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APPENDIX

VHDL

J.1 Introduction to VHDL

Each VHDL description contains two blocks. These are input/output and architectural
components. The input/output description specifies the input and output connections (ports)
to the hardware. The architectural component defines the behavior of the hardware entity
being designed. A typical VHDL description includes a port statement contained within
an entity statement. All keywords in VHDL are reserved. This means that they cannot be
used for any other purpose. A typical VHDL entity is given below:

entity EXAMPLE is -- Entity Statement
port -—- port Statement
(X,Y,2 : in BIT;
W : out BIT) ;
end EXAMPLE

The entity statement begins with the keyword entity followed by the name of
the entity EXAMPLE followed by the word is. Note that all keywords in VHDL are case
sensitive. The port statement is contained within an entity statement. The VHDL design
entity is comprised of two parts: an interface and a body. The interface is specified by the
keyword ent ity and the body is denoted by the keyword architecture. Typical logic and
arithmetic operators along with port modes are listed below:

LOGIC OPERATORS
and AND Operation
or OR Operation
Xor Exclusive-OR Operation
xnor Exclusive-NOR Operation
nand NAND Operation
nor NOR Operation
not NOT Operation
ARITHMETIC OPERATORS
+ Positive sign or addition
- Negative sign or subtraction
* Multiplication
/ Division
mod Modulus
rem Remainder
abs Absolute value
** Exponential
TYPICAL PORT MODES

757
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in Information from the signal flows into the entity.

out Information from the signal flows out of the entity, the value of
the signal cannot be used inside the entity. Therefore, the value
can appear on the left of the <=symbol.

inout Information from the signal can flow into and out of the
entity.
buffer Information from the signal flows out of the entity; however, the

signal can be used the entity. Therefore, the signal can appear
on both sides of the <= symbol.
In the following, a simple VHDL programming example is provided. A comment
1s indicated by the symbol — — before a statement. A VHDL program for an Exclusive-NOR
operation between two Boolean variables X and Y is provided below:

-- Exclusive-NOR Operation
entity XNOR is

port(X,Y : in BIT; Z : out BIT);
end XNOR;

-- Body

architecture BEHAVIOR of XNOR is
begin

Z<=X xnor Y;
end BEHAVIOR;

In the above example, architecture declares the name XNOR to associate the
architecture with the XNOR design entity interface. VHDL provides a library where the
intermediate files about a particular design can be stored. These files can be used during
analysis, synthesis and simulation of the design using IEEE standards. For example, the
statement library ieee; canbeused at the beginning of each program to specify the IEEE
library. Also, IEEE developed the 1164 standard logic package to satisfy the requirements
of most of the designers. The statement 1ibrary ieee;use.std logic_1164.all; written
at the start of a VHDL program can use all the definitions of the IEEE standard 1164 logic
package. Some more features of VHDL are discussed in the following.

For instance, in the architecture definition, signal declaration can be used for
providing wire (internal connection) in a circuit. The signal declaration is similar to port
declaration except that no modes (in or out) need to be specified. Predefined data types
such as bit and bit vector can be used with the signal declaration. pit data type can
have values of 0 or 1 while bit_vector data type can be used to define a binary number.
For example, the statement signal c:bit_vector (3 downto 0); defines bits 3 and 0 as
the most significant bit and the least significant bit of a 4-bit number respectively. VHDL
provides wait keyword which can be used in a test program to stop an operation for a
specified period of time and then verify the outputs based on the predefined inputs.

VHDL provides a case statement that executes one of several sequences of
statements based on the value of a single expression. A simple example illustrating the use

of the case statement is given below for a 2-to-1 multiplexer: case sel is
when “07=>

z<=a;
when “17=>

z<=pb;
endcase;

In the above, sel is used as the select input for the 2-to-1 multiplexer. When
se1=0, output, z of the multiplexer is assigned with input, a. On the other hand, when
sel=1, output, z will be assigned with input, b. As mentioned before, in order to design
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a system using HDL such as VHDL, two basic levels of abstractions or modeling are
used. These are structural, modeling (used to describe a schematic or a logic diagram)
and behavioral modeling (used to describe what the system does and how it behaves; uses
both concurrent and sequential statements). Dataflow modeling is behavioral modeling
with concurrent statements. Hierarchical structural model is used to decompose a large
digital system into smaller blocks or modules. The three levels of abstractions (Structural,
Dataflow, and Behavioral) are illustrated in the following by means of VHDL programs for
the 2-to-4 decoder described in section 4.5.3.

J.1.1  Structural Modeling
The following VHDL structural description is provided for the 2-to-4 decoder’ of Figure
4.14. The figure is redrawn below for convenience:

—>d[0]

1 2-to-4 ———->d 1]

x}‘z’ Decoder —>d 2]
(Enable) d 3]

library IEEE;
useIEEE.std_logic_1164.all;
entity decoder2tod is
port (x1,x0,E: in BIT;d: out BIT _VECTOR(0 to 3));
end decoder2tod;
architecture STRUCTURAL DEC of decoder2tod is
component inv
port (u: in BIT; wv: out BIT);
end component;
--VHDL code for inv
library IEEE;
uselEEE.std logic_ll64.all;
entity inv is
port (u: in BIT; v: out BIT);
end inv;
architecture LOGIC1l of inv is
begin
v<=not u;
end LOGIC1;

component and3
port (a, b, c: in BIT; f: out BIT);
end component;
--VHDL code for and3
library IEEE;
uselEEE.std_logic_l1164.all;
entity and3 is
port (a, b, c: in BIT; f: out BIT);

end and3;
architecture LOGIC of and3 is
begin

f<= a and b and c¢;
end LOGIC;

signal x11, x00: BIT;
begin

f0: inv port map (x1, x11);

fl: inv port map (x0, x00);
f£2: and3 port map (E, x11, x00, d(0));
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£3: and3 port map (E, x11, x0, d(1)):

f4: and3 port map (E, x1, x00, d(2));

£5: and3 port map (E, x1, x0, d(3})):
end STRUCTURAL DEC;

As mentioned before, a VHDL program should include the statements :
library IEEE;
uselEEE.std logic_1164.all;

The first statement provides access to the library called IEEE. This library contains
the directory in the computer file system where the std_logic 1164 package is stored. The
IEEE library files are plain text files that can be checked using any text editor. One can
look at the IEEE library files after installing Altera Quartus II running under Microsoft
Windows Operating System. The file that specifies the std logic type is called std 1164.
vhd. Also note that VHDL is a strongly typed language unlike C. This means that VHDL
compiler does not allow one to assign a value to a signal or a variable unless the type of
the value exactly matches the declared type of the signal or variable. The VHDL compiler
checks to see if data objects on both sides of assignment statements are identical. The
VHDL compiler will not compile the program if there is a descrepency. For simplicity, all
VHDL programs in this book will mostly use only the std logic type. IEEE 1164 standard
logic package defines many functions that operate on the standard data types such as std
logic and std_logic vector. Besides defining a number of user-defined data types, the IEEE
1164 package also defines the basic logic operations such as AND and OR on these data
types . Because VHDL is a strongly typed language, it is often necessary to convert a
signal from one type to another. IEEE 1164 package provides several conversion functions
such as from bit to std_logic or vice versa. It should be mentioned that the IEEE 1164 does
not include some of the common conversion functions such as from std logic vector to
a corresponding integer value. However, the user can write such a conversion program. In
the above example, all data objects for the inverter are defined as bits; this means that they
can only have values of O or 1. In order to provide more flexibility, VHDL offers the data
type called std_logic. Signals can have several different values when represented using this
data type. In the above VHDL program, the statement (after component inv) port (u: in
BIT; v: out: BIT); can be written as port (u: in std_logic; v: out std_logic); . The std_logic
provides several data types including 0, 1, Z (High impedance state), and - (don’t care
condition).

Three types of data objects are used to represent information in VHDL programs.
These are signals, constants, and variables. Signals are very common in logic circuits
since they provide wires (connections) in the circuit. Constants and variables are also
used in logic circuits. Furthermore, in order to implement arithmetic operators for signed
and unsigned numbers,a package called std_logic_arith along with std_logic_signed (for
signed numbers) and std_logic unsigned (for unsigned numbers) can be used.

The entity called decoder2tod in the above VHDL program contains three
input ports and four output ports. E, x1, and x0 are defined as inputs with widths of one
bit each while the output , d is defined as a vector with an array size of four bits. In
this example, the name of the architecture body is STRUCTURE_DEC. There are two
component declarations (inv, and3), and one signal declaration. The signal declaration
declares two signals of type BIT named, x11 and x00. These signals represent wires that
are used to connect the various components of the decoder. Note that the statements inside
a component are concurrent. Therefore, these statements can be written in any order within
a component. The Structural model considers the components as black boxes for only
interconnecting them without taking behavior of components into consideration. In the
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architecture body of STRUCTURAL DEC, signals x1, x0, and E are declared as input
ports in the decoder2to4 entity declaration. Next, consider the statement labeled f5. In
f5, port E is connected to input a of component and3, port x1 is connected to input b of
component and3, port x0 is connected to input ¢ of component and3, and port d(3) of the
decoder2to4 entity is connected to the output port f of component and3. Note that separate
entity along with architecture and appropriate declarations are included for components inv
and and3.

The component statement is used to describe the Structural model of an entity. Two
component names are used in the above program. These are inv and and3. The component
name is the name of a defined entity to be used in the current architecture body. Each
component is declared with port declarations. The component declaration is included in
the declaration part of an architecture declaration. The keyword port map defines a list that
associates ports of the named entity with signals in the current architecture. A component
instantiation statement associates the signals in the entity with the ports. There are two
ways to represent the association. These are positional association and named association.
In positional association, each signal in the port map is mapped by position with each port
in the component declaration. This means that the first port in the component declaration
corresponds to the first signal in the component instantiation, the second port with the
second signal, and so on. For example, consider the following component instantiation
statement in the above program f0: inv port map (x1, x11); in which f0 is the component
label for the current instantiation of the inv component. Signal x1 is associated with port
u of the inv component and signal x11 receives the output value (inverted x1 in this case)
from the component. The ordering of signals must be done properly.

In the named association, each of the entity’s ports is connected using the
operator <= or => and the order of listing is unimportant. The named association is
illustrated by a two-input OR gate example provided below.

entity comb is
port (a, b: in BIT; c: out BIT);
end comb;
architecture structural of comb is
component OR2
port (x, y: in BIT; z: out BIT);
end component;
signal sl: BIT;
begin
gl: OR2 port map(x=>a, y=>sl, z=>c);
end structural;
entity OR2 is
port (x, y: in BIT; z: out BIT);
end OR2;
architecture LOGIC of OR2Z 1is
begin
z<= X Or y;
end LOGIC;
In the above, signal a (declared in the entity port list) is associated with x declared
in the component port list, signal c is associated with z, and signal s1 is associated with y.

In this named association, the ordering of the associations is not required.

J.1.2 Behavioral Modeling

The behavioral model contains statements that are executed sequentially in a predefined
order. These sequential statements are defined using a process statement inside an
architecture body. A VHDL program for a 2-to-4 decoder using Behavioral modeling is
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given in the following:
library IEEE;
uselEEE.std logic_1l64.all;
entity decoder2tod is
port (x1, x0, E: in BIT; d: out BIT_VECTOR (0 to 3));
end decoder2tod;
architecture BEHAVIOR DEC of decoder2tod is
begin
process (x1, x0, E)
variable x11, x00:BIT;

begin
x11l:= not xl;
x00:= not x0;

if E = ‘1’ then
d(0)<= x11 and x00;
d(l)<= x11 and x0;
d(2)<= x1 and x00;
d(3)<= x1 and x0;

else
d<="0000";

end 1if;

end process;

end BEHAVIOR_DEC;

In the above, two variables x11 and x00 are declared using the keyword variable.
A variable is always assigned with a value instantaneously using the assignment operator
:=. A signal, on the other hand, is assigned with a value always after a certain delay using
the assignment operator <=. Signal and variable assignment statements in a process are
executed sequentially regardless of whether or not any event occurs on the right hand side
of the expression. The general form of process statement is given below:
process (sensitivitylist)
process declarations
begin
list of sequential statements such as signal assignments, variable assignments, and if
statements
end process;

The sensitivitylist includes signals to which the process is sensitive. The
process Will be executed as soon as any changes in the values of these signals occur. As
mentioned before, variables and constants inside a process must be defined in the process
declarations part before the keyword begin. The statements that follow after the keyword
begin are executed sequentially. Variable assignments inside a process are denoted by
the := operator, and are executed immediately. This is in contrast to signal assignment
denoted by the operator <= in which changes occur after a delay. Therefore, variables
will be available immediately to all subsequent statements within the same process. In
the above program, if-else construct is used. The general form of if-else construct is as
follows:
if condition then
sequential statements
elseif condition then
sequential statements
else
sequential statements
end if;
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The if statement is executed by checking each condition (Boolean expression)
in the order they are written in the program until a true condition is found. In the above
program, E=1 is the true condition. If an event occurs on any signal E, x1, or x0, variable
assignment statements are executed. When the if statement is executed , and if E=1, then
four signal assignment statements are executed. On the other hand, if E=0, the four-bit
vector, d receives the four-bit value 0000. When end of process is reached, the process
halts itself and waits for another event to occur on a signal in the sensitivity list.

J.1.3 Dataflow Modeling
As mentioned before, dataflow modeling is a form of behavioral modeling. A VHDL

program for the 2-to-4 decoder using dataflow modeling is provided in the following:
library IEEE;
useIEEE.std logic_1164.all;
entity decoder2tod is
port (x1, x0, E: in BIT; out BIT VECTOR (C to 3));

end decoder2tod;
architecture DATAFLOW DEC of decoder2tod is

signal x11, x00: BIT;
begin

%11 <= not x1;

x00 <= not x0;

d(0)<=E and x11 and x00;

d(l)<=E and x11 and x0;

d{2)<=E and x1 and x00;

d(3)<=E and x1 and x0;
end DATAFLOW_DEC;

Note that VHDL programs written using dataflow modeling contain assignment
statements. These statements are executed if one of the values on the right hand side of
the assignment statement changes. The architecture body contains one signal declaration
and six concurrent signal assignment statements. Note that concurrent signal assignment
statements are concurrent statements, and hence, the ordering of these statements in the
architecture body is unimportant. The signal declaration declares x11 and x00 to be used
with the architecture body. Since no after clause is used for defining delays for each
signal assignment statement, a default delay of Ons is assumed. This delay of Ons is called
delta time and is denoted by a very small time delay. Now, Suppose that input signal,
x0 in the above program changes. This will affect the signal assignment statements for
x00, d(1), and d(3). Therefore, the right hand sides of these expressions will be evaluated
, and the corresponding values of x00, d(1), and d(3) will be assigned after certain time
delay (for example, t) during simulation. Since the value of x00 is affected due to changes
in x0, this, in turn, will affect the values of d(0) and d(2). Therefore, new values will
also be calculated for d(0) and d(2) after further time delays (for example, t+nt). The
meaning of this concurrent behavior shows that the simulation is event-triggered. Hence,
the simulation time proceeds to the next time unit when an event occurs. In the above
program, the library and entity statements are same as before. Signal declarations are made
for x11and x00. Signals x11 and x00 are obtained by applying logical not operations on
x1 and x0 respectively. d(0), d(1), d(2), and d(3) are then obtained by performing logical
and operations on E, x1, x0, x11, x00 as defined by the Boolean equations of the 2-to-4
decoder.

There are two other ways of writing VHDL programs with dataflow modeling.
These are called conditional dataflow modeling, and are obtained by using when-else and
with-select constructs. The following VHDL program is written for the 2-to-4 decoder



764 Fundamentals of Digital Logic and Microcomputer Design

using when-else construct:
library IEEE;
uselEEE.std_logic_l164.all;
entity decoder 1is
port (x: in bit vector(l downto 0):
E:in bit;
d: out bit_vector(3 downto 0));
end decoder;
architecture when else of decoder is
signal Ex: in bit vector(2 downto 0);
begin
Ex<= E & X;
d<= “0001” when Ex = “100” else

“0010” when Ex = “101” else
*0100” when Ex = “110” else
“1000” when Ex = “111” else
»0000”

end architecture when else;

The truth table for the above decoder is given in table 4.8. The inputs in this table
are shown in the order E x1 x0. In the above program, these three signals are represented
as a three-bit signal called Ex. In order to express Ex, the VHDL concatenate operator &
is used in the expression Ex<=E & x;. Thus, E and x are combined into Ex signal where
Ex(2) = E, Ex(1) = x1, and Ex (0) = x0. Ex is used as a condition in the above when-else
construct. This when-else conditional assignment is used to assign a signal value with one
of several choices. The syntax is as follows:
signalname<= expression when Boolean condition else

expression when Boolean_condition else
expression when Boolean condition else

expression
The signalname will have the value of the first expression whose Boolean condition
is true. If more than one condition is true, the signalname will be assigned with the value
associated with the first true condition. If no true condition is found, the signalname will
be assigned with the final expression. For example, if E=1, x1 =0, x0 = 1, then Ex = 101.
This means that the four-bit vector d will be assigned with the value 0010; hence, d3=0,
d2=0, d1=1, and d0=0. However, if Ex =011, then the four-bit vector, d will be assigned

with the value 0000.
The following VHDL program is written for 2-to-4 decoder using with-select

construct:
library IEEE;
uselEEE.std_logic_1l64.all;
entity decoder is
port (x: in bit_vector(l downto 0);

E:in bit;

d: out bit vector(3 downto 0));
end decoder;

architecture with_select of decoder is
signal Ex: in bit vector (2 downto 0);
begin
Ex<= E & x;

with Ex select
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d<= “0001” when “100”,
*0010” when “1017,
“0100” when “110”,
“1000” when “111”,
*0000” when others;
end architecture with_select;

The syntax for with-select construct is given below:
with choice_input select
signalvalue <= expression when value,

expression when value,

expression when value,

expression when others;

In the above, choice_input (the value of choice input is to be used for decision) is
placed between with and select. When choice_input equals value, the expression associated
with the value is assigned to signalvalue. For example, consider E=1, x1=1, and x0=0. This
means that Ex=110. Hence, 0100 is assigned to the four-bit vector, d. Therefore, d3=0,
d2=1, d1=0, and d0=0. All other values not listed are represented by the word, others.
Hence, if Ex = 011, then d will be assigned with the value 0000.

J.1.4 Mixed Modeling
In the following, an example is provided in which all three levels of modeling
(Structural, Dataflow, and Behavioral) are used. This is called mixed modeling. The full
adder is used for this purpose. The equations for the full adder can be written as follows:
S=w®z,wherew=x®@y
C=xy+yz+xz
The following VHDL program implements the above equations as follows:
w=x @y (Structural), S =S = w @ z (Dataflow), C = xy + yz + xz (Behavioral)
~-VHDL program for Full Adder using mixed modeling
library IEEE;
useIEEE.std logic_1164.all;
entity FA is
port (x,y,z: in BIT; S, C: out BIT);

end FA;
~- Structural
architecture MIXED of FA is

component XORO

port (a,b: in BIT; c: out BIT);

end component;

signal w:BIT;
begin

g: XORO port map (x,y,w);
--Behavioral

process (xX,y,w)
variable f1, f2, £3: BIT;
begin
fl:=x and y;
f2:=y and z;
f3:=x and z;
C<=f1l or £f2 or £3;
end process;
~~dataflow
S<=w xor z;
end MIXED;
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--VHDL code for XORO
entity XOR0O is

port (m, n: in BIT; v: out BIT);
end XORO;
architecture LOGIC of XORO is
begin

v<=m XOr n;
end LOGIC;

J.2 VHDL descriptions of typical combinational logic circuits

EXAMPLE J.1 :

Write a VHDL description for /= A + B C ( Section 3.6) using dataflow modeling.
Solution

The program written using Dataflow modeling as follows.

Program:
-- file name: FUNC.vhd

library ieee;
use ieee.std logic_l1164.all;
entity FUNC is
port(a,b,c:in std logic;
f:out std _logic);
end FUNC;

architecture FUNC_arch of FUNC is
signal y0,yl: std logic;
begin
y0 <= not c;
yl <= b and yO0;
f <= yl or a;
end FUNC_arch;y

EXAMPLE J.2
Write a VHDL description for a two-input Exclusive-OR gate using dataflow modeling.
Solution
This program is written using dataflow modeling as follows:
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY xor_bit IS
PORT (a,b: IN bit; y: OUT bit);
END xor_bit;
ARCHITECTURE behave OF xor_bit IS

BEGIN

y <= a XOR b;
END behave;
EXAMPLE J].3

Write a VHDL description using dataflow modeling for the 2-to-1 multiplexer of figure
4.21 using dataflow modeling.

Solution

-- 2 to 1 MUX
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-- file name: MUX2.vhd
library ieee;
use leee.std_logic_1164.all;
entity MUX2 is

port(a,b,sel:in std logic;

cout:out std_logic);

end MUX2;
architecture MUX_arch of MUX2 is
signal y0,yl,y2: std logic;
begin

y0 <= not sel;

yl <= a and y0;

y2 <= b and sel;

cout <= yl or y2;

end MUX_arch;

EXAMPLE J.4
Write a VHDL description using dataflow modeling for a 4-bit binary adder.

Solution
-~ 4 bit binary adder
-- file name: adder4.vhd
library ieee;
use ieee.std_logic_1164.all;
entity adderd is
port(a,b:in bit vector(3 downto 0);
cin:in bit;
cout:out bit;
s:out bit_vector {3 downto 0));
end adder4;
architecture adder_arch of adder4 is
signal c:bit_vector(3 downto 1);
begin
s(0)<=a(0) xor b(0) xor cin;
c(l)<=(a(0) and b(0)) or (a(0) and cin) or (b(0) and cin);
s(l)<=a(l) xor b(l) xor c(l);
c(2)<=(a(l) and b(l1)) or (a(l) and c(1l)) or (b(l) and c(1));
s(2)<=a(2) xor b(2) xor c(2);
c(3)<=(a(2) and b(2)) or (a(2) and c(2)) or (b(2) and c(2));
s(3)<=a(3) xor b(3) xor c(3);
cout<=(a(3) and b(3)) or (a(3) and c(3)) or (b(3) and c(3));
end adder_arch;

EXAMPLE J.5

Write a VHDL description using hierarchical modeling for a 4-bit binary adder.
Solution

VHDL (Using Hierarchical)

--One full adder program

library ieee;

use ieee.std logic_1l64.all;

-- full-adder

--Define outputs and inputs

entity full adder is

port (a, b, cin: in std_logic;

sum, carry: out std logic);

end full adder;

--Use Boolean eqguations

architecture egns of full_adder is

begin
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sum <= a xor b xor cin;
carry <= (a and b) or (cin and (a xor b));
end eqns;

~-4 bit full adder using the full adder program
-~ 4-pit full adder using hierarchical logic
library ieee;

use ieee.std_legic_1164.ail;

-- module interface
entity hier full adder is

port ( a, b : in std_logic_vector (3 downto 0);
cin : in std _logic
sum : out std logic_vector (3 downto 0);

carry : out std_logic) ;
end hier_ full adder;
~-- module hierarchical
architecture structural of hier full adder is
component full adder
port (a, b, cin: in std_logic; sum, carry: out std_logic);
end component;
signal <0, cl, c2: std logic;
begin
fal0: full_adder port map (a(0), b(0), cin, sum(0), c0);
fal: full adder port map (a(l), b{(l), c0, sum(l}, cl};
fa2: full adder port map (a(2), b(2), cl, sum(2), c2});
fa3: full adder port map (a(3), b(3), c2, sum(3), carry);

end structural;

EXAMPLE J.6
Write a VHDL description for a full-adder using 74138 decoder and gates (Figure 4.17).
Solution
The 74138 decoder is implemented using conditional dataflow. The Full-adder is
implemented using structural modeling. The VHDL program is provided below:
LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
ENTITY Dec3to8 IS
PORT ( A : in STD LOGIC VECTOR (2
DOWNTO 0) ;
Gl, NOT G2A, NOT G2B: in  STD LOGIC ;
D ¢ out STD LOGIC VECTOR (7
DOWNTO 0) )
END Dec3to8;
ARCHITECTURE Behavior OF Dec3to8 IS
SIGNAL Sel : std_logic_vector ( 5 downto 0);

BEGIN
Sel <= ((NOT_G2A & NOT_G2B) & Gl) & A;
WITH Sel SELECT
D <= “11111110” WHEN “001000”",

®11111101” WHEN “001001”,
“11111011” WHEN “001010”",
“11110111” WHEN “001011”,
“11101111” WHEN “001100”,
“11011111” WHEN “001101",
“10111111” WHEN “001110”,
“01111111” WHEN “001111”,
“11111111” WHEN OTHERS;

END Behavior;
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-— IMPLEMENTATION OF A FULL ADDER USING 74138 & 4-INPUT AND GATES
LIBRARY TIEEE;
USE IEEE.STD LOGIC 1164.ALL;
ENTITY Full Adder IS
PORT ( X : in STD_LOGIC_VECTCR (2 DOWNTO Q) ;
S, C . out STD_LOGIC );
END Full Adder;
ARCHITECTURE Structural OF Full Adder IS
SIGNAL gl, g2, g3 : std_logic;
SIGNAL M : STD LOGIC_VECTOR (7 DOWNTO 0);
COMPONENT Dec3to8

PORT ( A ¢ in STD_LOGIC_VECTOR(2
DOWNTO 0) ;
Gl, NOT_G2A, NOT_G2B: in STD LOGIC ;
D : out STD_LOGIC VECTOR (7
DOWNTO 0) );
END COMPONENT;
BEGIN
gl <= *1’;
g2 <= ‘07;
g3 <= ‘0’;

Dec: Dec3to8 port map ( X, gl, g2, g3, M);

S <= (M(0) and M(3) and M(5) and M(6)};

C <= (M{(0) and M(1l) and M(2) and M(4)):;
END Structural;

J.3 VHDIL. descriptions of typical synchronous sequential circuits

VHDL keyword process, described in section J.1.2 for behavioral modeling, is used to
describe sequential circuits. Furthermore, state machines are normally modeled using a
case statement in a process. Since the case statement provides multiple branching, the
behavior of a state in a state machine is represented using case statement. Also, the statement
clock’event and clock='1"; isused to obtain positive clock. This is because the syntax
clock’event uses a VHDL attribute. An attribute basically implies the property of an object
such as signal. The attribute ‘event means a change in the clock signal. By logically anding
clock’event with clock=1 will indicate that the clock signal has just changed and the value
of the clock signal is 1. This means a positive clock edge.

EXAMPLE J.7

Write a VHDL description for a D flip-flop using Behavioral modeling.
Solution

-~ D Flip-Flop (Behaviorally)

-- Module DFF with synchronous reset
-- file name: dfflop.vhd

library ieee;
use ieee.std logic_1164.all;
entity dfflop is

port(d, clk, reset: in std_logic;
g: out std_logic);
end dfflop;

architecture dfflop arch of dfflop is
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begin
process {clk, reset) 1is
begin
if reset = ‘1’ then
q <= 0’
elsif clk’event and clk = ‘1’ then
q <=d ;
end if ;

end process;
end dfflop_arch;

Tabular form of simulation:
INPUTS reset d clk ;

QUTPUTS g ;

PATTERN

% r %

% e %

% s c %

% e 1 %

% t dk g %

0.0>000 =20

1000.0> 0 0 1 = 0 2000.0> 01 0 =0 2006.5>010 =1
3000.0> 01 1 =1 4000.0> 1 0 0 =1 4006.5> 100 =20
5000.0> 1 01 =0 6000.0>110=0 7000.0>111=0
8000.0> 0 0 0 = 0 9000.0> 0 0 1 = 0 10000.0> X X X = X

EXAMPLE J.8

Write a VHDL description-for a T flip-flop using behavioral modeling.
Solution

Implementation of T Flip Flop using Behavioral method:

Rk kR kR R A R AR R Ik kAR A I K F A A kA kA F Ak kAR A R I AR ARk kkhkkkkhkkhhk k& kdxok ok

- T FLIPFLOP IMPLEMENTATION.

——kk ok kA kh ok ko h A Ak Ak Ak h Ak khkkdkkkh ok kA dkhkhkhk kb dkh bk kkhkkkhkkk ok %ok kxkk &k k%
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY tff IS
PORT ( T ,preset, reset, Clock : IN STD_LOGIC ;

q ,gnot : buffer STD_LOGIC) ;
END tff ;

ARCHITECTURE Behavior OF tff IS

SIGNAL temp :STD_LOGIC;

begin

PROCESS (preset, reset, Clock )
BEGIN
IF reset = ‘0’ THEN
temp <= ‘0’ ;
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ELSIF preset = ‘0’ then

temp <= ‘1';

ELSIF Clock’EVENT AND Clock = ‘1’ THEN
temp <= T xor temp ;

END IF ;

END PROCESS ;

q <= temp;
gnot <= not temp;

END Behavior;
EXAMPLE 1.9
Write a VHDL description of the state machine of figure 5.21of Example 5.2

(a) using mixed modeling (dataflow and behavioral) (b) using behavioral modeling with
case statement. Figure 5.21 is redrawn below:

‘I.fﬂ

Solution

(a)

The following equations are obtained in Example 5.2:

Dy =XY4 + XY Dy=Y4+Yi=Y®A Z=YA+X
These equations are used to write the following program.

-- Example 5.2: Sequential circuit

-- file name: ex52_seql.vhd
LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE IEEE.STD LOGIC UNSIGNED.ALL;
USE ieee.std_logic_arith.all;

entity ex52 seql is
port (clk, a, reset: in std logic; -- inputs for example 5.2
z,%x_out,y out: out std _logic); -~ output for example 5.2
end ex52_seql;

architecture dfflop arch of ex52 seql is
signal data_ dl, data_d2, x, y :std_logic;
signal x1,yl: std_logic;
begin
data_dl <= ({ x and (not y) and a ) or ( (not x) and y ));
data d2 <= ( y xor a );
dffl: process (clk)
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begin
if (reset='1") then
x<= ‘0';
y<= 0’;
end if;
begin
if (clk’event and clk= ‘1’) then
x <= data_di;
y <= data_d2;
end if;
end process dffl;
z <= x or |{ {not y} and (not a)):;
x_out <= x;
y_out <= vy;

end dfflop_arch;
(b) Behavioral Modeling using case statement:

VHDL PROGRAM:

s S AR EEE SRS S E SRS SR RS SR SRR R SRS R R SRR R R E R R RS R EE SRR R RS R R R
* Kk

-- IMPLEMENTATION OF SYNCHRONOUS SEQUENTIAL *

- CIRCUIT (Example 5.2)

*
AR R R SRS EEEREE SRS RESS S SR SRR SRR SRS SRS E AR SR EREREREREERESEET
* *
LIBRARY ieee ;
USE ieee.std logic_1164.all ;
ENTITY Mealy IS
PORT ( x, reset, clock : IN STD_LOGIC ;

2 : OUT STD_LOGIC );
END Mealy ;

ARCHITECTURE M OF Mealy IS
type state type is (50, S1, s2, S83);
signal Yn : state_type;
begin

-= State Transition AND Next State Calculation

process (clock, reset)
begin
if reset = ‘0’ then
Yn <= S0;
elsif clock’event and clock = ‘1’ then

case Yn is

when SO => if x = ‘0’ then ¥Yn <= $0;
else Yn <= S1;
end if;

when S1 => if x = ‘0’ then Yn <= $3;
else Yn <= $2;
end if;

when S2 => if x = *0’ then ¥Yn <= S0;
else Yn <= S3;
end 1if;

when S3 => if x = *0’ then Yn <= 81;

else Yn <= S0;
end if;
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end case;
end if;
end process;

- Output Calculation

process (x, Yn)

begin
case Yn is
when S0 => if x = ‘0’ then z <= ‘1';
elsez <= 07;
end 1if;
when 81 => z <= ‘0’;
when S2 => z <= ‘1/;
when S3 => z <= ‘1’;
end case;
end process;
end M;

Note:

In the above VHDL program, the state table of the machine is defined using a case
statement. Each when construct corresponds to a present state of the machine, and the it
statement inside the when construct defines the next state at the positive edge of the clock
Note that in VHDL clock’event and clock="1" means positive edge of the clock.. In the
above, a type declaration is used for the signal Yn. The type declaration allows one to
specify new types analogous to existing types such as std_logic. A type declaration starts
with the keyword type followed by the name of the new type, the keyword is, and the list
of the values of the signals of the new type in parentheses. The signal named Yn represents
the state of the machine. It is defined as state type with four possibilities SO, S1, S2, and
S3. When the VHDL program is compiled, the compiler ‘

automatically performs a state assignment to select appropriate bit patterns for the four
states. The behavior of the Mealy machine is defined by the inputs reset, clock, and input,
x. The program contains an asynchronous reset input that places the machine in state
S0. Consider the last four when statements between case ¥n is and end case. The
first statement means that when Yn=S0 (state 0), if input x=0 then output z=1. When
Yn=S1(state 1), output z=0 for either input x=0 or 1; when Yn=S2 (state 2), output z=1 for
either input x=0 or 1; when Yn=S3 (state 3), output z=1 for either input x=0 or 1. These
transitions agree with the state diagram of figure 5.21.

EXAMPLE J.10

Write a VHDL description for the two-bit counter of Example 5.5 to count in the sequence
0, 1, 2, 3, and repeat. Use T flip-flops.

Solution

BEHAVIORAL METHOD:

_ etk sk sk ok ook ok sk sk ok ok ok ok 3k ok ok sk ok sk ok ok ok sk ok s sk ok ok ok sk sk sk o ok sk ok ok ok ok sk e sk ok sk sk sk sk st s sk ok ok ok ok sk sk ke ok sk ok ke ke ok ok ok
*

--. IMPLEMENTATION OF COUNTER
-- (Example 5-5)

3k sl sk ke ok ke ke ok ok ok ok sk ok ok ok sk sk sk ok sk sk ok sk ok ok sk sk ok sk ok sk ke sk sk o ok ok sk sk ok ok ok sksk ok sk ok sk ok ok sk ok skok skokok skok skokskoskok kox
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*

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std logic_unsigned.all;

ENTITY COunter_ZIN IS
PORT ( EN, reset, clock : IN STD_LOGIC ;

count : OUT STD_LOGIC_VECTOR (1 DOWNTO 0) )
END Counter 2IN ;

ARCHITECTURE M OF Counter 2IN IS.

signal count_up : std_logic_vector (1 downto 0);
begin
process (clock, reset)
begin
if reset = ‘0’ then
count_up <= (others => '0');
elsif clock’event and clock = ‘1’ then

if EN =1" then
count_up <= count_up + 1;
end if;
end if;
end process;
count <= count_up;
end M;

Note: In the above, the statement count_up <= (others => ‘0’); is equivalent to count_up
<="00" since count_up is declared as a two-bit vector earlier in the code. The (others=>"0")
syntax will assign a ‘0’ digit to each bit of count up regardless of the size of count_up.
Therefore, the above VHDL code can be used for any size of count_up rather than only for
the two-bit count_up.

EXAMPLE J.11
Write a VHDL description for the three-bit counter of Example 5.7.

Solution

-- AND -T FLIP FLOP:

o stk sk ok ok sk ke sk sk ok sk sk ok ok ok 3k sk o ok sk sk sk sk sk ok e ok sk ok sk 3 ok ok 3k sk ok sk sk sk sk sk ok ok ok ok sk ok ok s ok sk ok sk ok ok ok ok ok ok ok ok ok skok sk ok
*

--  AND_T FLIPFLOP IMPLEMENTATION

-- (Example 5-7)

kst ok e ok sk s sk sk ke g ok ok ok ok sk ok ok ok ok ok ok sk ok ok ke sk ke st o ok sk ok sk s ok sk sk s ok o ok s ok 3k ke sk sk s o ok sk ok ok ok ok ok ke ke sk ok sk
*

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY AND_tff IS
PORT ( x0, x1, Clock : IN STD_LOGIC ;

q : out STD_LOGIC) ;
END AND_tff ;

ARCHITECTURE Behavior OF AND_tff IS
signal T, temp : std_logic;
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BEGIN
T <= x0 and x1;
PROCESS
BEGIN
wait until Clock’EVENT AND Clock = ‘1’;
temp <= T xor temp;//temp is 0 or 1

END PROCESS;
q <= temp;
END Behavior;

--OR-T FLIP FLOP:

_ 3% 3k sk e ke ke e ok sk sk sk sk ofe ok ok ok 2k ok ke ok sk ke e ke sk 3 sk sk sk sk sk sk ok sk sk ok she 2k ok ok ok ke ok Sk sk e ok ok sk sk ok sk ok ok ok sk ok 3k ok ke ok sk ok sk ok ok ok
*

-~ OR_TFLIPFLOP IMPLEMENTATION
--  (Example 5-7)

3k e ok ok sk ok sk ke ok ok ok sk fe sk sk sk ok o sk ok ok e ke ok sk ok o ofe ok sk sk ok sk ok sk sk ok ok sk S sk Sk e 3k sk sk s sk sk sk ke ok o Sk sk sk ok ok ke skook sk skok Rk
*

LIBRARY ieee ;
USE ieee.std_logic_l1l64.all ;

ENTITY OR_tff IS

PORT (x0, x1, Clock : IN STD_LOGIC ;
q : out STD LOGIC) ;
END OR_tff ;

ARCHITECTURE Behavior OF OR_tff IS
signal T, temp : std _logic;
BEGIN
T <= x0 or x1;
PROCESS
BEGIN
wait until Clock’EVENT AND Clock = ‘17';
temp <= T xor temp;
END PROCESS;
q <= temp;
END Behavior;

--AND-OR-T FLIP FLOP:

ek st ke sk ok ok ok ok ok she ok ok sk ke o ok ok e ok 3 sk sk ok sk ok sk sk s e e ok e e she ke sk skl e sk ke sk skeoke ok ke e sk sk e ok ke ok sk sk ok ok ok ke ok ok skeok sk ok
*

--  AND OR T FLIPFLOP IMPLEMENTATION
--  (Example 5-7)

__ skoke sk ke sk ok ok e sk ok sk e ke sk sk sk o ke ok ke ok ok ok sk ok ok ke s ok sk ok sk ok ok s e ok sk sk ok e e ke oe sk ok ok ke e ke sk ok ok ok ok ok e oke ke ok ok sk ok sk ok ok ok
*

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY AND OR tff IS
PORT (x0, x1, x2, Clock : IN STD_LOGIC ;
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q : OUT STD_LOGIC) ;
END AND_OR tff;

ARCHITECTURE Behavior OF AND_OR_tff Is
signal T, temp : std logic;
BEGIN
T <= (x0 and x1) or x2;
PROCESS
BEGIN
wait until Clock’EVENT AND Clock = ‘1';
temp <= T xor temp;
END PROCESS;
q <= temp;
END Behaviorx;

--THE MAIN PROGRAM OF NONBINARY COUNTER:

_ ks ok ok s ke ok ok ek ok s ok ok ok ol s ok ok ok ok ok sk sk ke ke ok sk s s e ok sk e ke sk e ek e ek ok s ke ok ok e e ok sk e ke sk sk ke ok ok ke ke oke ko sk ok ok
*

-~ NON BINARY COUNTER IMPLEMENTATION
--  (Example 5-7)

_ stk st e ok ok ok e e e ke ok ke ok st sk ok s ok sk ok ok ok ok e ok sk ok e ke ok s s sk ok ok sk ok s e s ke e ok ok sk sk ok sk ok ke ke ke e ok ok ok sk sk kol ok e sk sk ok
*

LIBRARY IEEE;
USE IEEE.STD LOGIC_1164.ALL;

ENTITY Non_ Binary_Count IS
PORT ( CLK : in  std_logic;
A : buffer std logic_vector { 2 downto 0) );
END Non Binary_ Count;

ARCHITECTURE Structure OF Non_Binary Count IS
signal t : std logic_vector (2 downto 0);
COMPONENT AND tff

PORT ( x0, x1,Clock: IN STD_LOGIC ;

q : OUT STD_LOGIC) ;

END COMPONENT;
COMPONENT AND OR_tff

PORT (x0, x1, x2,Clock: IN STD_LOGIC;

q : OUT STD_LOGIC) ;
END COMPONENT;
COMPONENT OR_tff
PORT (x0, x1, Clock : IN STD_LOGIC ;
q : OUT STD_LOGIC) ;

END COMPONENT;
Begin
t(0) <= not A(0);
t(l) <= not A(1l);:
t(2) <= not A(2);

T£0: AND_tff port map ( A(0), A(l), CLK, A(2));
Tf1l: OR_tff port map ( t(1l), A(0), CLK, A(l});
TE2: AND OR _tff port map ( t(0), A(1l), A(2), CLK, A(0));

END Structure;
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Note: In the above VHDL code, wait until is used with the clock. This statement has
the same effect as the if statement previously used with the clock. The sensitivity list is
omitted from the process since wait until constructisused. The wait until construct
means that the sensitivity list automatically contains only the clock signal.

J.4 Status register design using VHDL

In this section, the VHDL description of the Status register of Example 6.1 will be provided.
The VHDL program for the Status register is written using structural modeling. Schematic
for the Status register is redrawn below.

Cc=1 D Q CBit4)=1
(from result)
S=0 D Q S (Bit3)=0
(The most significant
bit of the resulf) D>

0—X

Resuft {8 > D A2 @®it2)=1
0—d . ,
iji > D Q y(Bit1)=0
CP
(8::9

Resultio i > b Q P(Bit0)=0
0

Clock

The VHDL description for the D flip-flop (required by the Status register program) is
written using behavioral modeling.

EXAMPLE J.12
Write a VHDL description of the Status register of Example 6.1.
Solution

LIBRARY IEEE:
USE IEEE.STD LOGIC 1164.ALL;
ENTITY Status Reg IS
PORT (Ci, Si, Cf, Cp, CLK: in std logic;
Result: in std logic vector (3 downto 0);
c, 8, 2, V, P: buffer std logic);
end Status Reg:;
ARCHITECTURE Structure OF Status Reg IS
COMPONENT DFF
PORT ( D, CLK: in std logic; Q: buffer std logic):
END COMPONENT
SIGNAL m, n, r : std logic;
BEGIN
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m <= not or Result or Result or Result
ct
((

DFF

DFF

DFF

D4: DFF

D5: DFF

END Structure;

LIBRARY IEEE:

USE IEEE.STD LOGIC 1164.ALL;
ENTITY DFF IS
PORT ( D, CLK :
end DFF;

{ Result
xor Cp;
Result (0)
PORT MAP
PORT MAP
PORT MAP
PORT MAP
PORT MAP

(0) (1) (2) (3));
n <=
r <=
D1:
D2:

D3:

xor Result (1)) xor Result xor Result
(Ci, CLK, C);
(Si, CLK, S):
(m, CLK, Z);
(n, CLK, V);

(r, CLK, P);

(2 (3)7

in std logic; Q : buffer std logic);

ARCHITECTURE Behavior
begin

OF DFF 1IS

process
begin

wait until CLK’EVENT AND CLK =
Q <=D ;

wyn

end process;
end Behavior;

Waveform:
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J.5 CPU design using VHDL

In writing VHDL description for the CPU in Example 7.5, some of the VHDL statements
and keywords such as generate , generic , generic map, type-conversion functions,
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and constant are used. Therefore, these will be discussed below. The generate statement
can be used in applications where it is necessary to create multiple copies of a particular
structure within an architecture. For example, an n-bit ripple carry adder can be obtained
by connecting n full-adders. The generate statement in VHDL can be used to create such
repetitive structures. There are two types of generate. These are for generate and if
generate. The for generate allows concurrent statements to be selected a predetermined
number of times. The general form of for generate loop is given below:

label name : for k in 1 to n generate

concurrent statements
end generate;

In the above, the identifier k must be declared as the same type as the range 1 ton
(integer in this case). The concurrent statements are executed once for each possible value
of the identifier within the range.

The if generate, on the other hand, allows concurrent statements to be conditionally
selected based on the value of an expression. The general form of if generate is given
below:
label name : if k=n generate
concurrent statements
end generate;

In order to illustrate the applications of for generate and if generate
statements, consider VHDI, code for a 4-tol6 decoder using five 2-to-4
decoders of figure 4.16 as follows:
library ieee;
use ieee.std logic_l164.all;
entity 4tolédec is

port (x:in std logic_vector (3 downto 0);
e:in std_logic;
d: out std_logic_vector (0 to 15));
end 4tolédec;
architecture decoder of 4tolédec is
component 2toddec
port (x:in std_logic_vector (1 downto 0);
e:in std_logic;
d: out std_logic_vector (0 to 3);
end component;
signal k: std_logic_vector (0 to 3));
begin
fl: for i in 0 to 3 generate
dec_1: 2toddec port map(x(l downto 0), k(i), d(4*i to 4*i+3));
f2: if i=3 generate
dec_2: 2toddec port map (x{i downto i-1), e, k);
end generate;
end decoder;

In the above, after the component declaration, signal k is defined as the outputs of
the left 2-to-4 decoder of figure 4.16. Also, in figure 4.16, the outputs are instantiated by the
for generate statement. For each iteration, the statement with label dec 1 instantiates a
2-to-4 decoder component that corresponds to one of the four 2-to-4 decoders on the right
side of figure 4.16. The first iteration produces 2to4dec component with inputs x1 and
x0, enable input kO and, generates outputs d0, d1, d2, d3. The other outputs of the 4-to-16
decoder are similarly generated.

For the last iteration, the if generate statement with label 2 instantiates a
2toddec component. Note that i=3 condition is true for this iteration. This defines the 2-
to-4 decoder on the left of figure 4.16 with x3 and x2 as inputs, enable e, generating outputs
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kO, k1, k2, and k3. It should be pointed out that the for generate statement could have
been used by instantiating this component outside the for generate statement rather than
using the i f generate statement as above. This is done in order to illustrate the use of if
generate Statement.
Digital circuits such as registers of different sizes are needed in many applications.
It is convenient to specify a register entity for which the number of flip-flops can be
readily changed to conform to the size of the required register. Therefore, a generic
parameter (integer for a register) specifying the number of flip-flops needs to be defined
before port declarations using the generic construct. By altering this parameter, the VHDL
code can be used for register of any size. The generic map clause can then be used to
specify a different value for the register size. In order to illustrate the use of generic and
generic map, a 4-bit inverter (bitwise 4-bit NOT operation; this can be considered as
four independent inverters with four inputs and four outputs) is first defined with an entity
called inv4 using generic and generate statements. Next, copies of this 4-bit inverter
are instantiated to obtain 8-bit and 16-bit inverters using generic map and port map
statements. The following VHDL code illustrates this:
library ieee;
use ieee.std logic-1164.all;
entity inv4 is
generic(size:positive);
port{a:in std_logic_vector(size-1 downto 0);
b:out std_logic_vector(size-1 downto 0));
end invé4;
architecture inv4_example of inv4 is
component inv
port(x:in std logic;
y:out std logic);
end component;
-~-VHDL code for inv
library IEEE;
uselEEE.std_logic_l164.all;
entity inv is
port (x: in BIT; y: out BIT);
end inv;
architecture LOGICl of inv is
begin
y<=not x;
end LOGIC1;
begin
fl: for n in size-1 downto 0 generate
£2: inv port map{a(n),b(n}));
end generate;
end inv4_example;
library ieee;
use ieee.std logic_ll64.all;
entity inv8_16 is
port{al:in std_logic_vector (7 downto 0);
bl:out std_logic_vector (7 downto 0);
a2:in std_logic_vector (15 downto 0);
bZ:out std_logic_vector (15 downto 0)):
end inv8 16;
architecture inv_diffsize of inv8_16 is
component inv4
generic(size:positive);
port(a:in std_logic_vector(size-1 downto 0);
b:out std_logic-vector(size-1 downto 0));
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end component;

begin

gl:inv4 generic map(size=>8) port map(al,bl);
g2:inv4 generic map(size=>16) port map(a2,b2);
end inv_diffsize;

Since VHDL is a strongly typed language, the value of a signal of one type is
not permitted to be used with another signal of a different type. This means that signals of
the types bit and std logic cannot be mixed. In order to mix signals of different types,
type-conversion functions can be used. For example, consider converting std logic type
toan integer type. Suppose it is desired to convert a four-bit std_logic_vector signal
(a) into an integer signal (b) in the range from 0 to 15. Conversion function for assigning
the value of ‘b’ to ‘a’ can be written as: a<= conv_std_logic_vector (b,4);.

The conversion function can be obtained by writing use ieee.std logic
arith.all; atthe beginning of the VHDL code after 1ibrary and use statements. This
conversion function is included as part of the std_logic_arith package. In the above, the
conversion function has two parameters. These are the name of the signal to be converted
( b in this case) and the number of bits in the std_logic vector signal, a (four bits in this
case).

Finally, VHDL keyword constant can be used to assign a constant value to a
name which cannot be altered during simulation. The syntax for constant is as follows:
constant name: type := value;. Forexanqﬂe,the declaration constant numb:std
logic_vector (7 downto Q) := “00001111~; will assign numb with the value 00001111
whenever numb appears in the VHDL code. This improves readability of the code.

EXAMPLE J.13
Write a VHDL description to implement the ALU of figure 7.24.
Solution

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
ENTITY mux2l IS
PORT (wl, w0, s : IN STD_LOGIC ;
fl : OUT STD LOGIC )
END mux21 ;
ARCHITECTURE Behavior OF mux2l IS
BEGIN
WITH s SELECT
f1 <= w0 WHEN ‘0',
wl WHEN OTHERS ;
END Behavior ;
LIBRARY ieee ;
USE ieee.std logic 1164.all ;
ENTITY fulladd IS
PORT (Cin, x, ¥y : IN STD_LOGIC ;
S, Cout : OUT STD_LOGIC ) ;
END fulladd ;
ARCHITECTURE LogicFunc OF fulladd IS
BEGIN
s <= x XOR y XOR Cin ;
Cout <= (x AND y) OR (Cin AND x) OR {(Cin AND vy);
END LogicFunc ;
LIBRARY ieee ;
USE ieee.std logic 116é4.all ;
ENTITY Four bitadder IS
PORT (Cin : IN STD_LOGIC ;
x3, x2, x1, x0 T IN STD_LOGIC ;
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y3, v2, yl, y0 : IN  STD_LOGIC ;
s3, s2, sl, s0 : OUT STD_LOGIC ;
Cout : OUT STD LOGIC );

END Four bitadder ;
ARCHITECTURE Structure OF Four bitadder IS
SIGNAL cl, c¢2, c3 :STD_LOGIC ;
COMPONENT fulladd
PORT ( Cin, x, vy : IN STD_LOGIC ;
s, Cout : OUT STD_LOGIC };
END COMPONENT ;
BEGIN
stage0: fulladd PORT MAP ( Cin, x0, y0, s0, cl ) ;
stagel: fulladd PORT MAP ( cl, x1, yl, sl, c2 ) ;
stage2: fulladd PORT MAP ( c2, x2, y2, s2, c3 ) ;
stage3: fulladd PORT MAP ( c3, x3, y3, s3, Cout );
--Cin => Cout, x=>x3, y=>y3, s5=>s3;
END structure;
--Arithmetic Unit design
LIBRARY IEEE; USE IEEE.STD LOGIC 1164.ALL;
ENTITY Arithmetic Unit IS

PORT ( X3, X2, X1, X0 :IN STD_LOGIC;
Y3, Y2, Y1, YO : IN STD_LOGIC;
S0 : IN  STD_LOGIC;

Cout :OUT STD_LOGIC;
£3, f2, f1, f0: BUFFER STD_LOGIC);
end Arithmetic Unit;
ARCHITECTURE Structure OF Arithmetic Unit IS
COMPONENT Mux21
PORT ( wl, w0, s : IN STD LOGIC; ;
il : OUT STD_LOGIC; ) ;
END COMPONENT;
COMPONENT Four bitadder

PORT ( Cin : IN STD_LOGIC;

x3, x2, x1, x0 : IN STD_LOGIC;

y3, v2, yl, yO : IN STD_LOGIC;
s3, s2, sl, s0 : OUT STD_LOGIC;
Cout : OUT STD_LOGIC Y

END COMPONENT;
signal c3, c2, cl, c0 :std_logic;
signal d3, d2, dl, d0 :std_logic;

BEGIN
d3 <= ( not ¥3);
d2 <= ( not Y2);
dl <= ( not Yl);
d0 <= ( not YO0);
Mux3 : MuX21 PORT MAP ( 43, ¥3, S0 , c3);
Mux?2 : Mux21 PORT MAP ( d2, Y2, SO , c2);
Muxl ¢+ Mux21 PORT MAP ( dl, Y1, SO , cl);
Mux0 : Mux21 PORT MAP ( 40, YO0, SO , c0);
Adder : Four bitAdder PORT MAP ( S0, X3, X2, X1, X0, c3, c2,

cl, c¢0,£3, f2, fl, £0, Cout ) :
end Structure;
-- 4-bit Two-Function Logic unit design
LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
ENTITY Logic Function IS
PORT ( X3, X2, X1, X0 : in std_logic;
Y3, Y2, Y1, YO : in std_logic;
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end Logic Function ;
ARCHITECTURE Structure OF Logic Function IS
COMPONENT Mux21
PORT ( wl, w0, s
fl

in
g0

IN

END COMPONENT;

std_logic ;

: buffer std logic ):

STD_LOGIC ;
OUT STD_LOGIC ) ;

signal m3, m2, ml, m0 std _logic;
signal n3, n2, nl, n0 :std _logic;
begin
m3 <= (X3 and Y3);
m2 <= (X2 and Y2);
ml <= (X1 and Y1);
m0 <= (X0 and YO0);
n3 <= (X3 xor Y3);
n2 <= (X2 xor Y2);
nl <= (X1 xor Y1);
n0 <= (X0 xor YO0):;
Mux3: Mux2l Port map ( n3, m3, S50, g3);
Mux2: Mux2l Port map ( n2, m2, S0, g2);
Muxl: Mux2l1 Port map ( nl, ml, S0, gl);
Mux0O: Mux2l Port map ( nO, mO, S0, g0);
End Structure
--ALU Design
LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
ENTITY ALU IS
PORT ( X3, X2, X1, X0 in std_logic
Y3, Y2, Y1, YO in std_logic;
sl, SO in std_logic ;
Cout out std_logic ;
z3, 22, 21, 20 buffer std_logic );
end ALU;

ARCHITECTURE Structure OF ALU IS
COMPONENT Arithmetic Unit

PORT ( X3, X2, X1, X0 in std_ logic;
Y3, Y2, Y1, YO0 in std_ logic;
SO in std_ logic ¢
Cout out std_ logic ;
£3, £2, fl, £0 buffer std_ logic ):
END COMPONENT;
COMPONENT Logic Function
PORT ( X3, X2, X1, X0 : in std_ logic;
Y3, Y2, Y1, YO : in std_ logic;
S0 in std_ logic ;
g3, g2, gl, g0 buffer std logic );
END COMPONENT;
COMPONENT Mux21
PORT ( wl, w0, s IN STD_LOGIC ;
£1 OUT STD_LOGIC );
END COMPONENT;
signal m3, m2, ml, m0 std_logic;
signal n3, n2, nl, n0 std_logic;
BEGIN
Arith: Arithmetic Unit Port map
( X3, X2, X1, X0, Y3, Y2, Y1, Y0, SO, Cout, m3, m2, ml
)i
Logic: Logic Function Port map
( X3, X2, X1, X0, Y3, Y2, Y1, Y0, SO, n3, n2, nl, n0 )
Selection3: Mux2l Port map (n3, m3, S1, Z3);
Selection2: Mux2l Port map (n2, m2, S1l, Z2);
Selectionl: Mux2l Port map (nl, ml, S1, Z1);

’

’
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SelectionO: Mux2l1l Port map (n0, m0, S1, Z0);
end Structure;
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EXAMPLE J.14

Write a VHDL description for the microprogrammed CPU described in section 7.4.
Solution

This example illustrates the design of the microprogrammed CPU by using VHDL.
ModelSim simulator of Xilinx is used to implement the microprogrammed CPU. All
VHDL codes of the CPU is written in Xilinx WebPack 4.2. General purpose register is
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used for instruction register (IR), memory address register (MAR), register A, and buffer.
The VHDL module name of general purpose register is reg.

ModelSim simulator is used to simulate the VHDL program. The results can be
illustrated by the timing diagrams. Figure 7.65 depicts one such timing diagram.

Fifteen modules are created in the VHDL program to implement the
microprogrammed CPU. The modules are epu, microl, micro2, catr, cm, petr, reg,
alu, memory, cpu_rom, cpu_ram, ir_toxc, mux9tol mux2tol and fal. The design is
created using hierarchical design. The cpu module is at the top of the hierarchy, microl
and micro2 are under cpu module, and cntr, cm and mux9tol are under microl. Finally
pctr, memory, alu, ir_toxc, reg, mux2tol and rest of the modules are under micro2.
Program Counter (PC)

The petr module is the program counter for the instructions ms1de the memory.
Memory Module

The memory module contains cpu_rom and cpu_ram modules. Instructions are
stored in the cpu_rom, read only memory. The instructions test a few instructions of the
CPU like LOAD, STO, ADD, and HALT.

Memory Control Unit ( module CM )

The mementrol contains the ROM, which is filled with a 23-bit value which
contains a 4-bit condition select, a 6-bit branch address, and 13-bit control input { C12 - C0
) for the registers, ALU, and RAM. It also has the conditional statement that will make the
Microprogram Counter (MPC) to count up by one if the load /increment is low or will load
the branch address passed by the control memory buffer.

Microl module

The microl module connects entr, cm and mux9tol.
Micro2 module

The processor module connects mux, alu, registers ( regA, reglR, regMAR,
regPC, regBUFF), and the memory module. It also includes the instruction decoder and
does the following :
if condition select field = 0, load increment = 0, no branch,
if condition select = 1 and Z = 1, branch, if condition select = 2 and C =1, branch, if
condition select = 3 and 13 = 1, branch, if condition select = 4 and XC2 = 1, branch,
if condition select = 5 and XC1 = 1, branch, if condition select = 6 and XC0 = 1, branch
if condition select = 7 and I0 = 1, branch. ‘

CPU module

The CPU module has only two inputs: reset and clock. It connects the microl
module with the micro2 module to complete the hierarchy of the microporgrammed CPU
design.

--VHDL code for Microprogrammed CPU
--General Purpose Register

-— General purpose register
library ieee;

use ieee.std logic_1164.all;

entity reg is

generic ( n : integer := 8); -- Port declarations
port ( clk, load : in std logic;~~ clk: clock, load: load data to
reg
X : 1in std_logic_vector ((n-1) downto 0); -- X: input
d : out std logic_vector ({(n-1) downto 0) }; =-- d: output
end reg;

architecture reg_arch of reg is



architecture fal arch of fal

is
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begin -- Process when clock and load change
pl : process ( clk, load )} -- if the clocking signal (clk)
begin -- represents the rising edge
if clk = ‘1’ and clk’event then -- and if load pin is high then
if load = ‘1’ then -- stores the data into
d <= x; -- the reg
end if;
end if;
end process;
end reg_arch;
--Program Counter ( PC )
-- program counter
library ieee;
use ieee.std logic_1164.all;
use ieee.std logic_arith.all;
entity pectr is
generic ( n integer := 8 ); -- Port declarations
port ( clk, clr, inc, load in std_logic; =~ clk: clock, clr: clear PC
X in std_logic_vector ((n-1) downto 0);
d out std_logic_vector ({n-1) downto 0) ); --,load: load
--branch address, x: input
-- d: output
end pctr;
architecture pctr_arch of pctr is
signal in_d : unsigned (x’range); -- in_d: connect d
signal in_x unsigned (x’range); -- in_x: connect x
begin
pl : process ( clk, clr, inc, load ) -- if clk = rising edge
begin -- and clr =1
if clk = ‘1’ and clk’event then ~- then PC <- 0
if clr = ‘1’ then -- if clk = rising edge
in d <= conv_unsigned(0,n); -- and clr=0,inc = 1, load = 0
else -- then PC <~ PC + 1
if inc = ‘1’ then -~ if clk = rising edge
in_ d <= in_d + 1; -- and clr= 0, inc = 0, load =1
else -- then PC <- x
if load = ‘1’ then
in d <= in x;
end if;
end if;
end if;
end if;
end process;
gl for i in x'range generate -- for i = 0 to 7 loop
in_x(i) <= x(1);
d(i) <= in_d(i);
end generate;
end pctr_arch;
-~Full adder
-- Full adder
library ieee;
use ieee.std_logic_l164.all;
entity fal is ~-- Port
declarations
port ( a, b, ¢ in std_logic; -- c: carry input
s, cout, anda, nota out std_logic );-- s: sum, cout: carry output
end fal; -- anda: a AND b, nota: NOT a
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signal in_anda : std_logic; -- in_anda: connect anda
begin

s <= a xor b xor c;

cout <= in_anda or (b and c) or (c and a);

in_anda <= a and b;

nota <= not a;

anda <= in_anda;

end fal_arch;

-~ALU module
-- Arithmetic logic unit
library ieee;
use IEEE.std_logic_1l164.all;
use IEEE.std _logic_arith.all;
entity alu is -- Port declarations
generic ( n : integer := 8 );
port (CTRL : in STD LOGIC VECTOR (0 to 2);-- CTRL: control input
L, R : in STD_LOGIC_VECTOR ((n-1) downto 0);-- L, R: source inputs
F : out STD_LOGIC VECTOR ((n-1) downto 0);-- F: result output
C, Z : out STD_LOGIC ); -- C: carry flag, Z: zero flag
end alu;
architecture alu_arch of alu is
component fal
port ( a, b, ¢ : in STD_LOGIC;
s, cout, anda, nota : out STD LOGIC );
end component;
signal in_L, in_R, in_xR, in F : unsigned (L’range);
-~ in_L: connect L, a, in_R: connect R

signal in_zer, in_sum,'in_and, -- in_xR: connect b, in_F: connect F
in_not, in_inc, in_dec : unsigned (L’range); -- in_zer: connect 0,
-- in_sum: connect s
signal in_c¢ : STD_LOGIC_VECTOR (n downto 0);
-- in_and: connect anda, in_zf: connect 2

signal in_zf : boolean;-- in_not: connect nota,
begin -- in_c: connect C,
CTRL(2), cout .
gen : for i in L’range generate -- for 1 = 0 to 7 loop
fa_i : fal port map ( in_L(i), in_xR(i), in_c(i), in_sum(i),
in_c(i+l), in_and(i), in_not (i) );
in_xR(i) <= in_R(i) xor CTRL(2); -- CTRL(2) can determine add
-- CTRL(2} = 0
in R{i)<= R(i); ~-- or subtract CTRL{2) =1
in_L{i)<= L(i); -- if CTRL(2) = 1, in_R(i) xor CTRL(2)
F(i) <= in_F (i) after 200 ps;-- performs 1’s complement of R

end generate;

in_zer <= CONV_UNSIGNED(0, n);
in_inc <= in L + 1 after 500 ps;
in_dec <= in_L - 1 after 500 ps;

in_c(0) <= CTRL(2); -- performs 2’s complement of R

[ <= in_c(n});

in_zf <= ( in_F = 0 ) after 500 ps;

with CTRL select

in F <= in_zer when “000”, -~ f=0 if ctrl=0

in R when “001”, ~-— f=R if ctrl=1

in_sum when “010”, ~- f=L+R if ctrl=2
in_sum when “011”, -- f=L-R if ctrl=3
in_inc when “100”, -- f=L+1 if ctrl=4
in_dec when “101”, -- f=L-1 if ctrl=5
in_and when “110”, -- f=L&R if ctrl=é6

in_not when others; -- f=~L if ctrl=others
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--ROM

with in_zf select

z <= ‘1’ when True, --—z =1 if in_zf = true
‘0" when others; -- z= 0 if in zf = others
end alu_arch;
-- Read only memory (ROM)

LIBRARY IEEE;
USE IEEE.STD_LOGIC 1164.ALL;
ENTITY cpu_rom IS

PORT {( addr

in std
data

end cpu_rom;
ARCHITECTURE Arch_rom OF cpu_rom IS

begin.

—-- Define instruct
constant LDA

_logic_vector

ion to opcode
std_logic_vector

*00001000";

(6 downto 0);-~ addr:
out std_logic_vector (7 downto 0))

789

address input
;== data:

data output

-- Programming ROM

--08h

constant STA std loglc vector := “00001001”;--0%h
constant ADD std_logic_vector := “00001010”;--0Ah
constant SUB std_logic_vector := “00001011”;--0Bh
constant JZ std_logic_vector := “00001100”;~--0Ch
constant JC std_logic_vector := “00001101”;--0Dh
constant A _ND std_logic_vector := “00001110”;--0Eh
constant CMA std_logic_vector := “00000000”;--00h
constant INCA std_logic_vector := “00000010”;~-02h
constant DCRA std_logic_vector := “00000100”;--04h
constant HLT std_logic_vector := “00000110”;--06h
constant OUTPR std_logic_vector := “10010000”;--90h

-— Define label to memory address
constant D1 : std_logic_vector := “00000110”;--06h
constant D2 std_logic_vector := “00000111”;--07h
constant D3 std_logic_vector := “00001000”;--08h
constant D4 std_logic_vector := “00001001”;--0%h
constant D5 std loglc vector := “00001010”;~--0Ah
constant PROD std loglc vector := “10000000”;--80h
constant CNTR std_logic_vector := “10000001”;--81h
constant V2 std_logic_vector := “10000010”;-~82h
‘constant V3 std_logic_vector := “10000011”;--83h
constant V4 std_logic_vector := “10000100”;--84h
constant V5 std_logic_vector := “10000101”;--85h
constant V6 std logic_vector := “10000110”;--86h
constant V7 std_logic_vector := “10000111”;--87h
constant V8 std_logic_vector := “10001000”;--88h
constant V9 std_logic _vector := ™“10001001”;--8%h
constant VA std_logic_vector := “10001010”;--8Ah
constant VB std_logic_vector := “10001011”;--8Bh
constant VC std_logic_vector := “10001100”;--8Ch
constant VD std_logic_vector := “10001101”;--8Dh
constant VE std_logic_vector := “10001110”;--8Eh
constant VF std_logic_vector := “10001111”;--8Fh
constant BEG std_logic_vector := “00010010”;--12h
constant LOP std_logic_vector := “00101101”;--2Dh
constant ENDS std_logic_vector := “01000000”;--40h
signal in_data std_logic_vector (7 downto 0);

-- Signal declaration
with addr select
in_data <= LDA when “0000000”,-- 0 A <- D1 (A = 80h)
D1 when “0000001”,-- 1 D1 = 80h
ADD when “0000010”,-- 2 A <- A + DI1(A=0,CF=1)
D1 when “0000011”,~- 3 D1 = 80h
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Jc

BEG
*10000000”
*01001011”
*01010001"
*00110010”
*00000100”
ADD
D2
STA
OUTPR
A ND
D3
STA
OUTPR
CMA
STA
OUTPR
INCA
STA
OUTPR
DCRA
STA
OUTPR
LDA
D4
SUB
D4
STA
PROD
LDA
D5
STA
CNTR
LDA
PROD
ADD
D4
STA
PROD
LDA
CNTR
DCRA
Jz
ENDS
STA
CNTR
LDA
D1
SUB
D1
Jz
LOP
LDA
PROD
STA
OUTPR
HLT

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

data <= in_data after 200 ps;

end Arch rom;

“0000100",
“0000101",
“0000110”,
“0000111",
*0001000”,
“0001001”,
“0001010”,
“0010010”,
“0010011”,
“0010100”,
“0010101”,
“0010110”,
“0010111",
“00110007,

“0011001%, --

“0011010”,
“0011011”,
“0011100~,
“0011101~,
“0011110~,
“0011111~,
“0100000",
“0100001”,
%0100010”,
“0100011”,
“0100100”,
“0100101",
“01001107,
“0100111”,
“01010007,
“0101001~,
“01010107,
“0101011~,
*0101100”,
“01011017,
*0101110”,
“0101111”,
“0110000”,
“0110001”,
%0110010”,

*0110011", -~

“0110100",
“0110101",

“0110110",--

“0110111",
“0111000",
“0111001"~,
“01110107,
“0111011”,
“01111007,
“0111101”,

“0i1ii1i0”, -~

“0111i111~,

“1000000", -~

“1000001",
“1000010",

“10000117, -~

others;

~-- 4 Jump to begin if A=0
-- 5 BEG :=”00010010” = 12
-- 6 D1 80h
-~ 7 D2 4Bh
-- 8 D3 51h
-- 9 D4 32h
-- A D5 04h
-~ 12 A <~ A + D2,(A = 4Bh)
-- 13 D2 = 4Bh
-- 14 Outport <- 4Bh
-- 15
-~ 16 A <- 4Bh&51h (A = 41h)
-- 17 D3 = 51h
-- 18 OQutport <- 41h
19
-~ 1A A <- ~A (A = BEh)
-~ 1B Outport <- BEh
--1C
-- 1D A <- A + 1 (A=BFh)
~-- 1E Outport <- BFh
-~ 1F
-- 20 A <- A - 1 (A=BEh)
-- 21 Outport <- BEh
-- 22
-~ 23 A <- D4 (A = 32h)
-- 24 D4 = 32h
-~ 25 A <- A - D4 (A = 00h)
-- 26 D4 = 32h
-- 27 PROD <- A(PROD = 00h)
-- 28
-~ 29 A <- D5 (A = 04h)
-—- 2A D5 = 04h
-- 2B CNTR <-A (CNTR = (04h)
-- 2C
-~ 2D LOOP:PROD<-PROD +D4
-- 2E
-- 2F A <- A + D4
-~ 30 D4 = 32h
-~ 31 PROD <~ A
-- 32
33 CNTR <- CNTR -1
-~ 34
-- 35 A <-A -1
36 If CNTR = 0 then
-~ 37 Goto End, ENDS
-- 38 CNTA <- A
-- 39
-- 3A Goto Loop
-~ 3B D1 = 80h
-~ 3C A <- A - Dl (A = 00h)
-~ 3D D1 = 80h
38 If A = 0 then
-~ 3F
40 End: Outport <- PROD
-~ 41 .
-- 42 Outport <- A
43

-~ n
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~-RAM

-- Random access memory (RAM)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std logic_arith.all;
entity cpu_ram is

generic ( nw : integer := 8;

nl : integer := 4 );
port ( rw, en : in STD_LOGIC;-- rw: read/write, en: enable RAM

addr : in STD_LOGIC_VECTOR ((nl-1) downto 0);

~~ addr: address input
d_in : in STD_LOGIC_VECTOR ((nw-1) downto 0);

-~ d_in: data input
d_out : out STD_LOGIC_VECTOR ((nw-1) downto 0) }; -- d_out

-- data output
end cpu_ram;
architecture cpu_ram_arch of cpu ram is

type Ram_Word is array ( d_in’range ) of STD LOGIC;-- type declaration
type Ram Array is array ( 0 to ((2**nl)-1)) of Ram Word;-- type
-- declaration
signal in_din, doutl, dout2, in_dout : Ram _Word;-- in_din: connect
d_in, --dout2: connect 0
signal in _addr : unsigned (addr’range);
-- in_out: connect d_out
signal Ram_Mem ¢ Ram_Array;-- in_addr: connect
—--addr
begin
p: process ( rw, en, in_addr )
variable intaddr : integer;
begin
intaddr := CONV_INTEGER (in_addr):; --convert binary number

-- to integer
doutl <= Ram_Mem (intaddr);
if en = ‘0’ and rw = ‘0’ then
-- if en = 0 and rw = 0
. Ram Mem(intaddr) <= in_din after 500 ps;
-- then write data into the RAM
end if;
end process;
with en select
in_dout <= doutl when ‘07,
dout2 when others;
gl: for 1 in d out’range generate
-- for i = 0 to 7 loop
in_din(i) <= d_in(i);
d_out({i) <= in_dout(i) after 200 ps;
dout2 (i) <= ‘0’;
~-- set dout2 := “00000000”
end generate;
g2: for 1 in addr’range generate
-- for i = 0 to 3 loop
in_addr (i) <= addr(i) after 100 ps;
end generate;
end cpu_ram_arch;

--Memory for CPU ( ROM + RAM)
~~ memory for cpu
library IEEE;
use IEEE.std logic 1164.all;
entity memory 1is
port ( RW, EN : in STD_LOGIC;
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-— RW: read/write, EN: enable memory
addr, din : in STD LOGIC_VECTOR (7 downto 0);

-- addr: address input, din: data input

dout : out STD_LOGIC_VECTOR (7 downto 0);
-- dout: data output
ioout : out STD_LOGIC_VECTOR (7 downto 0) );

-~ ioout: data io output

end memory;

architecture memory_arch of memory is
component cpu_ram

generic ( nw, nl : integer });
port ( rw, en : in STD_LOGIC;
addr : in STD_LOGIC_VECTOR ((nl-1) downto 0);
d_in : in STD_LOGIC_VECTOR ((nw-1) downto 0);
d out : out STD LOGIC_VECTOR ((nw-1) downto 0) ):

end component;
component cpu_rom

port ( addr : in STD_LOGIC VECTOR (6 downto 0);

data : out STD_LOGIC_VECTOR (7 downto Q) );

end component; -- in_dl: connect data

signal in_dl, in_d2 : STD_LOGIC_VECTOR ( 7 downto 0);
-- in_d2: connect d_out

signal in_ EnRAM ¢ STD_LOGIC;

-- in_EnRAM: connect en
begin

roml : cpu_rom port map (addr=>addr (6 downto 0), data =>in_dl);

raml : cpu_ram generic map (8, 4)

port map (rw=>RW, en=>in_EnRAM, addr=>addr (3 downto 0},
d_in=>din, d_out=>in_d2);

in_EnRAM <= EN or ( not addr(7) ) or addr(6) or addr(S) or addr(4);
~-- memory mapping:

with addr(7) select

-- programmed ROM when address =
dout <= in d2 when ‘1l’,

-- 00000000 to 01111111 (128 bytes)
in_dl when others;

~-- RAM when address =
with addr select

-- 10000000 to 10001111 (16 bytes)
ioout <= din after 1 ns when “10010000~,

-- IO when address =

“00000000” after 800 ps when others;
-- 10010000 (1 byte)
end memory arch;

--Multiplexer 2 to 1

-- Multiplexer 2 to 1
library IEEE;
use IEEE.std logic 1164.all;
entity mux2tcl is
generic ( n : integer :=8);
port ( sl, sO : in STD_LOGIC_VECTOR ((n-1) downto 0);
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-- s0, sl: source inputs
s : in STD _LOGIC;

-- s: select line

£ ¢ out STD_LOGIC_VECTOR ((n-1) downto Q) );
-~ f: output
end mux2tol;
architecture arch mux of mux2tol is
begin

with s select
f <= s0 when ‘0',
sl when others;

end arch_mux;

--Instruction Decoder

-- Instruction decoder
library IEEE;
use IEEE.std_logic 1164.all;
entity ir to_xc is
port (i : in STD_LOGIC_VECTOR (1 downto 0);

~-- i: op-code bit 1 & 2
xc : out STD LOGIC_VECTOR ( 2 downto 0) );

-- XC: group number output
end ir to_xc;
architecture ir to_xc_arch of ir to_xc is

begin
with 1 select
xc <= “001” when “007,

-~ group O

“010” when “01”,
-- group 1

*100” when “107,
-- group 2

“000” when others;
-- group 3

end ir to_xc_arch;

--Micro2 module

-~ Overall hardware2 ( PC + Reg + Mux2tol + ALU + Memory + IR to_XC
library ieee;

use ieee.std_logic_1164.all;

entity micro2 is

port ( ctrl : in STD_LOGIC_VECTOR (0 TC 12);
-— ctrl: control inputs CO0-C12
clr, clk : in STD_LOGIC;

-- ¢lk: clock, clr: clear

dataout : out STD_LOGIC_VECTOR ( 7 downto 0);
-- dataout: data output

z, ¢, i3, 10 : out STD_LOGIC;

793
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~- z: zero flag, c: carry flag

XxC : out std_logic_vector ( 2 downto 0) );
-- 13, 10: op-code bit 3 & 0
end micro2;

-- XC: group number
architecture micro2 arch of micro2 is
component pctr
generic ( n: integer);
port ( clk, clr,

-- clr: CO, inc: Cl1l, load: C2
inc, load : in STD_LOGIC;
X : in STD_LOGIC_VECTOR ({(n-1) downto 0):
-- x: branch
d : out STD_LOGIC_VECTOR ((n-1) downto 0) );
—-- d: memory reference
end component;
component reg —- instantiate Register
generic ( n: integer );
port ( clk, load : in STD_LOGIC;

~-- load: C4, C7, C8, C9

X : in STD_LOGIC_VECTOR ((n-1) downto 0);
-~ x: data input
i d : out STD _LOGIC VECTOR ((n-1) downto 0} );
-- d: data output
end component;
component mux2tol -- instantiate mux 2 to 1
generic ( n: integer );

port ( sl1, s0 : in STD_LOGIC_VECTOR ((n-1) downto 0);
-- sl: from buffer, s0: from PC

s : in STD_LOGIC;
-- s: C3
£ ¢ out STD_LOGIC_VECTOR ((n-1) downto 0 ) );
-- f: to MAR
end component;
component alu -- instantiate ALU

generic ( n: integer );
port { CTRL : in STD_LOGIC_ VECTOR (0 to 2);

-- CTRL: Cl0, Cl11, Cl12

L, R : in STD_LOGIC_VECTOR (({(n-1) downto 0);
-- L, R: data input

F : out STD _LOGIC_VECTOR ((n-1) downto 0);
-- F: data output

C, Z : out STD_LOGIC );

-- C: carry flag, Z: zero flag
end component;

component memory ~- instantiate memory
port ( RW, EN : in STD_LOGIC;

-- RW: C5, EN: C6
addr, din : in STD_LOGIC_VECTOR (7 downto 0);

-- addr: from MAR, din: from reg A

dout ¢ out STD_LOGIC _VECTOR (7 downto 0);
-- dout: to PC, IR, buffer

ioout ¢ out STD_LOGIC_VECTOR (7 downto 0) );
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-- ioout: to IO

end component;

component ir_to_xc —-- instantiate instruction decoder
port ( 1 : in STD_LOGIC_VECTOR (1 downto 0);

-- 1i: from IR, Il & I2
Xc : out STD LOGIC_VECTOR ( 2 downto 0) );

-- Xc: group number
end component;

signal opc, oir, omux, omar,

-= 0opcC: connect PC & MUX

orega, obuf, ocalu, omem ¢ STD_LOGIC_VECTOR ( 7 downto

(O
-- oir: connect IR & instruction decoding

signal in clr, en_flag, incf : STD_LOGIC;
~-- omux: connect MUX & MAR

signal i_cf, o_cf : STD_LOGIC_VECTOR (0 downto 0);
-- omar: connect MAR & memory
begin

~- orega: connect Reg A & ALU (L)
the_pc : pctr generic map (8)

-- obuf: connect Buffer & ALU (R)
port map (clk, in_clr, ctrl(l), ctrl(2), omem, opc);
-- oalu: connect Reg A & ALU (F)
the ir : reg generic map (8)

-- omem: connect memory & PC, IR, Buffer
port map (clk, ctrl(8), omem, oir);

-- in_clr: connect CO or clr
the mar : reg generic map (8)

-- en_flag: connect Z, C
port map (clk, ctrl(4), omux, omar);

-— inzf: connect ALU
the rega : reg generic map (8)

~- incf: connect ALU
port map (clk, ctrl(9), oalu, orega);

-- i_zf: connect Z, i_cf: connect C
the buf : reg generic map (8)

-- o_zf: connect Z, o_cf: connect C
port map (clk, ctrl(7), omem, obuf);

the mux : mux2tol generic map (8)

port map (obuf, opc, ctrl(3), omux);
the alu : alu generic map (8)
- port map (CTRL=>ctrl (10 to 12), L=>orega,
R=>obuf, F=>ocalu, C=>incf, 2Z=>inzf);
--The zero flag is connected directly to the alu, the carry flag is
--instantiated.
the_cf : reg generic map (1)
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port map (clk, en flag, i_cf, o_cf);

the mem : memory port map (ctrl(5), ctrl(é), omar,
orega, omem, dataout);
the dec : ir_to_xc port map {(i=>0ir (2 downto 1), xc=>xc);

in_clr <= ctrl(0) or clr;

-- ctrl(0): PC <- 0

c <= o_cf(0);
i cf(0) <= incf;
i3 <= 0ir(3);

-- 13: type classifier
i0 <= oir(0);

-- 10: subcategory within a group
en_flag <= ctrl(10) or ctrl(ll) or ctrl(12);

-— ctrl(10), ctrli(li), ctrl(l2): -- ALU contrel input
end micro2_arch;

--Memory Control Unit ( module CM )
-- Control Unit
LIBRARY IEEE;
USE IEEE.STD LOGIC 1164.ALL;
ENTITY cm IS
PORT ( addr : in std_logic_vector (5 downto 0);

-- addr: address input
cmdb : out std logic_vector (22 downto Q) );
-- cmbd: data output
end cm;
ARCHITECTURE Arch_cm OF cm IS
signal in_cmdb : std logic_vector (22 downto 0);

-- in_cmbd: connect cmbd

-- Binary microprogram

-- The size of the control memory is 53 x 23 bits. The 23-bit control word
-- consists of 13- bit control function containing C0 through C12 with CO
-- as bit 12 and Cl2 as bit 0. The branch address field is 6-bit wide (bits
-- 13-18). For example, consider the code for line 0 with the operation

-- PC <- 0 in the following. Since there is no condition in this operation,
-- condition select field ( CS ) and branch address field ( Brn } are all

-~ 0’s. To clear PC to 0, CO =1 . To disable RAM, C6 = 1 and, C5(R/W’)
-- 1s arbitrarily set to one.
begin

with addr select

-- 22 19 12 0

-= |CS| Brn | CTR FUNC |
n_cmdb <= “00000000001000011000000” when “000000”,-- 0 PC <- 0
*00000000000000111000000” when “000001”, --1 FETCH MAR<-PC
*00000000000100010010000” when “0000107, --2 IR<~ M{MAR), PC <- PC +1
*00110011100000011000000” when “0000117, --3 IF I3=1, goto MEMR(14)
*01100010000000011000000” when “000100”, --4 IF XC0=1, goto CMA(8)
*01010010100000011000000” when “000101", -- 5 IF XCl=1, goto INCA(1l0)
*01000011000000011000000” when “000110”, -- 6 IF XC2=1, goto DCRA(12)
"*10001101000000011000000” when “0001117, -- 7 goto HALT(50)
*00000000000000011001111” when “001000”, -- 8 CMA A <- ~A
"10000000010000011000000” when “001001~, -- 9 goto FETCH
“00000000000000011001100” when “001010~, -- 10 INCA A <- A + 1

*100000000100000211000000” when “001011", -- 11 goto FETCH
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*00000000000000011001101"
*10000000010000011000000”
"*01100101110000011000000”

*01011000000000011000000"
*01001010010000011000000"
*00000000000000111000000"
*00000000000100010100000”

*00000000000001111000000"
*00000000000000010100000"
*00000000000000011001110"
*10000000010000011000000”
*00000000000000111000000”
*00000000000100010100000"

*00000000000001111000000”
"01110111100000011000000”
*00000000000000010100000"
*00000000000000011001001”
*10000000010000011000000”
*00000060000000000000000"
*10000000010000011000000”
“000000000000001121000000"
"*00000000000100010100000"

*00000000000001111000000”
"“00000000000000010100000”
*01111001110000011000000”
*00000000000000011001010”
*10000000010000011000000"
*00000000000000011001011"
*10000000010000011000000”
*00000000000000111000000”
*00000000000000011000000”
*01111011110000011000000”
*00011100100000011000000"
*00000000000100011000000"
*10000000010000011000000"
*00101100100000011000000”
“00000000000100011000000"
™10000000010000011000000”
*00000000000010010000000"
*10000000010000011000000”
"10001101000000011000000”

when
when
when

when
when
when
when

when
when
when
when
when
when

when
when
when
when
when
when
when
when
when

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

“0011007,
“001101~,
“0011107,

“001111”,
“010000~,
*010001",
“010010~,

“010011~,
“010100”,
“010101~,
“0101107,
“010111~,
“011000",
“011001”, -~
“0110107, --
“011011”, ~--
“011100”, --
“011101", --
“011110", --
“g011111”, --
“1000007, --
“1¢0001”, ~--

“100010", -~
“100011”, --
“100100", ~--
“1001017, --
“100110”, --
“1001117, --
*101000", ~--
»1010017, --
“101010”7, --
“*1010117, -~
“i011007, --
*1011017, ~--
*101110”7, ~--
*1011117, -—-
*110000”, --
“110001”, -~
“1100107, -~
“110011", --
others; -

cmdb <= in_cmdb after 200 ps;

end Arch_cm;

--Microprogram Counter Module (MPC)
-~ Microprogramming counter

library IEEE;

use IEEE.std_logic_1ll64.all;
use IEEE.std_logic_arith.all;

entity cntr is
generic ( n integer :=
port( clk

6 );
in STD_LOGIC;

-- clk:

25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

797

12
13
14

DCRA A <- A - 1

goto FETCH
MEMREF IF XCO=1,
LDSTO (23)
IF XCl=1,

goto

15
16
17
18

goto ADSUB(32)
IF XC2=1, goto JMPS (41)
AND MAR <- PC

BUFFER <- M(MAR),

PC <- PC+1

MAR <- BUFFER

BUFFER <- M(MAR)

A <- A "~ BUFFER

goto FETCH

LDSTO MAR <- PC

19
20
21
22
23

-- 24 BUFFER <- M(MAR),

BC <- PC + 1

MAR <- BUFFER

IF I10=1, goto STO(30)
LOAD BUFFER <~ M(MAR})
A <- BUFFER

goto FETCH

STO M(MAR) <- A

goto FETCH

ADSUB MAR <- PC

BUFFER <- M(MAR),

PC <- PC +1

MAR <~ BUFFER

BUFFER <- M(MAR)

IF 10=1, goto SUB(39)
ADD A <~ A + BUFFER
goto FETCH

SUB A <- A - BUFFER
goto FETCH

JMPS MAR <~ PC

IF I0=1, goto JOC(47)
Joz IF Z=1, goto LOADPC
PC <- PC + 1
goto FETCH
JOoC IF C=1,
PC <~ PC+ 1
goto FETCH
LOADPC PC <- M(MAR)
goto FETCH

HALT goto HALT

clock

clr in STD_LOGIC;-- clr: clear MPC

1i in STD LOGIC;-- li: load/increase

X : in STD_LOGIC_VECTOR ((n-1) downto 0);-- x: data input

d : out STD_LOGIC_VECTOR ((n-1) downto 0) );--d:data output

end cntr;

goto LOADPC(50)
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architecture cntr_arch of cntr is

signal in_d : UNSIGNED (x’'range);-- in_d: connect d
signal in_x : UNSIGNED (x'range);-- in_x: connect x
begin
pl : process ( clk, clr, 1li)
begin
if clk = ‘1’ and clk’event then -- if clk = rising edge
if ¢lr = ‘1’ then -- and clr =1
in_d <= CONV_UNSIGNED (0, n) after 200 ps; -- then MPC <- O
else -- if clk = rising edge
if 1i = ‘0’ then -- and clr = 0, 1i = 0
in d <= in_d + 1 after 500 ps;-- MPC <- MPC + 1
else ~- if clk = rising edge
in_d <= in_x after 500 ps;-- and clr = 0, 1i =1
end if; ’ -- MPC <- x
end if;
end if;
end process;
gl : for i in x’range generate -- for i = 0 to 5 loop

in_x(i) <= x{i);
d(i) <= in_d(i);
end generate;
end cntr_arch;

--Mux 9 to 1
-—- Multiplexer 9 to 1
LIBRARY IEEE;

USE IEEE.STD LOGIC_1164.ALL;
ENTITY mux9tol IS

PORT ( w : in std logic_vector (8 downto 0);-- w: input
s : in std_logic_vector (3 downto 0);-- s: select line
f : out std logic ); ~- f: output

end mux9tol;
ARCHITECTURE Arch Mux OF mux9tol IS
begin
with s select
f <= w(0) when “0000",
w(l) when “0001”,
w(2) when “0010”,
w(3) when “00117,
w(4) when “01007,
w(5) when “0101”,
w(6) when “0110”,
w(7) when “01117,
w(8) when others;

end Arch_Mux;
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--Microl ( MPC + decoder + CM )

-- Overall hardwarel { MPC + Mux9tol + CM )
library IEEE;

use IEEE.std logic_1164.all;

entity microl is

port{ 2 : in STD_LOGIC; -~ Z: zero flag

C : in STD_LOGIC; -- C: carry flag

I3 : in STD_LOGIC; -- I3: type classifier( if I3=1, then

XC  : in STD_LOGIC_VECTOR (2 downto 0);-- it is a MRL, othewise

--it is a NMRI)
I0 : in STD_LOGIC; -- XC: group number
CLR : in STD_LOGIC; -- I0: subcategory within a group
CLK : in STD_LOGIC; -- CLR: clear MPC
CTN : out STD LOGIC_VECTOR (0 to 12) );-- CLK: clock
end microl; -- CTN: control functions

architecture microl_arch of microl is
component cntr
generic ( n : integer );

port ( clk : in STD_LOGIC;
clr : in STD_LOGIC;
1li : in STD_LOGIC;
X : in STD_LOGIC_VECTOR ((n-1) downto 0);
d : out STD_LOGIC_VECTOR ((n-1) downto 0) );

end component;
component mux9tol
port ( w : in std logic_vector (8 downto 0);
s : in std_logic_vector (3 downto 0);
£ : out std_logic });
end component;
component cm
port { addr : in std_logic_vector (5 downto 0);
cmdb : out std _logic vector (22 downto 0) ):
end component;
signal in_addr, in_brnh : STD_LOGIC VECTOR (5 downto 0);
-- in_addr: connect MPC & CM

signal in_cs : STD_LOGIC VECTOR (3 downto 0);
-- in_brnh: connect MPC cmbd (18 downto 13)
signal in_1li, IH, IL : STD_LOGIC;

-- in_cs: connect s & cmbd(22 downto 19)
begin -- in_li: connect MUX & MPC
cntrl : cntr generic map (6) ~-- IH: connect Vcc, IL: connect GND
port map (clk=>clk, clr=>clyr, li=>in 1li, x=>in_brnh,
d=>in_addr);
mux91 : mux9tol port map (w(8)=>IH, w(7)=>I0, w(6)=>XC(0),

w(5)=>XC(1l), w(4)=>XC(2), w(3)=>I3,
w{2)=>C, w(l)=>Z, w(0)=>IL, s=>in cs, f=>in_

1i);
cml : cm port map (addr=>in_addr, cmdb(22 downto 19)=>in cs,
cmdb (18 downto 13)=>in_brnh, cmdb(12 downtoc
0)=>CTN) ;
IH <= ‘1/;
IL <= ‘0’;
end microl_arch;
--CPU module

-—- Microprogrammed CPU
library IEEE;
use IEEE.std_logic_1164.all;



800 Fundamentals of Digital Logic and Microcomputer Design

entity CPU is
port ( clk, reset: in STD_LOGIC;-- clk: clock
d_out: out STD_LOGIC_VECTOR (7 downto 0) );- d_out:data output
end CPU;
architecture CPU_arch of CPU is
component microl

port ( 2 : in STD_LOGIC;
C : in STD_LOGIC;
I3 : in STD_LOGIC;
XC : in STD_LOGIC_VECTOR (2 downto 0);
I0 : in STD_LOGIC;

CLR : in STD_LOGIC;

CLK : in STD_LOGIC;

CTN : out STD_LOGIC_VECTOR (0 to 12) });
end component;
component micro2

port ( ctrl : in STD_LOGIC_VECTOR (0 to 12);
clr, clk : in STD_LOGIC;
dataout ¢ out STD_LOGIC VECTOR (7 downto 0);
Z, C, I3,I10 : out STD LOGIC;
XC : out STD_LOGIC_VECTOR {2 downto 0));

end component;
signal in Z, in_C, in_I3, in_IO : STD_LOGIC;
-- in_Z: connect Z, in_C: connect C
~-- in I3: connect I3, in_I0: connect IO

signal ctrl : STD_LOGIC_VECTOR (0 to 12);
signal in_XC : STD_LOGIC VECTOR (2 downto 0);
-- ctrl: connect CTN, in xc: XC

begin
the mpc : microl port map ( in_2Z, in C, in_I3, in XC, in IO,
reset, clk, ctrl };
the hdw : micro2 port map ( ctrl, reset, clk, d_out, in_Z, in C,
in_I3, in_IO0, in XC );
end CPU_arch;

--Test Bench for CPU module
-- CPU test bench

LIBRARY ileee;

USE ieee.std_logic_1164.ALL;

USE ieee.numeric_std.ALL;

ENTITY testbench IS

END testbench;

ARCHITECTURE behavior OF testbench IS -~ Architecture of the test bench
COMPONENT cpu -~ instantiate CPU module
PORT ( clk : IN std _logic;

reset : IN std_logic;
d_out : OUT std logic vector (7 downto 0) ):
END COMPONENT; '
SIGNAL clk : std_logic;
SIGNAL reset : std_logic;
SIGNAL d_out : std_logic_vector (7 downto 0);
BEGIN
uut : cpu PORT MAP( clk => clk, -- port map CPU module
reset => reset,
d_out => d out );
-- Shortest period : 2001 ps = Highest frequency ; 500 MHz
clk process : PROCESS -- Process for Clock generator
BEGIN
for i in 0 to 600 loop -- generate clock with period of 2ns
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CLK <= ‘0';
wait for 1001 ps;
CLK <= ‘1';
wait for 1000 ps;

end loop:;
wait;
END PROCESS;
rst_test : PROCESS -- Process for Test stimulus
BEGIN
reset <= ‘1’; -~ reset goes high for.3.5 ns then goes low

wait for 3500 ps;
reset <= ‘0’;
wait;
END PROCESS;
END;

Timing Diagram
Figure J.1 shows a portion of the timing diagrams obtained by simulating the test program
inside the 256 x 8 RAM. This program successfully tests all eleven instructions. Note that
PC is the program counter for the test program in the module cpu_rom, and MPC is the
microprogram counter for the symbolic program in the memory control module cm.

From figure K.1, we can see that the first instruction executed is LDA. LDA
(PC=0) instruction using reference memory 06H, goes through the following subroutines
in the symbolic program. FETCH (MPC=1 at t=6ns), branching to MEMREF(MPC=14
at t=12ns), then to LDSTO(MPC=23 at t=14ns), all the way through LOAD (MPC = 27
at t=22ns), and back to FETCH (Figure K.1). Next, ADD (PC=2) operation is performed
using reference memory 06H. At this point, ADD goes through the following subroutines
in the symbolic program: FETCH (MPC=1 at t=28ns), branching to MEMREF(MPC=14
at t=34ns), then to ADDSUB(MPC=32 at t=38mns), all the way through ADD (MPC=37
at t=48ns), then back to FETCH. At this point, the ALU generates the result with a carry.
Hence, the carry flag becomes high (Figure J.1).
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Figure J.1 VHDL Timing Diagram ( Top diagram-testbench clock, Next-reset,
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Next-cpu data_out, 8th from top-Zflag, 9th from top Carry flag, Bottom-mpc)
Several modules in the VHDL code are individually simulated for the CPU shown above.
The simulation result of each module along with the corresponding block diagram is
provided below:

REGISTER
. Simulation result:
SODA.Uns 1.QU5 1,E:us 2.QUs 2.§us
I N N e N e B e |
B x HOO |00)01 Y02 103 ¥04 05 Y06 Y07 108 309 YDA OB JOC YOD X0 JOF 340311 $12X13 114 £45 116017 118 }19 NI AYIB 1
B Ho |0 @ f ® f o Y . ¥ r» { ® |

. Block diagram:

PROGRAM COUNTER
J Simulation resuit:
SDO.IUns 1.0lus 1,5|us 2vU|us 2,E:us
K= clk o] | .
£ clr 1
B~ inc 1
vt 0 — ] 1
B x Hoo [00¥01 40203 YDe Y06 Y08 Y07 Y08 0o YoA)BBYoC D RENDF Y10 11 Y12 {13) 141 e Y7 18 Y18 aAxiBNTC)
D HOo 0 ¥ o1 {04 05 Y05 ¥oa YoB Yoo Yoo YOE YOF X 16 % 77 { 18
. Block diagram:
: PCTR
— oLk
—leLr
—{ INC DL7. . O
—LoAD
—- X[7. . a3

AL
. Simulation result:
200.0ns 400.0ns 600.0ns 800.0ns  1.0us 12us  1.4us 16us  1.8us 20us  22us 2
&5~ CTRL HO jOR1X2X3 x4 4546 7 0 1 X2X3 a5 67 0 1X2Y3Y4Y5YsY7

s L Hoo | o0Xo1 Y02 Y03 X04 Y05 06 Yo7 o8 o9 (o Y08 YoC Yoo Y0E YoF (10 (11 1213 14 Y15 {16 {17
& R HO5 |05 @@@m@@@@mm...m---na--@ ic
o6 {02 Y8 os Yo« Yo Xre X oo Yoe K 19 Erafoo JocXo2) {25 §Fafis {14 Xi2)

Faw F HO0
- C 1]
= I 1

. Block diagram:
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AL U
s CTRLLO. . 2] FL7. .01
m—L[7..0] c
;—4-3[7..91 z—

ROM
[ ]
#6* addr
XD data
[ ]
:—'HDDH[v&-.-B] DATALY. . O} ™
RAM
. Simulation result:
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QUESTIONS AND PROBLEMS

J1

J.2

J3

Write a VHDL description for each of the following using modeling
description of your choice:

(a) a 2-to-4 decoder, generating a low output when selected by a high
enable.

(b) a 3-to-8 decoder, gene‘rating a high output when selected by a high enable.
(c) the 4 -to-16 decoder of Problem 4.15.

{(d) a4-to-1 multiplexer.

(e) a BCD to seven-segment converter for a common cathode display.
(f) the 2-bit unsigned comparator of Section 4.5.2.

Write a VHDL description for:

(a) the SR latch of Figure 5.1.

(b) the gated D flip-flop of Figure 5.5a.

(c) a D flip-flop with a synchronous reset input and a positive edge triggered
clock. Use synchronous reset such that if reset ==0, the flip-flop is cleared to 0;
on the other hand, if reset==1, the output of the flip-flop is unchanged until the
procedural statements are evaluated at the positive edge of the clock.

(d) the T flip-flop (using D-ff and XOR gate) of Problem 5.13(b).

(e) the state machine of Problem 5.19.

(f) the counters of Problems 5.24(a) through 5.24(c).

(g) the general purpose register of Problem 5.25.

Write a VHDL description for an 8-bit register with a clear input. If clear is
low, the register is loaded with 0. On the other hand, if clear is high, an 8-bit
data is transferred to the register at the positive edge of the clock. Use behavioral
modeling.
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Write a VHDL description for the Status register of Example 6.1 using behavioral
modeling.

Write a VHDL description for the four-bit by four-bit unsigned multiplier
(repeated addition) using:

(a) Hardwired control (Section 7.3.5.2).

(b) Microprogramming (Section 7.3.5.3).



