
APPENDIX

8086 INSTRUCTION SET

Instructions Interpretation Comments
AAA ASCII adjust [AL] after addition This instruction has implied addressing mode; this

AAD

AAM

'4AS

ADC medreg I ,
medreg 2

ADC mem, data

ADC reg, data

ADD medreg 1,
memlreg 2

ADD mem. data

ADD reg, data

AND medreg 1:
memlreg 2

ASCII adjust for division

ASCII adjust after multiplication

ASCII adjust [AL] after

[medreg I] + [memheg I] +
subtraction

[medreg 21 + CF

[mem] - [rnem] + data + CF

[reg] -[reg] + data + CF

[medreg I] - [medreg 21 +
[medreg I]

[mem] - [mern] + data

[reg] - [reg] + data

[medreg 13 - [medreg I]
[medreg 21

AND mem, data [mem] - [mem] data

AND reg, data [reg] - [reg] +data

instruction is used to adjust the content of AL after
addition of two ASCII characters

two unpacked BCD digits in AX into equivalent
binary numbers in AL; AAD must be used before
dividing two unpacked BCD digits by an unpacked
BCD byte

This instruction has implied addressing mode; after
multiplying two unpacked BCD numbers, adjust the
product in AX to become an unpacked BCD result;
ZF, SF, and PF are affected

This instruction has implied addressing mode used to
adjust [AL] after subtraction of two ASCII characters

Memory or register can be 8- or 16-bit; all flags
are affected; no segment registers are allowed; no
memory-to-memory ADC is permitted

register; all flags are affected

register; all flags are affected

ADD is permitted; all flags are affected; mem uses
DS as the segment register; reg 1 or reg 2 cannot be
segment register

Mem uses DS as the segment register; data can be 8-or
16-bit; all flags are affected

Data can be 8- or 16-bit; no segment registers are
allowed; all flags are affected

This instruction logically ANDs 8- or 16-bit data in
[medreg 11 with 8- or 16-bit data in [medreg 21; all
flags are affected; OF and CF are cleared to zero; no
segment registers are allowed; no memory-to-memory
operation is allowed; mem uses DS as the segment
register

Data can be 8- or 16-bit; mem uses DS as the segment
register; all flags are affected with OF and CF always
cleared to zero

register; all flags are affected with OF and CF cleared
to zero

This instruction has implied addressing mode; converts

Data can be 8- or 16-bit; mem uses DS as the segment

Data can be 8- or 16-bit; register cannot be segment

Add two 8- or 16-bit data; no memory-to-memory

Data can be 8- or 16-bit; reg cannot be segment

70 1

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

702 Fundamentals of Digital Logic and Microcomputer Design

Instructions
CALL PROC
WEAR)

CALL reg 16

CALL mem 16

CALL subroutine
in another
segment

CALL
DWORDPTR
[reg 161

CBW
CLC
CLD
CLI

CMC
CMP mem/reg 1,
medreg 2

CMP memheg,

CMPS BYTE or
data

CMPSB

CMPS WORD or
CPSW

CWD

Interpretation
Call a subroutine in the same
segment with signed 16-bit
displacement (to CALL a
subroutine in k32K)

CALL a subroutine in the same
segment addressed by the
contents of a 16-bit general
register

CALL a subroutine addressed
by the content of a memory
location pointed to by 8086
16-bit register such as BX, S1,
and DI

segment
CALL a subroutine in another

CALL a subroutine in another
segment

Convert a byte to a word
C F - 0
DF+O
IF + 0

CF + CF
[medreg 11 - [medreg 21, flags

-

are affected

[medreg] - data, flags are
affected

FOR BYTE
[[SI]] - [[DI]], flags are affected
[SI] + [SI] t 1
[DI] - [DI] t 1

FOR WORD
[[SI]] - [[DI]], flags are affected
[SI] - [SI] t 2
[DI] - [DI] t 2

Convert a word to 32 bits

Comments
NEAR in the statement BEGIN PROC NEAR
indicates that the subroutine ‘BEGIN’ is in the same
segment and BEGIN is 16-bit signed; CALL BEGIN
instruction decrements SP by 2 and then pushes IP
onto the stack and then adds the signed 16-bit value of
BEGIN to IP and CS is unchanged; thus, a subroutine
is called in the same segment (intrasegment direct)

The 8086 decrements SP by 2 and then pushes IP onto
the stack, then specified 16-bit register contents (such
as BX, SI, and DI) provide the new value for IP; CS
is unchanged (intrasegment indirect)

The 8086 decrements SP by 2 and pushes IP onto the
stack; the 8086 then loads the contents of a memory
location addressed by the content of a 16-bit register
such as BX, SI, and DI into IP; [CS] is unchanged
(intrasegment indirect)

FAR in the statement BEGIN PROC FAR indicates
that the subroutine ‘BEGIN’ is in another segment
and the value of BEGIN is 32 bit wide

The 8086 decrements SP by 2 and pushes CS onto the
stack and moves the low 16-bit value of the specified
32-bit number such as ‘BEGIN’ in CALL BEGIN
into CS; SP is again decremented by 2; IP is pushed
onto the stack; IP is then loaded with high 16-bit
value of BEGIN; thus, this instruction CALLS a
subroutine in another code segment

(intersegment direct)
This instruction decrements SP by 2, and pushes CS
onto the stack; CS is then loaded with the contents of
memory locations addressed by [reg 16+2] and [reg
16 + 31 in DS; the SP is again decremented by 2; IP
is pushed onto the stack; IP is then loaded with the
contents of memory locations addressed by [reg 161
and [reg 16 + 11 in DS; typical 8086 registers used for
reg 16 are BX, SI, and DI (intersegment indirect)

Extend the sign bit (bit 7) ofAL register into AH
Clear carry to zero
Clear direction flag to zero
Clear interrupt enable flag to zero to disable maskable

One’s complement carry
mem/reg can be 8- or 16-bit; no memory-to-memory

interrupts

comparison allowed; result of subtraction is not
provided; all flags are affected

Subtracts 8- or 16-bit data from [mem or reg] and
affects flags; no result is provided

8- or 16-bit data addressed by [DI] in ES is subtracted
from 8- or 16-bit data addressed by SI in DS and
flags are affected without providing any result; if
DF = 0, then SI and DI are incremented by one for
byte and two for word; if DF = 1, then SI and DI are
decremented by one for byte and two for word;

the segment register ES in destination cannot be
overridden

Extend the sign bit of AX (bit 15) into DX

Appendix H: 8086 Instruction Set 703

Instructions Interpretation Comments
DAA

DAS

DEC reg 16

DEC mendreg 8

DIV medreg

ESC external OP
code, source

HLT
IDIV mendreg
IMUL memheg

IN AL, DX

IN AX, DX

IN AL, PORT

M AX, PORT

INC reg 16

Decimal adjust [AL] after
addition

Decimal adjust [AL] after
subtraction

[reg 161 + [reg 161 - 1

[mem] - [mem] - I or [reg 81 +

[reg 81 - 1

16/8 bit divide:
[Ax1

[mem8 / reg81
lAHl - Remainder
iALj - Quotient

32/16 bit divide:
[DXI [MI

[memlb / reglb]

[DX] + Remainder,
[AX] + Quotient

ESCAPE to external processes

HALT
Same as DIV mendreg
For 8 x 8
“4x1 - [ALI *
[mem 8 / reg 81

For 16 x 16
[DXl[AXl- LAXI *
[mem 16 / reg 161

[AL] - PORT [DX]

[AX] - PORT [DX]

[AL] - [PORT]

[AX] - [PORT]

[reg 161 - [reg 161 + 1

This instruction uses implied addressing mode; this
instruction converts [AL] into BCD; DAA should be
used after BCD addition

converts [AL] into BCD; DAS should be used after
BCD subtraction

This is a one-byte instruction; used to decrement a 16-
bit register exceptsegment register; does not affect the
cany flag

Used to decrement a byte or a word in memory or an
8-bit register content; segment register cannot be
decremented by this instruction; does not affect carry

This instruction uses implied addressing mode;

flag
Mendreg is %bit for 16-bit by %bit divide and 16-
bit for 32-bit by 16-bit divide; this is an unsigned
division; no flags are affected; division by zero
automatically generates an internal interrupt

This instruction is used to pass instructions to
a coprocessor such as the 8087 floating point
coprocessor which simultaneously monitors the
system bus with the 8086; the coprocessor OP codes
are 6-bit wide; the coprocessor treats normal 8086
instructions as NOP’s; the 8086 fetches all instructions
from memory; when the 8086 encounters an ESC
instruction, it usually treats it as NOP; the coprocessor
decodes this instruction and carries out the operation
using the 6-bit OP code independent of the 8086; for
ESC OP code, memory, the 8086 accesses data in
memory for the coprocessor; for ESC data, register,
the coprocessor operates on 8086 registers; the 8086
treats this as an NOP

Halt
Signed division. No flags are affected.
M e d r e g can be 8- or 16-bit; only CF and OF are
affected; signed multiplication

Input AL with the 8-bit content of a port addressed by
DX; this is a one-byte instruction

Input AX with the 16-bit content of a port addressed by
DX and DX + 1; this is a one-byte instruction

Input AL with the 8-bit content of a port addressed by
the second byte of the instruction

Input AX with the 16-bit content of a port addressed by
the &bit address in the second byte of the instruction

This is a one-byte instruction; used to increment a 16-
bit register except the segment register; does not affect
the cany flag

704 Fundamentals of Digital Logic and Microcomputer Design

Instructions
INC memireg 8

INT n (n can be
zero thru 2 5 5)

INTO

IRET

JNJNBE disp 8

JAE/JNB/JNC
disp 8
JB/JC/JNAE
disp 8
JBEIJNA disp 8

JCXZ disp 8

JE/JZ disp 8

JG/JNLE disp 8

JGEIJNL disp 8

JLIJNGE disp 8

JLEiJNG disp 8

Interpretation
[mem] - [mem] + 1 or [reg 81 - [reg 81 + 1

[SP] - [SP] - 2 ,[[SP]] - Flags
IF + 0,TF + 0
WI - [SPI - 2, “SPII - [CSI
[CS] - 4n + 2
[SP] - [SP] - 2
“SPII - [IPI
[IP] - 4n
Interrupt on Overflow

Interrupt Return

Jump if above/jump if not below
or equal

Jump if above or equal/jump if
not below/jump if no cany

Comments
This is a two-byte instruction; can be used to increment
a byte or word in memory or an 8-bit register content;
segment registers cannot be incremented by this
instruction; does not affect the cany flag

Software interrupts can be used as supervisor calls;
that is, request for service from an operating system;
a different interrupt type can be used for each type of
service that the operating system could supply for an
application or program; software interrupt instructions
can also be used for checking interrupt service
routines written for hardware-initiated interrupts

Generates an internal interrupt if OF = I ; executes INT
4; can be used after an arithmetic operation to activate
a service routine if OF = 1; when INTO is executed and
if OF = 1, operations similar to INT n take place
POPS IP, CS and Flags from stack; IRET is used as
return instruction at the end of a service routine for
both hardware and software intempts
Jump if above/jump if not below or equal with 8-bit
signed displacement; that is, the displacement can be
from -128,, to +127,,, zero being positive; JA and
INBE are the mnemonic which represent the same
instruction; Jump if both CF and ZF are zero; used for
unsigned comparison

0; used for unsigned Comparison
Same as JNJNBE except that the 8086 Jumps if CF =

Jump if below/jump if cany/jump Same as JNJNBE except that the jump is taken CF = I ,
if not above or equal used for unsigned comparison
Jump if below or equal/jump if Same as JNJNBE except that the jump is taken if CF =

not above 1 or ZF = 0; used for unsigned comparison
Jump if CX = 0 Jump if CX = 0; this instruction is useful at the

beginning of a loop to bypass the loop if CX = 0
Jump if equal/jump if zero Same as JNJNBE except that the jump is taken if ZF =

1; used for both signed and unsigned comparison
Jump if greatedjump if not less Same as JNJNBE except that the jump is taken if ((SF
or equal 0 OF) or ZF) = 0; used for signed comparison
Jump if greater or equal/ jump if Same as JNJNBE except that the jump is taken if (SF
not less 0 OF) = 0; used for signed comparison
Jump if less/Jump if not greater Same as JNJNBE except that the jump is taken if (SF
nor equal 0 OF) = 1 ; used for signed comparison
Jump if less or equal/ jump if not Same as JNJNBE except that the jump is taken if ((SF
greater 0 OF) or ZF) = I ; used for signed comparison

Appendix H: 8086 Instruction Set 705

Instructions Interpretation Comments
JMP Label Unconditional Jump with a The label START can be signed 8-bit (called SHORT

signed 8-bit (SHORT) or signed
16-bit (NEAR) displacement in
the same segment

JMP reg16 [IP] * [reg 161; [CS] is
unchanged

JMP mem 16

JMP Label
(to another
segment)

JNE/JNZ disp 8

JNO disp 8

JNp/JPO disp 8

JNS disp 8

JO disp 8

JP/JPE disp 8

JS disp 8

LAHF

[IP] + [mem]; [CS] is unchanged

Unconditionally jump to another
segment

Unconditionally jump to another
segment

Jump if not equal/jump if not
zero
Jump if not overflow

Jump if no parity/jump if parity
odd
Jump if not sign

Jump if overflow

Jump if parity/jump if parity even

Jump if sign

[AH] + Flag low-byte

jump) or signed 16-bit (called NEAR jump)
displacement; the assembler usually determines
the displacement value; if the assembler finds the
displacement value to be signed 8-bit (-128 to +127,
0 being positive), then the assembler uses two bytes
for the instruction: one byte for the OP code followed
by a byte for the displacement; the assembler sign
extends the 8-bit displacement and then adds it to IP;
[CS] is unchanged; on the other hand, if the assembler
finds the displacement to be signed 16-bit (+32 K),
then the assembler uses three bytes for the instruction:
one byte for the OP code followed by 2 bytes for the
displacement; the assembler adds the signed 16-bit
displacement to IP; [CS] is unchanged; therefore,
this JMP provides a jump in the same segment
(intrasegment direct jump)

Jump to an address specified by the contents of a 16-
bit register such as BX, SI, and DI in the same code
segment; in the example JMP BX, [BX] is loaded
into IP and [CS] is unchanged (intrasegment memory
indirect jump)

Jump to an address specified by the contents of a 16-bit
memory location addressed by 16-bit register such
as BX, SI, and DI; in the example, JMP [BX] copies
the content of a memory location addressed by BX in
DS into IP; CS is unchanged (intrasegment memory
indirect jump)

This is a 5-byte instruction: the first byte is the OP code
followed by four bytes of 32-bit immediate data; bytes
2 and 3 are loaded into IP; bytes 4 and 5 are loaded
into CS to JUMP unconditionally to another segment
(intersegment direct)

This instruction loads the contents of memory locations
addressed by [reg 161 and [reg 16 + I] in DS into IP; it
then loads the contents of memory locations addressed
by [reg 16 + 21 and [reg 16 + 31 in DS into CS; typical
8086 registers used for reg 16 are BX, SI, and DI
(intersegment indirect)

Same as JNJNBE except that the jump is taken if ZF =

0; used for both signed and unsigned comparison
Same as JNJNBE except that the jump is taken if OF

= O
Same as JNJNBE except that the jump is taken if PF

= O
Same as JNJNBE except that the jump is taken if SF

= O
Same as JNJNBE except that the jump is taken if OF
= 1

Same as JNJNBE except that the jump is taken if PF
= 1

Same as JNJNBE except that the jump is taken if SF
= 1

This instruction has implied addressing mode; it loads
AH with the low byte of the flag register; no flags are
affected

706 Fundamentals of Digital Logic and Microcomputer Design

Instructions Interpretation Comments
LDS reg, mem [reg] + [mem]

[DS] + [mem + 21
Load a 16-bit register (AX, BX, CX, DX, SP, BP, SI,
DI) with the content of specified memory and load
DS with the content of the location that follows; no
flags are affected; DS is used as the segment register
for mem

source operand rather than its content to register (such
as SI, DI, BX) which are allowed to contain offset for
accessing memory; no flags are affected

LEA reg, mem [reg] + [offset portion of
address]

LEA (load effective address) loads the value of the

LES reg, mem [reg] + [mem]
[ES] - [mem+ 21

DS is used as the segment register for mem; in the
example LES DX, [BX], DX is loaded with 16-bit
value from a memory location addressed by 20-bit
physical address computed from DS and BX; the 16-
bit content of the next memory is loaded into ES; no
flags are affected

LOCK bus during next instruction Lock is a one-byte prefix that causes the 8086 LOCK

LODS BYTE or FOR BYTE
LODSB “4LI + “SUl

[SI] + [SI] e 1

[AX1 + “sIll>[sIl +- [SII f 2
LODS WORD or FOR WORD
LODSW

LOOP disp 8 Loop if CX not equal to zero

(configured in maximum mode) to assert its bus
LOCK signal while following instruction is executed;
this signal is used in multiprocessing; the LOCK pin
of the 8086 can be used to LOCK other processors
off the system bus during execution of an instruction;
in this way, the 8086 can be assured of uninterrupted
access to common system resources such as shared
RAM

Load 8-bit data into AL or 16-bit data into AX from
a memory location addressed by SI in segment DS;
if DF = 0, then SI is incremented by 1 for byte or
incremented by 2 for word after the load; if DF = 1,
then SI is decremented by 1 for byte or decremented
by 2 for word; LODS affects no flags

Decrement CX by one, without affecting flags and loop
with signed 8-bit displacement (from -128 to +127,
zero being positive) if CX is not equal to zero

LOOPE/I.OOPZ
disp 8

Loop while equaliloop while zero Decrement CX by one without affecting flags and loop
with signed 8-bit displacement if CX is equal to zero,
and if ZF = 1 which results from execution of the
previous instruction

Decrement CX by one without affecting flags and loop
with signed 8-bit displacement if CX is not equal
to zero and ZF = 0 which results from execution of
previous instruction

mem uses DS as the segment register; no memory-to-
memory operation allowed; that is, MOV mem, mem
is not permitted; segment register cannot be specified
as reg or reg; no flags are affected; not usually used to
load or store ‘A’ from or to memory

mem uses DS as the segment register; 8- or 16-bit data
specifies whether memory location is 8- or 16-bit; no
flags are affected

be 8- or 16-bit; no flags are affected

LOOPNEI
LOOPNZ disp 8 not zero

Loop while not equaliloop while

MOV mendreg 2, [mendreg 21 - [memireg I]
medreg 1

Segment register cannot be specified as reg; data can

MOV mem, data [mem] + data

MOV reg, data [reg] - data

MOV segreg, [segreg] - [memireg]
medreg
MOV medreg, [mendreg] + [segreg]
segreg

mem uses DS as segment register; used for initializing

mem uses DS as segment register; no flags are affected
CS, DS, ES, and SS; no flags are affected

Appendix H: 8086 Instruction Set 707

Instructions Interpretation Comments
MOVS BYTE or FOR BYTE Move 8-bit or 16-bit data from the memory location
MOVSB “DIII- “St11

[SI] - [SI] L 1
addressed by SI in segment DS location addressed by
DI in ES; segment DS can be overridden by a prefix
but destination segment must be ES and cannot be
ovemdden; if DF = 0, then SI is incremented by one
for byte or incremented by two for word; if DF = 1,
then SI is decremented by one for byte or by two for
word

MOVS WORD
or MOVSW

MUL mendreg

NEG mem/reg

NOP
NOT reg

NOT mem

OR Mem/reg I ,
Mendreg 2

OR mem. data

OR reg, data

OUT DX, AL

OUT DX, AX

OUT PORT, AL

OUT PORT, AX

POP mem

POP reg

POP segreg

POPF

PUSH mem

FOR WORD
[[Dill-- "Sill
[SI] +- [SI] * 2

F O R 8 x 8

FOR 16 x 16

[mendreg] - [mem/reg] + 1

mendreg can be 8- or 16-bit; only CF and OF are
[AX] - [AL] * [mendreg] affected; unsigned multiplication

[DXI “4x1 +- [AX1 * [mern/regl
mendreg can he 8- or 16-bit; performs two’s
complement subtraction of the specified operand
from zero, that is, two’s complement of a number is
formed; all flags are affected except CF = 0 if [mend
reg] is zero; otherwise CF = 1

No Operation 8086 does nothing

[reg1 - [reg1
-

mem and reg can be 8- or 16-bit; segment registers are
not allowed; no flags are affected; ones complement
reg -

[mem] - [mem]

[memheg 13 -
mem uses DS as the segment register; no flags are
affected; ones complement mem

No memory-to-memory operation is allowed; [mem]
or [reg I] or [reg 21 can be 8- or 16-bit; all flags are
affected with OF and CF cleared to zero; no segment
registers are allowed; mem uses DS as segment
register

mem and data can be 8- or 16-bit; mem uses DS as
segment register; all flags are affected with CF and OF
cleared to zero

reg and data can he 8- or 16-bit; no segment registers
are allowed; all flags are affected with CF and OF
cleared to zero

addressed by the 16-bit content of DX; this is a one-
byte instruction

addressed by the 16-bit content of DX; this is a one-
byte instruction

Output the 8-bit contents of AL into the Port specified
in the second byte of the instruction

Output the 16-bit contents of AX into the Port specified
in the second byte of the instruction

mem uses DS as the segment register; no flags are
affected

Cannot be used to POP segment registers or flag
register

POP CS is illegal

This instruction pops the top two stack bytes in thel6-

mem uses DS as segment register; no flags are affected;

[memheg I] v [memheg 21

[mem] - [mem] v data

[reg] - [reg] v data

PORT [DX] - [AL] Output the 8-bit contents of AL into an 110 Port

PORT [DX] +- [AX] Output tbe 16-bit contents of AX into an I/O Port

PORT - [AL]

PORT - [AX]

[mem] - [[SP]],[SP] +- [SP] + 2

[reg]- [[SP]] ,[SP] - [SP] + 2

begreg1 - “SPl1

[Flags] + “SPII
[SP] - [SP] + 2
[SP] - [SP] - 2
[[SPll - [meml

[SP] - [SP] + 2

bit flag register

pushes 16-bit memory contents

708

Instructions Interpretation Comments
PUSH reg

Fundamentals of Digital Logic and Microcomputer Design

[SP] - [SP] - 2 reg must be a 16-bit register; cannot be used to PUSH

PUSH segreg

PUSHF

RCL memireg, 1

RCL memireg,
CL

RCR memireg, 1

RCR memheg,
CL

ROL memireg, 1

ROL memireg,
CL

ROR memheg, 1

“SPII + [reg1
[SP] - [SP] - 2

[SP] +- [SP] - 2
“SPl1 + [Flags] stack
ROTATE through carry left once

segment register or Flag register
PUSH CS is illegal

This instruction pushes the 16-bit Flag register onto the

FOR BYTE

“SPl1 - [segregl

byte or word in memireg
1 7 n l
k ‘ I . . . 1-14

L I I . . .
FOR WORD

ROTATE through carry left byte Operation same as RCL memheg, 1 except the number
of rotates is specified in CL for rotates up to 255; zero
or negative rotates are illegal

or word in memireg by [CL]

ROTATE through carry right FOR BYTE
once byte or word in memheg

. . .
FOR WORD

. . .
ROTATE through carry right byte Operation same as RCR memireg, 1 except the number

of rotates is specified in CL for rotates up to 255; zero
or negative rotates are illegal

or word in mem/reg by [CL]

ROTATE left once byte or word FOR BYTE
in memheg q :\-

-d

FOR WORD
15 0

ROTATE left byte or word by the [CL] contains rotate count up to 255; zero and negative
content of CL shifts are illegal; CL is used to rotate count when

the rotate is greater than once; mem uses DS as the
segment register

ROTATE right once byte or word FOR BYTE
in mendreg 7 r E q + a

FOR WORD

1s 0 - - a

Appendix H: 8086 Instruction Set 709

Instructions Interpretation Comments
ROR memireg, ROTATE right byte or word in Operation same as ROR memireg, I; [CL] specifics
CL memireg by [CL] the number of rotates for up to 255; zero and negative

rotates are illegal; mem uses DS as the segment
register

This instruction stores the contents of the AH register
in the low-byte of the flag register; OF, DF, IF, and
TF flags are not affected.

SAHF [Flags, low-byte] - [AH]

SAL medreg, 1 Shift arithmetic left once byte or FOR BYTE %rn,+[) word in mem or reg

FOR WORD

. i *-0

SAL memireg,
CL

SAR medreg, 1

S A R medreg,
CL

SBB memireg I ,

SBB mem. data
medreg 2

SBB reg, data

SCAS BYTE or
SCASB

SCAS WORD or

SHL memireg, 1
SCASW

SHL memheg,
L L

Mem uses DS as the segment register; reg cannot be segment registers;
OF and CF are affected; if sign bit is changed during or after shifting, the

OF i s set 10 one

shift count for up to 255; zero and negative shifts are
illegal; [CL] is used as shift count when shift is greater
than one; OF and SF are affected; if sign bit of [mem]
is changed during or after shifting, the OF is set to
one; mem uses DS as segment register

FOR BYTE

Shift arithmetic left byte or word Operation same as SAL medreg, I ; CL contains
by shift count on CL

SHIFT arithmetic right once byte

h r n

U=]+=
or word in medreg

. . .
FOR WORD

SHIFT arithmetic right byte or Operation same as S A R medreg, I ; however, shift
word in mem/reg by [CL] count is specified in CL for shifts up to 255; zero and

negative shifts are illegal

subtraction with borrow

with borrow

borrow

from 8- or 16-bit data in AL or AX and flags are
affected without affecting [AL] or [AX] or string
data; ES cannot be ovenidden; if DF = 0, then DI
is incremented by one for byte and two for word; if
DF = 1, then DI is decremented by one for byte or
decremented by two for word

[medreg I] - [medreg I] -

[mem] + [mem] - data - CF

[reg] -[reg] - data - CF

FOR BYTE [AL] - [[DI]], flags

Same as SUB medreg 1, medreg 2 except this is a

Same as SUB mem, data except this is a subtraction

Same as SUB reg, data except this is a subtraction with

8- or 16-bit data addressed by [DI] in ES is subtracted

[medreg 21 - CF

are affected,[DI] + [DI] * 1

FOR WORD[AX] - [[DI]], flags
are affected,[DI] + [DI] * 2

SHIFT logical left once byte or Same as SAL medreg, 1
word in medreg

SHIFT logical left byte or word in Same as SAL medreg, CL except overflow is cleared
memheg by the shift count in CL to zero

710 Fundamentals of Digital Logic and Microcomputer Design

Instructions Interpretation Comments
SHR mendreg, 1 FOR BYTE SHIFT right logical once byte or

o+ 1 . - 1
SHR mendreg,
CL

-+m

STC
STD
STI

STOS BYTE or
STOSB

STOS WORD or

SUB memireg 1,

SUB mem. data

STOSW

mem/reg 2

SUB reg, data
TEST memireg

I , mem/reg 2

TEST mem, data

word in mendreg

SHIFT right logical byte or word
in mem/reg by [CL]

CF- 1
DF- 1
IF - 1

FOR BYTE
“D111 - [ALI
[DI] - [DI] * 1

FOR WORD

[mendreg I] - [mendreg 11 -

[mem] - [mem] -data

"Dill - [A X I P I +- P I 1 * 2

[memireg 21

[reg] - [reg] -data
[medreg I]- [memireg 21, no
result; flagrare affected

[mem] - data, no result; flags are
affected

No memory-to-memory SUB permitted; all flags are

Data can be 8- or 16-bit; mern uses DS as the segment

Data can be 8- or 16-bit; all flags are affected
No memory-to-memory TEST is allowed; no result
is provided; all flags are affected with CF and OF
cleared to zero; [mem], [reg I] or [reg 21 can be 8-or
16-bit; no segment registers are allowed; mem uses
DS as the segment register

Mem and data can be 8- or 16-bit; no result is provid
ed;flagsareaffected with CF and OF cleared to zero;
mem uses DS as the segment register

affected; mem uses DS as the segment register

register; all flags are affected

TEST reg, data [reg]- data, no result; flags are
affected

Reg and data can be 8- or 16-bit; no result is provided;
all flags are affected with CF and OF cleared to zero;
reg cannot be segment register;
Causes CPU to enter wait state if the 8086 TEST pin is
high; while in wait state, the 8086 continues to check
TEST pin for low; if TEST pin goes back to zero, the
8086 executes the next instruction; this feature can be
used to synchronize the operation of 8086 to an event
in external hardware
reg and mem can be both 8- or 16-bit; mem uses DS as
the segment register; reg cannot be segment register;
no flags are affected; no mem to mern .

WAIT 8086 enters wait state

reg can be 8-or 16-bit; reg cannot be segment register;
no flags are affected

XCHG mem/ [mem] - [reg]
reg, mem/
reg
XCHG reg,reg [reg] - [reg]

Appendix H: 8086 Instruction Set 71 1

Instructions Interpretation Comments
XLAT [AL] + [AL] + [BX] This instruction is useful for translating characters

from one code such as ASCII to another such as
EBCDIC; this is a no-operand instruction and is
called an instruction with implied addressing mode;
the instruction loads AL with the contents of a 20-bit
physical address computed from DS, BX, and AL;
this instruction can be used to read the elements in a
table where BX can be loaded with a 16-bit value to
point to the starting address (offset from DS) and AL
can be loaded with the element number (0 being the
first element number); no flags are affected; the XLAT
instruction is equivalent to MOV AL, [AL] [BX]
No memory-to-memory operation is allowed; [mem]
or [reg I] or [reg 21 can be 8- or 16-bit; all flags are
affected with CF and OF cleared to zero; mem uses DS
as the segment register
Data and mem can be 8- or 16-bit; mem uses DS as the
segment register; mem cannot be segment register; all
flags are affected with CF and OF cleared to zero
Same as XOR mem, data.

XOR medreg
1 , mendreg 2 [mendreg 21

[medreg I] + [mendreg I] 0

XOR mem, data [reg] - [mem] 0 data

XOR reg, data [reg] + [reg] 0 data

