
10
MOTOROLA

MC68000
This chapter describes the basic features of Motorola’s MC68000 (1 6-bit microprocessor).
The addressing modes, instruction set, I/O, and system design concepts of the MC68000
are covered in detail.

Motorola’s original MC68000 was designed using HMOs technology. Motorola’s
MC68000 is replaced it by a lower power MC68HC000, which is designed using HCMOS
technology. The MC68HC000 is equivalent to the MC68000 in all aspects except that
the MC68HC000 is designed using HCMOS whereas the MC68000 was designed using
HMOs technology. This means that unlike the MC68000, the unused inputs of the
MC68HC000 should not be kept floating, they should be connected to +5 V, ground, or
outputs of other chips as appropriate. Also, note that an HCMOS output can drive 10
LSTTL inputs. However, an LSTTL output is not guaranteed to provide HCMOS input
voltage. Hence, the HCT gates may be required when driving HC inputs. The MC
68HC000 has the same registers, addressing modes, instruction set, pins and signals, and
I/O capabilities as the MC68000. The term “MC68000” will be used interchangeably with
the term “MC68HC000” throughout this chapter.

The MC68HC000, implemented in HCMOS, is applicable to designs for which
the following considerations are relevant:

The MC68HC000 completely satisfies the input/output drive requirements of HCMOS
logiv devices.
The MC68HC000 provides an order of magnitude reduction in power dissipation
when compared to the HMOs MC68000.
The minimum operating frequency of the MC68HC000 is 4 MHz.

Although the MC68HC000 is implemented with input protection diodes, care should be
exercised to ensure that the maximum input voltage specification (-0.3 V to +6.5 V) is not
exceeded.

10.1 Introduction

The MC68000 is Motorola’s first 16-bit microprocessor. Its address and data registers
are all 32 bits wide, and its ALU is 16 bits wide. The 68000 requires a single 5-V supply.
The processor can be operated from a maximum internal clock frequency of 25 MHz. The
68000 is available in several frequencies, inc1udin.g 4, 6, 8, 10, 12.5, 16.67, and 25 MHz.
The 68000 does not have on-chip clock circuitry and therefore, requires an external crystal
oscillator or clock generatoddriver circuit to generate the clock.

The 68000 has several different versions, which include the 68008, 68010, and
68012. The 68000 and 68010 are packaged either in a 64-pin DIP (dual in-line package)

457

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

458 Fundamentals of Digital Logic and Microcomputer Design

with all pins assigned or in a 68-pin quad pack or PGA (pin grid array) with some unused
pins. The 68000 is also packaged in 68-terminal chip carrier. The 68008 is packed in a 48-
pin dual in-line package, whereas the 68012 is packed in an 84-pin grid array. The 68008
provides the basic 68000 capabilities with inexpensive packaging. It has an 8-bit data bus,
which facilitates the interfacing of this chip to inexpensive %bit peripheral chips. The
680 10 provides hardware-based virtual memory support and efficient looping instructions.
Like the 68000, it has a 16-bit data bus and a 24-bit address bus. The 68012 includes all
the 6801 0 features with a 3 1 -bit address bus. The clock frequencies of the 68008, 6801 0,
and 68012 are the same as those of the 68000. The following table summarizes the basic
differences among the 68000 family members:

68000 68008 68010 68012

Data size (bits) 16 8 16 16

Address bus size (bits) 24 20 24 31

Virtual memory No No Yes Yes

Control registers None None 3 3

Directly addressable 16MB 1 M B 16MB 2 G B
memory (bytes)

To implement operating systems and protection features, the 68000 can be operated
in two modes: supervisor and user. The supervisor mode is also called the “operating
system mode.” In this mode, the 68000 can execute all instructions. The 68000 operates in
one of these modes based on the S bit of the status register. When the S bit is 1, the 68000
operates in the supervisor mode; when the S bit is 0, the 68000 operates in the user mode.

Table 10.1 lists the basic differences between the 68000 user and supervisor
modes. From Table 10.1, it can be seen that the 68000 executing a program in the supervisor
mode can enter the user mode by modifying the S bit of the status register to 0 via an
instruction. Instructions such as MOVE to SR, AND1 to SR, and EORI to SR can be used to
accomplish this. On the other hand, the 68000 executing a program in the user mode can
enter the supervisor mode only via recognition of a trap, reset, or interrupt. Note that, upon
hardware reset, the 68000 operates in the supervisor mode and can execute all instructions.
An attempt to execute privileged instructions (instructions that can only be executed in the
supervisor mode) in the user mode will automatically generate an internal interrupt (trap)
by the 68000.

The logical level in the 68000 hnction code pin (FC2) indicates to the external
devices whether the 68000 is currently operating in the user or supervisor mode. The
68000 has three function code pins (FC2, FC1, and FCO), which indicate to the external
devices whether the 68000 is accessing supervisor prograddata or user prograddata or
performing an interrupt acknowledge cycle.

The 68000 can operate on five different data types: bits, 4-bit binary-coded
decimal (BCD) digits, bytes, 16-bit words, and 32-bit long words. The 68000 instruction
set includes 56 basic instruction types. With 14 addressing modes, 56 instructions, and
5 data types, the 68000 contains over 1000 op-codes. The fastest instruction is one that
copies the contents of one register into another register. It is executed in 500 ns at an 8-
MHz clock rate. The slowest instruction is 32-bit by 16-bit divide, which in executed in
21.25 ps at 8 MHz. The 68000 has no I/O instructions. Thus, the I/O is memory mapped.

Motorola MC6800

- DO

- D1 Eight - - D2 data
-

D3 registers -
-

-
- D4

- - D5

- - D6
- - D7

459

TABLE 10.1 68000 User and Supervisor Modes

Supervisor Mode User Mode
~ ~ ~~~ ~

Enter mode by Recognition of a trap, reset, or
interrupt

Clearing status bit S

System stack pointer Supervisor stack pointer User stack pointer

Other stack pointers User stack pointer registers, AO-A6
and registers AO-
A6

STOP under Supervisor mode
RESET
MOVE to/fiom SR
AND1 to/from SR
OR1 to/from SR
E O R I to/from SR
MOVE USP to (An)
MOVE to USP
RTE

Instructions available All including: All except those listed

Function code pin FC2 1 0

Hence, MOVE instructions between a register and a memory address are also used as I/O
instructions. The MC68000 is a general-purpose register-based microprocessor. Although
the 68000 PC is 32 bits wide, only the low-order 24 bits are used. Because this is a byte-

I I Programcounter

15 8.7 0

FIGURE 10.1 MC68000 programming model

460 Fundamentals of Digital Logic and Microcomputer Design

addressable machine, it follows that the 68000 microprocessor can directly address 16 MB
of memory. Note that symbol [3 is used in the examples throughout this chapter to indicate
the contents of a 68000 register or a memory location

T

10.2 68000 RePisters

S 12 I1 10 X N 2 V C

Figure 10.1 shows the 68000 registers. This microprocessor includes eight 32-bit data
registers (DO-D7) and nine 32-bit address registers (AO-A7 plus A7’). Data registers
normally hold data items such as 8-bit bytes, 16-bit words, and 32-bit long words. An
address register usually holds the memory address of an operand; AO-A6 can be used as
16- or 32-bit. Because the 68000 uses 24-bit addresses, it discards the uppermost 8 bits
(bits 24-3 1) while using the address registers to hold memory addresses. The 68000 uses
A7 or A7’ as the user or supervisor stack pointer (USP or SSP), respectively, depending
on the mode of operation.

The 68000 status register is composed of two bytes: a user byte and a system byte
(Figure 10.2). The user byte includes typical condition codes such as C, V, N, Z, and X.
The meaning of the C , V, N, and Z flags is obvious. Let us explain the meaning of the X
bit. Note that the 68000 does not have any ADDC or SUBC instructions; rather, it has ADDX
and SUBX instructions.

Because the flags C and X are usually affected in an identical manner, one can use
ADDX or SUBX to reflect the carries or borrows in multiprecision arithmetic. The contents
of the system byte include a 3-bit interrupt mask (12, 11, 10), a supervisor flag (S), and a
trace flag (T). When the supervisor flag is 1, then the system operates in the supervisor
mode; otherwise, the user mode of operation is assumed. When the trace flag is set to 1, the
processor generates a trap (internal interrupt) after executing each instruction. A debugging
routine can be written at the interrupt address vector to display registers andor memory
after execution of each instruction. Thus, this will provide a single-stepping facility. Note
that the trace flag can be set to one in the supervisor mode by executing the instruction
ORI# $8000, SR.

The interrupt mask bits (12, 11, 10) provide the status of the 68000 interrupt pins
IPL2, IPLl and IPLO. I2 I1 I0 = 000 indicates that all interrupts are enabled. I2 I1 I0 =

11 1 indicates that all maskable interrupts except the nonmaskable interrupt (Level 7) are
disabled. The other combinations of 12, 11, and I0 provide the maskable interrupt levels.
Note that the signals on the IPL2, IPLl and IPLO pins are inverted internally and then
compared with 12,11, and 10, respectively.

-- -

-- __

System Byte User Byte
A A

/ 4 -

Motorola MC6800

Address = N
N + 2

46 1

15 8 7 0
Byte 0 Byte 1 N + 1
Byte 2 Byte 3 N + 3

Address = N
N + 2
N + 4

(a) 68000 Words Stored in Bytes (4 Bytes)
I 15 0 1

Word 0 N+1
Word 1 N + 3
Word 2 N + 5

Address = N
N + 2
N + 4
N + 6

15 0
Long word 0 (H) N+1
Long word 0 (L) N + 3
Long word 1 (H) N + 5
Long word 1 (L) N + 7

10.3 68000 Memorv Addressinp

The MC68000 supports bytes (8 bits), words (1 6 bits), and long words (32 bits) as shown
in Figure 10.3. Byte addressing includes both odd and even addresses (0, 1, 2, 3, ...),
word addressing includes only even addresses in increments of 2 (0, 2, 4, ...), and long
word addressing contains even addresses in increments of 4 (0, 4, 8, . . .). As an example
of 68000 addressing structure, consider MOVE . L DO, $5 0 6 0 8 0 . If [DO] = $07F 1248 1,
then after this MOVE, [$506080] = $07, [$506081] = $F1, [$506082] = $24, and [$506083]
= $8 1. In the 68000, all instructions must be located at even addresses for byte, word, and
long word instructions; otherwise, the 68000 generates an internal interrupt. The size of
each 68000 instruction is even multiples of a byte. This means that once the programmer
writes a program starting at an even address, all instructions are located at even addresses
after assembling the program. For byte instructions, data can be located at even or odd
addresses. On the other hand, data for word and long word instruction must be located at
even addresses; otherwise the 68000 generates an internal interrupt.

Note that in 68000 for word and long word data, the low-order address stores the
high-order byte of a number. This is called Big-endian byte ordering.

10.4 68000 Addressing Modes

The 14 addressing modes of the 68000 shown in Table 10.2 can be divided into 6 basic
groups: register direct, address register indirect, absolute, program counter relative,
immediate, and implied.

As mentioned, the 68000 has three types of instructions: no operand, single
operand, and double operand. The single-operand instructions contain the effective address
(EA) in the operand field. The EA for these instructions is calculated by the 68000 using
the addressing mode used for this operand. In the case of two-operand instructions, one of
the operands usually contains the EA and the other operand is usually a register or memory
location. The EA in these instructions is calculated by the 68000 based on the addressing

462

TABLE 10.2 68000 Addressing Modes

Fundamentals of Digital Logic and Microcomputer Design

Addressing Mode Generation Assembler Syntax
Register direct addressing

Data register direct EA = Dn Dn
Address register direct EA = An An

Register indirect EA = (An) (An)
Postincrement register indirect EA = (An), An +- An (An)+
Predecrement register indirect + N -(An)
Register indirect with offset d(An)

Address register indirect addressing

An +- An - N, EA =

EA = (An) + d,,
Indexed register indirect with (An) d(An, Ri)

offset

.

EA = (An) + (Ri) + d,
Absolute data addressing

Absolute short EA = (Next word) xxxx
Absolute long EA = (Next two x x x x x x x x

words)
Program counter relative addressing

Relative with offset EA = (PC) + d,, d
Relative with index and offset

Immediate data addressing
EA = (PC) + (Ri) + d, d(Ri)

Immediate DATA = Next word(s) #xxxx
Quick immediate Inherent data #xx

Implied addressing
Implied register EA = SR, USP, SP,

PC
Notes:
EA = effective address
An = address register

Dn = data register

Ri

SR = status register
PC = program counter
SP

= address or data register used as index
register

= active system stack pointer

USP = user stack pointer
d, = 8-bit signed offset

(displacement)
d,, = 16-bit signed offset

(displacement)
N = 1 for byte, 2 for words, and

4 for long words
() = contents of
-+ =replaces

mode used for the EA.
Some two-operand instructions have the EA in both operands. This means that

the operands in these instructions use two addressing modes. Note that the 68000 address
registers do not support byte-sized operands. Therefore, when an address register is used
as a source operand, either the low-order word or the entire long word operand is used,
depending on the operation size. When an address register is used as the destination
operand, the entire register is affected regardless of operation size. If the operation size is
a word, an address register in the destination operand is sign-extended to 32 bits after the
operation is performed. Data registers, on t5e ather hand, support data operands of byte,

Motorola MC6800 463

word, or long word size.
To identify the operand size of an instruction, the following notation is placed

after a 68000 mnemonic: .B for byte, .W or none (default) for word, and .L for long word.
For example,

10.4.1 Register Direct Addressing
In this mode, the eight data registers (DO-D7) or seven address registers (AO-A6) contain
the data operand. For example, consider ADD. W $0 0 5 0 0 0 I DO. The destination operand
of this instruction is in data register direct mode. Now, if [005000] = 0002,, and [DO.W]
= 0003,,, then after execution of ADD $ 0 0 5 0 0 0 I DO, the contents of D0.W = 0002 +
0003 = 0005. Note that in this instruction, the $ symbol is used by Motorola to represent
hexadecimal numbers. Also note that instructions are not available for byte operations
using address registers.

10.4.2 Address Register Indirect Addressing
There are five different types of address register indirect mode. In this mode, an address
register contains the effective address. For example, consider CLR . W (A 1) . If [A1 .
L]=$OOOO3000, then, after execution of CLR. W (A l) , the 16-bit contents of memory
location $003000 will be cleared to zero.

The postincrement address register indirect mode increments an address register
by 1 for byte, 2 for word, and 4 for long word after it is used. For example, consider CLR . L
(A0) +. If [AO] = 00005000,,, then after execution of CLR. L (A0) +, the 16-bit contents
of each of the memory locations 005000,, and 005002,, are cleared to zero and [AO] =
00005000 + 4 = 00005004. The postincrement mode is typically used with memory arrays
stored from LOW to HIGH memory locations. For example, to clear 1000,, words starting
at memory location 003000,, and above, the following instruction sequence can be used:

MOVE. W # $ l O O O , D O ; Load length of data into DO
M0VEA.L #$00003000,AO ; Load starting address into A0

REPEAT CLR.W (AO) + ; Clear a location pointed to
; by A0 and increment A0 by 2

SUBQ . W #1,DO ; Decrement DO by 1
BNE . B REPEAT ; Branch to REPEAT if 2 = 0;
. . . ; otherwise, go to next instruction

Note that the symbol # in the above is used by the Motorola assember to indicate
the immediate mode. This will be discussed later in this section. Also, note that C L R . W
(A0) + automatically points to the next location by incrementing A0 by 2 after clearing a

memory location.
The predecrement address register indirect mode, on the other hand, decrements

an address register by 1 for byte, 2 for word, and 4 for long word before using a register.
For example, consider CLR. W - (A O) . If [AO] = $00002004, then the content of A0 is
first decremented by 2-that is, [AO] = 00002002,,. The content of memory location
002002 is then cleared to zero. The predecrement mode is used with arrays stored from
HIGH to LOW memory locations. For example, to clear 1 000,, words starting at memory
location 0040OOl6 and below, the following instruction sequence can be used:

MOVE. W #$1000, DO ; Load length of data into DO

464 Fundamentals of Digital Logic and Microcomputer Design

M 0 V E A . L # $ 0 0 C 0 4 0 0 2 , A O ; Load starting address plus 2 into A 0
R E P E A T CLR.W - (A O) ; Decrement A0 by 2 and clear memory

; location addressed by AC
SUBQ. W #1,DC ; Decrement DO by 1
BNE . B R E P E A T ; I f 2 = 0, branch to R E P E A T
. . . ; otherwise, go to next instruction

In this instruction sequence, CLR. w - (A0) first decrements A0 by 2 and then
clears the location. Because the starting address is 004000,,, A0 must initially be loaded
with 00004002,,. It should be pointed out that the predecrement and postincrement modes
can be combined in a single instruction. A typical example is MOVE . W (A5) + , - (A3) .

The two other address register modes provide accessing of the tables by allowing
offsets and indexes to be included with an indirect address pointer. The address register
indirect with offset mode determines the effective address by adding a 16-bit signed integer
to the contents of an address register. For example, consider MOVE . W $10 (A5) , D3
in which the source operand is in address register indirect with offset mode. If [A51 =

00002000,, and [002010],, = 0014,,, then, after execution of M0VE.W $ 1 0 (A5) , D3,
register D3.W will contain 0014,,.

The indexed register indirect with offset mode determines the effective address by
adding an 8-bit signed integer and the contents of a register (data or address register) to the
contents of an address (base) register. This mode is usually used when the offset from the
base address register needs to be varied during program execution. The size of the index
register can be a signed 16-bit integer or an unsigned 32-bit value. As an example, consider
MOVE. W $ 1 0 (A4, D3 . W) , D4 in which the source is in the indexed register indirect with
offset mode. Note that in this instruction A4 is the base register and D3.W is the 16-bit
index register (sign-extended to 32 bits). This register can be specified as 32 bits by using
D3.L in the instruction, and 1 0,, is the 8-bit offset that is sign-extended to 32 bits. If [A41
= 00003000,,, [D3.W] = 0200,,, and [003210,,] = 0024,,, then this MOVE instruction will
load 0024,, into the low 16 bits of register D4.

The address register indirect with offset mode can be used to access a single table.
The offset (maximum 16 bits) can be the starting address of the table (fixed number), and
the address register can hold the index number in the table to be accessed. Note that the
starting address plus the index number provides the address of the element to be accessed
in the table. For example, consider MOVE. W $34 0 0 (A5) , D1. If A5 contains 04, then
this MOVE instruction transfers the contents of 3404 (i.e. the fifth element, 0 being the
first element) into the low 16 bits of D1. The indexed register indirect with offset mode,
on the other hand, can be used to access multiple tables. Here, the offset (maximum 8 bits)
can be the element number to be accessed. The address register pointer c2n be used to
hold the starting address of the table containing the lowest starting address, and the index
register can be used to hold the difference between the starting address of the table being
accessed and the table with the lowest starting address. For example, consider three tables,
with table 1 starting at OO2OOO,,, table 2 at 003000,,, and table 3 at 004000,,. To transfer
the seventh element (0 being the first element) in table 2 to the low 16 bits of register DO,
the instruction MOVE. W $ 0 6 (A2, D1 . W) , DO can be used, where [A21 = the starting
address of the table with the lowest address (= 002000,, in this case) and [Dl],,, 16b,,s = the
difference between the starting address of the table being accessed and the starting address
of the table with the lowest address = 003000,, - 002000,, = lOOO,,. Therefore, this MOVE
instruction will transfer the contents of address 003006,, (the seventh element in table 2)
to register DO. The indexed register indirect with offset mode can also be used to access
two-dimensional arrays such as matrices.

Motorola MC6800 465

10.4.3 Absolute Addressing
In this mode, the effective address is part of the instruction. The 68000 has two modes:
absolute short addressing, in which a 16-bit address is used (the address is sign-extended
to 24 bits before use), and absolute long addressing, in which a 24-bit address is used.
For example, consider ADD $2 0 0 0, D2 as an example of the absolute short mode. If
[$002000] = 0012,, and [D2.W] = 0010,,, then, after executing ADD $2 0 0 0, D2 , register
D2.W will contain OO22,,. The absolute long addressing mode is used when the address
size is more than 16 bits. For example, MOVE. w $ 2 4 0 0 0 0 D5 loads the 16-bit contents
of memory location 240000,, into the low 16 bits of D5. The absolute short mode includes
an address ADDR in the range of 0 s ADDR s $7FFF or $FF8000 5 ADDR s $FFFFFF.
Note that a single instruction may use both short and long absolute modes, depending on
whether the source or destination address is less than, equal to, or greater than the 16-bit
address. A typical example is MOVE . W $5 0 0 0 0 2, $ 1 0 0 0. Also, note that the absolute
long mode must be used for MOVE to or from address $008000. For example, MOVE.
W $8000,D1 will move the 16-bit contents of location $FF8000 to D1 while MOVE. W
$008000,D1 will transfer the 16-bit contents of address $008000 to D1.

10.4.4 Program Counter Relative Addressing
The 68000 has two program counter relative addressing modes: relative with offset and
relative with index and offset. In the relative with offset mode, the effective address is
obtained by adding the contents of the current PC with a signed 16-bit displacement. This
mode can be used when the displacement needs to be fixed during program execution.
Typical branch instructions such as BEQ, BRA, and BLE use the relative with offset
mode. This mode can also be used by some other instructions. For example, consider
ADD $ 3 0 (PC) D5, in which the source operand is in the relative with offset mode. Now
suppose that the current PC contents is $002000, the content of 002030,, is 0005, and the
low 16 bits of D5 contain OOlO,,. Then, after execution of this ADD instruction, D5 will
contain 0015,,.

In the relative with index and offset mode, the effective address is obtained by
adding the contents of the current PC, a signed 8-bit displacement (sign-extended to 32
bits), and the contents of an index register (address or data register). The size of the index
register can be 16 or 32 bits wide. For example, consider ADD. W $ 4 (PC, DO . W) D2.
If [D2] = 00000012,,, [PC] = 002000,,, [DO],,, = OOlO,,, and [002014] = 0002,,, then,
after this ADD, [D2],,, = 0014,,. This mode is used when the displacement needs to be
changed during program execution by modifying the content of the Index register.

An advantage of the relative mode is that the destination address is specified
relative to the address of the instruction after the instruction. Since the 68000 instructions
with relative mode do not contain an absolute address, the program can be placed anywhere
in memory which can still be excuted properly by the 68000. A program which can be
placed anywhere in memory, and can still run correctly is called a “relocatable” program.
It is a good practice to write relocatable programs.

10.4.5 Immediate Data Addressing
Two immediate modes are available with the 68000: immediate and quick immediate modes.
In immediate mode, the operand data is constant data, which is part of the instruction. For
example, consider ADDI . W #$0005, DO. If [DO.W] = 0002,,, then, after this ADDI
instruction, [DO.W] = 0002,, + 0005,, = 0007,,. Note that the # symbol is used by Motorola
to indicate the immediate mode. Quick immediate (ADD or SUBTRACT) mode allows

466 Fundamentals of Digital Logic and Microcomputer Design

Addressing Modes
Data register direct

Addressing Categor?,

X X
Data Memory Control Alterable

Address register direct
Address register indirect
Address register indirect

X
X X X X
X X X

with postincrement
Address regisiter indirect X X
with predecrement
Address register indirect
with displacement
Address register indirect
with index
Absolute short
Absolute long
Program counter with
displacement
Program counter with
index

X X X X

X X X X

X X X X
X X X X
X X X

X X X

one to increment or decrement a register or a memory location (.B, .W, .L) by a number
from 0 to 7. For example, ADDQ . B #1, DO increments the low 8-bit contents of DO by 1.
Note that immediate data, 1 is inherent in the instruction. That is, data 0 to 7 is contained in
the three bits of the instruction. Note that ADDQ.B #O,Dn is similar to NOP instruction.

10.4.6 Implied Addressing
The instructions using implied addressing mode do not require any operand, and registers
such as PC, SP, or SR are referenced in these instructions. For example, RTS returns to
the main program from a subroutine by placing the return address into PC using the PC
implicitly.

It should be pointed out that in the 68000 the first operand of a two-operand
instruction is the source and the second operand is the destination. Recall that in the case
of the 8086, the first operand is the destination and the second operand is the source.

10.5

All of the 68000 addressing modes in Table 10.2 can be further divided into four functional
categories as shown in Table 10.3.

Data Addressing Mode. An addressing mode is said to be a data addressing mode if it
references data objects. For example, all 68000 addressing modes except the address
register direct mode fall into this category.
Memory Addressing Mode. An addressing mode capable of accessing a data item
stored in memory is classified as a memory addressing mode. For example, the data
and address register direct addressing modes cannot satisfy this definition.
Control Addressing Mode. This refers to an addressing mode that has the ability to
access a data item stored in memory without the need to specify its size. For example,
all 68000 addressing modes except the following are classified as control addressing

Functional Catepories Of 68000 Addressinp Modes

Motorola Me6800 467

TABLE 10.4 Some of the 68000 Instructions affecting Conditional codes.

Instruction X N Z V C
ABCD J U J U -

ADD, ADDI, ADDQ, ADDX J J J J J
AND, AND1 - J J 0 0
ASL, ASR J J J J J
BCHG, BCLR, BSET, BTST -

CHK - J U U U
CLR - 0 1 0 0

J J J J CMP, CMPA, CMPI , CMPM -

DIVS, DIVU - J J J 0
EOR, E O R I - J J 0 0
EXT - J J 0 0

LSL, L S R J J J 0 J

MOVE (ea), (ea) -- J J 0 0

MOVE TO CCR J J J J J

MOVE TO S R J J J J J

MOVEQ - J J 0 0
MULS, MULU - J J 0 0
NBCD J U J U J

NEG, NEGX J J J J J

NOT - J J 0 0
OR, OR1 - J J 0 0

J J 0 J ROL, ROR -

ROXL, ROXR J J J 0 J

RTE, RTR J J J J J

SBCD J U J U J

S T O P J J J J J

SUB, S U B I , SUBQ, SUBX J J J J J

SWAP - J J 0 0
TAS - J J 0 0
T S T - J J 0 0

- - - J

Affected, - Not Affected, U Undefined

Note: ADDA, B,,, and RTS do not affect flags.

modes: data register direct, address register direct, address register indirect with
postincrement, address register indirect with predecrement, and immediate.
Alterable Addressing Mode. If the effective address of an addressing mode is written
into, then that mode is an alterable addressing mode. For example, the immediate and
the program counter relative addressing modes will not satisfy this definition.

10.6 68000 Instruction Set

The 68000 instruction set contains 56 basic instructions. Table 10.4 lists some of the
instructions affecting the condition codes. Appendices D and G provide the 68000
instruction execution times and the instruction set (alphabetical order), respectively.
The 68000 instructions can be classified into eight groups as follows:

468

TABLE 10.5

Fundamentals of Digital Logic and Microcomputer Design

68000 Data Movement Instructions
Instruction Size Comment

Exchange the contents of two registers. Rx or Ry can be EXG Rx, Ry

LEA (EA), An

L I N K An, #-displacement

MOVE (EA), (EA)

MOVEM reg list, (EA) or
(EA), reg list

MOVEP Dn, d (Ay) or
d (AY), Dn

MOVEQ # data, Dn

PEA (EA)

SWAP Dn

any address or data register.
No flags are affected.
The effective address (EA) is calculated using the
particular addressing mode used and then loaded into
the address register. (EA) specifies the actual data to be
loaded into An.
The current contents of the specified address register
are pushed onto the stack. After the push, the address
register is loaded from the updated SP. Finally, the 16-
bit sign-extended displacement is added to the SP. A
negative displacement is specified to allocate stack.
(EA)s are calculated by the 68000 using the specific
addressing mode used. (EA)s can be register or memory
location. Therefore, data transfer can take place between
registers, between a register and a memory location, and
between different memory
locations. Flags are affected. For byte-size operation,
address register direct is not allowed. An is not allowed
in the destination (EA). The source (EA) can be An for
word or long word transfers.
Specified registers are transferred to or from consecutive
memory locations starting at the location specified by
the effective address.
Two (W) or four (L) bytes of data are transferred
between a data register and alternate bytes of memory,
starting at the location specified and incrementing by 2.
The high-order byte of data is transferred first, and the
low-order byte is transferred last.
This instruction has the address register indirect with
displacement only mode.
This instruction moves the %bit inherent data into the
specified data register. The data is then sign-extended
to 32 bits.
Computes an effective address and then pushes the 32-
bit address onto the stack.
Exchanges 16-bit halves of a data register.

UNLK An Unsized An -, SP; (SP) + -+ An

(EA) in LEA (EA), An can use all addressing modes except Dn, An, (An) +, - (An),
and immediate.
Destination (EA) in MOVE (EA), (EA) can use all modes except An, relative, and
immediate.
Source (EA) in MOVE (EA), (EA) can use all modes.
Destination (EA) in MOVEM reg list, (EA) can use all modes except, An, (An)+, relative,
and immediate.
Source (EA) in MOVEM (EA), reg list can use all modes except Dn, An,- (An), and
immediate.
(EA) in PEA (EA) can use all modes except, An, (An)+, - (An), and immediate.

Motorola MC6800 469

1.
2.
3.
4.
5.
6.
7.
8.

Data movement instructions
Arithmetic instructions
Logical instructions
Shift and rotate instructions
Bit manipulation instructions
Binary-coded decimal instructions
Program control instructions
System control instructions

10.6.1 Data Movement Instructions
These instructions allow data transfers from register to register, register to memory, memory
to register, and memory to memory. In addition, there are also special data movement
instructions such as MOVEM (move multiple registers). Typically, byte, word, or long word
data can be transferred. A list of the 68000 data movement instructions is give11 in Table
10.5. Let us now explain the data movement instructions.

MOVE Instructions
The format for the basic MOVE instruction is MOVE. S (EA), (EA), where S = L,

W, or B. (EA) can be a register or memory location, depending on the addressing mode
used. Consider MOVE . B D 3 I D1, which uses the data register direct mode for both the
source and destination. If [D3.B] = 0516 and [Dl.B] = Ol, , , then, after execution of this
MOVE instruction, [DI.B] = 05,, and [D3.B] = 05,,.

There are several variations of the MOVE instruction. For example MOVE . W CCR,
(EA) moves the contents of the low-order byte of SR (i.e., CCR) to the low-order byte of
the destination operand; the upper byte of SR is considered to be zero. The source operand
is a word. Similarly, MOVE. W (EA), CCR moves an 8-bit immediate number, or low-order
%bit data, from a memory location or register into the condition code register; the upper
byte is ignored. The source operand is a word. Data can also be transferred between (EA)
and SR or USP (A7) using the following privileged instructions:

MOVE. W (EA), SR
MOVE. W SR, (EA)
MOVE. L A7, An
MOVE. L An, A7

MOVEA . W or. L (EA), An can be used to load an address into an address register.
Word-size source operands are sign-extended to 32 bits. Note that (EA) is obtained by
using an addressing mode. As an example, MOVEA. W # $2 0 0 0, A5 moves the 16-bit
word 2000,, into the low 16 bits of A5 and then sign-extends 2000,, to the 32-bit number
00002000,,. Note that sign extension means extending bit 15 of 2OOO,, from bit 16 through
bit 31. As mentioned before, sign extension is required when an arithmetic operation
between two signed binary numbers of different sizes is performed. The (EA) in MOVEA
can use all addressing modes.

The MOVEM instruction can be used to push or pop multiple registers to or from
the stack. For example, M0VEM.L DO-D7/AO-A6, - (SP) saves the contents of all
eight data registers and seven address registers in the stack. This instruction stores address
registers in the order A6-A0 first, followed by data registers in the order D7-DO, regardless
of the order in the register list. MOVEM . L (SP) + I DO-D7 /A0 -A6 restores the contents of
the registers in the order DO-D7, AO-A6, regardless of the order in the register list.

The MOVEM instruction can also be used to save a set of registers in memory. In

470 Fundamentals of Digital Logic and Microcomputer Design

addition to the preceding predecrement and postincrement modes for the effective address,
the MOVEM instruction allows all the control modes. If the effective address is in one of
the control modes, such as absolute short, then the registers are transferred starting at the
specified address and up through higher addresses. The order of transfer is from DO to D7
and then from A0 to A6. For example, MOVEM . W A 5 / D 1 / D 3 / A 1 -A3 $2 0 0 0 transfers
the low 16-bit contents of D1, D3, A l , A2, A3, and A5 to locations $2000, $2002, $2004,
$2006, $2008, and $200A, respectively.

The MOVEQ. L #$d8, Dn instruction moves the immediate 8-bit data into
the low byte of Dn. The 8-bit data is then sign-extended to 32 bits. This is a one-word
instruction. For example, MOVEQ . L #$8F, D5 moves $FFFFFFSF into D5.

To transfer data between the 68000 data registers and 6800 (8-bit) peripherals,
the MOVEP instruction can be used. This instruction transfers 2 or 4 bytes of data between
a data register and alternate byte locations in memory, starting at the location specified
and incrementing by 2. Register indirect with displacement is the only addressing mode
used with this instruction. If the address is even, all transfers are made on the high-order
half of the data bus; if the address is odd, all transfers are made on the low-order half of
the data bus. The high-order byte to/from the register is transferred first, and the low-order
byte is transferred last. For example, consider MOVEP. L $ 0 0 2 0 (A 2) , D1. If [A21 =

$00002000, [002020,,] = 02, [002022,,] = 05, [002024,,] = 01, and [002026,,] = 04, then,
after execution of this MOVEP instruction, D1 will contain 02050104,,.

EXG and SWAP Instructions
The EXG. L Rx, Ry instruction exchanges the 32-bit contents of Rx with that of Ry. The
exchange is between two data registers, two address registers, or an address register and
a data register. The EXG instruction exchanges only 32-bit-long words. The data size (L)
does not have to be specified after the E X G instruction because this instruction has only one
data size (L) and it is assumed that the default is this single data size. No flags are affected.
The SWAP. W Dn instruction, on the other hand, exchanges the low 16 bits of Dn with the
high 16 bits of Dn. All condition codes are affected.

LEA and PEA Instructions
The LEA. L (EA), An instruction moves an effective address (EA) into the specified
address register. The (EA) can be calculated based on the addressing mode of the source.
For example, LEA $00256022, A 5 moves $00256022 into A5. This instruction is
equivalent to MOVEA . L # $ 0 0 2 5 6 0 2 2 A5. Note that $00256022 is contained in PC. It
should be pointed out that the LEA instruction is very useful when address calculation is
desired during program execution. The (EA) in LEA specifies the actual data to be loaded
into An, whereas the (EA) in MOVEA specifies the address of actual data. For example,
consider LEA $ 0 4 (A 5 , D2. W) , A3. If [A51 = 00002000,, and [D2] = 0028,,, then
the LEA instruction moves 0000202C,, into A3. On the other hand, MOVEA $ 0 4 (A 5 ,
D2 . W) , A 3 moves the contents of 00202C,, into A3. Therefore, it is obvious that if
address calculation is required, the instruction LEA is very useful.

The PEA.L (EA) computes an effective address and then pushes it on to the
Supervisor stack (S=l) or User stack (S=O). This instruction can be used when the 16-
bit address in absolute short mode is required to be pushed onto the stack. For example,
consider PEA.L $9000 in the user mode. If [A7]=$00003006, then $9000 is sign-extended
to 32 bits ($FFFF9000). The low-order 16 bits ($9000) are pushed at $003004, and the high
order 16 bits ($FFFF) are pushed at $003002.

Motorola Me6800 47 1

\

FIGURE 10.4 Execution of the LINK instruction

LINK and UNLK Instructions
Before calling a subroutine, the main program quite often transfers the values of certain
parameters to the subroutine. It is convenient to save these variables onto the stack before
calling the subroutine. These variables can then be read from the stack and used by the
subroutine for computations. The 68000 LINK and UNLK instructions are used for this
purpose. In addition, the 68000 LINK instruction allows one to reserve temporary storage
for the local variables of a subroutine. This storage can be accessed as needed by the
subroutine and can be released using UNLK before returning to the main program. The
LINK instruction is usually used at the beginning of a subroutine to allocate stack space for
storing local variables and parameters for nested subroutine calls. The UNLK instruction is
usually used at the end of a subroutine before the RETURN instruction to release the local
area and restore the stack pointer contents so that it points to the return address.

The LINK An, #- displacement instruction causes the current contents of the
specified An to be pushed onto the system stack. The updated SP contents are then loaded
into An. Finally, a sign-extended twos complement displacement value is added to the SP.
No flags are affected. For example, consider LINK A5 I # - $ l o o . If [A51 = 00002100,,
and [USP] = 00004104,,, then after execution of the LINK instruction, the situation shown
in Figure 10.4 occurs. This means that after the LINK instruction, [A51 = $00002100 is
pushed onto the stack and the [updated USP] = $004100 is loaded into A5. USP is then
loaded with $004000 and therefore IOO,, locations are allocated to the subroutine at the
beginning of which this particular LINK instruction can be used. Note that A5 cannot be
used in the subroutine.

The UNLK instruction at the end of this subroutine before the RETURN instruction
releases the 1 00,, locations and restores the contents of A5 and USP to those prior to using
the LINK instruction. For example, UNLK A5 will load [A51 = $00004100 into USP
and the two stack words $00002100 into A5. USP is then incremented by 4 to contain
$00004104. Therefore, the contents of A5 and USP prior to using the LINK instruction are
restored.

In this example, after execution of the LINK, addresses $0003FF and below can
be used as the system stack. One hundred (Hex) locations starting at $004000 and above
can be reserved for storing the local variables of the subroutine. These variables can then
be accessed with an address register such as A5 as a base pointer using the address register
indirect with displacement mode. MOVE . W d (A5) , D1 for read and MOVE . W D1 I d (A5)
for write are typical examples.
The use of LINK and UNLK can be illustrated by the following subroutine structure:

SUER L I N K A2, #-50 ; Allocate 50 b y t e s

472 Fundamentals of Digital Logic and Microcomputer Design

UNLK A2 Restore original values

RTS Return to subroutine

The L I N K instruction is used in this case to allocate 50 bytes for local variables.
At the end of the subroutine, UNLK A2 is used before RTS to restore the original values of
the registers and the stack. RT S returns program execution in the main program.

10.6.2 Arithmetic Instructions
These instructions allow:

8-, 16-, or 32-bit additions and subtractions.
16-bit by 16-bit multiplication (both signed and unsigned) and 32-bit by 16-bit division
(both signed and unsigned)
Compare, clear, and negate instructions.
Extended arithmetic instruction for performing multiprecision arithmetic.
Test (TST) instruction for comparing the operand with zero.

Test and set (TAS) instruction, which can be used for synchronization in a multiprocessor
system.

The 68000 arithmetic instructions are summarized in Table 10.6. Let us now
explain the arithmetic instructions.

TABLE 10.6 68000 Arithmetic Instructions

Instruction Size Oueration

Addition and Subtraction Instructions

ADD (EA), (EA) B, W, L (EA) + (EA) - (EA)

A D D 1 #Data, (EA) B, W, L (EA) + data - (EA)

ADDQ #d,, (EA) B, W, L (EA) + d, - (EA)
d, can be an integer from 0 to 7

ADDA (EA), An w, L An + (EA) - An

SUB (EA), (EA) B, W, L (EA) - (EA) - (EA)

SUB1 ## data, (EA) B, W, L (EA) -data - EA

d, can be an integer from 0 to 7
SUBQ #d,, (EA) B, W, L (EA) - d, 4 EA

SUBA (EA), An w, L An - (EA) - An

Multiplication and Division Instructions

MULS (EA), Dn W (Dn)l6 * (EA),, - (W32
(signed multiplication)

MULU (EA), Dn W (Dn)16 * (EA),6 -?= (Dn)32
(unsigned multiplication)

D I V S (EA), Dn W (Dn)32 (EA)16 -+ (Dn)32

Motorola MC6800 473

(signed division, high word of Dn contains
remainder and low word of Dn contains the
quotient)

D I V U (EA), Dn W (W32 / (ENI6 - (W32
(unsigned division, remainder is in high word of
Dn and quotient is in low word of Dn)

Compare, Clear, and Negate Instructions

B, W, L CMP (EA), Dn

CMPA (EA), An W, L

CMPI # data, B, W, L (EA) - data - No result. Affects flags.

CMPM (Ay) +,

C L R (EA) B,W,L 0 - (EA)

NEG (EA) B,W,L 0 - (EA) +(EA)

Dn - (EA) - No result. Affects flags.

An - (EA) --j No result. Affects flags.

F A)

(Ax) +

B, W, L (Ax)+ - (Ay)+ - No result. Affects flags.

Extended Arithmetic instructions

ADDX Dy,Dx B , W , L D x + D y + X - + D x

ADDX -(Ay), B, W, L - (AX) + - (Ay) + X - (AX)
- (Ax)

EXT Dn w, L If size is W, then sign extend low byte of Dn to 16
bits. If size is L, then sign extend low 16 bits of Dn
to 32 bits.

NEGX (EA)

SUBX Dy,Dx B , W , L D x - D y - X + D x

SUBX - (Ay),
- (AX)'

B, W, L 0 - (EA) - X -+ (EA)

B, W, L - (AX) - - (Ay) - X + (AX)

Test Instruction

TST (EA) B, W, L (EA) - 0 Flags are affected.

Test and Set Instruction
~~~ ~ ~~ ~ ~ 

TAS (EA) B If (EA) = 0, then set Z = 1; else Z = 0, N = 1 

and then always set bit 7 of (EA) to 1. 

NOTE: If source (EA) in the ADDA or SUBA instruction is an address register, the operand 
length is WORD or LONG WORD. 
(EA) in any instruction is calculated using the addressing mode used. 
All instructions except ADDA and SUBA affect condition codes. 

Source (EA) in the above ADD, ADDA, SUB, and SUBA can use all modes. Destination 
(EA) in the above ADD and SUB instructions can use all modes except An. relative, 
and immediate. 
Destination (EA) in A D D 1  and SUB1 can use all modes except An. relative, and 



474 Fundamentals of Digital Logic and Microcomputer Design 

immediate. 
Destination (EA) in ADDQ and SUBQ can use all modes except relative and 
immediate. 
(EA) in all multiplication and division instructions can use all modes except An. 
Source (EA) in CMP and CMPA instructions can use all modes. 

Destination (EA) in CMPI  can use all modes except An, relative, and immediate. 
(EA) in CLR and NEG can use all modes except An, relative, and immediate. 

(EA) in NEGX can use all modes except An, relative and immediate. 
(EA) in TST can use all modes except An, relative, and immediate. 
(EA) in TAS can use all modes except An, relative, and immediate. 

Addition and Subtraction Instructions 
C0nsiderADD.W $ 1 2 2 0 0 0 ,  D0.1f[122000,6]=0012,,and[DO]=OO02,6, then,after 
execution of this ADD, the low 16 bits of DO will contain 0014,,. C = 0 (No Carry), X 
= 0 (Same as C), V=O (No Overflow since previous Carry and the final Carry are the 
same), N = 0 (Most Significant Bit of the result is 0), Z = 0 (Nonzero result). 
The A D D 1  instruction can be used to add immediate data to a register or memory 
location. The immediate data follows the instruction word. For example, consider 
A D D I  .W #$0012,  $100200.  If [100200,,] = 0002,,, then, after execution of this 
A D D I ,  memory location 100200,, will contain 0014,,. 

ADDQ adds a number from 0 to 7 to the register or memory location in the destination 
operand. This instruction occupies 16 bits, and the immediate data 0 to 7 is specified 
by 3 bits in the instruction word. For example, consider ADDQ . B #2 I D 1 .  If [Dl],,, 
byle = 20,,, then, after execution of this ADDQ, the low byte of register D1 will contain 

All subtraction instructions subtract the source from the destination. For example, 
consider SUB .W D2 I $122200.  If [D2],,,,,,,=0003,,and [122200,,] =0007,,, then, 
after execution of this SUB, memory location 122200,, will contain 0004,,. 

SUBX.B D1,D2 subtracts the source byte (D1.B) plus the X-bit (same as the Carry 
flag) from the destination byte (D2.B); the result is stored in the destination byte, no 
other bytes of the destination register are affected. All condition codes are .affected. 
For example, if [D2.L] = 2AB10003,,, [Dl.L] =A2345602,,, and X = C = 1, then, after 
SUBX.B Dl,D2, the contents of D2.B = 03 - 02 - 1 = OO,,. [D2.L] = 2AB10000,,. 

1 1 1 1 1 1 11 +- Intermediate Carries 
Using two’s complement subtraction, [D2.B] = 0000 001 1 (+3) 
Add two’s complement of 3 (D1 .B plus Carry) = + 11 11 1101 (-3) 

2216. 

___________---------___ 
Final Carry +1 0000 0000 

Final carry is one’s complemented after subtraction to reflect the correct borrow. 
Hence, C = 0. 
Also, X = 0 (Same as C), Z = 1 (Zero Result), N = 0 (Most Significant of the result is 
zero), andV = C, @ C,= 1 @ 1 = 0. 

Consider SUBI  . W # 3 ,  DO. If [DO]lowword = 0014,,, then, after execution ofthis SUBI, 
DO will contain 001 116’ Note that the same result can be obtained by using a SUBQ . w 
# 3  I DO. However in this case, the data item 3 is inherent in the instruction word. 



Motorola MC6800 475 

Multiplication and Division Instructions 

integer numbers. 
The 68000 instruction set includes both signed and unsigned multiplication of 

MULS (EA), Dn multiplies two 16-bit signed numbers and provides a 32-bit result. 
For example, consider MULS #-2 ,  D5. If [D5.W] = 000316, then, after this MULS, D5 
will contain the 32-bit result FFFFFFFA,,, which is -6 in decimal. 

MULU (EA), Dn performs unsigned multiplication. Consider MULU (A0 ) , D1. If [AO] 
= 00102000,,, [102000,,] = 0300,,, and [Dl.W] = 0200,,, then, after this MULU, D1 
will contain the 32-bit result 00060000,,. 

Consider DIVS # 2 ,  D1. If [DI] = -510 = FFFFFFFB,,, then, after this DIVS, register 
D1 will contain 

D1 I FFFF I FFFE 
16-bit 16-bit 
remainder = quotient = 

-1 10 -210 

Compare, Clear, and Negate Instructions 
The Compare (CMP) instruction subtracts source from destination providing no 
result of subtraction; all condition codes are affected based on the result. Note that 
the SUBTRACT instruction provides the result and also affects the Condition Codes. 
Consider CMP . B D3, DO . If prior to execution of the instruction, [DO.B] = $40 
and [D3.B] = $30 then after execution of CMP . B D3, DO, the condition codes are as 
follows: C = 0, X = 0, Z = 0, N = 0, and V = 0. Suppose it is desired to find the number 
of matches for an 8-bit number in a 68000 register such as D5.B in a data array (stored 
from low to high memory) of 50 bytes in memory pointed to by AO. The following 
instruction sequence with CMP . B (A0 ) + , D5 rather than SUB. B (A0 ) +, D5 can 
be used : 

CLR.B DO 
M0VE.B #50,D1 ; 

START CMP.B (A01 t , D 5  ; 

BNE DECR 
ADDQ.B # l , D O  

DECR SUBQ.B #1,D1 
BNE START 

Clear D0.B to 0, D0.B to hold number of matches 
Initialize array count 
Compare the number to be aatched in D5 
with a data byte in the array. If there 
is a match, Z=1 and increment DO. 
Decrement D1 by 1, go back to START if 
Z = O.If 2 = 1, go to the next 

Note that in the 68000, after DIVS, the sign of remainder is always the same as the 
dividend unless the remainder is equal to zero. Therefore, in this example, because 
the dividend is negative (-5,,J, the remainder is negative (-1 ,,,). Also, division by zero 
causes an internal interrupt automatically. A service routine can be written by the 
user to indicate an error. N = 1 if the quotient is negative, and V = 1 if there is an 
overflow. 

DIVU is the same as the DIVS instruction except that the division is unsigned. For 
example, consider DIVU #4, D5. If [D5] = 14,, = 00000000E,,, then after this DIVU, 
register D5 will contain 

D5 

remainder 
As with the DIVS instruction, division by zero using DIVU causes a trap (internal 
interrupt). 



476 

Processor 
1 

Fundamentals of Digital Logic and Microcomputer Design 

RAM I, Processor 
2 

; instruction 
; D0.B contains the number of matches 

In the above, if SUB.  B (AO) + , D 5  were used instead of CMP . B (A0 ) +, D 5  , 
the number to be matched needs to be loaded after each subtraction because the contents 
of D5.B would have been lost after each SUB. Since we are only interested in the match 
rather than the result, CMP . B ( A 0  ) +, D5 instead of SUB. B ( A 0  ) + , D 5  should be 
used in the above. 

The 68000 instruction set includes a memory to memory COMPARE instruction. 
For example, CMPM. W (AO) +, ( A l l  +. If [AO] = 00100000,,, [All  = 00200000,,, 
[lOOOOO,,] = 0005,,, and [200000,,] = OOO6,,, then, after this CMPM instruction, N = 0, 
C = 0, X = 0, V = 0, Z = 0, [AO] = 00100002,,, and [All  = 00200002,,. 

CLR.  L D 5  clears all 32 bits of D5 to zero. 

Consider NEG . W ( A 0  ) . If [AO] = OO2OOOOO,, and [200000] = 5,,, then after this NEG 
instruction, the low 16 bits of location 200000,, will contain FFFB,,. 

Extended Arithmetic Instructions 

The ADDX and SUBX instruction can be used in performing multiprecision arithmetic 
because there are no ADDC (add with carry) or SUBC (subtract with borrow) instructions. 
For example, in order to perform a 64-bit addition, the following two instructions can 
be used: 

ADD.L D O , D 5  ;Add low 32 bits of data and store in D5. 
ADDX.L D 1 , D 6  ;Add high 32 bits of data along with any carry from 

;the low 32-bit addition and store result in D6. 
Note that in this example, DlDO contain one 64-bit number and D6D5 contain the 
other 64-bit number. The 64-bit result is stored in D6D5. 

Consider EXT.  W D2.  If [D2],o,byte = F3,,, then, after the EXT, [D2],o,,o,d = FFF3,,. 

An example of sign extension is that, to multiply a signed 8-bit number by a signed 
16-bit number, one must first sign-extend the signed 8-bit into a signed 16-bit number 
and then the instruction IMUL can be used for 16 x 16 signed multiplication. For 
unsigned multiplication of a 16-bit number by an 8-bit number, the 8-bit number must 
be zero extended to 16 bits using logical instruction such as AND before using the 
MUL instruction. 

Test Instruction 
Consider T S T  . W 
T S T  . W 
cleared to 0, and N is set to 1 .  The V and C flags are always cleared to 0. 

Test and Set Instruction 
TAS . B ( E A )  is usually used to synchronize two processors in multiprocessor 

data transfers. For example, consider the two 68000-based microcomputers with shared 
RAM as shown in Figure 10.5. 

(AO). If [AO] = 00300000,, and [300000,,] = FFFF,,, then, after the 
( A O )  , the operation FFFF,, - 0000,, is performed internally by the 68000, Z is 

FIGURE 10.5 Two 68000s interfaced via shared RAM using TAS instruction 



Motorola MC6800 477 

Suppose that it is desired to transfer the low byte of DO from processor 1 to the 
low byte of D2 in processor 2. A memory location, namely, TRDATA, can be used to 
accomplish this. First, processor 1 can execute the TAS instruction to test the byte in the 
shared RAM with address TEST for zero value. If it is, processor 1 can be programmed to 
move the low byte of DO into location TRDATA in the shared RAM. Processor 2 can then 
execute an instruction sequence to move the contents of TRDATA from the shared RAM 
into the low byte of D2. The following instruction sequence will accomplish this: 

Processor I Routine 
P r o c  - 1 T A S . B  T E S T  P r o c  - 2 T A S . B  T E S T  

Processor 2 Routine 

BNE P r o c  1 BNE P r o c  2 
MOVE. B D O ,  TRDATA 
C L R . B  T E S T  CLR.B T E S T  

MOVE. B TRDATATD2 

Note that in these instruction sequences, TAS . B T E S T  checks the byte addressed 
by TEST for zero. If [TEST] = 0, then Z is set to 1; otherwise, Z = 0 and N = 1. After 
this, bit 7 of [TEST] is set to 1. Note that a zero value of [TEST] indicates that the shared 
RAM is free for use, and the Z bit indicates this after the TAS is executed. In each of the 
instruction sequences, after a data transfer using the MOVE instruction, [TEST] is cleared 
to zero so that the shared RAM is free for use by the other processor. To avoid testing the 
TEST byte simultaneously by two processors, the TAS is executed in a read-modify-write 
cycle. This means that once the operand is addressed by the 68000 executing the TAS, the 
system bus is not available to the other 68000 until the TAS is completed. 

10.6.3 Logical Instructions 
These instructions include logical OR, EOR, AND, and NOT as shown in Table 10.7. 

Consider AND. B #$8F, DO . If prior to execution of this instruction, [DO.B] = $72, 
then after execution of AND. B # $8 F, DO,  the following result is obtained : 

[DO.B] = $72 =0111 0010 
AND $8F= 1000 1111 

[DO.B]= 0000 0010 
Z = 0 (Result is nonzero) and N = 0 (Most Significant Bit of the result is 0). C and 
V are always cleared to 0 after logic operation. The condition codes are similarly 
affected after execution of other logical instructions such as OR, EOR, and NOT. 
The AND instruction can be used to perform a masking operation. If the bit value 
in a particular bit position is desired in a word, the word can be logically ANDed 
with appropriate data to accomplish this. For example, the bit value at bit 2 of an 8- 
bit number 0100 1Y 10 (where unknown bit value of Y is to be determined) can be 
obtained as follows: 0 1 0 0 1 Y I 0 -- 8-bit number 

0 0 0 0 0 1 0 0 --Masking data AND 

0 0 0 0 0 Y 0 0 -  Result 
If the bit value Y at bit 2 is 1, then the result is nonzero (Flag Z=O); otherwise, 
the result is zero (Z=1) . The Z flag can be tested using typical conditional .JUMP 
instructions such as BEQ (Branch if Z=1) or BNE (Branch if Z=O) to determine 



478 

TABLE 10.7 68000 Logical Instructions 

Fundamentals of Digital Logic and Microcomputer Design 

Instruction Size Operation 
AND (EA), (EA) 

A N D I  # data, (EA) B, W, L (EA) AND # data - (EA); 

A N D I  # data,, CCR B CCR AND # data - CCR 
A N D I  # data,,, SR W SR AND# data - SR 
EOR Dn, (EA) B, W, L Dn 0 (EA)+ (EA); 

E O R I  # data, (EA) B, W, L (EA) 0 # data - (EA); 

NOT (EA) 
OR F A ) ,  (EA) 

O R 1  # data, (EA) 

O R 1  # data,, CCR B 
O R 1  # data,,, SR W 

B, W, L (EA) AND (EA) --j (EA); 
(EA) cannot be address register 

(EA) cannot be address register 

(EA) cannot be address register 

(EA) cannot be address register 
One’s complement of (EA) - (EA); 
(EA) OR (EA) - (EA); 
(EA) cannot be address register 
(EA) OR # data - (EA); 
(EA) cannot be address register 
CCR OR # data, - CCR 
SR OR # data - SR 

B, W, L 
B, W, L 

B, W, L 

whether Y is 0 or 1.  This is called masking operation. The AND instruction can also 
be used to determine whether a binary number is ODD or EVEN by checking 
the Least Significant bit (LSB) of the number (LSB=O for even and LSB=l for odd). 

Consider AND.  W D 1 ,  D5. If [Dl .W] = 0001 ,, and [D5.W] = FFFF,,, then, after 
execution of this AND, the low 16 bits of both D1 and D5 will contain 0001 16. 

Consider A N D I  . B #$OO, CCR. If [CCR] = 01 ,6r then, after this A N D I ,  register CCR 
will contain OO,,. 

Source (EA) in AND and OR can use all modes except An. 

Destination (EA) in AND or OR or EOR can use all modes except An, relative, and 
immediate. 

Destination (EA) in A N D I ,  ORI, and E O R I  can use all modes except An, relative, and 
immediate. 

(EA) in NOT can use all modes except An, relative, and immediate. 

Consider EOR.  W #2, D5 . If prior to execution of this instruction, [ D5 . W] = 

$2 3 4 2,  then after execution of EOR . W # 2 , D 5 , low 16-bit contents of D5 will be 
$ 2  3 4 0. All condition codes are affected in the same manner as the AND instruction. 
The Exclusive-OR instruction can be used to find the ones complement of a binary 
number by XORing the number with all 1’s as follows: 

0 1 0 1 1 1 0 0 - - 8-bit number 
XOR 1 1  1 1  1 1  1 1 - -  data 

________-_--_-____________ 
1 0 10 0 0 1 1 -- Result ( Ones Complement of the 8-bit number 

0 1 0 1  1 1 0 0 )  

Consider E0R.W D 1 ,  D2. If [Dl.W] = FFFF,, and [D2.W] = FFFF,,, then, after 



Motorola MC6800 479 

execution of this EOR, register D2.W will contain 0000,,, and D1 will remain 
unchanged at FFFF,,. 

Consider NOT.  B D5.  If [D5.B] = O2,,, then, after execution of this NOT, the low byte 
of D5 will contain FD,,. 

Consider OR. B D2 I D 3  . If prior to execution of this instruction, [D2.B] = A2,, 
and [D3.B] = 5DI6, then after exection of O R .  B D 2  I D3, the contents of D3.B are 
FFH. All flags are affected similar to the AND instruction. The OR instruction can 
typically be used to insert a 1 in a particular bit position of a binary number without 
changing the values of the other bits. For example, a 1 can be inserted using the OR 
instruction at bit number 3 of the 8-bit binary number 0 1 1 1 0 0 1 1 without changing 
the values of the other bits as follows: 

0 1 1 1 0 0 1 1 -- 8-bit number 
OR 0 0 0 0 1 0 0 0 -- data for inserting a 1 at bit number 3 

0 1 1 1 1 0 1 1 --Result 
__---__------------ 

Consider O R 1  #$lo02 I SR. If [SR] = 11 lD,,, then after execution of this ORI, 
register SR will contain 1 1  lF,,. Note that this is a privileged instruction because the 
high byte of SR containing the control bits is changed and therefore, can be executed 
only in the supervisor mode. 

10.6.4 Shift and Rotate Instructions 
The 68000 shift and rotate instruction are listed in Table 10.8. 

All the instructions in Table 10.8 affect N and Z flags according to the result. V is reset 
to zero except for ASL. 

Note that in the 68000 there is no true arithmetic shift left instruction. In true arithmetic 
shifts, the sign bit of the number being shifted is retained. In the 68000, the instruction 
ASL does not retain the sign bit, whereas the instruction ASR retains the sign bit after 
performing the arithmetic shift operation. 

TABLE 10.8 68000 Shift and Rotate Instructions 
Instruction Size Operation 

ASL Dx, Dy B, w, L 

ASL # data, Dn 

ASL (EA) 

Shift [Dy] by the number of times to 
left specified in Dx; the low 6 bits of 
Dx specify the number of shifts from 
0 to 63. 
Same as ASL Dx, Dy, except that 
the number of shifts is specified by 
immediate data from 0 to 7. 
(EA) is shifted one bit to the left; the 
most significant bit of (EA) goes to x 
and c, and zero moves into the least 
significant bit. 



480 

ASR Dx, Dy 

ASR # data, Dn 

ASR (EA) 

LSL Dx, Dy 

LSL # data, Dn 

LSL (EA) 
LSR Dx, Dy 

LSR # data, Dn 

LSR (EA) 

ROL Dx, Dy 

ROL # data, Dn 

ROL (EA) 
ROR Dx, Dy 

ROR # data, Dn 

ROR (EA) 

Fundamentals of Digital Logic and Microcomputer Design 

Arithmetically shift [Dy] to the right 
by retaining the sign bit; the low 
6 bits of Dx specify the number of 
shifts from 0 to 63. 
Same as above except the number of 
shifts is from 0 to 7. 
Same as above except (EA) is shifted 
once to the right. 

. 
Low 6 bits of Dx specify the number 
of shifts from 0 to 63. 
Same as above except that the 
number of shifts is specified by 
immediate data from 0 to 7. 
(EA) is shifted one bit to the left. 

Same as LSL Dx, Dy, except shift is 
to the right. 
Same as above except shift is to the 
right by immediate data from 0 to 7. 

Same as LSL (EA) except shift is 
once to the right. 

c + 7 -  
Low 6 bits of Dx specify the number 
of times [Dy] to be rotated. 
Same as above except that the 
immediate data specifies that [Dn] to 
be rotated from 0 to 7. 
(EA) is rotated one bit to the left. 

Same as above except the rotate is to 
the right by immediate data from 0 
to 7. 
(EA) is rotated one bit to the right. 



48 1 Motorola MC6800 

ROXL Dx, Dy 

ROXL # data, Dn 

ROXL (EA) 
ROXR Dx, Dy 

Low 6 bits of Dx contain the number 
of rotates from 0 to 63. 
Same as above except that the 
immediate data specifies number of 
rotates from 0 to 7. 
(EA) is rotated one bit to the left. 

ROXR # data, Dn B, w ,  L 

ROXR (EA) B, w ,  L 

I 

Low 6 bits of Dx contain the number 
of rotates from 0 to 63. 
Same as above except the rotate is to 
the right by immediate data from 0 
to 7. 
Same as above except the rotate is 
once to the right. 

(EA) in ASL, ASR, LSL, LSR, ROL, ROR, ROXL, and ROXR can use all modes except 
Dn, An, relative, and immediate. 

Consider ASL. W D1, D5. If [Dl],,, = 0002,, and [D5],,, ,, bits = 9FFO,,, then, 
after this ASL instruction, [D5],,, = 7FCO,,, C = 0, and X = 0. Note that the sign 
of the contents of D5 is changed from 1 to 0 and, therefore, the overflow is set. The 
sign bit of D5 is changed after shifting [D5] twice. For ASL, the overflow flag is 
set to one if the sign bit changes during or after shifting. The contents of D5 are not 
updated after each shift. The ASL instruction can be used to multiply a signed number 
by 2" by shifting the number n times to the left; the result is correct if V = 0 while 
the result is incorrect if V = 1. Since execution time of the multiplication instruction 
is longer, multiplication by shifting may be more efficient when multiplication of a 
signed number by 2" is desired. 

ASR retains the sign bit. For example, consider ASR. W #2, D1. If [Dl .W] = FFE2,,, 
then, after this ASR, the low 16 bits of [Dl] = FFF8,,, C = 1,  and X = 1. Note that the 
sign bit is retained. 

ASL (EA) or ASR (EA) shifts (EA) 1 bit to left or right, respectively. For example, 
consider ASL . W (AO) . If [AO] = 00002000,, and [002000,,] = 9001 16, then, after 
execution of this ASL, [002000,,] = 2002,,, X = 1, and C = 1. On the other hand, after 
ASR . W (AO) , memory location 002000,, will contain C800,,, C = 1, and X = 1.  

The LSL and ASL instructions are the same in the 68000 except that with the ASL, V 
is set to 1 if the sign of the result is changed from the sign of the original value during 
or after shifting. This will allow one to multiply a signed number by 2" by shifting 
the number n times to left; the result is correct if V = 0 while the result is incorrect if 
V = 1. Since execution time of the multiplication instruction is longer, multiplication 
by shifting may be more efficient when multiplication of a signed number by 2" is 
desired. 



482 

TABLE 10.9 Bit Manipulation Instructions 

Fundamentals of Digital Logic and Microcomputer Design 

Instruction Size Operation 
BCHG Dn, (EA) A bit in (EA) specified by Dn or immediate data is 
BCHG # data, (EA) tested: the 1’s complement of the bit is reflected in 

both the Z flag and the specified bit position. 
BCLR Dn,(EA) 1 B,L A bit in (EA) specified by Dn or immediate data is 
BCLR # data, (EA) tested and the 1’s complement of the bit is reflected 

in the Z flag: the specified bit is cleared to zero. 
BSET Dn,(EA) 1 B,L A. bit in (EA) specified by Dn or immediate data is 
BSET # data, (EA) tested and the 1’s complement of the bit is reflected 

in the Z flag: the specified bit is then set to one. 
BTST Dn,(EA) 1 B,L A bit in (EA) specified by Dn or immediate data is 
BTST # data, (EA) tested. The 1’s complement of the specified bit is 

1 B,L 

reflected in the Z flag. 
(EA) in the above instructions can use all modes except An, relative, and immediate. . ,  
If (EA) is memory location then data size is byte: if (EA) is Dn then data size is long 
word. 

Consider LSR.  W # 3 ,  D 1 .  If [Dl.W] = 8000,,, then after this LSR, [Dl.W] = IOOO,,, 
X = 0, and C = 0. 

Consider ROL.  B # 2 ,  D2. If [D2.B] = B1 and C = 1, then, after this ROL, the low 
byte of [D2] = C6,, and C = 0. On the other hand, with [D2.B] = B1 and C = 1, 
consider ROR . B #2 ,  D2. After this ROR, low byte of register D2 will contain 6C,, 
and C = 0. 

Consider ROXL . W D2, D 1 .  If [D2.W] = 0003,,, [Dl .W] = F201 Ib, C = 0, and X = 1 
then after execution of this ROXL, [Dl .W] = 900F,,, C = 1, and X = 1. 

10.6.5 Bit Manipulation Instructions 
The 68000 has four bit manipulation instructions, and these are listed in Table 10.9. 

In all of the instructions in Table 10.9, the ones complement of the specified bit is 
reflected in the Z flag. The specified bit is ones complemented, cleared to 0, set to 1,  
or unchanged by BCHG, BCLR, BSET, or BTST, respectively. In all the instructions in 
Table 10.9, if (EA) is Dn, then the length of Dn is 32 bits; otherwise, the length of the 
destination is one byte memory. 

Consider BCHG . B #2, $0 03 0 0 0. If [003000,,] = 05,,, then, after execution of this 
BCHG, Z = 0 and [0030OOl6] = 01 

Consider BCLR. L #3,  D 1 .  If [DI] = F210E128,,, then after execution of this BCLR, 
register D1 will contain F210E120,, and Z = 0. 

Consider BSET . B #O, (A1 ) . If [All  = 00003000,, and [003000,,] = OO,,, then, after 
execution of this BSET, memory location 003000,, will contain 01 

Consider BTST . B #2 ,  $0 02 0 0 0. If [002000,,] = 02,,, then, after execution of this 
BTST, Z = 1,  and [002000,,] = 02,,; no other flags are affected. 

and Z = 1. 

10.6.6 Binary-Coded-Decimal Instructions 
The 68000 instruction set contains three BCD instructions, namely, ABCD for adding, 
SBCD for subtracting, and NBCD for negating. They operate on packed BCD byte(s) and 
provide the result containing one packed BCD byte. These instructions always include the 



Motorola MC6800 483 

TABLE 10.10 68000 Binary Coded Decimal Instructions 

Instruction Operand Size Operation 
ABCD Dy, Dx B [Dxl,, + [DYl,, + x + [Dxl 
ABCD - (Ay), -(AX) 
SBCD Dy, Dx 
SBCD - (Ay), - (AX) 

B 
B 
B 

-(Ax),, + - (AY),, + x - (Ax) 
[Dxl,, - [DYlIO - x -+ [Dxl 
- (Ax),, - - (AY),, - x - (Ax) 

NBCD (EA) B 0 - (EA),, - X -+ (EA),n 
(EA) in NBCD can use all modes except An, relative, and immediate. 

extend (X) bit in the operation. The BCD instructions are listed in Table 10.10. 

Consider ABCD.B D 1 ,  D 2 .  If [Dl.B] = 25,,, [D2.B] = 15,,, and X = 0, then, after 
execution of this ABCD instruction, [D2.B] = 40,,, X = 0, and Z = 0. 

Consider SBCD.B - ( A 2 )  , - ( A 3 ) .  If [A21 = 00002004,,, [A31 = 00003003,,, 
[002003,,] = 05,,, [003002,,] = 06,,, and X = 1, then after execution of this SBCD 
instruction, [003002,,] = OO,,, X = 0, and Z = 1. 
Consider NBCD.  B ( A l )  . If [All = [00003000,,], [003000,,] =05,,, and X = 1, then, 
after execution of this NBCD instruction, [003000,,] = -6,,. 

Note that packed BCD subtraction used in the instructions SBCD and NBCD can be obtained 
by using the concepts discussed in Chapter 2 (Section 2.5.2). 

10.6.7 Program Control Instructions 
These instructions include branches, jumps, and subroutine calls as listed in Table 10.1 1. 

Consider Bcc d. There are 14 branch conditions. This means that the cc in Bcc 
can be replaced by 14 conditions providing 14 instructions: BCC, BCS, BEQ, BGE, BGT, 
BHI, BLE, BLS, BLT, BMI, BNE, BPL, BVC, and BVS. It should be mentioned that some 
of these instructions are applicable to both signed and unsigned numbers, some can be 
used with only signed numbers, and some instructions are applicable to only unsigned 
numbers. 

After signed arithmetic operations, instructions such as BEQ, BNE, BVS, BVC, 
BMI, and BPL can be used. On the other hand, after unsigned arithmetic operations, 
instructions such as BCC, BCS, BEQ, and BNE can be used. It should be pointed out that if 
V = 0, BPL and BGE have the same meaning, Likewise, if V = 0, BMI and BLT perform 
the same function. 

The conditional branch instruction can be used after typical arithmetic instructions 
such as subtraction to branch to a location if cc is true. For example, consider SUB. W D 1 ,  
D2. Now if [Dl] and [D2] are unsigned numbers, then 

BCC d can be used if [D2] > [Dl] 
BCS d can be used if [D2] s [Dl] 
BEQ d can be used if [D2] = [DI] 
BNE d can be used if [D2] z [DI] 
B H I  d can be used if [D2] < [Dl] 
BLS d can be used if [D2] s [Dl] 

On the other hand, if [Dl] and [D2] are signed numbers, the after SUB. W D 1 ,  
D2, the following branch instruction can be used: 

BEQ d can be used if [D2] = [DI] 
BNE d can be used if [D2] f [Dl] 
BLT d can be used if [D2] < [Dl] 



484 

TABLE 10.1 1 

Fundamentals of Digital Logic and Microcomputer Design 

68000 Program Control Instructions 

Bcc d 

BRA d 

BSR d 

DBcc Dn, d 

JMP (EA) 

J S R  (EA) 

RT R 

RTS 

Scc (EA) 

Instruction Size Operation 

B,W If condition code cc is true, then PC + d - PC. The PC value is 

B,W 

B,W 

W 

unsized 

unsized 

unsized 

unsized 

B 

current instruction location plus 2. d can be 8- or 16-bit signed 
displacement. If 8-bit displacement is used, then the instruction 
size is 16 bits with the 8-bit displacement as the low byte of 
the instruction word. If 16-bit displacement is used, then the 
instruction size is two words with 8-bit displacement field 
(low byte) in the instruction word as zero and the second word 
following the instruction word as the 16-bit displacement. 
There are 14 conditions such as BCC (Branch if Carry Clear), 
BEQ (Branch if result equal to zero, i.e., Z = l), and BNE 
(Branch if not equal, i.e., Z = 0). Note that the PC contents will 
always be even since the instruction length is either one word 
or two words depending on the displacement widths. 
Branch always to PC + d where PC value is current instruction 
location plus 2. As with Bcc, d can be signed 8 or 16 bits. 
This is an unconditional branching instruction with relative 
mode. Note that the PC contents are even since the instruction 
is either one word or two words. 

PC + d + PC 
The address of the next instruction following PC is pushed 
onto the stack. PC is then loaded with PC + d. As before, d 
can be signed 8 or 16 bits. This is a subroutine call instruction 
using relative mode. 
If cc is false, then Dn - 1 - Dn, and if Dn = - 1, then PC + 
2 - PC 
If Dn * - 1 , then PC + d - PC; else PC + 2 -+ PC. 
(EA) - PC 
This is an unconditional jump instruction which uses control 
addressing mode. 

(EA) - PC 
This is a subroutine call instruction which uses control 
addressing mode 
(SP) + - CCR 
(SP) + + PC 
Return and restore condition codes 
Return from subroutine 
(SP) + - PC 

PC - - (SP) 

PC - - (SP) 

If cc is true, then the byte specified by (EA) is set to all ones; 
otherwise the byte is cleared to zero. 

*(EA) in JMP and JSR can use all modes except Dn, An, (An) +, - (An), and 
immediate. 
*(EA) in SCC can use all modes except An, relative, and immediate. 



Motorola MC6800 485 

BLE d can be used if [D2] 5 [Dl] 
BGT d can be used if [D2] > [Dl] 
BGE d can be used if [D2] 2 [Dl] 

Now as a specific example, consider BEQ BEGIN.  If current [PC] = OOO200,,, 
and BEGIN=$20 then, after execution of this BEQ, program execution starts at 000220,, if 
z = 1; if z = 0, program execution continues at 000200,,. The instructions BRA and JMP 
are unconditional jump instructions. BRA uses the relative addressing mode, whereas JMP 
uses only control addressing mode. For example, consider BRA. B START. If [PC] = 

0002001,, and START=$40 then, after execution of this BRA, program execution starts at 
000240,,. Now, consider JMP ( A 1  ) . If [All  = 00000220,,, then, after execution of this 
JMP, program execution starts at 000220,,. 

The instructions BSR and J S R  are subroutine call instructions. BSR uses the relative 
mode, whereas J S R  uses the control addressing mode. Consider the following program 
segment: Assume that the main program uses all registers; the subroutine stores the 
result in memory. 

Main Program Subroutine 
- SUB M0VEM.L DO-D7/AO-A6, - ( S P )  

- 

J S R  

START - 
- 

S U B  Main body of 
- subroutine 
- :> 
M0VEM.L ( S P )  f, DO-D7/AO-A6 
RT S 

Here, the J S R  SUB instruction calls the subroutine SUB. In response to JSR,  the 
68000 pushes the current PC contents called START onto the stack and loads the 
starting address SUB of the subroutine into PC. The first MOVEM in the SUB pushes 
all registers onto the stack and, after the subroutine is executed, the second MOVEM 
instruction pops all the registers back. Finally, RTS pops the address START from the 
stack into PC, and program control in returned to the main program. Note that BSR 
SUB could have been used instead of J S R  SUB in the main program. In that case, the 
68000 assembler would have considered the SUB with BSR as a displacement rather 
than as an address with the J S R  instruction. 

DBcc Dn, d tests the condition codes and the value in a data register. DBcc first checks 
if cc (NE, EQ, GT, etc.) is satisfied. If cc is satisfied, the next instruction is executed. 
If cc is not satisfied, the specified data register is decremented by 1; if [Dn] = -1, then 
the next instruction is executed; on the other hand, if Dn z -1, then branch to PC + d 
is performed. For example, consider DBNE . W D 5  I BACK with [D5] = 00003002,,, 
BACK= -4 and [PC] = 002006,,. If Z = 1, then [D5] = 00003001,,. Because [D5] # 

-1, program execution starts at 002002,,. It should be pointed out that there is a false 
condition in the DBcc instruction and that this instruction is the DBF (some assemblers 
use DBRA for this). In this case, the condition is always false. This means that, after 
execution of this instruction, Dn is decremented by 1 and if [Dn] = -1, then the next 
instruction is executed. If [Dn] z - 1 ,  then branch to PC + d. 



486 

TABLE 10.12 

Fundamentals of Digital Logic and Microcomputer Design 

68000 System Control Instructions 
Instruction Size Operation 

RESET Unsized If supervisor state, then assert reset 

RTE Unsized If supervisor state, then restore SR 

STOP #data Unsized If supervisor state, then load 

line; else TRAP 

and PC; else TRAP 

immediate data to SR and then 
STOP; else TRAP 

These instructions 
were discussed earlier 

Trap and Check Instructions 
Unsized PC - - (SP) 

1 
O R 1  to SR 
MOVE USP 
ANDI to SR 
E O R I  to SR 
MOVE (EA) to SR 

TRAP #vector 

TRAPV 

SR - - (SP) 
Vector address.-+ PC 
TRAP if V = 1 
If Dn < 0 or Dn > (EA), then 
TRAP; 

Unsized 

CHK (EA), Dn W else, go to the next instiuction. 
Status ReKister 

ANDI to CCR \ 
E O R I  to CCR 
MOVE (EA) to/from CCR 
O R 1  to CCR 
MOVE S R  to (EA) 

Already explained 
earlier 

*(EA) in CHK can use all modes except An. 

Consider SPL . B ( A 5 )  . If [AS] = 00200020,, and N = 0, then, after execution of this 
SPL, memory location 200020,, will contain 11 11 11 11,. 

10.6.8 System Control Instructions 
The 68000 system control instructions contain certain privileged instructions including 
RESET,  RTE,  S T O P  and instructions that use or modify SR. Note that the privileged 
instructions can be executed only in the supervisor mode. The system control instructions 
are listed in Table 10.12. 

The RESET instruction when executed in the supervisor mode outputs a low signal 
on the reset pin of the 68000 in order to initialize the external peripheral chips. The 
68000 reset pin is bidirectional. The 68000 can be reset by asserting the reset pin 
using hardware, whereas the peripheral chips can be reset using the software RESET 
instruction. 

MOVE. L A 7 ,  A n  or MOVE. L A n ,  A7 can be used to save, restore, or change the 
contents of the A 7  in supervisor mode. A 7  must be loaded in supervisor mode because 



Motorola MC6800 487 

MOVE A7 is a privileged instruction. For example, A7 can be initialized to $005000 in 
supervisor mode using M0VEA.L #$00005000,A1 

Consider TRAP #n. There are 16 TRAP instructions with n ranging from 0 to 15. 
The hexadecimal vector address is calculated using the equation: Hexadecimal vector 
address = 80 + 4 x n. The TRAP instruction first pushes the contents of the PC and then 
the SR onto the stack. The hexadecimal vector address is then loaded into PC. TRAP 
is basically a software interrupt. The TRAP instruction can be used for service calls to 
the operating system. For application programs running in the user mode, TRAP can 
be used to transfer control to a supervisor utility program. RTE at the end of the TRAP 
routine can be used to return to the application program by placing the saved SR from 
the stack, thus causing the 68000 to return to the user mode. 

There are other traps that occur due to certain arithmetic errors. For example, 
division by zero automatically traps to location 1416. On the other hand, an overflow 
condition (i.e., if V = 1) will trap to address IC,, if the instruction TRAPV is 
executed. 

The CHK. W (EA), Dn instruction compares [Dn] with (EA). If [Dn],,, ,, b,,n< 0 or if 
[Dn],,, 16b,ts > (EA), then a trap to location OOl8,, is generated. Also, N is set to 1 if 
[Dn],,, 16blts < 0, and N is reset to 0 if [Dn],,, 16 bl,, > (EA). (EA) is treated as a 16-bit 
twos complement integer. Note that program execution continues if [Dn],o, 16 bits lies 
between 0 and (EA). 

[003000,6] = O1OOI6, then, after execution of this CHK, the 68000 will trap because 
[D2] = 0200,, is greater than [003000] = O10Ol6. 

The purpose of the CHK instruction is to provide boundary checking by testing 
if the content of a data register is in the range from zero to an upper limit. The upper 
limit used in the instruction can be set equal to the length of the array. Then, every time 
the array is accessed, the CHK instruction can be executed to make sure that the array 
bounds have not been violated. 

The CHK instruction is usually placed after the computation of an index value 
to ensure that the index value is not violated. This permits a check of whether or 
not the address of an array being accessed is within array boundaries when address 
register indirect with index mode is used to access an array element. For example, the 
following instruction sequence permits accessing of an array with base address in A2 
and array length of 50,, bytes: 

M0VE.L Al ,A7  

Consider CHK . W ( A 5 )  D2. If [D2]j0, 16 bits = O2OOI6, [A51 = OOOO3OOO,6, and 

- 

CHK.W #49, D2 
M0VE.B O(A2,D2*W),D3 

- 

Here, if the low 16 bits of D2 are less than 0 or greater than 49, the 68000 will 
trap to location 0018,,. It is assumed that D2 is computed prior to execution of the CHK 
instruction. 

10.6.9 68000 Stack 
The 68000 supports stacks with the address register indirect postincrement and predecrement 
addressing modes. In addition to two system stack pointers (A7 and A7'), all seven address 



488 Fundamentals of Digital Logic and Microcomputer Design 

registers (AO-A6) can be used as user stack pointers by using appropriate addressing 
modes. Subroutine calls, traps, and interrupts automatically use the system stack pointers: 
USP (A7) when S = 0 and SSP (A7’ ) when S = 1. Subroutine calls push the PC onto the 
system stack; RTS pops the PC from the stack. Traps and interrupts push both PC and SR 
onto the system stack; RTE pops PC and SR from the stack. 

The 68000 accesses the system stack from the top for operations such as subroutine 
calls or interrupts. This means that stack operations such as subroutine calls or interrupts 
access the system stack automatically from HIGH to LOW memory. Therefore, the system 
SP is decremented by 2 for word or 4 for long word after a push and incremented by 2 for 
word or 4 for long word after a pop. As an example, suppose that a 68000-CALL instruction 
(JSR or BSR) is executed when PC = $003 1 F200; then, after execution of the subroutine 
call, the stack will push the PC as follows: 

USP - 4 
or 

SSP - 4 

USP - 2 
or 

SSP - 2 

USP 
or 

SSP 

0031 (H) 

F200 (L) 

Valid data 

V 
HIGH Address 

Note that the 68000 SP always points to valid data. 
In 68000, stacks can be created by using address register indirect with 

postincrement or predecrement modes. Typical 68000 memory instructions such as MOVE 
tolfrom can be used to access the stack. Also, by using one of the seven address registers 
(AO-A6) and system stack pointers (A7,A7’), stacks can be filled from either HIGH to 
LOW memory or vice versa: 
1. Filling a stack from HIGH to LOW memory (Top of the stack) is implemented with 

predecrement mode for push and postincrement mode for pop. 
2. Filling a stack from LOW to HIGH (Bottom of the stack) memory is implemented 

with postincrement for push and predecrement for pop. 
For example, consider the following stack growing from HIGH to LOW memory 

addresses in which A7 is used as the stack pointer: 

A1 
L 

To push the 16-bit contents 0504,, of memory location 30501 6,,, the instruction 
MOVE. W $ 3  0 5 0 1 6 ,  - ( A 7  ) can be used as follows: 



Motorola MC6800 489 

The 16-bit data item 0504,, can be popped from the stack into the low 16 bits 
of DO by using MOVE. W ( A 7 )  f ,  DO. Register A7 will contain 200504,, after the pop. 
Note that, in this case, the stack pointer A7 points to valid data. Next, consider the stack 
growing from LOW to HIGH memory addresses in which the user utilizes A6 as the stack 
pointer: 

, Stack , 

To push the 16-bit contents 20701, of the low 16 bits of D5, the instruction MOVE . 
W D 5  , (A6) + can be used as follows. The 16-bit data item 207016 can be popped from 
the stack into the 16-bit contents of memory location 41 7024,, by using MOVE . W - (A6 ) , 
$ 4  17 0 2 4.  Note that, in this case, the stack pointer A6 points to the free location above the 
valid data. 

, Stack I 

10.7 68000 Delav Routine 

Typical 68000 software delay loops can be written using MOVE and DBF instructions. 
For example, the following instruction sequence can be used for a delay loop of 2 
millisecond: 

MOVE. W # c o u n t ,  DO 
DELAY DBF. W DO,  DELAY 

Note that DBF.W in the above decrements D0.W by one, and if D0.W * -1 
branches to DELAY; if D0.W = -1, the 68000 executes the next instruction. Since DBF.W 
checks for D0.W for -1, the value of “count” must be one less than the required loop count. 
The initial loop counter value of “count” can be calculated using the cycles (Appendix D) 



490 

required to execute the following 68000 instructions: 

Fundamentals of Digital Logic and Microcomputer Design 

MOVE. W # n ,  DO 
DBF . W DO , DELAY (10/14 cycles) 

(8 cycles) 

Note that the 68000 DBF.W instruction requires two different execution times. 
DBF.W requires 10 cycles when the 68000 branches if the content of D0.W is not equal to 
-1after autodecrementing D0.W by 1. However, the 68000 goes to the next instruction and 
does not branch when [DO.W] = -1 after autodecrementing D0.W by 1, and this requires 14 
cycles. This means that the DELAY loop will require 10 cycles for “count” times, and the 
last iteration will take 14 cycles. 

Assuming 4-MHz 68000 clock, each cycle is 250ns. For 2 millisecond delay, 

total cycles = 250 nSec = 8,000. The loop will require 10 cycles for “count” times when 
D0.W # -1 and the last iteration will take 14 cycles when no branch is taken (D0.W = -1). 
Thus, total cycles including the MOVE. W = 8 + 10 x (count ) + 14 = 8,000. Hence, count 
= 798,, = 031E,,. Therefore, D0.W must be loaded with ?98,, or 031E,,. 

Now, in order to obtain delay of two seconds, the above DELAY loop of 2 

millisecond can be used with an external counter. Counter value = 2 m sec = 1000. The 
following instruction sequence will provide an approximate delay of two seconds: 

2 m sec 

2 sec 

M0VE.W #1000,D1 ; I n i t i a l i z e  c o u n t e r  fo r  
;2 s e c o n d  d e l a y  

BACK M0VE.W # 7 9 8 , D 0  
DELAY DBF,  W DO, DELAY ;20msec d e l a y  

SUB0.W # 1 , D 1  
BNE . B  BACK 

Next, the delay time provided by the above instruction sequence can be calculated. 
From Appendix D, the cycles required to execute the following 68000 instructions: 

MOVE.  w # n ,  DI (8 cycles) 
SUBQ. w # n ,  DI (4 cycles) 
BNE.  B (1 0/8 cycles) 

As before, assuming 4-MHz 68000 clock, each cycle is 250ns. Total time from 
the above instruction sequence for two-second delay = Execution time for M0VE.W + 
1000 * (2 msec delay) + 1000 * (Execution time for SUBQ.W) + 999* (Execution time for 
BNE.B for Z = 0 when Dl * 0) + (Execution time for BNE.B for Z = 1 when D1 = 0 for 
last iteration) = 8 * 25011s + 1000 * 2msec + 1000 * 4 * 250ns + 999 * 10 * 250ns + 8 * 
250ns 5 2.0035 seconds which is approximately 2 seconds discarding the execution times 
of MOVE.W, SUBQ.W, and BNE.B. 

ExamDle 10.1 
Determine the effect of each of the following 68000 instructions: 

CLR DO 

M0VE.L D1, DO 
CLR.L (AO) + 
MOVE -(AO), DO 
MOVE 20(AO), DO 
M0VEQ.L #$D7, DO 
MOVE 21(AO, Al.L), DO 

Assume the following initial configuration before each instruction is executed; also assume 



Motorola MC6800 

all numbers in hex: 

49 1 

[DO] = 22224444, [DI] = 55556666 
[AO] = 00002224, [All  = 00003333 
[002220] = 8888, [002222] = 7777 
[002224] = 6666, [002226] = 5555 
[002238] = AAAA, [00556C] = FFFF 

Instruction Effective Address Net Effect (Hex) 
CLR DO Destination EA = DO DO + 22220000 
M0VE.L D1,DO Destination EA = DO DO - 55556666 
C L R . L  (AO)+ Destination EA = [AO] [002224] - 0000 

[002226] - 0000 
A0 +- 00002228 
A0 - 00002222 
DO - 22227777 
DO + 2222AAAA 

MOVE - (AO) , DO 

MOVE 20 (AO) ,DO 

Source EA = [AO] - 2 
Destination EA = DO 
Source EA = [AO] + 20,, 

Destination EA = DO 

Destination EA = DO 
Source EA = [AO] + [All  + 21 ,, 

= $00556C 
Destination EA = DO 

(or 14,J = 002238 

M0VEQ.L # $ O D 7 , D O  Source data = D7,, DO - FFFFFFD7 

MOVE 21 (AO, Al. L )  I DO DO +- 2222FFFF 

Examde 10.2 
Write a 68000 assembly language program that implements each of the following C 
language program segments: 

(a) if (x >= y )  
i) 

x = x + 10; 
else y = y - 12; 

where x is the address of a 16-bit signed integer and, y is the address of a 16-bit signed 

integer. 

(b) sum = 0 ;  
for (i  = 0; i <= 9; i= i t 1) 
sum = sum + a [ i ] ;  

where sum is the address of the 16-bit result of addition. 
ii) Write a 68000 assembly language program to find (X2) / (32765,J where X is a 16-bit 
signed number stored in D0.W. Store the 32-bit result (quotient and remainder) onto the 
user stack. 
iii) What are the remainder, quotient, and register containing them after execution of the 

following 68000 instruction sequence? 

M0VE.W #OFFFFH, D1 
D 1 V S . W  # 2 ,  D 1  

Solution 

i )  



492 Fundamentals of Digital Logic and Microcomputer Design 

( 4  x EQU 1 0 0  
Y EQU 200 

LEA.L x,AO 
LEA.L y,Al 
MOVE. W (AO) , DO 
CMP.W (Al), DO 
BGE.B THPRT 
SUB1.W #12, (Al) 
BPJ4.B STAY 

THPRT ADD1.W #lo, (AO) 
STAY JMP STAY 

(b) Assume register A0 holds the 
array. 

SUM EQU 300 
LEA.L 200,AO 
CLR.W DO 
M0VE.W #9,D1 

LOOP ADD.W (AO) +, DO 
DBF. W D1, LOOP 
MOVE. W DO, SUM 

FINISH JMP FINISH 

; Initialize A0 
; Initialize A1 
; Move [XI into DO 
; Compare [XI with [y] 

;Execute else part 

;Execute then part 
; Halt 

address of the first element of the 

; Initialize SUM to 300 for result 
; Point A0 to a[Ol 
; Clear the sum to zero 
; Initialize D1 with loop limit 
; Perform the iterative summation 

; Store 16-bit result in address SUM 
; Halt 

Note that, in the above condition F in DBF is always false. Hence, the program exits from 
the LOOP when D1= -1. Therefore, the addition process is performed 10 times. 

i i) MULS. D0,DO 
D1VU.W #32765,D0 ; 

M0VE.L DO,-(A7) 

FINISH JMP FINISH 

Compute X2and store in D0.L 
Since X2and32765 are both 
positve, use 
unsigned division. 
Remainder in high word 
of DO and quotient in low word 
of DO. Push 
D0.L to stack 

iii) MOVE.W #OFFFFH, DI 
D1VS.W #2, D1 

; D1 = FFFFH -1 
; D1/2 = -1/2 

High D1.W Low D1. W 

I FFFFH I OOOOH 
16-bit 16-bit 
remainder = quotient = 

-1 10 0 

ExamDle 10.3 
Write a 68000 assembly program at address $002000 to clear loo,,, consecutive bytes (from 
low to high addresses) to zero starting at location $003000. 
Solution 
00002000 1 
00002000 207C 00003000 2 
00002006 303C 0063 3 
0000200A 4218 4 LOOP 
0000200C 51C8 FFFC 5 

00002010 4EF8 2010 6 FINISH 
No errors detected 

ORG $2000 
M0VEA.L #$3000,AO ;LOAD A0 WITH $3000 
M0VE.W #99,DO ;MOVE 99 INTO DO 
CLR.B (AO)+ ;CLEAR[3000H] t 
DBF. W DO, LOOP ; DECREMENT AND 

JMP FINISH ;HALT 
;BRANCH 



Motorola MC6800 

No warnings generated 

Note that the 68000 has no HALT instruction.. Therefore, the unconditional jump to the 
same location such as FINISH JMP FINISH is normally used at the end of the program. 
Because DBF is a word instruction and considers DO’S low 16-bit word as the loop count, 
one should be careful about initializing DO using MOVEQ . L #d8,Dn since this instruction 
sign extends low byte of Dn to 32 bits. 

ExamDle 10.4 N 
Write a 68000 assembly language program at address $001 000 to compute X,Y,, where 

X,. and Y, are signed 16-bit numbers and N = 100. Store the 32-bit result in D1. Assume that 
the starting addresses of X, and Y, are loo,, and 200,, respectively. 

i= 1 

Solution 
00000000 =00000100 
00000000 =00000200 
00001000 
00001000 303C 0063 
00001004 41F8 0100 
00001008 43F80200 
OOOOlOOC 4281 

00001010 C5D9 
00001012 D282 
00001014 51C8 FFF8 
00001018 4EF8 1018 
0000101c 
No errors detected 
No warnings generated 

O O O O ~ O O E  3418 

1 P  
2 Q  
3 
4 
5 
6 
7 

9 
10 
11 
12FINISH 
13 

aLoop 

EQU $100 
EQU $200 
ORG $1000 
M0VE.W #99,DO 
LEA.L P,AO 
LEA.L Q,A1 
CLR.L D1 
M0VE.W (AO)t,D2 
MULS.W (Al)+,D2 
ADD.L D2,Dl 
DBF . W DO, LOOP 
JMP FINISH 

;MOVE 99 INTO DO 
;LOAD ADDRESS P INTO A0 
;LOAD ADDRESS Q INTO A1 
;INITIALIZE D1 TO ZERO 
;MOVE [XI TO D2 

;D1 <-- SUM XiYi 
;DECREMENT AND BRANCH 
; HALT 

;D2 <--[X]*[Y] 

Note: In order to execute the above program, values for X, and Y, must be stored in 
memory using assembler directive, DC.W. 

ExamDle 10.5 

Write a 68000 subroutine to compute Y = T2 IN. Assume the X, ’s  are 16-bit signed 

integers and N =  100. The numbers are stored in consecutive locations. Assume A0 points 
to the X, ’s  and A7 is already initialized in the main program. Store 32-bit result in D1 
(16-bit remainder in high word of D1 and 16-bit quotient in the low word of DI). Assume 
user mode. 
Solution 

N 

i= 1 

00000000 48E7 3080 1 SQR M0VEM.L D2/D3/AO,-(A7);SAVE REGISTERS 
00000004 4281 2 CLR.L D1 ;CLEAR SUM 
00000006 343C 0063 3 M0VE.W #99,D2 ;INITIALIZE LOOP COUNT 
OOOOOOOA 3618 4 BACK M0VE.W (AO)+,D3 ;MOVE Xi‘s INTO D3 
oooooooc c7c3 5 MULS.W D3,D3 ;COMPUTE X1**2 USING 

OOOOOOOE D283 6 ADD.L D3,Dl ;SINCE Xi**2 IS 

00000010 51CA FFF8 7 DEE .W D2, BACK ;COMPUTE 
00000014 82FC 0064 8 D1VU.W #100,D1 ;SUM OF Xi**2/N 

00000018 4CDF GO04 9 MOVEM.L(A7) t,D2/D3/AO ;RESTORE REGISTERS 
OOOOOOlC 4E75 10 RTS 
No errors detected 
No warnings generated 

; MULS 

;ALWAYS +VE 

;USING DIVU 



494 

In the above program, D I V U  is used for computing CX,ZM since both SUM (Xi**2) and 
N= 100 are unsigned (positive). Note that in order to execute the above program, values 
for X, must be stored in memory using assembler directive, DC.W. 

Examole 10.6 
Write a 68000 assembly language program at address 0 to move a block of 16-bit data of 
length loo,,, from the source block starting at location 002000,, to the destination block 
starting at location 003000,, from low to high addresses. 
Solution 

Fundamentals of Digital Logic and Microcomputer Design 

00000000 387C 2000 1 M0VEA.W #$2000,A4 ;LOAD A4 WITH SOURCE ADDR 
00000004 3A7C 3000 2 M0VEA.W #$3000,A5 ;LOAD A5 WITH DEST ADDR 
00000008 303C 0063 3 M0VE.W #99,DO ;LOAD DO WITH COUNT - 1 ~ 9 9  
OOOOOOOC 3ADC 4 START M0VE.W (A4)+, (A5)+ ;MOVE SOURCE DATA TO DEST 

00000012 4EF8 0012 6 STAY JMP STAY ;HALT 
No errors detected 
No warnings generated 

OOOOOOOE 51C8 FFFC 5 DBF.W D0,START ;BRANCH IF DO#-1 

Note: Typical assemblers assemble a program starting at address 0 if assembler directive 
ORG is not used at the beginning of the program. 

ExamDle 10.7 
Write a 68000 assembly language program at address 0 to add two words, each containing 
two ASCII digits. The first word is stored in two consecutive locations (from LOW to 
HIGH) with the low byte pointed to by A0 at address 000300,,, and the second word is 
stored in two consecutive locations (from LOW to HIGH) with the low byte pointed to by 
A1 at 000700,,. Store the packed BCD result in D5. 
Solution 
00000000 7401 1 M0VEQ.L #1,D2 
00000002 307C 0300 2 M0VEA.W #$0300,AO 
00000006 327C 0700 3 MOVEA . W #$07 00, A1 
OOOOOOOA 0218 OOOF 4START AND1.B #$OF, (AO)+ 
OOOOOOOE 0219 OOOF 5 AND1.B #$OF, (Al)+ 
30000012 51CA FFFG 6 DBF.W D2,START 
00000016 1C20 7 M0VE.B -(AO),D6 
00000018 1E20 8 M0VE.B -(AO) ,D7 
OOOOOOlA E90E 9 LSL.B #4,D6 

000000lC 8C07 10 0R.B D7,D6 
OOOOOOlE 1A21 11 M0VE.B -(Al),D5 

00000020 1821 12 M0VE.B -(Al),D4 
00000022 E90D 13 LSL.B #4,D5 

00000024 8A04 14 0R.B D4,D5 

00000026 0600 0000 15 ADD1.B #O,DO 
OOOOOOSA CB06 16 ABCD.B D6,D5 
0000002C 4EF8 002C 17 FINISH JMP FINISH 
No errors detected 

No warnings generated 

;INITIALIZE A0 
;INITIALIZE A1 
;CONVERT IST # TO UNPAC.BCD 
;CONVERT 2ND # TO UNPAC.BCD 

;GET HIGH UNPAC.BYTE OF IST# 
;GET LOW UNPAC. BYTE OF IST# 
;SHIFT IST# HIGH BYTE 4 
;TIMES 
;D6=PACKED BCD BYTE OF IST# 
;GET HIGH UNPAC. BYTE OF 
; 2ND# 
;GET LOW UNPAC. BYTE OF 2ND# 
;SHIFT 2ND # HIGH BYTE 4 
;TIMES 
;D5 HAS PACKED BCD BYTE OF 
; 2ND# 
;CLEAR X-BIT 
;D5.B =PACKED BCD RESULT 

ExamDIe 10.8 
Write a 68000 assembly language program that will perform : 5 x X +  6 x Y + [Y/8]  -[ 
D 1 .L] where Xis  an unsigned 8-bit number stored in the lowest byte of DO and Y is a 16-bit 
signed number stored in the upper 16 bits of D1. Neglect the remainder of Y/8. 



Motorola MC6800 495 

Solution 
00000000 0240 OOFF 1 AND1.W #$OOFF,DO 
00000004 COFC 0005 2 MULU.W #5,DO 
00000008 4841 3 SWAP.W D1 
OOOOOOOA 3401 4 M0VE.W D1,D2 
OOOOOOOC C3FC 0006 5 MULS.W #6,D1 
00000010 D280 6 ADD.L DO,D1 
00000012 48C2 7 EXT.L D2 
00000014 E682 8 hSR.L #3,D2 
00000016 D282 9 ADD.L D2,Dl 
00000018 4EF8 0018 10 FINISH JMP FINISH 
No e r r o r s  d e t e c t e d  

No warnings genera ted  

;CONVERT X TO UNSIGNED 16-BIT 
;COMPUTE UNSIGNED 5*X IN D0.L 
;MOVE Y TO LOW 16 BITS IN D1 
;SAVE Y TO LOW 16 BITS OF D2 
;COMPUTE SIGNED 6*Y IN D1.L 
;ADD 5*X WITH 6*Y 
;SIGN EXTEND 
;PERFORM Y18;DISCARD REMAINDER 
;PERFORM 5*X+6*Y +Y/8 

Example 10.9 
Write a 68000 assembly language program to convert temperature from Fahrenheit to 
Celsius using the following equation: C = [(F - 32)/9] x 5 ; assume that the low byte of 
DO contains the temperature in Fahrenheit. The temperature can be positive or negative. 
Store result in DO. 
Solution 
00000000 4880 1 EXT.W DO ;SIGN EXTEND (F) LOW BYTE OF DO 
00000002 0440 0020 2 SUB1.W #32,DO ;PERFORM F-32 
00000006 ClFC 0005 3 MULS.W #5,DO ;PERFORM 5* (F-32)/9 AND STORE 
OOOOOOOA 81FC 0009 4 D1VS.W #9,DO ;REMAINDER IN HIGH WORD OF DO 
OOOOOOOE 4EF8 OOOE 5 FINISH JMP FIN1SH;AND QUOTIENT IN LOW WORD OF DO 
No e r r o r s  d e t e c t e d  

No warnings genera ted  

Examule 10.10 
Write a 68000 assembly language program at address $4000 to add four 32-bit numbers 
stored in consecutive locations starting at address $3000. Store the 32-bit result onto the 
user stack. Assume that no carry is generated due to addition of two consecutive 32-bit 
numbers and A7 is already initialized. 
Solution 
0 0 0 0 3 0 0 0 1 ORG $3000 
00003000 00000001 00000002 2 DC.L 1,2,3,4 
00003002 00000003 00000004 
00004000 3 ORG $4000 
00004000 7003 4 M0VEQ.L #3,DO 
00004002 207C 00003000 5 M0VEA.L #$3000,AO 
00004008 4281 6 CLR.L D1 
0 0 0 0 4 0 0 A  D298 7 START ADD.L (AO)+,Dl 
0000400C 51C8 FFFC 8 DBF . W DO, START 
00004010 2F01 9 M0VE.L Dl,-(A7) 
00004012 4EF8 4012 10 FINISH JMP FINISH 

No e r r o r s  d e t e c t e d  
No warnings genera ted  

Examule 10.11 
Write a subroutine in 68000 assembly language to implement the C language assignment 
statement: p = p + q; where addresses p and q hold two 16-digit (64-bit) packed BCD 
numbers (N1 and N2). The main program will initialize addresses p and q to $002000 and 
$003000 respectively. Address $002007 will hold the lowest byte of N1 with the highest 
byte at address $002000 while Address $003007 will contain the lowest byte of N2 with 



496 Fundamentals of Digital Logic and Microcomputer Design 

the highest byte at address $003000. Also, write the main program at address $004000 
which will perform all initializations including address p (pointer A0 to $002000), address 
q (pointer A1 to $003000), loop count (D1 to 7), and then call the subroutine at $008000 
and stop. The subroutine will accomplish the task with the initialized values of AO, Al ,  
and D1 in the main program. Use ABCD.B for BCD addition with predecrement mode. 
Assume supervisor mode. Note that the 68000 supervisor stack pointer is initialized upon 
hardware reset. 
Solution 
00004000 
00004000 307C 2000 
00004004 327C 3000 
00004008 323C 0007 
0000400C 4EB9 00008000 
00004012 4EF8 4012 
00004016 
00008000 
00008000 41FO 1001 
00008004 43F1 1001 
00008008 0600 0000 
0000800C C109 
0000800E 51C9 FFFC 
00008012 4E15 
No e r r o r s  d e t e c t e d  

No warnings genera ted  

1 ORG $004000 
2 M0VEA.W #$2000,AO 
3 M0VEA.W #$3000,A1 
4 M0VE.W #7,D1 
5 JSR BCDADD 
6 STAY JM? STAY 
7 
8 ORG $008000 
9 BCDADD LEA.L 1 (A0,Dl.W) ,A0 ;UPDATE A0 
10 LEA.L 1 (A1,Dl.W) ,A1 ;AND A1 

12 ALOO? ABCD.B - ( A l )  ,- (AO) ;ADD 
11 ADD1.B #O,DO ;X-BIT =O 

13 DBF. W D1, ALOOP 
14 RT S 

ExamDIe 10.12 
Write a 68000 assembly program to multiply an 8-bit signed number in the low byte of D 1 
by a 16-bit signed number in the high word of D5. Store the result in D3. 
Solution 
00000000 4881 1 EXT.W D1 ;SIGN EXTENDS LOW BYTE OF D1 
00000002 4845 2 SWA?.W D5 ;SWAP LOW WORD WITH HIGH 

00000004 CBCl 3 MULS.W D1,D5 ;MULTIPLY D1 WITH D5, 

00000006 2605 4 M0VE.L D5,D3 ;COPY RESULT IN D3 
00000008 4EF8 0008 5 FINISH JMP FINISH 
No e r r o r s  d e t e c t e d  
No warnings genera ted  

;WORD OF D5 

;STORE RESULT 

Examde 10.13 
Write a 68000 assembly language program at address $2000 to add ten 32-bit numbers 
stored in consecutive locations starting at address $502040. Initialize A6 to $00200504 
and use the low 24 bits of A6 as the stack pointer to push the 32-bit result. Use only ADDX 
instruction for adding two 32-bit numbers each time through the loop. Assume that no 
carry is generated due to the addition of two consecutive 32-bit numbers; this will provide 
the 32-bit result. This example illustrates use of the 68000 ADDX instruction. 
Solution 
00001000 1 ORG $1000 
00000002 00000002 00000003 00000007 ... 2 DC.L 2,3,7,5,1,9,6,4,6,1 
00001028 =00001000 3 START-ADR EQU $1000 
00002000 4 CRG $2000 
00002000 -00000009 5 COUNT EQU 9 
00002000 2 0 7 C  00001000 6 MCVEA.1. #START-ADR,AO ;LOAD STARTING 

;ADDRESS IN A0 

;COUNTER 
00002006 103C 0009 1 MOVE.B #COUNT,DO ;USE no AS A 

0000200A 2C7C 00200504 8 MOVEA.I,#$00200504,A6 ;USE A6 AS THE 



Motorola MC6800 497 

00002010 4281 

00002012 0606 0000 
oonozoi6 2618 

0000201A 51C8 FFFA 

0000201E 2D01 

00002020 4EF8 2020 

No errors detected 
No warnings generated 

9 

10 
11 AGAIN 

12 

13 

14 

15 FINISH 

; S P  
CLR.L D1 ;CLEAR Di 

;REGISTER 
ADD1.A #O,D6 ;CLEAR X BIT 
M0VE.L (AO)+,D3 ;MOVE A 32 BIT 

;NUMBER 
;IN D3 

ADDX. I, D3, D1 ;AOD NUMBERS 
;USING 
; ADDX 

; DO=-1 

;RESULT 
;ONTO STACK 

DBF.W DO,AGAIN ;REPEAT UNTIL 

M0VE.L D1,-(A6) ;PUSH 32-bit 

JMP FINISH 

Note that ADDX adds the contents of two data registers or the contents of two memory 
locations using predecrement modes. 

Examole 10.14 
Write a 68000 assembly language program at address $2000 to subtract two 32-bit packed 
BCD numbers. The BCD number 1 is stored at the locations starting from $003000 
through $003003, with the least significant byte at $003003 and the most significant byte 
at $003000. Similarly, the BCD number 2 is stored at the locations starting from $004000 
through $004003, with the least significant byte at $004003 and the most significant byte 
at $004000. The BCD number 2 is to be subtracted from BCD number 1.  Store the packed 
BCD result at addresses $005000 (Lowest byte of the result) through $005003 (Highest 
byte of the result). In the program, first initialize loop counter D7 to 4, source pointer A0 to 
$003000, source pointer A1 to $004000, destination pointer A3 to $005000, and then write 
the program to accomplish the above using these initialized values. 
Solution 
0 0 0 0 3 0 0 0 1 ORG $003000 
00003000 99221133 2 DC.L $99221133 
00004000 3 ORG $004000 
00004000 33552211 4 DC.L $33552211 
00002000 5 ORG $2000 
00002000 3E3C 0004 6 M0VE.W #4,D7 ;NUMBER OF BYTES TO BE SUBTRACTED 
00002004 307C 3000 7 M0VEA.W #$3000,AO ;STARTING ADDRESS FOR FIRST NUMBER 
00002008 327C 4000 8 M0VEA.W #$4000,A1 ;STARTING ADDRESS FOR SECOND NUMBER 
0000200C DOC7 9 ADDA.W D7,AO ;MOVE ADDRESS POINTERS TO THE END 
0000200E D2C7 10 ADDA.W D7,Al ;OF EACH 32 BIT PACKED BCD NUMBER 
00002010 367C 5000 11 M0VEA.W #$5000,A3 ;LOAD POINTER FOR DESTINATION ADDR 
00002014 5347 12 SUBQ.W #1,D7 ;SUBTRACT D7 by 1 for DBF 

0000201A 1020 14 LOOP M0VE.B -(AO),DO ;GET A BYTE FROM FIRST NUMBER 
3000201C 1221 15 M0VE.B -(Ai),Dl ;GET A BYTE FROM SECOND NUMBER 
0000201E 8101 16 SRCD.B D1,DO ;BCD SUBTRACTION, RESULT IN DO 
00002020 16CO 17 M0VE.B DO,(A3)+ ;STORE RESULT IN DESTINATION ADDR 
00002022 51CF FFF6 18 DBF D7,LOOP ;CONTINUE UNTIL COUNTER HAS EXPIRED 
00002026 4EF8 2026 19 FINISH JMP FINISH 

No errors detected 
No w a r n i n g s  generated 

00002016 0607 0000 13 ADD1.B #O,D7 ;CLEAR X-BIT 

Note that SBCD subtracts the contents of two data registers or the contents of two memory 
locations using predecrement modes. 

Examole 10.15 
Write a 68000 assembly program at address $1000 which is equivalent to the following C 
language segment: 



498 Fundamentals of Digital Logic and Microcomputer Design 

sum = 0; 
for ( i=O;i  <= 9; i = i +  1) 
sum = sum + x[i] * y[i]; 
Assume that the arrays, x[i] and y[i] contain unsigned 16-bit numbers already stored in 
memory starting at addresses $3000 and $4000 respectively. Store the 32-bit result at 
address $5000. 
Solution 
00001000 1 ORG $1000 
00001000 =00003000 2 x EQU $3000 
00001000 = 0 0 0 0 4 0 0 0  3 y EQU $4000 
00001000 =00005000 4 s u m  EQU $5000 
00001000 5 
00001000 303C 0009 6 M0VE.W # 9 , D O  ;USE DO AS A LOOP COUNTER 
00001004 41F8 3000 7 LEA.L x,AO ;INITIALIZE A0 WITH x 
00001008 43F8 4000 8 LEA.L y,Al ;INITIALIZE A1 WITH y 
OOOOlOlC 45F8 5000 9 LEA.L sum,A2 ;INITIALIZE A2 WITH SUM 
00001010 4285 10 CLR.L D5 ;CLEAR SUM TO 0 
00001012 3418 11 LOO? M0VE.W (AO)+,D2;MOVE X [ i ]  INTO D2 
00001014 C4D9 12 MULU.W (Al)+,D2;COM?UTE X [ i l  * y [ i l  
00001016 DA82 13 ADD.L D2,D5 ;UPDATE SUM 

OOOOlOlC 2485 15 M0VE.L D5,(A2) ;STORE SUM IN MEMORY 
OOOOlOlE 4EF8 1OlE 16 FINISH JMP FINISH 
No e r ro r s  detected 

No warnings generated 

00001018 51C8 FFF8 14 DBF.W DO,LOO? ;REPEAT UNTIL DO=-1 

10.8 68000 Pins And Signals 

The 68000 is usually packaged in one of the following: 
a) 64-pin dual in-line package (DIP) 
b) 68-pin quad pack 

Figure 10.6 shows the 68000 pin diagram for the DIP. Appendix C provides data 
sheets for the 68000 and support chips. 

The 68000 is provided with two V,, (+5 V) and two ground pins. Power is thus 
distributed in order to reduce noise problems at high frequencies. Also, to build a prototype 
to demonstrate that the paper design for the 68000-based microcomputer is correct, one 
must use either wire-wrap or solder for the actual construction. Prototype board must not 
be used because, at high frequencies (above 4 MHz), there will be noise problems due to 
stray capacitances. The 68000 consumes about 1.5 W of power. 

D,-D,S are the 16 data bus pins. All transfers to and from memory and I/O devices 
are conducted over the &bit (LOW or HIGH) or 16-bit data bus depending on the size of 
the device. A,-A,, are the 23 address lines. A, is obtained by encoding the UDS (upper data 
strobe) and LDS (lower data strobe) lines. 

The 68000 operates on a single-phase TTL-level clock at 4, 6, 8, 10, 12.5, 16.67, 
or 25 MHz. The clock signal must be generated externally and applied to the 68000 clock 
input line. An external crystal oscillator chip is required to generate the clock. Figure 10.7 
shows the 68000 CLK waveform and clock timing specifications. The clock is at TTL- 
compatible voltage. The clock timing specifications provide data for three different clock 
frequencies: 8 MHz, 10 MHz, and 12.5 MHz The 68000 CLK input can be provided by an 
external crystal oscillator or by designing an external circuit. 

c) 68-terminal chip carrier 
d) 68-pin grid array (PGA) 

- 
- 

The 68000 signals can be divided into five functional categories: 



Motorola MC6800 

< tcyc -~ > 

t- k L  + - fCH+ 

2.0v L 1 1 1 

499 

0.8 v I 

tcr + z 

A, 32 r -  

FIGURE 10.6 68000 pins and signals 

c ? '  

-In 



500 

1. 
2. System control lines 
3. Interrupt control lines 
4. DMA control lines 
5. Status lines 

Fundamentals of Digital Logic and Microcomputer Design 

Synchronous and asynchronous control lines 

10.8.1 Synchronous and Asynchronous Control Lines 
The 68000 bus control is asynchronous. This means that once a bus cycle is initiated, the 
external device must send a signal back to complete it. The 68000 also contains three 
synchronous control lines that facilitate interfacing to synchronous peripheral devices such 
as Motorola’s inexpensive MC6800 family. 

Synchronous operation means that bus control is synchronized or clocked using 
a common system clock signal. In 6800 family peripherals, this common clock is the E 
clock signal depending on the particular chip used. With synchronous control, all READ 
and WRITE operations must be synchronized with the common clock. However, this may 
create problems when interfacing with slow peripheral devices. This problem does not 
arise with asynchronous bus control. 

Asynchronous operation is not dependent on a common clock signal. The 68000 
utilizes the asynchronous control lines to transfer data between the 68000 and peripheral 
devices via handshaking. Using asynchronous operation, the 68000 can be interfaced to 
any peripheral chip regardless of the speed. 

The 68000 has three control lines to transfer data over its bus in a synchronous 
manner: E (enable), VPA (valid peripheral address), and VMA (valid memory address). 
The E clock corresponds to the clock of the 6800. The E clock is output at a frequency that 
is one tenth of the 68000 input clock. VPA is an input and tells the 68000 that a 6800 device 
is being addressed and therefore the data transfer must be synchronized with the E clock. 
VMA is the processor’s response to VPA. VMA is asserted when the memory address is 
valid. This also tells the external device that the next data transfer over the data bus will be 
synchronized with the E clock. 

VPA can be generated by decoding the address pins and address strobe (AS). 
Note that the 68000 asserts AS LOW when the address on the address bus is valid. VMA 
is typically used as the chip select of the 6800 peripheral. This ensures that the 6800 
peripherals are selected and deselected at the correct time. The 6800 peripheral interfacing 
sequence is as follows: 

__ - 

- -- 

1. 
2. 

The 68000 initiates a cycle by starting a normal read or write cycle. 
The 6800 peripheral defines the 68000 cycle by asserting the 68000 VPA input. 
If  VPA is asserted as soon as possible after assertion of AS, then VPA will be 
recognized as being asserted after three cycles. If VPA is not asserted after 
three cycles, the 68000 inserts wait states until VPA is recognized by the 68000 
as asserted. DTACK should not be asserted while VPA is asserted. The 6800 
peripheral must remove VPA within 1 clock period after AS is negated. 
The 68000 monitors enable (E) until it is LOW. The 68000 then synchronizes all 
READ and WRITE operations with the E clock. The VMA output pin is asserted 
LOW by the 68000. 
The 6800 peripheral waits until E is active (HIGH) and then transfers the data. 
The 68000 waits until E goes to LOW (on a read cycle, the data is latched as E 
goes to LOW internally). The 68000 then negates m, AS, m, and m. The 

- 

- 
- 

3. 

4. 
5 .  



Motorola MC6800 501 

68000 thus terminates the cycle and starts the next cycle. 
The 68000 utilizes five lines to control address and data transfers asynchronously: 

AS(address - strobe), R/w (readwrite), DTACK (data acknowledge), UDS (upper data 
strobe), and LDS (lower data strobe). 

The 68000 outputs to notify the peripheral device when data is to be transferred, 
AS is active LOW when the 68000 provides a valid address on the address bus. The R/m 
output line indicates whether the 68000 is reading data from or writing data into a peripheral 
device. W- is HIGH for read and LOW for write. DTACK is used to tell the 68000 that a 
transfer is to be performed. When the 68000 wants to transfer data asynchronously, it first 
activates the AS line and at the same time generates the required address on the address 
lines to select the peripheral device. 

Because the AS line tells the peripheral chip when to transfer data, the AS line 
should be part of the address decoding scheme. After enabling AS, the 68000 enters the wait 
state until it receives DTACK from the selected peripheral device. On receipt of DTACK? 
the 68000 knows that the peripheral device is ready for data transfer. The 68000 then 
utilizes the W- and data lines to transfer data. UDS and LDS are defined as follows: 

- 

U D S L D S  Data Transfer Occurs Via: Address 
1 0 Do-D, pins for byte Odd 
0 1 D,-D,, pins for byte Even 
0 0 Do-D,, pins for word or long word Even 

- - - 
A, is encoded from UDS and LDS. When UDS is asserted, the contents of even 

addresses are transferred on the high-order eight lines of the data bus, Ds-D,,. The 68000 
internally shifts this data to the low byte of the specified register. When LDS is asserted, the 
contents of odd addresses are transferred on the low-order eight lines of the data bus, Do- 
D,. During word and long word transfers, both UDS and LDS are asserted and information 
is transferred on all 16 data lines, Do-D,, pins. Note that during byte memory transfers, A, 
corresponds to UDS for even addresses (A, = 0) and to for odd addresses (A, =l). The 
circuit in Figure 10.8 shows how even and odd addresses are interfaced to the 68000. 

c_ 

_ _ -  

FIGURE 10.8 Interfacing of the 68000 to even and odd addresses 



502 

10.8.2 System Control Lines 
The 68000 has three control lines, (bus error), HALT, and RESET, which are used 
to control system-related functions. BERR is an input to the 68000 and is used to inform the 
processor that there is a problem with the instruction cycle currently being executed. With 
asynchronous operation, this problem may arise if the 68000 does not receive DTACK 
from a peripheral device. An external timer can be used to activate the BERR pin if the 
external device does not send DTACK within a certain period of time. On receipt of BERR, 
the 68000 does one of the following: 

Fundamentals of Digital Logic and Microcomputer Design 

Reruns the instruction cycle that caused the error. 

Executes an error service routine. 
The troubled instruction cycle is rerun by the 68000 if it receives a HALT signal 

along with the BERR signal. On receipt of LOW on both the HALT and pins, the 
68000 completes the current instruction cycle and then goes into the high-impedance state. 
On removal of both HALT and BERR (that is, when both HALT and are HIGH), 
the 68000 reruns the troubled instruction cycle. The cycle can be rerun repeatedly if both 
BERR and HALT are enabled/disabled continually. 

On the other hand, an error service routine is executed only if the BERR signal is 
received without HALT. In this case, the 68000 will branch to a bus error vector address 
where the user can write a service routine. If two simultaneous bus. errors are received via 
the BERR pin without HALT, the 68000 automatically goes into the halt state until it is 
reset. 

The HALT line can also be used by itself to perform single stepping or to provide 
DMA. When the HALT input is activated, the 68000 completes the current instruction and 
goes into a high-impedance state until HALT is returned to HIGH. By enablingldisabling 
the HALT line continually, the single-stepping debugging can be accomplished. However, 
because most 68000 instructions consist of more than one clock cycle, single stepping 
using HALT is not normally used. Rather, the trace bit in the status register is used to 
single-step the complete instruction. 

One can also use HALT to perform microprocessor-halt DMA. Because the 68000 
has separate DMA control lines, DMA using the HALT line will not normally be used. The 
HALT pin can also be used as an output signal. The 68000 will assert the HALT pin LOW 
when it goes into a halt state as a result of a catastrophic failure. The double bus error 
(activation of BERR twice) is an example of this type of error. When this occurs, the 68000 
goes into a high-impedance state until it is reset. The HALT line informs the peripheral 
devices of the catastrophic failure. 

line of the 68000 is also bidirectional. To reset the 68000, both the 
RESET and HALT pins must be LOW for 10 clock cycles at the same time except when 
Vcc is initially applied to the 68000. In this case, an external reset must be applied for at 
least 100 ms. The 68000 executes a reset service routine automatically for loading the PC 
with the starting address of the program. 

The 68000 RESET pin can also be used as an output line. A LOW can be sent 
to this output line by executing the RESET instruction in the supervisor mode in order to 
reset external devices connected to the 68000 RESET pin. Upon execution of the RESET 
instruction, the 68000 drives the RESET pin LOW for 124 clock periods and does not 
affect any data, address, or status registers. Therefore, the RESET instruction can be placed 
anywhere in the program whenever the external devices need to be reset. 

Upon hardware reset, the 68000 sets the S-bit in SR to 1, and then loads the 
supervisor stack pointer from location $000000 (high 16 bits) and $000002 (low 16 bits) 

The 



Motorola MC6800 503 

and loads the PC from $000004 (high 16 bits) and $000006 (low 16 bits); but the low 24 
bits are used. In addition, the 68000 clears the trace bit in SR to 0 and sets bits I2 I1 I0 in 
SR to 1 1 1. All other registers are unaffected. 

10.8.3 Interrupt Control Lines 
IPLO, IPLl, and IPL2 are the three interrupt control lines These lines provide for seven 
interrupt priority levels (IPL2, IPLl, IPLO = I 11 means no interrupt, and IPL2, IPLl, IPLO 
= 000 means nonmaskable interrupt with the highest priority). The 68000 interrupts will be 
discussed later in this chapter. 

-- ~ 

-__-  ~ - -  

10.8.4 DMA Control Lines 
The BR (bus request), BG (bus grant), and BGACK (bus grant acknowledge) lines are used 
for DMA purposes. The 68000 DMA will be discussed later in this chapter. 

10.8.5 Status Lines 
The 68000 has the three output lines called function code pins (output lines) FC2, FCl, 
and FCO. These lines tell external devices whether user datdprogram or supervisor data/ 
program is being addressed. These lines can be decoded to provide user or supervisor 
programsidata and interrupt acknowledge as shown in Table 10.13. 

The FC2, FCI , and FCO pins can be used to partition memory into four fknctional 
areas: user data memory, user program memory, supervisor data memory, and supervisor 
program memory. Each memory partition can directly access up to 16 megabytes, and thus 
the 68000 can be made to directly address up to 64 megabytes of memory. This is shown 
in Figure 10.9. 

10.9 

This section covers generation of 68000 clock and reset signals in detail because the clock 
signal and the reset pins are two important signals of any microprocessor. 

10.9.1 68000 Clock Signals 
As mentioned before, the 68000 does not include an on-chip clock generation circuitry. 
This means that an external crystal oscillator chip is required to generate the clock. The 
68000 CLK input can be provided by a crystal oscillator or by designing an external circuit. 
Figure 10.10 shows a simple oscillator to generate the 68000 CLK input. 

This circuit uses two inverters connected in series. Inverter 1 is biased in its 

68000 Clock and Reset Signals 

TABLE 10.13 Function Code Lines 

FC2 FCI FCO Operation 
0 0 0 Unassigned 
0 0 1 User data 
0 1 0 User program 
0 1 1 Unassigned 
1 0 0 Unassigned 
1 0 1 Supervisor data 
1 1 0 Supervisor program 
1 1 1 Interrupt acknowledge 



504 

D 0 

74HC74 

R = l K  

I 

Clock Q 

Fundamentals of Digital Logic and Microcomputer Design 

To 68000 
CLK input 

To each 

Fc2 FC1 i-1; : 1 

16M user data r\ 
program 1 1 -1 cs 

16M supelvisor 

r ' c s  data ~ 

address 
space 

FIGURE 10.10 External clock circuitry 

transition region by the resistor R. Inverter 1 inputs the crystal output (sinusoidal) to 
provide a logic pulse train at the output of inverter 1. Inverter 2 sharpens the wave and 
drives the crystal. For this circuit to work, HCMOS logic for the inverters must be used. 
Therefore, the 74HC04 inverter chip is used. The 74HC04 has high noise immunity and 
the ability to drive 10 LS-TTL loads. A coupling capacitor should be connected across 
the supply terminals to reduce the ringing effect during high-frequency switching of the 
HCMOS devices. Note that the ringing occurs when a circuit oscillates for a short time due 
to the presence of stray inductance and capacitance. In addition, the output of this oscillator 
is fed to the CLK input of a D flip-flop (74HC74) to hrther reduce the ringing. A clock 
signal of 50% duty cycle at a frequency of '/z the crystal frequency is generated. This means 
that this circuit with a 16-MHz crystal will generate an 8-MHz clock for the 68000. 

10.9.2 68000 Reset Circuit 
When designing the microprocessor's reset circuit, two types of reset must be considered: 
power-up and manual. These reset circuits must be designed using the parameters 



Motorola MC6800 505 

specified by the manufacturer. Therefore, a microprocessor must be reset when its Vcc 
pin is connected to power. This is called “power-up reset.” After some time during normal 
operation, the microprocessor can be reset by the designer upon activation of a manual 
switch such as a pushbutton. A reset circuit, therefore, needs to be designed following 
the timing parameters associated typically with the microprocessor’s reset input pin 
specified by the manufacturer. The reset circuit, once designed, is typically connected to 
the microprocessor’s reset pin. 

Upon hardware reset, the 68000 sets the S-bit in SR to 1 and performs the 
following: 
1. The 68000 loads the supervisor stack pointer from addresses $000000 (high 16 bits) 

and $000002 (low 16 bits) and loads the PC from $000004 (high 16 bits) and $000006 
(low 16 bits). Typical 68000 assembler directives such as DC.L can be used for this 
purpose. For example, to load $200128 into supervisor SP and $3F1420 into PC, the 
following instruction sequence can be used: 

ORG $00000000 
DC.L $00200128 
DC.L S003F1420 

2. The 68000 clears the trace bit in SR to 0 and sets the interrupt mask bits 12 I1 I0 in SR 
to 1 1 1. All other registers are unaffected. 

To cause a power-up reset, Motorola specifies that both the RESET and HALT 
pins ofthe 68000 must be held LOW for at least 100 ms. This means that an external circuit 
needs to be designed that will generate a negative pulse with a width of at least 100 ms for 
both RESET and HALT. The manual RESET requires both the and HALT pins to 
be LOW for at least 10 cycles( 1.25 microseconds for 8MHz). In general, it is safer to assert 
RESET and HALT for much longer than the minimum requirements. Figure 10.1 1 shows a 
typical 68000 reset circuit that asserts and HALT LOW for approximately 200 ms. 
The 555 timer is used in the circuit. 

The reset circuit in the figure utilizes the 555 timer chip and provides for both 
power-up and manual resets by asserting the 68000 RESET and HALT pins for at least 
200 ms. The computer designer does not have to know about the details of the 555 chip. 
Instead, the designer should know how to use the 555 chip to generate the 68000 RESET 
signal. 

The 555 is a linear 8-pin chip. The TRIGGER pin is the input signal. When the 
voltage at the TRIGGER input pin is less than or equal to 113 V,,, the OUTPUT pin is 
HIGH. The DISCHARGE and THRESHOLD pins are tied together to R, and C. Note 
that the values of R, and C determine the output pulse width. The CONTROL input pin 
controls the THRESHOLD input voltage. According to the manufacturer’s data sheets, 
the control input should be connected to a 0.01-pF capacitor whose other lead should be 
grounded. Also, from the manufacturer’s data sheets, the output pulse width, fPW= 1.1 R,C 
seconds. The values of R, and C can be chosen for stretching out the pulse width. An 
RC circuit is connected at the 555 TRIGGER pin. A slow pulse obtained by charging 
and discharging the capacitor C, is applied at the 555 TRIGGER input pin. The 555 will 
generate a clean and fast pulse at the output. Capacitor C, is at zero voltage upon power-up. 
This is obviously lower than 1/3 V,, with V,, = 5 V. Thus, the 555 will generate a HIGH 
at the OUTPUT pin. The OUTPUT pin is connected through a 7404 inverter to provide a 
LOW at the 68000 pins. The 7404 output is buffered via two 7407’s 
(noninverting buffers) to ensure adequate currents for the 68000 RESET and HALT pins. 
Note that the 7407 provides an open collector output. Therefore, a 1 -Kohm pull-up is used 

_ _ _ -  

and 



506 Fundamentals of Digital Logic and Microcomputer Design 

+5 v 
R=100K ohm 

TRIGGER DISCHARGE 

swtch 
OUTPUT THRESHOLD 

RESET CONTROL 
555 Timer 

7407 

7404 7407 

FIGURE 10.11 68000 RESET circuit 

for each 7407. Now, let us explain how the timing requirements for the 68000 RESET are 
satisfied. 

As mentioned before, capacitor C, is initially at zero voltage upon power-up. C, 
then charges to V,, after a definite time determined by the time constant, RC,. The charging 
voltage across the capacitor is 

Vc(t) = Vcc[ 1 - e - F ]  
t 

V,(t) must be less than or equal to VJ3 volts (1.7 V). To be on the safe side, let us 

1 I Hence, - - 1 - e - F  4 -  
_- 

e R C 1  =0.75 

t Therefore, RC1 = 0.29 

As mentioned earlier, it is desired to provide 200 ms (arbitrarily chosen; satisfying the 
minimum requirements specified by Motorola) reset time for both power-up and manual 
reset. 

200 ms RCI = 0.29 = 689.65 ms 

Hence, RCI 0.69 s 
If R is arbitrarily chosen as 100 KQ, then C, = 6.9 pF. 
The 555 output pulse width can be determined using the equation, 

t,,, = 1.1 R, C. Since t,,, = 200 msec, hence R, C = 0.18 seconds. If R, = 1 MQ (arbitrarily 
chosen) then C = 0.18 / 1 Oh = 0.18 pF. 



Motorola MC6800 507 

The reverse-biased diode (1 N904 or equivalent) connected at the 555 TRIGGER 
input circuit is used to hold the capacitor (C, charged to 1.25 V) voltage at 1.25 V in case 
V, (obtained using a power supply from AC voltage) drops below 5V to a level such that 
the capacitor C, may discharge through the 100-KQ resistor. In such a situation, the diode 
will be forward biased essentially shorting out the 100-Kohm resistor, thus maintaining the 
capacitor voltage at 1.25 V. 

In Figure 10.1 1, upon power-up, the capacitor C, charges to approximately 1.25 
V. After some time, if the reset switch is depressed, the capacitor is short-circuited to 
ground. The capacitor, therefore, discharges to zero. This logic 0 at the 555 TRIGGER 
input pin will provide 200 ms LOW at the 68000 and HALT input pins. This will 
satisfy the minimum requirement of 10 clock cycles( 1.25 microseconds for 8MHz clock) 
at the 68000 and HALT pins for manual reset. The values of R and C, at the 555 
trigger input should be recalculated for other 68000 clock frequencies for manual reset, 
Note that the 68000 power-up reset time is fixed with a timing requirement of at least 100 
ms whereas the manual reset time depends on the 68000 clock frequency and must be at 
least 10 clock cycles. 

Another way of generating the power-up and manual resets is by using a Schmitt- 
trigger inverter such as the 741 4 chip. Figure 10.12 shows a typical circuit. The purpose of 
the Schmitt trigger in a microprocessor reset circuit has already been explained in Chapter 
9 for 8086 reset using the 8284 chip. The operation of the 68000 power-up and manual 
resets using the RC circuit in Figure 10.12 has already been described in this section. 
The purpose of the two 7414 Schmitt-trigger inverters is primarily to shape up a slow 
pulse generated by the RC circuit to obtain a fast and clean negative pulse. Two 7407 
open-collector noninverting buffers are used to amplify currents for the 68000 RESET and 
HALT pins. Let us now determine the values of R and C. 

When the input of the 7414 Schmitt-trigger inverter is low (0 V for example), the 
output will be HIGH, typically at about 3.7 V. For input voltage from 0 to about 1.7 V, the 
output of the 7414 will be HIGH. Let us arbitrarily choose V, = 1.5V to provide a low at 
the input of the first 7414 in the figure. As before, 

~c = Vcc[l- e-+ 1 
1 1.5 Hence, 1 - e-E = ~ 5 

e-+ zo .7  
Let us design the reset circuit to provide 200 ms reset time. Therefore, t = 200 

ms. 

+5 v 
I +5 v 
l- 

1N904 1 rz 
lOOk 

To 68000 

Reset Pin 

7407 7414 1 Reset 5.5pF 7414 
+ 

switch vc T (Schmitt- (Schmitt- 
trigger trigger 
inverter) inverter) 

-1 - 

FIGURE 10.12 68000 Reset circuit using a Schmitt trigger 





Motorola MC6800 509 

10.10 

The 68000 family of processors (68000, 68008, 68010, and 68012) uses a handshaking 
mechanism to transfer data between the processors and peripheral devices. This means that 
all these processors can transfer data asynchronously to and from peripherals of varying 
speeds. 

During the read cycle, the 68000 obtains data from a memory location or an I/O 
port. If the instruction specifies a word (such as MOVE . W $0 2 0 5 0 4 ,  D1) or a long word 
(such as MOVE. L $ 0  3 0 8 0 8 ,  DO), the 68000 reads both upper and lower bytes at the 
same time by asserting the UDS and LDS pins. When the instruction is for a byte operation, 
the 68000 utilizes an internal bit to find which byte to read and then outputs the data strobe 
required for that byte. 

For byte operations, when the address is even (A, = 0), the 68000 asserts UDS 
and reads data via the D,-D,, pins into the low byte of the specified data register. On 
the other hand, when the address is odd (A, = l), the 68000 outputs a LOW on LDS and 
reads data via the Do-D, pins to the low byte of the specified data register. For example, 
consider MOVE. B $5 0 7 1 4  4 ,  D 5 .  The 68000 outputs a LOW on (because A, = 0) 
and a HIGH on LDS. The memory chip’s eight data lines must be connected to the 68000 
D8-D,, pins. The 68000 reads the data byte via the D,-D,, pins into the low byte of D5. 
Note that, for reading a byte from an odd address, the data lines of the memory chip must 
be connected to the 68000 D,-D, pins. In this case, the 68000 outputs a LOW on LDS 
(because A, = I )  and a HIGH on UDS, and then reads the data byte into the low byte of the 
data register. 

Figure 10.13 shows the read/write timing diagrams. During SO, address and data 
signals are in the high-impedance state. At the start of S1, the 68000 outputs the address on 
its address pins (A,-AZ3). During SO, the 68000 outputs FC2-FCO signals. AS is asserted 
at the start of S2 to indicate a valid address on the bus. AS can be used at this point to latch 
the signals on the address pins. The 68000 asserts the UDS, LDS, and W- = 1 to indicate 
a READ operation. The 68000 now waits for the peripheral device to assert DTACK. Upon 
placing data on the data bus, the peripheral device asserts DTACK. The 68000 samples the 
DTACK signal at the end of S4. If DTACK is not asserted by the peripheral device, the 
processor automatically inserts a wait state(s) (W). 

However, upon assertion of m, the 68000 negates the AS, UDS, and LDS 
signals, and latches the data from the data bus into an internal register at the end of the next 
cycle. Once the selected peripheral device senses that the 68000 has obtained data from the 
data bus (by recognizing the negation of AS, UDS, or LDS ), the peripheral device must 
negate DTACK immediately so that it does not interfere with the start of the next cycle. 

If DTACK is not asserted by the peripheral at the end of S4 (Figure 10.13, 
SLOW READ), the 68000 inserts wait states. The 68000 outputs valid addresses on the 
address pins and keeps asserting AS, UDS, and LDS until the peripheral asserts DTACK. 
The 68000 always inserts an even number of wait states if DTACK is not asserted by the 
peripheral because all 68000 operations are performed using the clock with two states per 
clock cycle. Note in Figure 10.13 that the 68000 inserts 4 wait states or 2 cycles. 

As an example of word read, consider that the 68000 is ready to execute the 
MOVE . W $6 0 2 1 2  2 ,  D O  instruction. The 68000 performs as follows: 

At the end of SO the 68000 places the upper 23 bits of the address 602122,, on 

At the end of S 1, the 68000 asserts z, m, and 

68000 Read and Write Cvcle Timinp Diagrams 

- -  

- 

- 

__ 

- 
- 

-- 

-- 

_ _ _  - 

-- - 

1 .  

2. 
A,-A,,. 

. 



510 Fundamentals of Digital Logic and Microcomputer Design 

The 6800 
latches data at th- 
edge of S6 since DTACK 
is low at the falling edge i__/ Of 54. 

68000 m K  
input driven 
by external 
memory and I10 
chips 
(Arbitarily chosen) 

FIGURE 10.14 68000 CLK and DTACK signals 

-i 

FIGURE 10.15 68000 interface to 2732 / 61 16 



Motorola MC6800 51 1 

The 68000 continues to output a HIGH on the W- pin from the beginning of the 
read cycle to indicate a READ operation. 
At the end of SO, the 68000 places appropriate outputs on the FC2-FCO pins to 
indicate either supervisor or user read. 
If the peripheral asserts DTACK at the end of S4, the 68000 reads the contents of 
602122,, and 602123,, via the D,-D,, and Do-D, pins, respectively, into the high 
and low bytes of D0.W at the end of S6. If the peripheral does not assert DTACK 
at the end of S4, the 68000 continues to insert wait states. 
Figure 10.14 shows a simplified timing diagram illustrating the use of DTACK 

for interfacing external memory and I/O chips to the 68000. As mentioned before, the 
68000 checks the DTACK input pin at the falling edge of S4 (three cycles), the external 
memory, or I/O in this case, drives 68000 DTACK input to LOW, and the 68000 waits for 
one cycle and latches data at the end of S6. However, if the 68000 does not find DTACK 
LOW at the falling edge of S4, it waits for one clock cycle and then again checks DTACK 
for LOW. If DTACK is LOW, the 68000 latches data after one cycle (falling edge of S8). 
If the 68000 does not find DTACK LOW at the falling edge of S6, it checks for DTACK 
LOW at the falling edge of S8 and the process continues. Note that the minimum time 
to latch data is four cycles. This means that in the preceding example, if the 68000 clock 
frequency is 8 MHz, data will be latched after 500 ns because the DTACK is asserted LOW 
at the end of S4 (375 ns). 

3. 

4. 

5. 

10.11 68000 Memorv Interface 

One of the advantages of the 68000 is that it can easily be interfaced to memory chips 
with various speeds because it goes into a wait state if DTACK is not asserted (LOW) by 
the memory devices at the end of S4. A simplified schematic showing an interface of a 
68000 to two 2732’s and two 61 16’s is given in Figure 10.15. As mentioned in Chapter 9, 
the 2732 is a 4K x 8 EPROM and the 61 16 is a 2K x 8 static RAM. The pin diagrams of 
the 61 16 and 2732 are provided in Appendices C and E respectively. For a 4-MHz clock, 
each cycle is 250 ns. Because the 68000 samples data at the falling edge of S4 (750 ns) 
and latches data at the falling edge of S6 (1000 ns), AS can be used to assert DTACK. 
From the 68000 timing diagram of Figure 10.13, AS goes to LOW after approximately two 
cycles (500 ns). The time delay between AS going LOW and the falling edge of S6 is 500 
ns. Note that LDS and UDS must be used as chip selects as in Figure 10.15. They must not 
be connected to A0 of the memory chips. Because in that case half of the memory in each 
memory chip would be wasted. Note that LDS and UDS also go to LOW after about two 
cycles (500 ns). 

In Figure 10.15, a delay circuit for DTACK is not required because the 2732 
and 61 16 both place data on the bus lines before the 68000 latches data. This is because 
the 68000 clock frequency is 4 MHz in this case. Thus, each clock cycle is 250 ns. The 
access times of the 2732 and 6 1 16 are 200 ns and 120 ns respectively. Because DTACK 
is sampled after 3 clock cycles (3 x 250 ns = 750 ns), both the 2732 and 61 16 will have 
adequate time to place data on the bus for the 68000 to latch. 

For example, consider the even 2732 EPROM of Figure 10.16. UDS and AS are 
NORed and then NANDed with inverted AI3 to select this chip. With the 200-ns access 
time of the 2732 (Used to be 450ns), data will be placed on the 68000 D,-D,, pins after 
approximately 720 nanoseconds (500 ns for AS or UDS + 10 ns for the NOR gate + 10 ns for 
the NAND gate + 200 ns for the 2732). Therefore, no delay circuit for the 68000 DTACK 

- -  

- - 



512 Fundamentals of Digital Logic and Microcomputer Design 
- 

68000 A I -. 
68000 
A1 -A12 

FIGURE 10.16 68000 interface to even 2732 

B 

CE I 
- (Even) 
OE 

D8 -Dl 5 
(68000) 

A0 -A1 I I 

TABLE 10.14 68000-2732 Timing Example 
Time before 

68000 Clock first DTACK 
Case Frequency Cycle is sampled C0mment 

1 12.5 MHz 80 ns 3(80) Not enough time for 2732 
= 240 ns to place data on bus; 

needs delay circuit for 
DTACK 

2 16.67MHz 60 ns 3(60) Same as case 1 

3 25 MHz 40 ns 3(40) Same as case 1 
= 180 ns 

= 120 ns 

is required because the 68000 latches data from the D,-D,, pins after 4 cycles (1 000 ns in 
this case). The timing parameters of the 68000-2732 with various 68000 frequencies are 
shown in Table 10.14. 

Next, consider odd 6 1 16 static RAM (SRAM) with a 4-MHz 68000. Note that the 
61 16 signals, w (Write enable), C (Output enable), and E (Chip enable) are decoded as 
follows: when G = 0 and E = 0, then w = 1 for read and w = 0 for write. In this case, LDS 
and AS are NORed and NANDed with A13 to select this chip. With the 120-ns access time 
of the 61 16 RAM, data will be placed on the 68000 Do-D, pins after approximately 640 
ns. Because the 68000 latches data after four cycles (1000 ns in this case), no delay circuit 
for DTACK is required. The requirements for DTACK for 68000161 16 for various 68000 
clock frequencies can similarly be determined. 

In case a delay circuit for DTACK is required, a ring counter with D flip-flops can 
be used. Let us now determine the memory maps. Figure 10.16 shows the 68000 interface 
to even 2732 obtained from Figure 10.15. When A,, = 0, UDS = 0,  AS = 0, and W w  =1, 
the 2732 will be selected by the 68000 to read data from the 68000 D,-D,, pins. The 68000 
address pins A,,-A,, are don’t cares (assume 0).  The memory map for the even 2732 can 
be determined as follows: 



Motorola MC6800 513 

A l l *  ' 
0 * . .  U !i + ii even 

2732 Don't cares To select Can be 0's to 1's 
assume 0's 2732 

Address range: $000000, $000002, . .. , $001FFE 

Similarly, the memory for the odd 2732, even 6116, and odd 6116 can be 
determined as follows: 

2732odd 

A l l  . . - - 
0 0 * . -  0 0  Can be 0's to 1's 1 

Address range: $00000 1, $000003, . . . , $00 I FFF 
6116 even 

* A l l  . - - 
0 0 - . .  1 0  Can be 0's to 1's 0 

Address range: $002000, $002002, . . . , $002FFE 

6116 odd 
' ' *12 A l l  * '  - - 

0 0 . . -  1 0  Can be 0's to 1's 1 
Address range: $002001, $002003, . . . , $002FFF 

In the above, for 61 16's, A,, and A,, - A,, are don't cares (assume 0's). Static 
RAMs such as 61 16 are used for small memory system. Note that RAMs are needed when 
subroutines and interrupts requiring stack are desired in an application. Microprocessors 
requiring larger RAMs use dynamic RAMs (DRAMs). Concepts associated with interfacing 
DRAMs to 68000 will be discussed next. 

DRAMs are typically used when memory requirements are 16k words or larger. 
DRAM is addressed via row and column addressing. For example, one megabit DRAM 
requiring 20 address bits is addressed using 10 address lines and two control lines, RAS 
(Row Address Strobe) and CAS ( Column Address Strobe). To provide a 20-bit address 
into the DRAM, a LOW is applied to and 10 bits of the address are latched. The other 
10 bits of the address are applied next and CAS is then held LOW. 

The addressing capability of the DRAM can be increased by a factor of 4 by 
adding one more bit to the address line. This is because one additional address bit results 
into one additional row bit and one additional column bit. This is why DRAMs can be 
expanded to larger memory very rapidly with inclusion of additional address bits. External 
logic is required to generate the RAS and CAS signals, and to output the current address 
bits to the DRAM. 

DRAM controller chips take care of refreshing and timing requirements needed by 
the DRAMs. DRAMs typically require 4 millisecond refresh time. The DRAM controller 
perfonns its task independent of the microprocessor. The DRAM controller sends a wait 

- 

- - 



514 Fundamentals of Digital Logic and Microcomputer Design 

FIGURE 10.17 6821 pin diagram 

signal to the microprocessor if the microprocessor tries to access memory during a refresh 
cycle. 

Because of large memory, the address lines should be buffered using 74LS244 
or 74HC244 (Unidirectional buffer), and data lines should be buffered using 74LS245 or 
74HC245 (Bidirectional buffer) to increase the drive capability. Also, typical multiplexers 
such as 74LS 157 or 74HC 157 can be used to multiplex the microprocessor’s address lines 
into separate row and column addresses. 

10.12 68000 I/O 

This section covers the I/O techniques associated with the Motorola 68000. 

10.12.1 68000 Programmed I/O 
As mentioned before, the 68000 uses memory-mapped I/O. Data transfer using I/O ports 
(programmed 110) can be achieved in the 68000 in one of the following ways: 

By interfacing the 68000 with an inexpensive slow 6800 I/O chip such as the 
MC682 1. 

By interfacing the 68000 with its own family of I/O chips such as the MC68230. 



Motorola MC6800 515 

TABLE 10.15 6821 Register Definition 

Control Register Bits 2 
RSI RSO CRA-2 CRB-2 Register Selected 

0 0 1 X I/O port A 
0 0 0 X Data direction register A 
0 1 X X Control register A 
1 0 X 1 I/O port B 
1 0 X 0 Data direction register B 
1 1 X X Control register B 

X = Don’t care 

68000/6821 Interface 
The Motorola 682 1 is a 40-pin peripheral interface adapter (PIA) chip. It is provided with 
an 8-bit bidirectional data bus (Do-D,), two register select lines (RSO, RSI), readwrite 
(W-) and reset (RESET) lines, an enable line (E), two 8-bit I/O ports (PAO-PA7), and 
(PBO-PB7), and other pins. Figure 10.17 shows the pin diagram of the 6821. There are six 
6821 registers. These include two 8-bit ports (ports A and B), two data direction registers, 
and two control registers. Selection of these registers is controlled by the RSO and RS1 
inputs together with bit 2 of the control register. Table 10.15 shows how the registers are 
selected. In Table 10.15, bit 2 in each control register (CRA-2 and CRB-2) determines 
selection of either an 110 port or the corresponding data direction register when the proper 
register select signals are applied to RSO and RS1. A 1 in bit 2 in CRA or CRB allows 
access of I/O ports; a 0 in bit 2 of CRA or CRB selects the data direction registers. 

Each I/O port bit can be configured to act as an input or output. This is accomplished 
by sending a 1 in the corresponding data direction register bit for those bits that are to be 
output and a 0 for those bits that are to be inputs. A LOW on the pin clears all PIA 
registers to 0. This has the effect of configuring PAO-PA7 and PBO-PB7 as inputs. 

Three built-in signals in the 68000 provide the interface with the 6821: enable (E), 
valid memory address (m), and valid peripheral address (m). The enable signal (E) 
is an output from the 68000. It corresponds to the E signal of the 6821. This signal is the 
clock used by the 6821 to synchronize data transfer. The frequency of the E signal is one 
tenth of the 68000 clock frequency. This allows one to interface the 68000 (which operates 
much faster than the 6821) with the 6821. The valid memory address (m) signal is 
output by the 68000 to indicate to the 6800 peripherals that there is a valid address on the 
address bus. The valid peripheral address (m) is an input to the 68000. This signal is 
used to indicate that the device addressed by the 68000 is a 6800 peripheral. This tells the 
68000 to synchronize data transfer with the enable signal (E). 

Let us now discuss how the 68000 instructions can be used to configure the 6821 
ports. As an example, bit 7 and bits 0-6 of port A can be configured, respectively, as input 
and outputs using the following instruction sequence: 

BCLR.B #$2,CRA Address DDRA 
M0VE.B #$7F,DDRA ; Configure p o r t  A 
BSET.B #$2,CRA Address p o r t  A 

Once the ports are configured to the designer’s specification, the 682 1 can be used 
to transfer data from an input device to the 68000 or from the 68000 to an output device by 
using the MOVE. B instruction as follows: 

M0VE.B ( E A ) ,  Dn ; T r a n s f e r  8 - b i t  d a t a  from an input  p o r t  

M0VE.B Dn, ( E A )  ; T r a n s f e r  8 - b i t  d a t a  from t h e  specified 
; t o  t h e  specified d a t a  r e g i s t e r  Dn 



516 

FIGURE 10.18 68000/6821 Interface 

; data register Dn t o  a n  output p o r t  

- 

PB7 d 24 

Design 

FIGURE 10.19 68230 pin diagram 



Motorola MC6800 517 

Figure 10.18 shows a block diagram of how two 682 1’s are interfaced to the 68000 
in order to obtain four 8-bit I/O ports. Note that the least significant bit, A,, of the 68000 
address pin is internally encoded to generate two signals, the upper data strobe (UDS) and 
lower data strobe (LDS). For byte transfers, UDS is asserted if an even-numbered byte is 
being transferred and LDS is asserted for an odd-numbered byte. In Figure 10.18, I/O port 
addresses can be obtained as follows: When A,, = 1 and AS = 0, the OR gate output will 
be LOW. This OR gate output is used to assert m. The inverted OR gate output, in turn, 
makes CSl HIGH on both 6821’s. Note that A,, is arbitrarily chosen. A,, is chosen to be 
HIGH to enable CS1 so that the addresses for the ports and the reset vector are not the 
same. Assuming that the don’t care address lines A,, and A,,-A, are O’s, the addresses 
for the I/O ports, control registers, and data direction registers for the even 6821 (A, = 0) 
can be obtained as shown; similarly, the addresses for the ports, control registers, and data 
direction registers for the odd 6821 (A, = 1) can be determined as follows: 

- 
- - 
- 

Port A CRA Port B CRB 

or or 

DDRA DDRB 

682 1 (even) $400000 $400002 $400004 $4 0 0 0 0 6 

682 l(odd) $40000 1 $400003 $400005 $400007 

68000/68230 Interface 
The 68230 is a 48-pin I/O chip designed for the 68000 family of microprocessors. The 
68230 offers various functions such as programmed I/O, an on-chip timer, and a DMA 
request pin for connection to a DMAcontroller. Figure 10.19 shows the 68230 pin diagram. 
The 68230 can be configured in two modes of operation: unidirectional and bidirectional. 
In the unidirectional mode, data direction registers configure the corresponding ports as 
inputs or-outputs. This is the programmed I/O mode of operation. Both 8-bit and 16-bit 
ports can be used. In the bidirectional mode, the 68230 provides data transfer between the 
68000 and external devices via exchange of control signals (known as handshaking). This 
section will only cover the programmed 110 feature of the 68230. 

This 68230 ports can be configured in either unidirectional or bidirectional mode 
by using bits 7 and 6 of the port general control register, PGCR (RO) as follows: 

PGCR Bits 

7 6 Mode 

0 0 0 (unidirectional 8-bit) 

0 1 1 (unidirectional 16-bit) 

1 0 2 (bidirectional 8-bit) 

1 1 3 (bidirectional 16-bit) 

The other bits of the PGCR are defined for handshaking. 
Modes 0 and 2 configure ports A and B as unidirectional or bidirectional 8-bit 

ports. Modes 1 and 3, on the other hand, combine ports A and B together to form a 16- 



518 

TABLE 10.16 

Fundamentals of Digital Logic and Microcomputer Design 

Some of the 68230 Registers 

Register Select Bits 

0 0 1 1 1 

0 1 0 0 0 

0 1 0 0 1 

RS5 RS4 RS3 RS2 RSI 

PBCR, Port B Control Register (R7) 

PADR, Port A Data Register (R8) 

PBDR, Port B Data Register (R9) 

0 0 0 0 0 

0 0 0 1 0 

0 0 0 1 1 

0 0 1 1 0 

Register Selected 

PGCR, Port General Control Register 
(RO) 

PADDR, Port A Data Direrction Register 
(W 
PBDDR, Port B Data Direction Register 
(R3) 

PACR, Port A Control Register (R6) 

Oscillator 
Crystal 

Oscillator 
Crystal 

CLK 

68000 1 
EVEN 
68230 

(Unidirectional 
&bit mode) 

_ _  
~ DTACK 

FIGURE 10.20 68000/65230 interface 



Motorola MC6800 519 

bit unidirectional or bidirectional port. Ports configured as unidirectional 8-bit must be 
programmed further as submodes of operation using bits 7 and 6 of PACR (R6) and PBCR 
(R7) as follows: 

Submode Bit 7 of Bit 6 of Comment 
PACR or PACR or 

PBCR PBCR 
00 0 0 Pin-definable double-buffered input or 

01 0 1 Pin-definable double-buffered output 

1x 1 X Bit I/O (pin-definable single-buffered 

single-buffered output 

or nonlatched input 

output or nonlatched input) 

Note that X means don’t care. Nonlatched inputs are latched internally, but the values are 
not latched externally by the 68230 at the port. Bit I/O is used for programmed I/O. 

The submodes define the ports as parallel input ports, parallel output ports, or 
bit-configurable 1/0 ports. In addition to these, the submodes further define the ports 
as latched input ports, interrupt-driven ports, DMA ports, and ports with various I/O 
handshake operations. Table 10.16 lists some of the 68230 registers. The registers required 
for programmed I/O are considered in the following discussion. Note that the 68230 register 
select pins (RS5-RSl) are used to select the 68230 registers. Figure 10.20 illustrates how 
to obtain specific addresses for the 68230 I/O ports. 

The hardware schematic for the 68000/68230 interface shown in Figure 10.20 is 
connected in such a way that each 68230 WO port has a unique address. A,, is chosen to be 
HIGH to select the 68230 chips so that the port addresses are different from the 68000 reset 
vector addresses OOOOOO,,-000006,,. The configuration in the figure will provide even port 
addresses because UDS is used for enabling the 68230 m. The 68230 DTACK is an open- 
drain output. Hence, a pull-up resistor is required. 

From the figure, addresses for registers PGCR (RO), PADDR (R2), PBDDR (R3), 
PACR (R6), PBCR (R7), PADR (R8), and PBDR (R9) can be obtained. Consider PGCR 
as follows: 

1 0 0 0 . * -  0 0 0 0 0 0 0 =$800000 
- A  

I - 
UDS 

RS5 1 RS1 

Therefore, Address for PGCR = $800000 
Similarly, Address for PADDR = $800004, Address for PBDDR = $800006 

Address for PACR = $80000C, Address for PBCR = $80000E 
Address for PADR = $800010, Address for PBDR = $80001 2 
As an example, the following instruction sequence will select mode 0, submode 

1X and configure bits 0-5 of Port A as outputs, bits 6 and 7 of Port A as inputs, and port 
B as an input port: 

PGCR EQU $800000 
PADDR EQU $ 8 0 0 0 0 4  
PBDDR EQU $800006 
PACR EQU $ 8 0 0 0 0 C  
PBCR EQU $ 8 0 0 0 0 E  

AND1.B # $ 3 F , P G C R  ; Select mode 0 
BSET.  B # 7 ,  PACR ; P o r t  A bit 1/0 submode 



520 Fundamentals of Digital Logic and Microcomputer Design 

BSET. B #7, PBCR ; Port B bit I/O submode 
M0VE.B #$3F,PADDR ; Configure port A bits 0-5 as 

M0VE.B #$OO,PBDDR ; Configure port B as an input port 
; outputs and bits 6 and 7 as inputs 

ExamDle 10.16 
A 68000/68230-based microcomputer is required to drive an LED connected at bit 7 of 
port A based on two switch inputs connected at bits 6 and 7 of port B. If both switches 
are equal (either HIGH or LOW), turn the LED ON; otherwise turn it OFF. Assume that a 
HIGH will turn the LED ON and a LOW will turn it OFF. Write a 68000 assembly program 
to accomplish this. 
Solution 

PGCR EQU $800000 
PACR EQU $80000C 
PBCR EQU $80000E 
PADDR EQU $800004 
PBDDR EQU $800006 
PADR EQU $800010 
PBDR EQU $800012 

AND1.B #$3F,PGCR ; Select mode 0 
BSET.B #7,PACR ; Port A bit I/o submode 
BSET.B #7,PBCR ; Port B bit i/o submode 
M0VE.B #$8O,PADDR ; Configure port A bit 7 as output 
M0VE.B #O,PBDDR ; Configure port B bits 6 and 7 as 

M0VE.B PBDR,DO ; Input port B 
AND1.B #$OCO,DO ; Retain bits 6 and 7 
BEQ LEDON ; If both switches LOW, turn LED ON 
CMP1.B #$OCO,DO ; if both switches HIGH, turn LED ON 
BEQ LEDON 
M0VE.B #$OO,PADR ; Turn LED OFF 
JMP FINISH 

inputs 

LEDON M0VE.B #$80, PADR ; Turn LED ON 
FINISH JMP FINISH 

ExamDle 10.17 

Write a 68000 assembly language program to drive an LED connected to bit 7 of Port 
A based on a switch input at bit 0 of Port A. If the switch is HIGH, turn the LED ON; 
otherwise turn the LED OFF. Assume a 68000/2732/6116/6821 microcomputer. Also, 
write a C++ program to accomplish the same task. Use port addresses of your choice. 
Solution 
The 68000 assembly language program and the C++ program follow. 

68000/6821 Microcomputer Assembly Code for Switch and LED 
PORTA EQU $001001 
DDRA EQU $001001 
CR4 EQU $001003 

BCLR.B #2,CR4 ; address DDRA 
M0VE.B #$80,DDRA ; Configure PORT A 
0SET.B #2,CRA ; Address PORT A 

R0R.B #l,DO ; Rotate switch status 
M0VE.B D0,PORTA ; Output to LED 
JMP START ; Repeat 

START M0VE.B PORTA,DO ; Read switch 



Motorola MC6800 52 1 

0 68000/6821 Microcomputer C++ program for Switch and LED 
main ( )  

I 
char *porta, *ddra, *cra; 
porta=Ox1001; 
ddra=Ox1001; 
cra=Ox1003; 
*cra=O; / *  Address DDRA * /  
*ddra=Ox80; / *  Configure Port A * /  
*cra=4; / *  Address Port A * /  
while (1) 

*porta=*porta <<7;  / *  Read switch and send to LED * /  

The C++ compiler will generate more machine codes for the above program 
compared to the equivalent assembly program. Note that the C++ program is not 100% 
portable while using I/O. However, it is easier to write programs using C++ than using 
assembly language. 

10.12.2 68000 Interrupt System 
The 68000 interrupt I/O can be divided into two types: external interrupts and internal 
interrupts. 

External Interrupts 
The 68000 provides seven levels of external interrupts, 1 through 7. The external hardware 
provides an interrupt level using the pins IPLO, IPLl, and IPL2. Like other microprocessors, 
the 68000 checks for and accepts interrupts only between instructions. It compares the 
value of inverted IPLO-IPL2 with the current interrupt mask contained in the bits 10, 9, 
and 8 of the status register. 

If the value of the inverted IPLO-IPL2 is greater than the value of the current 
interrupt mask, then the 68000 acknowledges the interrupt and initiates interrupt processing. - 
Otherwise, the 68000 continues with the current interrupt. Interrupt request level 0 (IPLO- 
IPL2 all HIGH) indicates that no interrupt service is requested. An inverted IPL2, IPL1, 
IPLO of 7 is always acknowledged. Therefore, interrupt level 7 is “nonmaskable.” Note 
that the interrupt level is indicated by the interrupt mask bits (inverted IPL2, IPLl, IPLO). 

To ensure that an interrupt will be recognized, the following interrupting rules 
should be considered: 
1. The incoming interrupt request level must have a higher priority level than the mask 

level set in the interrupt mask bits (except for level 7, which is always recognized). 
2. The IPL2-IPLO pins must be held at the interrupt request level until the 68000 

acknowledges the interrupt by initiating an interrupt acknowledge (IACK) bus cycle 
Interrupt level 7 is edge-triggered. On the other hand, interrupt levels 1-6 are 

level sensitive. However, as soon as one of them is acknowledged, the processor updates 
its interrupt mask at the same level. 

The 68000 does not have any EI (enable interrupt) or DI (disable interrupt) 
instructions. Instead, the level indicated by I2 I1 I0 in the SR disables all interrupts below 
or equal to this value and enables all interrupts above. For example, if I2 I1 I0 = 100, then 
interrupt levels 1 4  are disabled and 5-7 are enabled. Note that I2 I1 I0 = 000 enables all 
interrupts and I2 I1 I0 = 11 1 disables all interrupts except level 7 (nonmaskable). 

Once the 68000 has decided to acknowledge an interrupt, it performs several steps: 
1. Makes an internal copy of the current status register. 
2. Updates the priority mask and address lines A,-A, with the level of the interrupt 

-- - 

-- 

-- 

- -- 
- 

--- 

-- 



Vector Address 
$60, $62 
$64, $66 
$68, $6A 
$6C, $6E 
$70, $72 
$74, $76 
$78, $7A 
$7C, $7E 

$80 to $BC 
$CO to $FC 

$100 to $3FC 

Vector Number 
Spurious interrupt $18 

Autovector 1 $19 
Autovector 2 $1A 
Autovector 3 $1B 
Autovector 4 $1C 
Autovector 5 $1D 
Autovector 6 $1E 
Autovector 7 $1F 

TRAP instructions $20 to $2F 
Unassigned $30 to $3F 

User interrupts $40 to $FF 
(nonautovector) 

3. 
4. 
5. 
6. 
7. 

8. 

9. 
10. 

recognized (inverted IpL pins) and then asserts AS to inform the external devices that 
A,-A, has the interrupt level. 
Enters the supervisor state by setting the S bit in SR to 1. 
Clears the T bit in SR to inhibit tracing. 
Pushes the program counter (PC) onto the supervisor stack. 
Pushes the internal copy of the old SR onto the supervisor stack. 
Runs an IACK bus cycle for vector number acquisition (to provide the address of the 
service routine). 
Multiplies the %bit interrupt vector by 4. This points to the location that contains the 
starting address of the interrupt service routine. 
Jumps to the interrupt service routine. 
The last instruction of the service routine should be RTE, which restores the original 
status word and program counter by popping them from the supervisor stack. 

External logic can respond to the interrupt acknowledge in one of three ways: by 
requesting automatic vectoring (autovector), by placing a vector number on the data bus 
(nonautovector), or by indicating that no device is responding (spurious interrupt). 
Autovector (address vectors predefined by Motorola) 

If the hardware asserts VPA to terminate the IACK bus cycle, the 68000 directs 
itself automatically to the proper interrupt vector corresponding to the current interrupt 
level. No external hardware is inquired for providing the interrupt address vector. The 
seven levels of autovector interrupt are listed below: 

- 

I2 I1 I0 
Level 1 + Interrupt vector $19 for 0 0 1 
Level 2 +- Interrupt vector $ l A  for 0 1 0 
Level 3 +- Interrupt vector $ l B  for 0 1 1 
Level 4 - Interrupt vector $lC for 1 0 0 
Level 5 - Interrupt vector $ lD  for 1 0 1 
Level 6 +- Interrupt vector $1 E for 1 1 0 
Level 7 + Interrupt vector $ I F  for 1 1 1 

Nonautovector (user-definable address vectors via external hardware) 
The interrupting device uses external hardware to place a vector number on data 

lines D,-D, and then performs a DTACK handshake to terminate the IACK bus cycle. The 
vector numbers allowed are $40 to $FF, but Motorola has not implemented a protection 
on the first 64 entries so that user-interrupt may overlap at the discretion of the system 
designer. 



Motorola MC6800 523 

Spurious Interrupt 
Another way to terminate an interrupt acknowledge bus cycle is with the BERR 

(bus error) signal. Even though the interrupt control pins are synchronized to enhance noise 
immunity, it is possible that external system interrupt circuitry may initiate an IACK bus 
cycle as a result of noise. Because no device is requesting interrupt service, neither DTACK 
nor VPA will be asserted to signal the end of the nonexisting IACK bus cycle. When there 
is no response to an IACK bus cycle after a specified period of time (monitored by the user 
using an external timer), BERR can be asserted by an external timer. This indicates to the 
processor that it has recognized a spurious interrupt. The 68000 provides 18H as the vector 
to fetch for the starting address of this exception-handling routine. 

It should be pointed out that the spurious interrupt and bus error interrupt due to a 
troubled instruction cycle (when no DTACK is received by the 68000) have two different 
interrupt vectors. Spurious interrupt occurs when the BERR pin is asserted during interrupt 
processing. 

- 

Internal Interrupts 
The internal interrupt is a software interrupt. This interrupt is generated when the 68000 
executes a software interrupt instruction (TRAP) or by some undesirable events such as 
division by zero or execution of an illegal instruction. 
68000 Interrupt Map 

The 68000 uses an 8-bit vector n to obtain the interrupt address vector. The 68000 
reads the long-word located at memory 4* n. This long word is the starting address of the 
service routine. Figure 10.21 shows an interrupt map of the 68000. Vector addresses $00 
through $2E (not shown in the figure) include vector addresses for reset, bus error, trace, 
divide by 0, and so on, and addresses $30 through $5C are unassigned. The RESET vector 
requires four words (addresses 0, 2, 4, and 6); the other vectors require only two words. 

FIGURE 10.22 Autovector and nonautovector interrupts 



5 24 Fundamentals of Digital Logic and Microcomputer Design 

After hardware reset, the 68000 loads the supervisor SP high and low words, respectively, 
from addresses 000000,, and 000002,,, and the PC high and low words, respectively, from 
000004,6 and 000006,,. The typical assembler directive DC (define constant) can be used 
to load the PC and Supervisor SP. For example, the following will load A7’ with $16F128 
and PC with $781624: 

ORG 
DC.L $0016F128 
DC.L $00781624 

$0 0 0 0 0 0 

- 
IPLO 

68000 Interrupt Address Vector 
Suppose that the user decides to write a service routine starting at location $123456 

using autovector 1. Because the autovector 1 address is $000064 and $000066, the numbers 
$0012 and $3456 must be stored in locations $000064 and $000066, respectively. Note that 
from Figure 10.21, n = $19 for autovector 1 .  Hence, the starting address of the service 
routine is obtained from the contents of the address 4 x $19 = $000064. 

0 

An Example of Autovector and Nonautovector Interrupts 
As an example to illustrate the concept of autovector and nonautovector interrupts, 

consider Figure 10.22. In this figure, I/O device 1 uses nonautovector and I/O device 2 uses 
autovector interrupts. The system is capable of handling interrupts from seven devices 
(IPL2 IPLl IPLO pins = 1 11 means no interrupt) because an 8-to-3 priority encoder such as 
the 74LS148 is used. The 74LS 148 provides an inverted three-bit output with input 7 as the 
highest priority and input 0 as the lowest priority. Hence, if all eight inputs of the 74LS148 
are low simultaneously, the three-bit output will be 000 (inverted 11 1) indicating a LOW 

-__- 

Port B 

Bit 0 of 
port A 

- 
VPA 

68000 based 
Microcomputer 

8 

1 
I B 

10-D7 

START 

AID 
Converter 

__ 
3USY 

FIGURE 10.23 Interfacingofa typical %bit AID converter to 68000-based microcomputer 
using autovector interrupt 



Motorola MC6800 

a 

525 

octal I 

buffer a 

(analog 
signal) 

Port B 

68000 based 
Microcomputer 

N D  
Converter 

FIGURE 10.24 Interfacing ofa typical 8-bit A/D converter to 68000-based microcomputer 
using nonautovector interrupt 

- - 
on input 7. In figure 10.22, 1/01 and 1/02 from the interrupting devices are connected to 
inputs 3 and 5 of the 74LS 148 encoder respectively. This means that the device with 1/02 
as the interrupting signal will generate level 5 autovectored interrupt while the device with 
1/01 as the interrupting signal will generate the nonautovectored interrupt. 

LOW in order to activate line 5 of the 
74LS148. This, in turn, will generate a LOW on input 5 of the 74LS148. This will provide 
0 10 (inverted 10 1) on IpL2 pins of the 68000 generating a level 5 autovectored 
interrupt. When the 68000 decides to acknowledge the interrupt, it drives FCO-FC2 HIGH. 
The interrupt level is reflected on A,-A, when AS is activated by the 68000. The IACK5 
and I/o2 signals are used to generate m. Once VPA is asserted, the 68000 obtains the 
interrupt vector address using autovectoring. 

In the case of 1/01, line 3 of the priority encoder is activated to initiate the 
nonautovectored interrupt. By using appropriate logic, DTACK is asserted using IACK3 
and 1/01, The vector number is placed on Do-D, by enabling an octal buffer such as the 
74LS244 using m. The 68000 inputs this vector number and multiplies it by 4 to 
obtain the interrupt address vector. 

- 

- 

Suppose that I/O device 2 drives 

- 

__ 



526 Fundamentals of Digital Logic and Microcomputer Design 

Interfacing a Typical A/D Converter to the 68000 Using Autovector and Nonautovector 
Interrupts 

Figure 10.23 shows the interfacing of a typical A/D converter to the 68000-based 
microcomputer using the autovector interrupt. In the figure, the A/D converter can be 
started by sending a START pulse. The signal can be connected to line 4 (for example) 
of the encoder. 
Note that line 4 is 100, for IPL2, IPLl, IPLO, which is a level 3 (inverted 100,) interrupt. 
BUSY can be used to assert VPA so that, after acknowledgment of the interrupt, the 68000 
will service the interrupt as a level 3 autovector interrupt. Note that the encoder in Figure 
10.23 is used for illustrative purposes. This encoder is not required for a single device such 
as the A/D converter in the example. 

Figure 10.24 shows the interfacing of a typical A/D converter to the 68000-based 
microcomputer using the nonautovector interrupt. In the figure, the 68000 starts the A/D 
converter as before. Also, the BUSY signal is used to interrupt the microcomputer using 
line 5 (IPL2, IPL1, IPLO= 101, which is a level 2 interrupt) of the encoder. BUSY can be 
used to assert DTACK so that, after acknowledgment of the interrupt, FC2, FC 1,  FCO will 
become 1 1  l,, which can be NANDed to enable an octal buffer such as the 74LS244 in 
order to transfer an 8-bit vector from the input of the buffer to the D,-D, lines of the 68000. 
The 68000 can then multiply this vector by 4 to determine the interrupt address vector. As 
before, the encoder in Figure 10.24 is not required for the single A/D converter. 

--- 
- __ 

__ 

_ _ _ _ _ _  - 

10.12.3 68000 DMA 
Three DMA control lines are provided with the 68000. These a r e m  (bus request), BG (bus 
grant), and BGACK (bus grant acknowledge). The BR line is an input to the 68000. The 
external device activates this line to tell the 68000 to release the system bus. At least one 
clock period after receiving m, the 68000 will enable its BG output line to acknowledge 
the DMA request. However, the 68000 will not relinquish the bus until it has completed the 
current instruction cycle. The external device must check the AS (address strobe) line to 
determine the completion of the instruction cycle by the 68000. When AS becomes HIGH, 
the 68000 will tristate its address and data lines and will give up the bus to the external 
device. After taking over the bus, the external device must enable the BGACK line. The 
BGACK line tells the 68000 and other devices connected to the bus that the bus is being 
used. The 68000 stays in a tristate condition until BGACK becomes HIGH. 

10.13 68000 ExceDtion Handliw 

A 16-bit microcomputer is usually capable of handling unusual or exceptional conditions. 
These conditions include situations such as execution of illegal instruction or division by 
zero. In this section, the exception-handling capabilities of the 68000 are described. 

The 68000 exceptions can be divided into three groups, namely, groups 0, 1, 
and 2. Group 0 has the highest priority, and group 2 has the lowest priority. Within each 
group, there are additional priority levels. A list of 68000 exceptions along with individual 
priorities is as follows: 

Group 0 Reset (highest level in this group), address error (next level), and bus 

Group 1 Trace (highest level), interrupt (next level), illegal op-code (next level), 
error (lowest level) 

and privilege violation (lowest level) 



Motorola MC6800 527 

Group 2 TRAP, TRAPV, CHK, and ZERO DIVIDE (no individual priorities 
assigned in group 2) 

Exceptions from group 0 always override an active exception from group 1 or group 2. 
Group 0 exception processing begins at the completion of the current bus cycle 

(2 clock cycles). Note that the number of cycles required for a READ or WRITE operation 
is called a “bus cycle.” This means that during an instruction fetch if there is a group 
0 interrupt, the 68000 will complete the instruction fetch and then service the interrupt. 
Group 1 exception processing begins at the completion of the current instruction. Group 
2 exceptions are initiated through execution of an instruction. Therefore, there are no 
individual priority levels within group 2. Exception processing occurs when a group 2 
interrupt is encountered, provided there are no group 0 or group 1 interrupts. 

When an exception occurs, the 68000 saves the contents of the program counter 
and status register onto the stack and then executes a new program whose address is 
provided by the exception vectors. Once this program is executed, the 68000 returns to the 
main program using the stored values of program counter and status register. 

Exceptions can be of two types: internal or external. The internal exceptions are 
generated by situations such as division by zero, execution of illegal or unimplemented 
instructions, and address error. As mentioned before, internal interrupts are called “traps.” 
The external exceptions are generated by bus error, reset, or interrupt instructions. The 
basic concepts associated with interrupts, relating them to the 68000, have already been 
described. In this section, we will discuss the other exceptions. 

In response to an exceptional condition, the processor executes a user-written 
program. In some microcomputers, one common program is provided for all exceptions. 
The beginning section of the program determines the cause of the exception and then 
branches to the appropriate routine. The 68000 utilizes a more general approach. Each 
exception can be handled by a separate program. 

As mentioned before, the 68000 has two modes of operation: user state and 
supervisor state. The operating system runs in supervisor mode, and all other programs are 
executed in user mode. The supervisor state is therefore more privileged. Several privileged 
instructions such as MOVE to SR can be executed only in supervisor mode. Any attempt to 
execute them in user mode causes a trap. 

We will now discuss how the 68000 handles exceptions caused by external resets, 
trap instructions, bus and address errors, tracing , execution of privileged instructions in 
user mode, and execution of illegalhnimplemented instructions: 

The reset exception is generated externally. In response to this exception, the 
68000 automatically loads the initial starting address into the processor. 

The 68000 has a TRAP instruction, which always causes an exception. The 
operand for this instruction varies from 0 to 15. This means that there are 16 TRAP 
instructions. Each TRAP instruction has an exception vector. TRAP instructions 
are normally used to call subroutines in an operating system. Note that this 
automatically places the 68000 in supervisor state. TRAPS can also be used for 
inserting breakpoints in a program. Two other 68000 instructions cause traps if a 
particular condition is true: TRAPV and CHK. TRAPV generates an exception if the 
overflow flag is set. The TRAPV instruction can be inserted after every arithmetic 
operation in a program in order to cause a trap whenever there is the possibility 
of an overflow. A routine can be written at the vector address for the TRAPV to 
indicate to the user that an overflow has occurred. The CHK instruction is designed 
to ensure that access to an array in memory is within the range specified by the 



528 Fundamentals of Digital Logic and Microcomputer Design 

user. If there is a violation of this range, the 68000 generates an exception. 

A bus error occurs when the 68000 tries to access an address that does not belong 
to the devices connected to the bus. This error can be detected by asserting the 
BERR pin on the 68000 chip by an external timer when no DTACK is received 
from the device after a certain period of time. In response to this, the 68000 
executes a user-written routine located at an address obtained from the exception 
vectors. An address error, on the other hand, occurs when the 68000 tries to read 
or write a word (1 6 bits) or long word (32 bits) in an odd address. This address 
error has a different exception vector from the bus error. 

The trace exception in the 68000 can be generated by setting the trace bit in the 
status register. In response to the trace exception, the 68000 causes an internal 
exception after execution of every instruction. The user can write a routine at 
the exception vectors for the trace instruction to display register and memory 
contents. The trace exception provides the 68000 with the single-stepping 

FIGURE 10. $25 68000-based microcomputer 



Motorola MC6800 529 

debugging feature. 

As mentioned before, the 68000 has privileged instructions, which must be 
executed in supervisor mode. An attempt to execute these instructions causes 
privilege violation. 

Finally, the 68000 causes an exception when it tries to execute an illegal or 
unimplemented instruction. 

10.14 

Figure 10.25 shows the schematic of a 68000-based microcomputer with a 4K EPROM, a 
4K static RAM, and four 8-bit I/O ports. Let us explain the various sections of the hardware 
schematic. Two 2732 and two 61 16 chips are required to obtain the 4K EPROM and 4K 
RAM. The LDS and pins are ORed with the memory select signal to enable the chip 
selects for the EPROMs and the RAMs. Address decoding is accomplished by using a 3 
x 8 decoder. The decoder enables the memory or the I/O chips depending on the status of 
address lines A,,-A,, and the AS line of the 68000. AS is used to enable the decoder. & 
selects the EPROMs, 

When addressing memory chips, the DTACK input of the 68000 must be asserted 
for data acknowledge. The 68000 clock in the hardware schematic is 10 MHz. Therefore, 
each clock cycle is 100 ns. In Figure 10.25, AS is used to enable the 3 x 8 decoder. The 
outputs of the decoder are gated to assert 68000 DTACK. This means that AS is indirectly 

68000/2732/6 1 16/682 1 -Based Microconmuter 

selects the RAMs, and selects the I/O ports. 

DTACK 
1 w m  2 w m  +5v 

EPROM '5 1 
- SELECT 
b 

FIGURE 10.26 Delay circuit for DTACK 

!- EPR-OM Sel. 
l o  

- 
Q2 or 
DTACK 
- 

FIGURE 10.27 Timing diagram for the DTACK delay circuit 



530 Fundamentals of Digital Logic and Microcomputer Design 

used to assert DTACK. From the 68000 read timing diagram, AS goes to LOW after 
approximately 2 cycles (200 ns for the 10-MHz clock) from the beginning of the bus cycle. 
With no wait states, the 68000 samples DTACK at the falling edge of S4 (300 ns) and, if 
DTACK is recognized, the 68000 latches data at the falling edge of S6 (400 ns). If DTACK 
is not recognized at the falling edge of S4, the 68000 inserts a 1 -cycle (1 00 ns in this case) 
wait state, samples DTACK at the end of S6, and, if DTACK is recognized, latches data 
at the end of S8 (500 ns), and the process continues. Because the access time of the 2732 
is 200 ns (Used to be 450ns), data will not be available at the output pins of the 2732’s 
until after approximately 400 ns. To be on the safe side, DTACK recognition by the 68000 
at the falling edge of S6 (400 ns) and latching of data at the falling edge of S8 (500 ns) 
will definitely satisfy the timing requirement. This means that the decoder output for 
EPROM select should go to LOW at the end of S6. Therefore, 20011s delay (Two cycles) 
for DTACK is assumed. 

A delay circuit, as shown in Figure 10.26, is designed using two D flip-flops. 
EPPOM select activates the delay circuit. The input is then shifted right 2 bits to obtain a 2- 
cycle wait state to allow sufficient time for data transfer. DTACK assertion and recognition 
are delayed by 2 cycles during data transfer with EPROMs. Figure 10.27 shows the timing 
diagram for the DTACK delay circuit. Note that DTACK goes to Low after about 2 cycles 
if asserted by AS providing erronous result. Therefore, DTACK must be delayed. 

When the EPROM is not selected by the decoder, the clear pin is asserted (output 
of inverter), so Q is forced LOW and 0 is HIGH. Therefore, DTACK is not asserted. When 
the processor selects the EPROMs, the output of the inverter is HIGH, so the clear pin is 
not asserted. The D flip-flop will accept a high at the input, and Q2 will be HIGH and @ 
will be LOW. Now that @ is LOW, it can assert DTACK. Q1 will provide one wait cycle 
and @ will provide two wait cycles. Because the 2732 EPROM has a 200-11s access time 
and the microprocessor is operating at 10 MHz (100-ns clock cycle), two wait cycles are 
inserted before asserting DTACK (2 x 100 = 200 ns). Therefore, @ can be connected to 
the DTACK pin through an AND gate. No wait state is required for RAMs because the 
access time for the RAMs is only 120 nanoseconds. 

Four 8-bit 110 ports are obtained by using two 682 1 chips. When the IiO ports are 
selected, the VPA pin is asserted instead of m. This will acknowledge to the 68000 
that it is addressing a 6800-type peripheral. In response, the 68000 will synchronize all data 
transfer with the E clock. 

~- 

The memory and 110 maps for the schematic are as follows: 

Memory Maps (ull numbers in hex) . A,, - A,, are don’t cares and assumed to be 0’s. 

LDS or UDS - 
A r A , ,  A,, A,, A,, A,,-A, A” 

0-0 0 0 0 0-0 0 EPROM(even) = 4K 

0-0 0 0 0  1-1 0 $000000, $000002, 
$000004, ... , $001 FFE 

0-0 0 0 0 0-0 1 EPROM(odd) = 4K 

0-0 0 0 0  1-1 1 $000001, $000003, 
$000005, ... , $001FFF 



Motorola MC6800 53 1 

A, A,, is don’t care for RAM 
(assume 0) 

0-0 0 0 1  0-0 0 RAM(even)= 2K 

0-0 0 0 1  1-1 0 $002000, $002002, ... , 
$002FFE 

0-0 0 0 1  0-0 1 RAM(odd)= 2K 

0-0 0 0 1  1-1 1 $002001, $002003, ... , 
$002FFF 

Note that, upon hardware reset, the 68000 loads the supervisor SP high and low 
words, respectively, from addresses $000000 and $000002 and the PC high and low words, 
respectively, from locations $000004 and $000006. The memory map contains these reset 
vector addresses in the even and odd 2732 chips. 

Memory Mapped I/O (all numbers in hex). A23-A,, and A,2-A3 are don’t cares and 
assumed to be 0’s. 

RS1 RSO UDS or LDS - 
A, Register Selected (Address) 

- Even 
0-0 0 1 0 0-0 0 0 0 Port A or DDRA = $004000 
0-0 0 1 0 0 - 0 0 1  0 CRA = $004002 
0-0 0 1 0 0 4  1 0  0 Port B or DDRB = $004004 
0-0 0 1 0 0-0 1 1 0 ClU3 = $004006 

Register Selected (Address) 

0-0 0 1 0 0-0 0 0 1 Port A or DDRA = $004001 
0-0 0 1 0 0-0 0 1 1 CRA = $004003 
0-0 0 1 0 0-0 1 0 1 Port B or DDRB = $004005 
0-0 0 1 0 0-0 1 1 1 CRB = $004007 

- Odd 

High address 

TASLOC 1 

Section 1 

TASLOC2 

Section 2 

Address Section M 
TASLoCM 

(a) Shared RAM allocation 

Set pointer 

section length 

available 

(b) Flowchart for TAS 

FIGURE 10.28 Memory allocation using TAS 



532 Fundamentals of Digital Logic and Microcomputer Design 

For both memory and I/O chips, AS, UDS and LDS must be used in chip select 

For memory, both even and odd chips are required. However, for I/O chips, 
an odd-addressed I/O chip, an even-addressed I/O chip, or both can be used, 
depending on the number of ports required in an application. UDS and/or LDS 
must be used in I/O chip select logic depending on the number of I/O chips used. 
The same chip select logic must be used for both the even and its corresponding 
odd memory chip. 

DTACK must be connected to an external input (typically a signal from the 
address decoding logic) to satisfy the timing requirements. In many instances, AS 
is directly connected to DTACK. 

3. The 68000 must be connected to ROMs / EPROMs / E2PROMs in such a way that 
the 68000 RESET vector address is included as part of the memory map. 

_ -  __ 

logic. Note that: 
1. 

- - 

2. 

10.15 MubrocessinP with the 68000 Usinp the TAS Instruction and the AS SiPnal 

Earlier, the 68000 TAS instruction was discussed. The TAS instruction supports the software 
aspects of interfacing two or more 68000’s via shared RAM. When TAS is executed, the 
68000 AS pin stays low. During both the read and write portions of the cycle, AS remains 
LOW and the cycle starts as the normal read cycle. However, in the normal read, AS going 
inactive indicates the end of the read. During execution of TAS, AS stays LOW throughout 
the cycle, so AS can be used in the design as a bus-locking circuit. Due to the bus locking, 
only one processor at a time can perform a TAS operation in a multiprocessor system.The 
TAS instruction supports multiprocessor operations (globally shared resources) by checking 
a resource for availability and reserving or locking it for use by a single processor. 

The TAS instruction can, therefore, be used to allocate free memory spaces . The 
TAS instruction execution flowchart for allocating memory is shown in Figure 10.28. The 
shared RAM of the Figure 10.28 is divided into M sections. The first byte of each section 
will be pointed to by (EA) of the TAS (EA) instruction. In the flowchart of Figure 10.28, 
(EA) first points to the first byte of section 1. The instruction TAS (EA) is the executed. 
The TAS instruction checks the most significant bit (N bit) in (EA). N = 0 indicates that 
section 1 is free; N = 1 means that section 1 is busy. If N = 0, then section 1 will be 
allocated for use. If N = 1 (section 1 is busy), then a program will be written to subtract 
one section length from (EA) to check the next section for availability. Also, (EA) must be 
checked with the value TASLOCM. If (EA) < TASLOCM, then no space is available for 
allocation. However, if (EA) > TASLOCM, then TAS is executed and the availability of 
that section is determined. 

In a multiprocessor environment, the TAS instruction provides software support 
for interfacing two or more 68000’s via shared RAM. The AS signal can be used to provide 
the bus-locking mechanism. 

Examde 10.18 
Assume that the 68000/2732/6 1 1616821 microcomputer shown in Figure 10.29 is required 
to perform the following: 
(a) If Vx > Vy , turn the LED ON if the switch is open; otherwise turn the LED OFF. 

Write a 68000 assembly language program starting at address $000300 to accomplish 
the above by inputting the comparator output via bit 0 of Port B. Use Port A address = 

$002000, Port B address = $002004, CRA = $002002, CRB = $002006. Assume the 



Motorola MC6800 

0 

A ,  

7 
Bit OofPortB - 

Port 

. 
- 

533 

r+ 

+5v 

vx 2 

Comparator 
68000127321 

6 1 161682 1 
Microcomputer 

FIGURE 10.29 Figure for Example 10.18 

V X  

VY 

I 1 -  I *I 

Comparator 

68000127321 
61 1616821 

Microcomputer 

FIGURE 10.30 Example 10.1 8 using autovectors 

LED is OFF initially. 
(b) Repeat part (a) using autovector level 7 and nonautovector (Vector $40). Use Port 

A (address $002000) for LED and switch as above with CRA=$002002. Assume 
supervisor mode. Write the main program and service routine in 68000 assembly 
language starting at addresses $000300 and $000A00 respectively. Also, initialize the 

supervisor stack pointer at $001200. 
Solution 
(a) Using Programmed I/O 
From figure 10.29, the following 68000 assembly language program can be written: 

CRA EQU $ 0 0 2 0 0 2  
CRB EQU $ 0 0 2 0 0 6  
PORTA EQU $002000 
DDRA EQU PORTA 

PORTB EQU $ 0 0 2 0 0 4  
DDRB EQU PORTB 

ORG $ 0 0 0 3 0 0  



534 

BCLR . B 
MOVE. B 
BSET. B 
BCLR. B 
MOVE. B 
BSET. B 

COMP M0VE.B 
LSR.B 
BCC . B 
MOVE. B 
L.5L.B 
MOVE. B 

LED JMP 

Fundamentals of Digital Logic and Microcomputer Design 

#2,CRA 

#2, CRA 
#2, DDRA 

#2,CRB 
#O,DDRB 
#2,CRB 
PORTB, DO 
#1, DO 
COMP 
PORTA, D1 
#1, D1 
D1, PORTA 
LED 

Address DDRA 
Configure PORTA 
Address PORTA 
Address DDRB 
Configure PORTB 
Address PORTB 
Input PORTB 
Check 
Comparator 
Input switch 
Align LED data 
Output to LED 

(b) Using Autovector Level 7 (nonmaskable interrupt) 
Figure 10.30 shows the pertinent connections for Autovector Level 7 interrupt. 
Main Program 

CRA EQU $002002 
PORTA EQU $002000 
DDRA EQU PORTA 

ORG $000300 
BCLR.B #2,CRA ; Address DDRA 
M0VE.B #2,DDRA ; Configure PORTA 

BSET . B 
WAIT JMP 

Service Routine 
ORG 
MOVE. B 
LSL.B 
MOVE. B 

FINISH JMP 
Reset Vector 

ORG 
DC.L 
DC.L 

#2,CRA ; Address PORTA 
WAIT ; Wait for interrupt 

SOOOAOO 
PORTA, D1 ; Input switch 
#1, D1 ; Align LED data 
D1, PORTA ; Output to LED 
FINISH ; Halt 

0 
$ 0  0 0 0 12 0 0 
$ 0 0 0 0 0 3 0 0  

Service Routine Vector 
ORG $00007C 
DC. L $OOOOOAOO 

V X  

VY 

68000/2732/ 
61 16/6821 

Microcomputer 

FIGURE 10.31 Example 10.18 using nonautovectors 



Motorola MC6800 535 

Using Nonautovectoring (vector $40) 
Figure 10.3 1 shows the pertinent connections for nonautovectoring interrupt. 
Main Program 

CRA EQU $002002 
PORTA EQU $002000 
DDRA EQU PORTA 

ORG $000300 
BCLR.B #2,CRA ; Address DDRA 
M0VE.B #2,DDRA ; Configure PORTA 
BSET.B #2,CRA ; Address PORTA 
AND1.W #$OF8FF,SR ; Enable interrupts 

WAIT JMP WAIT ; Wait for interrupt 
Service Routine 

ORG SOOOA00 
M0VE.B PORTA,Dl ; Input switch 
LSL.B #$01,D1 ; Align LED data 
M0VE.B D1,PORTA ; Output to LED 

FINISH JMP FINISH ; Halt 
Reset Vector 

ORG 0 
DC.L $00001200 
DC.L $00000300 

ORG $000100 
DC.L $OOOOOA00 

Service Routine Vector 

OUESTIONS AND PROBLEMS 

10.1 

10.2 

10.3 

10.4 

10.5 

10.6 

10.7 

10.8 

10.9 

What are the basic differences between the 68000,68008, 68010, and 68012? 

What does a HIGH on the 68000 FC2 pin indicate? 

(a) 

(b) 

If a 68000-based system operates in the user mode and an interrupt occurs, 
what will the 68000 mode be? 
If a 68000-based system operates in the supervisor mode, how can the 
mode be changed to user mode? 

(a) 
(b) 

What is the purpose of 68000 trace and X flags? 
How can you set or reset them? 

Indicate whether the following 68000 instructions are valid or not valid. Justify 
your answers. 
(a) M0VE.B DO, ( A l )  
(b) M0VE.B DO,A1 

How many addressing modes and instructions does the 68000 have? 

What happens after execution of the following 68000 instruction? 
M0VE.L DO,$03000013 

What is meant by 68000 privileged instructions? 

Identify the following 68000 instructions as privileged or nonprivileged: 



536 Fundamentals of Digital Logic and Microcomputer Design 

(a) MOVE (A2),SR 
(b) MOVE CCR, (A5) 
(c) M0VE.L A7,A2 

10.10 (a) Find the contents of locations $305020 and $305021 after execution of the 
MOVE D5, $305020. Assume [D5] = $6A2FA150 prior to execution of 
this 68000 MOVE instruction. 
If [AO] = $203040FF, [DO] = $40F12560, and [$3040FF] = 

$2070, what happens after execution of the 68000 instruction: 
MOVE (AO) , DO? 

(b) 

10.1 1 Identify the addressing modes for each of the following 68000 instructions: 
(a) CLR DO 
(b) M0VE.L (Al)t,-(A5) 
(C) MOVE $2000 (A2), D1 

10.12 Determine the contents of registers / memory locations affected by each of the 
following 68000 instructions: 
(a) MOVE (AO)t,Dl 

Assume the following data prior to execution of this MOVE: 
[AO] = $50105020 
[Dl] = $70801F25 
[$105020] = $50 

(b) MOVEA D5,A2 
Assume the following data prior to execution of this MOVEA: 
[DS] = $A725B600 
[A21 = $5030801F 

[$105021] = $51 
[$lo50221 = $52 

[$lo50231 = $7F 

10.13 Find the contents of register DO after execution of the following 68000 instruction 
sequence: 

EXT . W DO 
EXT.L DO 

Assume [DO] = $F2 15A700 prior to execution of the instruction sequence. 

10.14 Find the contents of D1 after execution of DIVS. W # 6 ,  D1. Assume [DI] = 

$FFFFFFF7 prior to execution of the 68000 instruction. Identify the quotient and 
remainder. Comment on the sign of the remainder. 

10.1 5 Write a 68000 assembly program to multiply a 16-bit signed number in the low 
word of DO by an 8-bit signed number in the highest byte (bits 3 1-24) of DO. 

10.16 Write a 68000 assembly program to divide a 16-bit signed number in the high 
word of D1 by an 8-bit signed number in the lowest byte of D1. 

10.17 Write a 68000 assembly program to add the top two 16 bits of the stack. Store the 
16-bit result onto the stack. Assume supervisor mode. 

10.18 Write a 68000 assembly program to add a 16-bit number in the low word (bits 



Motorola MC6800 537 

10.19 

10.20 

10.21 

10.22 

10.23 

0-15) of D1 with another 16-bit number in the high word (bits 16-31) of D1. 
Store the result in the high word of D1. 

Write a 68000 assembly program to add two 48-bit data items in memory as 
shown in Figure P 10.19. Store the result pointed to by A 1. The operation is given 
by 

$00 02 03 A1 07 20 - 
$07 05 05 A3 OA 3A 

Assume that the data pointers and the data are already initialized. 

15 8,7 0 Increasing 
memory 

AO $00 $02 ad ess 4 $03 $A1 

$07 $20 

$07 $03 L $02 $02 

*‘W 
FIGURE P10.19 
Write a 68000 assembly program to divide a 9-bit unsigned number in the high 9 
bits (bits 3 1-23) of DO by 8,,,. Do not use any division instruction. Store the result 
in DO. Neglect the remainder. 

Write a 68000 assembly program to compare two strings of 15 ASCII characters. 
The first string is stored starting at $502030. The second string is stored at location 
$3025 10. The ASCII character in location $502030 of string 1 will be compared 
with the ASCII character in location $302510 of string 2, [$502031] will be 
compared with [$302511], and so on. Each time there is a match, store $EEEE 
onto the stack; otherwise, store $0000 onto the stack. Assume user mode. 

Write a subroutine in 68000 assembly language to subtract two 32-bit packed BCD 
numbers. BCD number 1 is stored at a location starting from $500000 through 
$500003, with the least significant digit at $500003 and the most significant digit 
at $500000. BCD number 2 is stored at a location starting from $700000 through 
$700003, with the least significant digit at $700003 and the most significant digit 
at $700000. BCD number 2 is to be subtracted from BCD number 1. Store the 
result as packed BCD digits in D5. 

Write a subroutine in 68000 assembl language to compute 
102  

Z = C &  
i= 1 

Assume the ,Y.’s are signed 8-bit and stored in consecutive locations starting at 
$504020. Assume A0 points to the 4 ’ s .  Also, write the main program in 68000 
assembly language to perform all initializations, call the subroutine, and then 
compute Z/100. 



538 

10.24 (a) 

Fundamentals of Digital Logic and Microcomputer Design 

Write a subroutine in 68000 assembly language to convert a 3-digit 
unpacked BCD number to binary using unsigned multiplications by 10, 
and additions. The most significant digit is stored in a memory location 
starting at $3000, the next digit is stored at $3001, and so on. Store the 
binary result (N) in D3. Note that arithmetic operations for obtaining N 
will provide binary result. Use the value of the 3-digit BCD number, 

N = N 2 x 1 0 2 + N 1 x 1 0 1 + N 0  
= ( ( l O x i W ) + N l  x 1O+NO 

Assume 10-MHz 68000. Write a 68000 assembly language program to 
obtain a delay routine for one millisecond. Using this one-millisecond 
routine, write a 68000 assembly language program to provide a delay for 
10 seconds. 

(b) 

10.25 Write a 68000 assembly program to compute the following: 

where the locations $6000, $6002, & $6004 contain the 16-bit signed integers J ,  K ,  
and M. Store the result into a long word starting at $6006. Discard the remainder 
of KIM. 

I = 6 x J + KIM 

10.26 Write a subroutine in 68000 assembly language program to compute the trace of 
a 4x4 matrix containing 8-bit unsigned integers. Assume that each element is 
stored in memory as a 16-bit number with upper byte as zero in the row-major 
order form; that is, elements are stored in memory as row by row and within a 
row, elements are stored as column by column. Note that the trace of a matrix is 
the sum of the elements of the leading diagonal. 

10.27 A 68000168230 microcomputer-based microcomputer is required to drive the 
LEDs connected to bit 0 of ports A and B based on the input conditions set by 
switches connected to bit 1 of ports A and B. The I10 conditions are as follows: 

If the input at bit 1 of port A is HIGH and the input at bit 1 of port B is low, 
then the LED at port A will be ON and the LED at port B will be OFF. 
If the input at bit 1 of port A is LOW and the input at bit 1 of port B is HIGH, 
then the LED at port A will be OFF and the LED at port B will be ON. 
If the inputs of both ports A and B are the same (either both HIGH or both 

LOW), then both LEDs of ports A and B will be ON. 

Write a 68000 assembly language program to accomplish this. 

10.28 A 6800016821-based microcomputer is required to test a NAND gate. Figure 
P10.28 shows the 110 hardware needed to test the NAND gate. The microcomputer 
is to be programmed to generate the various logic conditions for the NAND 
inputs, input the NAND output, and turn the LED ON connected at bit 3 of 
port A if the NAND gate chip is found to be faulty. Otherwise, turn the LED 
ON connected at bit 4 of port A. Write 68000 assembly language program to 
accomplish this. 



Motorola MC6800 539 - +5v +5v 

10.29 

10.30 

10.31 

10.32 

Bit 0 

Bit 1 

Bit 2 

Bit 3 

Bit 4 

::f=Q of Port 3p 
of Po 

of Port 

330 R 

LED 

I 68000/6821 I 

FIGURE P10.28 ( Assume both LEDs are OFF initially). 

FIGURE 

Bit 0 
Bit 1 

Bit 2 

) Bit4 

Bit 5 

Port A I Bit3 

P10.29 

1 
GND 

A 68000/68230-based microcomputer is required to add two 3-bit numbers stored 
in the lowest three bits of DO and D1 and output the sum (not to exceed 9) to a 
common cathode seven-segment display connected at port A as shown in Figure 
P10.29.Write 68000 assembly language program to accomplish this by using a 
look-up table. 

A 68000/68230-based microcomputer is required to input a number from 0 to 
9 from an ASCII keyboard interfaced to it and output to an EBCDIC printer. 
Assume that the keyboard is connected to port A and the printer is connected to 
port B. Store the EBCDIC codes for 0 to 9 starting at an address $003030, and use 
this lookup table to write a 68000 assembly language program to accomplish the 
above. 

-- 
Determine the status of=, FC2-FC0, LDS, UDS, and address lines immediately 
after execution of the following instruction sequence (before the 68000 tristates 
these lines to fetch the next instruction): 

MOVE #$2050, SR 
M0VE.B D0,$405060 

Assume the 68000 is in the supervisor mode prior to execution of the 
instructions. 

Suppose that three switches are connected to bits 0-2 of port A and an LED 
to bit 6 of port B. If the number of HIGH switches is even, turn the LED ON; 
otherwise, turn the LED OFF. Write a 68000 assembly language program to 
accomplish this. 
(a) Assume a 68000/6821 system. 



540 

10.33 

10.34 

10.35 

10.36 

Fundamentals of Digital Logic and Microcomputer Design 

(b) Assume a 68000/68230 system. 

Assume the pins and signal shown in Figure P10.33 for the 68000,68230 (ODD), 
2764 (ODD and EVEN). Connect the chips and draw a neat schematic. Determine 
the memory map and I/O map 
(Addresses for PGCR, PADDR, PBDDR, PACR, PBCR, PADR, PBDR). Assume 
a 16.67-MHz internal clock on the 68000. 

As/- 

REsETt 
68000 

- 
CE 

OE 
- 

0 0 - 0 7  

- 4 0 4 1 2  

2764 Even) or 
2764[0dd) 

RS 1 -RS5 

DTACK 

RESET 

68230 (Odd) 

FIGURE P10.33 

- - 
Find LDS and UDS after execution of the following 68000 instruction sequence: 

M0VEA.L #$0005A123,A2 
M0VE.B (A2), DO 

(a) Write 68000 instruction sequence so that upon hardware reset, the 68000 
will initialize the supervisor stack pointer to lOOO,, and the program counter to 
2000,,. 

(b) Write a 68000 service routine at address $1000 for a hardware reset that will 
initialize all data registers to zero, address registers to $FFFFFFFF, supervisor 
SP to $502078, and user SP to $1 F0524, and then jump to $7020FO. 

Assume the 68000 stack and register values shown in Figure P10.36 before 
occurrence of an interrupt. If an external device requests an interrupt by asserting 
the IPL2, IPLI, and IPLO pins with the value 000,, determine the contents of 
A7’ and SR during interrupt and after execution of RTE at the end of the service 
routine of the interrupt. Draw the memory layouts and show where A7’ points to 
and the stack contents during and after interrupt. Assume that the stack is not 
used by the service routine. 

- _ _  - 

Stack 

[PC]=$507030 
$FF45E 
$FF460 

[SR]=$2004 

A,’ =$FF464 

FIGURE P10.36 



Motorola MC6800 54 1 

10.37 Consider the following data prior to a 68000 hardware reset: 
[DO] = $7F2A1620 
[All  = $6AB11057 
[SR] = $00 1 F 

What are the contents of DO, A1 , and SR after hardware reset? 

10.38 In Figure P.10.38, if VM > 12 V, turn an LED ON connected at bit 3 of port A. If 
V, < 11 V, turn the LED OFF. Using ports, registers, and memory locations as 
needed and level 1 autovectored interrupt: 
(a) Draw a neat block diagram showing the 68000/6821 microcomputer and the 

connections to the diagram in Figure P10.38 to ports. 
(b) Write the main program and the service routine in 68000 assembly language. 

The main program will initialize ports and wait for interrupt. The service 
routine will accomplish the above task and stop. 

To68000 
IPLO pin of a 
68000/6821 
system 

measurement 

11v 

FIGURE P10.38 
Write a subroutine in 68000 assembly language using the TAS instruction to find, 
reserve, and lock a memory segment for the main program. The memory is divided 
into three segments (0, 1, 2) of 16 bytes each. The first byte of each segment 
includes a flag byte to be used by the TAS instruction. In the subroutine, a 
maximum of three 16-byte memory segments must be checked for a free segment 
(flag byte = 0). The TAS instruction should be used to find a free segment. The 
starting address of the free segment (once found) must be stored in A0 and the 
low byte DO must be cleared to zero to indicate a free segment and the program 
control should return to the main program. If no free block is found, $FF must be 
stored in the low byte of DO and the control should return to the main program. 

10.39 

10.40 Will the circuit in Figure P10.40 work? If so, determine the 1/0 port addresses for 
PGCR, PADR, PADDR, PBDR, PBDDR, PCDR and PCDDR. If not, comment 
briefly, modify the circuit, and then determine the port addresses. Use only the 
pins and the signals shown. Assume all don’t cares to be zeros. 



542 Fundamentals of Digital Logic and Microcomputer Design 

”’ MC68000pP MC68230 

P L l  

PLO 

Not Connected 

DTACK 

RESET 

I Reset Circuit I 

FIGURE P10.40 


