
; 32-bit
;Move Y to AX

;Divide by 8
;Convert Y/8 into 32-
;bit in [DX] [AX]
;Sum 5*X and Y/8
;in BP Bx
;Move Y to AX

; [DX] [AX] <- 6*Y
;32-bit result
;in BP BX
:Halt

Aicrosoft (R) Macro Assembler Version 6.11 11/16/04 15:36:15
9-14.asm Symbols 2 - 1

Segments and Groups:

CODE 16 Bit 0030 Para Private
DATA 16 Bit 0000 Para Private

N a m e Size Length Align Combine Class

0 Warnings

0 Errors

Examole 9.15
Write an 8086 assembly language program to add four 16-bit numbers stored in consecutive
locations starting at offset 5000H. Store the 16-bit result onto the stack. Use ADC
instruction for addition.

Solution
Microsoft (R) Macro Assembler Version 6.11
9-15. asm

11/10/04 16:14:38
Page 1 - 1

0000 CODE SEGMENT

0000 B8 ---- R MOV AX, DATA ; Initialize AX
ASSUME CS:CODE, DS:DATA, SS:STACK

Intel 8086 41 1

0003
0005
0008
OOOA
OOOD
0010
0013
0014
0016

8E D8
B8 0000
8E DO
BC 2000
BB 5000
B9 0004
F8
13 07
43

MOV
MOV
MOV
MOV
MOV
MOV
CLC

START: ADC
I NC

0017 43 I NC
0018 E2 FA LOOP
OOlA 50 PUSH

DS, AX
AX, OOOOH
S S , AX
SP, 2000H
BX, 5000H
cx, 4

AX, [BXI
BX

BX
START
AX

001B F4 HLT
OOlC CODE ENDS
0000 DATA SEGMENT
0000 DATA ENDS
0000 STACK SEGMENT
0000 STACK ENDS

END
Microsoft (R) Macro Assembler Version 6.11
9-15.asm
Segments and Groups:
N a m e Size
CODE 16 Bit
DATA 16 Bit
STACK 16 Bit
Symbols :

N a m e Type
START L Near

0 Warnings

0 Errors

Initialize DS
Initialize AX
Initialize SS at OOOOH
Initialize SP at 2000H
Initialize BX at 5000H
Initialize loop count
clear carry
Add
Update pointer. INC does not
affect CF
Update pointer
Decrement CX & loop
Storing 16-bit result onto
the stack
stop
End segment

11/10/04 16:14:38
Symbols 2 - 1

Length Align Combine Class
OOlC Para Private
0000 Para Private
0000 Para Private

Value Attr
0014 CODE

Example 9.16
Write a subroutine in 8086 assembly language in the same code segment as the main program
to implement the C language assignment statement: p = p + q; where addresses p and q hold
two 16-digit (64-bit) packed BCD numbers (N1 and N2). The main program will initialize
addresses p and q to DS:2000H and DS:3000H respectively. Address DS:2007H will hold
the lowest byte of N1 with the highest byte at address DS:2000H while address DS:3007H
will hold the lowest byte of N2 with the highest byte at address DS:3000H. Also, write
the main program at offset 7000H which will perform all initializations including DS to
2000H, SS to 6000H, SP to 0020H, SI to 2000H, DI to 3000H, loop count to 8 and, then
call the subroutine.
Solution
Microsoft (R) Macro Assembler Version 6.11 11/29/04 00:37:06
ex916.asm Page 1 - 1

0000 CODE SEGMENT

0000 B8 2000 MOV AX,2000H ;Initialize Data segment at

0003 8E D8 MOV DS,AX
0005 B8 6000 MOV AX,6000H ;Initialize Stack segment at

0008 8E DO MOV SS,AX
OOOA BC 0020 MOV SP,0020H ;Initialize SP at 0020H

ASSUME CS:CODE,DS:DATA,SS:STACK

;2000H

; 6000H

412 Fundamentals of Digital Logic and Microcomputer Design

OOOD B9 0008 MOV CX, 8 ;Initialize Count
0010 BE 2000 MOV SI,2000H ;Initialize pointer to N1 -> q
0013 BF 3000 MOV DI,3000H ;Initialize pointer to N2 -> p
0016 B8 0000 MOV AX,OOOOH ;Clear AX
0019 E8 0001 CALL PBCD ;Call PBCD subroutine
OOlC F4
OOlD
OOlD F8
OOlE 8A 04
0020 8A 1D
0022 12 c3
0024 27
0025 88 05
0027 46
0028 47
0029 E2 F3
002B C3
002c
002c
0000
0000
0000
0 0 0 0

PBCD

START :

PBCD
CODE
DATA
DATA
STACK
STACK

HLT
PROC NEAR
CLC
MOV AL, [SI]
MOV BL, [DI]
ADC AL,BL
DAA
MOV [DI],AL
INC SI
INC DI
LOOP START
RET
ENDP
ENDS
SEGMENT
ENDS
SEGMENT
ENDS
END

Microsoft (R) Macro Assembler Version 6.11
ex916.asm

;Clear Carry
;Move Data to AL
;Move Data to AL
;Add ASCII into AL
;BCD adjust [AL]
;Store result in [DI]
;Update pointers
;Update pointers

;Return

11/29/04 00:37:06
Symbols 2 - 1

Segments and Groups:
N a m e Size Length Align Combine Class

CODE 16 Bit
DATA 16 Bit
STACK 16 Bit

Procedures, parameters and locals:

PBCD
N a m e Type Value
. P Near OOlD

Symbols :

START L Near OOlE
N a m e Type Value

002C Para Private
0000 Para Private
0000 Para Private

Attr
CODE Length= OOOF Private

Attr
CODE

0 Warnings

0 Errors

ExamDle 9.17
Write an 8086 assembly language program to move the 8-bit contents of a memory
location addressed by the contents of AL and BX into AL. Use XLAT instruction. This
program will illustrate that XLAT is equivalent to MOV AL, [AL][BX].

Solution
0000 CODE SEGMENT

ASSUME CS:CODE,DS:DATA
0000 BE 2030 MOV AX, 2030H ;Initialize
0003 8E D8 MOV DS, AX ;Data segment register
0005 BO 31 MOV AL, 31H ;Overwrite low byte of

0007 BB 2000 MOV BX, 2000H ;Store value 2000 in hex
;AX with 31H

Intel 8086 413

OOOA D7 XLAT
GOOB F4 HLT
oooc CODE ENDS
0000 DATA SEGMENT
0000 DATA ENDS

Microsoft (R) Macro Assembler Version 6.11
9-17 .asm
Segments and Groups:
N a m e Size
CODE 16 Bit
DATA 16 Bit

END

0 Warnings

0 Errors

;into BX
; [AL] <- [ALI + [BXI
;Halt

11/03/04 13:16:50
Symbols 2 - 1

Length Align Combine Class
OOOC Para Private
0000 Para Private

Examde 9.18
Write a subroutine in 8086 assembly language which can be called by a main program in a
different code segment. The subroutine will compute EX: / N. Assume the X,’s are 16-bit
signed integers, N = 100 and, EX,’ is 32-bit wide. The numbers are stored in consecutive
locations. Assume SI points to the X,’s. The subroutine will start at an offset 7000H, and
will initialize SI to 4000H, compute CX,Z / N, and store 32-bit result in DX:AX (16-bit
remainder in DX and 16-bit quotient in AX). Also, write the main program which will
initialize DS to 2000H, SS to 6000H, SP to 0040H, call the subroutine, and stop.
Solution

Microsoft (R) Macro Assembler Version 6.11
ex918. asm

11/29/04 00:05:33
Page 1 - 1

0000 CODE SEGMENT

0000 88 2000 MOV AX,2000H ;Initialize Data segment at

0003 8E D8 MOV DS,AX
0005 B8 6000 MOV AX,6000H ;Initialize Stack segment at

0008 8E DO MOV SS, AX
OOOA BC 0040 MOV SP,0040H
OOOD 9A ---- 7000 R CALL FAR PTR SQRDIV ;Call SQRDIV subroutine

ASSUME CS:CODE,DS:DATA,SS:STACK

;2000n

; 60008

0012
0013
0000

1 0 0 0
1000
7003
7006
7009
700c
1010
7012
7014
7015
1017
7019
701A

F4 HLT
CODE ENDS
SUER SEGMENT

ORG 7000H
ASSUME CS:SUBR

SQRDIV PROC FAR
B9 0064 MOV CX,100
BB 0000 MOV BX,OOGOH
BE 4000 MOV SI,4000H
BF 3000 MOV DI,3000H
Cl 05 0000 MOV [DI], OOCOH
8B 04 START: MOV AX, [SI]
Fl 2C IMUL WORD PTR [SI]
F8 CLC
13 D8 ADC BX,AX
11 15 ADC [DIl,DX
46 INC SI
46 INC SI

;Initialize CX to 100
;Clear low 16-bits sum to zero
;Initialize pointer of Xi
;High 16-bits sum
;Clear contents of DI to zero
;Load data into AX
;Signed multiplication Xi*Xi
;Clear Carry Flag
;Add low 16-bits to sum
;Add high 16-bits to sum
;Update pointer
;Twice for WORD

414 Fundamentals of Digital Logic and Microcomputer Design

701B E2 F3 LOOP START
701D 8B 15 MOV DX, [DI]

701F 8B C3 MOV AX,BX

7021 B9 0064 MOV CX,100
7024 F7 F1 DIV CX
7026 CB RET
7027 SQRDIV ENDP
7027 SUBR ENDS
0000 DATA SEGMENT
0000 DATA ENDS
0000 STACK SEGMENT
0000 STACK ENDS

END
Microsoft (R) Macro Assembler Version
ex918. asm

Segments and Groups:

N a m e
CODE
DATA
STACK
SUBR

;Jump and decrement CX
;Place high 16-bits of sum
;to DX
;Place low 16-bits of sum
;to AX
;Load 100 into CX
;unsigned division DX:AX / CX
;Return

6.11 11/29/04 0 0 : 0 5 : 3 3
Symbols 2 - 1

Size Length Align Combine Class
16 Bit 0013 Para Private
16 Bit 0000 Para Private
16 Bit 0000 Para Private
16 Bit 7027 Para Private

Procedures, parameters and locals:

N a m e Type Value Attr
SQRDIV P Far 7000 SUBR Length= 0027 Private

Symbols :
N a m e Type Value Attr

START L Near 7010 SUBR

0 Warnings
0 Errors

Note: In the above, DIV is used for computing sum (Xi**2)/N since both SUM (X,**2)
and N are unsigned (positive). Also, in order to execute the above program, values for X,
must be stored in memory using 8086 assembler directive, DW.

9.9

This section covers the basic concepts associated with interfacing the 8086 with its support
chips such as memory and I/O. Topics such as timing diagrams and 8086 pins and signals
will also be included. Appendix E provides data sheets for Intel 8086 and support chips.

9.9.1 8086 Pins and Signals
The 8086 pins and signals are shown in Figure 9.8. As mentioned before, the 8086 can
operate in two modes. These are the minimum (uniprocessor systems with a single 8086)
and maximum mode (multiprocessor system with more than one 8086). MN/m is an
input pin used to select one of these modes.

When MN/m is HIGH, the 8086 operates in the minimum mode. In this mode, the 8086

Svstem Design Using the 8086

Me18086 415

FIGURE 9.8 8086 Pin Diagram

is configured (that is, pins are defined) to support small single-processor systems using a
few devices that use the system bus. When M N / E is low, the 8086 is configured (that
is, some of the pins are redefined in maximum mode) to support multiprocessor systems.
In this case, the Intel 8288 bus controller is added to the 8086 to provide bus control and
compatibility with the multibus architecture. Note that, in a particular application, MN/
MX must be tied to either HIGH or LOW.

The ADo-AD,, lines are a 16-bit multiplexed addressldata bus. During the first
clock cycle, AD,-AD,, are the low-order 16-bit address. The 8086 has a total of 20 address
lines. The upper four lines, A,$S,, A,&, A,,/S,, and A,dS,, are multiplexed with the
status signals for the 8086. During the first clock period of a bus cycle (read or write
cycle), the entire 20-bit address is available on these lines. During all other cycles for
memory and I/O, ADo-AD,, lines contain the 16-bit data, and the multiplexed address /
status lines become S,, S,, S, , and S,. S, and S, are decoded as follows:

-

A17/S4 A,,/S3 Function

0 0 Extra segment

0 1 Stack segment

1 0 Code or no segment

1 1 Data segment

Therefore, after the first clock cycle of an instruction execution, the AI7/S, and
&,IS3 pins specify which segment register generates the segment portion of the 8086
address. Thus, by decoding these pins and then using the decoder outputs as chip selects
for memory chips, up to four megabytes (one megabyte per segment) can be included. This
provides a degree of protection by preventing erroneous write operations to one segment
from overlapping onto another segment and destroying the information in that segment.
A,,/S, and A,& are used as A,, and AI9, respectively, during the first clock cycle of an
instruction execution. If an 110 instruction is executed, they stay LOW for the first clock
period. During all other cycles, A,,/S, indicates the status of the 8086 interrupt enable flag

416 Fundamentals of Digital Logic and Microcomputer Design

and AI9/S, becomes S,; a LOW S, pin indicates that the 8086 is on the bus. During a hold
acknowledge clock period, the 8086 tristates the A,,& pin and this allows another bus
master to take control of the system bus. The 8086 tristates AD,-AD,, during interrupt
acknowledge or hold acknowledge cycles.

BHE/S, is used as BHE (bus high enable) during the first clock cycle of an
instruction execution. The 8086 outputs a LOW on this pin during the read, write, and
interrupt acknowledge cycles - in which data are to be transferred in a high-order byte
(AD,,-AD,) of the data bus. BHE can be used in conjunction with AD, - to select memory
banks. A thorough discussion is provided later. - During all other cycles, BHE/S, is used as
S, and the 8086 maintains the output level (BHE) of the first clock cycle on this pin. S, is
the same as BHE and does not have any special meaning.

TEST is an input pin and is only used by the WAIT instruction. The 8086 enters a
wait state after execution ofthe WAIT instruction until a low is seen on the TEST pin. This
input is synchronized internally during each clock cycle on the leading edge of the clock.

INTR is the maskable interrupt input. This line is not latched, so INTR must be
held at a HIGH level until it is recognized to generate an interrupt.

NMI is the nonmaskable interrupt pin input activated by a positive edge.
RESET is the system reset input signal. This signal must be HIGH for at least

four clock cycles to be recognized, except on power-on, which requires a 50-psec reset
pulse. It causes the 8086 to initialize registers DS, ES, SS, IP, and flags to zeros. It also
initializes CS to FFFFH. Upon removal of the RESET signal from the RESET pin, the
8086 will fetch its next instruction from a 20-bit physical address FFFFOH (CS = FFFFH,
IP = OOOOH). When the 8086 detects a positive edge of a pulse on RESET, it stops all
activities until the signal goes LOW. Upon hardware reset, the 8086 initializes the system
as follows:

- -

-

~~~ ~ ~~ 

8086 Components Content 

Flags Clear 

IP OOOOH 

cs FFFFH 

DS OOOOH 

ss OOOOH 

ES OOOOH 

Queue Empty 

As mentioned before, the 8086 can be configured in either minimum or maximum 
mode using the MN/m input pin. In minimum mode, the 8086 itself generates all bus 
control signals. These signals are as follows: 

D T E  (data transmitheceive) is an output signal required in a minimum system that 
uses an 8286/8287 data bus transceiver. It is used to control direction of data flow 
through the transceiver. 
DEN (data enable) is provided as an output enable for the 8286/8287 in a minimum 
system that uses the transceiver. DEN is active LOW during each memory and I/O 
access and for INTA cycles. 
ALE (address latch enable) is an 8086 output signal that can be used to demultiplex 
the multiplexed 8086 pins including AD,-AD,, into A,-A,, and DO-DI5 at the falling 

- 
- 

- 



Intel 8086 417 

edge of ALE. 
M/m is an 8086 output signal. It is used to distinguish a memory access (M/m = 

HIGH) from an 110 access (MAX = LOW). When the 8086 executes an I/O instruction 
such as IN or OUT, it outputs a LOW on this pin. On the other hand, the 8086 outputs 
HIGH on this pin when it executes a memory reference instruction such as MOV 
AX, [SI]. 
WR is used by the 8086 for a write operation. The 8086 outputs a low on this pin 
to indicate that the processor is performing a write memory or write I/O operation, 
depending on the M/m signal. Similarly, is low whenever the 8086 is reading data 
from memory or an I/O location. 

- 

For interrupt acknowledge cycles (for the INTR pin), the 8086 outputs LOW on the 
INTA pin. 
HOLD (input) and HLDA (output) pins are used for DMA. A HIGH on the HOLD pin 
indicates that another master is requesting to take over the system bus. The processor 
receiving the HOLD request will output a HIGH on the HLDA as an acknowledgment. 
At the same time, the processor tristates the system bus. Upon receipt of LOW on the 
HOLD pin, the processor places LOW on the HLDA pin and takes over the system 
bus. 
CLK (input) provides the basic timing for the 8086 and bus controller. 
READY (input) pin is used for slow peripheral devices. 

There are four versions of the 8086. They are 8086, 8086- 1, 8086-2, and 8086-4. 
There is no difference between the four versions other than the maximum allowed clock 
speeds. The 8086 can be operated from a maximum clock frequency of 5 MHz. The 
maximum clock frequencies of the 8086-1,8086-2 and 8086-4 are 10 MHz, 8 MHz and 4 
MHz, respectively. Because the design of these processors incorporates dynamic cells, a 
minimum frequency of 2 MHz is required to retain the state of the machine. The 8086-4, 
8086, and 8086-2 will be referred to as 8086 in the following discussion. 

CSYNC - 
PCLK- 
AENl- 
RDY 1- 

READY 
RDY2- 
AEN2 - 

CLK- 
GND - 

Pin Name 
XI.  x, 
Fie ' 

CLK 
RES 
- 

RESET 
vcc  
GND 
osc 
TANK 
EFI 
CSYNC 
RDYl, RDY2 

-- 
AEN 1, AEN2 

PCLK 
READY 

Description 
Crystal connections 
Clock source select 
MOS CLOCK for the 8086 
Reset input to the 8284 from 
an RC circuit 
Reset input to the processor 
+5 v 
ov 
Oscillator output 
Used with overtone crystal 
External clock input 
Clock synchronization input 
Ready signals from two 
multibus systems 
Address enables for ready 
signals 
TTL clock for peripherals 
Ready output 

FIGURE 9.9 8284 pins and signals 



418 Fundamentals of Digital Logic and Microcomputer Design 

The reset, clock, and the ready signals of the 8086 can be generated by the Intel 

The 8284 is an 18-pin chip designed for providing three input signals for the 
8284. Figure 9.9 shows the pins and signals of the 8284. 

8086: 
1. 8086 CLK input 
2. 8086 Reset input 
3. 8086 Ready input 

The 8284 pins and signals are described in the following. 

Clock Generation Signals 
Because the 8086 has no on-chip clock generator circuitry, the 8284 chip is required 
to provide the 8086 clock input. The 8284 F/C input pin is provided for clock source 
selection. When the F/C pin is connected to LOW, a crystal connected between 8284’s X, 
and X, pins is used. On the other hand, when F/C is connected to HIGH, an external clock 
source is used; the external clock source is connected to the 8284 EFI (external frequency 
input) pin. The 8284 divides the clock inputs at the X,X, pins or the EFI pin by 3. This 
means that if a 15-MHz crystal is connected at the X,X, or EFI pins, the 8284 CLK output 
pin will be 5 MHz. The 8284 CLK pin will be connected to the 8086 CLK pin. This 
provides the clock input for the 8086. When selecting a crystal for use with the 8284, the 
crystal series resistance should be as low as possible. The oscillator delays in the 8284 
appear as inductive elements to the crystal and cause the 8284 to run at a frequency below 
that of the pure series resonance: a capacitor C, should be placed in series with the crystal 
and the 8284 X, pin. The capacitor cancels the inductive element. The impedance of the 
capacitor X, = 1/(27rfCL) wherefis the crystal frequency. Intel recommends that the crystal 
series resistance plus X, should be kept less than 1 KQ. 

As the crystal frequency increases, C, should be decreased. For example, a 12- 
MHz crystal may require C, = 24 pf whereas a 22-MHz crystal may require C, = 8pf. C, 
values of 12 to 15 pf may be used with a 15-MHz crystal. Two crystal manufacturers 
recommended by Intel are Crystle Corp., Model CY 15A (1 5 MHz), and CTS Knight, Inc., 
Model CY 24A (24 MHz). Note that the 8284 CLK output pin is the MOS clock for the 
8086. 

There are two more clock outputs on the 8284, the PCLK (peripheral clock) pin 
and the OSC (oscillator) clock pin. These signals are provided to drive peripheral ICs. The 
8284 divides the frequency of the crystal at the X,X, pins or the external clock at the EFI 
pin by 6 to provide the PCLK. Therefore, the frequency of the PCLK is half the frequency 
of the 8284 CLK output pin. This means that for a 15-MHz crystal, the PCLK and CLK 
outputs are 2.5 MHz and 5 MHz respectively. Furthermore, PCLK is provided at the 
TTL-compatible level rather than at the MOS level. The OSC clock, on the other hand, is 
derived from the crystal oscillator inside the 8284 and has the same clock frequency as the 
crystal. Therefore, the OSC output is three times that of the CLK output. The OSC is also 
TTL compatible. Finally, the CSYNC (clock synchronization) input pin when connected 
to HIGH provides external synchronization in systems that employ multiple clocks. A 
typical 8284 interface to the 8086 for providing a 5-MHz clock to the 8086 is shown in the 
following figure: 



Intel 8086 419 

Reset Signals 
When designing the microprocessor’s reset circuit, two types of reset must be considered: 
power-up reset and manual reset. These reset circuits must be designed using the parameters 
specified by the manufacturer. 

Therefore, a microprocessor must be reset when its Vcc pin is connected to 
power. This is called “power-up reset.” After some time during normal operation the 
microprocessor can be reset upon activation of a manual switch such as a pushbutton. A 
reset circuit, therefore, needs to be designed following the timing parameters associated 
with the microprocessor’s reset input pin specified by the manufacturer. The reset circuit, 
once designed, is connected to the microprocessor’s reset pin. 

As mentioned before, the 8086 reset input provides a hardware mechanism for 
initializing the 8086 microprocessor. This is typically done at power-up to provide an 
orderly start-up of the system. The 8284 RES (reset input) pin when driven active LOW 
generates a HIGH on the 8284 reset output pin. The 8284 reset pin is connected to the 
8086 reset (input) pin. As mentioned before, Intel designed the 8086 in such a way that the 
8086 requires its reset pin to be HIGH for at least four clock cycles in order to obtain the 
physical address (FFFFOH) of the first instruction to be executed, except after power-on, 
which requires a 50-psec reset pulse. 

According to Intel, in order to guarantee a reset from power-up, the 8086 reset 
input must remain below 1.05 V for 50 psec after Vcc has reached the minimum supply 
voltage of 4.5 V. The 8284 RES input can be driven by an RC circuit as shown in the 
following figure: 

- 

- 

+ To 8284 RES input pin 

A -  
The voltage across the capacitor initially is zero upon connecting +Vcc to power. 

If the switch is not depressed, the capacitor charges to +Vcc through the resistor after a 
definite time determined by the time constant RC. 

The charging voltage across the capacitor can be determined from the following 
equation. Capacitor voltage, V,(t) = Vcc x [l - exp(-t/RC)], where t = 50 psec and Vc(t) = 
1.05 V, and V, = 4.5 V. Substituting these values in the equation, RC = 188 psec. For 
example, if C is chosen to be 0.1 pF, then R is 1.88 KQ. 

When the switch is depressed, the 8284 RES input pin is short-circuited to ground. 
This takes the 8284 RES pin to LOW and thus discharges the capacitor. - As the switch 
is released, the direct short to ground is broken. However, the 8284 RES pin remains 
effectively short-circuited to ground through the discharged capacitor. The capacitor now 
starts to recharge with time toward the +Vcc voltage level. 

The 8284 generates a reset signal from an internal Schmitt trigger input. A Schmitt 
trigger is a special analog circuit that shifts the switching threshold based on whether the 
input changes from LOW to HIGH or from HIGH to LOW. To illustrate this, consider a 

- 
- 



420 Fundamentals of Digital Logic and Microcomputer Design 

TTL Schmitt trigger inverter. Suppose that the input of this inverter is at 0 V (logic 0). The 
output will be approximately 3.4 V (logic 1). Now, because of the Schmitt trigger circuit, 
if the input voltage is increased, the output will not go to low until the value is about 1.7 
V. Also, after reaching a low output, the inverter will not produce a HIGH output until the 
input is decreased to about 0.9 V. Thus, the switching threshold for positive-going input 
changes is about 1.7 V and for negative-going input changes is about 0.9 V. 

The difference between the two thresholds is called “hysteresis.” The Schmitt 
trigger inverter provides 1.7 V - 0.9 V = 0.8 V of hysteresis. Schmitt trigger inputs 
provide high noise immunity and will normally not respond to the noise encountered in 
microprocessor systems if its hysteresis is greater than the noise amplitude. 

As the voltage across the capacitor increases with time, it remains at logic 0 
level as long as the logic 1 threshold of the Schmitt trigger. Thus, the 8284 RES input 
is maintained at logic 0 for at least four clock cycles so that the 8284 RESET output will 
apply a HIGH at the 8086 reset input for at least four clock cycles. Note that whenever 
the 8282 RES input is at logic 0, the reset output pin of the 8284 is switched to logic 1 
according to the timing parameters. 

Ready Signals 
The 8284 Ready (output) pin is connected to the 8086 Ready (input) pin to insert wait 
states for slow peripheral devices connected to the 8086. There are two main ways to 
disable this function when not used. One way is to connect the 8086 Ready pin to HIGH, 
and keep the 8284 Ready output pin floating. The other way is to connect the 8284 RDY 1 
and RDY2 pins to LOW, and the AENl and AEN2 to HIGH, which will permanently 
disable this function. The 8284 Ready (output) pin can then be connected to the 8086 
Ready input pin. 

The RDY 1, AENl and RDY2, AEN2 input signals provide logic for operation 
with multiprocessor systems and the 8284 ready output. In multiprocessor systems, these 
signals are used to control access over the system bus by several 8086’s. The 8284 TANK 
pin is replaced by the ASYNC input pin on the newer version of 8284. The ASYNC pin 
can be driven to LOW by a slower device to generate the 8284 READY output pin which 
can be connected to the 8086 READY pin. This makes it easier for the slower devices to 

- 

- 

N.C. 
+5v 

RDY 1 

N.C. I 88 K 

RESET Pin XoTuF 
RES 

interface to the 8086. Typical 8284 clock (using a 15-MHz crystal), reset, and ready signal 
(unused) connections to single 8086-appropriate pins are shown in the above figure. 

In the maximum mode, some of the 8086 pins in the minimum mode are 
redefined. For example, pins HOLD, HLDA, m, M/m, DTE,  DEN, ALE, and in 
the minimum mode are redefined as RQ/GTO, RQ/GTl, LOCK, S,, S,, S,, QS,, and QS,, 
respectively. In maximum mode, the 8288 bus controller decodes the status information 
from S,, S,, and to generate the bus timing and control signals that are required for a bus 

- - - - __ - - - 

_ _  



Intel 8086 42 1 
- _  

cycle. So, S,, and $are 8086 outputs and are decoded as follows: 

S, S, S" I Function 
0 0 0 I Interrupt acknowledge 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Read IiO port 
Write I/O port 
Halt 
Code access 
Read memory 
Write memory 
Inactive 

- 

The @/m and RQ/m requesdgrant pins are used by other local bus masters 
to force the processor to release the local bus at the end of the processor's current bus 
cycle. Each pin is bidirectional, with RQ/m having higher priority than R Q / m . T h e s e  
pins have internal pull-up resistors so that they may be left unconnected. The requesdgrant 
function of the 8086 works as follows: 

A pulse (one clock wide) from another local bus master (m/m or RQ/m pin) 
indicates a local bus request to the 8086. 
At the end of the current 8086 bus cycle, a pulse (one clock wide) from the 8086 
to the requesting master indicates that the 8086 has relinquished the system bus 
and tristates the outputs. Then the new bus master subsequently relinquishes 
control of the system bus by sending a LOW on m/m or RQ/m pin. The 
8086 then regains bus control. 
The 8086 outputs LOW on the pin to prevent other bus masters from 
gaining control of the system bus. 
Note that since the 8086 RESET vector is located at the physical address FFFFOH, 

there may not be enough locations available to write programs. The following 8086 
instruction sequence can be used with 8086 assembler (HP 64XXX) to jump to a different 
code segment upon hardware reset to write programs: 
ORG 0FFFFH:OOOOH ; Reset Vector 
JMP FAR PTR START START -} User 

The above instruction sequence will allow the 8086 to jump to the offset START (0200H) 
in code segment lOOOH upon hardware reset where the user can write programs. 

ORG 1000H:0200H 

-1 Programs 

9.9.2 Basic 8086 System Concepts 
This section describes basic concepts associated with the 8086 bus cycles, address and data 
bus, in minimum mode. 

8086 Bus Cycle 
To communicate with external devices via the system for transferring data or fetching 
instructions, the 8086 executes a bus cycle. The 8086 basic bus cycle timing diagram is 
shown in Figure 9.10. The minimum bus cycle contains four microprocessor clock periods 
or four T states. Note that each cycle is called a T state. The bus cycle timing diagram 
depicted in Figure 9.10 can be described as follows: 

During the first T state (T,), the 8086 outputs the 20-bit address computed from a 
segment register and an offset on the multiplexed address/data/status bus. 
For the second T state (T2), the 8086 removes the address from the bus and either 

1. 

2. 



422 

Read 
cycle 

Write 
cycle 

Fundamentals of Digital Logic and Microcomputer Design 

FIGURE 9.10 Basic 8086 bus cycle 
tristates or activates the AD15-ADo lines in preparation for reading data via the 
ADls-ADo lines during the T, cycle. In the case of a write bus cycle, the 8086 
outputs data on the AD,,-AD, lines during the T, cycle. Also, during T,, the 
upper four multiplexed bus lines switch from address (AI9-Al6) to bus cycle status 
(S6, S,, S,, S,). The 8086 outputs LOW on (for the read cycle) or WR (for the 
write cycle) during portion of T,, all of T,, and portion of T,. 
During T,, the 8086 continues to output status information on the four A19-A16/ 
S,-S, lines and will continue to output write data or input read data to or from the 
AD,,-AD, lines. 
If the selected memory or I/O device is not fast enough to transfer data to the 
8086, the memory or I/O device activates the 8086's READY input line LOW 
by the start of T,. This will force the 8086 to insert additional clock cycles (wait 
states T,) after T,. Bus activity during T, is the same as that during T,. When the 
selected device has had sufficient time to complete the transfer, it must activate 
the 8086 ready pin HIGH. As soon as the T, clock period ends, the 8086 executes 
the last bus cycle (T,). The 8086 will latch data on the ADls-ADo lines during the 
last wait state or during T, if no wait states are requested. 
During T,, the 8086 disables the command lines and the selected memory and 
I/O devices from the bus. Thus, the bus cycle is terminated in T4. The bus 
cycle appears to devices in the system as an asynchronous event consisting of an 
address to select the device, a register or memory location within the device, a 
read strobe, or a write strobe along with data. 
The DEN and D T E  pins are used by the 8286/8287 transceiver in a minimum 
system. During the read cycle, the 8086 outputs DEN LOW during part of the 
T, and all of the T, cycles. This signal can be used to enable the 8286/8287 
transceiver. The 8086 outputs a LOW on the DT/E pin from the start of the T I  
through part ofthe T, cycles. The 8086 uses this signal to receive (read) - data from 
the receiver during T,-T,. During a write cycle, the 8086 outputs DEN LOW 
during part of the TI, all of the T,, and T,, and part of the T, cycles. The signal can 
be used to enable the transceiver. The 8086 outputs a HIGH on DT/E throughout 
the 4 bus cycles to transmit (write) data to the transceiver during T,-T,. 

3. 

4. 

5 .  

6. - 



Intel 8086 

FFFFEH 

423 

FIGURE 9.11 Demultiplexing address, data, and status lines of the 8086 

OOOOlH 
OOOOOH 

00002H 
OOOOOH 

BHE 

ti 

I 
D7-rb 

b 

(a) One megabyte 
address 

(b) Physical implementation of address space 

FIGURE 9.12 8086 Memory 

Address and Data Bus Concepts 
The majority of memory and I10 chips capable of interfacing to the 8086 require a stable 
address for the duration of the bus cycle. Therefore, the address on the 8086 multiplexed 
addresddata bus during T, should be latched. The latched address is then used to select 
the desired I/O or memory location. To demultiplex the bus, the 8086 ALE pin can be used 
along with three 74LS373 latches. 

The 74LS373 Output Control (oc) pin can be connected to ground with the 
74LS373 pin represented by G or C or LE (shown as E in Figure 9.1 1) in data book tied 
to 8086 ALE. This will latch the 8086 address and pins at the falling edge of ALE. 
Figure 9.1 1 shows how this can be accomplished. 

The programmer views the 8086 memory address space as a sequence of one 



424 Fundamentals of Digital Logic and Microcomputer Design 

mega bytes in which any byte may contain an 8-bit data element and any hvo consecutive 
bytes may contain a 16-bit data element. There is no constraint on byte or word addresses 
(boundaries). The address space is physically implemented on a 16-bit data bus by dividing 
the address space into two banks of up to 5 12K bytes as shown in Figure 9.12. These banks 
can be selected by BHE and A, as follows: 

- 

- 
BHE A, 

0 0 
0 1 
1 0 

Byte transferred 
Both bytes via demultiplexed Do-D,, pins for even address. 
Upper byte to/from odd address via demultiplexed D,-D,, pins. 
Lower byte to/from even address via demultiplexed Do-D, pins. 

One bank is connected to D,-Do and contains all even-addressed bytes (A, = 0). 
The other bank is connected to D,,-D, and contains odd-addressed bytes (A, = 1). A 
particular byte in each bank is addressed by AI9-A,. The even-addressed bank is enabled 
by a LOW on A,, and data bytes are transferred over the D,-Do lines. The 8086 outputs 
a HIGH on BHE (bus high enable) and thus disables the odd-addressed bank. The 8086 
outputs a LOW on BHE to select the odd-addressed bank and a HIGH on A, to disable the 
even-addressed bank. This directs the data transfer to the appropriate half of the data bus. 

Activation of A, and BHE is performed by the 8086 depending on odd or even 
addresses and is transparent to the programmer. As an example, consider execution of the 
instruction MOV [ BX] , DH. Suppose the 20-bit address computed by BX and DS is even. 
The 8086 outputs a LOW on A, and a HIGH on BHE .This will select the even-addressed 
bank. The content of DH is placed on the D,-Do lines by a memory chip. The 8086 
writes this data via D,-Do and automatically places it in the selected memory location. 
Next, consider writing a 16-bit word by the 8086 with the low byte at an even address as 
shown in Figure 9.13. For example, suppose that the 8086 executes the instruction MOV 
[BXI  , CX. Assume [BX] = 0004H and [DS] = 2000H. The 20-bit physical address for 
the word is 20004H. The 8086 outputs a LOW on both A, and m, enabling both banks 
simultaneously. The 8086 outputs [CL] to the D,-Do lines and [CHI to the D,,-D, lines, 
with WR = LOW and M / E  = HIGH. The enabled memory banks obtain the 16-bit data 
and write [CL] to location 20004H and [CHI to location 20005H. 

Next, consider writing an odd-addressed 16-bit word by the 8086 using MOV 
[ BX] , CX . For example, suppose the 20-bit physical address computed by the 8086 is 
20005H. The 8086 accomplishes this transfer in two bus cycles. In the first bus cycle, 
the 8086 outputs a HIGH on A, and a LOW on BHE, and thus enables the odd-addressed 
bank and disables the even-addressed bank. The 8086 also outputs a LOW on the WR and 
a HIGH on the M / E  pins. In this bus cycle, the 8086 writes data to odd memory bank 
via D,,-D, lines; the 8086 writes the contents of CL to address 20005H. In the second 

- 

FIGURE 9.13 Even-addressed word transfer 



Intel 8086 

Address -------+ 
- >  

425 

High 8-bit 
bank 

(a) First bus cycle @) Second bus cycle 

FIGURE 9.14 Odd-addressed word transfer 

Control 

Data w 

FIGURE 9.15 Relationship of ALE and read 

+ 
_j Low 8-bit 

+ bank 

bus cycle, the 8086 outputs a LOW on A, and a HIGH on BHE and thus enables the even- 
addressed bank and disables the odd-addressed bank. The 8086 also outputs a LOW on 
the WR and a HIGH on the M / m  pins. The 8086 writes data to even memory bank via 
D,-Do lines; the 8086 writes the contents of CH to address 20006H. This odd-addressed 
word write is shown in Figure 9.14. 

If memory or I/O devices are directly connected to the multiplexed bus, the 
designer must guarantee that the devices do not corrupt the address on the bus during 
T,. To avoid this, the memory or I/O devices should have an output enable controlled by 
the 8086 read signal. The 8086 timing guarantees that the read is not valid until after the 
address is latched by ALE as shown in Figure 9.15. 

All Intel peripherals, EPROMs, and RAMs for microprocessors provide output 
enable for read inputs to allow connection to the multiplexed bus. Several techniques are 
available for interfacing the devices without output enables to the 8086 multiplexed bus. 
However, these techniques will not be discussed here. 

9.9.3 Interfacing with Memories 
In Figure 9.16, the 16-bit word memory in the 8086 is partitioned into odd and even 8- 
bit banks on the upper and lower halves of the data bus selected by BHE and A,. This is 
typically used for RAMs. Note that RAMs are needed when subroutines and interrupts 
requiring stack are desired in an application. 

- 



426 

A, 
A6 
A5 
A4 
A3 
A2 
A,  
A0 
0 0  

0, -- 
0, 

GND -- 

Fundamentals of Digital Logic and Microcomputer Design 

24 -- VCC Details --1 
- -2  23--A8 Access Time: 450 ns 
--3 22--A9 4K x 8 UV EPROM 
--4 21 -- 4, 
-5 2 0 - E  CE (chip enable) 
- 6  19-- OE (output enable) 

0,-0, (8 data pins) 
- -7  18 -- CE 
- - 8  2732 17- 0, 
--9 16--06 

- - I1  14- 0 4  

1 3 - 7 0 3  

A,-A, , (1 2 address pins) - 

- 

10 15 -- 0, 

8086 unused address pin (Low to select) 1 , 
Demulti lexed 

8086 ‘8 ;emultipiexL 8086 .41-&2 ~ 

- - 9 8086 

8086 M / i i  

ROMs and EPROMs 
ROMs and EPROMs are the simplest memory chips to interface to the 8086. Because 
ROMs and EPROMs are read-only devices and the 8086 always reads 16-bit data but 
discards unwanted bytes (if necessary), A, and BHE are not required to be part of the chip 
enablehelect decoding (chip enable is similar to chip select decoding except that chip 
enable also provides whether the chip is in active or standby power mode). The 8086 
address lines must be connected to the ROM/EPROM chips starting with A, and higher 
to all the address lines of the ROM/EPROM chips. The 8086 unused address lines can 
be used as chip enablehelect decoding. To interface the ROMs/EPROMs directly to the 
8086 multiplexed bus, they must have output enable signals. Figure 9.17 shows the 8086 
interfaced to two 2732 chips along with the pin diagram of 2732. 

The 8086’s interface to 2732 EPROMs in Figure 9.17(b) does not use 8Xm 
and A,, to distinguish between even and odd 2732s. The 8086 and inverted M / m  pins 
are ORed and connected to the 2732 pins. The 8086 can be connected to either 
ground or an unused 8086 address pin. Note that both 2732’s are enabled for all data reads; 
the odd 2732 places data on the demultiplexed 8086 D,-D,, pins while the even 2732 
places data on the demultiplexed 8086 Do-D7 pins. The 8086 reads the desired data and 
discards unwanted data if necessary depending on byte, odd word address or even word 
address transfers. 

- 

- 
CE 

0 0  - 01 

A0 -A, I 

OE 

2732(ODD) 

- 

8 

- 
4 CE 

Demulti lexed< 
8086 &-Q / 0 0 - 0 ,  

-&-All 

> 
- 
OE 

2732 (EVEN) 



Intel 8086 427 

Read 
Write 
Stand by or Disable (Tnstate) 

A7 Details 
Access Time: 120 ns 

2K x 8 SRAM designed using HCMOS 
Ao-Al0 (1 1 addresses) 
DO,-DO, (8 data pins) 
- W (write enable) 
G - (output enable) 
E (chip enable) 

v c c  +5 v 
Vss Ground 

A3 
A2 - 

L L H 
L L L 
H X X 

- - Mode Selection 
I E  G W 

Demultiplexed 
8086 A, 

Demultiplexed . _ _ ~  

8086 AI-A~I 

DO,- DO, Demultiplexed 
b 8 0 8 6 T L 0 - D  

i 6116(EVEN) 1 
(b) 8086-61 16 connections 

FIGURE 9.18 808641 16 interface along with 6 1 16 pin diagram 

Static RAMS (SRAMs) 
Because static RAMs are readwrite - memories and data will be written to RAM(s) once 
selected by the 8086, both A, and BHE must be included in the chip select logic. For each 
static RAM, the data lines must be connected to either the upper half (AD,,-AD,) or the 
lower half (AD7-ADo) of the 8086 data lines. Figure 9.18 shows the 8086 interface to two 
61 16 static RAMs along with the pin diagram of the 61 16. Note that the 61 16 signals, 
(Write Enable), (Output enable), and E (Chip enable) are decoded as follows: when G = 

0 and E = 0, then w = 1 for read and w = 0 for write. - 
In Figure 9.18, the 8086 demultiplexed BHE signal is used to select odd 6116 

SRAM chips; the data lines of this odd 61 16 are connected to the demultiplexed 8086 
D,-D,, pins. The 8086 demultiplexed A, signal, on the other hand, is used to select even 
61 16 SRAM chip; the data lines of this even 61 16 are connected to the demultiplexed 8086 
Do-D, pins. Note that the 6 1 16 has two chip enables E and G along with a single readiwrite 
pin (w) .When the 61 16 is enabled, w = 1 for read and G = 0 for write. 



428 Fundamentals of Digital Logic and Microcomputer Design 

Dynamic RAMs (DRAMS) 
Dynamic RAMs store information as charges in capacitors. Because capacitors 

can hold charges for a few milliseconds, refresh circuitry is necessary in dynamic RAMs 
for retaining these charges. Therefore, dynamic RAMs are complex devices to use to 
design a system. To relieve the designer of most of these complicated interfacing tasks, 
Intel provides dynamic RAM controllers to interface with the 8086 to build a dynamic 
memory system. Dynamic RAMs are used for microcomputers requiring large memories. 
DRAMs are typically used when memory requirements are 16k words or larger. DRAM is 
addressed via row and column addressing. For example, one megabit DRAM requiring 20 
address bits is addressed using 10 address lines and two control lines, RAS (Row Address 
Strobe) and CAS ( Column Address Strobe). To provide a 20-bit address into the DRAM, 
a LOW is applied to and 10 bits of the address are latched. The other 10 bits of the 
address are applied next and CAS is then held LOW. 

The addressing capability of the DRAM can be increased by a factor of 4 by 
adding one more bit to the address line. This is because one additional address bit results 
into one additional row bit and one additional column bit. This is why DRAMs can be 
expanded to larger memory very rapidly with inclusion of additional address bits. External 
logic is required to generate the RAS and CAS signals, and to output the current address 
bits to the DRAM. 

DRAM controller chips take care of refreshing and timing requirements needed 
by the DRAMs. DRAMs typically require 4 millisecond refresh time. The DRAM 
controller performs its task independent of the microprocessor. The DRAM controller 
sends a wait signal to the microprocessor if the microprocessor tries to access memory 
during a refresh cycle. 

or 74HC244 (Unidirectional buffer), and data lines should be buffered using 74LS245 
or 74HC245 (Bidirectional buffer) to increase the drive capability. Also, typical 
multiplexers such as 74LS157 or 74HC157 can be used to multiplex the microprocessors 
address lines into separate row and column addresses. 

- 

- 

- - 

Because of large memory, the address lines should be buffered using 74LS244 

9.9.4 8086 I/O Ports 
Devices with 8-bit I/O ports can be connected to either the upper or the lower half of the 
data bus. If the I/O port chip is connected to the lower half of the 8086 data lines (AD,- 
AD,), the port addresses will be even (A, = 0). On the other hand, the port addresses will 
be odd (A, = 1) if the I/O port chip is connected to the upper half of the 8086 data lines 
(AD,-AD,,). A, will always be 1 or 0 for the partitioned I/O chip. Therefore, A, cannot 
be used as an address input to select registers within a particular I/O chip. If two chips 
are connected to the lower and upper halves of the 8086 address bus that differ only in A, 
(consecutive odd and even addresses), A, and BHE must be used as conditions of chip 
select decoding to avoid a write to one I/O chip from erroneously performing a write to 
the other. 

The 8086 uses either standard I/O or memory-mapped I/O. The standard I/O uses 
the instructions IN and OUT, and is able to provide up to 64K bytes of I/O locations. The 
standard 110 can transfer either 8-bit data or 16-bit data to or from a peripheral device. The 
64-Kbyte I/O locations can then be configured as 64K 8-bit ports or 32K 16-bit ports. All 
I/O transfers between the 8086 and peripheral devices take place via AL for 8-bit ports (AH 
is not involved) and AX for 16-bit ports. 

__ 



Intel 8086 

A, A, 
0 0 

0 1 

1 0 

1 1 

429 

Port Name 

PortA 

PortB 

POrtC 

Control register 

2 
Mode 
select 

1 = active 
flag 

6 5 4 3 2 1 0  

yjAq Port C (upper 

Mode selection 

Group B 

bits) 
Port c (low 4 

1 = input 
o =  output 

o =  output 
1 = input 

Mode selection 
0 = mode 0 
1 = mode 1 

00 = mode 0 
01 =mode 1 

The definitions of the control register are shown in Figure 9.19. 

Indirect 
IN AX , DX or I N  AL,  DX inputs 16-bit data into a port addressed by DX into AX 
or 8-bit data into a port addressed by DX into AL, respectively. 
OUT DX , AX or OUT DX, AL outputs 16-bit contents of AX into a port addressed 
by DX or 8-bit contents of AL into a port addressed by DX, respectively. 
Memory-mapped I/O is basically accomplished by using the memory instructions 

such as MOV AX or AL, [ BX] and MOV [ BX] , AX or AL for inputting or outputting, 8- 
or 16-bit data to/from AL or AX addressed by the 20-bit address computed from DS and 
BX. Note that any 8- or 16-bit general purpose register and memory modes can be used in 
memory-mapped I/O. 

The 8086 programmed 1/0 capability will be explained in the following paragraphs 
using the 8255 I/O chip. The 8255 chip is a general-purpose programmable I/O chip. The 
8255 has three 8-bit I/O ports: ports A, B, and C. Ports A and B are latched 8-bit ports for 
both input and output. Port C is also an 8-bit port with latched output, but the inputs are 
not latched. Port C can be used in two ways: It can be used either as a simple 110 port or as 
a control port for data transfer using handshaking via ports A and B. 

The 8086 configures the three ports by outputting appropriate data to the 8-bit 
control register. The ports can be decoded by two 8255 input pins A, and A,, as follows: 



430 Fundamentals of Digital Logic and Microcomputer Design 

Bit 7 (D7) of the control register must be 1 to send the definitions for bits 0-6 
(Do-D,) as shown in the diagram. In this format, bits Do-D,, are divided into two groups: 
groups A and B. Group A configures all 8 bits of port A and the upper 4 bits of port C; 
group B defines all 8 bits of port B and the lower 4 bits of port C. All bits in a port can 
be configured as a parallel input port by writing a 1 at the appropriate bit in the control 
register by the 8086 OUT instruction, and a 0 in a particular bit position will configure the 
appropriate port as a parallel output port. Group A has three modes of operation: modes 
0, 1, and 2. Group B has two modes: modes 0 and 1. Mode 0 for both groups provides 
simple I/O operation for each of the three ports. No handshaking is required. Mode 1 for 
both groups is the strobed I/O mode used for transferring I/O data to or from a specified 
port in conjunction with strobes or handshaking signals. Ports A and B use the pins on 
port C to generate or accept these handshaking signals. Mode 2 of group A is the strobed 
bidirectional bus I/O and may be used for communicating with a peripheral device on 
a single 8-bit data bus for both transmitting and receiving data (bidirectional bus UO). 
Handshaking signals are required. Interrupt generation and enable/disable functions are 
also available. 

When D, = 0, the bit setheset control word format is used for the control register 
as follows: 

Bit setheset ::$ Bit setheset 
reset flag 1 =set 
0 = active v Bit select 0 = reset 

0 - 7  

This format is used to set or reset the output on a pin of port C or when enabling of 
the interrupt output signals for handshake data transfer is desired. For example, the 8 bits 
( O m 1  100) will clear bit 6 of port C to zero, Note that the control word format can be 
output to the 8255 control register by using the 8086 OUT instruction. Now, let us define 
the control word format for mode 0 more precisely by means of a numerical example. 
Consider that the control word format is 1000001 0,. With this data in the control register, 
all 8 bits of Port A are configured as outputs and the 8 bits of port C are also configured as 
outputs. All 8 bits of port B, however, are defined as inputs. On the other hand, outputting 
1001 101 1, into the control register will configure all three 8-bit ports (ports A, B, and C) 
as inputs. 

9.9.5 
From the preceding discussions, the following points can be summarized: 

Important Points To Be Considered for 8086 Interface to Memory and I/O 

For ROMs/EPROMs/E2PROMs, BHE and A, are not required as part of chip 
enablekelect decoding. 
For RAMs and I/O port chips, both BHE and A, must be used in chip select 
logic. 
For ROMs/EPROMs/E2PROMs and RAMs, both even and odd chips are required. 
However, for I/O chips, an odd-addressed 1/0 chip, an even-addressed I/O chip, 
or both can be used, depending on the number of ports required in an application. 
The 8086 BHE and/or A, must be used in I/O chip select logic depending on the 
number and type (oddeven) of I/O chips used. 
For interfacing ROMs/EPROMs/ E2PROMs to the 8086, the same chip select 
logic must be used for both the even and its corresponding odd memory chip. The 
same thing applies to RAM and I/O chips except that both BHE and A, must be 

- 
1 .  

2. 

3. 

- 

- 

4. 

__ 



Intel 8086 43 1 

used for RAMS and I/O; however, this is applicable to I/O if both odd and even 
I/O chips are present in the system. 
ROMs/EPROMs/E*PROMs must be connected in such a way that the 8086 reset 
vector address FFFFOH is contained ih the memory map. 

5. 

Examde 9.19 
An 8086-8255-2732-6 1 16-based microcomputer is required to drive an LED connected 
to bit 2 of port B based on two switch inputs connected to bits 6 and 7 of port A. If both 
switches are either HIGH or LOW, turn the LED ON; otherwise, turn it OFF. Assume 
a HIGH will turn the LED ON and a LOW will turn it OFF. Write an 8086 assembly 
language program to accomplish this. 
Solution 
PORTA EQU OF8H 
PORTB EQU OFAH 
CNTRL EQU OFEH 
PROG SEGMENT 

ASSUME C S :  PROG 
MOV 
OUT 

B E G I N  : I N  

AND 
J P E  

MOV 
OUT 
JMP 

LEDON : MOV 
OUT 
J M P  

PROG ENDS 

END 

AL, 9 0 H  
CNTRL, AL 

AL, PORTA 

AL, OCOH 
LE DON 

AL, O O H  
PORTB, AL 
B E G I N  
AL, 0 4 H  
PORTB, AL 
B E G I N  

C o n f i g u r e  p o r t  A 
a s  i n p u t  and  p o r t  B 
a s  o u t p u t  
I n p u t  p o r t  A 

R e t a i n  b i t s  6 and  I 
I f  b o t h  s w i t c h e s  a r e  e i t h e r  
HIGH o r  LOW, t u r n  t h e  LED ON 
O t h e r w i s e  t u r n  t he  
LED O F F  
R e p e a t  
T u r n  LED 
ON 

ExamDle 9.20 
Write an 8086 assembly language program to drive an LED connected to bit 7 of port 
A based on a switch input at bit 0 of port A. If the switch is HIGH, turn the LED ON; 
otherwise, turn the LED OFF. Assume an 8086/2732/6116/8255 microcomputer. Also, 
write a C++ program to accomplish the same task. Compare the 68000 assembly program 
with the compiled assembly code. Comment on the result. 
Solution 
The 8086 assembly language program and the C++ program along with the compiled 
assembly code are shown below. The 8086 assembly program contains 11 instructions 
whereas the 8086 C++ code generates 16 instructions. This example illustrates that 
although C++ programming can handle I/O, it generates more codes than assembly language 
programming. Although programs in C++ are easier to write compared to assembly, the 
machine code generated by the equivalent assembly language is shorter. Also note that 
C++ programs are not 100 % portable while the same I/O programs are written using 
C++ for microprocessors by two different manufactures. This is because of the different 
hardware configurations (IiO and memory maps) for different manufacturers. 



432 Fundamentals of Digital Logic and Microcomputer Design 

Note that the assembly language program can also be written by rotating bit 0 
(switch input) of port A to bit 7 (LED output) of port A only once by using ROR Al,1 
rather than RCL AL,CL with [CL]=7. The equivalent C++ program will still generate more 
assembled codes than the assembly language program. 

8086/8255 Microcomputer Assembly Code for Switch and LED (MASM) of Example 
9.20 

= 00F8 
= OOFE 
0000 

0000 B1 07 
0002 BO 90 
0004 E6 FE 
0006 E4 F8 
0008 8A D8 
OOOA BO 80 
OOOC E6 FE 
OOOE 8A C3 
0010 D2 DO 
0012 E6 F8 
0014 EB EC 
0016 

PORTA EQU 
CTLREG EQU 
LAB SEGMENT 

ASSUME 
MOV 

REPEAT: MOV 
OUT 
IN 
MOV 
MOV 
OUT 
MOV 
RCL 
OUT 
JMP 

LAB ENDS 
END 

OF8H 
OFEH 

CS : LAB 
CL, 7 
AL, 90H 
CTLREG, AL 

BL, AL 
AL, 80H 
CTLREG, AL 
AL, BL 
AL, CL 
PORTA, AL 
REPEAT 

AL, PORTA 
; set PORTA as input 
; read switch 
; save switch status 

; set PORTA as output 
; get switch status 
; rotate switch status 
; output to LED 
; repeat 

#include <dos.h> 
#define PORTA 0xOF8 
#define CNTLREG OxOFE 
int main ( )  ( 

int x; 
while (1) ( 

outportb (CNTLREG, 0x90) ; / /  set PORTA as input 
x = inportb (PORTA) ; / /  read switch 
outportb (CNTLREG, 0x80) ; / /  set PORTA as output 
outportb(PORTA, x << 7) ; / /  output to LED 

I 
I I 

Assembly code generated from C++ code above using Microsoft DEBUG unassembler: 
8086/8255 Microcomputer C++ program for Switch and LED (C++ Compiler) of 

Example 9.20 

-r 
AX=0000 BX=OOOO CX=022E DX=0000 SP=FFEE BP=0000 SI=OOOO 
DI=0000 
DS=159B ES=159B SS=159B CS=159B IP=O100 NV UP EI PL NZ NZ PO NC 
159B:0100 800COO OR BYTE PTR [SI],OO 

DS:OOOO=CD 
-u 2aa 2c8 
159B:02AA BAFEOO MOV DX,OOFE 
159B:02AD B090 MOV AL,90 
159B:02AF EE OUT DX, AL 
159B:02BO BAF800 MOV DX,OOF8 
159B:02B3 EC IN AL, DX 
159B:02B4 B400 MOV AH,OO 



Intel 8086 

159B:02B6 
15 9B : 02B8 
15 9B : 02BB 
159B: 02BD 
159B: 02BE 
159B:02CO 
159B: 02C2 
159B: 0 x 4  
159B:02C7 
159B:02C8 

8BD8 
BAFEOO 
B080 
EE 
B107 
8AC3 
D2EO 
BAF800 
EE 
EBE 0 

MOV 
MOV 

MOV 
OUT 
MOV 
MOV 
SHL 
MOV 
OUT 
JMP 

BX, AX 
DX, OOFE 
AL, 80 
DX,AL 
CL, 07 
AL, BL 
AL, CL 
DX, 00F8 
DX,AL 
02AA 

,94 
H Z d  

I ". 

433 

FIGURE 9.20 8086-based microcomputer 



434 

8086 M I 5  - 
OE 

A13 _I)o_ CE 
- 

8086 A,-A,, /." A,-'%, 

2732 (EVEN) 

Fundamentals of Digital Logic and Microcomputer Design 

8 
/ 

'To 8086 <-D7 

8086 AI-AII 

- 
8086A14 E 

A, - 4 0  

61 16 (ODD) 

8086 
8086 

TO 8086 Q - D,, I- 
8086 
8086 
8086 

8086 
8086 
8086 
8086 
8086 

Port c 

FIGURE 9.23 Even 8255 with pertinent connections 

9.10 8086-Based Microcomwter 

In this section, an 8086 will be interfaced in minimum mode to provide 4K x 16 EPROM, 
2K x 16 static RAM, and six 8-bit I/O ports. The 2732 EPROM, 6116 static RAM, and 
8255 I/O chips are used for this purpose. Memory and I/O maps are determined. Figure 
9.20 shows a hardware schematic for accomplishing this. 

The power and ground pins of all chips must be connected together to the power 
supply's power and ground pins. The 8086 MN/Mx is connected to +5 V for minimum 
mode (single processor) operation. Linear decoding is used to select both EPROMs and 
SRAMs. 8086 demultiplexed A,, = 1 is used to select 2732s and 8086 demultiplexed A,, 
= 0 is used for 61 16s. No unused address pin is used for selecting the 8255s because the 
8086 M / n  pin distinguishes between memory and I/O. 

Let us determine the 8086 memory and I/O maps. To determine the memory 
map for 2732 EPROMs, consider Figure 9.21 (obtained from Figure 9.20), which shows 
pertinent connections for the even 2732. 

In Figure 9.20, M / m  = 1 when the 8086 executes a memory-oriented instruction 
such as MOV [ BX] , DL to access the memory. Also, in the figure, A,, = 1 is used to 
select the EPROMs and A,, = 1 is used to deselect the RAMS. This is done to include the 
8086 reset vector FFFFO,, in the EPROMs. Therefore, an inverter is used to invert AI3. 



Intel 8086 43 5 

FEOOOH, FE002H, ... , FFFFEH 

FEOOlH, FE003H, ... , FFFFFH 

F9000H, F9002H, ... , F9FFEH 

F9001H, F9003H, ... , F9FFFH 

TABLE 9.12 Memory and 110 Maps for the Microcomputer of Figure 9.20 
Memon, Man 

Value 
FEOOH 

FEOOH 

F900H 

F900H 

OOOOH, 0002H, ... , IFFEH 

OOOIH, 0003H, ... , IFFFH 

OOOOH, 0002H, ... , OFFEH 

OOOIH, 0003H, ... , OFFFH 

Logical Address I Segment Offset 
Chip Number Phvsical Address 

Chip Number 
Even 8255 
Odd 8255 

~ 

Even 2732 

Odd 2732 

Even 6116 

Odd 6116 

EPROM 

EPROM 

SRAM 

SRAM 

Port Address 
Port A = FSH, Port B = FAH, Port C = FCH, Control Register = FEH 
Port A = F9H, Port B = FBH, Port C = FDH, Control Register = FFH 

Note that 8086 address pins AI5-A,, are not used and are, therefore, don't cares. Assume 
the don't cares to be HIGH. The even memory map for the 2732 in Figure 9.21 can be 
obtained as follows: 

A19A18 4 7 A 1 6  45 A14&3 '%*&I  404 4 4 4 '% '% 4 4 AI pb 
1 1  1 1 1 1 1 \----/ 0 

T Can be all 0's 

Select even 
- . T  to all 1 Is 

Deselect 2732 is 
61 16 's 1 

Therefore, the memory map for the even 2732 contains the even addresses 
FEOOOH, FE002H, ..., FFFFEH. Similarly, the memory map for the odd 2732 can be 
determined as: FEOOlH, FE003H, ..., FFFFFH. Note that the reset vector FFFFOH is 
included in this map. 

Let us now determine the memory map for the odd 61 16. Consider Figure 9.22 
(obtained from Figure 9.20), which shows pertinent connections for the odd 6 1 16. 

In Figure 9.20, A,, = 0 deselects 2732s and A,, = 0 selects 61 16s. Also, the 8086 
outputs HIGH on its M / m  pin (M/m = 1) when it executes a memory-oriented instruction 
such as MOV CX, [ SI ] . Furthermore, the 8086 outputs a LOW on the BHE pin for odd 
addresses. With don't care addresses, pins A,,-A,, and A,, as ones, the odd memory map 
for the 61 16 in Figure 9.22 can be obtained as follows: 

- 

4 9 & 8 4 7 A 1 6  4 5  * I 4 4 3  *12'%l & O & $  4 '% '% %As 44 4 
1 1  1 1  1 0  0 1 L - / ~ ( - L - J l  

Can be all 0's T Don't assume cares 1 's 1 2 s e l e q  to all 1 9s odd 

Select 2732 'S Don? care 
61 16's assume 1 

Therefore, the memory for the odd 6116 contains the odd addresses F9001H, 
F9003H, . . ., F9FFFH. Similarly, the memory map for the even 61 16 can be obtained as 
F9000H, F9002H, . . . , F9FFEH. 

Finally, the I/O map for the 8255s is determined. Consider Figure 9.23 (obtained 



436 Fundamentals of Digital Logic and Microcomputer Design 

from Figure 9.20), which shows pertinent connections for the even 8255. The 8086 outputs 
LOW on its M / n  pin ( M / E  = 0) when it executes an IN or OUT instruction. The 8086 
outputs LOW (A, = 0) for an even port address. This will produce a LOW on the cs pin 
of the even 8255. The even 8255 will thus be selected. 

Using 8086 A, and A, pins for port addresses, the I/O map for the even 8255 chip 
can be determined as follows: 

Port €3 X X X X X 0 1 O = F A H  
- + J +  

Don't cares Port B even 
assume 1 's 

X X X X X 1 0 O = F C H  Port c 

- + J +  
Don't cares Port C even 
assume 1 Is 

X X X X X l  1 O = F E H  

Don't cares Control even 
assume 1 Is register 

Control Register 

- w +  

Similarly, the I/O map for the odd 8255 chip is: 

Port addresses for the odd 8255 
PortA = F9H 
PortB = FBH 
PortC = FDH 

Control Register = FFH 

Table 9.12 summarizes the memory and I/O maps. 

9.11 8086 InterruDts 

The 8086 assigns every interrupt a type code so that the 8086 can identify it. Interrupts 
can be initiated by external devices or internally by software instructions or by exceptional 
conditions such as attempting to divide by zero. 

9.11.1 Predefined Interrupts 
The first five interrupt types are reserved for specific functions. 

Type 0: I N T O  Divide by zero 
Type 1: I N T l  Single step 
Type 2: INT2 Nonmaskable interrupt (NMI pin) 
Type 3: I N T 3  Breakpoint 
Type 4: INT4 Interrupt on overflow 

The interrupt vectors for these five interrupts are predefined by Intel. The user 
must provide the desired IP and CS values in the interrupt pointer table. The user may also 
initiate these interrupts through hardware or software. If a predefined interrupt is not used 
in a system, the user may assign some other function to the associated type. 

The 8086 is automatically interrupted whenever a division by zero is attempted. 



Intel 8086 437 

This interrupt is nonmaskable and is implemented by Intel as part of the execution of the 
divide instruction. 

When the TF (trap flag) is set by an instruction, the 8086 goes into single-step 
mode. The TF can be cleared to zero as follows: 

PUSHF , Save flags 
MOV BP,  SP I Move [ S P I  t o  [BPI  
AND 0 [BPI  , OFEFFH I Clear T F  
POPF Pop flags 

Note here that O[BP] rather than [BPI is used because BP cannot normally be used without 
displacement in the 8086 assembler. Now, to set TF, the AND instruction just shown 
should be replaced by OR 0 [BPI  , 0 1 0  OH. Once TF is set to 1, the 8086 automatically 
generates a type 1 interrupt after execution of each instruction. The user can write a service 
routine at the interrupt address vector to display memory locations and/or register to debug 
a program. Single-step mode is nonmaskable and cannot be enabled by the STI (enable 
interrupt) or disabled by the C L I  (disable interrupt) instruction. 

The nonmaskable interrupt is initiated via the 8086 NMI pin. It is edge triggered 
(LOW to HIGH) and must be active for two clock cycles to guarantee recognition. It 
is normally used for catastrophic failures such as a power failure. The 8086 obtains 
the interrupt vector address by automatically executing the INT2 (type 2) instruction 
internally. 

The type 3 interrupt is used for breakpoints and is nonmaskable. The user inserts 
the 1-byte instruction I N T 3  into a program by replacing an instruction. Breakpoints are 
useful for program debugging. 

The interrupt on overflow is a type 4 interrupt. This interrupt occurs if the overflow 
flag (OF) is set and the INTO instruction is executed. The overflow flag is affected, for 
example, after execution of a signed arithmetic (such as IMUL, signed multiplication) 
instruction. The user can execute an INTO instruction after the IMUL. If there is an 
overflow, an error service routine written by the user at the type 4 interrupt address vector 
is executed. 

9.11.2 Internal Interrupts 
The user can generate an interrupt by executing an interrupt instruction INTnn. The INTnn 
instruction is not maskable by the interrupt enable flag (IF). The INTnn instruction can 
be used to test an interrupt service routine for external interrupts. Type codes 32-255 can 
be used; type codes 5 through 3 1 are reserved by the Intel for future use. If a predefined 
interrupt is not used in a system, the associate type code can be utilized with the INTnn 
instruction to generate software (internal) interrupts. 

9.11.3 External Maskable Interrupts 
The 8086 maskable interrupts are initiated via the INTR pin. These interrupts can be 
enabled or disabled by STI (IF = 1) or CLI (IF = 0), respectively. If IF = 1 and INTR active 
(HIGH) without occurrence of any other interrupts, the 8086, after completing the current 
instruction, generates INTA LOW twice, each time for about one cycle. 

INTA is only generated by the 8086 in response to INTR, as shown in Figure 
9.24. The interrupt acknowledge sequence includes two INTA cycles separated by two 
clock cycles. ALE is also generated by the 8086 and will load the address latches with 
indeterminate information. The first INTA bus cycle indicates that an interrupt acknowledge 
cycle is in progress and allows the system to be ready to place the interrupt type code on the 

- 
- 



43 8 Fundamentals of Digital Logic and Microcomputer Design 

next INTA bus cycle. The 8086 does not obtain the information from the bus during the 
first cycle. The external hardware must place the type code on the lower half of the 16-bit 
data bus (Do-D,) during the second cycle. 

In the minimum mode, the M / m  is LOW, indicating I/O operation during the 
INTA bus cycles. The 8086 internal LOCK signal is also LOW from T, of the first bus 
cycle until T, of the second bus cycle to keep the BIU from accepting a hold request 
between the two INTA cycles. Figure 9.25 shows a simplified interconnection between 
the 8086 and 74LS244 for servicing the INTR. enables the 74LS244 to place type 
code nn on the 8086 data bus. In the maximum mode, the status lines So-S, will generate 
the output. 

9.11.4 Interrupt Procedures 
Once the 8086 has the interrupt type code (via the bus for hardware interrupts, from software 
interrupt instructions INTnn, or from the predefined interrupts), the type code is multiplied 
by 4 to obtain the corresponding interrupt vector in the interrupt vector table. The 4 bytes 
of the interrupt vector are the least significant byte of the instruction pointer, the most 
significant byte of the instruction pointer, the least significant byte of the code segment 
register, and the most significant byte of the code segment register. During the transfer of 
control, the 8086 pushes the flags and current code segment register and instruction pointer 
onto the stack. The new CS and IP values are loaded. Flags TF and IF are then cleared 
to zero. The CS and IP values are read by the 8086 from the interrupt vector table. No 
segment registers are used when accessing the interrupt pointer table. S,S, has the value 
10, to indicate no segment register selection. 

9.11.5 Interrupt Priorities 
As far as the 8086 interrupt priorities are concerned, the single-step interrupt has the 
highest priority, followed by NMI, followed by the software interrupts. This means that a 

- 

Redriven by microprocessor if queue is not fuU 

FIGURE 9.24 Cycle 

I 

nnof 

32-255 

FIGURE 9.25 Servicing the INTR in the minimum mode 



Intel 8086 439 

simultaneous NMI and single-step interrupt will cause the NMI service routine to follow 
the single step; a simultaneous software interrupt and single step interrupt will cause the 
software interrupt service routine to follow the single step; and a simultaneous NMI and 
software interrupt will cause the NMI service routine to be executed prior to the software 
interrupt service routine. The INTR is maskable and has the lowest priority. A priority 
interrupt controller such as the 8259A can be used with the 8086 INTR to provide eight 
levels of interrupts. The 8259A has built-in features for expansion of up to 64 levels with 
additional 8259s. The 8259A is programmable and can be readily used with the 8086 to 
obtain multiple interrupts from the single 8086 INTR pin. 

9.11.6 Interrupt Pointer Table 
The interrupt pointer table provides interrupt address vectors (IP and CS contents) for all 
the interrupts. There may be up to 256 entries for the 256 type codes. Each entry consists 
of two addresses, one for storing IP and the other for storing CS. Note that in the 8086 each 
interrupt address vector is a 20-bit address obtained from IP and CS. 

To service an interrupt, the 8086 calculates the two addresses in the pointer table 
where IP and CS are stored for a particular interrupt type as follows: 

For INTnn 

Type code 

The table address for IP = 4 x nn and the table address for CS = 4 x nn + 2. For example, 
consider I NT 2 : 

Address for IP = 4 x 2 = 00008H 
Address for CS = 00008 + 2 = OOOOAH 

The values of IP and CS are loaded from location 00008H and OOOOAH in the pointer table. 
Similarly, the IP and CS addresses for other INTnn are calculated, and their values are 
obtained from the contents of these addresses in the pointer table (Table 9.13). The 8086 
interrupt vectors are defined as follows: 

Vectors 0-4 For predefined interrupts 
Vectors 5-3 1 
Vectors 32-255 For user interrupts 

For Intel’s future use 

Interrupt service routines should be terminated with an IRET (interrupt return) instruction, 
which pops the top three stack words into the IP, CS, and flags, thus returning control to 
the right place in the main program. 

9.12 8086DMA 

When configured in minimum mode ( M N / E  HIGH) the 8086 provides HOLD and HLDA 
(hold acknowledge) signals to control the system bus for DMA applications. In this type 
of DMA, the peripheral device can request the DMA transfer via the DMA request (DRQ) 
line connected to a DMA controller chip such as the 8257. In response to this request, the 
8257 sends a HOLD signal to the 8086. The 8257 then waits for the HLDA signal from 
the 8086. On receipt of this HLDA, the 8257 sends a DMACK signal to the peripheral 
device. The 8257 then takes over the bus and controls data transfer between the RAM and 
peripheral device. On completion of data transfer, the 8257 returns control to the 8086 by 
disabling the HOLD and DMACK signals. 



440 

TABLE 9.13 

Fundamentals of Digital Logic and Microcomputer Design 

8086 Interrupt Pointer Table 

IP 
cs 

...................................................... 255 

Interrupt Type Code I 20-Bif Memory Address 

003FCH 
003FEH 

I IP .................................................... OOOOOH 
00002H 
00004H 
00006H 

00008H 

OOOOAH 

Examde 9.21 
In Figure 9.26, an 8086-based microcomputer is required to implement a voltmeter to 
measure voltage in the range 0 to 5 V and display the result in two decimal digits: one integer 
part and one fractional part. The microcomputer is required to start the A/D converter at 
the falling edge of a pulse via bit 0 of Port C. When the conversion is completed, the 
A/D’s “conversion complete” signal will go HIGH. During the conversion, the AD’S  
“conversion complete” signal stays LOW. Use the 8255 control register = FEH, Port A = 

F8H, Port B = FAH, and Port C = FCH. 
Using programmed I/O, the microcomputer is required to poll the AID’S 

“conversion complete” signal. When the conversion is completed, the microcomputer will 
send a LOW of the A/D converter’s “output enable” line via bit 1 to port C and then input 
the 8-bit output from AID via port B and display the voltage (0 to 5 V) in two decimal 
digits (one integer and one fractional) via port A on two TIL 3 1 1 displays. Note that the 
TIL 3 1 1 has an on-chip BCD to seven-segment decoder. The microcomputer will output 
each decimal digit on the common lines (bits 0-3 of port A) connected to the DCBA inputs 
of the displays. Each display will be enabled by outputting LOW on each LATCH line 

8086/2732/6116/8255 

FIGURE 9.26 Figure for Example 9.2 1 



Intel 8086 44 1 

in sequence (one after another) so that the input voltage V, (0 to 5 V) will be displayed 
with one integer part and fractional part. Write an 8086 assembly language program to 
accomplish this. 
Using interrupt I10 (both NMI and INTR), repeat the task. Write the main program to 
initialize the 8255 control register and start the AID. The service routine will input the A/D 
data, display the result, and stop. Write an 8086 assembly language program for the main 
program and the service routine. Use the memory map of your choice. Write the service 
routines for both NMI and INTR starting at IP=2000H, CS=1000H. Use 8086 assembler 
directive such as ORG CS:IP for the HP (Hewlett-Packard) 64XXX microcomputer 
development system in the following programs. 
Solution 
Because the maximum decimal value that can be accommodated in 8 bits is 2%,, (FFI6), 
the maximum voltage of 5 V will be equivalent to 255,,. This means the display in decimal 
is given by 

D = 5 x (InputI255) 
=Quotient +Remainder 

Integer palt 

This gives the integer part. The fractional part in decimal is 
F = (Remainder15 1) x 10 
I (Remainder)/S ' 

For example, suppose that the decimal equivalent of the 8-bit output of A/D is 200. 
D = 20015 1 => Quotient = 3, Remainder = 47 

Integer part = 3 
Fractional part, F = 4715 = 9 

Therefore, the display will show 3.9 V. 
The 8086 assembly language program using programmed I/O can be written as 
follows: 

(a) 

ORG 0FEOOH:OlOOH; CS=FEOOH, IP= OlOOH 
CDSEG a SEGMENT 

ASSUME CS : CDSEG 
PORTA EQU OF8H 
PORTB EQU OFAH 
PORTC EQU OFCH 
CNTRL EQU OFEH 
MOV AL,8AH Configure PORTA, PORTB 

OUT CNTRL,AL and PORTC 
MOV AL,03H Send 1 to START pin of A/D 

OUT PORTC,AL and 1 to (OUTPUTENABLE) 
MOV AL,02H Send 0 to start pin 
OUT PORTC,AL of A/D 

ROL AL,1 Complete bit for HIGH 
BEGIN: IN AL, PORTC Check conversion 

JNC BEGIN 
MOV AL,OOH Send LOW to (OUTPUTENABLE) 
OUT PORTC,AL 
IN AL, PORTB Input A/D data 
MOV AH, 0 Convert input data to 16-bit 

unsigned number in AX 



442 Fundamentals of Digital Logic and Microcomputer Design 

1 

MOV 
DIV 
MOV 
XCHG 
MOV 

MOV 
DIV 
MOV 
MOV 
OR 
AND 
OUT 
MOV 
OR 
AND 
OUT 
HLT 

CDSEG ENDS 
END 

DL, 51 
DL 
CL, AL 
AH, AL 
AH, 0 

BL, 5 
BL 
DL, AL 
AL, CL 
AL, 20H 
AL, 2FH 
PORTA, AL 
AL, DL 
AL, 10H 
AL, 1FH 
PORTA, AL 

Convert data to 
integer part 
Save quotient (integer) in CL 
Move remainder to AL 
Convert remainder to unsigned 
16-bit number 
Convert data to 
fractional part 
Save quotient (fraction) to DL 
Move integer part 
Disable fractional display 
Enable integer display 
Display integer part 
Move fractional part 
Disable integer display 
Enable fractional display 
Display fractional part 

~~ 

(b) UsingNMI 
In Figure 9.26, connect the “conversion complete” to 8086 NMI; all other 
connections in Figure 9.26 will remain unchanged. Note that all addresses 
selectable by the user are arbitrarily chosen in the following. The main program 
in 8086 assembly language is 

3TSEG 

STSEG 

PORTA 
PORTB 
PORTC 
ZNTRL 

ZDSEG 

DELAY: 
ZDSEG 

ORG 3900H:OlOOH ;SS = 3900H, SP = OlOOH 
SEGMENT 
DB 32 DUP ( ? )  
ENDS 
END 
EQU OF8H 
EQU OFAH 
EQU OFCH 
EQU OFEH 
ORG 0FEOOH:OlOOH ; CS = FEOOH, IP = OlOOH 
SEGMENT 
ASSUME CS:CDSEG,SS:STSEG,DS:DATA 
MOV AX,3900H ; Initialize 
MOV SS,AX ; stack segment 
MOV AX,OOOOH ; Initialize 
MOV DS,AX ; data segment 
MOV SP,0100H ; Initialize SP 
MOV AL,8AH ; Configure PORTA, PORTB 
OUT CNTRL, AL ; and PORTC 
MOV AL,03H ; Send 1 to START pin of A/D 
OUT PORTC,AL ; and 1 to (OUTPUTENABLE) 
MOV AL,02H ; Send 0 to start pin 
OUT PORTC,AL ; of A/D 

ENDS 
END 

JMP DELAY ; Wait for interrupt 



Intel 8086 443 

)RG 0000H: 0008H ; DS = OOOOH, Offset = 0008H 
IATA SEGMENT 

DW 2000H ; Initialize IP = 2000H, 
DW lOOOH ; CS = lOOOH 

IATA ENDS ; for Pointer Table 
END 

Phe NMI Service routine is: 

ORG 1000H:2000H ; 

ASSUME CS:CODE 
MOV AL,OOH 
OUT PORTC,AL 
IN AL, PORTB 
MOV AH,O 
MOV DL,51 
DIV DL 
MOV CL,AL 
XCHG AH,AL 
MOV AH,O 
MOV BL,5 
DIV BL 

:ODE SEGMENT 
CS = 1000H, IP = 2000H 
Start Program at 
CS = 1000H, IP = 2000H 
Send LOW to (OUTPUTENABLE) 

Input A/D data 
Convert input to 16-bit unsig num. 
Convert data to 
integer part 
Save quotient (integer) in CL 
Move remainder to AL 
Convert remainder to unsigned 16-bit 
Convert data to 
fractional part 

MOV 
MOV 
OR 
AND 
OUT 
MOV 
OR 
AND 
OUT 
HLT 

CODE ENDS 
END 

DL, AL 
AL, CL 
AL, 20H 
AL, 2FH 
PORTA, AL 
AL, DL 
AL, 10H 
AL, 1FH 
PORTA, AL 

Save quotient (fraction) to DL 
Move integer part 
Disable fractional display 
Enable integer display 
Display integer part 
Move fractional part 
Disable integer display 
Enable fractional display 
Display fractional part 
stop 

(c) Using INTR 
All connections in Figure 9.26 will be same except A/D’s “conversion complete” 
to 8086 INTR as shown in Figure 9.27. All other connections in Figure 9.26 will 
remain unchanged. INT FFH is used. In response to INTR, the 8086 pushes IP 
and SR onto the stack, and generates LOW on INTA. An octal buffer such as 
74LS244 can be enabled by this to transfer FF,, in this case (can be entered 
via eight DIP switches connected to + 5 V through a 1 KO resistor) to the input of 
the octal buffer. The output of the octal buffer is connected to the demultiplexed 
D,-D, lines of the 8086. The 8086 executes INT FFH and goes to the interrupt 
pointer table to load the contents of physical addresses 003FCH (logical address: 



444 Fundamentals of Digital Logic and Microcomputer Design 

CS = OOOOH, IP = 03FCH) and 003FEH (logical address: CS = OOOOH, IP = 

03FEH) to obtain IP and CS for the service routine respectively. Suppose that it 
is desired to write the service routine at IP = 2000H and CS = 1000H; these IP 
and CS values must be stored at addresses 003FCH and 003FEH respectively. 
All user selectable addresses are arbitrarily chosen. The main program in 8086 
assembly language is 

DELAY : JMP DELAY 
CDSEG ENDS 

END 
ORG 0000H: 03FCH 

DW 2000H 
DW lOOOH 

DATA SEGMENT 

DATA ENDS 

I END 

ORG 3900H:8500H ; SS = 3900H, SP = 8500H 
STSEG SEGMENT 

DB 32 DUP ( ? )  

END 
STSEG ENDS 

PORTA EQU OF8H 
PORTB EQU OFAH 
PORTC EQU OFCH 
CNTRL EQU OFEH 

ORG OF300H:OlOOH ; CS = F300H, IP = OlOOH 

ASSUME CS:CDSEG, SS:STSEG,DS:DATA 
CDSEG SEGMENT 

MOV 

MOV AX,3900H 
MOV SS,AX 
MOV AX,OOOOH 
MOV DS,AX 

SP, 8500H 
MOV AL,8AH 
OUT CNTRL,AL 
STI 
MOV AL,03H 
OUT PORTC,AL 
MOV AL,02H 
OUT PORTC,AL 

; Initialize 
; stack segment 
; Initialize 
; data segment 

Initialize SP 
; Configure port A, port B, 
; and port C 
; Enable Interrupt 
; Send one to start pin of A/D 
; and one to (OUTPUTENABLE) 
; Send zero to start pin of A/D 

; Wait for interrupt 

; DS = OOOOH, Offset = 03FCH 

; Initialize IP = 2000H, 
; CS = lOOOH 

for Pointer Table 



Intel 8086 445 

rhe INTR Service routine i s :  

3RG 1000H:2000H 
SODE SEGMENT 

ASSUMECS:CODE 
MOV AL, 0 
OUT PORTC,AL 
IN AL, PORTB 
MOV AH,O 

MOV 
DIV 
MOV 
XCHG 
MOV 
MOV 
DIV 
MOV 
MOV 
OR 
AND 
OUT 
MOV 
OR 
AND 
OUT 
HLT 

,ODE ENDS 
END 

DL,51 
DL 
CL,AL 
AH, AL 
AH, 0 
BL, 5 
BL 
DL, AL 
AL, CL 
AL,20H 
AL, 2FH 
PORTA, AL 
AL, DL 
AL, 10H 
AL, 1FH 
PORTA, AL 

CS = 1000H, IP = 2000H 

Send LOW to 
(OUTPUT ENABLE) 
Input A/D data 
Convert input data to 
16-bit unsigned number in AX 
Convert data 
to integer part 
Save quotient (integer) in CL 
Move remainder to AL 
Convert remainder to unsigned 16-bit 
Convert data 
to fractional part 
Save quotient (fraction) in DL 
Move integer part 
Disable fractional display 
Enable integer display 
Display integer part 
Move fractional part 
Disable integer display 
Enable fraction display 
Display fractional part 
stop 

9.13 Interfacing an 8086-Based MicrocomDuter to a Hexadecimal Kevboard and 
Seven-SePment Disdavs 

This section describes the characteristics of the 8086-based microcomputer used with a 
hexadecimal keyboard and a seven-segment display. 

9.13.1 Basics of Keyboard and Display Interface to a Microcomputer 
A common method of entering programs into a microcomputer is via a keyboard. A popular 
way of displaying results by the microcomputer is by using seven-segment displays. The 
main functions to be performed for interfacing a keyboard are: 
Sense a key actuation. 
Debounce the key. 
Decode the key. 

Let us now elaborate on keyboard interfacing concepts. A keyboard is arranged in 
rows and columns. Figure 9.28 shows a 2 x 2 keyboard interfaced to atypical microcomputer. 
In Figure 9.28, the columns are normally at a HIGH level. A key actuation is sensed by 
sending a LOW (closing the diode switch) to each row one at a time via PA0 and PA1 of 
port A. The two columns can then be input via PB2 and PB3 of port B to see whether any 
of the normally HIGH columns are pulled LOW by a key actuation. If so, the rows can be 



446 Fundamentals of Digital Logic and Microcomputer Design 

Connected to 

"Conversion 
complete'' 

pin of A/D 

Microcomputer 

74LS244 

8-bit type 
code vector 

25510 ( F 5 6 )  

To 8086 
dernultiplexed 
Do-D, pins 

FIGURE 9.27 Hardware interface for 8086 INTR 

checked individually to determine the row in which the key is down. The row and column 
code for the pressed key can thus be found. 

The next step is to debounce the key. Key bounce occurs when a key is pressed 
or released-it bounces for a short time before making the contact. When this bounce 
occurs, it may appear to the microcomputer that the same key has been actuated several 
times instead of just once. This problem can be eliminated by reading the keyboard after 
about 20 ms and then verifying to see if it is still down. If it is, then the key actuation 
is valid. The next step is to translate the row and column code into a more popular code 
such as hexadecimal or ASCII. This can easily be accomplished by a program. Certain 
characteristics associated with keyboard actuations must be considered while interfacing to 
a microcomputer. Typically, these are two-key lockout and N-key rollover. The two-key 
lockout ensures that only one key is pressed. An additional key depressed and released 
does not generate any codes. The system is simple to implement and most often used. 
However, it might slow down the typing because each key must be fully released before 
the next one is pressed down. On the other hand, the N-key rollover will ignore all keys 
pressed until only one remains down. 

Now let us elaborate on the interfacing characteristics of typical displays. The 
following functions are typically performed for displays: 

Output the appropriate display code. 
Output the code via right entry or left entry into the displays if there are more than 
one displays. 

These functions can easily be realized by a microcomputer program. If there are more than 
one display, the displays are typically arranged in rows. A row of four displays is shown 
in Figure 9.29. In the figure, one has the option of outputting the display code via right 
entry or left entry. If the code is entered via right entry, the code for the least significant 
digit of the four-digit display should be output first, then the next digit code, and so on. The 
program outputs to the displays are so fast that visually all four digits will appear on the 
display simultaneously. If the displays are entered via left entry, then the most significant 
digit must be output first and the rest of the sequence is similar to the right entry. 

Two techniques are typically used to interface a hexadecimal display to the 
microcomputer: nonmultiplexed and multiplexed. In nonmultiplexed methods, each 
hexadecimal display digit is interfaced to the microcomputer via an I/O port. Figure 
9.30 illustrates this method. BCD to seven-segment conversion is done in software. 
The microcomputer can be programmed to output to the two display digits in sequence. 
However, the microcomputer executes the display instruction sequence so fast that the 
displays appear to the human eye at the same time. Figure 9.3 1 illustrates the multiplexing 
method of interfacing the two hexadecimal displays to the microcomputer. In the 
multiplexing scheme, appropriate seven-segment code is sent to the desired displays on 

1. 
2. 



Intel 8086 447 

FIGURE 9.28 Typical microcomputer-keyboard interface 

entry --.o 0 B g g  
FIGURE 9.29 A row of four displays 

Port A 

Port B 

Microcomputer 

FIGURE 9.30 Nonmultiplexed hexadecimal displays 

seven lines common to all displays. However, the display to be illuminated is grounded. 
Some displays such as Texas Instrument’s TIL 3 1 1 have on-chip decoder. In this case, the 
microcomputer is required to output four bits (decimal) to a display. 

The keyboard and display interfacing concepts described here can be realized 
by either software or hardware. To relieve the microprocessor of these functions, 
microprocessor manufacturers have developed a number of keyboard/display controller 
chips. These chips are typically initialized by the microprocessor. The keyboarddisplay 
functions are then performed by the chip independent of the microprocessor. The amount of 
keyboarddisplay functions performed by the controller chip varies from one manufacturer 
to another. However, these functions are usually shared between the controller chip and 
the microprocessor. 

9.13.2 Hex Keyboard Interface to an 8086-Based Microcomputer 
In this section, an 8086-based microcomputer is designed to display a hexadecimal digit 



448 

entered via a keypad (16 keys). Figure 9.32 shows the hardware schematic. 
Port A is configured as an input port to receive the row-column code. 
Port B is configured as an output port to display the key(s) pressed. 
Port C is configured as an output port to output zeros to the rows to detect a key 
actuation. 
The system is designed to run at 2 MHz. Debouncing is provided to avoid 

unwanted oscillation caused by the opening and closing of the key contacts. To ensure 
stability for the input signal, a delay of 20 ms is used for debouncing the input. 

The program begins by performing all necessary initializations. Next, it makes 
sure that all the keys are opened (not pressed). A delay loop of 20 ms is included for 
debouncing, and the following instruction sequence is used (Section 9.8): 

Fundamentals of Digital Logic and Microcomputer Design 

1. 
2. 
3. 

MOV CX,0930H 
D E L A Y :  L O O P  DELAY 

The next three lines detect a key closure. If a key closure is detected, it is 
debounced. It is necessary to determine exactly which key is pressed. To do this, a sequence 
of row-control codes (OFH, OEH, ODH, OBH, 07H) are output via port C. The row-column 
code is input via port A to determine if the column code changes corresponding to each 
different row code. If the column code is not OFH (changed), the input key is identified. 
The program then indexes through a look-up table to determine the row+olumn code 
saved in DL. If the code is found, the corresponding index value, which equals the input 

Port A 

Port B 

I Microcomputer 

FIGURE 9.31 Multiplexed displays 
+ 5v 

FIGURE 9.32 8086-based microcomputer interface to keyboard and display 



Intel 8086 449 

key’s value (a single hexadecimal digit) is displayed. The program is written such that it 
will continuously scan for input key and update the display for each new input. Note that 
lowercase letters are used to represent the 8086 registers in the program. For example, al, 
ah, and ax  in the program represent the 8086 AL, AH, and AX registers, respectively. 

The memory and I/O maps are arbitrarily chosen. A listing of the 8086 assembly 
nguage program is given in the following: 
I000 CDSEG SEGMENT 

ASSUME CS:CDSEG,DS:DTSEG 
= 00F8 PORTA EQU 

= OOFA PORTB EQU 
= OOFC PORTC EQU 

= OOFO OPEN EQU 
= OOFE CSR EQU 

0000 BB 0100 mov 
0003 8E DB mov 
0005 BO 90 start: mov 

0007 E6 FE out 
0009 2A CO sub 
OOOB E6 FA out 
O O O D  2A CO scan-key:sub 
OOOF E6 FC out 
0011 E4 F8 key-open:in 
3013 3C FO cmp 
0015 75 FA jnz 
0017 B9 0930 mov 
OOlA E2 FE delayl: loop 
OOlC E4 F8 key-c1ose:in 
OOlE 3C FO CmP 
0020 74 FA jz 
0022 B9 0930 rnov 
0025 E2 FE delay2: loop 
0027 BO FF rnov 
0029 F8 clc 
002A DO DO next-row: rcl 
002C 8A C8 mov 
OOZE E6 FC out 
0030 E4 F8 in 
0032 8A DO mov 
0034 24 FO and 
0036 3C FO cmp 
0038 75 05 jnz 
003A 8A C1 mov 
003C F9 stc 
003D EB EB j mp 
003F BE FFFF decode: mov 
0042 B9 OOOF mov 
0045 46 search: inc 

OF8h 

0 FAh 
OFCh 
OFEh 
OFOh 

bx, OlOOh 
ds, bx 
al, 90h ; 

CSR, a1 
al, a1 ; 

PORTB,al ; 

al, a1 ; 

PORTC, a1 ; 
al, PORTA 
al, OPEN 
key-open 
cx, 0930h 
delayl 
al, PORTA 
al, OPEN 
key-close ; 
cx, 0930h ; 
delay2 ; 

al, OFFh ; 

al, 1 
cl, a1 ; 

PORTC, a1 ; 
al, PORTA ; 
dl, a1 ; 
al, OFOh ; 

al, OFOh ; 

decode ; 

al, cl ; 

next-row ; 

si, -1 ; 

cx, OOOFh ; 
si 

Hex keyboard input 
(row/column) 
LED displays/controls 
Hex keyboard row controls 
Control status register 
Row/column codes if all 
keys are opened 

Config ports A, B, C 
as i/o/o 

Clear a1 
Enable/initialize display 
Clear a1 
Set row controls to zero 
Read PORTA 
Are all keys opened? 
Repeat if closed 
Delay of 20 ms 

read PORTA 
Are all keys closed? 
repeat if opened 
delay of 20 ms 
Debounce key closed 
Set a1 to all 1’s 
carry 
Set up row mask 
Save row mask in cl 
Set a row to zero 
Read PORTA 
Save row/coln codes in dl 
Mask row code 
Is coln code affected? 
If yes, decode coln code 
Restore row mask to a1 
if no, set carry 
Check next row 
Initialize index register 
Set up counter 
Increment index 

key opened 



450 Fundamentals of Digital Logic and Microcomputer Design 

0 0 4 6  3A 94 0000 R 

004A EO F9 
004C 8A C 1  d o n e :  

004E  E 6  FA 
0 0 5 0  EB BB 

0052  CDSEG 
0 0 0 0  DTSEG 
0 0 0 0  7 7  TABLE 
0 0 0 1  B7 
0002  D7 
0003 E 7  
0 0 0 4  7B 
0 0 0 5  BB 
0 0 0 6  DB 
0 0 0 7  EB 
0 0 0 8  7 D  
0 0 0 9  BD 
OOOA DD 
OOOB ED 
OOOC 7 E  
O O O D  BE 
OOOE DE 
OOOF EE 
0 0 1 0  DTSEG 

cmp d l ,  [TABLE+s i ] ;  I n d e x  t h r u  tab le  o f  

l o o p n e  search ; L o o p  i f  n o t  f o u n d  
mov a l , c l  ; g e t  character a n d  e n a b l e  

; d i s p l a y  
o u t  PORTB,a l  ; d i s p l a y  k e y  
j m p  s c a n - k e y  ; R e t u r n  t o  s c a n  a n o t h e r  

e n d s  
s e g m e n t  
DB 7 7 h  ; C o d e  f o r  F 
DB OB7h ; Code f o r  E 
DB OD7h ; C o d e  f o r  D 
DB OE7h ; C o d e  f o r  C 
DB 7Bh  ; C o d e  f o r  B 
DB OBBh ; C o d e  f o r  A 
DB ODBh ; C o d e  f o r  9 
DB OEBh ; C o d e  f o r  8 
DB 7 Dh ; C o d e  f o r  7 
DB OBDh ; C o d e  f o r  6 
DB ODDh ; Code f o r  5 
DB OEDh ; C o d e  f o r  4 
DB 7 E h  ; C o d e  f o r  3 
DB OBEh ; C o d e  f o r  2 
DB ODEh ; Code f o r  1 
DB OEEh ; C o d e  f o r  0 
e n d s  
e n d  

codes 

; k e y  i n p u t  

In the program, the “Key-open’’ loop ensures that no keys are closed. On the other 
hand, the “Key-close’’ waits in the loop for a key actuation. Note that in this program, the 
table for the codes for the hexadecimal numbers 0 through F are obtained by inspecting 
Figure 9.32. 

For example, consider key F. When key,F is pressed and if a LOW is output by 
the program to bit 0 of port C, the top row and the rightmost column of the keyboard will 
be LOW. This will make the content of port A as: 

Bitnumber: 7 6 5 4 3 2 1 0 

uu 
7 7 

Data : 0 1 1 1 0 1 1 1 =77,, 

Thus, a code of 77,, is obtained at Port A when the key F is pressed. Diodes are 
connected at the four bits (Bits 0-3) of Port C. This is done to make sure that when a 0 
is output by the program to one of these bits (row of the keyboard), the diode switch will 
close and will generate a LOW on that row. 

Now, if a key is pressed on a particular row which is LOW, the column connected 
to this key will also be LOW. This will enable the programmer to obtain the appropriate 
key code for each key. 



Intel 8086 

OUESTIONS AND PROBLEMS 

45 1 

9.1 

9.2 

9.3 

9.4 

9.5 

9.6 

9.7 

9.8 

9.9 

9.10 

What is the basic difference between the 8086,8086-1,8086-2, and 8086-4? 

Assume (DS)=1000H, (SS)=2000H, (CS)=3000H, (BP)=OOOFH, (BX)=OOOAH 
before execution of the following 8086 instructions: 
(a) MOV CX,[BX] (b) MOV DX,[BP] 
Which instruction will be executed faster by the 8086, and why ? 

What is the purpose of the 8086 MN/m pin? 

If (DS) = 205FH and OFFSET = 0052H, what is the 8086 physical address? 
Does the EU or BIU compute this physical address? 

In an 8086 system, SEGMENT 1 contains addresses 00100H-00200H and 
SEGMENT 2 also contains addresses 00100H-00200H. What are these segments 
called? 

Determine the addressing modes for the following 8086 instructions: 
(a) CLC 
(b) CALL WORDPTR [BX] 
(c) MOV AX, DX 
(d) ADD [SI], BX 

Find the overflow, direction, interrupt, trap, sign, zero, parity, and carry flags after 
execution of the following 8086 instruction sequence: 

MOV AH, OFH 
SAHF 

What is the content of AL after execution of the following 8086 instruction 
sequence? 

MOV BH, 33H 
MOV AL, 32H 
ADD AL, BH 
AAA 

What happens after execution of the following 8086 instruction sequence? 
Comment. 

MOV DX, OOlFH 
XCHG DL, DH 
MOV AX, DX 
IDIV DL 

What are the remainder, quotient, and registers containing them after execution of 
the following 8086 instruction sequence? 

MOV AH, 0 
MOV AL, OFFH 
MOV CX, 2 
IDIV CL 



452 

9.1 1 

9.12 

9.13 

9.14 

9.15 

9.16 

9.17 

9.18 

9.19 

9.20 

9.2 1 

9.22 

9.23 

9.24 

Fundamentals of Digital Logic and Microcomputer Design 

Write an 8086 instruction sequence to set the trap flag for single stepping without 
affecting the other flags in the Status register. 

Write an 8086 assembly language program to subtract two 64-bit numbers. 
Assume SI and DI point to the low words of the numbers. 

Write an 8086 assembly program to add a 16-bit number stored in BX (bits 0 to 7 
containing the high-order byte of the number and bits 8 to 15 containing the low- 
order byte) with another 16-bit number stored in CX (bits 0 to 7 containing the 
low-order 8 bits of the number and bits 8 thorough 15 containing the high-order 8 
bits). Store the result in AX. 

Write an 8086 assembly program to multiply the top two 16-bit unsigned words 
of the stack. Store the 32-bit result onto the stack. 

Write an 8086 assembly language program to add three 16-bit numbers. Store the 
16-bit result in AX. 

Write an 8086 assembly language to find the area of a circle with radius 2 meters 
and save the result in AX. 

Write an 8086 assembly language program to convert 255 degrees in Celsius in 
BL to Fahrenheit degrees and store the value in AX. Use the equation 

Assume AL, CX and DXBX contain a signed byte, a signed word, and a signed 
32-bit number respectively. Write an 8086 assembly language program that will 
compute the signed 32-bit result: AL - CX + DXBX - DXBX. 

F = ( C I 5 ) * 9 + 3 2  

Write an 8086 assembly program to divide an 8-bit signed number in CH by an 
8-bit signed number in CL. Store the quotient in CH and the remainder in CL. 

Write an 8086 assembly program to add 25 16-bit numbers stored in consecutive 
memory locations starting at displacement OlOOH in DS = 0020H. Store the 16- 
bit result onto the stack. 

Write an 8086 assembly program to find the minimum value of a string of 10 
signed 8-bit numbers using indexed addressing. Assume Offset 5000H contains 
the first number. 

Write an 8086 assembly program to move 100 words from a source with offset 
OOlOH in ES to a destination with offset OlOOH in the same extra segment. 

Write an 8086 assembly program to divide a 28-bit unsigned number in the high 
28 bits of DX AX by 8,0. Do not use any divide instruction. Store the quotient in 
the low 28 bits of DX AX. Discard remainder. 

Write an 8086 assembly program to compare two strings of 15 ASCII characters. 
The first character (string 1) is stored starting at offset 5000H in DS followed 



Intel 8086 453 

by the string. The first character of the second string (string 2) is stored starting 
at 6000H in ES. The ASCII character in the first location of string 1 will be 
compared with the first ASCII character of string 2, and so on. As soon as a match 
is found, store OOEE,, onto the stack; otherwise, store 0000,, onto the stack. 

9.25 Write a subroutine in 8086 assembly language that can be called up by a main 
program in a different code segment. The subroutine will compute the 16-bit 
sum 

100 

i=l 
C xi 

Assume the xi’s are signed 8-bit numbers and are stored in consecutive locations 
starting at displacement 0050H. Also, write the main program that will call this 
subroutine to compute 

100 

i=l C %  
and store the 16-bit result (8-bit remainder and 8-bit quotient) in two consecutive 
memory bytes starting at offset 0400H. 

9.26 Write a subroutine in 8086 assembly language to convert a 2-digit unpacked 
BCD number to binary. The most significant digit is stored in a memory location 
starting at offset 4000H, and the least significant digit is stored at offset 4001H. 
Store the binary result in DL.Use the value of the 2-digit BCD number, 
V =  D, x 10 + Do.  Note that arithmetic operations will provide binary result. 

9.27 Assume an 8086/2732/6116/8255 microcomputer. Suppose that four switches are 
connected at bits 0 through 3 of port A and an LED is connected at bit 4 of port B. 
If the number of LOW switches is even, turn the port B LED ON; otherwise, turn 
the port B LED OFF. Write an 8086 assembly language program to accomplish 
this. Do not use any instructions involving the Parity flag. 

9.28 Interface two 2732 and one 8255 odd to an 8086 to obtain even and odd 2732 
locations and odd addresses for the 8255’s port A, port B, port C, and control 
registers. Show only the connections for the pins shown in Figure P9.28. Assume 
all unused address lines to be zeros. 



454 Fundamentals of Digital Logic and Microcomputer Design D;gTpz; Port c 

8086 mu>, -AD,, h-jTkq-07 - OE 

1 2 3  11v k- 

A ,  AD16-AD19/s 3-s 6 - 
RD 

WR 
- rF, - 

FIGURE P9.28 

X 

To INTR of an 
8086/2732/6116/8255 

y microtomputer 

Volage 
measurement, 
VM 

FIGURE P9.29 

9.29 In Figure P9.29, if VM > 12 V, turn the LED ON connected at bit 4 of port A. 
On the other hand, if VM < 11 V, turn the LED OFF. Use ports, registers, and 
memory locations of your choice. Draw a hardware block diagram showing the 
microcomputer and the connections of the figure to its ports. Write a service 
routine in 8086 assembly language. Assume all segment registers are already 
initialized. The service routine should be written as CS=1000H, IP=2000H. 
The main program will initialize SP to 2050H, initialize ports, and wait for 
interrupts. 

9.30 Repeat Problem 9.29 using the 8086 NMI interrupt. 

9.31 An 808612732161 1618255-based microcomputer is required to drive the LEDs 
connected to bit 0 of ports A and B based on the input conditions set by switches 
connected to bit 1 of ports A and B. The I/O conditions are as follows: 

If the input at bit 1 of port A is HIGH and the input at bit 1 of port B is 
low, then the LED at port A will be ON and the LED at port B will be 
OFF. 
If the input at bit 1 of port A is LOW and the input at bit 1 of port B is 
HIGH, then the LED at port A will be OFF and the LED at port B will be 
ON. 

LOW), then both LEDs at ports A and B will be ON. 
. If the inputs at both ports A and B are the same (either both HIGH or both 

Write an 8086 assembly language program to accomplish this. Do not use any 
instructions involving the parity flag. 



Intel 8086 455 

9.32 

9.33 

9.34 

9.35 

9.36 

An 8086/2732/6116/8255-based microcomputer is required to test a NAND 
gate. Figure P9.32 shows the I/O hardware needed to test the NAND gate. The 
microcomputer is to be programmed to generate the various logic conditions for 
the NAND inputs, input the NAND output, and turn the LED ON connected to bit 
3 of port A if the NAND gate chip is found to be faulty. Otherwise, turn the LED 
ON connected to bit 4 of port A. Write an 8086 assembly language program to 
accomplish this. - +5v +5v 

Bit 0 of Portd 

Bit 1 of PortE 

Bit 2 of PortC 

Bit 3 of Po@ 

Bit 4 of Po@ 

LED ' 

8086 pC 
FIGURE P9.32 (Assume both LEDs are OFF initially) 

Bit 0 
Bit 1 

Bit 2 

A Bit3 
Port 

I Bit4 
Bit 5 

Bit 6 

I 
FIGURE P9.33 

1 
GND 

An 8086/2732/6116/8255 microcomputer is required to add two 3-bit numbers 
in AL and BL and output the sum (not to exceed 9) to a common cathode seven- 
segment display connected to port A as shown in Figure P9.33.Write an 8086 
assembly language program to accomplish this by using a look-up table. Do not 
use XLAT instruction. 

Write an 8086 assembly language program to turn an LED OFF connected to bit 
2 of port A of an 8086/2732/6116/8255 microcomputer and then turn it on after 
delay of 15 s. Assume the LED is ON initially. 

What are the factors to be considered for interfacing a hex keyboard to a 
microcomputer? 

An 8086/2732/6116/8255 microcomputer is required to input a number from 0 
to 9 from an ASCII keyboard interfaced to it and output to an EBCDIC printer. 
Assume that the keyboard is connected to port A and the printer is connected 
to port B. Write an 8086 assembly language to accomplish this. Use XLAT 
instruction. 



r- r- r- - 
TEST HLDA HOLD 

- NMI 
- INTR 
- INTA 
- 

8086 

r w/Mx 
+ 

A D 0 - q 9 -  VI 

WR AL E /  

8086 A ,  

8086 ,Do-D, < I - 7 cs 
8 

P o r t A t t ,  Al ,A1 

‘’ 8 L, Latches - 
- 

> ALE -m r - [m 8255 ~ 

J 

PortB- 

POrtC+++ 
8 

Will the circuit shown in Figure P9.37 work? If so, determine the I/O map in hex. 
If not, justify briefly, modify the circuit and determine the J/O map in hex. Use 
only the pins and signals provided. Assume all don’t cares to be zeros. Note that 
I/O map includes the addresses for port A, port B, port C ,  and the control register. 
Using the logical port addresses, write an instruction sequence to configure port 
A as input and port B as output. 


