
MICROCOMPUTER
ARCHITECTURE,
PROGRAMMING,

AND SYSTEM
DESIGN CONCEPTS

This chapter describes the fundamental material needed to understand thebasic characteristics
of microprocessors. It includes topics such as typical microcomputer architecture, timing
signals, internal microprocessor structure, and status flags. The architectural features are
then compared to the Intel 8086 architecture. Topics such as microcomputer programming
languages and system design concepts are also described.

6.1 Basic Blocks of a MicrocomDuter

A microcomputer has three basic blocks: a central processing unit (CPU), a memory unit,
and an inpuiioutput unit. The CPU executes all the instructions and performs arithmetic and
logic operations on data. The CPU of the microcomputer is called the “microprocessor.”
The microprocessor is typically a single VLSI (Very Large-Scale Integration) chip that
contains all the registers, control unit, and arithmetic/ logic circuits of the microcomputer.

A memory unit stores both data and instructions. The memory section typically
contains ROM and RAM chips. The ROM can only be read and is nonvolatile, that is,
it retains its contents when the power is turned off. A ROM is typically used to store
instructions and data that do not change. For example, it might store a table of codes for
outputting data to a display external to the microcomputer for turning on a digit from 0 to 9.

One can read from and write into a RAM. The RAM is volatile; that is, it does
not retain its contents when the power is turned off. A RAM is used to store programs and
data that are temporary and might change during the course of executing a program. An 110
(InpudOutput) unit transfers data between the microcomputer and the external devices via
I/O ports (registers). The transfer involves data, status, and control signals.

In a single-chip microcomputer, these three elements are on one chip, whereas
with a single-chip microprocessor, separate chips for memory and I/O are required.
Microcontrollers evolved from single-chip microcomputers. The microcontrollers are
typically used for dedicated applications such as automotive systems, home appliances,
and home entertainment systems. Typical microcontrollers, therefore, include on-chip
timers and A/D (analog to digital) and D/A (digital to analog) converters. Two popular

185

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

186 Fundamentals of Digital Logic and Microcomputer Design

Rirs
f f

Microprocessor Merwly Element I10 unit

FIGURE 6.1 Basic blocks of a microcomputer

FIGURE 6.2 Simplified version of a typical microcomputer

microcontrollers are the Intel 875 1 (8 bit)/8096 (16 bit) and the Motorola HC11 (8 bit)/
HC16 (16 bit). The 16-bit microcontrollers include more on-chip ROM, RAM, and I/O
than the %bit microcontrollers. Figure 6.1 shows the basic blocks of a microcomputer. The
System bus (comprised of several wires) connects these blocks.

6.2 TvDical MicrocomDuter Architecture

In this section, we describe the microcomputer architecture in more detail. The various
microcomputers available today are basically the same in principle. The main variations
are in the number of data and address bits and in the types of control signals they use.

To understand the basic principles of microcomputer architecture, it is necessary
to investigate a typical microcomputer in detail. Once such a clear understanding is
obtained, it will be easier to work with any specific microcomputer. Figure 6.2 illustrates
the most simplified version of a typical microcomputer. The figure shows the basic blocks
of a microcomputer system. The various buses that connect these blocks are also shown.
Although this figure looks very simple, it includes all the main elements of a typical
microcomputer system.

6.2.1 The Microcomputer Bus
The microcomputer’s system bus contains three buses, which carry all the address, data, and
control information involved in program execution. These buses connect the microprocessor
(CPU) to each of the ROM, RAM, and I/O chips so that information transfer between the
microprocessor and any of the other elements can take place.

In the microcomputer, typical information transfers are carried out with respect to
the memory or I/O. When a memory or an I/O chip receives data from the microprocessor
, it is called a WRITE operation, and data is written into a selected memory location or
an 110 port (register). When a memory or an I/O chip sends data to the microprocessor,

Microcomputer Architecture, Programming, and System Design Concepts 187

it is called a READ operation, and data is read from a selected memory location or an I/O
port.

In the address bus, information transfer takes place only in one direction, from the
microprocessor to the memory or 110 elements. Therefore, this is called a “unidirectional
bus.” This bus is typically 20 to 32 bits long. The size of the address bus determines the
total number of memory addresses available in which programs can be executed by the
microprocessor. The address bus is specified by the total number of address pins on the
microprocessor chip. This also determines the direct addressing capability or the size of the
main memory of the microprocessor. The microprocessor can only execute the programs
located in the main memory. For example, a microprocessor with 20 address pins can
generate 2” = 1,048,576 (one megabyte) different possible addresses (combinations of 1’s
and 0’s) on the address bus. The microprocessor includes addresses from 0 to 1,048,575
(OOOOO,, through FFFFF,,). A memory location can be represented by each one of these
addresses. For example, an 8-bit data item can be stored at address 00200,,.

When a microprocessor such as the 8086 wants to transfer information between
itself and a certain memory location, it generates the 20-bit address from an internal register
on its 20 address pins A,,-A,,, which then appears on the address bus. These 20 address
bits are decoded to determine the desired memory location. The decoding process normally
requires hardware (decoders) not shown in Figure 6.2.

In the data bus, data can flow in both directions, that is, to or from the
microprocessor. Therefore, this is a bidirectional bus. In some microprocessors, the data
pins are used to send other information such as address bits in addition to data. This means
that the data pins are time-shared or multiplexed. The Intel 8086 microprocessor is an
example where the 20 bits of the address are multiplexed with the 16-bit data bus and four
status lines.

The control bus consists of a number of signals that are used to synchronize the
operation of the individual microcomputer elements. The microprocessor sends some of
these control signals to the other elements to indicate the type of operation being performed.
Each microcomputer has a unique set of control signals. However, there are some control
signals that are common to most microprocessors. We describe some of these control
signals later in this section.

6.2.2 Clock Signals
The system clock signals are contained in the control bus. These signals generate the
appropriate clock periods during which instruction executions are carried out by the
microprocessor. The clock signals vary from one microprocessor to another. Some
microprocessors have an internal clock generator circuit to generate a clock signal.
These microprocessors require an external crystal or an RC network to be connected at
the appropriate microprocessor pins for setting the operating frequency. For example, the
Intel 801 86 (16-bit microprocessor) does not require an external clock generator circuit.
However, most microprocessors do not have the internal clock generator circuit and require
an external chip or circuit to generate the clock signal. Figure 6.3 shows a typical clock
signal.

I ““CFk 1
FIGURE 6.3 A typical clock signal

188 Fundamentals of Digital Logic and Microcomputer Design

Registers

ALU

FIGURE 6.4 A microprocessor chip with the main functional elements

6.3 The SinPle-ChiD Microwocessor

As mentioned before, the microprocessor is the CPU of the microcomputer. Therefore, the
power of the microcomputer is determined by the capabilities of the microprocessor. Its
clock frequency determines the speed of the microcomputer. The number of data and address
pins on the microprocessor chip make up the microcomputer’s word size and maximum
memory size. The microcomputer’s I/O and interfacing capabilities are determined by the
control pins on the microprocessor chip.

The logic inside the microprocessor chip can be divided into three main areas: the
register section, the control unit, and the arithmetic and logic unit (ALU). A microprocessor
chip with these three sections is shown in Figure 6.4. We now describe these sections.

6.3.1 Register Section
The number, size, and types of registers vary from one microprocessor to another.
However, the various registers in all microprocessors carry out similar operations. The
register structures of microprocessors play a major role in designing the microprocessor
architectures. Also, the register structures for a specific microprocessor determine how
convenient and easy it is to program this microprocessor.

We first describe the most basic types of microprocessor registers, their functions,
and how they are used. We then consider the other common types of registers.
Basic Microprocessor Registers
There are four basic microprocessor registers: instruction register, program counter,
memory address register, and accumulator.

Instruction Register (IR). The instruction register stores instructions. The contents
of an instruction register are always decoded by the microprocessor as an instruction.
After fetching an instruction code from memory, the microprocessor stores it in the
instruction register. The instruction is decoded internally by the microprocessor, which
then performs the required operation. The word size of the microprocessor determines
the size of the instruction register. For example, a 16-bit microprocessor has a 16-bit
instruction register.
Program Counter (PC). The program counter contains the address of the instruction
or operation code (op-code). The program counter normally contains the address of the
next instruction to be executed. Note the following features of the program counter:
1. Upon activating the microprocessor’s RESET input, the address of the first

instruction to be executed is loaded into the program counter.
2. To execute an instruction, the microprocessor typically places the contents of

the program counter on the address bus and reads (“fetches”) the contents of
this address, that is, instruction, from memory. The program counter contents
are automatically incremented by the microprocessor’s internal logic. The
microprocessor thus executes a program sequentially, unless the program contains
an instruction such as a J U M P instruction, which changes the sequence.
The size of the program counter is determined by the size of the address bus. 3.

Microcomputer- Architecture, Programming, and System Design Concepts 1 89

Many instructions, such as JUMP and conditional JUMP, change the contents
of the program counter from its normal sequential address value. The program
counter is loaded with the address specified in these instructions.

Memory Address Register (MAR). The memory address register contains the
address of data. The microprocessor uses the address, which is stored in the memory
address register, as a direct pointer to memory. The contents of the address consists of
the actual data that is being transferred.
Accumulator (A). For an %bit microprocessor, the accumulator is typically an %bit
register. It is used to store the result after most ALU operations. These microprocessors
have instructions to shift or rotate the accumulator 1 bit to the right or left through the
carry flag. The accumulator is typically used for inputting a byte into the accumulator
from an external device or outputting a byte to an external device from the accumulator.
Some microprocessors, such as the Motorola 6809, have more than one accumulator.
In these microprocessors, the accumulator to be used by the instruction is specified in
the op-code.

Depending on the register section, the microprocessor can be classified either as an
accumulator-based or a general-purpose register-based machine. In an accumulator-based
microprocessor such as the Intel 8085 and Motorola 6809, the data is assumed to be held
in a register called the “accumulator.” All arithmetic and logic operations are performed
using this register as one of the data sources. The result after the operation is stored in the
accumulator. Eight-bit microprocessors are usually accumulator based.

The general-purpose register-based microprocessor is usually popular with 16-
, 32-, and 64-bit microprocessors, such as the Intel 8086180386180486lPentium and the
Motorola 68000 I68020 /68030 /68040 /PowerPC. The term “general-purpose” comes from
the fact that these registers can hold data, memory addresses, or the results of arithmetic or
logic operations. The number, size, and types of registers vary from one microprocessor to
another.

Most registers are general-purpose whereas some, such as the program counter
(PC), are provided for dedicated functions. The PC normally contains the address of the
next instruction to be executed. As metioned before, upon activating the microprocessor chi
p’s RESET input pin, the PC is normally initialized with the address of the first instruction.
For example, the 80486, upon hardware reset, reads the first instruction from the 32-bit
hex address FFFFFFFO. To execute the instruction, the microprocessor normally places
the PC contents on the address bus and reads (fetches) the first instruction from external
memory. The program counter contents are then automatically incremented by the ALU.
The microcomputer thus usually executes a program sequentially unless it encounters
a jump or branch instruction. As mentioned earlier, the size of the PC varies from one
microprocessor to another depending on the address size. For example, the 68000 has a
24-bit PC, whereas the 68040 contains a 32-bit PC. Note that in general-purpose register-
based microprocessors, the four basic registers typically include a PC, an MAR, an IR, and
a data register.

Use of the Basic Microprocessor Registers
To provide a clear understanding of how the basic microprocessor registers are used,
a binary addition program will be considered. The program logic will be explained by
showing how each instruction changes the contents of the four registers. Assume that all
numbers are in hex. Suppose that the contents of the memory location 2010 are to be added
with the contents of 2012. Assume that [NNNN] represents the contents of the memory

4.

190 Fundamentals of Digital Logic and Microcomputer Design

location "NN. Now, suppose that [2010] = 0002 and [2012] = 0005. The steps involved
in accomplishing this addition can be summarized as follows:

Load the memory address register (MAR) with the address of the first data item
to be added, that is, load 2010 into MAR.
Move the contents of this address to a data register, DO; that is, move first data
into DO.
Increment the MAR by 2 to hold 2012, the address of the second data item to be
added.
Add the contents of this memory location to the data that was moved to the data
register, DO in step 2, and store the result in the 16-bit data register, DO. The above
addition program will be written using 68000 instructions. Note that the 68000
uses 24-bit addresses; 24-bit addresses such as 002000,, will be represented as
2000,, (1 6-bit number) in the following.

Load the contents of the next 16-bit memory word into the memory address
register, Al. Note that register A1 can be considered as MAR in the 68000.
Read the 16-bit contents of the memory location addressed by MAR into data
register, DO.
Increment MAR by 2 to hold 2012, the address of the second data to be added.
Add the current contents of data register, DO to the contents of the memory
location whose address is in MAR and store the 16-bit result in DO.
The following steps for the Motorola 68000 will be used to achieve the above

1.

2.

3.

4.

The following steps will be used to achieve this addition for the 68000:
1.

2.

3.
4.

addition:

3279,, Load the contents of the next 1 6-bit memory word into the memory
address register, Al .

3010,, Read the 16-bit contents of the memory location addressed by MAR
into data register, DO.

5249,, Increment MAR by 2.

DO5 1 , 6 Add the current contents of data register, DO, to the contents of the
memory location whose address is in MAR and store the 16-bit
result in DO.

Addressof 1 MemON I

Program
Memory

Data
MemON

Memory Word
2000
2002
2004
2006
2008
200A

201 0
2012

Word'

0002
0005

FIGURE 6.5 Microprocessor addition program with initial register and memory

Microcomputer Architecture, Programming, and System Design Concepts 1 9 1

The complete program in hexadecimal, starting at location 2000,, (arbitrarily
chosen) is given in Figure 6.5. Note that eachmemory address stores 16 bits. Hence, memory
addresses are shown in increments of 2. Assume that the microcomputer can be instructed
that the starting address of the program is 2000,,. This means that the program counter can
be initialized to contain 2000,,, the address of the first instruction to be executed. Note that
the contents of the other three registers are not known at this point. The microprocessor
loads the contents of memory location addressed by the program counter into IR. Thus, the
first instruction, 3279,,, stored in address 2000,, is transferred into IR.

The program counter contents are then incremented by 2 by the microprocessor's
ALU to hold 2002,,. The register contents that result along with the program are shown in
Figure 6.6.

The binary code 3279,, in the IR is executed by the microprocessor. The
microprocessor then takes appropriate actions. Note that the instruction, 3279,,, loads the
contents of the next memory location addressed by the PC into the MAR. Thus, 2010,, is
loaded into the MAR. The contents of the PC are then incremented by 2 to hold 20041,.
This is shown in Figure 6.7

Program

Memory

Data
Memory

r' I
Address of Memory

Memory 1 word I
word

2000
2002
2004
2006
2008
200A

DO Fl rPR
2002 PC

FIGURE 6.6 Microprocessor addition program (modified during execution)

Address of Memory
Memory 1 word 1
word

Program

Memory

2000
2002
2004
2006
2008
200A

3279
2010
3010
5249
DO51

FIGURE 6.7 Microprocessor addition program (modified during execution)

192 Fundamentals of Digital Logic and Microcomputer Design

Program

Memoly

Data
Memoly

Address of Memory
Memory 1 word 1
Word

2004
2006
2008
200A

2012

2010 M
IR

2006 PC

FIGURE 6.8 Microprocessor addition program (modified during execution)

Program
Memory

Address of Memory
Memory 1 Word 1
y&cl

2000
2002
2004
2006
2008
200A IR

PC

~~ ~~~ ~

FIGURE 6.9 Microprocessor addition program (modified during execution)

Next, the microprocessor loads the contents of the memory location addressed by
the PC into the IR; thus, 3010,, is loaded into the IR. The PC contents are then incremented
by 2 to hold 2006,,. This is shown in Figure 6.8. In response to the instruction 3010,,, the
contents of the memory location addressed by the MAR are loaded into the data register,
DO; thus, 0002,, is moved to register DO. The contents of the PC are not incremented this
time. This is because 0002,, is not immediate data. Figure 6.9 shows the details. Next the
microprocessor loads 5249,, to IR and then increments PC to contain 2OO8,, as shown in
Figure 6.10.

In response to the instruction 5249,, in the IR, the microprocessor increments
the MAR by 2 to contain 2012,, as shown in Figure 6.1 1. Next, the instruction D051,, in
location 2008,, is loaded into the IR, and the PC is then incremented by 2 to hold 200A,, as
shown in Figure 6.12. Finally, in response to instruction DO5 1 ,,, the microprocessor adds
the contents of the memory location addressed by MAR (address 201 2,,) with the contents
of register DO and stores the result in DO. Thus, 0002,, is added with OOOS,,, and the 16-bit
result 0007,, is stored in DO as shown in Figure 6.13. This completes the execution of the
binary addition program.

Microcomputer Architecture, Programming, and System Design Concepts

0002
2012
5249
2008

193

DO
MAR
IR
PC

Program
Memory

Data
Memory

Address of
Memory
U r d

2000
2002
2004
2006
2008
200A

201 0
2012
pq 0005

I 0002] DO

2008 I PC

FIGURE 6.10 Microprocessor addition program (modified during execution)

Program
Memory

Data
Memory

Word

FIGURE 6.1 1 Microprocessor addition program (modified during execution)

Other Microprocessor Registers
General-Purpose Registers
The 16-, 32-, and 64-bit microprocessors are register oriented. They have a number of
general-purpose registers for storing temporary data or for carrying out data transfers
between various registers. The use of general-purpose registers speeds up the execution
of a program because the microprocessor does not have to read data from external
memory via the data bus if data is stored in one of its general-purpose registers. These
registers are typically 16 to 32 bits. The number of general-purpose registers will
vary from one microprocessor to another. Some of the typical finctions performed by
instructions associated with the general-purpose registers are given here. We will use
[REG] to indicate the contents of the general-purpose register and [MI to indicate the
contents of a memory location.
1.
2.
3 .
4.

Move [REG] to or from memory: [MI - [REG] or [REG] +- [MI.
Move the contents of one register to another: [REG11 - [REG2].
Increment or decrement [REG] by 1 : [REG] + [REG] + 1 or [REG] +- [REG] - 1.
Load 16-bit data into a register [REG] : [REG] - 16-bit data.

194 Fundamentals of Digital Logic and Microcomputer Design

2000
2002
2004
2006
2008
200A

Program
Memory

Data
Memory

3279
201 0
301 0
5249
DO51

Address of Memory
Memory 1 W 1
Word

2010 Fl
201 2

Fl L R
IR

200A PC

-

FIGURE 6.12 Microprocessor addition program (modified during execution)

Address of Memory
Memory 1 I
word

Program
MemON

2000
2002
2004
2006
2008
200A

0007 DO
2012 MAR
DO51 IR
200A PC

FIGURE 6.13

Index Register

Microprocessor addition program (modified during execution)

An index register is typically used as a counter in address modification for an
instruction, or for general storage functions. The index register is particularly useful
with instructions that access tables or arrays of data. In this operation the index register
is used to modify the address portion of the instruction. Thus, the appropriate data in
a table can be accessed. This is called “indexed addressing.” This addressing mode
is normally available to the programmers of microprocessors. The effective address
for an instruction using the indexed addressing mode is determined by adding the
address portion of the instruction to the contents of the index register. Index registers
are typically 16 or 32 bits long. In a typical 16- or 32-bit microprocessor, general-
purpose registers can be used as index registers.

Status Register
The status register, also known as the “processor status word register” or the “condition
code register,” contains individual bits, with each bit having special significance. The
bits in the status register are called “flags.” The status of a specific microprocessor
operation is indicated by each flag, which is set or reset by the microprocessor’s internal
logic to indicate the status of certain microprocessor operations such as arithmetic and

Microcomputer Architecture, Programming, and System Design Concepts 195

logic operations. The status flags are also used in conditional JUMP instructions. We
will describe some of the common flags in the following.

The carryflag is used to reflect whether or not the result generated by an arithmetic
operation is greater than the microprocessor’s word size. As an example, the addition
of two 8-bit numbers might produce a carry. This carry is generated out of the eighth
position, which results in setting the carry flag. However, the carry flag will be zero if
no carry is generated from the addition. As mentioned before, in multibyte arithmetic,
any carry out of the low-byte addition must be added to the high-byte addition to
obtain the correct result. This can illustrated by the following example:

high byte low byte

0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1

0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1

0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 0
T

high-order bit cam is reflected -
position into-the high-byte

addition

While performing BCD arithmetic with microprocessors, the carry out of the low
nibble (4 bits) has a special significance. Because a BCD digit is represented by 4
bits, any carry out of the low 4 bits must be propagated into the high 4 bits for BCD
arithmetic. This carry flag is known as the auxiliary carryflag and is set to 1 if the
carry out of the low 4 bits is 1, otherwise it is 0.

A zeroflag is used to show whether the result of an operation is zero. It is set to 1
if the result is zero, and it is reset to 0 if the result is nonzero. Aparityflag is set to 1 to
indicate whether the result of the last operation contains either an even number of 1 ’s
(even parity) or an odd number of 1 ’s (odd parity), depending on the microprocessor.
The type of parity flag used (even or odd) is determined by the microprocessor’s internal
structure and is not selectable. The sign flag (also sometimes called the negative flag)
is used to indicate whether the result of the last operation is positive or negative. If the
most significant bit of the last operation is 1, then this flag is set to 1 to indicate that
the result is negative. This flag is reset to 0 if the most significant bit of the result is
zero, that is, if the result is positive.

As mentioned before, the overflowflag arises from the representation of the sign
flag by the most significant bit of a word in signed binary operation. The overflow flag
is set to 1 if the result of an arithmetic operation is too big for the microprocessor’s
maximum word size, otherwise it is reset to 0. Let C’be the final carry out of the most
significant bit (sign bit) and C, be the previous carry. It was shown in Chapter 2 that
the overflow flag is the exclusive OR of the carries C, and C’

Overflow = C, 0 C’
Stack Pointer Register

The stack consists of a number of RAM locations set aside for reading data from
or writing data into these locations and is typically used by subroutines (a subroutine is
a program that performs operations frequently needed by the main or calling program).
The address of the stack is contained in a register called the “stack pointer.” Two
instructions, PUSH and POP, are usually available with the stack. The PUSH operation

196 Fundamentals of Digital Logic and Microcomputer Design

Bonom of
Slack

FIGURE 6.14 PUSH operation when accessing stack from bottom

Before POP After POP

FIGURE 6.15 POP operation when accessing stack from bottom

Before PUSH After PUSH

\ /
Tap of
Slack

FIGURE 6.16 PUSH operation when accessing stack from top

Microcomputer Architecture, Programming, and System Design Concepts 197

I I Before POP After POP

I ' Top of ' H I Stack

FIGURE 6.17 POP operation when accessing stack from top

is defined as writing to the top or bottom of the stack, whereas the POP operation
means reading from the top or bottom of the stack. Some microprocessors access the
stack from the top; the others access via the bottom. When the stack is accessed from
the bottom, the stack pointer is incremented after a PUSH and decremented after a
POP operation. On the other hand, when the stack is accessed from the top, the stack
pointer is decremented after a PUSH and incremented after a POP. Microprocessors
typically use 16- or 32-bit registers for performing the PUSH or POP operations. The
incrementing or decrementing of the stack pointer depends on whether the operation
is PUSH or POP and also whether the stack is accessed from the top or the bottom.

We now illustrate the stack operations in more detail. We use 16-bit registers in
Figures 6.14 and 6.15. In Figure 6.14, the stack pointer is incremented by 2 (since 16-
bit register) to address location 20C7 after the PUSH. Now consider the POP operation
of Figure 6.15. Note that after the POP, the stack pointer is decremented by 2. [2OC5]
and [2OC6] ace assumed to be empty conceptually after the POP operation. Finally,
consider the PUSH operation of Figure 6.16. The stack is accessed from the top. Note
that'the stack pointer is decremented by 2 after a PUSH. Next, consider the POP
(Figure 6.17). [2OC4] and [2OC5] are assumed to be empty after the POP.
Note that the stack is a LIFO (Last In First Out) memory.

Exarnde 6.1
Determine the carry (C) , sign (9, zero (4, overflow (v), and parity (P) flags for the
following operation: 0 1 10, plus 10 10, .

Assume the parity bit = 1 for ODD parity in the result; otherwise the parity bit =

0. Also, assume that the numbers are signed. Draw a logic diagram for implementing the
flags in a 5-bit register using D flip-flops; use P = bit 0, V = bit 1, Z = bit 2, S = bit 3, and
C = bit 4. Note that Verilog and VHDL descriptions along with simulation results of this
status register are provided in Appendices I and J respectively.
Solution

I 1 0 t Intermediate Carries
0 1 1 0

+ l o 1 0

Result = 0 0 0 0 -
Z = 1 since result = 0
P = 0 since even panty
v=c,e c, =1 e 1 = 0

198

The flag register can be implemented from the 4-bit result as follows:

Fundamentals of Digital Logic and Microcomputer Design

I I U

6.3.2 Control Unit
The main purpose of the control unit is to read and decode instructions from the program
memory. To execute an instruction, the control unit steps through the appropriate blocks
of the ALU based on the op-codes contained in the instruction register. The op-codes
define the operations to be performed by the control unit in order to execute an instruction.
The control unit interprets the contents of the instruction register and then responds to
the instruction by generating a sequence of enable signals. These signals activate the
appropriate ALU logic blocks to perform the required operation.

The control unit generates the control signals, which are output to the other
microcomputer elements via the control bus. The control unit also takes appropriate actions
in response to the control signals on the control bus provided by the other microcomputer
elements.

The control signals vary from one microprocessor to another. For each specific
microprocessor, these signals are described in detail in the manufacturer’s manual. It is
impossible to describe all the control signals for various manufacturers. However, we
cover some of the common ones in the following discussion.

RESET. This input is common to all microprocessors. When this input pin is driven
to HIGH or LOW (depending on the microprocessor), the program counter is loaded
with a predefined address specified by the manufacturer. For example, in the 80486,
upon hardware reset, the program counter is loaded with FFFFFFFO,,. This means
that the instruction stored at memory location FFFFFFFO,, is executed first. In some
other microprocessors, such as the Motorola 68000, the program counter is not
loaded directly by activating the RESET input. In this case, the program counter is
loaded indirectly from two locations (such as 000004 and 000006) predefined by the
manufacturer. This means that these two locations contain the address of the first
instruction to be executed.
READ/WRITE (m. This output line is common to all microprocessors. The
status of this line tells the other microcomputer elements whether the microprocessor

Microcomputer Architecture, Programming, and System Design Concepts 199

is performing a READ or a WRITE operation. A HIGH signal on this line indicates
a READ operation and a LOW indicates a WRITE operation. Some microprocessors
have separate READ and WRITE pins.
READY. This is an input to the microprocessor. Slow devices (memory and 110) use
this signal to gain extra time to transfer data to or receive data from a microprocessor.
The READY signal is usually an active low signal, that is, LOW means that the
microprocessor is ready. Therefore, when the microprocessor selects a slow device, the
device places a LOW on the READY pin. The microprocessor responds by suspending
all its internal operations and enters a WAIT state. When the device is ready to send
or receive data, it removes the READY signal. The microprocessor comes out of the
WAIT state and performs the appropriate operation.
Interrupt Request (INT or IRQ). The external I/O devices can interrupt the
microprocessor via this input pin on the microprocessor chip. When this signal is
activated by the external devices, the microprocessor jumps to a special program,
called the “interrupt service routine.” This program is normally written by the user
for performing tasks that the interrupting device wants the microprocessor to do.
After completing this program, the microprocessor returns to the main program it was
executing when the interrupt occurred.

6.3.3
The ALU performs all the data manipulations, such as arithmetic and logic operations,
inside the microprocessor. The size of the ALU conforms to the word length of the
microcomputer. This means that a 32-bit microprocessor will have a 32-bit ALU. Typically,
the ALU performs the following functions:

Arithmetic and Logic Unit (ALU)

1. Binary addition and logic operations
2. Finding the ones complement of data
3. Shifting or rotating the contents of a general-purpose register 1 bit to the left or

right through carry

Functional Representations of a Simple and a Typical Microprocessor 6.3.4
Figure 6.18 shows the functional block diagram of a simple microprocessor. Note that the

I I
Arithmetic and Logic unR (ALU)

Status Register

stuner

9
Comp!amenter t: ’2

Bookan Lo&
and Addition I

t!

General Purpcse
Register

Instruction

FIGURE 6.18 Functional representation of a simple microprocessor

200

15 8 7 0 I 20 , b
ALU for

6 Computation

ieral
pose I , b

Fundamentals of Digital Logic and Microcomputer Design

Idress /Data Bus 4 I

Other General
Purpose Registers

~

-
I

Control

Stack Pointer w

-

MUltiDlexed I I

4
Temporaty Registers

1 II-
ALU for

Arithmetic
Logic

Operations

1

r
b

16-bit
Segment
Registers

Unit

I -

4 -
- 1

Instruction
Registers

SIX instructions
are queued in

a FIFO
(First-In First
Out) Memory

J

Bus Interface Unit IBIU)

FIGURE 6.19 Simplified block diagram of the 8086

data bus shown is internal to the microprocessor chip and should not be confused with the
system bus. The system bus is external to the microprocessor and is used to connect all
the necessary chips to form a microcomputer. The buffer register in Figure 6.18 stores any
data read from memory for further processing by the ALU. All other blocks of Figure 6.18
have been discussed earlier. Figure 6.19 shows the simplified block diagram of a realistic
microprocessor, the Intel 8086.

The 8086 microprocessor is internally divided into two functional units: the bus
interface unit (BIU) and the execution unit (EU). The BIU interfaces the 8086 to external
memory and 110 chips. The BIU and EU function independently. The BIU reads (fetches)
instructions and writes or reads data to or from memory and I/O ports. The EU executes
instructions that have already been fetched by the BIU. The BIU contains segment registers,
the instruction pointer (IP), the instruction queue registers, and the address generatiodbus
control circuitry.

The 8086 uses segmented memory. This means that the 8086’s 1 MB main memory
is divided into 16 segments of 64 KB each. Within a particular segment, the instruction
pointer (IP) works as a program counter (PC). Both the IP and the segment registers are
16 bits wide. The 20-bit address is generated in the BIU by using the contents of a 16-bit
IP and a 16-bit segment register. The ALU in the BIU is used for this purpose. Memory
segmentation is useful in a time-shared system when several users share a microprocessor.
Segmentation makes it easy to switch from one user program to another by changing the

Microcomputer Architecture, Programming, and System Design Concepts 20 1

Salts flags

shfter t
Complememer

t

contents of a segment register.
The bus control logic of the BIU generates all the bus control signals such as read

and write signals for memory and I/O. The BIU’s instruction register consist of a first-
in-first-out (FIFO) memory in which up to six instruction bytes are preread (prefetched)
from external memory ahead of time to speed up instruction execution. The control unit in
the EU translates the instructions based on the contents of the instruction registers in the
BIU.

The EU contains several 16-bit general-purpose registers. Some of them are AX,
BX, CX, and DX. Each of these registers can be used either as an 8-bit register (AH, AL,
BH, BL, CH, CL, DH, DL) or as a 16-bit register (AX, BX, CX, DX). Register BX can also
be used to hold the address in a segment. The EU also contain a 16-bit status register. The
ALU in the EU performs all arithmetic and logic operations. The 8086 is covered in detail
in Chapter 9.

6.3.5
In this section, we discuss how the op-codes are interpreted by the microprocessor.
Most microprocessors have an internal memory, called the “control memory” (ROM).
This memory is used to store a number of codes, called the “microinstructions.” These
microinstructions are combined together to design instructions. Each instruction in the
instruction register initiates execution of a set of microinstructions in the control unit to
perform the operation required by the instruction. The microprocessor manufacturers
define the microinstructions by programming the control memory (ROM) and thus,
design the instruction set of the microprocessor. This type of programming is known
as “microprogramming.” Note that the control units of most 16-, 32-, and 64-bit
microprocessors are microprogrammed.

For simplicity, we illustrate the concepts of microprogramming using Figure
6.18. Let us consider incrementing the contents of the register. This is basically an addition
operation. The control unit will send an enable signal to execute the ALU adder logic.

Microprogramming the Control Unit (A Simplified Explanation)

c

b

c

c

I I
rilhnelic ard b g i c ml (ALU)

Register

Memory Address

Program Colnter

l m l m i o n

FIGURE 6.20 Transferring register contents to data bus

202 Fundamentals of Digital Logic and Microcomputer Design

Incrementing the contents of a register consists of transferring the register contents to
the ALU adder and then returning the result to the register. The complete incrementing
process is accomplished via the five steps shown in Figures 6.20 through Figure 6.24, In
all five steps, the control unit initiates execution of each microinstruction. Figure 6.20
shows the transfer of the register contents to the data bus. Figure 6.2 1 shows the transfer
of the contents of the data bus to the adder in the ALU in order to add 1 to it. Figure 6.22
shows the activation of the adder logic. Figure 6.23 shows the transfer of the result from
the adder to the data bus. Finally, Figure 6.24 shows the transfer of the data bus contents to
the register.

Microprogramming is typically used by the microprocessor designer to program
the logic performed by the control unit. On the other hand, assembly language programming
is a popular programming language used by the microprocessor user for programming the
microprocessor to perform a desired function. A microprogram is stored in the control unit.
An assembly language program is stored in the main memory. The assembly language
program is called a macroprogram. A macroinstruction (or simply an instruction) initiates
execution of a complete microprogram.

A simplified explanation of microprogramming is provided in this section. This
topic will be covered in detail in Chapter 7.

-
*---L Cornplementer 4 b

Boolean Logic b

Arithmetic and Logic unit (ALU) ,
Status flags

.c--* and Addition
01 101010

Buffer Register
Data Bus

01 101010

Program Counter

Instruction
Register

h

FIGURE 6.21 Transferring data bus contents to the ALU

Microcomputer Architecture, Programming, and System Design Concepts 203

\rithmetic and Logic unit (ALU) , I,
Shilter I

9 Compkmenter r-

and Addition
01101011

Register

01101010

Instruction

Buffer Register

FIGURE 6.22 Activating the ALU logic

rrithmetic and Logic unit (ALU) ,
t-H Status flags

1 I I I I
Shiner b

w Compkmenter

r
r
0

0
-
r
7

0

Bookan Logic
and Addition
01 101011

Bookan Logic
and Addition Y 01 101011

71: Buffer Register

Register

01 101010

Memoly Address

Program Counter

I Controlunit 1

FIGURE 6.23 Transferring the ALU result to the data bus

204

- Statuslbgs 4

4----* Shifler

4----* Comp!ementer

Fundamentals of Digital Logic and Microcomputer Design

b

b

b

irithmetic and Logic unit (ALU)
I 7

Buffer Register

Register

01101011

Memory Address
Register

Program Counter

Instruction
Register

1 control Unit 1

FIGURE 6.24 Transferring the data bus

6.4 The Memory

The main or external memory (or simply the memory) stores both instructions and data. For
8-bit microprocessors, the memory is divided into a number of 8-bit units called “memory
words.” An 8-bit unit of data is termed a “byte.” Therefore, for an 8-bit microprocessor,
“memory word” and “memory byte” mean the same thing. For 16-bit microprocessors,
a word contains two bytes (16 bits). A memory word is identified in the memory by
an address. For example, the 8086 microprocessor uses 20-bit addresses for accessing

Segment 15
FFFFFH

FOOOOH

IFFFF,,

10000,,

OFFFF,,

ooooo,,

Segment 1

Segment 0

FIGURE 6.25 The main memory of the 8086

Microcomputer Architecture, Programming, and System Design Concepts 205

Memory

I

I

Static Pseudo
Dynamic static

FIGURE 6.26 Summary of available semiconductor memories for microprocessor
systems

memory words. This provides a maximum of 220 = 1 MB of memory addresses, ranging
from 00000,, to FFFFF,, in hexadecimal.

As mentioned before, an important characteristic of a memory is whether it is
volatile or nonvolatile. The contents of a volatile memory are lost if the power is turned off.
On the other hand, a nonvolatile memory retains its contents after power is switched off.
Typical examples of nonvolatile memory are ROM and magnetic memory (floppy disk).
A RAM is a volatile memory unless backed up by battery.

As mentioned earlier, some microprocessors such as the Intel 8086 divide the
memory into segments. For example, the 8086 divides the 1 MB main memory into 16
segments (0 through 15). Each segment contains 64 IU3 of memory and is addressed by 16
bits. Figure 6.25 shows atypical main memory layout ofthe 8086. In the figure, the high four
bits of an address specify the segment number. As an example, consider address 10005,, of
segment 1. The high four bits, 000 1, of this address define the location is in segment 1 and
the low 16 bits, OOOS,,, specify the particular address in segment 1. The 68000, on the other
hand, uses linear or nonsegmented memory. For example, the 68000 uses 24 address pins
to directly address 224= 16 MB of memory with addresses from 000000,, to FFFFFF,,. As
mentioned before, memories can be categorized into two main types: read-only memory
(ROM) and random-access memory (RAM). As shown in Figure 6.26, ROMs and RAMs
are then divided into a number of subcategories, which are discussed next.

6.4.1 Random-Access Memory (RAM)
There are three types of RAM: dynamic RAM, pseudo-static RAM , and static RAM.
Dynamic RAM stores data in capacitors, that is, it can hold data for a few milliseconds.
Hence, dynamic RAMs are refreshed typically by using external refresh circuitry. Pseudo-
static RAMs are dynamic RAMs with internal refresh. Finally, static RAM stores data

206 Fundamentals of Digital Logic and Microcomputer Design

in flip-flops. Therefore, this memory does not need to be refreshed. RAMs are volatile
unless backed up by battery. Dynamic RAMs (DRAMs) are used in applications requiring
large memory. DRAMs have higher densities than Static RAMs (SRAMs). Typical
examples of DRAMs are 4464 (64K x 4-bit), 44256 (256K x 4-bit), and 41000 (1M x
1-bit). DRAMs are inexpensive, occupy less space , and dissipate less power compared
to SRAMs. Two enhanced versions of DRAM are E D 0 DRAM (Extended Data Output
DRAM) and SDRAM (Synchronous DRAM). The E D 0 DRAM provides fast access by
allowing the DRAM controller to output the next address at the same time the current data
is being read. An SDRAM contains multiple DRAMs (typically 4) internally. SDRAMs
utilize the multiplexed addressing of conventional DRAMs . That is, SDRAMs provide
row and column addresses in two steps like DRAMs. However, the control signals and
address inputs are sampled by the SDRAM at the leading edge of a common clock signal
(1 33 MHz maximum). SDRAMs provide higher densities by further reducing the need for
support circuitry and faster speeds than conventional DRAMs. The SDRAM has become
popular with PC (Personal Computer) memory.

6.4.2 Read-only Memory (ROM)
ROMs can only be read. This memory is nonvolatile. From the technology point of view,
ROMs are divided into two main types, bipolar and MOS. As can be expected, bipolar
ROMs are faster than MOS ROMs. Each type is further divided into two common types,
mask ROM and programmable ROM. MOS ROMs contain one more type, erasable PROM
(EPROM such as Intel 2732 and EAROM or EEPROM or E*PROM such as Intel 2864).
Mask ROMs are programmed by a masking operation performed on the chip during the
manufacturing process. The contents of mask ROMs are permanent and cannot be changed
by the user. On the other hand, the programmable ROM (PROM) can be programmed by
the user by means of proper equipment. However, once this type of memory is programmed,
its contents cannot be changed. Erasable PROMs (EPROMs and EAROMs) can be
programmed, and their contents can also be altered by using special equipment, called the
PROM programmer. When designing a microcomputer for a particular application, the
permanent programs are stored in ROMs. Control memories are ROMs. PROMs can be
programmed by the user. PROM chips are normally designed using transistors and fuses.

FIGURE 6.27

Clock

Address
AO-A15

Do- 4 +M-

Typical Instruction Fetch Timing Diagram for an 8-bit Microprocessor

Microcomputer Architecture, Programming, and System Design Concepts 207

These transistors can be selected by addressing via the pins on the chip. In order to program
this memory, the selected fuses are “blown” or “burned” by applying a voltage on the
appropriate pins of the chip. This causes the memory to be permanently programmed.

Erasable PROMS (EPROMs) can be reprogrammed and erased. The chip must
be removed from the microcomputer system for programming. This memory is erased by
exposing the chip via a lid or window on the chip to ultraviolet light. Typical erase times
vary between 10 and 30 min. The EPROM can be programmed by inserting the chip into a
socket of the PROM programmer and providing proper addresses and voltage pulses at the
appropriate pins of the chip. Electrically alterable ROMs (EAROMs) can be programmed
without removing the memory from the ROM’s sockets. These memories are also called
read mostly memories (RMMs), because they have much slower write times than read
times. Therefore, these memories are usually suited for operations when mostly reading
rather that writing will be performed. Another type of memory called “Flash memory”
(nonvolatile) invented in the mid 1980s by Toshiba is designed using a combination of
EPROM and E2PROM technologies. Flash memory can be reprogrammed electrically
while being embedded on the board. One can change multiple bytes at a time. An example
of Flash memory is the Intel 28F020 (256K x 8). Flash memory is typically used in cellular
phones and digital cameras.

6.4.3 READ and WRITE Operations
To execute an instruction, the microprocessor reads or fetches the op-code via the data bus
from a memory location in the ROM/RAM external to the microprocessor. It then places
the op-code (instruction) in the instruction register. Finally, the microprocessor executes the
instruction. Therefore, the execution of an instruction consists of two portions, instruction
fetch and instruction execution. We will consider the instruction fetch, memory READ and
memory WRITE timing diagrams in the following using a single clock signal. Figure 6.27
shows a typical instruction fetch timing diagram.

In Figure 6.27, to fetch an instruction, when the clock signal goes to HIGH, the
microprocessor places the contents of the program counter on the address bus via the address
pins A,-A,, on the chip. Note that since each one of these lines A,-A,, can be either HIGH
or LOW, both transitions are shown for the address in Figure 6.27. The instruction fetch
is basically a memory READ operation. Therefore, the microprocessor raises the signal

Clock

Address
AD-A15

ROBd

Data

00-4 “-1 lnslwtm fetch tetcn

I

FIGURE 6.28 Typical Memory READ Timing Diagram

208 Fundamentals of Digital Logic and Microcomputer Design

on the READ pin to HIGH. As soon as the clock goes to LOW, the logic external to the
microprocessor gets the contents of the memory location addressed by A,-A,, and places
them on the data bus Do-D,. The microprocessor then takes the data and stores it in the
instruction register so that it gets interpreted as an instruction. This is called “instruction
fetch.” The microprocessor performs this sequence of operations for every instruction.

We now describe the READ and WRITE timing diagrams. A typical READ timing
diagram is shown in Figure 6.28. Memory READ is basically loading the contents of a
memory location of the main ROM/RAM into an internal register of the microprocessor.
The address of the location is provided by the contents of the memory address register
(MAR). Let us now explain the READ timing diagram of Figure 6.28 as follows:

1.

2.
3.

4.
5 .

The microprocessor performs the instruction fetch cycle as before to READ the op-
code.
The microprocessor interprets the op-code as a memory READ operation.
When the clock pin signal goes to HIGH, the microprocessor places the contents of the
memory address register on the address pins A,-A,, of the chip.
At the same time, the microprocessor raises the READ pin signal to HIGH.
The logic external to the microprocessor gets the contents of the location in the main
ROWRAM addressed by the memory address register and places them on the data
bus.
Finally, the microprocessor gets this data from the data bus via its pins Do - D, and
stores it in an internal register.

Memory WRITE is basically storing the contents of an internal register of the
microprocessor into a memory location of the main RAM. The contents of the memory
address register provide the address of the location where data is to be stored. Figure 6.29
shows a typical WRITE timing diagram. It can be explained in the following way:

6.

1.
2.

3.

The microprocessor fetches the instruction code as before.
The microprocessor interprets the instruction code as a memory WRITE instruction
and then proceeds to perform the DATA STORE cycle.
When the clock pin signal goes to HIGH, the microprocessor places the contents of the

FIGURE 6.29 Typical Memory WRITE Timing Diagram

Microcomputer Architecture, Programming, and System Design Concepts 209

memory address register on the address pins Ao-A,5 of the chip.
At the same time, the microprocessor raises the WRITE pin signal to HIGH.
The microprocessor places data to be stored from the contents of an internal register
onto the data pins Do-D,.
The logic external to the microprocessor stores the data from the register into a RAM
location addressed by the memory address register.

4.
5.

6.

6.4.4 Memory Organization
Microcomputer memory typically consists of ROMs / EPROMs, and RAMs. Because
RAMs can be both read from and written into, the logic required to implement RAMs
is more complex than that for ROMs / EPROMs. A microcomputer system designer is
normally interested in how the microcomputer memory is organized or, in other words,
how to connect the ROMS /EPROMs and RAMs and then determine the memory map
of the microcomputer. That is, the designer would be interested in finding out what
memory locations are assigned to the ROMs / EPROMs and RAMs. The designer can then
implement the permanent programs in ROMs / EPROMs and the temporary programs in
RAMs. Note that RAMs are needed when subroutines and interrupts requiring stack are
desired in an application.

As mentioned before, DRAMs (Dynamic RAMs) use MOS capacitors to store
information and need to be refreshed. DRAMs are inexpensive compared to SRAMs,
provide larger bit densities and consume less power. DRAMs are typically used when
memory requirements are 16k words or larger. DRAM is addressed via row and column
addressing. For example, one megabit DRAM requiring 20 address bits is addressed using
10 address lines and two control lines, (Row Address Strobe) and CAS (Column
Address Strobe). To provide a 20-bit address into the DRAM, a LOW is applied to RAS
and 10 bits of the address are latched. The other 10 bits of the address are applied next and
CAS is then held LOW.

The addressing capability of the DRAM can be increased by a factor of 4 by
adding one more bit to the address line. This is because one additional address bit results
into one additional row bit and one additional column bit. This is why DRAMs can be
expanded to larger memory very rapidly with inclusion of additional address bits. External
logic is required to generate the RAS and CAS signals, and to output the current address
bits to the DRAM.

DRAM controller chips take care of refreshing and timing requirements needed by
the DRAMs. DRAMs typically require 4 millisecond refresh time. The DRAM controller
performs its task independent of the microprocessor. The DRAM controller sends a wait
signal to the microprocessor if the microprocessor tries to access memory during a refresh
cycle.

Because of large memory, the address lines should be buffered using 74LS244
or 74HC244 (Unidirectional buffer), and data lines should be buffered using 74LS245 or
74HC245 (Bidirectional buffer) to increase the drive capability. Also, typical multiplexers
such as 74LS 157 or 74HC 157 can be used to multiplex the microprocessors address lines
into separate row and column addresses.

-

-

- -

6.5 InDut/OutDut

Input/Output (I/O) operation is typically defined as the transfer of information between
the microcomputer system and an external device. There are typically three main ways of

210 Fundamentals of Digital Logic and Microcomputer Design

Assembly or high-
level language
(source code)

transferring data between the microcomputer system and the external devices. These are
programmed I/O, interrupt I/O, and direct memory access. We now define them.

Translator Binary
(assembler or - machine language

CornpilerAnterpreter) (object code)

Programmed I/O. Using this technique, the microprocessor executes a program to
perform all data transfers between the microcomputer system and the external devices,
The main characteristic of this type of 110 technique is that the external device carries
out the functions as dictated by the program inside the microcomputer memory. In
other words, the microprocessor completely controls all the transfers.
Interrupt I/O. In this technique, an external device or an exceptional condition such
as overflow can force the microcomputer system to stop executing the current program
temporarily so that it can execute another program, known as the “intempt service
routine.” This routine satisfies the needs of the external device or the exceptional
condition. After having completed this program, the microprocessor returns to the
program that it was executing before the interrupt.
Direct Memory Access (DMA). This is a type of I/O technique in which data can
be transferred between the microcomputer memory and external devices without any
microprocessor (CPU) involvement. Direct memory access is typically used to transfer
blocks of data between the microcomputer’s main memory and an external device
such as hard disk. An interface chip called the DMA controller chip is used with the
microprocessor for transferring data via direct memory access.

6.6 MicrocomDuter Programming ConceDts

This section includes the fundamental concepts of microcomputer programming. Typical
programming characteristics such as programming languages, microprocessor instruction
sets, addressing modes, and instruction formats are discussed.

FIGURE 6.30 Translating assembly or a high-level language into binary machine
language

Microcomputer Architecture, Programming, and System Design Concepts 2 1 1

all its instructions. These instructions are called the microprocessor’s “instruction set.”
Programs in assembly and high-level languages are represented by instructions that use
English- language-type statements. The programmer finds it relatively more convenient
to write the programs in assembly or a high-level language than in machine language.
However, a translator must be used to convert the assembly or high-level programs into
binary machine language so that the microprocessor can execute the programs. This is
shown in Figure 6.30.

An assembler translates a program written in assembly language into a machine
language program. A compiler or interpreter, on the other hand, converts a high-level
language program such as C or C++ into a machine language program. Assembly or high-
level language programs are called “source codes.” Machine language programs are known
as “object codes.” A translator converts source codes to object codes. Next, we discuss the
three main types of programming language in more detail.

6.6.2 Machine Language
A microprocessor has a unique set of machine language instructions defined by its
manufacturer. No two microprocessors by two different manufacturers have the same
machine language instruction set. For example, the Intel 8086 microprocessor uses the
code 01D8,, for its addition instruction whereas the Motorola 68000 uses the code D282,,.
Therefore, a machine language program for one microcomputer will not usually run on
another microcomputer of a different manufacturer.

At the most elementary level, a microprocessor program can be written using its
instruction set in binary machine language. As an example, a program written for adding
two numbers using the Intel 8086 machine language is

1011 1000 0000 0001 0000 0000
1011 1011 0000 0010 0000 0000
0000 0001 1101 1000
1111 0100

Obviously, the program is very difficult to understand, unless the programmer remembers
all the 8086 codes, which is impractical. Because one finds it very inconvenient to work
with 1’s and O’s, it is almost impossible to write an error-free program at the first try. Also,
it is very tiring for the programmer to enter a machine language program written in binary
into the microcomputer’s RAM. For example, the programmer needs a number of binary
switches to enter the binary program. This is definitely subject to errors.

To increase the programmer’s efficiency in writing a machine language program,
hexadecimal numbers rather than binary numbers are used. The following is the same
addition program in hexadecimal, using the Intel 8086 instruction set:

B80100

BB0200

01D8

F4

It is easier to detect an error in a hexadecimal program, because each byte contains only
two hexadecimal digits. One would enter a hexadecimal program using a hexadecimal

212 Fundamentals of Digital Logic and Microcomputer Design

keyboard. A keyboard monitor program in ROM, usually offered by the manufacturer,
provides interfacing of the hexadecimal keyboard to the microcomputer. This program
converts each key actuation into binary machine language in order for the microprocessor
to understand the program. However, programming in hexadecimal is not normally used.

6.6.3 Assembly Language
The next programming level is to use the assembly language. Each line in an assembly
language program includes four fields:

1. Label field
2.
3 . Operand field
4. Comment field

Instruction, mnemonic, or op-code field

As an example, a typical program for adding two 16-bit numbers written in 8086 assembly
language is

Label Mnemonic Operand Comment

START MOV AX, 1 move 1 into AX

MOV BX, 2 move 2 into BX

ADD AX, BX add the contents of AX with BX

JMP START jump to the beginning of the program

Obviously, programming in assembly language is more convenient than
programming in machine language, because each mnemonic gives an idea of the type of
operation it is supposed to perform. Therefore, with assembly language, the programmer
does not have to find the numerical op-codes from a table of the instruction set, and
programming efficiency is significantly improved.

The assembly language program is translated into binary via a program called
an “assembler.” The assembler program reads each assembly instruction of a program as
ASCII characters and translates them into the respective binary op-codes. As an example,
consider the HLT instruction for the 8086. Its binary op-code is 11 11 0100. An assembler
would convert HLT into 1 1 1 01 00 as shown in Figure 6.3 1.

An advantage ofthe assembler is address computation. Most programs use addresses
within the program as data storage or as targets for jumps or calls. When programming in
machine language, these addresses must be calculated by hand. The assembler solves this
problem by allowing the programmer to assign a symbol to an address. The programmer
may then reference that address elsewhere by using the symbol. The assembler computes
the actual address for the programmer and fills it in automatically. One can obtain hands-

Assembly Code

Binary form of ASCII
Codes as Seen by

Assembler

Binary OP Code
Created by
Assembler

H
L
T

0100 1000
0100 1100
0101 0100

1111 0100

~

FIGURE 6.31 Conversion of HLT into its binary op-code

Microcomputer Architecture, Programming, and System Design Concepts 2 13

on experience with a typical assembler for a microprocessor by downloading it from the
Internet.

Most assemblers use two passes to assemble a program. This means that they read
the input program text twice. The first pass is used to compute the addresses of all labels in
the program. In order to find the address of a label, it is necessary to know the total length
of all the binary code preceding that label. Unfortunately, however, that address may be
needed in that preceding code. Therefore, the first pass computes the addresses of all labels
and stores them for the next pass, which generates the actual binary code. Various types of
assemblers are available today. We define some of them in the following paragraphs.

One-Pass Assembler. This assembler goes through the assembly language program
once and translates it into a machine language program. This assembler has the problem
of defining forward references. This means that a JUMP instruction using an address
that appears later in the program must be defined by the programmer after the program
is assembled.
Two-Pass Assembler. This assembler scans the assembly language program twice. In
the first pass, this assembler creates a symbol table. A symbol table consists of labels
with addresses assigned to them. This way labels can be used for JUMP statements and
no address calculation has to be done by the user. On the second pass, the assembler
translates the assembly language program into the machine code. The two-pass
assembler is more desirable and much easier to use.
Macroassembler. This type ofassembler translates a program written in macrolanguage
into the machine language. This assembler lets the programmer define all instruction
sequences using macros. Note that, by using macros, the programmer can assign a name
to an instruction sequence that appears repeatedly in a program. The programmer can
thus avoid writing an instruction sequence that is required many times in a program
by using macros. The macroassembler replaces a macroname with the appropriate
instruction sequence each time it encounters a macroname.

It is interesting to see the difference between a subroutine and a macroprogram. A
specific subroutine occurs once in a program. A subroutine is executed by CALLing
it from a main program. The program execution jumps out of the main program and
then executes the subroutine. At the end of the subroutine, a RET instruction is used to
resume program execution following the CALL SUBROUTINE instruction in the main
program. A macro, on the other hand, does not cause the program execution to branch
out of the main program. Each time a macro occurs, it is replaced with the appropriate
instruction sequence in the main program. Typical advantages of using macros are
shorter source programs and better program documentation. A disadvantage is that
effects on registers and flags may not be obvious.

Conditional macroassembly is very useful in determining whether or not an
instruction sequence is to be included in the assembly depending on a condition that is
true or false. Iftwo different programs are to be executed repeatedly based on a condition
that can be either true or false, it is convenient to use conditional macros. Based on
each condition, a particular program is assembled. Each condition and the appropriate
program are typically included within IF and ENDIF pseudo-instructions.
Cross Assembler. This type of assembler is typically resident in a processor and
assembles programs for another for which it is written. The cross assembler program
is written in a high-level language so that it can run on different types of processors
that understand the same high-level language.
Resident Assembler. This type of assembler assembles programs for a processor

214 Fundamentals of Digital Logic and Microcomputer Design

in which it is resident. The resident assembler may slow down the operation of the
processor on which it runs.
Meta-assembler. This type of assembler can assemble programs for many different
types of processors. The programmer usually defines the particular processor being
used.

As mentioned before, each line of an assembly language program consists of four
fields: label, mnemonic or op-code, operand, and comment. The assembler ignores
the comment field but translates the other fields. The label field must start with an
uppercase alphabetic character. The assembler must know where one field starts
and another ends. Most assemblers allow the programmer to use a special symbol or
delimiter to indicate the beginning or end of each field. Typical delimiters used are
spaces, commas, semicolons, and colons:

Spaces are used between fields.
Commas (,) are used between addresses in an operand field.
A semicolon (;) is used before a comment.
A colon (:) or no delimiter is used after a label.
To handle numbers, most assemblers consider all numbers as decimal numbers

unless specified. Most assemblers will also allow binary, octal, or hexadecimal numbers.
The user must define the type of number system used in some way. This is usually done by
using a letter following the number. Typical letters used are

B for binary
Q for octal
H for hexadecimal
Assemblers generally require hexadecimal numbers to start with a digit. A 0

is typically used if the first digit of the hexadecimal number is a letter. This is done to
distinguish between numbers and labels. For example, most assemblers will require the
number A5H to be represented as OA5H.

Assemblers use pseudo-instructions or directives to make the formatting of the
edited text easier. These pseudo-instructions are not directly translated into machine
language instructions. They equate labels to addresses, assign the program to certain areas
of memory, or insert titles, page numbers, and so on. To use the assembler directives or
pseudo-instructions, the programmer puts them in the op-code field, and, if the pseudo-
instructions require an address or data, the programmer places them in the label or data
field. Typical pseudo-instructions are ORIGIN (ORG), EQUATE (EQU), DEFINE BYTE
(DB), and DEFINE WORD (DW).

ORIGIN (ORG)
The pseudo-instruction ORG lets the programmer place the programs anywhere

in memory. Internally, the assembler maintains a program-counter-type register called the
“address counter.” This counter maintains the address of the next instruction or data to be
processed.

An ORG pseudo-instruction is similar in concept to the J U M P instruction. Recall
that the JUMP instruction causes the processor to place a new address in the program
counter. Similarly, the ORG pseudo-instruction causes the assembler to place a new value
in the address counter.

Typical ORG statements are
ORG 7000H
CLC

The 8086 assembler will generate the following code for these statements:

Microcomputer Architecture, Programming, and System Design Concepts 2 15

7000 F8
Most assemblers assign a value of zero to the starting address of a program if the

programmer does not define this by means of an ORG.

Equate (EQU)
The pseudo-instruction EQU assigns a value in its operand field to an address in

its label field. This allows the user to assign a numeric value to a symbolic name. The user
can then use the symbolic name in the program instead of its numeric value. This reduces
errors.

A typical example of EQU is START EQU 0 2 0 OH, which assigns the value 0200
in hexadecimal to the label START. Another example is

PORTA EQU 40H
MOV AL, OFFH
OUT PORTA, AL

In this example, the EQU gives PORTA the value 40 hex, and FF hex is the data
to be written into register AL by MOV AL, 0 FFH. OUT PORTA, AL then outputs this data
FF hex to port 40, which has already been equated to PORTA before.

Note that, if a label in the operand field is equated to another label in the label
field, then the label in the operand field must be previously defined. For example, the EQU
statement

BEGIN EQU START

will generate an error unless START is defined previously with a numeric value.

Define Byte (DB)

value. For example,
The pseudo-instruction DB is usually used to set a memory location to certain byte

START DB 4 5H

will store the data value 45 hex to the address START.

of data as follows:
With some assemblers, the DB pseudo-instruction can be used to generate a table

ORG 7000H
TABLE DB 20H, 3 0 H , 40H, 50H

In this case, 20 hex is the first data of the memory location 7000; 30 hex, 40 hex,
and 50 hex occupy the next three memory locations. Therefore, the data in memory will
look like this:

7000 20
7001 30
7002 40
7003 50

Note that some assemblers use DC.B instead of DB. DC stands for Define Constant.

Define Word @W)

memory locations. For example,
The pseudo-instruction DW is typically used to assign a 16-bit value to two

ORG 7000H
START DW 4AC2H

216 Fundamentals of Digital Logic and Microcomputer Design

will assign C2 to location 7000 and 4A to location 700 1. It is assumed that the assembler
will assign the low byte first (C2) and then the high byte (4A).

With some assemblers, the DW pseudo-instruction can be used to generate a table
of 16-bit data as follows:

ORG 80OOH
POINTER DW 5000H, 6000H, 7000H

In this case, the three 16-bit values 5000H, 6000H, and 7000H are assigned to
memory locations starting at the address 800OH. That is, the array would look like this:

8 0 0 0 00
8001 50
8002 00
8 0 0 3 6 0
8004 00

8005 70
Note that some assemblers use DC.W instead of DW.

Assemblers also use a number of housekeeping pseudo-instructions. Typical
housekeeping pseudo-instructions are T I T L E , PAGE, END, and L I S T . The following are
the housekeeping pseudo-instructions that control the assembler operation and its program
listing.
TITLE prints the specified heading at the top of each page of the program listing. For
example,

T I T L E “ S qu a re Root A1 go r i t h m “
will print the name “Square Root Algorithm” on top of each page.
PAGE skips to the next line.
END indicates the end of the assembly language source program.
LIST directs the assembler to print the assembler source program.

addressing modes available with typical microprocessors will be discussed.
In the following, assembly language instruction formats, instruction sets, and

Assembly Language Instruction Formats

formats:
Depending on the number of addresses specified, we have the following instruction

Three address
Two address
One address
Zero address
Because all instructions are stored in the main memory, instruction formats

are designed in such a way that instructions take less space and have more processing
capabilities. It should be emphasized that the microprocessor architecture has considerable
influence on a specific instruction format. The following are some important technical
points that have to be considered while designing an instruction format:

The size of an instruction word is chosen in such a way that it facilitates the specification
of more operations by a designer. For example, with 4- and 8-bit op-code fields, we
can specify 16 and 256 distinct operations respectively.
Instructions are used to manipulate various data elements such as integers, floating-
point numbers, and character strings. In particular, all programs written in a symbolic
language such as C are internally stored as characters. Therefore, memory space will
not be wasted if the word length of the machine is some integral multiple of the number

Microcomputer Architecture, Programming, and System Design Concepts 2 17

of bits needed to represent a character. Because all characters are represented using
typical 8-bit character codes such as ASCII or EBCDIC, it is desirable to have 8-, 16-,
32-, or 64-bit words for the word length.
The size of the address field is chosen in such a way that a high resolution is guaranteed.
Note that in any microprocessor, the ultimate resolution is a bit. Memory resolution
is function of the instruction length, and in particular, short instructions provide less
resolution. For example, in a microcomputer with 32K 16-bit memory words, at least
19 bits are required to access each bit of the word. (This is because 215 = 32K and 24 =

16)
The general form of a three address instruction is shown below:

Some typical three-address instructions are
<op-code> Addrl , Addr2, Addr3

MUL A, B , C C < - A * B
ADD A, B , C I C < - A + B
SUB R1, R2, R3 I R3 <- R1 - R2

In this specification, all alphabetic characters are assumed to represent memory
addresses, and the string that begins with the letter R indicates a register. The third address
of this type of instruction is usually referred to as the “destination address.” The result of
an operation is always assumed to be saved in the destination address.

Typical programs can be written using these. three address instructions. For
example, consider the following sequence of three address instructions

MUL A, B , R1 I R1 <- A * B
MUL C, D, R2 I R2 <- C * D
MUL E, F, R3 I R3 <- E * F
ADD R1, R2, R1 I R1 <- R1 + R2
SUB R1, R3, Z I Z <- R1 - R3

Thissequenceimplementsthestatement Z = A * B + C * D - E * F. The
three-address format is normally used by 32-bit microprocessors in addition to the other
formats.

If we drop the third address from the three-address format, we obtain the two-
address format. Its general form is

<op-code> Addrl , Addr2
Some typical two-address instructions are

MOV A, R1 , R1 <- A
ADD C , R2 I R2 <- R2 + C
SUB R1, R2 , R2 <- R2 - R1

In this format, the addresses Addrl and Addr2 respectively represent source and
destination addresses. The following sequence of two-address instructions is equivalent to
the program using three-address format presented earlier:

MOV A, R1 I R1 <- A
MUL B, R1 , R1 <- R1 * B
MOV C , R2 I R2 <- C
MUL D, R2 , R2 <- R2 * D
MOV E , R3 I R3 <- E
MUL F, R3 I R3 <- R3 * F
ADD R2, R1 , R1 <- R1 + R2
SUB R3, R1 , R1 <- R1 - R3
MOV R1, 2 I Z <- R1

218 Fundamentals of Digital Logic and Microcomputer Design

This format is predominant in typical general-purpose microprocessors such as the
Intel 8086 and the Motorola 68000. Typical 8-bit microprocessors such as the Intel 8085
and the Motorola 6809 are accumulator based. In these microprocessors, the accumulator
register is assumed to be the destination for all arithmetic and logic operations. Also, this
register always holds one of the source operands. Thus, we only need to specify one address
in the instruction, and therefore, this idea reduces the instruction length. The one-address
format is predominant in 8-bit microprocessors. Some typical one-address instructions are

LDA B I Acc <- B
ADD C I Act<- Acc f C
MUL D I Acc <- Acc * D
STA E I E <- Acc

The following program illustrates how one can translate the statement Z = A *
B + C * D - E * F into asequence ofone-address instructions:

LDA E , Ace <- E
MUL F I AcC <- Acc * F
STA T1 I T1 <- ACC
LDA C , Ace <- C
MUL D I Acc <- Acc * D
STA T2 I T2 <- ACC
LDA A ACC <- A
MUL B I AcC <- Acc * B
ADD T2 I AcC <- Acc f T2
SUB T1 I AcC <- Acc - T1
STA Z I Z <- ACC

In this program, T1 and T2 represent the addresses of memory locations used to
store temporary results. Instructions that do not require any addresses are called “zero-
address instructions.” All microprocessors include some zero-address instructions in the
instruction set. Typical examples of zero-address instructions are CLC (clear carry) and
NOP.

Typical Assembly Language Instruction Sets
An instruction set of a specific microprocessor consists of all the instructions that

it can execute. The capabilities of a microprocessor are determined, to some extent, by the
types of instructions it is able to perform. Each microprocessor has a unique instruction set
designed by its manufacturer to do a specific task. We discuss some of the instructions that
are common to all microprocessors. We will group chunks of these instructions together
which have similar functions. These instructions typically include

Data Processing Instructions. These operations perform actual data manipulations.
The instructions typically include arithmetidlogic operations and increment/
decrement and rotatekhift operations. Typical arithmetic instructions include ADD,
SUBTRACT, COMPARE, MULTIPLY, AND DIVIDE. Note that the SUBTRACT
instruction provides the result and also affects the status flags while the COMPARE
instruction performs subtraction without any result and affects the flags based on
the result. Typical logic instructions perform traditional Boolean operations such
as AND, OR, and EXCLUSIVE-OR. The AND instruction can be used to perform a
masking operation. If the bit value in a particular bit position is desired in a word, the

Microcomputer Architecture, Programming, and System Design Concepts 2 19

word can be logically ANDed with appropriate data to accomplish this. For example,
the bit value at bit 2 of an 8-bit number 0100 1Y 10 (where unknown bit value of Y is
to be determined) can be obtained as follows:

0 1 0 0 1 Y 1 0 -- 8-bit number
0 0 0 0 0 1 0 0 --Masking data

0 0 0 0 0 Y 0 0 - Result

AND
___-__---_--______-__

If the bit value Y at bit 2 is 1, then the result is nonzero (Flag Z=O); otherwise,
the result is zero (Flag Z=1) . The Z flag can be tested using typical conditional JUMP
instructions such as JZ (Jump if Z=1) or JNZ(Jump if Z=O) to determine whether Y
is 0 or 1. This is called masking operation. The AND instruction can also be used
to determine whether a binary number is ODD or EVEN by checking the Least
Significant bit (LSB) of the number (LSB=O for even and LSB=l for odd). The OR
instruction can typically be used to insert a 1 in a particular bit position of a binary
number without changing the values of the other bits. For example, a 1 can be
inserted using the OR instruction at bit number 3 of the 8-bit binary number 0 1 1 1
0 0 1 1 without changing the values of the other bits as follows:

0 1 1 1 0 0 1 1 -- 8-bit number
0 0 0 0 1 0 0 0 -- data for inserting a 1 at bit number 3

0 1 1 1 1 0 1 1 -- Result

OR
____-__--_________-

The Exclusive-OR instruction can be used to find the ones complement of a binary
number by XORing the number with all 1’s as follows:

0 1 0 1 1 1 0 0 - - %bit number
XOR 1 1 1 1 1 1 1 1 - - data

..........................
1 0 10 0 0 1 1 -- Result (Ones Complement of the 8-bit number

0 1 0 1 1 1 0 0)

Instructions for Controlling Microprocessor Operations. Theseinstructions typically
include those that set the reset specific flags and halt or stop the microprocessor.
Data Movement Instructions. These instructions move data from a register to memory
and vice versa, between registers, and between a register and an I/O device.
Instructions Using Memory Addresses. An instruction in this category typically
contains a memory address, which is used to read a data word from memory into a
microprocessor register or for writing data from a register into a memory location.
Many instructions under data processing and movement fall in this category.
Conditional and Unconditional JUMPS. These instructions typically include one of
the following:
1. Unconditional JUMP, which always transfers the memory address specified in the

instruction into the program counter.
2 . Conditional J U M P , which transfers the address portion of the instruction into the

program counter based on the conditions set by one of the status flags in the flag
register.

220

Typical Assembly Language Addressing Modes
One of the tasks performed by a microprocessor during execution of an instruction

is the determination of the operand and destination addresses. The manner in which a
microprocessor accomplishes this task is called the “addressing mode.” Now, let us present
the typical microprocessor addressing modes, relating them to the instruction sets of
Motorola 68000.

An instruction is said to have “implied or inherent addressing mode” if it does
not have any operand. For example, consider the following instruction: RTS, which means
“return from a subroutine to the main program.” The RTS instruction is a no-operand
instruction. The program counter is implied in the instruction because although the program
counter is not included in the RTS instruction, the return address is loaded in the program
counter after its execution.

Whenever an instructionloperand contains data, it is called an “immediate mode”
instruction. For example, consider the following 68000 instruction:

ADD #15, DO I DO <- DO t 15
In this instruction, the symbol # indicates to the assembler that it is an immediate mode
instruction. This instruction adds 15 to the contents of register DO and then stores the result
in DO. An instruction is said to have a register mode if it contains a register as opposed
to a memory address. This means that the operand values are held in the microprocessor
registers. For example, consider the following 68000 instruction:

Fundamentals of Digital Logic and Microcomputer Design

ADD D 1 , DO ; DO <- D 1 + DO
This ADD instruction is a two-operand instruction. Both operands (source and

destination) have register mode. The instruction adds the 16-bit contents of DO to the 16-bit
contents of D1 and stores the 16-bit result in DO.

An instruction is said to have an absolute or direct addressing mode if it contains
a memory address in the operand field. For example, consider the 68000 instruction

ADD 3 0 0 0 , D 2
This instruction adds the 16-bit contents of memory address 3000 to the 16-

bit contents of D2 and stores the 16-bit result in D2. The source operand to this ADD
instruction contains 3000 and is in absolute or direct addressing mode. When an instruction
specifies a microprocessor register to hold the address, the resulting addressing mode is
known as the “register indirect mode.” For example, consider the 68000 instruction:

This instruction clears the 16-bit contents of a memory location whose address is in register
A0 to zero. The instruction is in register indirect mode.

The conditional branch instructions are used to change the order of execution
of a program based on the conditions set by the status flags. Some microprocessors use
conditional branching using the absolute mode. The op-code verifies a condition set by a
particular status flag. If the condition is satisfied, the program counter is changed to the
value of the operand address (defined in the instruction). If the condition is not satisfied,
the program counter is incremented, and the program is executed in its normal order.

Typical 16-bit microprocessors use conditional branch instructions. Some
conditional branch instructions are 16 bits wide. The first byte is the op-code for checking
a particular flag. The second byte is an 8-bit offset, which is added to the contents of the
program counter if the condition is satisfied to determine the effective address. This offset
is considered as a signed binary number with the most significant bit as the sign bit. It
means that the offset can vary from -128,, to +127,, (0 being positive). This is called
relative mode.

CLR (A O)

Microcomputer Architecture, Programming, and System Design Concepts 22 1

Consider the following 68000 example, which uses the branch not equal (BNE)
instruction:

BNE 8
Suppose that the program counter contains 2000 (address of the next instruction to

be executed) while executing this BNE instruction. Now, if Z = 0, the microprocessor will
load 2000 + 8 = 2008 into the program counter and program execution resumes at address
2008. On the other hand, if Z = 1, the microprocessor continues with the next instruction.

In the last example the program jumped forward, requiring positive offset. An
example for branching with negative offset is

BNE -14
Suppose that the current program counter value = 2004,

=0010 0000 0000 0100
offset = 2’s complement of 14,,, = F2,,

$111 0010

reflect this 1 to the high byte
(sign extension)

Therefore, to branch backward to 1FF6,,, the assembler uses an offset of F2
following the op-code for BNE.

An advantage of relative mode is that the destination address is specified
relaive to the address of the instruction after the instruction. Since these conditional Jump
instructions do not contain an absolute address, the program can be placed anywhere in
memory which can still be excuted properly by the microprocessor. A program which
can be placed anywhere in memory, and can still run correctly is called a “relocatable”
program. It is a good practice to write relocatable programs.

Subroutine Calls in Assembly Language
It is sometimes desirable to execute a common task many times in a program.

Consider the case when the sum of squares of numbers is required several times in a
program. One could write a sequence of instructions in the main program for carrying out
the sum of squares every time it is required. This is all right for short programs. For long
programs, however, it is convenient for the programmer to write a small program known
as a “subroutine” for performing the sum of squares, and then call this program each time
it is needed in the main program.

Therefore, a subroutine can be defined as a program carrying out a particular
function that can be called by another program known as the “main program.” The
subroutine only needs to be placed once in memory starting at a particular memory location.
Each time the main program requires this subroutine, it can branch to it, typically by using
a jump to subroutine (JSR) instruction along with its starting address. The subroutine is
then executed. At the end of the subroutine, a RETURN instruction takes control back to the
main program.

The 68000 includes two subroutine call instructions. Typical examples include
J S R 4 0 0 0 and B SR 2 4 . J S R 4 0 0 0 is an instruction using absolute mode. In response
to the execution of J S R , the 68000 saves (pushes) the current program counter contents
(address of the next instruction to be executed) onto the stack. The program counter is then

222 Fundamentals of Digital Logic and Microcomputer Design

loaded, with 4000 included in the JSR instruction. The starting address of the subroutine is
4000. The RTS (return from subroutine) at the end of the subroutine reads (pops) the return
address saved into the stack before jumping to the subroutine into the program counter.
The program execution thus resumes in the main program. BSR 2 4 is an instruction
using relative mode. This instruction works in the same way as the J S R 4 0 0 0 except
that displacement 2 4 is added to the current program counter contents to jump to the
subroutine.

The stack must always be balanced. This means that a PUSH instruction in a
subroutine must be followed by a POP instruction before the RETURN from subroutine
instruction so that the stack pointer points to the right return address saved onto the stack.
This will ensure returning to the desired location in the main program after execution of
the subroutine. If multiple registers are PUSHED in a subroutine, one must POP them in
the reverse order before the subroutine RETURN instruction.

6.6.4 High-Level Languages
As mentioned before, the programmer’s efficiency with assembly language increases
significantly compared to machine language. However, the programmer needs to be well
acquainted with the microprocessor’s architecture and its instruction set. Further, the
programmer has to provide an op-code for each operation that the microprocessor has
to carry out in order to execute a program. As an example, for adding two numbers, the
programmer would instruct the microprocessor to load the first number into a register,
add the second number to the register, and then store the result in memory. However, the
programmer might find it tedious to write all the steps required for a large program. Also,
to become a reasonably good assembly language programmer, one needs to have a lot of
experience.

High-level language programs composed of English-language-type statements
rectify all these deficiencies of machine and assembly language programming. The
programmer does not need to be familiar with the internal microprocessor structure or its
instruction set. Also, each statement in a high-level language corresponds to a number of
assembly or machine language instructions. For example, consider the statement F = A
+ B written in a high-level language called FORTRAN. This single statement adds the
contents of A with B and stores the result in F. This is equivalent to a number of steps
in machine or assembly language, as mentioned before. It should be pointed out that the
letters A, B, and F do not refer to particular registers within the microprocessor. Rather,
they are memory locations.

A number of high-level languages such as C and C++ are widely used these days.
Typical microprocessors, namely, the Intel 8086, the Motorola 68000, and others, can
be programmed using these high-level languages. A high-level language is a problem-
oriented language. The programmer does not have to know the details of the architecture
of the microprocessor and its instruction set. Basically, the programmer follows the rules
of the particular language being used to solve the problem at hand. A second advantage is
that a program written in a particular high-level language can be executed by two different
microcomputers, provided they both understand that language. For example, a program
written in C for an Intel 8086-based microcomputer will run on a Motorola 68000-based
microcomputer because both microprocessors have a compiler to translate the C language
into their particular machine language; minor modifications are required for input/output
programs.

As mentioned before, like the assembly language program, a high-level language

Microcomputer Architecture, Programming, and System Design Concepts 223

program requires a special program for converting the high-level statements into object
codes. This program can be either an interpreter or a compiler. They are usually very large
programs compared to assemblers.

An interpreter reads each high-level statement such as F = A + B and directs
the microprocessor to perform the operations required to execute the statement. The
interpreter converts each statement into machine language codes but does not convert the
entire program into machine language codes prior to execution. Hence, it does not generate
an object program. Therefore, an interpreter is a program that executes a set of machine
language instructions in response to each high-level statement in order to carry out the
function. A compiler, however, converts each statement into a set of machine language
instructions and also produces an object program that is stored in memory. This program
must then be executed by the microprocessor to perform the required task in the high-
level program. In summary, an interpreter executes each statement as it proceeds, without
generating an object code, whereas a compiler converts a high-level program into an object
program that is stored in memory. This program is then executed. Compilers normally
provide inefficient machine codes because of the general guidelines that must be followed
for designing them. C, C++, and Java are the only high-level languages that include Input/
Output instructions. However, the compiled codes generate many more lines of machine
code than an equivalent assembly language program. Therefore, the assembled program
will take up less memory space and will execute much faster compared to the compiled
C, C++, or Java codes. I/O programs written in C are compared with assembly language
programs written in 8086 and 68000 in Chapters 9 and 10. C language is a popular high-
level language, the C++ language, based on C, is also very popular, and Java, developed by
Sun Microsystems, is gaining wide acceptance.

Therefore, one of the main uses of assembly language is in writing programs for
real-time applications. “Real-time” means that the task required by the application must be
completed before any other input to the program can occur which will change its operation.
Typical programs involving non-real-time applications and extensive mathematical
computations may be written in C, C++, or Java. A brief description of these languages is
given in the following.

C Language
The C Programming language was developed by Dennis Ritchie of Bell Labs in

1972. C has become a very popular language for many engineers and scientists, primarily
because it is portable except for I/O and however, can be used to write programs requiring
I/O operations with minor modifications. This means that a program written in C for the
8086 will run on the 68000 with some modifications related to I/O as long as C compilers
for both microprocessors are available.

C is case sensitive. This means that uppercase letters are different from lowercase
letters. Hence Start and start are two different variables. C is a general-purpose programming
language and is found in numerous applications as follows:

Systems Programming. Many operating systems, compilers, and assemblers are
written in C. Note that an operating system typically is included with the personal
computer when it is purchased. The operating system provides an interface between
the user and the hardware by including a set of commands to select and execute the
software on the system
Computer-Aided Design (CAD) Applications. CAD programs are written in
C. Typical tasks to be accomplished by a CAD program are logic synthesis and

224 Fundamentals of Digital Logic and Microcomputer Design

simulation.
Numerical Computation. To solve mathematical problems such as integration and
differentiation
Other Applications. These include programs for printers and floppy disk controllers,
and digital control algorithms using single-chip microcomputers.

A C program may be viewed as a collection of functions. Execution of a C program
will always begin by a call to the function called “main.” This means that all C programs
should have its main program named as main. However, one can give any name to other
functions.

A simple C program that prints “I wrote a C-program” is
/ * First C-program * /
#include <stdio.h>
main ()

i

1
printf (“I wrote a C-program“) ;

Here, main is a function of no arguments, indicated by (). The parenthesis must
be present even if there are no arguments. The braces { } enclose the statements that make
up the function.

The line printf (“I wrote a C-program”) ; is a function call that calls
a function named printf, with the argument “I wrote a C-program.” printf
is a library function that prints output on the terminal. Note that / * * / is used to enclose
comments. These are not translated by the compiler.

A variation of the C program just described is
/ * Another C program * /
#include <stdio.h>
main ()
I
L

printf (”I wrote“) ;
printf (“ a C-“) ;
printf (“program”) ;
printf (“\n”) ;

1
Here, #include is a preprocessor directive for the C language compiler. These

directives give instructions to the compiler that are performed before the program is
compiled. The directive #include <stdio . h> inserts additional statements in the
program. These statements are contained in the file stdi0.h. The file s tdio . h is included
with the standard C library. The stdio . h file contains information related to the input/
output statement.

The \n in the last line of the program is C notation for the newline character.
Upon printing, the cursor moves forward to the left margin on the next line. print f never
supplies a newline automatically. Therefore, multiple printf’s may be used to output “I
wrote a C-program” on a single line in a few steps. The escape sequence \n can be used to
print three statements on three different lines. An illustration is given in the following:

#include <stdio.h>
main ()

i
printf (“I wrote a C-Program \n“) ;

Microcomputer Architecture, Programming, and System Design Concepts 225

p r i n t f (” T h i s w i l l b e p r i n t e d on a new l i n e \ n ”) ;
p r i n t f (“So a l s o i s t h i s l i n e \ n ”) ;

1
All variables in C must be declared before use, normally at the start of the function

before any executable statements. The compiler provides an error message if one forgets
a declaration. A declaration includes a type and a list of variables that have that type. For
example, the declaration i n t a , b implies that the variables a and b are integers. Next,
write a program to add and subtract two integers a and b where a = 100 and b = 200. The C
program is

i n c l u d e < s t d i o . h >
m a i n ()

t

* /
i n t a = 1 0 0 , b = 2 0 0 ; /*a

p r i n t f (“The sum i s : %d \n”, a + b
p r i n t f (“The d i f f e r e n c e i s : %d \n“

1

and b a r e i n t e g e r s

I

a - b) ;

The %din the p r i n t f statement represents “decimal integer.”Note that p r i n t f
is not part of the C language; there is no input or output defined in C itself. p r i n t f is
a function that is contained in the standard library of routines that can be accessed by
C programs. The values of a and b can be entered via the keyboard by using the scanf
function. The scanf allows the programmer to enter data from the keyboard. A typical
expression for scan f is

scanf (“%d%d“, & a , & b) ;
This expression indicates that the two values to be entered via the keyboard are in

decimal. These two decimal numbers are to be stored in addresses a and b. Note that the
symbol & is an address operator.

The C program for adding and subtracting two integers a and b using scan f is
/ * C Program t h a t performs b a s i c 1/0 * /
i n c l u d e < s t d i o . h >
main ()

t
i n t a , b;
p r i n t f (“ I n p u t two i n t e g e r s : “) ;

scanf (“%d%d“, & a , & b) ;
p r i n t f (“ T h e i r sum i s : %d\n” , a + b) ;
p r i n t f (“ T h e i r d i f f e r e n c e i s : %d\n“ , a - b) ;

In summary, writing a working C program involves four steps as follows:
Step 1:

Step 2

Using a text editor, prepare a file containing the C code. This file is
called the “source file.”
Preprocess the code. The preprocessor makes the code ready for
compiling. The preprocessor looks through the source file for lines
that start with a #. In the previous programming examples, # i n c l u d e
< s t d i o . h> is a preprocessor. This preprocessor instruction copies
the contents of the standard header file s t d i o . h into the source code.
This header file s t d i o . h describes typical inputloutput functions
such as scanf () and p r i n t f () functions.

226 Fundamentals of Digital Logic and Microcomputer Design

The compiler translates the preprocessed code into machine code. The
output from the compiler is called object code.
The linker combines the object file with code from the C libraries. For
instance, in the examples shown here, the actual code for the library
function p r i n t f () is inserted from the standard library to the object
code by the linker. The linker generates an executable file. Thus, the
linker makes a complete program.

Before writing C programs, the programmer must make sure that the computer
runs either the UNIX or MS-DOS operating system. Two essential programming tools are
required. These are a text editor and a C compiler. The text editor is a program provided
with a computer system to create and modify compiler files. The C compiler is also a
program that translates C code into machine code.
C++

C++ is a modified version of C language. C++ was developed by Bjarne Stroustrup
of Bell Labs in 1980. It includes all features of C and also supports object-oriented
programming (OOP). A program can be divided into subprograms using OOP. Each
subprogram is an independent object with its own instructions and data. Thus, complexity
of programming is reduced. It is therefore easier for the programmer to manage larger
programs.

All OOP languages including C++, have three characteristics: encapsulation,
polymorphism, and inheritance. Encapsulation is a technique that keeps code and data
together in such a way that they are protected form outside interference and misuse. A
subprogram thus created is called an “object.”

Code, data, or both may be private or public. Private code and/or data may be
accessed by another part of the same object. On the other hand, public code and/or data
may be accessed by a program resident outside the object containing them. One of the
most important characteristic of C++ is the class. The class declaration is a technique for
creating an object. Note that a class consists of data and functions.

Encapsulation is available with C to some extent. For example, when a library
function such as p r i n t f is used, one uses a black box program. When p r i n t f is
used, several internal variables are created and intialized that are not accessible to the
programmer.

Polymorphism (from Greek word meaning “several forms”) allows one to define
a general class of actions. Within a general class, the specific action is determined by the
type of data. For example, in C, the absolute value actions a b s () and f abs () compute
the absolute values of an integer and a floating point number respectively. In C++, on the
other hand, one absolute value action, abs () is used for both data types. The type of data
is then used to call a b s () to determine which specific version of the function is actually
used. Thus, one function name for two different data items is used.

Inheritance is the ability by which one class called subclass obtains the properties of
another class called a superclass. Inheritance is convenient for code reusability. Inheritance
supports hierarchy classes.

Step 3:

Step 4:

Following are some basic differences between C and C++:
1. In C, one must use v o i d with the prototype for a function with no arguments.

For example, in C, the prototype i n t rand (v o i d) ; returns an integer
that is a random number.
In C++, the v o i d is optional. Therefore, in C++, the prototype for rand (
) can be written as i n t rand () ;. Of course, i n t rand (v o i d) ; is a

Microcomputer Architecture, Programming, and System Design Concepts 227

valid prototype in C++. This means that both prototypes are allowed in C++
C++ can use the C type of comment mechanism. That is, a comment can start
with / * and end with * /. C++ can also use a simple line comment that starts
with a / / and stops at the end of the line terminated by a carriage return.
Typically, C++ uses C-like comments for multiline comments and the C++
comment mechanism for short comments.
In C++, local variables can be declared anywhere. In contrast, in C,
local variables must be declared at the start of a block before any action
statements.
In C++, all functions need to be prototyped. In C, prototypes are optional.
Note that a function prototype allows the compiler to check that the function
is called with the proper number and types of arguments. It also tells the
compiler the type of value that the function is supposed to return. In C, if
the function prototype is omitted, the compiler will return an integer. An
example of a prototype function is int abs (int n) , this provides an
integer that is an absolute value of n.

2.

3.

4.

Java
Introduced in 1991 by Sun MicroSystems, Java is based on C++ and is a true

object oriented language. That is, everything in a Java program is an object and everything
is obtained from a single object class.

A Java program must include at least one class. A class includes data type
declarations and statements. Every Java standalone program requires a main method at
the beginning. Java only supports class methods and not separate functions. There is no
preprocessor in Java. However, there is an import statement, which is similar to the
#include preprocessor statement in C. The purpose of the import statement in Java is
to instruct the interpreter to load the class, which exists in another compilation statement.
Java uses the same comment syntax, / * * / and / /, as C and C++. In addition, a special
comment syntax, / * * * /, that can precede declarations is used in Java.

Java does not require pointers. In C, a pointer may be substituted for the array
name to access array elements. In Java, arrays are created by using the “new” operator
by including the size of the array in the new expression (rather than in the declaration) as
follows:

int array [] = new int[61;
Also, all arrays store the specified size in a variable named length as follows:

int stringsize = array.length;
Therefore, in Java, arrays and strings are not subject to the errors or confusion that is
common to arrays and strings in C.

6.7 Monitors

A monitor consists of a number of subroutines grouped together to provide “intelligence”
to a microcomputer system. This intelligence gives the microcomputer with the capabilities
for software development of user programs such as assembling and debugging. The
monitor is typically offered by the microprocessor manufacturers and others in a ROM
or CD memory. When a microcomputer is designed by connecting the microprocessor,
memory, and I/O, a monitor program can be used for development of user programs.

An example of a monitor is the Intel SDK-86 monitor, which contains debugging

228 Fundamentals of Digital Logic and Microcomputer Design

routines, a display routine, and many other programs. The user can assemble, debug,
execute and display results for user-written 8086 assembly language programs using the
monitor provided by Intel with the SDK-86 microcomputer.

6.8 Flowcharts

Before writing an assembly language program for a specific operation, it is convenient to
represent the program in a schematic form calledflowchart. A brief listing of the basic
shapes used in a flowchart and their functions is given in Figure 6.32.

6.9

A microcomputer development system is a tool that allows the designer to develop, debug,
and integrate error-free application software in microprocessor systems.

Development systems fall into one of two categories: systems supplied by
the device manufacturer (nonuniversal systems) and systems built by after-market
manufacturers (universal systems). The main difference between the two categories is
the range of microprocessors that a system will accommodate. Nonuniversal systems
are supplied by the microprocessor manufacturer (Intel, Motorola) and are limited to use
for the particular microprocessor manufactured by the supplier. In this manner, an Intel
development system may not be used to develop a Motorola-based system. The universal
development systems (Hewlett-Packard, Tektronix) can develop hardware and software
for several microprocessors.

Basic Features of Microcommter DeveloDment Svstems

sy@Q! FUllCtion

opelation to be - E I carried ouf

Rectangle

Diarmrd

Teminal pant
(typically start and
end of program)

Oval

Emr&

A = 3 0

Avow iKlicales dlrection
of program flow

Y 4 Yes

Exit darmnd from rigM d
A + Bandfrombanom~l
A = B

0 Clrcle

Connection from one
p in t in a flowchart
to another

I/O Operation

Parallebgram

FIGURE 6.32 Flowchart symbols

Microcomputer Architecture, Programming, a n d System Design Concepts 229

Within both categories of development systems, there are basically three types
available: single-user systems, time-shared systems, and networked systems. A single-user
system consists of one development station that can be used by one user at a time. Single-
user systems are low in cost and may be sufficient for small systems development. Time-
shared systems usually consist of a “dumb” type of terminal connected by data lines to a
centralized microcomputer-based system that controls all operations. A networked system
usually consists of a number of smart cathode ray tubes (CRTs) capable of performing most
of the development work and can be connected over data lines to a central microcomputer.
The central microcomputer in a network system usually is in charge of allocating disk
storage space and will download some programs into the user’s workstation microcomputer.
A microcomputer development system is a combination of the hardware necessary for
microprocessor design and the software to control the hardware. The basic components of
the hardware are the central processor, the CRT terminal, mass storage device (floppy or
hard disk), and usually an in-circuit emulator (ICE).

In a single-user system, the central processor executes the operating system
software, handles the input/output (I/O) facilities, executes the development programs
(editor, assembler, linker), and allocates storage space for the programs in execution. In
a large multiuser networked system the central processor may be responsible for the I/O
facilities and execution of development programs. The CRT terminal provides the interface
between the user and the operating system or program under execution. The user enters
commands or data via the CRT keyboard, and the program under execution displays data
to the user via the CRT screen. Each program (whether system software or user program)
is stored in an ordered format on disk. Each separate entry on the disk is called ajZe. The
operating system software contains the routines necessary to interface between the user and
the mass storage unit. When the user requests a file by a specificfile name, the operating
system finds the program stored on disk by the file name and loads it into mean memory.
More advanced development systems contain memory management software that protects
a user’s files from unauthorized modification by another user. This is accomplished via
a unique user identification code called USER ID. A user can only access files that have
the user’s unique code. The equipment listed here makes up a basic development system,
but most systems have other devices such as printers and EPROM and PAL programmers
attached. A printer is needed to provide the user with a hard copy record of the program
under development.

After the application system software has been completely developed and
debugged, it needs to be permanently stored for execution in the target hardware. The
EPROM (erasable/programmable read-only memory) programmer takes the machine
code and programs it into an EPROM. EPROMs are more generally used in system
development because they may be erased and reprogrammed if the program changes.
EPROM programmers usually interface to circuits particularly designed to program a
specific EPROM.

Most development systems support one or more in-circuit emulators (ICES).
The ICE is one of the most advanced tools for microprocessor hardware development.
To use an ICE, the microprocessor chip is removed from the system under development
(called the target processor) and the emulator is plugged into the microprocessor socket.
The ICE will functionally and electrically act identically to the target processor with the
exception that the ICE is under the control of development system software. In this manner
the development system may exercise the hardware that is being designed and monitor
all status information available about the operation of the target processor. Using an ICE,

Fundamentals of Digital Logic and Microcomputer Design

processor register contents may be displayed on the CRT and operation of the hardware
observed in a single-stepping mode. In-circuit emulators can find hardware and software
bugs quickly that might take many hours to locate using conventional hardware testing
methods.

Architectures for development systems can be generally divided into two
categories: the master/slave configuration and the single-processor configuration. In a
mastedslave configuration, the master (host) processor controls the mass storage device
and processes all I/O (CRT, printer). The software for development systems is written for
the master processor, which is usually not the same as the slave (target) processor. The
slave microprocessor is typically connected to the user prototype via a connector which
links the slave processor to the master processor.

Some development systems such as the HP 64000 completely separate the system
bus from the emulation bus and therefore use a separate block of memory for emulation.
This separation allows passive monitoring of the software executing on the target processor
without stopping the emulation process. A benefit of the separate emulation facilities
allows the master processor to be used for editing, assembling, and so on while the slave
processor continues the emulation. A designer may therefore start an emulation running,
exit the emulator program, and at some hture time return to the emulation program.

Another advantage of the separate bus architecture is that an operating system
needs to be written only once for the master processor and will be used no matter what type
of slave processor is being emulated. When a new slave processor is to be emulated, only
the emulator probe needs to be changed.

A disadvantage of the master/slave architecture is that it is expensive. In single-
processor architecture, only one processor is used for system operation and target emulation.
The single processor does both jobs, executing system software as well as acting as the
target processor. Because there is only one processor involved, the system software must
be rewritten for each type of processor that is to be emulated. Because the system software
must reside in the same memory used by the emulator, not all memory will be available
to the emulation process, which may be a disadvantage when large prototypes are being
developed. The single-processor systems are inexpensive.

The programs provided for microprocessor development are the operating system,
editor, assembler, linker, compiler, and debugger. The operating system is responsible for
executing the user’s commands. The operating system handles I/O functions, memory
management, and loading of programs from mass storage into RAM for execution. The
editor allows the user to enter the source code (either assembly language or some high-
level language) into the development system.

Almost all current microprocessor development systems use the character-
oriented editor, more commonly referred to as the screen editor. The editor is called a
“screen editor” because the text is dynamically displayed on the screen and the display
automatically updates any edits made by the user.

The screen editor uses the pointer concept to point to the character(s) that need
editing. The pointer in a screen editor is called the “cursor,” and special commands allow
the user to position the cursor to any location displayed on the screen. When the cursor
is positioned, the user may insert characters, delete characters, or simply type over the
existing characters.

Complete lines may be added or deleted using special editor commands. By
placing the editor in the insert mode, any text typed will be inserted at the cursor position
when the cursor is positioned between two existing lines. If the cursor is positioned on a

Microcomputer Architecture, Programming, and System Design Concepts

line to be deleted, a single command will remove the entire line from the file.
Screen editors implement the editor commands in different fashions. Some editors

use dedicated keys to provide some cursor movements. The cursor keys are usually marked
with arrows to show the direction of the cursor movement. More advanced editors (such as
the HP 64000) use soft keys. A soft key is an unmarked key located on the keyboard directly
below the bottom of the CRT screen. The mode of the editor decides what functions the
keys are to perform. The function of each key is displayed on the screen directly above the
appropriate key. The soft key approach is valuable because it allows the editor to reassign
a key to a new function when necessary.

The source code generated on the editor is stored as ASCII or text characters
and cannot be executed by a microprocessor. Before the code can be executed, it must be
converted to a form accessible by the microprocessor. An assembler is the program used
to translate the assembly language source code generated with an editor into object code
(machine code), which may be executed by a microprocessor.

The output file from most development system assemblers is an object file. The
object file is usually relocatable code that may be configured to execute at any address. The
function of the linker is to convert the object file to an absolute file, which consists of the
actual machine code at the correct address for execution. The absolute files thus created are
used for debugging and finally for programming EPROMs.

Debugging a microprocessor-based system may be divided into two categories:
software debugging and hardware debugging. Both debugging processes are usually carried
out separately because software debugging can be carried out on an out-of-circuit emulator
(OCE) without having the final system hardware.
The usual software development tools provided with the development system are

23 1

Single-step facility
Breakpoint facility
A single stepper simply allows the user to execute the program being debugged

one instruction at a time. By examining the register and memory contents during each
step, the debugger can detect such program faults as incorrect jumps, incorrect addressing,
erroneous op-codes, and so on. A breakpoint allows the user to execute an entire section of
a program being debugged.

There are two types of breakpoints: hardware and software. The hardware
breakpoint uses the hardware to monitor the system address bus and detect when the
program is executing the desired breakpoint location. When the breakpoint is detected,
the hardware uses the processor control lines to halt the processor for inspection or cause
the processor to execute an interrupt to a breakpoint routine. Hardware breakpoints can be
used to debug both ROM- and RAM-based programs. Software breakpoint routines may
only operate on a system with the program in RAM because the breakpoint instruction
must be inserted into the program that is to be executed.

Single-stepper and breakpoint methods complement each other. The user may
insert a breakpoint at the desired point and let the program execute up to that point. When
the program stops at the breakpoint the user may use a single-stepper to examine the
program one instruction at a time. Thus, the user can pinpoint the error in a program.

There are two main hardware-debugging tools: the logic analyzer and the in-circuit
emulator. Logic analyzers are usually used to debug hardware faults in a system. The logic
analyzer is the digital version of an oscilloscope because it allows the user to view logic
levels in the hardware. In-circuit emulators can be used to debug and integrate software and
hardware. PC-based workstations are extensively used as development systems.

232

6.10 Svstem DeveloDment Flowchart

Fundamentals of Digital Logic and Microcomputer Design

The total development of a microprocessor-based system typically involves three phases:
software design, hardware design, and program diagnostic design. A systems programmer
will be assigned the task of writing the application software, a logic designer will be
assigned the task of designing the hardware, and typically both designers will be assigned
the task of developing diagnostics to test the system. For small systems, one engineer may
do all three phases, while on large systems several engineers may be assigned to each
phase. Figure 6.33 shows a flowchart for the total development of a system. Notice that
software and hardware development may occur in parallel to save time.

The first step in developing the software is to take the system specifications and
write a flowchart to accomplish the desired tasks that will implement the specifications.
The assembly language or high-level source code may now be written from the system
flowchart. The complete source code is then assembled. The assembler is the object code
and a program listing. The object code will be used later by the linker. The program listing
may be sent to a disk file for use in debugging, or it may be directed to the printer.

The linker can now take the object code generated by the assembler and create

1 1

Prqlram EPROM I PAL

FIGURE 6.33 Microprocessor system development flowchart

Microcomputer Architecture, Programming, and System Design Concepts 233

the final absolute code that will be executed on the target system. The emulation phase
will take the absolute code and load it into the development system RAM. From here, the
program may be debugged using breakpoints or single stepping.

Working from the system specifications, a block diagram of the hardware must
be developed. The logic diagram and schematics may now be drawn using the block
diagram as a guide, and a prototype may now be constructed and tested for wiring errors.
When the prototype has been constructed it may be debugged for correct operation using
standard electronic testing equipment such as oscilloscopes, meters, logic probes, and logic
analyzers, all with test programs created for this purpose. After the prototype has been
debugged electrically, the development system in-circuit emulator may be used to check it
functionally. The ICE will verify the memory map, correct I/O operation, and so on. The
next step in system development is to validate the complete system by running operational
checks on the prototype with the finalized application software installed. The EPROMs
and/or PALS are then programmed with the error-free programs.

OUESTIONS AND PROBLEMS

6.1

6.2

6.3

6.4

6.5

6.6

6.7

What is the difference between a single-chip microprocessor and a single-chip
microcomputer?

What is a microcontroller? Name one commercially available microcontroller.

What is the difference between:
(a) The program counter (PC) and the memory address register (MAR)?
(b) The accumulator (A) and the instruction register (IR)?
(c) General-purpose register-based microprocessor and accumulator-based
microprocessor. Name a commercially available microprocessor of each type.

Assuming signed numbers, find the sign, carry, zero, and overflow flags of:
(a> 0916 + 1716.
(b) A516 - A516

(el 7E16 + 7E16

(c> 71 I6 - A916

(dl 6E16 + 3A16

What is meant by PUSH and POP operations in the stack?

Suppose that an 8-bit microprocessor has a 16-bit stack pointer and uses a 16-bit
register to access the stack from the top. Assume that initially the stack pointer
and the 16-bit register contain 20COI, and 0205,, respectively. After the PUSH
operation:
(a) What are the contents of the stack pointer?
(b) What are the contents of memory locations 20BE16 and 20BFI6?

Assuming the microprocessor architecture of Figure 6.18, write down a possible
sequence of microinstructions for finding the ones complement of an %bit number.
Assume that the number is already in the register.

234

6.8

6.9

6.10

6.1 1

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

Fundamentals of Digital Logic and Microcomputer Design

What do you mean by a multiplexed address and data bus?

Name four general-purpose registers in the 8086.

Name one 8086 register that can be used to hold an address in a segment.

What is the difference between EPROM and PROM? Are both types available with
bipolar and also MOS technologies?

Assuming a single clock signal and four registers (PC, MAR, Reg, and IR) for a
microprocessor, draw a timing diagram for loading the memory address register.
Explain the sequence of events relating them to the four registers.

Given a memory with a 14-bit address and 8-bit word size.
(a) How many bytes can be stored in this memory?
(b) If this memory were constructed from 1K x 1-bit RAMS, how many memory
chips would be required?
(c) How many bits would be used for chip select?

Define the three types of I/O. Identify each one as either “microprocessor initiated”
or “device initiated.”

What is the basic difference between a compiler and an assembler?

Write a program equivalent to the Pascal assignment statement:

Use only
(a) Three-address instructions
(b) Two-address instructions

Z := (A + (B * C) t (D * E) - (F / G) - (H * I)

Describe the meaning of each one of the following addressing modes.

(a) Immediate (d) Register indirect

(b) Absolute (e) Relative

(c) Register (f) Implied

Assume that a microprocessor has only two registers R1 and R2 and that only the
following instruction is available:

XOR R i , Rj Rj <- Ri @ Rj
, i , j = 1,2

Using this XOR instruction, find an instruction sequence in order to exchange the
contents of registers R1 and R2

What are the advantages of subroutines?

6.20 Explain the use of a stack in implementing subroutine calls.

Microcomputer Architecture, Programming, and System Design Concepts

6.21

235

Determine the contents of address 5004,, after assembling the following:
(a) ORG 5002H

(b) ORG 5000H
DB OOH, 05H, 07H, OOH, 03H

DW 0702H, 123FH, 7020H, OOOOH

6.22 What is the difference between:
(a) A cross assembler and a resident assembler
(b) A two-pass assembler and meta-assembler
(c) Single step and breakpoint

6.23 Identify some of the differences between C, C++, and Java.

6.24 How does a microprocessor obtain the address of the first instruction to be
executed?

6.25 Summarize the basic features of a typical microcomputer development system.

6.26 Discuss the steps involved in designing a microprocessor-based system.

