
APPENDIX 

VERILOG 

1.1 Introduction to Verilov 

Verilog describes a digital system as a set of modules. A module is a basic block in 
Verilog. A typical Verilog segment is given below: 

module <module name> // A typical Module 
<port list> 
<declarations> 
<module items> 
endmodule 

In the above, the module is defined by the keyword module and endeded by 
the keyword endmodule .  The <module name> identifies a module uniquely. This means 
that a name or an identifier is assigned to a module to identify it. This name must start with 
an alpha character rather than a number. The two slashes (//) shown in the above Verilog 
module is used before a single line comment. Verilog module, when invoked, creates a 
unique object containing its name, variables, parameters, and inputloutput interface. The 
objects are called instances and the process of obtaining objects from modules are known 
as instantiation. Each port in the <port list> is defined by keywords i n p u t  and o u t p u t  
based on the port directions. Verilog also supports bidirectional ports which can be defined 
by keyword i n o u t .  The ports are included in parentheses with commas separating them. 
A semicolon (;) is used to terminate the port statement. Ports provide' the module with a 
means to connect to other modules. The wire declaration by keyword w i r e  provides 
internal connection in Verilog. All port declarations in Verilog are inherently defined as 
wire. This means that a port is automatically declared as a wire if it is defined as i n p u t  
or o u t p u t ,  or i n o u t .  

Verilog includes a set of built-in logic gates such as OR, AND, XOR, NOT, 
NOR, NAND, and XNOR. The outputs of these gates are one-bit data and are declared 
as w i r e  in Verilog. The built-in gates are utilized to provide a structural design called 
netlist. The Netlist facilitates connections between one-bit wires and logic gates. Ports can 
be internal or external to a module. Certain rules for port connections must be followed 
for the Verilog simulator when modules are instantiated within other modules. Input ports 
must be of the type Net (for all) internally. On the other hand, the inputs can be connected 
externally to a variable which is reg or a w i r e .  The output ports can be of the type 
reg or w i r e  internally. Output must always be connected to a w i r e  (not reg) externally. 
The i n o u t  ports must always be of type w i r e .  i n o u t  ports must be connected to w i r e  

externally. 
Nets mean connection between hardware elements. Nets are driven continuously 
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by the outputs of devices they are connected to. Nets are typically declared by the keyword 
wire. Net is a class of data that includes w i r e  as one data type. Verilog registers (defined 
by keyword r e g )  typically retain their values until a new value is stored. Verilog registers 
are different from hardware registers which need a clock. Verilog register does not require a 
clock. Also, Verilog register does not need a driver like the net. Values of Verilog registers 
can be changed anytime during simulation by replacing with another value. 

Keywords reg and wire are one-bit wide by default. To define a wider reg or 
wire, the left and right bit positions are defined in square brackets separated by a colon. 
For example, reg [7:0] a,b; declares two variables a and b as 8 bits with the most 
significant bit as bit 7 ( a[7] or b[7] ) and the least significant bit as bit 0 ( a[O] or b[O] ). 
Verilog contains approximately 100 keywords. Verilog keywords and identifiers are case 
sensitive. This means that Fulladder and full-adder are distinct variables. Also, Verilog 
keywords are reserved, and cannot be used as names. 

The <declarations> define data objects as registers or wires. The <module 
items> for behavioral modeling (to be discussed later) may be initial block or always block. 
Verilog uses keywords b e g i n  and e n d  like Pascal to define a block. A typical initial 
block is defined by using keyword i n i t i a l .  The statements are contained between 
keywords b e g i n  and e n d  as in conventional programs. The. always block is defined in a 
similar manner except that a l w a y s  instead of i n i t i a l  is written before b e g i n .  The 
a l w a y s  block is executed continuously and cannot be interrupted unless time control 
feature of Verilog utilizing symbols such as @ is used. Note that the output of a typical 
combinational logic circuit is altered with changes in input(s). The Verilog simulator 
can use a l w a y s  along with the symbol @ to stop execution of the a l w a y s  block 
continuously until changes in one or more inputs occur. For example, the statement 
a l w a y s  @ (a  o r  b o r  c) means that a, b, and care three inputs to be used in the 
always block that follows. The symbol @ allows the simulator to execute an i n i t i a l  
block that may follow as long as there are no changes in the inputs; however, the always 
block will be executed whenever changes in inputs occur. Note that all procedural blocks 
are active concurrently. Constants in Verilog are decimal integers by default. However, 
the syntax ‘b,’d, or ‘h can be used before a number to define it as binary, decimal or 
hexadecimal. Furthermore, the total number of bits in a number can be represented by 
placing the number before the quote. For example, 4 ’ b l l l l  and 4’hf will represent 15 
in decimal. 

Verilog provides a conditional operator denoted by the symbol ?. For example, 
consider the statement, a s s i g n  z = s ? x : y; . Thismeans that ifs=l thenz=x, 
else z=y for s=O. Note that in this expression, s is the condition, z=x is the true expression 
while z=y is the false expression. Also, Verilog keyword p a r a m e t e r  declares and assigns 
value to a constant. For example, parameter x = 5;  will assign the value of integer 5 to x. 
Nesting ofmodules is not permitted in Verilog. That is, a module cannot be placed between 
module  and e n d m o d u l e  of another module.  However, modules can be instantiated within 
other modules. This provides hierarchical modeling of design in Verilog. The name of a 
Verilog module is not available outside the module unless hierarchical modeling is used. 
The instance names must be defined when modules are instantiated. 

Verilog offers a feature called reduction operator for the logic operations and, 
nand, or, nor, xor and xnor. The reduction operation is performed bitwise from right to left 
on the bits of the same word. As an example, consider the reduction operation &x where 
x is a 4-bit number. In this case, the operation &x means x[3]&x[2]&x[ l]&x[O]. 

To precisely model all logical conditions in a circuit, each bit in Verilog can be 
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one of the following: l’bO, l’bl ,  l’bz (high impedance), or I’bx (don’t care). l’bO and 
1 ’bl respectively correspond to 0 and 1. Verilog includes 1 ’bz for the situation when 
the designer needs to define a high impedance state. Furthermore, Verilog includes 1 ’bx 
to specify a don’t care condition. Sometimes, miswiring of gates may also result into an 
unknown value of the output in certain situation. For example, if the designer makes a 
mistake and connects outputs of two gates together. This output may want to assume a 
value of either 0 or 1. This may cause physical damage to certain logic families. In order 
for the simulator to detect such problems, 1 ’bx (don’t care) definition can be used for the 
output. 

A Verilog simulator includes a built-in system function called $time for 
representing simulated time. This means that $time provides a measure of actual time for 
the hardware to function when fabricated. $time is expressed as an integer value rather 
than by time units such as seconds. However, designers typically use one time unit 
as one nanosecond. Time control statements may be included in Behavioral Verilog. A 
statement will not be executed with the symbol # followed by a number until the specified 
number of time steps has elapsed. This allows Verilog to model propagation delays of 
logic gates. The symbol # when used in test programs generates a sequence of patterns at 
particular times that will behave like inputs to the hardware being designed. Also, if the 
symbol @ is used before a statement, the statement that follows will not be executed until 
the statement with @ is completed. 

The test bench for the simulation is normally written by the designer. The test bench 
tests the Verilog design by applying stimulas and providing outputs during simulation. 
Test benches utilize procedural blocks which start with either the keywords initial or 
always for providing stimulas for the test circuit. An example of a simple initial block 
is provided below: 
initial 

begin 
#O 

#50 

#50 

x=l’bO; y=l’bO; z=l’bO; 

x=l’bO; y=l‘bO; z=l’bl; 

x=l‘bO; y=l’bl; z=l’bO; 
end 

In the above, keywords begin and end are used to define the block with the time 
units defined by the symbol #. At time = 0, x = 0, y = 0 and z = 0. At time = 50 ns, x = 0, y 
= 0 and z =  1. Finally, at time= 100 ns, x =  0, y =  1 a n d z =  0. 

<module name> 
<reg and wire declarations> 
<Instantiate the Verilog design> 
<Generate stimulus using initial and always keywords 
<Produce the outputs using $monitor for verification> 
endmodule 

The inputs applied to the test (design) block for simulation are declared in the 
stimulus block as reg data type. The outputs (responses) of the test block that are to be 
monitored and verified are declared as wire data type. The test block has no inputs or 
outputs. The stimulus block produces inputs for the test block and verifies the output of the 

A simple test bench has the following structure: 
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test block. initial and always procedural blocks can be used to produce the output. 
The simulator can represent the output as waveforms or in tabular form using Verilog 
system tasks such as $monitor. The syntax for $monitor is provided below: 
$monitor ( “time = %d x = %2d y = %3d z = %2b”, 

$time, x, y, 2 ) ;  

Verilog system task, $monitor can be used to display the output of the design 
block under test. Verilog simulator allows the output to be represented in binary ( %b or 
%B), octal (%o or %O), decimal ( %d or %D) or hexadecimal ( %h or %H). $time is a 
built-in function that provides the simulation time. In the above $monitor statement time, x, 
and y are displayed in decimal while z is represented in binary. Another way to display the 
output is by using system task $display. Notethat $display is used to display one time 
value of variables. In contrast $monitor displays variables whenever changes in variables 
occur during simulation. The syntax for $display is $display (“%b%d“, x, y) : which 
will display x in binary and y in decimal. As mentioned before, there are three levels of 
abstractions in Verilog. These are Structural, dataflow, and behavioral modeling. They 
can be combined in an application. These abstractions are described along with Verilog 
programming examples. 

Verilog provides primitives which can be defined by the user to represent truth 
table in a tabular form. These primitives are called User-Defined Primitives (UDP). 
UDP descriptions are enclosed by keywords primitive and endprimitive rather than 
keywords module and endmodule. There are two types of UDPs. These are Combinational 
UDPs used for combinational circuits and Sequential UDPs used for sequential circuits. 
As an example, a Verilog description using Combinational UDP for the 2-to1 multiplexer 
of Table 4.1 1 is provided below. The truth table for the 2-to-1 multiplexer from Table 
4.11: 
Select input, S Output, Z 

0 do 
1 d,  

//2tol multiplexer 
primitive mux2tol (z,dO,dl,s); 
output 2 ;  

input d0,dl; 
input s; 
//Truth table is enclosed by keywords table and endtable 
//The inputs are listed in order followed by colon(:) 
//The output is always the last entry followed by semicolon(;) 
//The symbol? in the table is used to represent don’t care 
//condition 
table 
/ /  dO dl s : z 

l ?  0 : l ;  
O ?  0 : o ;  
? 1 l : l ;  
? 0 1 : o ;  

endtable 
endprimitive 
/ /  stimulus for 2tol mux using UDP 
module mux-stimulus; 
reg i0,il; 
reg s; 
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wire out; 
mux2tolmux(out, i0, il, s) ; 
initial 
begin 
/ /  set inputs 
iO=1 , il=O; 
#1 $display ("iO=%b, il=%b", i0, il) ; 
//select i0 
s=O ; 
#1 $display("s=%b, out=%b", s,out) ; 
//select il 
s=l ; 
#1 $display ("s=%b, out=%b", s, out) ; 
end 
endmodule 
//simulation outputs 
iO=1, il=O 
s=o,  out=l 
s=l , out=0 

1.1.1 Structural Modeling 
The following Verilog structural description is provided for the 2-to-4 decoder of Figure 
4.14. The figure is redrawn below for convenience: 

/ /  Structural description of a 2-to-4 decoder 
module decoder2to4 (xl, x0, e, d); 

input xl, x0, e; 
output [0:3] d; //output vector d must be declared as wire. 
wire [0:3] d; //if vector d is not declared as wire, Verilog 
wire xll, x00; //will make vector d one bit by default. 
not 

invl (xll, xl), 
inv2 (x00, x0); 

andl (d[Ol, xll, xOO,e), 
and2 (d[l], xll, x0, e), 
and3 (d[2], xl, x00, e), 
and4 (d[3], xl, x0, e); 

and 

endmodule 
The above structural description for the 2-to-4 decoder contains three inputs 

(xl, x0, e), and four outputs (d[O] through d[3]). The wire declaration provides internal 
connections. Two NOT gates are used to obtain complements xl 1 and x00 of the inputs xl 
and x0 respectively while the four AND gates are used for the outputs d[O] through d[3]. 
In the gate list such as andl (d [ O] , xll, xoo, e )  ; , the output d[O] is always listed 
first followed by inputs x l l ,  x00, and e. The keyword and is written once for all AND 
operators, and in this case, provides output d[O] by logically ANDing xl 1, x00, and e. 
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Note that the Verilog keywords and names are case sensitive. Also, Verilog keywords are 
reserved, and cannot be used as names. Note that if a Verilog operation is required several 
times in a program such as not requiring twice in the above , the Verilog code can be 
written in two ways. The two not operations, in the above, are written using the keyword 
not followed by two different labels invl and inv2 separated by commas, and terminated 
by ;. An alternate Verilog code for the two not operations can be written as follows: 

not (xll, x l ) ;  
not (x00, x0); 
Similarly, alternative codes for other logic operations in the above can be written. 

A module instantiation statement associates the signals in the module instantiation with 
the ports in a module definition. There are two ways to represent the association. These 
are positional association, and named association. These two methods cannot be mixed. In 
positional association, each signal in the module instantiation is mapped by position to the 
corresponding signal in the module definition. 
In order to illustrate positional association, consider the following Verilog program: 
module system; 

wire [3:0] d; 
subsystem fl (d[3], d[ll, d[21, d[01); 

endmodu le 
module subsystem (w, x, y, z); 

input x, y; 
output w, z; 

endmodu le 
In the above program, the module system has an instance of the module subsystem 

inside it. The connections to the subsystem are made by placing the bit vectors of the 
identifier (d in this case) at the desired positions in the port definitions of the subsystem 
module. In the above, d[3] is associated with w, d[l] with x, d[2] with y, and d[O] with z. 
The ordering must be done properly. Therefore, in the positional association, the names of 
the connecting signals must be included at the appropriate positions in the module port list. 
Positional association is used for small systems while named association is used for large 
systems. 

In the named association, Verilog connects external signals by the port names 
rather than by positions. The port connections can be specified in any order as long as the 
port names in the module definition precisely match the external signals. For example, 
the above Verilog program with positional association can be rewritten using named 
association as follows: 
module system; 

wire [3:0] d; 
subsystem fl (.w(d[O] ) ,  . x ( d [ 3 1  ) ,  .y(d[Zl ) ,  .z(d[l] ) ) ;  

endmodu 1 e 
module subsystem (w, x, y, z); 

input x, y; 
output w, 2 ;  

e ndmodul e 
In the above, d[O] is associated with w, d[l]  with z, d[2] with y, and d[3] with 

x. The ordering of the ports of instance fl of subsystem module is not important because 
the signals are associated by names. Note that if an instance of a module contains an 
unconnected port, the position of the port in the instantiation is left empty. For example, 
consider a module representing a three-input OR gate with declaration as or3 (f, a, b, c); 
. If it is desired to keep the input at position b unconnected, an instance of or3 will be 
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or3 (f, a, , c); . Note that an unconnected module input is placed in high impedance state 
automatically, and unconnected outputs are not used. 

1.1.2 Dataflow Modeling 
Dataflow modeling in Verilog allows a digital system to be designed in terms of its function. 
Dataflow modeling utilizes Boolean equations, and uses a number of operators that can act 
on inputs to produce outputs. Some of the operators are listed in the table below: 
Verilog operators 
Operation Symbol 
Arithmetic addition + 
Subtract -_ 
NOT of a single bit ! 
AND between two operands && 

OR between two operands I /  
Bit-by-bit NOT - 
Bit-by-bit logical AND & 

Bit-by-bit XOR A 

Logical Equality __ 

Bit-by-bit logical OR I 

Bit-by-bit XNOR - A  or A, 

__ 
Less than < 
Greater than > 
Conditional ? 
Concatenation { }  

All Boolean equations are executed concurrently whenever any one of the values 
on the right hand side of one or more equations changes. This is accomplished using 
Verilog’s continuous assignment statement. This statement uses the keyword assign. A 
continuous assignment statement is used to assign a value to a net. A net is not a verilog 
keyword. It is used to specify the output (defined by output or wire using declaration 
statements) of a gate. For example, consider the following assignment statement: 
assign e = (a * b) & ( -  c I d); 

The Boolean expression on the right hand side of the above equation is first 
evaluated, and the AND gate output is connected to wire e. In order to illustrate dataflow 
modeling in Verilog, consider the following program for a 2-to-4 decoder: 
module decoder2to4 ( e ,  a, b, do, dl, d2, d3); 

input e, a, b; 
output do, dl, d2, d3; 
assign dO = ( e  & -a & -b); 
assign dl = (e & - a & b); 
assign d2 = (e & a & -b); 
assign d3 = ( e  & a & b); 

endmodu 1 e 

equations using Boolean operators. 
The above dataflow program uses Verilog keyword assign followed by Boolean 

1.1.3 Behavioral Modeling 
The Behavioral description in Verilog is used to describe the function of a design in an 
algorithmic manner. Behavioral modeling is used in the initial stages of a design process to 
determine design-related tradeoffs. Behavioral modeling in Verilog uses constructs similar 
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to C language constructs. Verilog provides two types of procedural blocks. They are 
represented using keywords initial (an initial block executes once), and always (an 
always block executes continuously until simulation ends). The designer typically uses 
“initial” procedural block to provide initializations for a simulation, and produce stimulus 
waveforms for a simulation test bench. 

The “always” procedural block provides a cyclic activity flow from simulation 
time of zero. This means that the procedural statements in the always block are executed 
continuously until simulation ends. The procedural statements in behavioral modeling 
execute sequentially in the order they are listed in the source code. The outputs of the 
procedural statements must be declared by the keyword reg. Input ports cannot be declared 
as reg since they do not normally retain values, rather affect the changes in the external 
signals they are connected to. Note that a reg data type retains its value until a new value 
is assigned. As an illustration of behavioral modeling, Consider the following Verilog 
program written using Behavioral modeling for the 2-to-4 decoder: 

module decoder2to4 (e, i f  d) ; 
output [3:0] d; 
input [l:O]i; 
input e; 
reg [3:0] d; 

always @ (i or e) 
if (e==l) 

begin 
case (i) 

0: d = 4’b 0001; 
1: d = 4’b 0010; 
2: d = 4‘b 0100; 
3: d = 4‘b 1000; 
default d = 4‘b xxxx; 

endcase 
end 

else 
d = 4‘b 0000; 

endmodule 
In the above, i (2-bit) and e (1-bit) are declared as inputs while d is declared 

as 4-bit reg output. The conditional statement if-else allows execution of the case 
statements if e=logic 1.  Note that the decoder is enabled when enable line, e equals logic 
1. The logical operator == is used for logical equality in the if expression. If e= logic 1 
, the statements (between case and endcase) are executed sequentially. The statement 
if (e==l) is executed as soon as any of the inputs after @ in the always statement 
changes. The case statement is used for multiple branching. For example, case (i) 
determines the value of the 2-bit vector, i and compares it with the values with the list of 
the statements. The assignment statement associated with the first value that matches is 
executed. Since the vector i is a two-bit vector, it can be any of the four values from 0 to 
3. For example, consider the statement 2: d= 4’bOlOO; . If i = lo,( 2 in decimal), then 
the case statement after executing 2: d= 4’bOlOO; will assign four-bit vector, d with the 
binary value 0100. This means that the line 2 of the decoder output is high while others are 
low. An optional default value can be used for the case statement. This is for assigning 
other values such as don’t care (x) or high impedance (z). Also, in the above, if e= logic 
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0, the 4-bit output vector,d is assigned with low values. This is shown as part of the else 
statement. This means that the decoder is disabled. 

1.2 

In the following, Verilog descriptions of typical combinational logic circuits 
provided. 

Verilog descrbtions of tvDical combinational logic circuits 

are 

i) Write a Verilog description for a full adder using two half adders and an OR gate as 
described in Section 4.5.1. 
Solution 
Assume x, y, z as three inputs and cout,sum as the two outputs of the full adder. x and y 
can be applied as the inputs to the first half adder generating sum, s l  = x 0 y and carry, 
c l  = xy. sl  can be applied as one of the inputs to the second half adder with z as the other 
input. The second half adder will produce a sum, 
sum = x 0 y 0 z which is the desired sum of the full adder. The carry output, c2 of the 
second half adder will be (x 0 y) z. c l  and c2 can be logically ORed together to provide 
the carry output (cout) of the Full adder. 
The Verilog description is given below: 
/ /  Half Adder 
module half-adder (s ,  c, x, y )  ; 

output s,c; 
input x,y; 
xor (s,x,Y); 
and (c,x,Y); 

endmodule 
/ /  Full adder is obtained by instantiating half adder twice 
/ /  (Hierarchical modeling) 
module full-adder (sum, cout, x, y, z )  ; 

output sum,cout; 
input x ,y , z ;  
wire sl,cl,c2; 
half-adder Bl(sl,cl,x,y); 
half-adder B2 (sum,c2, sl, z )  ; 
or (cout, cl, c2) ; 

endmodu 1 e 
ii) Write a Verilog description along with the test bench for a 4-bit ripple-carry adder using 
behavioral modeling. 
Solution 
Although the following program may not be an efficient one, it is included for illustrative 
purposes. As mentioned before, the test bench usually does not have any inputs and 
outputs. The inputs applied for simulation are declared as reg data type while the outputs 
to be obtained from the simulation are declared as wire data type. Therefore, in this test 
bench, the inputs (a, b, cin) to the design module are declared as reg data while outputs 
(s, cout) are declared as wire data type. The initial block specifies several values to be 
applied during simulation. The outputs are verified with the $monitor system task. The 
simulator displays time, inputs, and outputs in binary (since %b is used) as soon as there 
is a change in one or more input values. Note that the concatenate operator { } in {cout,s} 
is used to combine cout and s as a 5-bit output. 
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/ /  4 bit adder 
module adder4 (cout, s, a, b, cin) ; 

output cout; 
output[3:0] s; 
input [ 3 : 01 a, b; 
input cin; 
reg[3,01 s; 
reg cout; 
always @ (a or b or cin) 

{ cout, s } = atbtcin; 
begin 

end 
endmodule 

/ /  Test bench 
module adder-test; 

/ /  declare variables 
reg [3:0] a ,b ;  
reg cin; 
wire [3:01 s; 
wire cout; 

/ /  Instantiate 
adder4 A1 (cout, s, arb, cin) ; 

initial 
begin 

$monitor ($time, "a=%b, b=%b, cin=%b, cout=%b, s=%b", 
a, b, cin, cout,~); 

end 

initial 
begin 

/ /  Stimulus inputs 

a = 4'bOOOl; b = 4'b0010; cin = l'bO; 
#10 a = 4'bOlOl; b = 4'bOOlO; 
#10 a = 4'blOOO; b = 4'blOlO; 
#10 a = 4'blOOl; b = 4'b0111; 

end 
endmodu 1 e 
/ /  Simulation outputs 

0 a = 0001, b = 0010, cin = 0, cout = 0, s = 0011 
10 a = 0101, b = 0010, cin = 0, cout = 0, s = 0111 
20 a = 1000, b = 1010, cin = 0, cout = 1, s = 0010 
30 a = 1001, b = 0111, cin = 0, cout = 1, s = 0000 

iii) Write a Verilog description for a BCD to seven-segment code converter (Section 4.4) 
for driving a common-cathode display for displaying the decimal digits 2, 4, and 9. The 
converter will turn the display OFF for any other inputs. 
S o h  tion 
module code-converter (bcd-in,seven-seg-out); 

input [3:0] bcd-in; 
output [6:0! seven-seg-out; 

reg [6:0] seven-seg-out; 
/ /  bcd-in = abcdefg 
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parameter two = 7’b1101101; 
parameter four = 7‘b0110011; 
parameter nine = 7’b1110011; 
parameter other = 7’b0000000; 
always @ (bcd-in) 

case (bcd-in) 
2: seven-seg-out = two; 
4: seven-seg-out = four; 

seven seg-out = nine; 9: 
default: seven-seg-out = other; 

- 

endcase 
e ndmodu 1 e 

EXAMPLE 1.1 
Write a Verilog description for f= A + B (Section 3.6) using structural modeling. 
Solution 
/ /  file name: func.v 
//written using structural modeling 
module func(a, b, c, f); 

input a, b, c; 
output f; 
wire yo, yl; 
not (yor C )  ; 
and(y1, b, YO); 
or(f, yl, a); 

endmodule 

EXAMPLE 1.2 
Write a Verilog description for a two-input exclusive-OR gate using structural modeling. 
Solution 
The program is written as follows: 
/ /  Exclusive OR operation 
/ /  file name: xor-1.v 
module xor-1 (a, b, y ) ;  

input a, b; 
output y; 
xor (y, a, b); 

endmodu 1 e 

EXAMPLE 1.3 
Write a Verilog description for a 2 to 4 decoder with one high enable as described in 
section 4.5.3. Use (a) behavioral modeling (b) dataflow modeling . 
Solution 
(a) Using behavioral modeling: 
Note that { ] is concatenate operator in Verilog. 
module decoder(Y3, Y2, Y1, YO, A, B, en); 

/ /  Define inputs and outputs 

input A, B; 
input en; 
reg Y3, Y2, Y1, YO; 

output Y3, Y2, Y1, YO; 
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always @ ( A  or B or en) 
begin 
/ /  Use behavioral method for decoder 
if (en == 1) 
begin 

case ( { A , B )  ) 
2'bOO: {Y3,Y2,Yl,YO} = 

2'bOl: {Y3,Y2,Yl,YO) = 

2'blO: {Y3,Y2,Yl,YO} = 

2'bll: {Y3,Y2,Yl,YO] = 

default: {Y3,Y2,Yl,YO) 
endcase 

end 
if (en == 0) 
{Y3,Y2,Yl,YO) = 4'bOOOO; 
end 
endmodule 
(b) Using dataflow modeling: 
/ /  2-to-4 decoder 
/ /  file name: dec0der.v 
module decoder(E, X, Y, 20, 21, 22, 

output ZO, 21, 22, 23; 
input E, X, Y; 
assign 20 = E & -X & -Y; 
assign 21 = E & -X & Y; 
assign 22 = E & X & -Y; 
assign 23 = E & X & Y; 

e ndmodu 1 e 

4'bOOOl; 
4'bOOlO; 
4'bOlOO; 
4'blOOO; 
= 4'bxxxx; 

2 3 ) ;  

EXAMPLE 1.4 
Write a Verilog description for the 2-to-1 multiplexer of figure 4.21 using structural 
modeling. Figure 4.21 is redrawn below: 

b 
se 

Solution 

/ /  file name: mux2.v 

/ /  1/0 port declarations 
module mux2(a, b, sel, cout); 

output cout; 
input a, b, sel; 

wire yo, yl, y2; 
/ /  Instantiate logic gate primitives 
not ( y o ,  sel) ; 
and(y1, a, YO); 
and(y2, b, sel); 
or(cout, yl, y2); 

/ /  Internal nets 

endmodule 
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EXAMPLE 1.5 
Write a verilog description for a four-bit binary adder using hierarchical modeling. 
Solution 

/ /  Define a 1-bit full-adder 
/ /  file name: fu1ladd.v 
module fulladd(sum, c-out, a, b, c-in); 

/ /  1/0 port declarations 
output sum, c-out; 
input a, b, c-in; 

/ /  Internal nets 
wire sl, cl, c2; 

/ /  Instantiate logic gate primitives 
xor (sl, a, b); 
and (cl, a, b); 

xor (sum, sl, c-in); 
and (c2, sl, c-in); 
or (c-out, c2, el); 

endmodule 

/ /  Define a 4-bit binary adder 
module fulladd4(sum, c-out, a, b, c-in); 

/ /  I/O port declarations 
output [3:0] sum; 

input [3:01 a, b; 
input c-in; 

output c-out; 

/ /  Internal nets 
wire cl, c2, c3; 

/ /  Instantiate four 1-bit full adders. 
fulladd faO(sum[O], cl, a[O], b[O], c-in); 
fulladd fa1 (sum[l], c2, a[l], b[l], el); 
fulladd fa2(sum[2], c3, a[2], b[2], c2); 
fulladd fa3 (sum[3], c-out, a[3], b[31, c3); 
endmodule 
Note: In Verilog, nesting of modules is not permitted. That is, a module cannot be placed 
between module and endmodule of another module. However, modules can be instantiated 
within other modules. This provides hierarchical modeling of design in Verilog. In the 
above program, the full-adder is defined by instantiating primitive gates. The next module 
describes the 4-bit binary adder by instantiating four full-adders. The instantiation is done 
by using the name of the module that is instantiated with the same port names in this case. 

EXAMPLE 1.6 
Write a Verilog description for a full-adder using 74138 decoder and gates (Figure 4.17). 
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Solution 
This problem implements a full adder using a 3to8 decoder and two 4 input AND gates 
as shown in figure 4.17 in the text book. Behavioral modeling is used for implementation 
of 3to8 decoder and the 4 input AND gate while Structural modeling is used for the 
interconnection of the decoder with the AND gates using the schematic of figure 4.17 as 
follows: 

S 

C 

that the bubble,O at t 
output indicates LOW when selected. 

The 74138 is a 3to8 decoder with an active low output when selected and 
only driven if the chip enable lines are in a valid state (Gl,  G2A, G2B : 
decoder is not selected, the outputs are tristated. 

-- the outputs 
= 100,). If 

are 
the 

For the 4 input AND gate, the inputs are ANDed using the bit-wise’AND operator “&”. 

//Description: Full Adder Using 3-to-8 MUX with AND gates 
//implementation of a f u l l  adder using 2 four input 
//AND gates and one 3to8 decoder-74138 

//APPROACH:Behavioral. for the implementation of the decoder and 4 input 
//AND gates. 
//Structural approach when combining the decoder and AND gates, 
//decoder74138 3 to 8 decoder with active low outputs. 

//INPUTS: --X, Y, Z (  select lines ) 

/ /  --G1, nG2A, nG2B ( enable lines) 
/ /  Out[7:0] ( eight output lines) 

//OUTPUTS: --high impendance “Z” outputs when chip not selected 
/ /  --active low output on line selected. (if chip selected) 
module decoder74138 (nout, G1, nG2A, nG2B, X , Y , Z); 

output [7:01 n0ut; 
input G1, nG2A, nG2B, X, Y, Z; 
reg [7:0] n0ut; 
always @(G1 or nG2A or nG2B or X or Y or Z) 

begin 

/ /  chip enabled 

/ /  select conditions for select lines w/ active low outputs 

if((G1, nG2A , nG2B) ==3’b100) 

begin 

case ( I X, Y, 2 ) )  
0: nOut[7:0] = 8‘b1111-1110; 
1: nOut[7:0] = 8’b1111-1101; 
2: nOut[7:0) = 8’b1111-1011; 
3: nOut[7:0] = 8’b1111-0111; 
4: nOut[7:0] = 8’b1110-1111; 
5: nOut[7:0] = 8’b1101-1111; 
6: nOut[7:0] = 8’b1011-1111; 
7: nOut[7:0] = 8’b0111-1111; 
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default nOut [7:0] = 8'bx; //this should never happen 
endcase 

end 
else 

/ /  chip disabled 
begin 

end 
nOut [7:0] = 8'hzz; 

end 
endmodule 
//AND4:4 input and gate 

//INPUTS: --A,B, C,D 

//OUTPUTS: --Out AND output of all four inputs 

module AND4 (Out, A, B, C, D) ; 
output out; 
input A,B,C,D; 
reg Out; 
always@(A or B or C or D) 

Out=A & B & C & D; 
begin 

end 
endmodu 1 e 

//Full-Add:Full adder using 3to8 decoder 74138 and 2 four input AND gates 
//INPUTS : -- X , Y , Z ( X bit to add, Y bit to add , Z carry to add ) 

//OUTPUTS: --S = sum bit 
/ /  --C = Carry out bit 
module Full-Add (C,S,X,Y,Z); 

output c , s; 
input X , Y , 2; 

wire [7:0] decoder-out; 

/ /  3 to 8 decoder enabled with bits to be added as inputs 

decoder74138 decoder74138-0( decoder-out [7:01,l'bl,l'bO,l'bO, X , Y , Z); 

/ /  use 4 input AND gates to do final sum and carry 

AND4AND4 - O(S,decoder-out[O] ,decoder-out [3l ,decoder-out [51 ,decoder-out [ 6 l )  ; 

AND4AND4-1 (C,decoder-out[Ol ,decoder-out [11 ,decoder-out[21 ,decoder-out[41) ; 
endmodule 

//Full-Add-Test: test bench for f u l l  adder implemented w/ 3to8 decoder 
//and two 4 input AND gates 

module Full-Add-Test; 
reg X , Y , Z; 
wire S , C ; 

Full-Add Full-Add-0 ( C,S,X,Y,Z); 

initial 
$monitor("Time=%Od, X= %b, Y =  %b, Z= %b, S= %b, C= %b", 

$time, X, Y, Z, S, C); 
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i n i t i a l  
b e g i n  
#O 
X = 1‘bO;Y = 1’bO;Z = l’bO; 
#50 

#50 

#50 

#50 
X = 1‘bl;Y = 1’bl ;Z = l’bO; 
#50 
X = 1‘bO;Y = 1‘bl;Z = l ’ b l ;  
#50  

#50 
X = 1’bO;Y = 1’bO;Z = l‘bO; 
end 
endmodule  
Note: An alternative to Verilog code for the AND4 module in the above is provided 
below. The codes from i n p u t  to a l w a y s  can be replaced by using the reduction operator 
& as follows: 

X = 1‘bO;Y = 1‘bO;Z = l ‘ b l ;  

X = 1‘bO;Y = 1’bl;Z = l’bO; 

X = 1’bl;Y = 1‘bO;Z = l’bO; 

X = 1‘bl;Y = 1’bl ;Z = l ’ b l ;  

i n p u t  [ 3 : 0 1  A; 
reg o u t ;  
a s s i g n  o u t  = & A;  

1.3 

Sequential circuits are typically described in Verilog using behavioral modeling. Verilog 
utilizes two basic statements in behavioral modeling. They are represented using keywords 
i n i t i a l  and a l w a y s .  An i n i t i a l  block is created using an i n i t i a l  statement. The 
i n i t i a l  block executes once during simulation starting at time 0. For several blocks, each 
block executes concurrently at time 0. Each block completes its execution independent 
of the other blocks. Keywords b e g i n  and e n d  are normally used to group multiple 
behavioral statements. Grouping is not required for a single behavioral statement. 
The i n i t i a l  blocks are typically used to provide initializations for a simulation and 
produce stimulus waveforms for a simulation test bench. An a l w a y s  block, on the other 
hand, is defined using an a l w a y s  statement. The a l w a y s  block executes the statements 
continuously starting at time 0 until simulation ends. Furthermore, Keywords i n i t i a l  
and a l w a y s  can be used to generate a clock signal for simulating a sequential circuit. An 
example is provided below: 
module  c lock;  
reg c lk ;  
i n i t i a l  

a l w a y s  

i n i t i a l  

Verilog descriotions of tvpical svnchronous seauential circuits 

clk=l‘bO; 

# 2 0  c lk=-c lk ;  
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#2000 $ f i n i s h ;  
endmodule  

In the above, the i n i t i a l  statement starts the clock at time=O. The a l w a y s  
statement complements the clock every 20 time units with a time period of 40 time units. 
The simulation is ended by the system task $ f i n i s h  at 2000 time units. 
Verilog provides timing controls to specify the simulation at which procedural statements 
execute. Two such timing controls include delay- based timing control and event control. 
Delay-based timing control in an expression defines the time between start of execution 
of the statement and its completion. Symbol # is used to specify delays. An example is 
given below: 
i n i t i a l  
b e g i n  

# 5  x=2; / /  D e l a y  e x e c u t i o n  o f  x=2 b y  5 t i m e  u n i t s  

The event control expression, on the other hand, defines a condition based on 
the change in value in a register or a net to trigger execution of a statement or a block of 
statements. An event control is defined by the symbol @ along with the keyword a l w a y s .  
Level-sensi$ve and edge-triggered events will be considered next. In synchronous sequential 
circuits, level-sensitive and edge-triggered flip-flops are encountered. The level-sensitive 
flip-flop can be accomplished by the following statement: 
a l w a y s  @ (x o r  e n a b l e )  

As soon as a change in x or enable occurs,.the procedural statements in the 
a l w a y s  block will be executed. Verilog provides the keywords p o s e d g e  and n e g e d g e  
to implement positive-edge triggered or negative-edge triggered clock. For example, the 
statements a l w a y s  @ posedge clock and a l w a y s  @ n e g e d g e  c l o c k  will initiate 
execution of the procedural statements in the always block respectively for positive clock 
and negative clock. Since a sequential circuit is comprised of flip-flops and combinational 
circuits, it can be represented using behavioral and dataflow modeling. Flip-flops can be 
described with behavioral modeling using a l w a y s  keyword while the combinational 
circuit part can be assigned with dataflow modeling using a s s i g n  keyword and Boolean 
equations. 

Note that a behavioral model in Verilog is defined using the keyword i n i t i a l  
or a l w a y s  followed by one or several procedural statements. The procedural statements in 
behavioral modeling execute sequentially in the order they are listed in’the source code. The 
final output of these statements must be of the reg data type rather than w i r e  (normally 
used for structural) data type. Note that wire continuously updates the output while the 
reg stores the value until a new value is provided. 

Next, the meaning of “procedural statement” will be discussed. A procedural 
statement is an assignment in an i n i t i a l  or a l w a y s  statement. Also, procedural 
statement assigns value to a register ( data objects of type reg). There are three types 
of procedural assignments. These are procedural assignment ( uses = as the operator), 
continuous procedural assignment (uses keyword a s s i g n  with = as the operator), and 
non-blocking procedural assignment ( uses <= as the operator). The right hand side of a 
procedural assignment is an expression which must evaluate to a value while the left hand 
side is typically a r e g .  The procedural continuous assignment retains the last output (when 
a digital circuit is disabled) until it is enabled again. This is useful in modeling latches 
and flip-flops. The first two procedural assignments that use the = operator execute the 
statements sequentially. These statements are called blocking assignments. This means 
that in blocking assignment, the next procedural assignment must wait until the present 
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one is completed. In non-blocking procedural assignment, executions of the statements that 
follow are not blocked. This means that the right hand side of the expression is evaluated 
first, but assignment to the left hand side is not made until all expressions are evaluated. 
Next, consider an example of the following blocking assignments: 

reg a, b, c; 
reg [3:0] x, y; 
//Must place Behavioral statements in initial or always block 
initial 
begin 

a=l; b=O; c=O; 

y= 4‘bllll; x=y; 
#10 y[l]= l’bO; 

end 
In the above, the statement b=O is executed only after a=l is executed. The 

statements in the begin and end block can only execute in sequence since blocking 
statements are used. All statements a = l  through x=y are executed at time=O. However, 
statement y [ 1 ] = 1’ bO is executed at time=lO since there is a delay of 10 time units in 
this statement. 

As mentioned before, non-blocking assignments permit scheduling of assignments 
without blocking execution of the statements that follow. In order to illustrate non-blocking 
assignments, the previous example is modified as follows: 
reg a ,  b, c; 
reg [3:01 x, y; 
//Must place Behavioral statements in initial or always block 
initial 
begin 

a=l ;  b=O; c=O; 
y= 4‘bllll; x=y; 
y[l] <= #10 l‘bO; 
x[l:O]<= #5 2’bOO 

end 
In the above, statements a=l  through x=y are executed sequentially at time 0. 

Then, the two non-blocking assignments are executed simultaneously. The statement y [ 1 ] 
=l’bO is scheduled to execute after 10 time units while x [I: 01 = 2’bOO is scheduled 
to be executed after 5 time units. The simulator schedules execution of a non-blocking 
assignment, and then continues with the next statement in the block without waiting for 
completion of the present statement. When the two non-blocking statements in the above 
are executed, the right hand side expressions are evaluated first, and are stored in temporary 
locations. The assignments to the left hand side are made after both the expressions are 
completed. Non-blocking assignments are used in digital design where multiple concurrent 
data transfers such as in a register transfer, take place after a common event (positive or 
negative edge triggered clock). 

For state machines, the inputs including clock, and outputs can be declared at 
the beginning of a Verilog program. The states can be defined using parameter keyword 
in Verilog which defines constants in a module. Statement using always along with 
posedge or negedge can be used for the clock. Statements using case and i f  -else can 
be used to implement various state transitions. 



Appendix I: Verilog 73 1 

EXAMPLE 1.7 
Write a Verilog description for a D flip-flop (a) with a positive edge reset and a negative 
edge triggered clock. Use i f - e l se .  

(b) with a positive edge triggered clock and a negative edge clear input. Use i f  -else. 
Solution 

1.7 (a) 
/ /  D Flip-Flop 
/ /  Module DFF with synchronous reset 
/ /  file name: dff1op.v 

module dfflop(q, d, clk, reset) ; 
input d, clk, reset; 
output q; 
reg q; 

//always do this when the reset is positive edge or clock is 
//negative edge 
always @(posedge reset or negedge clk) 
/ /  if it‘s reset q will equal to zero 
if (reset) 

/ /  if it’s clock q will equal to d 
else 

en dmodu 1 e 

q = l’bO; 

q = d; 

1.7 (b) 

/ /  FileName: D.v 
//description: D flipflop 
module D-ff (Q, Q-bar, CLR, CLK, D); 
output Q, Q-bar; 
input CLR, CLK, D; 

reg Q, Q-bar; 
always @(posedge CLK or negedge CLR) 
begin 
//When CLR == 0 (neg logic) Q is always 0 
//else @ rising edge of clock, Q <-- D 
if (!CLR) 
begin 

Q <= l‘bO; 
Q-bar <= l’bl; 

end 
else 

begin 
Q <= D; 
Q-bar <= !D; 

/ /  Q-bar <= !D; 
end 

end 

endmodule 
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EXAMPLE 1.8 
Write a Verilog description for a JK flip-flop with negative edge triggered clock. Use 
case statements. 
Solution 

/ /  JK ff using case statements 

/ /  J = A  and K=B as inputs 

/ /  Q and nQ are outputs 

module j k-ff (A, B, clock, Q, nQ) ; 

input A , B ,  clock; 
output Q,nQ; 
reg Q; 
assign nQ=-Q 
always @ (negedge clock) 

case ( t A , B J )  
2‘ bOO : Q=Q; 
2 bO 1 : Q=1’ bO ; 
2‘blO:Q=l’bl; 
2’bll :Q=-Q; 
endc a s e 

endmodule 

EXAMPLE 1.9 
Write a Verilog description for the state diagram of Figure 5.21. Use a reset input so that 
the hardware can be initialized. Figure 5.21 is redrawn below: 

Solution 
//Description:state machine of Example 5.2 
//File Name: fig5 21.v 

//fig. 5.21 Implementation of state machine on figure 5.21 
//APROACH : behavioral 
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module fig5-21( Z , state , A , clk , reset); 
outputz ; 
output [l: 01 state; 
re9 [1:0] currentstate , state; 
reg Z ; 
input A , clk , reset; 
always @ ( posedge clk) 
begin 
if ( reset == 1) //need to reset to start from a known state at 
//some point 
currentstate = 0 ; 
case (currentstate) //step thru all states per state table 

0: 
if(A == 1) 
begin 

state=l; 
z = 0; 

end 

begin 
else 

state=O ; 
z=1; 

end 
1: 

if ( A==l) 
begin 

state=2 ; 
z = 0; 

end 

begin 
else 

state=3; 
z = 0; 

end 
2: 

if ( A == 1) 

state 3: 
begin 

2 = 1; 
end 
else 

begin 
state=O; 
z=1; 
end 

3: 
if ( A==l) 
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begin 
state = 0; 
z=1; 

end 
else 
begin 
state=l; 
z=1; 
end 
default 

if ( A == 1) 
begin 
state = 2'bxx; 
Z = l'bx; 

end 

begin 
else 

state = 2'bxx ; 

Z = l'bx; 
end 

endcase 
currentstate = state ; 
pass 
end 
endmodule 
module fig5-21-0 test; 
reg A , clk, reset; 
wire [1:01 state; 

//update state for next time 

wire Z ; 
fig5-2 1 fig5-21 0 (Z, state,A, clk, reset) ; - 

$time, state, A, 2 ,  reset ) ; 
initial 

begin 
#O 
A= l'bO; //reset to state 0 
reset=l'bl; 
clk =l'bO; 
#20 
clk =l'bl; 
#20 
A= l'bO; //Input 1 to go to state 1 
reset=l'bO; 
clk =l'bO; 
#20 
clk = l ' b l ;  
#20 
A= l'bO; //Input 0 to go to state 3 
reset=l'bO; 
clk =l'bO; 
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# 2 0  
c l k  =l‘bl; 
#20  
A= l‘bl; //Input 1 to go to state 0 
reset=l’bO; 
c l k  =l’bO; 
#20 
c l k  =l’bl; 
#20  
A= l’bO; //Input 0 to stay at state 0 
reset=l’bO; 
c l k  =l’bO; 
#20 
c l k  = l ‘ b l ;  
# 2 0  
A= l‘bO; //Input 1 to go to state 1 
reset=l’bO; 
c l k  =l‘bO; 
#20 
c l k  =l‘bl; 
#20  
A= l‘bl; //Input 1 to go to state 2 
reset=l‘bO; 
c l k  =l‘bO; 
#20 
e l k  =l‘bl; 
# 2 0  
A= l ‘ b l ;  //Input 1 to go to state 3 
reset=l’bO; 
c l k  =l‘bO; 
#20 
c l k  =l’bl; 
# 2 0  
A= l’bl; //Input 1 to go to state 0 
reset=l’bO; 

c l k  =l‘bO; 
# 2 0  
c l k  =l’bl; 
# 2 0  
A= l‘bl; //done 
reset=l’bO; 
c l k  =l’bO; 
#20 
c l k  =l‘bl; 
end 

endmodule 
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EXAMPLE 1.10 
Write a Verilog description for the two-bit counter of example 5.5. 
Solution 

/ /  exercise 5.5 
module counter2bit (clock, reset, state) ; 

input clock, reset; 
output [1:01 state; 
reg [1:0] state, next-state; 
parameter so0 = 2’bOO, 

so1 = 2‘b01, 
s10 = 2‘b10, 
sll = 2‘bll; 

always @ (posedge clock or posedge reset) 
begin 

if (reset == 1) 

else 
state <= s00; 

state <= next-state; 
end 

always @ (state) 
begin 

case (state) 
so0 : next-state <= sol; 
so1 : next-state <= s10; 
s10 : next-state <= s l l ;  
sll : next-state <= s00; 

endcase 
end 

endmodul e 
module test; 

reg clock, reset; 
wire [1:0] state; 

counter2bit c2bit (clock, reset, state) ; 
initial 
begin 

$display ( ”  clock reset\tstate binary \tstate decimal”); 
$monitor ( “ %b\t %b\t %b\t %d “, 

clock, reset, state, state) ; 
#O reset = 0; 
#1 reset = 1; 
#1 reset = 0; 
end 
initial 

begin 
#O clock = 0; 

#40 $finish; 
end 

endmodu 1 e 
always #1 clock = -clock; 
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Note: In the above, inclusion of \t with statements for $display and 
$monitor provides horizontal tab. 

=lock reset 
0 0 
1 1 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 
0 0 
1 0 

state binary state decimal 
xx X 

00 0 
00 0 
01 1 
01 1 
10 2 
10 2 
11 3 
11 3 
00 0 
00 0 
01 1 
01 1 
10 2 
10 2 
11 3 
11 3 
00 0 
00 0 
01 1 
01 1 
10 2 
10 2 
11 3 
11 3 
00 0 
00 0 
01 1 
01 1 
10 2 
10 2 
11 3 
11 3 
00 0 
00 0 
01 1 
01 1 
10 2 
10 2 
11 3 
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EXAMPLE I. 11 
Write a Verilog description for the three-bit counter of Example 5.7. 
Solution 

Fundamentals of Digital Logic and Microcomputer Design 

/ /  example 5.7 
module nonbinarycounter(clock, reset, state); 
input clock, reset; 
output [2:0] state; 
reg [2 : 01 state, next-state; 
parameter S O  = 3'b000, sl = 3'b001, 

s2 = 3'b010, s3 = 3'b011, 
s4 = 3'b100, s5 = 3'b101, 
s6 = 3'b110, s7 = 3'blll; 

always @ (posedge clock or posedge reset) 
begin 

if (reset == 1) 
state <= SO; 

else 
state <= next-state; 

end 

always @ (state) 
begin 

case (state) 
SO : next-state <= s2; 
sl : next-state <= s3; 
s2 : next-state <= s3; 
s3 : next-state <= s5; 
s4 : next-state <= sl; 
s5 : next-state <= s6; 
s6 : next-state <= s7; 
s7 : next-state <= SO;  

endcase 
end 

endmodule 
module test; 

reg clock, reset; 
wire [2:0] state; 
nonbinarycounter nbc (clock, reset, state) ; 

initial 
begin 
$display ( "  clock reset\tstate binary \tstate decimal"); 
$monitor ( " %b\t %b\t %b\t %d n 

clock, reset, state, state) ; 
# O  reset = 0; 
#1 reset = 1; 
#1 reset = 0; 
end 
initial 

begin 
#O clock = 0; 
#40 $finish; 
end 

always #1 clock = -clock; 
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endmodule 
N o t e :  In the above, inclusion of \t with statements for $display and $monitor 

-ovides horizontal tab. 

:lock reset state binary state decimal 

0 0 xxx X 

1 1 000 0 
0 0 000 0 
1 0 010 2 
0 0 010 2 
1 0 011 3 
0 0 011 3 
1 0 101 5 
0 0 101 5 
1 0 110 6 
0 0 110 6 
1 0 111 I 
0 0 111 7 
1 0 000 0 
0 0 000 0 
1 0 010 2 
0 0 010 2 
1 0 011 3 
0 0 011 3 
1 0 101 5 
0 0 101 5 
1 0 110 6 
0 0 110 6 
1 0 111 7 
0 0 111 1 
1 0 000 0 
0 0 000 0 
1 0 010 2 
0 0 010 2 
1 0 011 3 
0 0 011 3 
1 0 101 5 
0 0 101 5 
1 0 110 6 
0 0 110 6 
1 0 111 I 
0 0 111 1 
1 0 000 0 
0 0 000 0 
1 0 010 2 
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EXAMPLE 1.12 
Write a Verilog description for the General Purpose register of figure 5.41. 
Solution 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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* * * *  
Description: Basic Cell 
File Name: BasicCe1l.v 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* * * /  
module Basiccell( q, CLR, CLK, s, A 1 ;  
output q; 
input CLK, CLR; 
input [1:0] s; 
input [3:0] A; 
wire data, q-bar; 
mux4tol M 1 (  data, s ,  A ) ;  

D-ff D O (  q, q-bar, CLR, CLK, data ) ;  

endmodule 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
****Description: D Flip Flop 
File Name: D.v 

* * * /  
module D-ff( Q, Q-bar, CLR, CLK, D ) ;  

output Q, Q-bar; 
input CLR, CLK, D; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

reg Q, Q-bar; 
always @ (  posedge CLK or negedge CLR) 
begin //When CLR == 0 (neg logic) Q is always 0 

//else I? rising edge of clock, Q <-- D 
if (!CLR) 

begin 
Q <= l’bO; 
Q-bar <= l’bl; 

end 

begin 
else 

end 

Q <= D; 
Q-bar <= !D; 

e n d  

endmodule 
/ /  The code for the 4 to 1 multiplexer used in the Basic cell is: 
/ /  Filename : mux4tol.v 
//description: 4 to 1 multiplexer 

module mux4tol(X, s, A); 
output x; 
input [1:01 s; 
input [3:01 A; 
assign X = (s == Z‘bOO)? A[O]: 

(s == 2’b01)? A[1]: 
(s == 2’b10)? A[1]: A[3]; 

endmodule 

//description: General purpose register 
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module GPR (Q, CLR, CLK, S, X, r-in, 1-in) ; 
output [3:01 Q; 
input CLR, CLK, r-in, 1-in; 
input [ 1: 01 S ;  

input [3:0] X; 
wire [3:0] A; 
Basiccell Cell3 (A[3] , CLR, CLK, S, 
Basiccell Cell2 (A[21 , CLR, CLK, S, 
Basiccell Cell1 (A[11 , CLR, CLK, S, 
Basiccell Cell0 (A[O] , CLR, CLK, S ,  
assign Q = A; 

endmodule 

1.4 Status register desim using Verilog 

In this section, the Verilog description of the Status register of Example 6.1 will be 
provided. 

EXAMPLE 1.13 
Write a Verilog description of the Status register of Figure 6.1. 
Solut ion 

VeriLogger Program, Test Bench and Results 
/ /  Status Register 

module statsreg (stat, cfinal, cprev, clk, r) ; 

input [ 3 : 0 ]  r; 

input cfinal, cprev, clk; 

output [4:0] stat; 

reg [4:0] stat; 

/ *  
output is shown at a positive edge of the clock. 

* /  

The status register is 5-bits. They will be latched and the 

always@ (posedge clk) 

begin 

stat [O] <= r [3] A r  [ZI Ar [l] A r  [O] ; //Parity flag 

stat [l] <= cfina1”cprev; //Overflow flag 

stat[Z] <= -(r[3] (r[Z] Ir[l] Ir[O]); //Zero flag 

stat[3] <= r[3]; //MSB 

stat[4] <= cfinal; //Final carry 

end 

endmodule 
/ /  The following is a test bench to verify the results of our 

module above. 

module tbench; 

reg [3:0] r-in; 

reg cfinal-in, cprev-in, clock; 
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wire [4:0] stat-out; 

/ /  module statsreg(stat, cfinal, cprev, clk, r) ; 

statsreg SRegl (stat-out, cfinal-in, cprev-in, clock, r-in) ; 

initial 

begin 

$monitor("Time=%Od clock=%b r - in=%b cfinal - in=%b cprev - in=%b 

stat-out=%b", $time, clock, r-in, cfinal-in, cprev-in, stat-out) ; 
end 

always 

begin 
#1 clock=O; 

#I clock=l; 

end 

initial 

begin 

#O r-in=O; cfinal-in=l; cprev-in=l; 

#2 
# 3  r_in=6; cfinal-in=l; cprev-in=O; 

#2 
#3 r_in=15; cfinal-in=O; cprev-in=O; 
#2 
#1 $finish; 

end 

endmodule 

Time=O clock=x r_in=0000 cfinal-in=l cprev-in=l 

Time=l clock=O r - in=0000 cfinal-in=l cprev-in=l 

Time=2 clock=l r_in=0000 cfinal-in=l cprev-in=l 

Time=3 clock=O r_in=0110 cfinal-in=l cprev-in=O 

Time=4 clock=l r - in=0110 cfinal-in=l cprev-in=O 

Time=5 clock=O r_in=0110 cfinal-in=l cprev-in=O 

Time=6 clock=l r-in=llll cfinal-in=O cprev-in=O 

Time=7 clock=O r-in=llll cfinal-in=O cprev-in=O 
Time=8 clock=l r-in=llll cfinal_in=O cprev-in=O 

stat-out=xxxxx 

stat-out=xxxxx 

stat_out=10100 

stat_out=10100 
stat_out=10010 

stat_out=10010 

stat_out=01000 

stat_out=01000 
stat_out=01000 

1.5 CPU design using Veriloz 

Memory can be modeled in Verilog as an array of registers. The following are some of 
the typical examples of specifying memory in Verilog: 
reg addr [0:2047]; / /  Memory with 2K 1-bit words (Addresses 
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/ /  addrc01 
/ /  through addr[2047]). 

reg [15:01 addr [0:4095]; / /  Memory with 4K 16-bit words (Addresses 
/ /  addr[O] through addr[4095]). 

reg [ 2 2 : 0 ]  mem [52:0]; / /  Memory of size 5 3 x 2 3  bits (Addresses mem[O] 
/ /  through mernr521). 

data = rnem[locl / /  Memory read operation. Read the contents of a 
/ /  memory 
/ /  location addressed by loc into a register 
/ /  called data. 
/ /  Memory write operation. Write the contents of 
/ /  a register 
/ /  called data into a memory location addressed 
/ /  by loc. 

mem[loc] = data 

Examale 1.14 

Write a Verilog description for the ALU of Figure 7.24. 
Solut ion 

The verilog coding for 4-bit ripple carry adder is: 
~ include "FA. v" 
module Add4 (c-out, Sum, A, B, c-in) ; 
//Add 2 4-bit numbers A & B with carry in 
//output Sum and c-out 

output [3:0] Sum; 
input [3:0] A, B; 
input c-in; 
wire [2:0] carry; 

output c-out; 

//need 4 f u l l  adders 

FA fa0 (carry[Ol, Sum[O], A[Ol, B[O] I c-in) ; 
FA fa1 (carry[ll I Sum[l], A[l], B[11 I carry[O]); 
FA fa2 (carry[2], Sum[2], A[21 I B[21 I carry[ll ) ;  

FA fa3 (c-out, Sum[3] I A[3] I B[31 I carry[i]]) ; 
endmodu 1 e 

//The included code for full adder is: 

module FA(c-out, sum, a, b, c-in); 
//Full Adder 

input a, b, c-in; 
output sum, c-out; 
assign{c-out, sum} = a + b + c-in; 

endmodu 1 e 
//The coding for multiplexer is: 

module mux2tol (x, select, AO, Al) ; 

input select, AO, Al; 
assign x = (select)? Al: AO; 
endmodu le 

output x; 
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//description: 4-bit ALU 
module ALU(F, C-out, X, Y, fCode); 
output [3:0] F; 

input [3:01 X, Y; 
input [1:0] fCode; 
wire [3:0] B, Y-not, AU, LU, LU-0, 
wire carry; 

output C-out; 

LU-1; 

//Structure of Arithmetic unit 
//Prep inverted Y 
not (Y-not [O], Y [O] ) ;  

not(Y-not[ll, Y[11); 
not (Y-not [21, Y [21 ) ; 
not (Y-not [3], Y [31 ) ; 

//Prep input B to adder 
mux2tol BO( B[O], fCode[OI, Y[O], Y not[Ol); 
mux2tol B1( B[1], fCode[O], Y[1], YInot[ll); 
mux2tol B2 ( B[2], fCode [O], Y [Z], Y-not [21) ; 
mux2tol B3( B[3], fCode[OI, Y[31, Y_not[31); 

//Feed signal to adder 
Add4 Adder(carry, AU, X, B, fCode[Ol); 
//Only when S1 = 0, we need carry 
//otherwise carry should be 0 
and(C-out, carry, -fCode[l]); 

//Structure of logic unit; 
//Input when SO == 0 
and(LU-O[Ol, XlOl, Y I O I ) ;  
and(LU-O[lI, X[ll, Y[11); 
and (LU-0 [2 1 , X [ 2 1 , Y [2 1 ) ; 
and(LU_0[31, X[31, Y[31); 
//Input when SO == 1 
xor (LU-1 [OI, X[Ol, Y [Ol) ; 
xor (LU-1 [ll, X[11, Y[11); 
xor (LU-1[21, X[21, Y[21) ; 
xor (LU-1 [3], X[31, Y[31) ; 

//calc output of logic unit 
mux2tol GO (LU[O] , fCode [O], LU-0 [ O ] ,  LU-1[01) ; 
mux2tol Gl(LU[l], fCode[OI, LU-o[11, Lu-1[11); 
mux2tol G2(LU[2], fCode[O], LU-0[21, LU-1[21); 
mux2tol G3 (LU[3], fCode [O], LU-0 [3l, LU_1[3l) ; 
//Connect arithmethic and logic unit together 
mux2tol FO(F[O], fCode[ll, AU[Ol, LU 01); 
mux2tol Fl(F[l], fCode[l], AU[ll, LU 11); 
mux2tol F2(F[2], fCode[l], AU[2], LU 21); 

mux2tol F3(F[3], fCode[ll, AU[31, LU 
endmodul e 

31); 
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ExamDle 1.15 
Write a Verilog description for the microprogrammed CPU of section 7.4. 

Solution 
Xlinix ModelSim simulator is used to simulate the Verilog program. A test bench 

is written to instantiate the CPU module and generate the clock. 
Seven modules are created in the Verilog program to implement the 

microprogrammed CPU. The modules are memcntrl, reg-tlbit, alu-tlbit, muxtlbit, 
ram, processor and cpu. The design is created using hierarchical method. The cpu 
module is at the top of the hierarchy, processor and memcntrl are under cpu module, and 
finally the rest of the modules are under the processor. 

The memcntrol contains the ROM, filled with a 23-bit value, which contains 
a 4-bit condition select, a 6-bit branch address, and 13-bit control input ( C12 - CO ) for 
the registers, ALU, and RAM. It also has the conditional statement that will make the 
Microprogram Counter (MPC) to count up by one if the loadhncrement is LOW, or will 
load the branch address passed by the control memory buffer if loadincrement is HIGH. The 
processor module connects mux, a h ,  registers ( regA, regIR, regMAR, regPC, regBUFF), 
and the RAM. It also includes the instruction decoder and performs the following (Figure 
7.58) : If condition select field = 0, loadhncrement = 0, no branch. I f  condition select = 1 
and Z = 1, branch. If condition select = 2 and C = 1, branch. If condition select = 3 and I3 
= 1, branch. If condition select = 4 and XC2 = 1, branch. If condition select = 5 and XC 1 = 

1, branch. If condition select = 6 and XC0 = 1, branch. If condition select = 7 and I0 = 1, 
branch. 

The 256 x 8 RAM holds program instructions and data. The program is stored 
beginning at RAM address 0. This program tests two instructions (LOAD and ADD) of 
the CPU. The program will first load a value into register A from RAM address 100, add 
it to itself and store the result in register A. 

The CPU module has only two inputs. These are reset and clock. It connects the 
processor module with the memory control module to complete the hierarchy of the 
microporgrammed CPU design. 
Verilog code for the microprogrammed CPU is provided in the following: 

/ /  Microprogrammed Controller Module for the CPU 
/ /  Port declarations 
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module memcntrl (C-fn, Z, C, 13, XC2, XC1, XCO,IO, reset, clk); 
input 2 ,  C, 13, XC2, XC1, XCO, 10, reset, clk; 
output [12:0] C-fn; 
reg [22:0] mem [52:01; 
reg [12:0] C-fn; 
reg [22:0] regCMDB; 
reg [5:01 regMPC; 
reg Id-inc; 
/ /  Binary microprogram 
/ /  The size of the control memory is 53 x 23 bits. The 23-bit 
/ /  control word consists of 13-bit control function containing CO 
/ /  through C12 with CO as bit 12 and C12 as bit 0. The condition 
/ /  select field is 4-bit wide (bits 19-22). For example, consider 
/ /  the code for line 0 with the operation PC <- 0 in the 
/ /  following. Since there is no condition in this operation, 
/ /  condition select field ( CS ) bits are 0‘s. The branch address 
/ /  field ( Brn )bits are assumed as don’t cares arbitrarily. To 
/ /  clear PC to 0, CO = 1 (bit 12). To disable RAM, C6 = 1. C1, 
/ /  C2, C4, C7, C8 and C9 are initialized to 0‘s. Other bits are 
/ /  arbitrarily initialized as don’t cares. 
initial 
begin 

Fundamentals of Digital Logic and Microcomputer Design 

/ /  23-bit value contains a 4-bit condition select, a 6-bit branch 
/ /  address, and 13-bit control. input ( C12 - CO ) for the 
/ /  registers, ALU, and RAM. 

/ /  cs Brn Cntrl Func 
mem[O] = 23’b0000xxxxxx100x0xlOOOxxx; 
mem[l] = 23‘b0000xxxxxx00001xlOOOxxx; 
mem[2] = 23’b0000xxxxxx010x01OOlOxxx; 
mem[3] = 23’b0011001110000x0xl@OOxxx; 
mem[4] = 23’b0110001000000x0xl@OOxxx; 
mem[5] = 23‘b0101001010000x0xlOOOxxx; 
mem[6] = 23‘b0100001100000x0xlOOOxxx; 
mem[7] = 23‘b1000110100000x0xlOOOxxx; 
mem[8] = 23’b0000xxxxxx000x0xlOOllll; 
mem[9] = 23’b1000000001000x0xlOOOxxx; 
mem[lO] = 23’b0000xxxxxx000x0xlOOllOO; 

/ /  22 19 12 0 

mem 
mem 
mern 
mem 
mem 
mem 
mem 

111 = 23’b1000000001000x0xlOOOx~~; 
121 = 23’b0000xx~~xx000~0~1001101; 
131 = 23’b1000000001000~0~lOOOx~~; 
141 = 23’b0110010111000~0xlOOOx~~; 
151 = 23‘b0101100000000x0xlOOOx~~; 
161 = 23’b0100101001000x0xlOOOx~~; 
171 = 23’b0000xxxxxx00001xlOOOxxx; 

mem[l8] = 23’b0000xxxxxx010x01OlOOxxx; 
mem[l9] = 23’b0000xxxxxx00011xlOOOxxx; 
mem[20] = 23’b0000xxxxxx000x01OlOOxxx; 
mem[21] = 23rb0000xxxxxx000x0x1001110; 
mem[22] = 23’b1000000001000x0xlOOOxxx; 
mem[231 = 23’b0000xxxxxx0@001xlOOOxxx; 
mem[24] = 23‘b0000xxxxxx010x01OlOOxxx; 
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mem[25] = 23’b0000xxxxxx00011xlOOOxxx; 
mem[26] = 23’b0111011110000x0xlOOOxxx; 
mem[27] = 23’b0000xxxxxx000x01OlOOxxx; 
mem[28] = 23’b0000xxxxxx000x0xlOOlOOl; 
mem[29] = 23’b1000000001000x0xlOOOxxx; 
mem[30] = 23’b0000xxxxxx000x00OOOOxxx; 
mem[31] = 23’b1000000001000x0xlOOOxxx; 
mem[32] = 23’b0000xxxxxx00001xlOOOxxx; 
mem[33] = 23’b0000xxxxxx010x01OlOOxxx; 
mem[34] = 23’b0000xxxxxx00011xlOOOxxx; 
mem[35] = 23’b0000xxxxxx000x01OlOOxxx; 
mem[36] = 23’b0111100111000x0xlOOOxxx; 
mem[37] = 23’b0000xxxxxx000x0xlOOlOlO; 
mem[38] = 23’b1000000001000x0xlOOOxxx; 
mem[39] = 23’b0000xxxxxx000x0xlOOlOll; 
mem[40] = 23’b1000000001000x0xlOOOxxx; 
mem[41] = 23’b0000xxxxxx00001xlOOOxxx; 
mem[42] = 23’b0000xxxxxx000x0xlOOOxxx; 
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mem 
mem 
mem 
mem 
mem 
mem 
mem 
mem 

431 = 23’b0111101111000~110000~~~; 
441 = 23’b0001110010000x0xlOOOxxx; 
451 = 23‘b0000x~~~xx010~0x1000~~~; 
461 = 23’b1000000001000~0~1000~~~; 
471 = 23’b0010110010000~0~1000~~~; 
481 = 23’b1000000001000~0xlOOO~~~; 
491 = 23‘b0000xxxxxx010~0xlOOO~xx; 
5 0  

mem[51 
mem [ 52 
end 
a 1 ways 

= 23’b0000xxxxxx001~010000~~~; 
= 23’b1000000001000x0xlOOOxxx; 
= 23’b1000110100000~0xlOOO~~~; 

@ (  reset ) 

if ( reset ) 
begin / /  when reset is active and reset is high 

end 
regMPC = 6‘b000000;// initialize MPC to zero 

//conditional statement that will make the Microprogram Counter 
//(MPC) to count up by one if the load/increment is low, or will 
//load the branch address passed by the control memory buffer. 

always @ ( posedge clk ) / /  when clock is at positive edge 
begin 

regCMDB = mem[regMPC]; 
/ /  register regCMDB contains 23-bit contents of memory addressed 
/ /  by regMPC 

C-fn = regCMDB [12:0]; 
/ /  control function equals to first 13 bits of register CMDB 

/ /  if condition select field = 0, load /increment = 0, no 
/ /  branch. 
/ /  if condition select = 1 and Z = 1, branch 
/ /  if condition select = 2 and C =1, branch 
/ /  if condition select = 3 and I3 = 1, branch 
/ /  if condition select = 4 and XC2 = 1, branch 
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/ /  if condition select = 5 and XC1 = 1, branch 
/ /  if condition select = 6 and XCO = 1, branch 
/ /  if condition select = 7 and I0 = 1, branch 
/ /  if condition select = 8 and load /increment= 1, branch 

( regCMDB [22:19] == 0 )?l'bO: / /  if cmdb= 0 Id-inc = 0 
( regCMDB [22:19] == 1 )?Z: / /  if cmdb= 1 Id-inc = 2 
( regCMDB [22:19] == 2 )?C: / /  if cmdb= 2 Id-inc = C 
( regCMDB [22:19] == 3 )?I3: / /  if cmdb= 3 Id-inc = I3 
( regCMDB [22:191 == 4 )?XC2: / /  if cmdb= 4 ld-inc = XC2 
( regCMDB [22:191 == 5 )?XC1: / /  if cmdb= 5 Id-inc =XC1 
( regCMDB [22:191 == 6 )?XCO: / /  if cmdb= 6 ld-inc = XCO 
( regCMDB [22:19] == 7 )?IO: / /  if cmdb= 7 Id-inc = I0 
( regCMDB [22:19] == 8 )?l'bl: / /  if cmdb= 8 ld-inc = 1 

assign Id-inc = 

Id inc = x - l'bx; / /  else 
if (Id-inc) 

else 
regMPC = regCMDB [18:131; / /  load branch address 

regMPC = regMPC + 1; / /  increment MPC by 1 
end 

endmodu 1 e 

//Register 8 bit module 

/ /  General Purpose Register (GPR) 
module reg-8bit (b, a, self clk); 
input [7:0] a; 
input [2:0] sel; 
input clk; 
output [7:0] b; 
reg [7:01 b; 

always @ (sel) 
begin 

b <= (sel==O)?b: / /  b = b if sel = 0 
(sel==l)?O : / /  b= 0 if sel = 1 
(sel==2)?b+l : / /  b= btl if sel = 2 
(sel==4) ?a: / /  b= a if sel = 4 
8'bx; / /  else b=xxxxxxxx 

end 
endmodul e 
//ALU module 
/ /  ALU with zero and carry flags 
module alu-8bit ( f, zflag, cflag, a, b, sel); 
input [2:0] sel; 
input [7:01 a, b; 
output [7:01 f; 
output zflag, c-flag; 
reg z-flag, cflag; 

initial 
begin 

z-flag = l'bO; / /  initialize zero and carry flag to zero 

end 
c-flag = l'bO; / /  
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assign f =(sel==O)?O : / /  f=O if sel=O 
(sel==l) ?b: / /  f=b if sel=l 
(sel==2)?atb: / /  f=atb if sel=2 
(sel==3)?a-b: / /  f=a-b if sel=3 
(sel==4)?a+l : / /  f=a+l if sel=4 
(sel==5)?a-l ://f=a-1 if sel=5 
(sel==6) ?a&b://f=a&b if sel=6 
(sel==7)?-a://f=-a if sel=7 
8'bx; / /  else f=xxxxxxxx 

//Carry and Zero Flag registers 
always @ ( f ) 

begin 
if (f==O) / /  if alu output = 0, zero flag = 1 

else if ( f ! =  0 & ( sel != 3'bxxx ) )  / /  if f not zero 
assign z-flag =l; 

/ /  and 
/ /  sel not xxx 

assign z-flag = 0; / /  zero flag = 0 

end 

always@ ( f ) 

begin 
if (sel==4 I sel==2) 

if ( carry ) / /  if alu outputs carry, carry flag = 1 
assign c-flag = 1; 
else if ( !carry & ( sel ! =  3'bxxx ) )  / /  if not carry and 

carry = (a[7l+b[7])*f[7l+a[71*b[71; 

assign c-flag = 0; / /  sel not xxx, carry = 0 
end 

e ndmodul e 
//Processor module (Figures 7.53 and 7.56) 
/ /  Processor 

module processor (13, XCO, XC1, XC2, XC3, 10, z-flag, c-flag, clock, 
c0, cl, c2, c3, c4, c5, c6, c7, c8, c9, c10, cll, c12); 
input clock; 
input c0, cl, c2, c3, c4, c5, c6, c7, c8, c9, c10, cll, c12; 
output 13, XCO, XC1, XC2, XC3, 10, z-flag, c-flag; 
wire [7:0] IR-out; 
wire [7:0] F-out, BUFF-out, RAM-dataout, RAM - addr, MAR-in, PC-out; 
reg [7:0] regA-out; 
reg 10, 13, XCO, XC1, XC2, XC3; 

//module muxp8bit(z, sel, mux-in0, mux-inl); 
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mux-8bit Muxl (MAR-in, c3, PC-out, BUFF-out) ; 

//module alu-8bit (f, zflag, c-flag, a, b, sel) ; 
alu-8bit ALUl (F-out, zflag, c-flag, regA-out, BUFF-out, (c10, cll, 
c121); 

//module reg-8bit (b, a, sel, clk) ; 
//regP8bit regA(regA-in, F-out, (c9, l'bO, l'bO}, clock) ; 
reg-8bit regIR(1R-out, RAM-dataout, {c8, l'bO, l'bO1, clock) ; 
reg-8bit regMAR(RAM-addr, MAR-in, {c4, l'bO, l'bO], clock) ; 
reg-8bit regPC(PC-out, RAM-dataout, {c2, cl, CO), clock); 
reg-8bit regBUFF(BUFF-out, RAM-dataout, { c 7 ,  l'bO, l'bO1 , clock) ; 

//module ram (dataout, memeaddr, datain, rw, en) ; 
ram RAM1 (RAM-dataout, RAM-addr, regA-out, c5, c6) ; 
initial 
begin 

xco <= 0; //initialize control signals to zero 
xc1 <= 0; 
xc2 <= 0; 
xc3 <= 0; 
I0 <= 0; 
I3 <= 0; 

end 

always@ (clock) 
begin 

13 <= IR_out[3]; / /  instruction decoder 
I0 <= IR-out[O]; / /  13= irout[3] , I0 = irout[O] 

case ( (IR_out[2], IR-out[l]) ) 

2'dO:begin XCO =1; XC1 =O; XC2 = 0; end //if irout[2:l]=O,XCO=l, 

2'dl:begin XC1 =l; XCO =O; XC2 = 0; end / /  if irout[2:1]=1,XCl=l, 

2'd2:begin xC2 =1; XCO =O; XC1 =O; end / /  if irout[2:1]=2,XC2=1, 

iI'd3:begin XC3 =l; XCO =O; XCl=O; XC2= 0; end//if irout[2:1]=3, 

//others zero 

//others zero 

//others zero 

//XC3=1, others 0 
default: 

begin XCO =lfbx; XC1 = l'bx; XC2 = l'bx; XC3 =l'bx; end / /  else 

endcase 
end 

//everything x 
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always @ (posedge clock) 
begin 

out= regA-out 

= F-out 

xxxxxxxx 

regA-out <= (c9==O)?regA_out: / /  if c9=0 , regA- 

(c9==1) ?F-out: / /  if c9 =1, regA-out 

8'bx; / /  else regA-out= 

end 
e ndmodu 1 e 
//Mux 8 bit module 
module mux-8bit ( 2 ,  self mux-in0, mux-inl) ; 

input sel; 
input [7:0] mux-in0, mux-inl; 
output [7:0] z ;  

/ /  The output is defined as register 
reg [7:0] z; 

/ /  The output changes whenever any of the inputs changes 
always @(sel or mux-in0 or mux-inl) 

/ /  Check the control signal 
case (sel) 
l'bO: 

l'bl: 

endcase 

z = mux inO; / /  if sel= 0 , z = in0 

z = mux - inl; / /  if sel=l, z = in 1 

- 

endmodule 

//256 x 8 Ram 
module ram ( dataout, memaddr, datain, rw, en ) ;  
//--------------Input ports----------------------- 

input [7:0] memaddr; 
input [7:0] datain; 
input rw, en; 
output [ 7 : 01 dataout; 

reg [7:0] dataout ; 
reg [7:0] mem [0:255]; 

initial 
mem[O] = 8'b00001000; / /  LDA mem <addr> 
mem[l] = 100; / /  <addr> = 100, A<-5 
mem[2] = 8'b00001010; / /  ADD A <- A + MEM<addr> 
mem[3] = 100; / /  <addr> = 100, A<-l0 
mem[100] = 8'b00000101; / /  init data = 5 
always @ (rnemaddr or datain or rw) 
begin : MEM - WRITE 

//--------------Internal variables---------------- 

//--------------Code Starts Here------------------ 

if ( !en & &  !rw ) 
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mem[memaddr] = datain; 
end 
always @ (memaddr or rw or en) 
begin : MEM-READ 

if (!en & &  rw ) 

dataout = mem[memaddr]; 
end 
endmodu 1 e 

//CPU module has only two inputs ( system clock and system 
reset ) 
module cpu ( clock, reset ) ;  

input clock, reset; 
wire xc2, xcl, xc0, i3, i0, z, c; 
wire [12:0] cfn; 
processor pl (.clock(clock) , .XC2 (xc2) , .XC1 (xcl) , .XCO (xc0) , 
. I3 (i3), 
.IO(iO), . z - f l a g ( z ) ,  .c-flag(c), .cO(cfn[121), .cl(cfn[lll), 
.c2(cfn[lO]), 
.c3(cfn[9]), .c4(cfn[8]), .c5(cfn[7]) , .c6(cfn[6]), .c7(cfn[51), 
. c8 (cfn [4] ) , . c10 (cfn[2] ) , 
) ;  

memcntrl memc (.clk(clock) , .reset (reset), .XC2 (xc2) , .XC1 (xcl) , 
.XCO(xcO), .I3(i3), .IO(iO) , . Z ( z ) ,  .C(c), .C-fn(cfn)); 
endmodule 

.c9 (cfn [3] ) , . cll (cfn [l] ) , . c12 (cfn[Ol) 

/ / T e s t  Bench for CPU module 
module test-cpu; 
reg clock, rst; 
cpu dut (clock, rst); 
initial / /  Clock generator 
begin / /  generating clock with period of 2ns 

clock = 0; 
#lo01 forever 
#lo00 clock = !clock; 

initial / /  Test stimulus 
end 

begin 
rst = 1; / /  reset goes high €or 3.5 ns then goes 

#3500 rst = 0; 
low 

end 
endmodu 1 e 

Timing Diagram 
All eleven instructions are tested successfully by simulating a sample program. Timing 
diagrams are generated accordingly. The following simple program inside the 256 x 8 RAM 
is simulated for testing the proper operation of two (LDA,ADD) of the eleven instructions. 
The timing diagram of Figure 1.1 is generated. Note that PC is the program counter for 
the sample program in the RAM, and MPC is the microprogram counter for the symbolic 
program in the ROM (Figure 7.57) inside the memory control module. 
Program for testing LDA and ADD : 
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mem[O] = LDA / /  A<- MEM <addr> 
mem[l] = 100; / /  <addr> = 100, A<-5  
mem[2] = ADD / /  A <- A f MEM<addr> 
mem[3] = 100; / /  <addr> = 100,A<-10 
rnem[1001 = 8'b00000101; / /  init data = 5 
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LDA (PC=O) instruction with reference address 100, goes through the subroutines 
in the symbolic program ( Figure 7.57): FETCH (MPC=l at t=2ns), branching to 
MEMREF(MPC=14 at t=8ns), then to LDSTO(MPC=23 at t=lOns), all the way through 
LOAD (MPC = 27 at t=l8ns), and back to FETCH. At t=23ns, register A holds 05H, 
showing that it has loaded the contents of RAM memory address 100 (See figure J.l). 
Next, ADD (PC=2) operation is performed using reference address 100. At this point, 
ADD goes through the following subroutines in the symbolic program: FETCH (MPC=l 
at t=24ns), branching to MEMREF(MPC=l4 at t=30ns), then to ADDSUB(MPG32 at 
t=34ns), all the way through ADD(MPC=37 at t=44ns), then back to FETCH (See figure 
J.l). At t=46ns, register A and BUFFER hold the contents of memory address 100. They 
are now the inputs to the ALU. The ALU will add these two values and its output will then 
go to register A, as commanded by the ADD<addr> instruction. At t=47ns, one can see 
that the contents of register A have changed to OAH (10,J (See figure I. 1). 

ilesl-cpuklock 

ltesl-cpulr st 

/lesl_cpu:duVpl/PC_ouI 
Mesl_cpu;duli3l/regA_out 

IleSI~cpuidul/pl/ALU1 h-flag 
/tesl_cpu:du~pl/ALU1Ic_flag 

/lesl_cpuldurlpl/regMARb 
/lesl-cpu/dut'n??m/ld 

k s - c p u l d u U m l X C Z  

:lesr-cpu/dul/mlXCl 

:lesi-cpu/dutlnm/XCO 

/lesl_cpu:duVn'enc/I~ 

/lest_cpuidulim/regMFC 

/lesl-cpu/d utimTYld-irK 

Ons 2Ons 40ns 600s 

Figure I. 1 Verilog Timing Diagram (Top diagram-CPU clock, Next-Reset, 
Next-PC, Next-reg A, Next-Zflag, Next-Cflag, Next-regMAR, Next-13, Next-XC2, Next- 
XC 1, Next-XCO, Next-10, Next-mpc, Next-ld-inc ) 

OUESTIONS AND PROBLEMS 

I. 1 Write a Verilog description for each of the following: 
(a) a 2-to-4 decoder using dataflow modeling , generating a low output when 

(b) a 3-to-8 decoder using modeling description of your choice, generating a 

(c) the 4 -to-16 decoder of Problem 4.15 using modeling description of your 

selected by a high enable. 

high output when selected by a high enable. 
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choice. 
(d) a 4-to- 1 multiplexer using conditional operator. 
(e) a BCD to seven-segment converter for a common cathode display using 

behavioral modeling. 
(f) the 2-bit unsigned comparator of Section 4.5.2. 

1.2 Write a Verilog description for: 
(a) the transparent latch of Section 5.2.3. 
(b) the gated D flip-flop of Figure 5.5a. 
(c) a D flip-flop with a synchronous reset input and a positive edge triggered 

clock. Use synchronous reset such that if reset ==O, the flip-flop is cleared to 
0; on the other hand, if reset==l, the output of the flip-flop is unchanged until 
the procedural statements are evaluated at the positive edge of the clock. 

(d) the T flip-flop (using D-ff and XOR gate) of Problem 5.13(b). 
(e) the state machine of Problem 5.19. 
(f) a 4-bit binary ripple counter. Note that in a binary ripple counter, the clock 

inputs of high order flip-flops are not triggered by the common clock, but 
by the transition outputs of the low order flip-flops. The 4-bit binary ripple 
counter contains four T flip-flops (obtained from D-ffs), with the output of 
each ff connected to the clock input of the next higher-order ff. The clock 
input is connected to the least significant T-ff. The 4-bit ripple counter can be 
designed using four T flip-flops (tffl) through tff3). Each T-ff can be obtained 
from a D-ff by connecting its output q to the input of an inverter, and then 
connecting the inverter output to the D input; the T-ff has one input (T input 
is the same as the clock input). This T-ff toggles every clock. The 4-bit 
ripple counter can be obtained by connecting the clock to the tffl) clock input, 
q0 of tffl) to clock input of tffl, q l  output of tffl to clock input of tff2, and 
q2 output of tff2 to the clock input of tff3. Use negative edge-triggered D- 
ffs. Each D-ff will have a reset input to clear the ff. 

(8) a 4-bit serial shift (right) register with a positive edge triggered reset and a 
positive edge triggered clock. The 4-bit serial shift register can be obtained 
by connecting four D-ff s to a common clock and a common reset. The four 
D-ff s are cleared to 0 at the positive edge triggered clock and positive edge 
triggered reset. Assume, v as the serial input bit connected to the D input of 
the leftmost D-ff with z as its output; z is connected to the D input of the next 
right D-ff with y as its output; y is connected to the D input of the next right 
D-ff with x as its output; finally, x is connected to the D input of the rightmost 
D-ff with w as its output. 

(h) a 4-bit register with a reset input, a parallel load input and a positive edge- 
triggered clock. The 4-bit register is cleared to 0 at the positive edge of the 
reset. On the other hand, if the load input is high, 4-bit data is transferred to 
the register at the positive edge of the clock. Use behavioral modeling. 

(i) the counters of Problems 5.24(a) through 5.24(c). 
6) the general purpose register of Problem 5.25. 

1.3 Write a Verilog description for the Status register of Example 6.1 using structural 
modeling. 
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1.4 Write a Verilog description for the four-bit by four-bit unsigned multiplier 
(repeated addition) using: 
(a) Hardwired control (Section 7.3.5). (b) Microprogramming (Section 
7.3.5). 




