
7
DESIGN OF COMPUTER

INSTRUCTION SET
AND THE CPU

This chapter describes the design of the instruction set and the central processor unit
(CPU). Topics include op-code encoding, design of typical microprocessor registers, the
arithmetic logic unit (ALU), and the control unit.

7.1

A program consists of a sequence of instructions. An instruction performs operations on
stored data. There are two components in an instruction: an op-code field and an address
field. The op-code field defines the type of operation to be performed on data, which
may be stored in a microprocessor register or in the main memory. The address field may
contain one or more addresses of data. When data are read from or stored into two or more
addresses by the instruction, the address field may contain more than one address. For
example, consider the following instruction:

MOVE DO, D1

Desim of the ComDuter Instructions

Op-code field Address field
Assume that this computer uses DO as the source register and D 1 as the destination

register. This instruction moves the contents of the microprocessor register DO to register
D 1. The number and types of instructions supported by a microprocessor vary from one
microprocessor to another and primarily depend on the microprocessor architecture. The
number of instructions supported by a typical microprocessor depends on the size of
the op-code field. For example, an 8-bit op-code can specify a maximum of 256 unique
instructions.

As mentioned before, a computer only understands 1 ’s and 0’s. This means that
the computer can execute an instruction only if it is in binary. A unique binary pattern must
be assigned to each op-code by a process called “op-code encoding.”

The Block code method is one of the simplest techniques of designing instructions.
In this approach, a fixed length of binary pattern is assigned to each op-code. For example, an
n-bit binary number can represent 2” unique op-codes. Consider for example, a hypothetical
instruction set shown in Figure 7.1. In this figure, there are 8 different instructions that can
be encoded using three bits i,, i,, i, as shown in Figure 7.2. A 3-to-8 decoder can be used to
encode the 8 hypothetical instructions as shown in Figure 7.3.

An n-to-2” decoder is required for an n-bit op-code. As n increases, the cost of the
decoder and decoding time will also increase. In some op-code encoding techniques such as

237

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

238 Fundamentals of Digital Logic and Microcomputer Design

the “expanding op-code” method, the length of the instruction is a function of the number
of addresses used by the instruction. For example, consider a 16-bit instruction in which
the lengths of the op-code and address fields are 5 bits and 1 1 bits respectively. Using such
an instruction format, 32 (F) operations allowing access to 2048 (2”) memory locations
can be specified. Now, if the size of the instruction is kept at 16 bits but the address field
is increased to 12 bits, the op-code length will then be decreased to 4 bits. This change will
specify 16 (24) operations with access to 4096 (212) memory locations. Thus, the number of

Instruction Operation Performed

MOVE reg,, reg,

CLR reg reg - 0

ADD reg,, reg,

SUB reg,, reg,

AND reg,, reg,

OR reg,, reg,

reg, - reg,

reg, + reg, + reg,

reg, + reg - reg,

reg, - reg, AND reg,

reg, - reg, OR reg,

I N C reg

JMP addr

reg + reg + 1

PC - addr; Unconditionally
Jump to addr

FIGURE 7.1 A hypothetical instruction set

Instruction

MOVE

CLR

ADD

SUB

AND

OR

I N C

JMP

3-Bit Op-Code

4 i , ill

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

FIGURE 7.2 Op-code encoding using block code

FIGURE 7.3 Instruction decoder

Design of Computer Instruction Set and the CPU 239

operations is reduced by 50% and the number of memory locations is increased by 100%.
This concept is used in designing instructions with expanding op-code technique.

Consider an instruction format with 8-bit instruction length and a 2-bit op-code
field. Four unique two-address (3 bits for each address) instructions can be specified. This
is depicted in Figure 7.4. If three rather than four two-address instructions are used, eight
one-address instructions can be specified. This is shown in Figure 7.5. The length of the
op-code field for each one-address instruction is 5 bits. Thus, the length of the op-code
field increases as the number of address field is decreased. Now, if the total number of
one-address instructions is reduced from 8 to 7, then eight 0-address instructions can also
be specified. This is shown in Figure 7.6.

7.2 Reduced Instruction Set ComDuter (RISC)

RISC, which stands for reduced instruction set computer, is a generation of faster and
inexpensive machines. The initial application of FUSC principles has been in desktop
workstations. Note that the PowerPC is a RISC microprocessor. The basic idea behind

OP- Code Address 1 Address 2
(2-bits) (3-bits) (3-bits)

i , i,

0 0 x2 XI xo Y2 YI Yo

0 1 x2 XI xo Y2 YI Yo

1 0 x2 xi xo Y2 Yl Yo

1 1 x2 XI xo Y2 YI Yo

FIGURE 7.4 Four two-address instructions

OP code Address 1 Address 2
(3 bits) (3 bits)

i 1 io

x 2 x, xo

x 2 x, xo

Y, Y, Y o

Y, Y, Y o
instructions

1 0 x z x, xo Y, Y, Yo

5-b1l+(1 1 0 0 0 1 Y , Y , Y o
opcode 0 0 1 Y, Y, Yo

1 1 0 1 0 Y , Y , Y o

1 1 1 0 0 Y , Y , Y o
1 1 1 0 1 Y , Y , Y o
1 1 1 1 0 Y , Y , Y o

1 1 1 1 1 Y , Y , Y O
Y , Y , Y o

1 1 0 1 1 Y z Y , Y o Eight
1 -address

FIGURE 7.5 Three 2-address and eight 1 -address instructions

240 Fundamentals of Digital Logic and Microcomputer Design

1 1 0 1 1 Y I Y , Y
1 1 1 0 0 y, y, y
1 1 1 0 1 Y , Y , Y
1 1 1 1 0 y2 y, y

1 -address

&bit +I 1 1 1 1 1 0 0 0 I oocode 1 1 1 1 1 0 0 1
Eight 1 1

\ ' : :)-address
nstructions

1 1 1
_ _ _
_ _ _

0 1 0 _ _ _
_ _ _

FIGURE 7.6 5 two-address, 7 one-address, and 8 zero-address instr tions

RISC is for machines to cost less yet run faster, by using a small set of simple instructions
for their operations. Also, RISC allows a balance between hardware and software based on
functions to be achieved to make a program run faster and more efficiently. The philosophy
of RISC is based on six principles: reliance on optimizing compilers, few instructions and
addressing modes, fixed instruction format, instructions executed in one machine cycle,
only call/return instructions accessing memory, and hardwired control.

The trend has always been to build CISCs (complex instruction set computers),
which use many detailed instructions. However, because of their complexity, more
hardware would have to be used. The more instructions, the more hardware logic is needed
to implement and support them. For example, in a RISC machine, an ADD instruction takes
its data from registers. On a CISC, each operand can be stored in any of many different
forms, so the compiler must check several possibilities. Thus, both RISC and CISC have
advantages and disadvantages. However, the principles of understanding optimizing
compilers and what actually happens when a program is executed lead to RISC.

Case Study: RISC I (University of California, Berkeley)
The RISC machine presented in this section is the one investigated at the University of
California, Berkeley. The RISC I is designed with the following design constraints:

1. Only one instruction is executed per cycle.
2. All instructions have the same size.
3. Only load and store instructions can access memory.
4. High-level languages (HLL) are supported.
Two high level Languages (C and Pascal) were supported by RISC I. A simple

architecture implies a fewer transistors, and this leads to the fact that most pieces of a RlSC
HLL system are in software. Hardware is utilized for time-consuming operations. Using
C and Pascal, a comparison study was made to determine the frequency of occurrence of
particular variable and statement types. Studies revealed that integer constants appeared
most frequently, and a study of the code produced revealed that the procedure calls are the
most time-consuming operations.

Design of Computer Instruction Set and the CPU 24 1

opcode(7) I scc(1) I dest(5)

i) Basic FUSC Architecture
The RISC I instruction set contains a few simple operations (arithmetic, logical, and shift).
These instructions operate on registers. Instruction, data, addresses and registers are all
32 bits long. RISC instructions fall in four categories: ALU, memory access, branch, and
miscellaneous. The execution time is given by the time taken to read a register, perform
an ALU operation, and store the result in a register. Register 0 always contains a 0. Load
and store instructions move data between registers and memory. These instructions use
two CPU cycles. Variations of memory-access instructions exist in order to accommodate
sign-extended or zero-extended %bit, 16-bit and 32-bit data. Though absolute and register
indirect addressing are not directly available, they may be synthesized using register 0.
Branch instructions include CALL, RETURN, and conditional and unconditional jumps.
The following instruction format is used:

sourcel(5) imm(1) I source2(13)

For register-to-register instructions, dest selects one of the 32 registers as destination of
the result of the operation that is itself performed on registers source 1 and source2. If
imm equals 0, the low-order 5 bits of source2 specify another register. If imm equals 1,
then source2 is regarded as a sign-extended 13-bit constant. Since the frequency of integer
constants is high, the immediate field has been made an option in every instruction. Also,
SCC determines whether the condition codes are set. Memory-access instructions use source
1 to specify the index register and source2 to specify offset.

ii) Register Windows
The procedure-call statements take the maximum execution time. A RISC program has
more call statements, since the complex instructions available in CISC are subroutines
in RISC. The RISC register window scheme strives to make the call operation as fast as
possible and also to reduce the number of accesses to data memory. The scheme works as
follows.

Using procedures involve two groups of time-consuming operations, namely,
saving or restoring registers on each callheturn and passing parameters and results to and
from the procedure. Statistics indicate that local variables are the most frequent operands.

This creates a need to support the allocation of locals in the registers. One available
scheme is to provide multiple banks of registers on the chip to avoid saving and restoring of
registers. Thus each procedure call results in a new set of registers being allocated for use
by that procedure. The return alters a pointer that restores the old set. A similar scheme is
adopted by RISC. However, there are some registers that are not saved or restored; these
are called global registers. In addition, the sets of registers used by different processes
are overlapped in order to allow parameters to be passed. In other machines, parameters
are usually passed on the stack with the calling procedure using a register to point to the
beginning of the parameters (and also to the end of the locals). Thus all references to
parameters are indexed references to memory. In RISC I the set of window registers (r10 to
r3 1) is divided into three parts. Registers r26 to 1-3 1 (HIGH) contain parameters passed from
the calling procedure. Registers r16 to r25 (LOCAL) are for local storage. Registers r l0 to
1-15 (LOW) are for local storage and for parameters to be passed to the called procedure.
On each call, a new set of r l 0 to r3 1 registers is allocated. The LOW registers of the caller
are required to become the HIGH registers of the called procedure. This is accomplished
by having the hardware overlap the LOW registers of the calling frame with the HIGH
registers of the called frame. Thus without actually moving the information, parameters are

242 Fundamentals of Digital Logic and Microcomputer Design

transferred.
Multiple register banks require a mechanism to handle the case in which there

are no free register banks available. RISC handles this problem with a separate register-
overflow stack in memory and a stack pointer to it. Overflow and underflow are handled
with a trap to a software routine that adjusts the stack. The final step in allocating variables
in registers is handling the problem of pointers. RISC resolves this by giving addresses to
the window registers. If a portion of the address space is reserved, we can determine with
one comparison whether an address points to a register or to memory. Load and store are
the only instructions that access memory and they take an extra cycle already. Hence this
feature may be added without reducing the performance of the load and store instructions.
This permits the use of straightforward computer technology and still leaves'a large fraction
of the variables in registers.

iii) Delayed Jump
A normal RISC I instruction cycle is long enough to execute the following sequence of
operations:

1. Read a register.
2. Perform an ALU operation.
3. Store the result back into a register.
Performance is increased by prefetching the next instruction during the current

instruction. To facilitate this, jumps are redefined such that they do not occur until after the
following instruction. This is called delayed jump.

7.3 Desim of the CPU

The CPU contains three elements: registers, the ALU (Arithmetic Logic Unit), and the
control unit. These topics are discussed next. Verilog and VHDL descriptions along with
simulation results of a typical CPU are provided in Appendices I and J respectively.

7.3.1 Register Design
The concept of general-purpose and flag registers is provided in Chapters 5 and 6. The main
purpose of a general-purpose register is to store address or data for an indefinite period of
time. The computer can execute an instruction to retrieve the contents of this register
when needed. A computer can also execute instructions to perform shift operations on the
contents of a general-purpose register. This section includes combinational shifter design
and the concepts associated with barrel shifters.

A high-speed shifter can be designed using combinational circuit components
such as a multiplexer. The block diagram, internal organization, and truth table of a typical
combinational shifter are shown in Figure 7.7. From the truth table, the following equations
can be obtained:

yo = s1 soi, + s,soi., + sls0i.2 + s1s0i.,

The 4 x 4 shifter of Figure 7.7 can be expanded to obtain a system capable of

This design can be extended to obtain a more powerful shifter called the barrel
rotating 16-bit data to the left by 0, 1,2, or 3 positions, which is shown in Figure 7.8.

Design of Computer Instruction Set and the CPU

i3 iz il io i., i.2 i l

243

i3 i2 i, io
Block Diagram

S1

so I I 1 I

Internal Schematic

0 1 1 i, i-, i-, L~ Left shift three times ’

Truth Table (X is don’t care in the above)

FIGURE 7.7 4 x 4 combinational shifter

shifter. The shift is a cycle rotation, which means that the input binary information is
shifted in one direction; the most significant bit is moved to the least significant position.

The block-diagram representation of a 16 x 16 barrel shifter is shown in Figure
7.9. This shifter is capable of rotating the given 16-bit data to the left by n positions, where
0 5; n s 15. Figure 7.9 shows the truth table representing the operation of the shifter. The
barrel shifter is an on-chip component for typical 32-bit and 64-bit microprocessors.

244 Fundamentals of Digital Logic and Microcomputer Design

~ Count Shift ~

output I

(b) Truth Table
FIGURE 7.8
2, or 3 positions

Combinational shifter capable of rotating 16-bit data to the left by 0, 1,

7.3.2 Adders
Addition is the basic arithmetic operation performed by an ALU. Other operations such as
subtraction and multiplication can be obtained via addition. Thus, the time required to add
two numbers plays an important role in determining the speed of the ALU.

The basic concepts of half-adder, full adder, and binary adder are discussed in
Section 4.5.1. The following equations for the full-adder were obtained. Assume x, = x, y,
= y , c, = z, and C,+, = C in Table 4.6.

 sum,^, = T i c , +x,y ,c , + x , k F +x,y,c,
- -

= x, 0 y , 0 c,

The logic diagrams for implementing these equations are given in Figure 7.10.
As has been made apparent by Figure 7.10, for generating C#+, from c,, two gate

delays are required. To generate S, from c,, three gate delays are required because c, must
be inverted to obtain c. Note that no inverters are required to get x, or y , from x, or y,,
respectively, because the numbers to be added are usually stored in a register that is a
collection of flip-flops. The flip-flop generates both normal and complemented outputs.

- -

Design of Computer Instruction Set and the CPU 245

iy= Barrel 16x16 SMfter $), amounl Shift

so

(a) Block Diagram of a 16 x 16 Barrel Shifter

(b) Truth Table of the 16 x 16 Barrel Shifter

FIGURE 7.9 Barrel shifter

For the purpose of discussion, assume that the gate delay is A time units, and the actual
value of A is decided by the technology. For example, if transistor translator logic (TTL)
circuits are used, the value of A will be 10 ns.

By cascading n full adders, an n-bit binary adder capable of handling two n-bit
operands (X and Y) can be designed. The implementation of a 4-bit ripple-cany or binary
adder is shown in Figure 7.1 1. When two unsigned integers are added, the input carry, co,
is always zero. The 4-bit adder is also called a “carry-propagate adder” (CPA), because
the carry is propagated serially through each full adder. This hardware can be cascaded to
obtain a 16-bit CPA, as shown in Figure 7.12; co = 0 or 1 for multiprecision addition.

Although the design of an n-bit CPA is straightforward, the carry propagation
time limits the speed of operation. For example, in the 16-bit CPA (see Figure 7.12), the

246 Fundamentals of Digital Logic and Microcomputer Design
-
x i
y ,

5 S,

x ,
y,
-

xi
Y,

(b) Carry
FIGURE 7.10 Logic circuit of full adder

(a) Block Diagram of a 4-bit Ripple-Carry Adder

y, x, y, 5 y, x, yo 5

(b)
FIGURE 7.1 1 Implementation of a 4-bit Ripple-Carry Adder

addition operation is completed only when the sum bits so through sI5 are available.
To generate sIs, c , ~ must be available. The generation of cI5 depends on the

availability of cI4, which must wait for cI3 to become available. In the worst case, the carry
process propagates through 15 full adders. Therefore, the worst-case add-time of the 16-bit
CPA can be estimated as follows:

Four 4-bit Full Adders are Cascaded to implement a 4-Bit Ripple-Carry Adder

Time taken for carry to propagate
through 15 full adders (the delay
involved in the path from co to cI5)

Time taken to generate sI5 from cI5

Total = 3 3 A

= 1 5 * 2 A

= 3 A

If A = 10 ns, then the worst-case add-time of a 16-bit CPA is 330 ns. This delay
is prohibitive for high-speed systems, in which the expected add-time is typically less
than 100 ns, which makes it necessary to devise a new technique to increase the speed of
operation by a factor of 3. One such technique is known as the “carry look-ahead.’’ In this
approach the extra hardware is used to generate each carry (c,, i > 0) directly from co. To
be more practical, consider the design of a 4-bit carry look-ahead adder (CLA). Let us see
how this may be used to obtain a 16-bit adder that operates at a speed higher than the 16-bit
CPA.

Recall that in a full adder for adding X,, Y,, and C,, the output carry C,,, is related
to its carry input C,, as follows:

The result can be rewritten as

whereG,=X,Y, andP,=X,+ Y,
The function G, is called the carry-generate function, because a carry is generated

when X, = Y, = 1. IfX, or Y, is a 1, then the input carry C, is propagated to the next stage. For
this reason, the function P, is often referred to as the “carry-propagate” function. Using G,
and P,, Cl, C,, C,, and C, can be expressed as follows:

c,+, =KY, + XC, + yc,

c,+i = G,+ PIC,

C, = Go + POCO
C, = GI + PIC,
C, = G, + P,C,
C, = G, + P,C,

248 Fundamentals of Digital Logic and Microcomputer Design

go=

Po=

FIGURE 7.13

Therefore C,, C,, C3, and C, can be generated directly from Co. For this reason, these
equations are called “carry look-ahead equations,” and the hardware that implements these
equations is called a “4-stage look-ahead circuit” (4-CLC). The block diagram of such
circuit is shown in Figure 7.13.
The following are some important points about this system:

A Four-Stage Carry Look-ahead Circuit

A 4-CLC can be implemented as a two-level AND-OR logic circuit (The first level
consists of AND gates, whereas the second level includes OR gates).
The outputs go and po are useful to obtain a higher-order look-ahead system.

To construct a 4-bit CLA, assume the existence of the basic adder cell shown
in Figure 7.14. Using this basic cell and 4-bit CLC, the design of a 4-bit CLA can be
completed as shown in Figure 7.15. Using this cell as a building block, a 16-bit adder can
be designed as shown in Figure 7.16.

The worst-case add-time of this adder can be calculated as follows:

&

f romX,,Y,(Osis 15) ... A

For P,, G, generation

To generate C, from Co ... 2 8

To generate C, from C, ... 2A

To generate C,, from C, ... 2A

To generate C,, from C,, ... 2A

To generate S,, from C,, ... 3 8

Total delay ... 12A

A graphical illustration of this calculation can be shown as follows:
Data available H GiPi --t C, 3 CS 3 C I ~ 2 CIS ~ S I S

From this calculation, it is apparent that the new 16-bit adder is faster than the 16-bit
CPA by a factor of 3. In fact, this system can be speeded up further by employing another
4-bit CLC and eliminating the carry propagation between the 4-bit CLA blocks. For this
purpose, the g, and p , outputs generated by the 4-bit CLA are used. This design task is left
as an exercise to the reader.

A 2A

Design of Computer Instruction Set and the CPU

G, -
p, +-

249

BA + XI

Y, (Basicadder) -
FIGURE 7.14 Basic CLA cell

I 1

4
C
L
C

FIGURE 7.15 A 4-bit CLA

p ! 4-bit CIA

X,> -x. Y,, Y .

4-bit CLA

FIGURE 7.16 Design of a 16-bit adder using 4-bit CLAs

250 Fundamentals of Digital Logic and Microcomputer Design

If there is a need to add more than 3 operands, a technique known as “carry-save
addition” is used. To see its effectiveness, consider the following example:

44
28
32
- 79
- 63+Sum vector

L t C a r r y vector
M+Fina l answer

In this example, four decimal numbers are added. First, the unit digits are added,
producing a sum of 3 and a carry digit of 2. Similarly, the tens digits are added, producing
a sum digit of 6 and a carry digit of 1. Because there is no carry propagation from the
unit digit to the tenth digit, these summations can be carried out in parallel to produce
a sum vector of 63 and a carry vector of 12. When all operands are exhausted, the sum
and the shifted carry vector are added in the conventional manner, which produces the
final answer. Note that the carry is propagated only in the last step, which generates the
final answer no matter how many operands are added. The concept is also referred to as
“addition by deferred carry assimilation.”

7.3.3 Addition, Subtraction, Multiplication and Division of unsigned and signed
numbers
The procedure for addition and subtraction of two’s complement signed binary numbers
is straightforward. The procedure for adding unsigned numbers is discussed in Chapter
2. Also, addition of two 2’s complement signed numbers was included in Chapter 2. Note
that binary numbers represented in two’s complement form contain both unsigned numbers
(Most Significant Bit = 0) and signed numbers (Most Significant Bit = 1). The procedure for
adding two 2’s complement signed numbers using pencil and paper is provided below:

Add the two numbers along with the sign bits. Check the overflow bit (V) using V
= C, 0 C, where C, is the final carry and C, is the previous carry. If V = 0, then the result
of addition is correct. On the other hand, if V = 1 , then the result is incorrect; one needs to
increase the number of bits for each number, and repeat the addition operation until V = 0
to obtain the correct result.

Subtraction of two 2’s complement signed binary numbers using pencil and paper
can be performed as follows:

Take the 2’s complement of subtrahend along with the sign bit and add it to the
minuend . The result is correct if there is no overflow. The result is wrong if there is an
overflow. In case of overflow, increase the number of bits for each number, repeat the
subtraction operation until the overflow is zero to obtain the correct result. Note that if
there is a final carry after performing the 2’s complement subtraction, the result is positive.
On the other hand, if there is no final carry after 2’s complement subtraction, the result is
negative.

Computers utilize common hardware to perform addition and subtraction
operations for both unsigned and signed numbers. The instruction set of computers
typically include the same ADD and SUBTRACT instructions for both unsigned and signed
numbers. The interpretations of unsigned and signed ADD and SUBTRACT operations are
performed by the programmer. For example, consider adding two 8-bit numbers, A and B
(A = FF,, and B= FF,,) using the ADD instruction by a computer as follows:

Design of Computer Instruction Set and the CPU

1 1 1 1 1 1 1 - Intermediate carries
FF,,= 1111 1111

+ FF,,= 1111 1111
---________________________

Final carry -1 11 11 11 10 = FE,,

25 1

When the above addition is interpreted as an unsigned operation by the programmer, the
result will be
A + B =FF,, + FFl6 = 255,,+ 255,,= 510,, which is FE,, with a carry as shown above.
However, if the addition is interpreted as a signed operation, then, A + B =FF,, + FF,, =

(-1 ,,) + (- 1 ,,) = -2], which is FE,, as shown above, and the final carry must be discarded by
the programmer. Similarly, the unsigned and signed subtraction can be interpreted by the
programmer.

Typical 8-bit microprocessors, such as the Intel 8085 and Motorola 6809, do not
include multiplication and division instructions due to limitations in the circuit densities
that can be placed on the chip. Due to advances in semiconductor technology, 16-, 32-, and
64-bit microprocessors usually include multiplication and division algorithms in a ROM
inside the chip. These algorithms typically utilize an ALU to carry out the operations. one
can write a program that multiplies two numbers. Although this solution seems viable, the
operational speed is unsatisfactory.

For application environments such as real-time digital filtering, in which the
processor is expected to perform 32 to 64 eight-bit multiplication operations within 100
p e c (sampling frequency = 10 kHz), speed is an important factor. New device technologies
such as BICMOS and HCMOS, allow manufacturers to pack millions of transistors in a
chip. Consequently, state-of-the-art 32-bit microprocessors such as the Motorola 68060
(HCMOS) and Intel Pentium (BICMOS) designed using these technologies, have a
larger instruction set than their predecessors, which includes multiplication and division
instructions. In this section, multiplier design principles are discussed. Two unsigned
integers can be multiplied using repeated addition as mentioned in Chapter 2. Also, they
can be multiplied in the same way as two decimal numbers are multiplied by paper and
pencil method. Consider the multiplication of two unsigned integers, where the multiplier
Q = 15 and the multiplicand is M = 14, as illustrated:

In the paper and pencil algorithm, shifted versions of multiplicands are added.

252 Fundamentals of Digital Logic and Microcomputer Design

FIGURE 7.17
the Paper and Pencil Algorithm

Generalized Version of the Multiplication of Two 4-bit Numbers Using

a. Bast Cell

FIGURE

b. Infernal Organizabon

7.18 4 x4 Array Multiplier

This procedure can be implemented by using combinational circuit elements such as AND
gates and FULL adders. Generally, a 4-bit unsigned multiplier Q and a 4-bit unsigned
multiplicand M can be written as M: m, m2 m, m, and Q: q, q2 ql q,.The process of
generating the partial products and the final product can also be generalized as shown in

FIGURE 7.19 ROM-based 4x4 Multiplier

Design of Computer Instruction Set and the CPU 253

Figure 7.17. Each cross-product term (mi qj) in this figure can be generated using an AND
gate. This requires 16 AND gates to generate all cross-product terms that are summed by
full adder arrays, as shown in Figure 7.18.
Consider the generation of p2 in Figure 7.18(b). From Figure 7.1 7, p 2 is the sum of m2qo,
m,q, and m0q2. The sum of these three elements is obtained by using two full adders. (See
column for p2 in Figure 7.18). The top full-adder in this column generates the sum m,q, +
m,q,. This sum is then added to m0q2 by the bottom full-adder along with any carry from
the previous full-adder for pI.
The time required to complete the multiplication can be estimated by considering the
longest carry propagation path comprising of the rightmost diagonal (which includes the
full-adder forp, and the bottom full-adders forp, andp,), and the last row (which includes
the full-adder for p6 and the bottom full-adders for p4 and ps) . The time taken to multiply
two n-bit numbers can be expressed as follows:

In this equation, all cross-product terms miqi can be generated simultaneously by an array
of AND gates. Therefore, only one AND gate delay is included in the equation. Also,
the rightmost diagonal and the bottom row contain (n - 1) full-adders each for the n x n
multiplier.
Assuming that A = A cur~p,opagofion = 2gate delays = 2A, the preceding expression can
be simplified as shown:
T(n) = 28 + (2n - 2)2A = (4n - 2)A.
The array multiplier that has been considered so far is known as Braun’s multiplier.
The hardware is often called a nonadditive multiplier (NM), since it does not include
any additive inputs. An additive multiplier (AM) includes an extra input R, it computes
products of the form
P = M * Q + R
This type of multiplier is useful in computing the sum of products of the form EXiYi.
Both an NM and an AM are available as standard 1C blocks. Since these systems require
more components, they are available only to handle 4- or 8-bit operands.
Alternatively, the same 4x4 NM discussed earlier can be obtained using a 256 x 8 ROM
as shown in Figure 7.19.
It can be seen that a given MQ pair defines a ROM address, where the corresponding 8-bit
product is held. The ROM approach can be used for small-scale multipliers because:

The technological advancements allow the manufacturers to produce low-cost
ROMs.
The design effort is minimum.

T(n) + A ANDgure + (n -) A currypropagarion + - A currypropugurion

In case of large multipliers, ROM implementation is unfeasible, since large-size ROMs
are required. For example, in order to implement an 8 x 8 multiplier, a 216 x 16 ROM is
required. If the required 8 x 8 product is decomposed into a linear combination of four 4x4
products, an 8 x 8 multiplier can be implemented using four 256 x 8 ROMs and a few 4-bit
parallel adders. However, PLDs can be used to accomplish this.
Signed multiplication can be performed using various algorithms. A simple algorithm
follows.

In the case of signed numbers, there are three possibilities:
1. M and Q are in sign-magnitude form.
2. M and Q are in ones complement form.
3. M and Q are in twos complement form.

For the first case, perform unsigned multiplication of the magnitudes without the sign

254 Fundamentals of Digital Logic and Microcomputer Design

bits. The sign bit of the product is determined as M, 0 Qn, where M, and Qn are the most
significant bits (sign bits) of the multiplicand (M> and the multiplier (Q), respectively. For
the second case, proceed as follows:

Step 1 : If M, = 1, then compute the ones complement of M.
Step 2: If Q, = 1, then compute the ones complement of Q.
Step 3: Multiply the n - 1 bits of the multiplier and the multiplicand.
Step 4: S, = M, 0 Qn
Step 5: If S, = 1, then compute the ones complement of the result obtained in Step 3.
Whenever the ones complement of a negative number (sign bit = 1) is taken, the

sign is reversed. Hence, with respect to the multiplier, the inputs are always a positive
quantity. When the sign of the bit is negative, however (M, 0 Q, = l), the result must be
presented in the ones complement form. This is why the ones complement of the product
found by the unsigned multiplier is computed. When M and Q are in twos complement
form, the same procedure is repeated, with the exception that the twos complement must be
determined when Q, = 1, M, = 1, or M, 0 Q, = 1. Consider M and Q as twos complement
numbers. Suppose M = 1 100, and Q = 01 1 1,. Because M, = 1, take the twos complement of
M = 0 100,; because Qn = 0, do not change Q. Multiply 0 1 1 1 , and 0 100, using the unsigned
multiplication method discussed before. The product is 0001 1 100,. The sign of the product
S, = M, 0 Qn = 1 0 0 = 1. Hence, take the twos complement of the product 000 1 1 100, to
obtain 11 lOOlOO,, which is the final answer: -28,,.

As mentioned in Chapter 2, unsigned division can be performed using repeated
subtraction. However, the general equation for division can be used for signed division.
Note that the general equation for division is Dividend = Quotient *Divisor + Remainder.
For example, consider dividend = - 9, divisor = 2. Three possible solutions are shown
below:

(a)
(b)
(c)

- 9 = - 4 * 2 - 1, Quotient = - 4 , Remainder =- 1.
- 9 ~ - 5 * 2 + 1, Quotient = - 5, Remainder = +l.
- 9 = - 6 * 2 + 3, Quotient = - 6, Remainder = +3.

However, the correct answer is shown in (a) in which, Quotient = - 4 and Remainder =

- 1. Hence, for signed division, the sign of the remainder is the same as the sign of the
dividend, unless the remainder is zero. Typical microprocessors such as Motorola 68XXX
follow this convention.

7.3.4 ALU Design
Functionally, an ALU can be divided up into two segments: the arithmetic unit and

the logic unit. The arithmetic unit performs typical arithmetic operations such as addition,
subtraction, and increment or decrement by 1. Usually, the operands involved may be
signed or unsigned integers. In some cases, however, an arithmetic unit must handle 4-bit
binary-coded decimal (BCD) numbers and floating-point numbers. Therefore, this unit
must include the circuitry necessary to manipulate these data types. As the name implies,
the logic unit contains hardware elements that perform typical operations such as Boolean
NOT and OR. In this section, the design of a simple ALU using typical combinational
elements such as gates, multiplexers, and a 4-bit parallel adder is discussed. For this
approach, an arithmetic unit and a logic unit are first designed separately; then they are
combined to obtain an ALU.

For the first step, a two-function arithmetic unit, as shown in Figure 7.20 is
designed. The key element of this system is a 4-bit parallel adder. The multiplexers select

Design of Computer Instruction Set and the CPU

n

I I

Y

255

FIGURE 7.20

either Y or 7 for the 3-input of the parallel adder. In particular, if so = 0, then B = R
otherwise B = 7. Because the selection input (so) also controls the input carry (CJ, the
following results:

Ifs,=OthenF=Xplus Y

Organization of an arithmetic unit

else F = Xplus Tplus 1
= Xminus Y

This arithmetic unit generates addition and subtraction operations. For the second step, let
us design a two-function logic unit; this is shown in Figure 7.21. From Figure 7.21 it can be
seen that when so = 0, the output G = X AND Y; otherwise the output G = X@ Y. Note that
from these two Boolean operations, other operations such as NOT and OR can be derived
by the following Boolean identities:

x O R y = x @ y @ x y
Therefore, NOT and OR operations can be obtained by using additional hardware

and the circuit of Figure 7.21. The outputs generated by the arithmetic and logic units can
be combined by using a set of multiplexers, as shown in Figure 7.22. From this organization
it can be seen that when the select line s, = 1, the multiplexers select outputs generated by
the logic unit; otherwise, the outputs of the arithmetic unit are selected.

More commonly, the select line, s,, is referred to as the mode input because it
selects the desired mode of operation (arithmetic or logic). A complete block diagram
schematic of this ALU is shown in Figure 7.23. The truth table illustrating the operation of
this ALU is shown in Figure 7.24. This table shows that this ALU is capable of performing
2 arithmetic and 2 logic operations on the 4-bit operands Xand Y.

The rapid growth in IC technology permitted the manufacturers to produce an
ALU as an MSI block. Such systems implement many operations, and their use as a system

l o x = ;

256 Fundamentals of Digital Logic and Microcomputer Design

FIGURE 7.21 Organization of a 4-bit two-function logic unit

FIGURE 7.22 Combining the outputs generated by the arithmetic and logic units

component reduces the hardware cost, board space, debugging effort, and failure rate.
Usually, each MSI ALU chip is designed as a 4-bit slice. However, a designer can easily
interconnect n such chips to get a 4n-bit ALU. Some popular 4-bit ALU chips are the
74381 and 74181. The 74381 ALU performs 3 arithmetic and 2 miscellaneous operations
on 4-bit operands. The 74 18 1 ALU performs 16 arithmetic and 16 Boolean operations on
two 4-bit operands, using either active high or active low data. A complete description and
operational characteristics of these devices may be found in the data books.

Typical 8-bit microprocessors, such as the Intel 8085 and Motorola 6809, do not
include multiplication and division instructions due to limitations in the circuit densities that
can be placed on the chip. Due to advanced semiconductor technology, 16-, 32-, and 64-bit

Design of Computer Instruction Set and the CPU

Select Lines

SI Sn

257

Output z Comment

Y-

,

0

0

4

0 x plus Y Addition

1 x DlUS P PlUS 1 2’s ComDlement subtraction

L

1

Arithmetic u4

1 X O Y Exclusive-OR

Logic
unit

4

1

FIGURE 7.23 Schematic representation of the four functions

4

/ - z

I l I O I X A Y I Boolean AND I

FIGURE 7.24 Truth table controlling the operations of the ALU of Figure 7.23

microprocessors usually include multiplication and division algorithms in a ROM inside
the chip. These algorithms typically utilize an ALU to carry out the operations. Verilog
and VHDL descriptions along with simulation results of typical ALU’s are included in
Appendices I and J respectively.

7.3.5
The main purpose of the control unit is to translate or decode instructions and generate
appropriate enable signals to accomplish the desired operation. Based on the contents of
the instruction register, the control unit sends the selected data items to the appropriate
processing hardware at the right time. The control unit drives the associated processing
hardware by generating a set of signals that are synchronized with a master clock.

The control unit performs two basic operations: instruction interpretation
and instruction sequencing. In the interpretation phase, the control unit reads (fetches)
an instruction from the memory addressed by the contents of the program counter into

Design of the Control Unit

258 Fundamentals of Digital Logic a n d Microcomputer Design

the instruction register. The control unit inputs the contents of the instruction register. It
recognizes the instruction type, obtains the necessary operands, and routes them to the
appropriate functional units of the execution unit (registers and ALU). The control unit
then issues the necessary signals to the execution unit to perform the desired operation and
routes the results to the specified destination.

In the sequencing phase, the control unit generates the address of the next
instruction to be executed and loads it into the program counter. To design a control unit,
one must be familiar with some basic concepts such as register transfer operations, types of
bus structures inside the control unit, and generation of timing signals. These are described
in the next section.

There are two methods for designing a control unit: hardwired control and
microprogrammed control. In the hardwired approach, synchronous sequential circuit
design procedures are used in designing the control unit. Note that a control unit is a clocked
sequential circuit. The name “hardwired control” evolved from the fact that the final
circuit is built by physically connecting the components such as gates and flip-flops. In the
microprogrammed approach, on the other hand, all control functions are stored in a ROM
inside the control unit. This memory is called the “control memory.” RAMS and PALS are
also used to implement the control memory. The words in this memory are called “control
words,” and they specify the control functions to be performed by the control unit. The
control words are fetched from the control memory and the bits are routed to appropriate
functional units to enable various gates. An instruction is thus executed. Design of control
units using microprogramming (sometimes calledfirmware to distinguish it from hardwired
control) is more expensive than using hardwired controls. To execute an instruction, the
contents of the control memory in microprogrammed control must be read, which reduces
the overall speed of the control unit.The most important advantage of microprogramming is
its flexibility; many additions and changes are made by simply changing the microprogram
in the control memory. A small change in the hardwired approach may lead to redesigning
the entire system.

There are two types of microprocessor architectures: CISC (Complex Instruction
Set Computer) and RISC (Reduced Instruction Set Computer). CISC microprocessors
contain a large number of instructions and many addressing modes while RISC
microprocessors include a simple instruction set with a few addressing modes. Almost all
computations can be obtained from a few simple operations. RISC basically supports a
small set of commonly used instructions which are executed at a fast clock rate compared
to CISC which contains a large instruction set (some of which are rarely used) executed
at a slower clock rate. In order to implement fetch /execute cycle for supporting a large
instruction set for CISC, the clock is typically slower. In CISC, most instructions can
access memory while RISC contains mostly loadhtore instructions. The complex
instruction set of CISC requires a complex control unit, thus requiring microprogrammed
implementation. RISC utilizes hardwired control which is faster. CISC is more difficult to
pipeline while RISC provides more efficient pipelining. An advantage of CISC over RISC
is that complex programs require fewer instructions in CISC with a fewer fetch cycles
while the RISC requires a large number of instructions to accomplish the same task with
several fetch cycles. However, RISC can significantly improve its performance with a faster
clock, more efficient pipelining and compiler optimization. PowerPC and Intel 8OXXX
utilize RISC and CISC architectures respectively. Intel Pentium family, on the other hand,
utilizes a combination of RISC and CISC architectures for providing high performance.
The Pentium uses RISC (hardwired control) to implement efficient pipelining for simple

Design of Computer Instruction Set and the CPU 259

Register 9
Register

FIGURE 7.25 16-Bit register transfer from R, to R,

Register

E $ ' I Register

FIGURE 7.26 An enable input controlling register transfer

instructions. CISC (microprogrammed control) for complex instructions is utilized by the
Pentium to provide upward compatibility with the Intel 8086/80X86 family.

Basic Concepts
Register transfer notation is the fundamental concept associated with the control

unit design. For example, consider the register transfer operation of Figure 7.25. The
contents of 16-bit register R, are transferred to 16-bit register R, as described by the
following notation:

4 - Ro

The symbol +- is called the transfer operator. However, this notation does not
indicate the number of bits to be transferred. A declaration statement specifying the size of
each register is used for the purpose:

Declare registers RO [1 6] , R1 [16]
The register transfer notation can also be used to move a specific bit from one

register to a particular bit position in another. For example, the statement

means that bit 14 of register R, is moved to bit 1 of register R,.
An enable signal usually controls transfer of data from one register to another.

For example, consider Figure 7.26. In the figure, the 16-bit contents of register R, are
transferred to register R, if the enable input E is HIGH; otherwise the contents of R, and R,
remain the same. Such a conditional transfer can be represented as

E: R, +- R,
Figure 7.27 shows a hardware implementation of transfer of each bit of R, and R,.

The enable input may sometimes be a function of more than one variable. For example,
consider the following statement involving three 16-bit registers: If R, < R, and R, [11 = 1
then R, - R, .

The condition R,, < R, can be determined by an 8-bit comparator such that the
output y of the comparator goes to 0 if R, < R,. The conditional transfer can then be

R, [11+ R, ~ 4 1

260 Fundamentals of Digital Logic and Microcomputer Design

of Register of Registei
R i Muniplexer

FIGURE 7.27 Hardware for each bit transfer from R, to R,
15 __---- 1 0

FIGURE 7.28 Hardware implementation E R , - R, where E = y * R, [l]

Declare registers R[81 ,M[81 ,Q[81;
Declare buses inbus[8],outbus[8];

Start: R + 0, M - inbus; Clear register R to 0 and move
multiplicand

Q - inbus; Transfer multiplier

If Q < > 0 then go t o loop; repeatifQ#O

Outbus - R;
Loop : R +- R + M, Q +- Q-1; Add multiplicand

Halt: Go to Halt:

FIGURE 7.29
8-bit result)

Register transfer description of 8 x 8 unsigned multiplication (Assume

expressed as follows: E: R, +- R, where E = y . R, [l]. Figure 7.28 depicts the hardware
implementation.

A number of wires called “buses” are normally used to transfer data in and out
of a digital processing system. Typically, there will be a pair of buses (“inbuses” and
“outbuses”) inside the CPU to transfer data from the external devises into the processing
section and vice versa. Like the registers, these buses are also represented using register
transfer notations and declaration statements. For example, “Declare inbus [161 and outbus
[16]” indicate that the digital system contains two 16-bit wide data buses (inbus and
outbus). R, - inbus means that the data on the inbus is transferred into register R, when
the next clock arrives. An equate (=) symbol can also be used in place of -. For example,
“outbus = R, [15:8]” means that the high-order 8 bits of the 16-bit register R, are made
available on the outbus for one clock period. An algorithm implemented by a digital system
can be described by using a set of register transfer notations and typical control structures
such as if-then and go to. For example, consider the description shown in Figure 7.29 for

Design of Computer Instruction Set and the CPU 26 1

multiplying two 8-bit unsigned numbers (Multiplication of an 8-bit unsigned multiplier
by an 8-bit multiplicand) using repeated addition.

The hardware components for the preceding description include an 8-bit inbus, an
8-bit outbus, an 8-bit parallel adder, and three 8-bit registers, R, M, and Q. This hardware
performs unsigned multiplication by repeated addition. This is equivalent to unsigned
multiplication performed by assembly language instruction.

A distinguishing feature of this description is to describe concurrent operations.
For example, the operations R - 0 and M - inbus can be performed simultaneously. As
a general rule, a comma is inserted between operations that can be executed concurrently.
On the other hand, a semicolon between two transfer operations indicates that they must be
performed serially. This restriction is primarily due to the data path provided in the hardware.
For example, in the description, because there is only one input bus, the operations M -
inbus and Q + inbus cannot be performed simultaneously. Rather, these two operations
must be carried out serially. However, one of these operations may be overlapped with the
operation R - 0 because the operation does not use the inbus. The description also includes
labels and comments to improve readability of the task description. Operations such as R
+- 0 and M - inbus are called “micro-operations”, because they can be completed in one
clock cycle. In general, a computer instruction can be expressed as a sequence of micro-
operations.

The rate at which a microprocessor completes operations such as R - R
+ M is determined by its bus structure inside the microprocessor chip. The cost of the
microprocessor increases with the complexity of the bus structure. Three types of bus
structures are typically used: single-bus, two-bus, and three-bus architectures.

The simplest of all bus structures is the single-bus organization shown in Figure
7.30. At any time, data may be transferred between any two registers or between a register
and the ALU. If the ALU requires two operands such as in response to an ADD instruction,
the operands can only be transferred one at a time. In single-bus architecture, the bus must
be multiplexed among various operands. Also, the ALU must have buffer registers to hold
the transferred operand.

In Figure 7.30, an add operation such as R, - R, + R, is completed in three clock
cycles as follows:

First clock cycle: The contents of R, are moved to buffer register B, of the ALU.
Second clock cycle: The contents of R, are moved to buffer register B, of the ALU.
Third clock cycle: The sum generated by the ALU is loaded into R,.

A single-bus structure slows down the speed of instruction execution even though
data may already be in the microprocessor registers. The instruction’s execution time is
longer if the operands are in memory; two clock cycles may be required to retrieve the
operands into the microprocessor registers from external memory.

Prcgram CDlnfer (PC)

Addrsu Register (Ao)

Stack Pointer

Buffer BUfW
Rwislem.01 ReQistemBZ

~

R ,
~

~~

FIGURE 7.30 Single-bus architecture

R I

RZ

7 special Pvpase __

I
Registers

262 Fundamentals of Digital Logic and Microcomputer Design

Bus A -
T t

Bus 6

TI- Register 0

-

1 1

\ I

i l

1

Special
Register
Group2 0

FIGURE 7.31 Two-bus architecture

Group1 :o : L
Bus C

FIGURE 7.32 Three-bus architecture

To execute an instruction such as ADD between two operands already in register,
the control logic in a single-bus structure must follow a three-step sequence. Each step
represents a control state. Therefore, a single-bus architecture requires a large number of
states in the control logic, so more hardware may be needed to design the control unit.
Because all data transfers take place through the same bus one at a time, the design effort
to build the control logic is greatly reduced.

Next, consider a two-bus architecture, shown in Figure 7.3 1. All general-purpose
registers are connected to both buses (bus A and bus B) to form a two-bus architecture. The
two operands required by the ALU are, therefore, routed in one clock cycle. Instruction
execution is faster because the ALU does not have to wait for the second operand, unlike
the single-bus architecture. The information on a bus may be from a general-purpose
register or a special-purpose register. In this arrangement, special-purpose registers are
often divided into two groups. Each group is connected to one of the buses. Data from two
special-purpose registers of the same group cannot be transferred to the ALU at the same
time.

In the two-bus architecture, the contents of the program counter are always
transferred to the right input of the ALU because it is connected to bus A . Similarly, the
contents of the special register MBR (memory buffer register, to hold up data retrieved
from external memory) are always transferred to the left input of the ALU because it is
connected to bus B.

Design of Computer Instruction Set and the CPU 263

In Figure 7.3 1, an add operation such as R, * R, + R, is completed in two clock

First clock cycle: The contents of R, and R, are moved to the inputs of ALU.
The ALU then generates the sum in the output register.

Second clock cycle: The sum from the output register is routed to R,.

cycles as follows:

The performance of a two-bus architecture can be improved by adding a third
bus (bus C), at the output of the ALU. Figure 7.32 depicts a typical three-bus architecture.
The three-bus architecture perform the addition operation R, + R, + R, in one cycle as
follows:

The contents of R, and R, are moved to the inputs of the
ALU via bus A and bus B respectively. The sum generated
by the ALU is then transferred to R, via bus C.

The addition of the third bus will increase the system cost and also the complexity
of the control unit design.

Note that the bus architectures described so far are inside the microprocessor chip.
On the other hand, the system bus connecting the microprocessor, memory, and I/O are
external to the microprocessor.

Another important concept required in the design of a control unit is the generation
of timing signals. One of the main tasks of a control unit is to properly sequence a set of
operations such as a sequence of n consecutive clock pulses. To cany out an operation,
timing signals are generated from a master clock. Figure 7.33 shows the input clock pulse
and the four timing signals To, T , , T,, and T3. A ring counter (described in Chapter 5) can
be used to generate these timing signals. To carry out an operation Pi at the ith clock pulse,
a control unit must count the clock pulses and produce a timing signal T,.

First cycle:

1.

2.
3.
4.

5 .

Hardwired Control Design
The steps involved in hardwired control design are summarized as follows:

Derive a flowchart from the problem definition and validate the algorithm by
using trial data.
Obtain a register transfer description of the algorithm from the flowchart.
Specify a processing hardware along with various components.
Complete the design of the processing section by establishing the necessary
control inputs.
Determine a block diagram of the controller.

Timing Sigrui

Timing Signal
T,

FIGURE 7.33 Timing signals

264 Fundamentals of Digital Logic and Microcomputer Design

6 .
7.

8.

Obtain the state diagram of the controller.
Specify the characteristic of the hardware for generating the required timing
signals used in the controller.
Draw the logic circuit of the controller.
The following example is provided to illustrate the concepts associated with

implementation of a typical instruction in a control unit using hardwired control. The
unsigned multiplication by repeated addition discussed earlier is used for this purpose. A 4-

M <- Muniplicand

R <-- R + M

I c

V

FIGURE 7.34 Flowchart for 4-bit x 4-bit multiplication

Initialization 0 0 0 0 0 1 0 0
R M

Iteration 1
R <-- R + M
Q <-- Q - 1

0 1 0 0 0 1 0 0

Q
0 0 1 1

0 0 1 0

Iteration 2
1 0 0 0 0 1 0 0 0 0 0 1 R <-- R + M

Q <-- Q - 1

Iteration 3
R <-- R + M 1 1 0 0 0 1 0 0 0 0 0 0

‘y, Product =12,,

Q <-- Q - 1

FIGURE 7.35 Verification of the unsigned multiplication algorithm

Design of Computer Instruction Set and the CPU 265

bit by 4-bit unsigned multiplication will be considered. Assume the result of multiplication
is 4 bits.
Step I : Derive a flowchart from the problem definition and then validate the algorithm
using trial data.
Figure 7.34 shows the flowchart. In the figure, Mand Q are two 4-bit registers containing
the unsigned multiplicand and unsigned multiplier respectively. Assume that the result of
multiplication is 4-bit wide. The 4-bit result of the multiplication called the “product” will
be stored in the 4-bit register, R. The contents of R are then output to the outbus.

The flowchart in Figure 7.34 is similar to an ASM chart and provides a hardware
description of the algorithm. The sequence of events and their timing relationships are
described in the flowchart. For example, the operations, R +- 0 and M + multiplicand
shown in the same block are executed simultaneously. Note that M - multiplicand via
inbus and Q +- multiplier via inbus must be performed serially because both operations
use a single input bus for loading data. These operations are, therefore, shown in different

Clear Register to 0 and move multiplicand

Perform addition, decrement counter

Start: R - 0, M + inbus;
Q + i n b u s ; Transfer Multiplier

If Q < > 0 then goto Loop; RepeatifQ+ 0
outbus +- R;

L O O P : R + R + M, Q + Q -1;

H a l t : Go to Halt;

FIGURE 7.36 Register transfer description 4-bit x 4-bit unsigned multiplication

C L D Clack Action

1 0 0 Clear
0 1 0 LOadExterrddata
o o 1 1 Decrementbyom
0 0 0 1 Nochanpe

(a) General Purpose Register

Control
Input F

1 I + r
Control 0 No operation

Input

(b) 4-bit w Adder 4

$ 4 Control Y

X
Control Input
Input 1

0 High
lmpedence

State

(c) Tristate Buffer
FIGURE 7.37 Components of the processing section of 4-bit by 4-bit unsigned

multiplication

266 Fundamentals of Digital Logic and Microcomputer Design

blocks. Because R - 0 does not use the inbus, this operation is overlapped, in our case,
with initializing of M via the inbus. This simultaneous operation is indicated by placing
them in the same block.

The algorithm will now be verified by means of a numerical example as shown
in Figure 7.35. Suppose M = 0100, = 4,, and Q = 001 1, = 310; then R = product = 1100, =

Step 2: Obtain a register transfer description of the algorithm from the flowchart. Figure
7.36 shows the description of the algorithm.
Step 3: Specify a processing hardware along with various components.
The processing section contains three main components:

1210

General-purpose registers
4-bit adder
Tristate buffer
Figure 7.37 shows these components. The general-purpose register is a trailing

edge-triggered device.
Three operations (clear, parallel load, and decrement) can be performed by

applying the appropriate inputs at C, L, and D. All these operations are synchronized at the
trailing (high to low) edge of the clock pulse.

The 4-bit adder can be implemented using 4-bit adder circuits. The tristate buffer
is used to control data transfer to the outbus.
Step 4: Complete the design of the processing section by establishing the necessary

control inputs.
Figure 7.38 shows the detailed logic diagram of the processing section, along with

the control inputs.
Step 5: Determine a block diagram of the controller. Figure 7.39 shows the block
diagram.

The controller has three inputs and seven outputs. The Reset input is an
asynchronous input used to reset the controller so that a new computation can begin. The
Clock input is used to synchronize the controller’s action. All activities are assumed to be
synchronized with the trailing edge of the clock pulse.
Step 6: Obtain the state diagram of the controller.

The controller must initiate a set of operations in a specified sequence. Therefore,
it is modeled as a sequential circuit. The state diagram of the unsigned multiplier controller
is shown in Figure 7.40.

Initially, the controller is in state To. At this point, the control signals C,, and C, are
HIGH. Operations R + 0 and M + inbus are carried out with the trailing edge of the next
clock pulse. The controller moves to state TI with this clock pulse. When the controller is
in T2, R - R + M and Q - Q - 1 are performed.

All these operations take place at the trailing edge of the next clock pulse. The
controller moves to state T, only when the unsigned multiplication is completed. The
controller then stays in this state forever. A hardware reset input causes the controller to
move to state To, and a new computation will start.

In this state diagram, selection of states is made according to the following
guidelines:

If the operations are independent of each other and can be completed within
one clock cycle, they are grouped within one control state. For example, in
Figure 7.40, operations R +- 0 and M - inbus are independent of each other.
With this hardware, they can be executed in one clock cycle. That is, they are

Design of Computer Instruction Set and the CPU

Reset
b

Z
b

267

---+C

d C

--+C
Controller --+C

- C

- C

A ---+C

C,:RCO

C q Mbinbus

C , 'Ofinbus

C,: F = r + l

c,: a a - i

c; ournus 6 R

C , : R f F

1 4

i i

-

FIGURE 7.38 Detailed logic diagram of the processing section

FIGURE 7.39 Block diagram of the unsigned multiplier controller

4 z=1

z=o

T.4

8

Control
State

TO

TI

TP

T3

T4

T5

Operation
Performed

R t 0, M t inbus

Q t inbus

R t R + M ,

None

outbus t R

None

Q t Q - 1

Control Signal
to be

activated

co, c1
CP

CB, c4, c6

None

c5

None

(a) State Diagram (b) Controller action

FIGURE 7.40 Controller description

268 Fundamentals of Digital Logic and Microcomputer Design

Input Cbck
puke

Timing Signal
To

Timing Signal

Timing T2 Signal yy--
Timing Signal

T ,

+ t
T,

FIGURE 7.41 Timing signals generated by the controller

microoperations. However, if they cannot be completed within the To clock cycle,
either clock duration must be increased or the operations should be divided into a
sequence of microoperations.
Conditional testing normally implies the introduction of new states. For example,
in the figure, conditional testing of Z introduces the new state T3.
One should not attempt to minimize the number of states. When in doubt, new
states must be introduced. The correctness of the control logic is more important
than the cost of the circuit.

Step 7: Specify the characteristics of the hardware for generating the required timing
signals.

There are six states in the controller state diagram. Six nonoverlapping timing
signals (To through T,) must be generated so that only one will be high for a clock pulse.
For example, Figure 7.41 shows the four timing signals To, T,, T,, and T3. A mod-8 counter
and a 3-to-8 decoder can be used to accomplish this task. Figure 7.42 shows the mod-8
counter.
Step 8: Draw the logic circuit of the controller.

Figure 7.43 shows the logic circuit of the controller. The key element of the
implementation in Figure 7.43 is the sequence controller (SC) hardware, which sequences

External Data

Clock

0, 0 , 0,

w
Counter Output

C L E Cloc Action

1 X X X Clear

0 1 X J Load external

0 0 1 J Count up

0 0 0 J No operation

k

data

Note: X = don’t care

(a) Block Diagram (b) Function Table

FIGURE 7.42 Characteristics of the counter used in the controller design

Design of Computer Instruction Set and the CPU

Inputs

Z T, T,
0 1 X

X X 1

Clock J

outputs

L d* d, do
1 0 1 0

1 1 0 1

FIGURE 7.43 Logic diagram of the unsigned multiplier controller

(a) Truth Table

Or Array (Sum Array)

(b) PLA Implementation
FIGURE 7.44 Sequence controller design

269

the controller according to the state diagram of Figure 7.40. Figure 7.44(a) shows the truth
table for the SC controller.

Consider the logic involved in deriving the entries of the SC truth table. The mod-
8 counter is loaded (or initialized) with the specified external data if the counter control
inputs C and L are 0 and 1 respectively from Figure 7.42. In this counter, the counter load

270

control input L overrides the counter enable control input E.
From the controller’s state diagram of Figure 7.40, the controller counts up

automatically in response to the next clock pulse when the counter load control input L =

0 because the enable input E is tied to HIGH. Such normal sequencing activity is desirable
for the following situations:

Fundamentals of Digital Logic and Microcomputer Design

Present control state is To, T I , T,, T4.
Present control state is T3 and Z = 1 ; the next state is T4.
The SC must load the counter with the appropriate count when the counter is

required to load the count out of its normal sequence.
For example, from the controller’s state diagram of Figure 7.40, if the present

control state is T3 (counter output O,O,O,= 01 1) and if Z = 0, the next state is T2. When
these input conditions occur, the counter must be loaded with external value 010 at the
trailing edge of the next clock pulse (T, = 1 only when O,O,O,= 010. Therefore, the SC
generates L = 1 and d2dld0 = 010.

Similarly, from the controller’s state diagram of Figure 7.40, if the present state
is T,, the next control state is also T,. The SC must generate the outputs L = 1 and d2d,do =

101. The SC truth table of Figure 7.41 shows these out-of-sequence counts. For each row
of the SC truth table of Figure 7.44(a), a product term is generated in the PLA:

Po i- 2T3 and PI = T,.
The PLA (Figure 7.44b) generates four outputs: L, d,, d,, and do. Each output is

directly generated by the SC truth table and the product terms. The PLA outputs are as
follows:

L = P,+P,
d2 = P,
d, = P o
do = P ,

The controller design is completed by relating the control states (To through T,) to
the control signals (C, though C,) as follows:

C, = C, = To
C, = TI
c = c = c =
C, = T4

3 4 6 T 2

From these equations, when the control is in state To or T,, multiple micro-
operations are performed. Othenvise,when the control is in state TI or T4, a single micro-
operation is performed.

The unsigned multiplication algorithm just implemented using hardwired control
can be considered as an unsigned multiplication instruction with a microprocessor. To
execute this instruction, the microcomputer will read (fetch) this multiplication instruction
from external memory into the instruction register located inside the microprocessor. The
contents of this instruction register will be input to the control unit for execution. The control
unit will generate the control signals C , through C, as shown in Figure 7.43. These control
signals will then be applied to the appropriate components of the processing section in
Figure 7.38 at the proper instants of time shown in Figure 7.40. Note that the control signals
are physically connected to the hardware elements of Figure 7.38. Thus, the execution of
the unsigned multiplication instruction will be completed by the microprocessor.

Microprogrammed Control Unit Design
As mentioned earlier, a microprogrammzd control unit contains programs written

Design of Computer Instruction Set and the CPU 27 1

using microinstructions. These programs are stored in a control memory normally in a
ROM inside the CPU. To execute instructions, the microprocessor reads (fetches) each
instruction into the instruction register from external memory. The control unit translates
the instruction for the microprocessor. Each control word contains signals to activate one
or more microoperations. A program consisting of a set of microinstructions is executed
in a sequence of micro-operations to complete the instruction execution. Generally, all
microinstructions have two important fields:

Control word
Next address
The control field indicates which control lines are to be activated. The next

address field specifies the address of the next microinstruction to be executed. The concept
of microprogramming was first proposed by W. V. Wilkes in 195 1 utilizing a decoder and
an 8 x 8 ROM with a diode matrix. This concept is extended further to include a control
memory inside the CPU. The cost of designing a CPU primarily depends on the size of the
control memory. The length of a microinstruction, on the other hand, affects the size of the
control memory. Therefore, a major design effort is to minimize the cost of implementing
a microprogrammed CPU by reducing the length of the microinstruction.

The length of a microinstruction is directly related to the following factors:
The number of micro-operations that can be activated simultaneously. This is
called the “degree of parallelism.”
The method by which the address of the next microinstruction is determined.
All microinstructions executed in parallel can be included in a single

microinstruction with a common op-code. The result is a short microprogram. However,
the length of the microinstruction increases as parallelism grows.

The control bits in a microinstruction can be organized in several ways. One
obvious way is to assign a single bit for each control line. This will provide full parallelism.
No decoding of the control field is necessary. For example, consider Figure 7.45 with two
registers, Xand Y with one outbus.

In figure 7.45, the contents of each register are transferred to the outbus when the

FIGURE 7.45 An example of a register transfer

do d l

Decoder li ;t04i ii
unused c No

1 ‘0 operation

FIGURE 7.46 Encoded format

272 Fundamentals of Digital Logic and Microcomputer Design

Control Bits

C, C,

appropriate control line is activated:
C,: outbus + X
C,: outbus +- Y

Here, each operation can be performed one at a time because there is only one
outbus. A single bit can be assigned to perform each transfer as follows:

Operation
Performed

1 0

0 1

0 0

Outbus - X

Outbus-Y

No operation

This method is called “unencoded format.”
The three operations can be implemented using two bits and a 2-to-4 decoder

as shown in Figure 7.46. This is called “encoded format.” The relationship between the
encoded and actual control information is as follows:

Encoded Bits

d , dn

Operation
Performed

0 1 I Outbus-x

1 0 Outbus - y

Note that a 5-bit control field is required for five operations. However, three
encoded bits are required for five operations using a 3 to 8 decoder. Hence, the encoded
format typically provides a short control field and thus results in short microinstructions.
However, the need for a decoder will increase the cost. Therefore, there is a trade-off
between the degree of parallelism and the cost. Microinstructions can be classified into
two groups: horizontal and vertical. The horizontal microinstruction mechanism provides
long microinstructions, a high degree of parallelism, and little or no encoding. The vertical
microinstruction method, on the other hand, offers short microinstructions, limited
parallelism, and considerable decoding.

Microprogramming is the technique of writing microprograms in a
microprogrammed control unit. Writing microprograms is similar to writing assembly
language programs. Microprograms are basically written in a symbolic language called
microassembly language. These programs are translated by a microassembler to generate
microcodes, which are then stored in the control memory.

In the early days, the control memory was implemented using ROMs. However,
these days control memories are realized in writeable memories. This provides the
flexibility of interpreting different instruction set by rewriting the original microprogram,
which allows implementation of different control units with the same hardware. Using
this approach, one CPU can interpret the instruction set of another CPU. The design of a
microprogrammed control unit is considered next. The 4-bit x 4-bit unsigned multiplication

Design of Computer Instruction Set and the CPU 273

Control
Memory
Address

Control Word

0 START R - 0, M - i n b u s ;

1 Q + i n b u s ;

2 LOOP R -R -t M I Q + Q - 1;

3 If Z = 0 t h e n g o t o Loop;

4 o u t b u s - R;

5 HALT Go t o HALT

FIGURE 7.47 Symbolic microprogram for 4-bit x 4-bit unsigned multiplication using
repeated addition

C , :R-0
C, : M - inbus

C, : F - 1 + r

C, : outbus - R

%- Control Memory C, : Q - inbus
(CM)

6 x 1 2

C, Q + Q - 1

1 l2
Condition Branch CWR C , : R - - F Control (cornmi

Select Adder Functions

I 2 , 3 J . 4
c,c , .. c,

FIGURE 7.48 Microprogrammed unsigned multiplier control unit

using hardwired control (presented earlier) is implemented by microprogramming. The
register transfer description shown in Figure 7.36 is rewritten in symbolic microprogram
language as shown in Figure 7.47. Note that the unsigned 4-bit x 4-bit multiplication uses
repeated addition. The result (product) is assumed to be 4 bits wide.

To implement the microprogram, the hardware organization of the control unit
shown in Figure 7.48 can be used. The various components of the hardware of Figure 7.48
are described in the following:

Microprogram Counter (MPC). The MPC holds the address of the next
microinstruction to be executed. It is initially loaded from an external source
to point to the starting address of the microprogram. The MPC is similar to the
program counter (PC). The MPC is incremented after each microinstruction fetch.
If a branch instruction is encountered, the MPC is loaded with the contents of the
branch address field of the microinstruction.
Control Word Register (CWR). Each control word in the control memory in
this example is assumed to contain three fields: condition select, branch address,
and control function. Each microinstruction fetched from the Control Memory is
loaded into the CWR. The organization of the CWR is same for each control word

1.

2.

274 Fundamentals of Digital Logic and Microcomputer Design

and contains the three fields just mentioned. In the case of a conditional branch
microinstruction, if the condition specified by the condition select field is true,
the MPC is loaded with the branch address field of the CWR; otherwise, the MPC
is incremented to point to the next microinstruction. The control function field
contains the control signals.
MUX (Multiplexer). The MUX is a condition select multiplexer. It selects one
of the external conditions based on the contents of the condition select field of the
microinstruction fetched into the CWR.

3.

In Figure 7.48, a 2-bit condition select field is required as follows:

~~ ~

Condition Select Field

0 0

Interpretation

No branching (no condition)

0 1 I Branch i f Z = 0

'

1 0 I Unconditional branching

ROM Address Control Word Comments
In decimal In binary Condition Branch Control Function

Select Address Co C1 C2 C, C4 C5 C6
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 R t 0 , M t i n b u s
1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 O Q t i n b u s
2 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 R t R + M , Q t Q - 1 ,

3 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 I fZ=Othengoto

4 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 o u t b u s t R
5 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 Gotoaddress5(HALT)

R t F

address 2 (loop)

From Figure 7.47 six control memory address (addresses 0 through 5) are required
for the control memory to store the microprogram. Therefore, a 3-bit address is necessary
for each microinstruction. Hence, three bits for the branch address field are required. From
Figure 7.48 seven control signals (C, through C,) are required. Therefore, the size of the
control function field is 7 bits wide. Thus, the size of each control word can be determined
as follows:

size of a = size of the condition + size of the branch + number
control word select field address field of control

signals

2 + 3 + 7 - -

12 bits - -

Therefore, the size of the control memory is 6 bits x 12 bits because the
microprogram requires six addresses (0 through 5) and each control word is 12 bits wide.
The size of the CWR is 12 bits. The complete binary listing of the microprogram is shown
in Figure 7.49.

Design of Computer Instruction Set and the CPU 275

Let us now explain the binary program. Consider the first line of the program.
The instruction contains no branching. Therefore, the condition select field is 00. The
contents of the branch in this case filled with 000. In the control function field, two micro-
operations, C, and C,, are activated. Therefore, both C, and
C, are set to 1; C, through C, are set to 0.

(address 0) of Figure 7.49:
This results in the following binary microinstruction shown in the first line

Condition Branch Control
Select Address Function

00 000 1 100000

Next, consider the conditional branch instruction of Figure 7.49. This
microinstruction implements the conditional instruction “If Z = 0 then go to address 2.” In
this case, the microinstruction does not have to activate any control signal of the control
function field. Therefore, C, through C, are zero. The condition select field is 01 because
the condition is based on Z = 0. Also, if the condition is true (Z = 0), the program branches
to address 2. Therefore, the branch address field contains 010,. Thus, the following binary
microinstruction is obtained:

Condition Branch Control
Select Address Function

01 010 000000

The other lines in the binary representation of the microprogram can be explained
similarly. To execute an unsigned multiplication instruction implemented using the
repeated addition just described, a microprogrammed microprocessor will fetch the
instruction from external memory into the instruction register. To execute this instruction,
the microprocessor uses the control unit of Figure 7.48 to generate the control word based
on the microprogram of Figure 7.49 stored in the control memory. The control signals
C, through C, of the control function field of the CWR will be connected to appropriate
components of Figure 7.38 The instruction will thus be executed by the microprocessor.

By examining the microprogram in Figure 7.49, it is obvious that the control
function field contains all zeros in case of branch instructions. In a typical microprogram,
there may be several conditional and unconditional branch instructions. Therefore, a lot of
valuable memory space inside the control unit will be wasted if the control field is filled
with zeros. In practice, the format of the control word is organized in a different manner to
minimize its size. This reduces the implementation cost of the control unit. Whenever there
are several branch instructions, the microinstructions, can be formatted by using a method
called multiple microinstruction format. In this approach, the microinstructions are divided
into two groups: operate and branch instructions.

An operate instruction initiates one or more microoperations. For example, after
the execution of an operate instruction, the MPC will be incremented by 1. In the case of a
branch instruction, no microoperation will usually be initiated, and the MPC may be loaded
with a new value.
This means that the branch address field can be removed from the microinstruction format.
Therefore, the control function field is used to specify the branch address itself. Typically,

ROM Address Control Word
In decimal In binary Condition Branch Control Function

Select Address Co C, Cz C3 C4 Cs CC,
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 1 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1

0 1 1 0 I 0 1 0 0 0 0 0 0 0 0

4 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
5 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0

1 3

each microinstruction will have two fields, as shown next:

Comments

R t 0 , M t i n b u s
O Q t i n b u s

R t F
I fZ=Othengoto
address 2 (loop)
o u t b u s t R
Gotoaddress5(HALT)

R t R + M , Q t Q - 1 ,

CONDITION-
SELECT FIELD

If S, So = 00, the microinstruction is considered as an operate instruction, and
the contents of the control function field are treated as the control signals. Assume the
Condition Select Field is encoded as follows:

CONTROL FUNCTION FIELD

Sl S O

0 0 No branch
0 1 Branch if cond-1 = 1
1 1 Branch if cond-2 = 1
1 0 Unconditional branch

If S, So = 01, the instruction is regarded as a branch instruction, and the contents
of the control field are assumed to be a 7-bit branch address. In this example, it is assumed
that when S, So = 01, the MPC will be loaded with the appropriate address specified by C,
C, C4 C3 C, C, C, if the condition Z = 0 is satisfied; on the other hand, if S, So = 10, an
unconditional branch to the address specified by the Control Function I Branch Address
Field occurs.

In order to illustrate this concept, the microprogram for 4-bit by 4-bit unsigned
multiplication of Figure 7.49 is rewritten using the multiple instruction format as shown in
Figure 7.50.

It can be seen from the figure 7.50 that the total size of the control store is 54
bits (6 x 9 = 54). In contrast, the control store of figure 7.49 contains 72 bits. For large
microprograms with many branch instructions, tremendous memory savings can be
accomplished using the multiple microinstructon format. Addresses 0, 1, 2, and 4 contain
microinstructions with the contents of the conditional select field as 00, and are considered
as operate instructions. In this case, the contents of the control fimction field are directed
to the processing hardware.

Address 3 contains a conditional branch instruction since the contents of the
condition select field are 01 ; while address 5 contains an unconditional branch instruction

Design of Computer Instruction Set and the CPU 277

I , I

scsc4c3 c2 CI
b

To the Pmcesrcng Section

FIGURE 7.51 Microprogrammed Controller for the Microprogram of Figure 7.50.
CPU

7 A 0

Memory

256 x 8
RAM

FIGURE 7.52 Programming Model of a Simple Processor

(halt instruction; that is, jump to the same address) since the condition select field is 10.
Hence, the 7-bit control function field directly specifies the desired branch addresses 2 and
5, respectively. Figure 7.5 1 shows the hardware schematic.

7.4

Next, the design of a microprogrammed processor is illustrated. The programming model
of this processor is shown in Figure 7.52.
The CPU contains two registers:
1. An 8-bit register A
The flag register holds only zero (Z) and carry (C) flags. All programs and data are stored in
the 256 x 8 RAM. The detailed hardware schematic of the data-flow part of this processor
is shown in Figure 7.53.
From Figure 7.53, it can be seen that the hardware organization includes four more 8-bit
registers, PC, IR, MAR, and BUFFER. These registers are transparent to a programmer.
The 8-bit register BUFFER is used to hold the data that is retrieved from memory. In this
system, only a restricted number of data paths are available. These paths are controlled by
the control inputs C, through C,, as defined in Table 7.1.

Desim of a MicroDroPrammed CPU

2. A 2-bit flag register F

278 Fundamentals of Digital Logic and Microcomputer Design

256 A 8

Data out

FIGURE 7.53 Hardware Schematic of the Simple Processor (Note: 8-bit PC is
connected to eight 2 to 1 MUXs-- Not shown above)

From Figure 7.54, notice that the proposed instruction set contains 11 instructions. The
first 7 instructions are classified as memory reference instructions, since they all require
a memory address (which is an 8-bit number in this case). The last 4 instructions do not
require any memory address; they are called nonmemory reference instructions. Each
memory reference instruction is assumed to occupy 2 consecutive bytes in the RAM. The
first byte is reserved for the op-code, and the second byte indicates the 8-bit memory
address. In contrast, a nonmemory reference instruction takes only one byte of storage.
This instruction set supports only two addressing modes: implicit and direct. Both branch
instructions are assumed to be absolute mode branch instructions. The op-code encoding
for this instruction set is carried out in a logical manner, as explained in Figure 7.55.
The bit I3 of Figure 7.55 decides the instruction type. If I3 = 1, it is a memory reference
instruction (MRI), otherwise it is a nonmemory reference instruction (NMRI).
Within the memory reference category, instructions are classified into four groups, as
follows:

GROUP NO. INSTRUCTIONS
0 Load and store
1 Add and subtract
2 Jumps
3 Logical

There are two instructions in the first three groups. Bit I, is used to determine the desired
instruction of a particular group. If Io of group 0 equals zero, it is the load (LDA) instruction;
otherwise it is the store (STA) instruction. Nevertheless, no such classification is required
for group 3 and the nonmemory reference instructions.

As mentioned before, the instruction execution involves the following steps:

Design of Computer Instruction Set and the CPU 279

c,: PC - 0

TABLE 7.1 Definitions of the Control Inputs C,-C,

MICROOPERATION I COMMENT

Clear PC to zero.

C5GC,: BUFFER - M ((MAR))

C,C,: MAR - BUFFER

C,cC,: IR - M ((MAR))

C,: A +- F

C, C,: M ((MAR)) - A
--

C , : P C - P C + 1 I Advance the PC.

Read the data from the memory and save the
result in BUFFER.

Transfer the content of the BUFFER into MAR.

Read the data from memory and save the result
into IR.

Transfer the ALU output into the A register.

Save contents of register A into memory.

C,C,G: PC - M ((MAR))

C,C,: MAR - PC
-

Read the data from the memory and save it in the
PC.

Transfer the contents of the PC into MAR.

Cl

0

0

0

0

1

1

1

1

Step 1:
Step 2:
Step 3:

Step 4:
Step 5:
Step 6:

1 c,, CI,

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

F

0

R

L+R

L-R

L+ 1

L- 1

L AND R

NOT L

Fetch the instruction.
Decode the instruction to find out the required operation.
If the required operation is a halt operation, then go to Step 6;
otherwise continue.
Retrieve the operands and perform the desired operation.
Go to Step 1.
Execute an infinite LOOP.

The first step is known as the fetch cycle, and the rest are collectively known
as the execution cycle. To decode the instruction, the hardware shown in Figure 7.56 is
used.

With this hardware and the status flags (Z and C), a microprogram to implement
the instruction set can be written. The symbolic version of this microprogram is shown in

280 Fundamentals of Digital Logic and Microcomputer Design

(add&: 8-bit memory address in binary
taddrH): 8-bit memory address in hex

MRI: memory reference instruction
NMRI: nonmemory reference instruction.

FIGURE 7.54 Instruction Set to be Implemented

Figure 7.57.
The hardware organization of the microprogrammed control unit for this situation

shown in Figure 7.58 directly follows the symbolic listing shown in Figure 7.57. No
attempt has been made toward arriving at a minimal microprogram. Rather, the concept
was presented. The task of translating the symbolic microprogram of Figure 7.57 into a
binary microprogram is left as an exercise.

Design of Computer Instruction Set and the CPU 28 1

TC:
GN:

Type classifier (if I3 = 1, then it is a MRI; otherwise it is
Group number within a type

(I 2 I1 Group no.

0 0 0

0 1 1

1 0 2

1 1 3 1
SC: Subcategory within a group

FIGURE 7.55 Op-code Encoding Logic

a NMRI)

FIGURE 7.56 Instruction-decoding Hardware

282 Fundamentals of Digital Logic and Microcomputer Design

Svmbolic MicroDrogram:

ROM Address

0

1 FETCH

2

3

4

5

6

7

8 CMA

9

10 INCA

1 1

12 DCRA

13

14 MEMREF

15

16

17 AND

18

19

20

21

22

23 LDSTO

24

25

26

27 LOAD

28

29

30 STO

31

PC- 0;

MAR - PC;

IR - M ((MAR)), PC - PC + 1;

IF 1, = 1 then go to MEMREF;

IF XC, = 1 then go to CMA;

IF XC, = 1 then go to INCA;

IF XC, = 1 then go to DCRA;

Go to HALT;

A - A;
Go to FETCH;

A - A + l ;

Go to FETCH;

A - A - 1;

Go to FETCH;

IF XC, = 1 then go to LDSTO;

These operations constitute the
fetch cycle.

Here we decode the
instructions.

Execute CMA instructions.

Execute INCA instruction.

Execute DCRA instruction.

Here we branch to the various
groups of the memory
reference instruction.

IF XC, = 1 then go to ADSUB;

IF XC, = 1 then go to JMPS;

MAR - PC;

BUFFER - M ((MAR)), PC - PC + 1;

MAR + BUFFER;

BUFFER - M ((MAR));

A - A A BUFFER;

Go to FETCH;

MAR - PC;

BUFFER +- M ((MAR)), PC - PC + 1;

MAR - BUFFER;

IF I, = 1 then go to STO;

BUFFER + M ((MAR));

A + BUFFER;

Go to FETCH;

M ((MAR)) +- A;

Go to FETCH;

Execute AND instruction.

FIGURE 7.57 Symbolic Microprogram that implements the instruction set of figure
7.54

Design of Computer Instruction Set and the CPU

- 0 -
Z - 1

C 2

13 3

xc2 4 MUX -
xc 1 .5
xco - 6
10 7

"CL - 8

A
Condition

select
field Interpretation ,I 4

0000 No branch
0001 Branchif 2 1
001 0 Branch if C = 1
001 1 Branch if 13 = 1

283

4
Load16

MPC Reset

6

Control memory
(52 x 33)

23

Condition Branch Control CMDB
select address functions

J 6 4 c
co c,,

32 ADSUB MAR-PC;

33

34 MAR - BUFFER ;

35 BUFFER 6 M ((MAR));

36 IF I, = 1 then go to SUB;

37 ADD A - A + BUFFER, Execute ADD instruction

38 Go to FETCH;

39 SUB A + A - BUFFER; Execute SUB instruction

40 Go to FETCH;

41 JMPS MAR - PC;

42

43

44 JOZ IF Z = 1 then go to LOADPC; Execute JZ instruction

BUFFER - M ((MAR)), PC + PC + 1 ;

IF I, = 1 then go to JOC;

IF I, = 1 then go to JOC;

45 P C - P C + l ;

46 Go to FETCH;

47 JOC IF C = 1 then go to LOADPC; Execute JC instruction

48 P C t P C + l ;

49 Go to FETCH;

50 LOADPC PC - M((MAR));

51 Go to FETCH;

52 HALT Go to HALT; Execute HALT instruction

FIGURE 7.57 Continued

284 Fundamentals of Digital Logic and Microcomputer Design

FIGURE 7.59 A microprogram of size A x B

Upper integer of

Microprogram Nanoprogram

Nanoprogram
Control Memory

FIGURE 7.60 Nanomemory

O0 01

10

3 x 4 nanocontrol store

000
00 1
010
01 1
100
101
110

0100 El
FIGURE 7.61 7 x 4-bit single control memory

000
00 1
010
01 1
100
101
110

7 x 2-bit mici rocontrol store

FIGURE 7.62 Two-level store (nanomemory)
I t 9 4
I I+- 70 4

640 x 9

store
640 1 Microcontrol

FIGURE 7.63 68000 nanomemory

Design of Computer Instruction Set and the CPU

Example 7.1
If the following two instructions are to be added to the instruction set of Figure 7.54, write
a symbolic microprogram for the CPU of section 7.3 that describes the execution of each

285

instruction:

GENERAL FORMAT

(4 CLRA

(b) PRSA

OPERATION DESCRIPTION

A+O Clear register A

A+ 11 11 11 1 1 Set register A to all ones

Solution:
(a) CLRA: A+O

(b) PRSA: A t 0
A+A
go to FETCH

go to FETCH
; Use ALU’s zero output (C,,C,,C,,=OOO)
9

; Use ALU’s zero output (C,,C, ,C,,=OOO)
,

Nanomemory is another approach for reducing the size of the control memory.
This technique contains a two-level memory: control memory and nanomemory. At the
outset, are may feel that the two-level memory will increase the overall cost. In fact, it
reduces the cost of the system by minimizing the memory size.

The concept of nanomemory is derived from a combination of horizontal and
vertical instructions. However, this method provides trade-offs between them.

Motorola uses nanomemory to design the control units of their popular 16-bit and
32-bit microprocessors, including the 68000, 68020, 68030, and 68040. The nanomemory
method provides significant savings in memory when a group of micro-operations occur
several times in a microprogram. Consider the microprogram of Figure 7.59, which contains
A microinstructions B bits wide. The size of the control memory to store this microprogram
is AB bits. Assume that the microprogram has n (n < A) unique microinstructions. These n
microinstructions can be held in a separate memory called the “nanomemory” of size nB
bits. Each of these n instructions occurs once in the nanomemory. Each microinstruction
in the original microprogram is replaced with the address that specifies the location of the
nanomemory in which the original B-bit-wide microinstructions are held.

Because the nanomemory has n addresses, only the upper integer of log,n bits
is required to specify a nanomemory address. This is illustrated in Figure 7.60. The
operation of microprocessor employing a nanomemory can be explained as follows: The
microprocessor’s control unit reads an address from the microprogram. The content of this
address in the nanomemory is the desired control word. The bits in the control word are used
by the control unit to accomplish the desired operation. Note that a control unit employing
nanomemory (two-level memory) is slower than the one using a conventional control
memory (single memory). This is because the nanomemory requires two memory reads
(one for the control memory and the other for the nanomemory). For a single conventional
control memory, only one memory fetch is necessary. This reduction in control unit speed
is offset by the cost of the memory when the same microinstructions occur many times in
the microprogram.

Consider the 7 x 4-bit microprogram stored in the single control memory of Figure
7.61. This simplified example is chosen to illustrate the nanomemory concept even though
this is not a practical example. In this program, 3 out of 7 microinstructions are unique.

286 Fundamentals of Digital Logic and Microcomputer Design

Therefore, the size of the microcontrol store is 7 x 2 bits and the size of the nanomemory
is 3 x 4 bits. This is shown in Figure 7.62.

Memory requirements for the single control memory = 7 x 4 = 28 bits. Memory
requirements for nanomemory = (7 x 2 + 3 x 4) bits = 26 bits. Therefore, the saving
using nanomemory = 28 - 26 = 2 bits. For a simple example like this, 2 bits are saved.
The HMOS 68000 control unit nanomemory includes a 640 x 9-bit microcontrol store
and a 280 x 70-bit nanocontrol store as shown in Figure 7.63. In Figure 7.63, out of 640
microinstructions, 280 are unique. If the 68000 were implemented using a single control
memory, the requirements would have been 640 x 70 bits. Therefore,

Memory savings = (640 x 70) - (640 x 9 + 280 x 70) bits

= 19,440 bits
= 44,800 - 25,360

This is a tremendous memory savings for the 68000 control unit.

DUESTIONS AND PROBLEMS

7.1

7.2

7.3

7.4

7.5

7.6

It is desired to implement the following instructions using block code: ADD,
SUB, XOR, MOVE, HALT. Draw a block diagram.

The instruction length and the size of an address field are 9 bits and 3 bits
respectively. Is it possible to have

6 two-address instructions
15 one-address instructions
8 zero-address instructions

using expanding op-code technique? Justify your answer.

Using the instruction format of Problem 7.2, is it possible to have
7 two-address instructions
7 one-address instructions
8 zero-address instructions

using expanding opcode technique? Justify your answer.

Assume that it is desired to have 2 two-address, 7 one-address, and 25 zero-
address instructions in a computer instruction set. Using expanding op-code
technique with a 2-bit op-code and 3-bit address field, is it possible to accomplish
the above? If so, justify your answer and determine the instruction length.

Assume that using an instruction length of 9 bits and the address field size of 3
bits, 5 two-address and 10 one-address instructions have already been designed,
using expanding op-code technique. Is it possible to have at least 48 zero-address
instructions that can be added to the instruction set?

Design a combinational logic shifter with 4-bit input and 4-bit output as follows:

-
OE

1
0
0
0
0

7.7

7.8

7.9

7.10

7.1 1

7.12

7.13

Shift Count 4 - bit output

s, so
X X High Impedance output lines
0 0 No Shift
0 1 Right Shift once
1 0 Right Shift twice
1 1 Right Shift three times

where X means don’t care. Using multiplexers and tristate buffers, draw a logic
diagram.

Draw a logic diagram for a 4 x 4 barrel shifter.

Using a minimum number of full adders and multiplexers, design an incremented
decrementer circuit as follows: If S = 0, output y = x + 1 ; otherwise, y = x - 1.
Assume x and y are 4-bit signed numbers and the result is 4 bits wide.

Design a combinational circuit to compute the absolute value of an 8-bit twos
complement number. Use %bit binary adder and exclusive-OR gates. Draw a
logic circuit.

Using a 4-bit CLA as the building block, design an 8-bit adder.

Design:
(a)

(b)

(c)

a 16-bit adder whose worst-case add-time is 10A using a 4-bit CLA as a
building block.
the fastest 64-bit adder using a 4-bit CLA as the building block. Estimate
the worst-case add-time of your design.
a combinational circuit to compute the fimctionf(x) = (3/8) * x where x
is a 4-bit 2’s complement number.

Design an arithmetic logic unit to perform the following hnctions:

A minus B
A AND B
A O R B

Use multiplexers, binary adders, and gates as needed. Assume that A and B are
4-bit numbers. Draw a logic circuit.

Design a combinational circuit that will perform the following operations:

B
15

288

7.14

Fundamentals of Digital Logic and Microcomputer Design
--

Assume that A is a 4-bit number and B = u3 a, a , a,. Draw a logic diagram.

Design a 4-bit ALU to perform the following operations:

S F
0
1 0

Logical Left Shift A once

7.15

7.16

7.17

7.18

7.19

7.20

7.2 1

7.22

Assume that A is a 4-bit number. Draw a logic diagram using a binary adder,
multiplexers, and inverters as necessary.

Design a 4-bit arithmetic unit as follows:

S I F
A plus B

Assume that A and B are 4-bit numbers

Design an ALU to perform the following operations:

O B
XO

_ _ _ _
Assume that x and y are 4-bit numbers, and B= y3 y , y , y,. Draw a logic diagram.

Assume two 2’s complement signed numbers, M = 1 1 1 1 1 1 1 1 , and Q = 1 1 1 1 1 100,.
Perform the signed multiplication using the algorithm described in Section 7.2.2.

What is the purpose of the control unit in a microprocessor?

Draw a logic diagram to implement the following register transfers:
(a) If the content of the 8-bit register R is odd, then

x + x o y
else x+ x AND y

Assume x and y are 4 bits wide.
(b) If the number in the 8-bit register R is negative, then x + x - 1 else x -

x + 1. Assume x and y are 4 bits wide.

Discuss briefly the merits and demerits of single-bus, two-bus, and three-bus
architectures inside a control unit.

What is the basic difference between hardwired control, microprogramming, and
nanoprogramming? Name the technique used for designing the control units of
the Intel 8086, Motorola 68000, and PowerPC.

Using the following components: 4-bit general-purpose register, 4-bit
adderhubtractor, and tristate buffer, and assuming the inbus and outbus are

Design of Computer Instruction Set and the CPU 289

4 bits wide, design a control unit using hardwired control to perform the
following operations. You may use counters, decoders, and PLAs as required.

I

Clock R 4

4-bit General c
Purpose Register

~

7.23

7.24

7.25

4

D-

1

F 4 4

X
,L-4

Control
Input

t
Y

R C L D Clock

0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 0 0 0 .J
0 0 0 0 .J

Control
Input

1

0

Control
Input

1
0

Action
Clear
Load External d
Decrement by (
Logical Right Sl
No Change

F
I + r
I - r

Y

X
High

lmpedence

(a)

(b)

Outbus - 4 x A . Assume A is a 4-bit unsigned number and the result is
4 bits wide.
If the 4-bit number in register B is odd, outbus +- 0; otherwise outbus -
A + (B I 2). Assume A and B are unsigned 4 bit numbers. Also, assume
data is already loaded into B.
If the content of a 4-bit register Q = 0, perform R + M and then transfer
the 4-bit result to outbus. On the other hand, if the content of the 4-bit
register Q # 0, perform R - 0 and then transfer the 4-bit result to the
outbus. Assume M and R are 4 bits wide.

(c)

Repeat Problem 7.22 using microprogramming.

Discuss the basic differences between microprogramming and nano-
programming.

(a) A conventional microprogrammed control unit includes 1024 words by
85 bits. Each of 5 12 microinstructions are unique. Calculate the savings
if any by having a nanomemory. Calculate the sizes of microcontrol
memory and nanomemory.
Consider the following 14 x 6 microprogram using a conventional
control memory:

(b)

290

s1

1

Fundamentals of Digital Logic and Microcomputer Design

so Y,

0 1 4
0 0 0 Circuit

-
o x , so

1 1 1

0000
000 1
0010
001 1
0100
0101
01 10
0111
1000
1001
1010
101 1
1100
1101
1110

000001
00001 1
0000 10
00001 1
0000 1 0 B 000001

Implement this microprogram in a nanomemory. Justify the use of either a single-
control memory or a two-level memory for the program.

7.26 Discuss the basic differences between CISC and RISC.

7.27 Design and implement a combinational circuit that will work as follows:

Shift left A
A lus B lus 1

1 Shift left A + 1
Note that A and B are 4-bit operands

7.28 i) Design a combinational circuit that will satisfy the following
specification.

ii) Using the results of part i), design a 4-bit, 8-function arithmetic unit
ii) will function as described next:

A plus B
0 A plus

that

Design of Computer Instruction Set and the CPU

1
1
1

29 1

0 1 A plus B plus 1
1 0 A plus B plus 1
1 1 A

1 1 1 0 1 0 I A plus 1 I

0 l o 1 1
0 1 1 l o

A plus E
A plus B

7.29 Design a 4-bit, 8-function arithmetic unit that will meet the following
specifications:

1
1
1
1

s 2 I s 1 I so I F
0 l o l o I 2A

0 0 2Aplus 1
0 1 A plus B plus 1
1 0 A plus B plus 1
1 1 A

I o I 1 I 1 I ~ m i n u s 1 I

(b) Using another selection bit S1, modify the circuit of i) to include the
arithmetic and logic functions as follows:
- s1 - SO FUNCTION TO BE PERFORMED
0 0 F = A p l u s B
0 1 F - B
1 0 F = shift left (logical) A
1 1 F = A

(c) Design a 4-bit logic unit that will function as follows:

7.3 1 Design and implement a 6 x 6 array multiplier.

7.32 Design an unsigned 8 x 4 non-additive multiplier using additive-multiplier-
module whose block diagram representation is as follows:

292 Fundamentals of Digital Logic and Microcomputer Design

M Q

1
P - M.0- Y

Assume that M, Q, and Y are unsigned integers.

7.33 Using four 256 x 8 ROMS and 4-bit parallel adders, design a 8 x 8 unsigned,
nonadditive multiplier. Draw a logic diagram of your implementation.

7.34 Consider the registers and ALU shown in Figure P7.34:

C, -

Load 8

The intemretation of various control points are summarized as follows:

R minus S A + F
R and S
R EX-OR

FIGURE P7.34

Answer the following questions by writing suitable control word(s). Each control
word must be specified according to the following format: C, C , C2 C, Co
For example:

c4 c3 c2 c, co
1 0 0 0 1 ; A - A p l u s B

Design of Computer Instruction Set and the CPU 293

(a)

(b)

How will the A register be cleared? (Suggest at least two possible ways.)
DIRECT CLEAR input is not available.
Suggest a sequence of control words that exchanges the contents of A
and B registers (exchange means A .E- B and B -+ A).

7.35 Consider the following algorithm:
Declare registers A [8], B [8], C [8];
START: A - 0; B * 0000 10 10;
LOOP: A + A + B; B + B - 1;

If B < > 0 then go to LOOP
C c- A;

HALT: Go to HALT
Design a hardwired controller that will implement this algorithm.

7.36 It is desired to build an interface in order establish communication between a 32-
bit host computer and a front end 8-bit microcomputer (See Figure P7.36). The
operation of this system is described as follows:
Step 1: First the host processor puts a high signal on the line “want” (saying that

it needs a 32-bit data) for one clock period.
Step 2: The interface recognizes this by polling the want line.
Step 3: The interface unit puts a high signal on the line “fetch” for one clock

period (that is it instructs the microcomputer to fetch an 8-bit data).
Step 4: In response to this, the microcomputer samples the speech signal,

converts it into an 8-bit digital data and informs the interface that the
data is ready by placing a high signal on the “ready” line for one clock
period.

Step 5: The interface recognizes this (by polling the ready line), and it reads the
8-bit data into its internal register.

.Step 6: The interface unit repeats the steps 3 through 5 for three more times (so
that it acquires 32-bit data from the microcomputer).

Step 7: The interface informs the host computer that the latter can read the 32-bit
data by placing a high signal on the line “takeit” for one clock period.

Step 8: The interface unit maintains a valid 32-bit data on the 32-bit output bus
until the host processor says that it is done (the host puts a high signal on
the line “done” for one clock period). In this case, the interface proceeds
to step 1 and looks for a high on the “want” line.

(a)
(b)
(c)
(d)

Provide a Register Transfer Language description of the interface.
Design the processing section of the interface.
Draw a block diagram of the interface controller.
Draw a state diagram of the interface controller.

294

Speech Sample and hold

signat -* plus
lowpass titter

-*

Fundamentals of Digital Logic and Microcomputer Design

want
Micro- fetch Interface +-- 32-blt

-* computer t-

7.37 Solve Problem 7.35 using the microprogrammed approach.

7.38 Design a microprogrammed system to add numbers stored in the register pair AB
and CD. A, B, C, and D are 8-bit registers. The sum is to be saved in the register
pair AB. Assume that only an 8-bit adder is available.

7.39 The goal of this problem is to design a microprogrammed 3rd order FIR (Finite
impulse response) digital filter. In this system, there are 4 coefficients w,, w,,
w,, and w3. The output y , (at the kth clock period) is the discrete convolution
product of the inputs (x ~) and the filter coefficients. This is formally expressed as
follows:

y , = wg *x, + WI *xk-1 + w2* x,-2+ w,* Xk-3
In the above summation, x, represents the input at the kth clock period

while xk-, represents input at (k- i)th sample period. For all practical purposes, we
assume that our system is causal and so xi = 0 for i < 0. The processing hardware
is shown in Figure P7.39. This unit includes 8 eight-bit registers (to hold data and
coefficients), N D (Analog digital converter), MAC (multiplier accumulator), and
a D/A (Digital analog converter). The processing sequence is shown below:

1 Initialize coefficient registers
2
3
4

5
6
7

Clear all data registers except x,
Start N D conversion (first make sc = 1 and then retract it to 0)
Wait for one control state (To make sure that the conversion is
complete)
Read the digitized data into the register x,
Iteratively calculate filter output y, (use MAC for this)
Pass y , to D/A (Pass Accumulator’s output to D/A via Rounding
ROM)

8 Movethedatatoreflectthetimeshift(x,_,=x,_, , X ~ . ~ - X , - ~ -

9 G o t 0 3
(a) Specify the controller organization.
(b) Produce a well documented listing of the binary microprogram

Design of Computer Instruction Set and the CPU 295

sc
(slan mnverston)

AnalDg

(mnicient databus)

dm
(data move)

(dala dear)

Deader

i-' I I I I I l l I I

le
(baa enable)

I
I- - I I

I

I-
L - - - - - - - - - - - - - - -

filter

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Rounding

16

? MAC

FIGURE P7.39

7.40 Your task is to design a microprogrammed controller for a simple robot with 4
sensors (see Fig. A). The sensor output will go high only if there is a wall or an
obstruction within a certain distance. For example, if F= 1, there is an obstruction
or wall in the forward direction. In particular, your controller is supposed to
communicate with a motor controller unit shown in Fig. B. The flow chart that
describes the control algorithm is shown in Fig. C. The outputs such as MFTS,
MRT, MLT, MUT, and STP, andd the status signals such as FMC, and TC will be
high for one clock period. Assume that a power on reset causes the controller to
go the WAIT STATE 0.

296

F 1

R 1

L ,1 *
B 1

Fundamentals of Digital Logic and Microcomputer Design

1

1

I Make a U-Turn (MUT)

Make a Right Turn (MRT)

Make a Left Turn (MLT) -

Robot
1 Stop robot(STR)

1

F: forward direction sensor
R: right direction sensor
L: left direction sensor
B: backward direction sensor

Figure A

FIGURE P7.40a
(a) Specify the controller organization.

Stan

Clock

$ 4 4 4 4
Motor

controller
unit

Turn Completed (TC)

Fonvard Motion Completed (FMC)

Figure 0

FIGURE P7.40b
(b) Provide a well documented listing of the binary microprogram.

Design of Computer Instruction Set and the CPU 297

MFTS = 1 b
No

No
A MRT = 1

1r
MLT = 1

L
r

I’

STP = 1 9 Wait slate 6-

-7i Wait slate

+J$ = l ?

L .
r

Figure C

FIGURE P7.40~

7.41 It is desired to add the following instructions to the instruction set shown in
Figure 7.54.

(a) MVIA tdata8) A 6 (data% This is an immediate mode move
GENERAL FORMAT OPERATION DESCRIPTION

instruction.
The first byte contains the op-code
while the second byte contains the 8-
bit data.

(b) NEGA A + - A This instruction negates the contents
o f A

Write a symbolic microprogram that describes the execution of each instruction.

7.42 Explain how the effect of an unconditional branch instruction of the following
form is simulated:
JP taddri

298 Fundamentals of Digital Logic and Microcomputer Design

Use the instruction set shown in Figure 7.54.

7.43 Using the instruction set shown in Figure 7.54, write a program to add the contents
of the memory locations 64,, through 6D,, and save the result in the address
6%

7.44 Show that it is possible to specify 675 microoperations using a 10 bit control
function field.

7.45 A microprogram occupies 100 words and each word typically emits 70 control
signals. The architect claims that by using a 2’ x 70 nanomemory (for some i > 0),
it is possible to save 4260 bits. If this were true, determine the number of distinct
control states in the original microprogram (Note that here when we say a control
state we refer only to the control function field).
Hint: You may have to employ a trial and error approach to solve this problem.

