
3
NUMBER SYSTEMS

AND CODES
In this chapter we describe some of the hndamental concepts needed to implement and
use a computer effectively. Thus the basics of number systems, codes, and error detection/
correction are presented.

2.1 Number Svstems

A computer, like all digital machines, utilizes two states to represent information. These
two states are given the symbols 0 and 1. It is important to remember that these 0's and
1 's are symbols for the two states and have no inherent numerical meanings of their own.
These two digits are called binary digits (bits) and can be used to represent numbers of any
magnitude. The microcomputer carries out all the arithmetic and logic operations internally
using binary numbers. Because binary numbers are long, a more compact form using some
other number system is preferable to represent them. The computer user finds it convenient
to work with this compact form. Hence, it is important to understand the various number
systems used with computers. These are described in the following sections.

2.1.1 General Number Representation
In general, a number N can be represented in the following form:

2.1
where b is the base or radix of the number system, the d's are the digits of the number
system, p is the number of integer digits, and q is the number of fractional digits.

N can also be written as a string of digits whose integer and fractional portions are
separated by the radix or decimal point (*). In this format, the number N is represented as

If a number has no fractional portion, (e.g., q = 0 in the form of Equation 2.1),
then the number is called an integer number or an integer. Conversely, if the number has
no integer portion (e.g.,p = 0 in the form of Equation 2.1), the number is called a fractional
number or a fraction. If both p and q are not zero, then the number is called a mixed
number.

N = d P - I XbP-l+dP-2 Xbp-2+.. .+d0 Xbo+d_, Xb-'+ ...+ d-, Xb-4

N=dP_,d,_, . . .d ,d0*d- , ... d-, 2.2

Decimal Number System
In the decimal number system (base lo), which is most familiar to us, the integer number
125,0 can be expressed as
125,, = 1 X lo2+ 2 X lo1+ 5 X loo 2.3

In this equation, the left-hand side corresponds to the form given by Equation
2.2. The right-hand side of Equation 2.3 is represented by the form of equation 2.1, where
b = 1 0 , d , = 1 , d , = 2 , d o = 5 , d - ,=. . .= d_,=O,p=3,andq=0.

23

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

24 Fundamentals of Digital Logic and Microcomputer Design

Now, consider the fractional decimal number 0.532,,. This number can be
expressed as
0.532,,= 5 X lo-’+ 3 X lo-,+ 2 X 2.4

The left-hand side of Equation 2.4 corresponds to Equation 2.2. The right-hand
side of Equation 2.4 is in the form of Equation 2.1, where b = 10, d-, = 5, d-, = 3, d-, = 2,
q = 3 , p = 0 , d p - , = ... =do=O.

Finally, consider the mixed number 125.532,,. This number is in the form of
Equation 2.2. Translating the number to the form of Equation 2.1 yields
125.532,, = 1 X lo2+ 2 X l o ’ + 5 X lo0+ 5 X lo-’+ 3 X lo-,+ 2 X 2.5

Comparing the right-hand side of Equation 2.5 with equation 2.1 yields b = 10,p = 3,
q = 3, d2 = 1, d, = 2, do = 5, d-, = 5, d-, = 3, and d-, = 2.

Binary Number System
In terms of Equation 2.1, the binary number system has a base or radix of 2 and has two
allowable digits, 0 and 1. From Equation 2.1, a 4-bit binary number 1 1 10, can be interpreted
as

This conversion from binary to decimal can be obtained by inspecting the binary number
as follows:

I I 10, = 1 x 23+ I x 22+ I x 21+ 0 x 20= i4,,

21 2’ 2‘ 20- Weighting
1 1 1 0
2 ?l Bit 0 or Least significant bit

Bit 1

Bit 2

Bit 3
Most sigruficant 01: bit

Note that bits 0, 1, 2, and 3 have corresponding weighting values of 1, 2,4, and
8. Because a binary number only contains 1’s and O’s, adding the weighting values of only
the bits of the binary number containing 1’s will provide its decimal value. The decimal
value of 11 10, is 14,, (2 + 4 + S), because bits 1 , 2, and 3 have binary digit 1, whereas bit
0 contains 0.

Therefore, the decimal value of any binary number can be readily obtained by just
adding the weighting values for the bit positions containing 1 ’s. Furthermore, the value of
the least significant bit (bit 0) determines whether the number is odd or even. For example,
if the least significant bit is 1, the number is odd; otherwise, the number is even.

Next, consider a mixed number 10 1 .O 1 as follows:
101.01,= 1 x 22+0 x 2 ’ + 1 x 20+0 x 2-’+ 1 x 2-2 2.6

The decimal or base 10 value of 101.01, is found from the right-hand side of
Equation 2.6 as 4 + 0 + 1 + 0 + 1/4 = 5.25,,.

Octal Number System
The radix or base of the octal number system is 8. There are eight digits, 0 through 7,
allowed in this number system.

Consider the octal number 25.32,, which can be interpreted as:

The decimal value of this number is found by completing the summation of
2 X 8 ’ + 5 X S 0 + 3 X 8-1+2 X 8-,

1 6 + 5 + 3 X 1 / 8 + 2 X 1/64= 16+5+0.375+0.03125=21.40625,0

Number Systems and Codes 25

One can convert a number from binary to octal representation easily by taking the
binary digits in groups of 3 bits.

The octal digit is obtained by considering each group of 3 bits as a separate binary
number capable of representing the octal digits 0 through 7. The radix point remains in its
original position. The following example illustrates the procedure.

Suppose that it is desired to convert 100 1.1 1 into octal form. First take the groups
of 3 bits starting at the radix point. Where there are not enough leading or trailing bits
to complete the triplet, 0’s are appended. Now each group of 3 bits is converted to its
corresponding octal digit.

001 001 . 1102 =11.6s -- +
1 1 6

The conversion back to binary from octal is simply the reverse of the binary-to-
octal process. For example, conversion from 1 1.6, to binary is accomplished by expanding
each octal digit to its equivalent binary values as shown:

1 1 . 6
A A h
001 001 110

Hexadecimal Number System
The hexadecimal or base- 16 number system has 16 individual digits. Each of these digits,
as in all number systems, must be represented by a single unique symbol. The digits
in the hexadecimal number system are 0 through 9 and the letters A through F. Letters
were chosen to represent the hexadecimal digits greater than 9 because a single symbol is
required for each digit. Table 2.1 lists the 16 digits of the hexadecimal number system and
their corresponding binary and decimal values.

TABLE 2.1 Number Systems
Hexadecimal Decimal Binary

0 0 0000
1 1 0001
2 2 0010
3 3 001 1
4 4 0100
5 5 0101
6 6 01 10
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 101 1
C 12 1100
D 13 1101
E 14 1110
F 15 1111

26

2.1.2

Fundamentals of Digital Logic and Microcomputer Design

Converting Numbers from One Base to Another

Binary-to-Decimal Conversion and Vice Versa
Consider converting 1100.01, to its decimal equivalent. As before,

i ioo.oi,= 1 x 23+ 1 x 22+0 x 21+0 x 20+0 x 2-1+ 1 x 2-2
= 8 + 4 + 0 + 0 + 0 + .25
= 12.25,,

Continuous division by 2, keeping track of the remainders, provides a simple method of
converting a decimal number to its binary equivalent. As an example, to convert decimal
12,, to its binary equivalent 1 loo2, proceed as follows:

quotient + remainder

= = 6 +
A = 3 +
2

2

1 1 0 0 ,

Fractions
One can convert 0.0101, to its decimal equivalent as follows:

o .o io i2= o x 2 - I + 1 x 2-2+ o x 2-3+ 1 x 2-4
= 0 + 0.25 + 0 + 0.0625
= 0.3125,,

A decimal fractional number can be converted to its binary equivalent as follows:

0.8125 0.6250 0.2500 0.5000
x 2 x 2 x 2 x 2
$625oq55%pF
1 1 0 1

Therefore 0.8125,, = 0.1 101,.

Suppose that it is desired to convert 0.3615 into its binary equivalent:
Unfortunately, binary-to-decimal fractional conversions are not always exact.

0.3615 0.7230 0.4460 0.8920 0.7840
x 2 x 2 x 2 x 2 x 2 gmpF$784oF

0 1 0 1 1

The answer is 0.0 10 1 1 . . . 2 . As a check, let us convert back:
0.0101 1, = o x 2-1+ 1 x 2-2+ 0 x 2-3+ 1 x 2-4+ 1 x 2-5

= 0 + 0.25 + 0 + 0.0625 + 0.03 125
= 0.34375

Number Systems and Codes 27

The difference is 0.3615 - 0.34375 = 0.01775. This difference is caused by the neglected
remainder 0.5680. The neglected remainder (0.5680) multiplied by the smallest computed
term (0.03125) gives the total error:

0.5680 X 0.03125 = 0.01775
Mixed Numbers
Finally, convert 13.25,, to its binary equivalent. It is convenient to carry out separate
conversions for the integer and fractional parts. Consider first the integer number 13 as
before:

quotient + remainder

l 7
u = 6 +
2
4 = 3
2
- - 3 - 1 2

+
+
+ '1.1 '3

13 , , = 1 1 0 1 ,

Now convert the fraction1 part 0.25,, as follows:

0.25 0.50
x 2 x 2

g.50 $00

0 1

- -

Thus 0.25,, = 0.01,. Therefore 13.25,, = 1101.01,.

Note that the same procedure applies for converting a decimal integer number to other
number systems such as octal or hexadecimal; Continuous division by the appropriate base
(8 or 16) and keeping track of remainders converts a decimal number from decimal to the
selected number system.

Binary-to-Hexadecimal Conversion and Vice Versa
The conversions between hexadecimal and binary numbers are done in exactly the same
manner as the conversions between octal and binary, except that groups of 4 are used. The
following examples illustrate this:

1 0 1 1 0 1 1 2 = w U = 5 B 1 6
5 B

Note that the binary integer number is grouped in 4-bit units, starting from the
least significant bit. Zeros are added with the most significant 4 bits if necessary. As with
octal numbers, for fractional numbers this grouping into 4 bits is started from the radix
point. Now consider converting 2AB,, into its binary equivalent as follows:

28 Fundamentals of Digital Logic and Microcomputer Design

2ABI6 = 2 B

. 1 L
0010 1010 1011

= 0010101010112

Hexadecimal-to-Decimal Conversion and Vice Versa
Consider converting the hexadecimal number 23A,, into its decimal equivalent and vice
versa. This can be accomplished as follows:

23A1,=2 X 162+3 X 16’+ 10 X 16’
= 512 + 48 + 10 = 570,,

Note that in the equation, the value 10 is substituted for A.
Now to convert 570,, back to 23AI6,

quotient + remamder

m= 35 +
16

2 3 A

Thus, 570,, = 23A,6

ExamDle 2.1
Determine by inspecting the binary equivalent of the following hexadecimal numbers
whether they are odd or even. Then verify the result by their decimal equivalents.

Solution
(4 128 64 32 16 8 4 2 i +Weighting

(a> 2B16 (b) A216

The number is odd, since the least significant bit is 1.

(b) A216 = J”_”J-’-””---” 6 +-Weighting
Decimal value = 32 + 8 + 2 + 1 = 4310, which is odd.

1 0 1 0 0 0 2

The number is even, since the least significant bit is 0.
Decimal value = 128 + 32 + 2 = l6ZlO, which is even.

2.2

An unsigned binary number has no arithmetic sign. Unsigned binary numbers are therefore
always positive. Typical examples are your age or a memory address which are always

Unsipned and Simed Binarv Numbers

Number Systems and Codes 29

positive numbers. An 8-bit unsigned binary integer represents all numbers from 00,,
through FF,, (Ole through 2SSlO).
The techniques used to represent the signed integers are:

Sign-magnitude approach
Ones complement approach
Twos complement approach

Because the sign of a number can be either positive or negative, only one bit, referred to
as the sign bit, is needed to represent the sign. The widely used sign convention is that if
the sign bit is zero, the number is positive; otherwise it is negative. (The rationale behind
this convention is that the quantity (- 1)” is positive when s = 0 and is negative when s =
1). Also, in all three approaches, the most significant bit of the number is considered to be
the sign bit.

In sign-magnitude representation, the most significant bit of the given n-bit binary
number holds the sign, and the remaining n - 1 bits directly give the magnitude of the
negative number. For example, the sign-magnitude representation of +7 is 01 11 and that
of -4 is 1100. Table 2.2 represents all possible 4-bit patterns and their meanings in sign-
magnitude form.

In Table 2.2, the sign-magnitude approach represents a signed number in a natural
manner. With 4 bits we can only represent numbers in the range -7 I x I +7. In general,
if there are n bits, then we can cover all numbers in the range +(2”-’ - 1). Note that with
n - 1 bits, any value from 0 to 2n-l - 1 can be represented. However, this approach leads
to a confusion because there are two representations for the number zero (0000 means +O;
1000 means -0).

In the complement approach, positive numbers have the same representation as
they do in the sign-magnitude representation. However, in this technique negative numbers
are represented in a different manner. Before we proceed, let us define the term complement
of a number. The complement of a number A , written as 2 (or A‘) is obtained by taking
bit-by-bit complement of A . In other words, each 0 in A is replaced with 1 and vice versa.
For example, the complement of the number 0100, is 101 1 and that of 1 1 1 1, is 0000,. In
the ones complement approach, a negative number, -x, is the complement of its positive

TABLE 2.2 All Possible 4-Bit Integers Represented in Sign-Magnitude Form
Interpretation as a Sign-

Bit Pattern Magnitude Integer
0000 +O
000 1 +1
0010 +2
001 1 +3
0100 +4
0101 +S
01 10 +6
0111 +7
1000 -0
1001 -1
1010 -2
101 1 -3
1100 -4
1101 -5
1110 -6
1111 -7

30

TABLE 2.3

Fundamentals of Digital Logic and Microcomputer Design

All Possible 4-Bit Integers Represented in Ones Complement Form

Interpretation as a Ones Complement
Number Bit Pattern

0000 +O
000 1 +1
0010 +2
001 1 +3
0100 +4
0101 +5
01 10 +6
0111 +7
1000 -7
1001 -6
1010 -5
101 1 -4
1100 -3
1101 -2
1110 -1

representation. For example let us find the ones complement representation of 01 00, (+4,,).
The complement of 0100 is 1011, and this denotes the negative number -4,0. Table 2.3
summarizes all possible 4-bit binary patterns and their interpretations as ones complement
numbers.

From Table 2.3, the ones complement approach does not handle negative
numbers naturally. In other words, if the number is negative (when the sign bit is l), its
magnitude is not obvious from its ones complement. To determine its magnitude, one
needs to take its ones complement. For example, consider the number 1101 10. The most
significant bit indicates that this is a negative number. Because the number is negative, its
magnitude cannot be obtained by directly looking at 1101 10. Instead, one needs to take the
ones complement of 1 101 10 to obtain 001001. The value of 001001 as a sign-magnitude
number is +9. On the other hand, 1101 10 represents -9 in ones complement form. Like
the sign-magnitude representation, the ones complement approach does not increase the
range of numbers covered by a fixed number of bit patterns. For example, 4 bits cover
the range -7 to +7. The same range is obtained with sign-magnitude representation. Note
that the confusion of two distinct representations for zero exists in the ones complement
approach.

Now, let us discuss the two’s complement approach. In this method, positive
integers are represented in the same manner as they are in the sign-magnitude method. In
other words, if the sign bit is zero, the number is positive and its magnitude can be directly
obtained by looking at the remaining n - 1 bits. However, a negative number -x can be
represented in twos complement form as follows:

Represent +x in sign magnitude form and call this result y
Take the ones complement ofy to get 5 (or y ’)
y + 1 is the twos complement representation of -x.
The following example illustrates this:

-

Number Systems and Codes 31

Table 2.4 lists all possible 4-bit patterns along with their twos complement forms. From
Table 2.4, it can be concluded that:

The twos complement form does not provide two representations for zero.
The twos complement form covers up to -8 in the negative side, and this is more

than can be achieved with the other two methods. In general, with n bits, and using twos
complement approach, one can cover all the numbers in the range -(2"-') to + (2 " - I - 1).

It should be pointed out that 1 1 I 1 11 1 1 is +255,, when interpreted as an unsigned
number. On the other hand, 11 11 1 11 1, is - 1 ,, when interpreted as a signed number. Note
that typical 16-bit microprocessors have separate unsigned and signed multiplication and
division instructions. Suppose that a microprocessor has the following multiplication and
division instructions: MULU (Multiply two unsigned numbers), MULS (Multiply two
signed numbers), DIVU (Divide two unsigned numbers), and DIVS (Divide two signed
numbers). It is important for the programmer to clearly understand how to use these
instructions.

For example, suppose that it is desired to compute (X2)/255. Now, if X is a signed
8-bit number, the programmer should use the MULS instruction to compute X * X which
is always unsigned (square of a number is always positive), and then use DIVU to compute
(X2)/255 (16-bit by 8-bit unsigned divide) since 255,, is positive. But, if the programmer
uses DIVS, then both X * X and 255,, (FF,,) will be interpreted as signed numbers. FF,,
will be interpreted as -1 ,,, using two's complement. and the result will be wrong. On the
other hand, if X is an unsigned number, the programmer needs to use MULU and D I W to
compute (X2)/255.

Examde 2.2
Represent the following decimal numbers in twos complement form. Use 7 bits to represent
the numbers:
(a) +39
(b) -43
Solution
(a) Because the number +39 is positive, its twos complement representation is the

same as its sign-magnitude representation as shown here:

25 24 23 22 2 ' 20
y=$J 0 0 1 1 1,

+ , 39

(b) In this case, the given number -43 is negative. The twos complement form of
the'number can be obtained as follows:

Step 1 : Represent +43 in sign magnitude form

25 24 23 22 21 20
y=$l 0 1 0 1 1

+ 43

Step 2: Take the ones complement of y:

Step 3: Add one to to get the final answer.

1010100
+___ 1

1010101

v = 1 0 1 0 1 0 0

32

TABLE 2.4

Fundamentals of Digital Logic and Microcomputer Design

All Possible 4-Bit Integers Represented in Twos Complement Form

Interpretation as a Twos
Bit Complement Number

0000 0
000 1 +1
0010 +2
001 1 +3
0100 +4
0101 +5
01 10 +6
0111 +7
1000 -8
1001 -7
1010 -6
101 1 -5
1100 -4
1101 -3
1110 -2
1111 -1

2.3 Codes
Codes are used extensively with computers to define alphanumeric characters and other
information. Some of the codes used with computers are described in the following
sections.

2.3.1 Binary-Coded-Decimal Code (8421 Code)
The 10 decimal digits 0 through 9 can be represented by their corresponding 4-bit binary
numbers. The digits coded in this fashion are called binary-coded-decimal (BCD) digits in
8421 code, or BCD digits. Two unpacked BCD bytes are usually packed into a byte to form
“packed BCD.” For example, two unpacked BCD bytes 02,, and 05,, can be combined as
a packed BCD byte 25,,. The concept of packed and unpacked BCD numbers are explained
later in this section. Table 2.5 provides the bit encodings of the 10 decimal numbers.

The six possible remaining 4-bit codes as shown in Table 2.5 are not used and
represent invalid BCD codes if they occur.
Consider obtaining the BCD bit encoding of the decimal number 356 as follows:

3 5 6
v v w

1 1 1
0011 0101 0110

2.3.2 Alphanumeric Codes
A computer must be capable of handling nonnumeric information if it is to be very useful.
In other words, a computer must be able to recognize codes that represent numbers, letters,
and special characters. These codes are classified as alphanumeric or character codes. A
complete and adequate set of necessary characters includes these:
1. 26 lowercase letters

Number Systems and Codes 33

TABLE 2.5 BCD Bit encodings of the 10 decimal numbers

BCD Bit
encoding

Decimal Numbers

0 0000
1
2
3

4
5

6
7
8

9
10

11
12
13
14
15

1

0001
0010
001 1

0100
0101

01 10
0111
1000
1001
1010 [1011

J 1111

2. 26 uppercase letters
3. 10 numeric digits (0-9)
4. About 25 special characters, which include + 1 # % , and so on.

This totals 87 characters. To represent 87 characters with some type of binary
code would require at least 7 bits. With 7 bits there are 27 = 128 possible binary numbers;
87 of these combinations of 0 and 1 bits serve as the code groups representing the 87
different characters.

The 8-bit byte has been universally accepted as the data unit for representing
character codes. The two most common alphanumeric codes are known as the American
Standard Code for Information Interchange (ASCII) and the Extended Binary-Coded
Decimal Interchange Code (EBCDIC). ASCII is typically used with microprocessors. IBM
uses EBCDIC code. Eight bits are used to represent characters, although 7 bits suffice,
because the eighth bit is frequently used to test for errors and is referred to as a parity bit.
It can be set to 1 or 0, so that the number of 1 bits in the byte is always odd or even.

Table 2.6 shows a list of ASCII and EBCDIC codes. Some EBCDIC codes do not
have corresponding ASCII codes. Note that decimal digits 0 through 9 are represented by
30,, through 39,, in ASCII. On the other hand, these decimal digits are represented by FO,,
though F9,, in EBCDIC.

A computer program is usually written for code conversion when inputloutput
devices of different codes are connected to the computer. For example, suppose it is
desired to enter a number 5 into a computer via an ASCII keyboard and print this data
on an EBCDIC printer. The ASCII keyboard will generate 35,, when the number 5 is
pushed. The ASCII code 35,, for the decimal digit 5 enters into the computer and resides

34 Fundamentals of Digital Logic and Microcomputer Design

TABLE 2.6 ASCII and EBCDIC Codes in Hex.

Character ASCII EBCDIC

63
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
w
X
Y
Z
[
\
1
A

-

40
41 c 1
42 C2
43 c 3
44 c 4
45 c 5
46 C6
47 c 7
48 C8
49 c 9
4A D1
4B D2
4C D3
4D D4
4E D5
4F D6
50 D7
51 D8
52 D9
53 E2
54 E3
55 E4
56 E5
57 E6
58 E7
59 E8
5A E9
5B
5 c
5D
5E
5F 6D

Jharacter ASCII EBCDIC

a
b

d
e
f
g
h

C

1

j
k
I
m
n

P
q
r
S
t
U

V

W

X

0

Y
2

{
I
1
I

DEL

60
61 81
62 82
63 83
64 84
65 85
66 86
67 87
68 88
69 89
6A 91
6B 92
6C 93
6D 94
6E 95
6F 96
70 97
71 98
72 99
73 A2
74 A3
75 A4
76 A5
77 A6
78 A7
79 A8
7A A9
7B
7C 4F
7D
7E
7F 07

:haracter ASCII EBCDI(

blank
!

$
Yo
&

(
) *
+

I
0
1
2
3
4
5
6
7
8
9

<
- -
>
?

20 40
21 5A
22 7F
23 7B
24 5B
25 6C
26 50
27 7D
28 4D
29 5D
2A 5C
2B 4E
2C 6B
2D 60
2E 4B
2F 61
30 FO
31 F1
32 F2
33 F3
34 F4
35 F5
36 F6
37 F7
38 F8
39 F9
3A
3B 5E
3 c 4 c
3D 7E
3E 6E
3F 6F

:haracter ASCII EBCDIC

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
so
SI
DLE
DC 1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
us

00
01
02
03
04 37
05
06
07
08 16
09 05
OA 25
OB
oc
OD 15
OE
OF
10
11
12
13
14
15
16

18
19
1A
1B
1 c
1D
1E
IF

17

in the computer’s memory. To print the digit 5 on the EBCDIC printer, a program must be
written that will convert the ASCII code 3516 for 5 to its EBCDIC code F5,,. The output
of this program is F5,,. This will be input to the EBCDIC printer. Because the printer only
understands EBCDIC codes, it inputs the EBCDIC code F5,6 and prints the digit 5.

Let us now discuss packed and unpacked BCD codes in more detail. For example,
in order to enter 24 in decimal into a computer, the two keys (2 and 4) will be pushed
on the ASCII keyboard. This will generate 32 and 34 (32 and 34 are ASCII codes in
hexadecimal for 2 and 4 respectively) inside the computer. A program can be written to
convert these ASCII codes into unpacked BCD 02 and 04, and then convert to packed BCD
24 or to binary inside the computer to perform the desired operation.

2.3.3 Excess-3 Code
The excess-3 representation of a decimal digit d can be obtained by adding 3 to its value.
All decimal digits and their excess-3 representations are listed in Table 2.7.
The excess-3 code is an unweighted code because its value is obtained by adding three to
the corresponding binary value. The excess-3 code is self-complementing. For example,
decimal digit 0 in excess-3 (00 1 1) is ones complement of 9 in excess three (1 100). Similarly,
decimal digit 1 is ones complement of 8, and so on. This is why some older computers used

Number Systems and Codes 35

TABLE 2.7 Excess-3 Representation of Decimal Digits
Decimal Excess-3

0 001 1
1 0100
2 0101
3 01 10
4 0111
5 1000
6 1001
7 1010
8 101 1

Digits Representation

9 1100

excess three code. Conversion between excess-3 and decimal numbers is illustrated below:

3 v
8
v

9 Decimal number
v v

t + t
A

5 3
Excess-3 Representation 0100 1100 101 1 0110

2.3.4 Gray Code
Sometimes codes can also be constructed using a property called reflected symmetry.
One such code is known as the Gray code. The Gray code is used in Karnaugh maps for
simplifying combinational logic design. This topic is covered in Chapter 4. Before we
proceed, we briefly explain the concept of reflected symmetry. Consider the two bits 0 and
I , and stack these two bits. Assume that there is a plane mirror in front of this stack and
produce the reflected image of the stack as shown in the following:

0
1

1
0

Appending a zero to all elements of the stack above the plane mirror and appending
a one to all elements of the stack that lies below the mirror will provide the following
result:

Appended zeros { : ;
Appended ones { : ;

0 0 0 0 0 0
0 0 1 0 0 1

mirror+ -

0 1 1 Mirror 0 1 1
O l O d 0 1 0

after moving
1 0 1 themirror 1 0 1
1 0 0 1 0 0

FIGURE 2.1 The process of obtaining 3-bit reflected binary code

36 Fundamentals of Digital Logic and Microcomputer Design

0000

Decimal
Gray =Ode Equivalent
/, 0000 0

0001 1
2
3
4

001 1
0010
01 10
01 11 5

1101 9
1111 10
1110 11
1010 12
1011 13
1001 14
1000 15

1101
1111
1110
1010
101 1
1001
1000

FIGURE 2.2 The process of obtaining a 4-bit Gray code from a 3-bit Gray code.

Now, removal of the plane mirror will result in a stack of 2-bit Gray Code as
follows:

0 0
0 1
1 1
1 0

Here, any two adjacent bit patterns differ only in one bit. For example, the patterns
1 1 and 10 differ only in the least significant bit.

Repeating the reflection operation on the stack of 2-bit binary patterns, a 3-bit
Gray code can be obtained. Two adjacent binary numbers differ in only one bit. The result
is shown in Figure 2.1.

Applying the reflection process to the 3-bit Gray code, 4-bit Gray Code can be
obtained. This is shown in Figure 2.2.

The Gray code is useful in instrumentation systems to digitally represent the
position of a mechanical shaft. In these applications, one bit change between characters
is required. For example, suppose that a shaft is divided into eight segments and each
shaft is assigned a number. If binary numbers are used, an error may occur while changing
segment 7 (01 1 1,) to segment 8 (1000,). In this case, all 4 bits need to be changed. If the
sensor representing the most significant bit takes longer to change, the result will be 0000,,
representing segment 0. This can be avoided by using Gray code, in which only one bit
changes when going from one number to the next.

2.3.5 Unicode
Basically, computers work with numbers. Note that letters and other characters are stored
in computers as numbers; a number is assigned to each one of them.

Before the invention of Unicode, there were numerous encoding systems for
assigning these numbers. It is not possible for a single encoding system to cover all the
languages in the world. For example, a single encoding system was not able to assign all
the letters, punctuation, and common technical symbols. Typical encoding systems can

Number Systems and Codes 37

conflict with each other. For example, two different characters can be assigned with the
same number in two different encoding systems. Also, different numbers can be assigned
the same character in two different encodings. These types of assignments of numbers
can create problems for certain computers such as servers which need to support several
different encodings. Hence, when data is transferred between different encodings or
platforms, the data may be corrupted.

Unicode avoids this by assigning a unique number to each character regardless of
the platform, the program, or the language. More information on Unicode can be obtained
at the Web site at www.unicode.org.

2.4 Fixed-Point and Floatinp-Point Remesentations

A number representation assuming a fixed location of the radix point is calledjxed-point
representation. The range of numbers that can be represented in fixed-point notation is
severely limited. The following numbers are examples of fixed-point numbers:

0110.1100,, 51.12,0, DE.2Al,
In typical scientific computations, the range of numbers is very large. Floating-point
representation is used to handle such ranges. A floating-point number is represented as
N X r P, where Nis the mantissa or significand, r is the base or radix of the number system,
and p is the exponent or power to which r is raised.

Some examples of numbers in floating-point notation and their fixed-point
decimal equivalents are:

fixed-point numbers floating-point representation
0.0167,, 0.167X 10-1

BE.2A9,, O.BE2A9 X 162
In converting from fixed-point to floating-point number representation, we

normalize the resulting mantissas; that is, the digits of the fixed-point numbers are
shifted so that the highest-order nonzero digit appears to the right of the decimal point,
and consequently a 0 always appears to the left of the decimal point. This convention is
normally adopted in floating-point number representation. Because all numbers will be
assumed to be in normalized form, the binary point is not required to be represented in
computers.

Typical 32-bit microprocessors such as the Intel 80486/Pentium and the Motorola
68040 and PowerPC contain on-chip floating-point hardware. This means that these
microprocessors can be programmed using instructions to perform operations such as
addition, subtraction, multiplication, and division using floating-point numbers.

1101.10,, o . i i o i i o i x 24

2.5 Arithmetic ODerations

As mentioned before, computers can only add. Therefore, all other arithmetic operations are
typically accomplished via addition. All numbers inside the computer are in binary form.
These numbers are usually treated internally as integers, and any fractional arithmetic must
be implemented by the programmer in the program. The arithmetic and logic unit (ALU) in
the computer’s CPU performs typical arithmetic and logic operations. The ALUs perform
fimction such as addition, subtraction, magnitude comparison, ANDing, and ORing of two
binary or packed BCD numbers. The procedures involved in executing these functions are

38 Fundamentals of Digital Logic and Microcomputer Design

discussed next to provide an understanding of the basic arithmetic operations performed in
a typical microprocessor. The logic operations are covered in Chapter 3

2.5.1 Binary Arithmetic

Addition
The addition of two binary numbers is carried out in the same way as the addition

of decimal numbers. However, only four possible combinations can occur when adding
two binary digits (bits):

augend + addend = carry sum decimal value
o + o = o 0 0
1 + 0 = 0 1 1
0 + 1 = 0 1 1
1 + 1 = 1 0 2

The following are some examples of binary addition. The corresponding decimal
additions are also included.

010 (2)
mfa

101 (5)

111 +-carry
101.11 (5,75)

+ 011.LO (3.50)
1 001.01 (9.25)

f

Addition is the most important arithmetic operation in microprocessors because
the operations of subtraction, multiplication, and division as they are performed in most
modern digital computers use only addition as their basic operation.

The addition of two unsigned numbers is performed in the same way as illustrated
above. Also, the addition of two numbers in the sign-magnitude form is performed in the
same manner as ordinary arithmetic. For example, if both numbers have the same signs,
the two numbers are added and the common sign is assigned to the result. On the other
hand, if the numbers have opposite signs, the number with smaller magnitude is subtracted
from the number with larger magnitude and the result is assigned with the sign of the
number with larger magnitude. For example, (-14) + (+18) = + (18 - 14) = +4. This is
performed by subtracting the smaller magnitude 14 from the higher magnitude 18 and the
sign of the larger magnitude 18 (+ in this case) is assigned to the result. The same rules
apply to binary numbers in sign-magnitude form.

Subtraction
As mentioned before, computers can usually only add binary digits; they cannot
directly subtract. Therefore, the operation of subtraction in microprocessors
is performed using the operation of addition using complement arithmetic. In
general, the b’s complement of an m-digit number, M is defined as bm -M for
M f 0 and 0 for M =O. Note that for base 10, b =10 and 10” is a decimal number with
a 1 followed by m 0’s. For example, lo4 is 10000; 1 followed by four 0’s. On the other
hand, b =2 for binary and 2m indicates 1 followed by m 0’s. For example, 2) means 1000
in binary.

The (b - 1)’s complement of an m-digit number, M is defined as (bm - 1)-M.

Number Systems and Codes 39

Therefore, the b’s complement of an rn-digit number, M can be obtained by adding 1 to
its (b - 1)’s complement. Next, let us illustrate the concept of complement arithmetic by
means of some examples. Consider a 4-digit decimal number, 5786. In this case, b =10 for
base 10 and rn =4 since there are four digits.

10’s complement of 5786 =lo4 -5786 =10000 -5786 =4214
Now, let us obtain 10’s complement of 5786 using (10 - 1)’s or 9’s complement

Hence, 10’s complement of 5786 = 9’s complement of 5786 + 1 = 4213 + 1 =

Next, let us determine the 2’s complement of a 3-bit binary number, 010. In this

2’s complement of 010 = 23 -010 =lo00 -010.
Using paper and pencil method, the result of subtraction can be obtained as follows:

arithmetic as follows: 9’s complement of 5786 = (lo4 - 1)-5786 =9999 -5786 =4213

4214.

case, b = 2 for binary and rn = 3 since there are three bits in the number.

1000,
-0 10,
110,
-

Note that in the above, 110, is -2 in decimal when interpreted as a signed number.
Therefore, 2’s complement of a number negates the number being complemented. This
will be explained later in this section.

The 2’s complement of 010 can be obtained using its 1’s complement arithmetic
as follows:

1’s complement of 010 = (23 - 1)-010 =111 -010 =lo1
2’s complement of 101 = 101 +l =110

From the above procedure for obtaining the 1’s complement of 010, it can be
concluded that the 1’s complement of a binary number can be achieved by subtracting each
bit of the binary number from 1. This means that when subtracting a bit (0 or 1) from 1,
one can have either 1 -0 =I or 1 - 1 =O; that is, the 1’s complement of 0 is 1 and the 1’s
complement of 1 is 0. In general, the 1 ’s complement of a binary number can be obtained
by changing 0’s to 1’s and 1 ’s to 0’s.

The procedure for performing X-Y (both X and Y are in base 2) using 1’s
complement can be performed as follows:

Step 1. Add the minuend X to the 1’s complement of the subtrahend Y.
Step 2. Check the result in step 1 for a carry. If there is a cam, add 1 to the least

significant bit to obtain the result. If there is no carry, take the 1’s complement of the
number obtained in step 1 and place a negative sign in front of the result.

For example, consider two 6-bit numbers (arbitrarily chosen), X = 0 100 1 1 , = 19,,
and Y = 110001, = 49,,. X-Y= 19 - 49 = -30 in decimal. The operation X-Y using 1’s
complement can be performed as follows:

x = 01001 1
Add 1’s complement of Y = 001 110

10000 1

Since there is no carry, Result = - (1’s Complement of 100001) = -011110,=
-30,,. Next consider, X = 101100, = 44,, and Y = 011000, = 24,,. In decimal, X-Y =

40 Fundamentals of Digital Logic and Microcomputer Design

44-24 = 20.
Using 1 ’s complement, X-Y can be obtained as follows:

x = 101 100
Add 1’s Complement of Y = 1001 1 1

Carry+l 010011
Since there is a carry, Result = 0 100 1 1 + 1 = +O 10 100, = + 20, .
Next, let us describe the procedure of subtracting decimal numbers using addition.

This process requires the use of the 10’s complement form. The 10’s complement of a
number can be obtained by subtracting the number from 10.

Consider the decimal subtraction 7 - 4 = 3. The 10’s complement of 4 is
10 - 4 = 6. The decimal subtraction can be performed using the lo’s complement addition
as follows:

minuend 7
10’s complement of subtrahend + - 6

/ I 3
ignore final carry of 1 to obtain
the subtraction result of 3.

When a larger number is subtracted from a smaller number, there is no carry to
be discarded. Consider the decimal subtraction 4 -7 =-3. The 10’s complement of 7 is
10 -7 = 3.
Therefore,

minuend 4
10’s complement of subtrahend - + 3

/ 7
no h a 1 carry

When there is no final carry, the final answer is the negative ofthe lo’s complement
of 7. Therefore, the correct result of subtraction is -(lo-7) = -3.

The same procedures can be applied for performing binary subtraction. In the case
of binary subtraction, the twos complement of the subtrahend is used.

As mentioned before, the twos complement of a binary number is obtained by
replacing each 0 with a 1 and each 1 with a 0 and adding 1 to the resulting number. The
first step generates a ones complement or simply the complement of a binary number. For
example, the ones complement of 100 10 10 1 is 0 1 10 101 0. Note that the ones complement
of a binary number can be obtained by using inverters; eight inverters are required for
generating ones complement of an %bit number.

The twos complement of a binary number is formed by adding 1 to the ones
complement of the number. For example, the twos complement of 10010101 is found as
follows:

binary number 10010101
1’s complement 01 101010

add 1 + 1
2’s complement 01 10101 1

Now, using the twos complement, binary subtraction can be camed out. Consider the

Number Systems and Codes

following subtraction using the normal (pencil and paper) procedure:

41

minuend 0101 (5)
subtrahend -0011 (-3)

result 0010, = 2, ,
Using the twos complement subtraction,

minuend 0101
1 10 1

/ 10010

2's complement of subtrahend

discard final carry

The final answer is 00 10 (decimal 2).

Consider another example. Using pencil and paper method:

minuend 0101 (5)
subtrahend - 1001 (-9)

result - 0100 (-4)
~-

Using the twos complement,

minuend 0101
01 1 1 2's complement of subtrahend

Y 1 l o o
no final carry

Therefore, the final answer is -(twos complement of 1 100) = -0100, which is
-4 in decimal.

Computers typically handle signed numbers by using the most significant bit of
a number as the sign bit. If this bit is zero, the number is positive; if this bit is one, the
number is negative. Computers use twos complement of the number to represent negative
binary numbers and obtain the sign of the result from the most significant bit. However,
computers perform ones complement operation on the final carry in order to reflect the
true borrow. This is useful for multiprecision subtraction. Also, in the paper and pencil
method, the sign of the result of binary subtraction using twos complement can be obtained
by utilizing either the most significant bit of the result or the ones complement of the final
carry.

For example, the number +22,, can be represented using 8 bits as:

42 Fundamentals of Digital Logic and Microcomputer Design

0 00101 102
w

sign bit
(positive)

Hence,
twos complement of + 22 10

-2210 = 1 1101010

sign bit
(negative)

v

We now show the procedures for carrying out the addition and subtraction in

Examples of arithmetic operations of the signed binary numbers are give below.

1. Both augend and addend are positive:

computers using twos complement arithmetic.

Assume 5 bits to represent each number.

0 0101 +5 augend
+3 addend 0 0011 - 1 - 1 -

0 1000 +8 u, sign bits are all positive

2 . Augend is positive, addend is negative:

+2
/11 w:gnbits

ignore final carry

Note that the twos complement of 3 is 1 1 101.
Consider another example:

+3 augend
-5 addend

/ sign bits
no final carry

The result is the twos complement of 11 110, which is 00010, and therefore, the

3. Both augend and addend are negative:
final answer is -2,0.

Number Systems and Codes 43

augend [I:] addend
2's complement of 3
2's complement of 5 -

(-8)
sign bits

ignore final carry

Therefore, the result in binary is 11000. Since the most significant bit is 1, the
result is negative. Hence, the result in decimal will be -(twos complement of llOOO),
which is -8,,,.

4. The augend and addend are equal with opposite signs:

2's complement of 3 = 1 1101 au end
3 = 0 0011 _. ad8end k sign bits 0

i ' l O O0O0
ignore final carry

The final answer is zero.
In all these cases, the sign bit of each of the numbers is conceptually isolated from

the number itself. The subtraction operation performed here is similar to twos complement
subtraction. For example, when subtracting the subtrahend from the minuend using twos
complement, the subtrahend is converted into its twos complement along with the sign
bit. If the sign bit of the subtrahend is 1 (for negative subtrahend), its twos complement
converts the sign bit from 1 to 0. To perform the subtraction, the twos complement of the
subtrahend is added to the minuend. The sign bit of the result indicates whether the answer
is positive or negative.

However, an error (indicated by overflow in a microprocessor) may occur while
performing twos complement arithmetic. The overflow arises from the representation of
the sign flag by the most significant bit of a binary number in signed binary operation. The
computer automatically sets an overflow bit to 1 if the result of an arithmetic operation
is too big for the computer's maximum word size; otherwise it is reset to 0. To clearly
understand the concept of overflow, consider the following examples for 8-bit numbers.
Let C, be the carry out of the most significant bit (sign bit) and C, be the carry out of the
previous (bit 6) data bit (seventh bit). We will show by means of numerical examples that
as long as C, and C, are the same, the result is always correct. If, however, C, and C, are
different, the result is incorrect and sets the overflow bit to 1. Now consider the following
cases.
Case 1. C, and C, are the same.

44 Fundamentals of Digital Logic and Microcomputer Design

0 0 0 0 0 1 1 0 0616
O O O l O l O Q -16

/ o 0 0 0 1 1 0 1 0 11416

c 7 = 0 AJ +
c6= 0

Therefore when C, and C, are either both 0 or both 1, a correct answer is
obtained.

Case 2. C, and C, are different.

C, = 1 and C, = 0 give an incorrect answer because the result shows that the
addition of two positive numbers is negative.

C, = 0 and C, = 1 provide an incorrect answer because the result indicates that the
addition of two negative numbers is positive. Hence, the overflow bit will be set to zero if
the carries C, and C, are the same, that is, if both C, and C, are either 0 or 1. On the other
hand, the overflow flag will be set to 1 if the carries C, and C, are different. The answer is
incorrect when the overflow bit is set to 1. Thus,

Overflow = C, 0 C,.
Note that the symbol 0 represents exclusive-OR logic operation. Exclusive-OR

means that when two inputs are the same (both one or both zero), the output is zero. On the
other hand, if two inputs are different, the output is one. The overflow can be considered
as the output while C, and C, are the two inputs. The exclusive-OR operation is covered in
Chapter 3.

When performing signed arithmetic using pencil and paper, one must consider the
overflow bit to ensure that the result is correct. An overflow of one after a signed operation

Number Systems and Codes 45

indicates that the result is too large to be accommodated in the number of bits assigned.
One must increase the number of bits for the correct result.

Examale 2.3
Perform the following signed operations and comment on the results. Assume twos
complement numbers.
(a)
(b)

A = 1010,, B = 0100,. Find A - B.
Perform (-3,0) - (-2,0) using twos complement and 4 bits.

Solution

(a) The most significant bit of A is 1, so A is a negative number whereas B is a
positive number.

A = 1 0 1 0
Add 2's complement of B = + 1 1 0 0 -

c3 = 1 aJ1 o = 6 --lolo

c2 = o

Because C, and C, are different, there is an overflow and the result is incorrect.
Four bits are too small to hold the correct answer. If we increase the number of
bits for A and B to 5, the correct result can be obtained as follows:

A = 1 1 0 1 0 2
Add 2's complement of B = + 1 1 1 0 O2

The result is correct because C, and C, are the same. The most significant bit of the result
is 1. This means that the result is negative. Therefore, to express the result in base- 10, one
must take the twos complement and convert the binary number to decimal and place a
negative sign in front of it. Thus, twos complement of 101 10, = -01010, = -

- 3 10 = 2's complement of+ 3 10
(b)

= 11012

- 2 10 = 2's complement of + 2 1 0

= 11102

+A1 -110
c3 = o

CZ = o

C, and C, are the same, so the result is correct. The most significant bit of the

46 Fundamentals of Digital Logic and Microcomputer Design

result is 1. This means that the result is negative. To find the result in decimal, one
must take the twos complement of the result and place a negative sign in front of
it. Twos complement of 1 11 1 = - 1 ,,

Dividend

7 10

Multiplication of Unsigned Binary Numbers
Multiplication of two binary numbers can be carried out in the same way as is done with
the decimal numbers using pencil and paper. Consider the following example:

Subtraction Divisor Counter
Result

310 1-3=4 1
4-3=1 1 + 1 = 2

Multiplicand + 01 10 (610)
Multiplier P 0101 X (510)

K O 7
Ooo0 [partial products

0110
0000)

3. Final product

Several multiplication algorithms are available. Multiplication of two unsigned
numbers can be accomplished via repeated addition. For example, to multiply 4,, by 3,0,
the number 4,, can be added twice to itself to obtain the result, 12,,.

Division of Unsigned Binary Numbers
Binary division is carried out in the same way as the division of decimal numbers. As an
example, consider the following division:

110 t- Quotient = 610

0 1 1) 1 0 1 o O L Dividend = 20 ,o
3 011

Divisor = 310 -
loo+---- Partial Remainders
0 1 1
010

Remainder = 2

6 +- quotient
3)20 dividend

18 - -remainder

Division between unsigned numbers can be accomplished via repeated subtraction.
For example, consider dividing 7,, by 3,, as follows:

Quotient = Counter value = 2
Remainder = subtraction result = 1

Here, one is added to a counter whenever the subtraction result is greater than the

Number Systems and Codes 47

divisor. The result is obtained as soon as the subtraction result is smaller than the divisor.

2.5.2 BCD Arithmetic
Many computers have instructions to perform arithmetic operations using packed BCD
numbers. Next, we consider some examples of packed BCD addition and subtraction.

BCD Addition
The two cases that may occur while adding two packed BCD numbers are considered next.
Consider adding packed BCD numbers 25 and 33:

25 0010 0101
+33 001 1 001 1

58 0101 1000
In this example, none of the sums of the pairs of decimal digits exceeded 9; therefore,
no decimal carries were produced. For these reasons, the BCD addition process is
straightforward and is actually the same as binary addition.

Now consider the addition of 8 and 4 in BCD:

8 0000 1000
+4 0000 0100
12 0000 1100 t invalid code group for BCD

The sum 1 100 does not exist in BCD code. It is one of the six forbidden or invalid
4-bit code groups. This has occurred because the sum of two digits exceeds 9. Whenever
this occurs, the sum has to be corrected by the addition of 6 (01 10) to skip over the six
invalid code groups. For example,

8 0000 1000
+4 0000 0100
12 0000 1100 invalid sum

+oooo 01 10 add 6 for correction
000 1 0010 BCD for 12 - -

1 2

As another example, add packed BCD numbers 56 and 81:

56 0101 01 10 BCD for 56
+81 1000 0001 BCD for 81
137 1101 01 11 invalid sum in 2nd digit

+0110 add 6 for correction
001 1 0111 - - 000 1 -

1 3 7 t correct answer 137

Therefore, it can be concluded that addition of two BCD digits is correct if the
binary sum is less than or equal to 1001 (9 in decimal). A binary sum greater than 1001,
results into an invalid BCD sum; adding 01 10, to an invalid BCD sum provides the correct
sum with an output carry of 1. Furthermore, addition of two BCD digits (each digit having
a maximum value of 9) along with carry will require correction if the sum is in the range
16 decimal through 19 decimal. It can be concluded that a correction is necessary for the
following:
i) If the binary sum is greater than or equal to decimal 16 (This will generate a carry of
one)
ii) If the binary sum is 10 10, through 1 1 1 1 ,.

48 Fundamentals of Digital Logic and Microcomputer Design

For example, consider adding packed BCD numbers 97 and 39:

1 1 1 +Intermediate Carries
97 1001 0111 BCD for 97

+39 001 1 1001 BCD for 39
136 1101 0000 invalid sum

+0110 +0110 add 6 for correction
001 1 01 10 u - 000 1

4-J
I 3 6 t correct answer 136

BCD Subtraction
Subtraction of packed BCD numbers can be accomplished in a number of different ways.
One method is to add the 10’s complement of the subtrahend to the minuend using packed
BCD addition rules, as described earlier.

One means of finding the 10’s complement of a d-digit packed BCD number N
is to take the twos complement of each digit individually, producing a number Nl. Then,
ignoring any carries, add the d-digit factor M to N,, where the least significant digit of M is
10 10 and all remaining digits of A4 are 1001 .

As an example, consider subtracting 26,, from 84,, using BCD subtraction. This
can be accomplished as follows:

Now, the 10’s complement of 26,, can be found according to the rules by
individually determining the twos complement of 2 and 6, adding the 10’s complement
factor, and discarding any carries. The twos complement of 2 is 11 10, and the twos
complement of 6 is 10 10. Therefore,

2’s complement of each digit of 2610 1110 1010
addition factor to find 10’s complement +loo1 1010

0100

4
+ 10’s complement of 2610

ignore these carries

10’s complement of 26,, 0111 0100
8410 + 1000 0100

1111 1000
BCD correction factor +0110

1000

8
+

\
ignore carry

Therefore, the final answer is 58,,.

2.5.3
In many cases, the word length of a particular microprocessor may not be large enough
to represent the desired magnitude of a number. Suppose, for example, that numbers in
the range from 0 to 65,535 are to be used in an 8-bit microprocessor in binary addition

Multiword Binary Addition and Subtraction

Number Systems and Codes 49

and subtraction operations using the twos complement number representation. This can be
accomplished by storing the 16-bit numbers each in two 8-bit memory locations. Addition
or subtraction of the two 16-bit numbers is implemented by adding or subtracting the
lower 8 bits of each number, storing the result in 8-bit memory location or register, and
then adding the two high-order parts of the number with any carry or borrow generated
from the first addition or subtraction. The latter partial sum or difference will be the high-
order portion of the result. Therefore, the two 8-bit operations together comprise the 16-bit
result.

Here are some examples of 16-bit addition and subtraction.

16-Bit Addition
upper half of the lower half of the

16-bit number 16-bit number - -
0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0

+ 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1
1 1 1 1 intermediate

carries- 1 1 1 m m
high byte ofthe low byte of the

answer answer

The low-order 8-bit addition can be computed by using the microprocessor's ADD
instruction and the high-order 8-bit sum can be obtained by using the ADC (ADD with
carry) instruction in the program.

16-Bit Subtraction
Consider 23A616 - 124.416 = 115c16.

hgh byte 23 --
0 0 1 0 0 0 1 1 1 0 1 0 0 1 l o

1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1's complement
Of 124A16

ignore this W W d W
c a w 1 1 5 C

low byte A6

add 1 to find
2's complement

2 1 0 0 0 1 0 0 0 1 O 0 of124A16

The low-order 8-bit subtraction can be obtained by using SUB instruction of
the microprocessor, and the high-order 8-bit subtraction can be obtained by using SBB
(SUBTRACT with borrow) instruction in the program.

2.6 Error Correction and Detection

In digital systems, it is possible that the transmitted information is not received correctly.
Note that a computer is a digital system in which information transfer can take place in
many ways. For example, data may be moved from a CPU register to another device or
vice versa. When the transmitted data is not received correctly at the receiving end, an
error occurs. One possible cause for such errors is noise problems during transmission. To
avoid these problems, error detection and correction may be necessary. In a digital system,
an error occurs when a 0 is changed to a 1 and vice versa. Correction of this error means

50 Fundamentals of Digital Logic and Microcomputer Design

1 1 1 0 0

replacement of a 1 with 0 and vice versa. The reliability of digital data depends on the
methods employed for error detection and correction.

The simplest way to detect the presence of an error is by adding a single bit, called
the “parity” bit, to the message bits and then transmitting the message along with the parity
bit. The parity bit is usually computed in two ways: even parity and odd parity. In the even
parity method, the parity bit is added in such a way that after its inclusion, the number of
1’s in the message together with the parity bit is an even number. On the other hand, in
an odd parity scheme, the parity bit is added in such a way that the number of 1’s in the
message and the parity bit is an odd number. For example, suppose that the message to be
transmitted is 0 1 10. If even parity is used by the transmitting computer, the transmitted data
along with the parity bit will be 001 10. On the other hand, if odd parity is used, the data
to be transmitted will be 101 10. The parity computation can be implemented in hardware
by using exclusive-OR gates (to be discussed in Chapter 3). Usually for a given message,
the parity bit is generated using either an even or odd parity scheme by the transmitting
computer. The message is then transmitted along with the parity bit. At the receiving end,
the parity is checked by the receiving computer. If there is a discrepancy, the data received
will obviously be incorrect. For example, suppose that the message bits are 1 101. The even
parity bit for this message is 1. The transmitted data will be

Even Message

Bit
Parity

Suppose that an error occurs in the least significant bit; that is mO is changed from
1 to 0 during transmission. The received data will be:

The receiving computer performs a parity check on this data by counting the
number of ones and finds it to be an odd number, three. Therefore, an error is detected.

With a single parity bit, an error due to a single bit change can be detected. Errors
due to 2-bit changes during transmission will go undetected. In such situations, multiple
parity bits are used. One such technique is the “Hamming code,” which uses 3 parity bits
for a 4-bit message.

OUESTIONS AND PROBLEMS

2.1 Convert the following unsigned binary numbers into their decimal equivalents:
(a) 01 110101, (b) 1101.101, (c) 1000.111,

2.2 Convert the following numbers into binary:
(a) 15210 (b) 34310

2.3 Convert the following numbers into octal:
(a) 18431, (b) 17661,

Number Systems and Codes 51

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.1 1

2.12

2.13

2.14

2.15

2.16

2.17

Convert the following numbers into hexadecimal
(a) 1987,, (b) 3072,,

Convert the following binary numbers into octal and hexadecimal numbers:
(a) 110101 1100101 (b) 1100001 11001 1000001 1

Using 8 bits, represent the integers -48 and 52 in
(a) sign magnitude form
(b) ones complement form
(c) twos complement form

Identify the following unsigned binary numbers as odd or even without
converting them to decimal: 1 1001 100,; 00 100 1 O02; 0 1 1 1 100 1 ,.

Convert 532.372,, into its binary equivalent.

Convert the following hex numbers to binary: 15FD,,; 26EA,,.

Provide the BCD bit encodings for the following decimal numbers:
(a) 11264 (b) 8192

Represent the following numbers in excess-3:
(a) 678 (b) 32874 (c) 61440

What is the excess-3 equivalent of octal 1543?

Represent the following binary numbers in BCD:
(a) 0001 1001 0101 0001
(b) 01 10 0001 0100 0100 0000

Express the following binary numbers into excess-3 :
(a) 0101 1001 0111
(b) 0110 1001 0000

Perform the following unsigned binary addition. Include the answer in decimal.
1 0 1 1.01

+o110.011

Perform the indicated arithmetic operations in binary. Assume that the numbers
are in decimal and represented using 8 bits. Express the results in decimal. Use the
twos complement approach for carrying out all subtractions.

@) 34 (4 34
+28 3

Using twos complement, perform the following subtraction: 3AFA,, - 2FlE,,.
Include the answer in hex.

52 Fundamentals of Digital Logic and Microcomputer Design

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

Using 9’s and 10’s complement arithmetic, perform the following arithmetic
operations:
(a) 254,,- 132,, (b) 783,,-807,,

Perform the following arithmetic operations in binary using 6 bits. Assume that
all numbers are signed decimal. Use twos complement arithmetic. Indicate if
there is any overflow.

(4 14
- + 8

(4 (-24) (el 19 (0 (-17)
+o -1-16)

Perform the following unsigned multiplication in binary using a minimum number
of bits required for each decimal number using the pencil and paper method:

12 x 52

Perform the following unsigned division in binary using a minimum number of
bits required for each decimal number:

3 / 1 4

Obtain the bit encodings of the following numbers and then perform the indicated
arithmetic operations using BCD:

(a) 54 (b) 782 (c) 82
+48 +219 -58

Find the odd parity bit for the following binary message to be transmitted:
101 10000.

Repeat Problem 2.20 using repeated addition.

Repeat Problem 2.2 1 using repeated subtraction.

If a transmitting computer sends the 8-bit binary message 1 10001 1 1 using an even
parity bit. Write the 9-bit data with the parity bit in the most significant bit. If the
receiving computer receives the 9-bit data as 1100001 11, is the 8-bit message
received correctly? Comment.

