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This chapter describes fundamentals of logic operations, Boolean algebra, minimization 
techniques, and implementation of basic digital circuits. 

Digital circuits contain hardware elements called “gates” that perform logic 
operations on binary numbers. Devices such as transistors can be used to perform the logic 
operations. Boolean algebra is a mathematical system that provides the basis for these 
logic operations. George Boole, an English mathematician, introduced this theory of digital 
logic. The term Boolean variable is used to mean the two-valued binary digit 1 or 0. 
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3.1 Basic Lopic ODerations 

Boolean algebra uses three basic logic operations namely, NOT, OR, and AND. These 
operations are described next. 

3.1.1 NOT Operation 
The NOT operation inverts or provides the ones complement of a binary digit. This 
operation takes a single input and generates one output. The NOT operation of a binary 
digit provides the following result: 

NOT1 = O  
NOTO=I 

Therefore, NOT of a Boolean variable A ,  written as 2 (or A’  ) is 1 if and only if A 
is 0. Similarly, 2 is 0 if and only if A is 1. This definition may also be specified in the form 
of a truth table: 

Note that a truth table contains the inputs and outputs of digital logic circuits. The 
symbolic representation of an electronic circuit that implements a NOT operation is shown 

FIGURE 3.1 Symbol for a NOT gate 
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14 13 12 11 10 9 8 

1 2  3 4 5 6 7  

A1 Y1 A2 Y2 A3 Y3 GND 

FIGURE 3.2 Pin diagram for the 74HC04 or 74LS04 

in Figure 3.1. 
A NOT gate is also referred to as an “inverter” because it inverts the voltage 

levels. As discussed in Chapter 1, a transistor acts as an inverter. A 0-volt at the input 
generates a 5-volt output; a 5-volt input provides a 0-volt output. 

As an example, the 74HC04 (or 74LS04) is a hex inverter 14-pin chip containing 
six independent inverters in the same chip as shown in Figure 3.2. 

Computers normally include a NOT instruction to perform the ones complement 
of a binary number on a bit-by-bit basis. An 8-bit computer can perfonn NOT operation 
on an 8-bit binary number. For example, the computer can execute a NOT instruction on 
an 8-bit binary number 01 101 11 1 to provide the result 10010000. The computer utilizes an 
internal electronic circuit consisting of eight inverters to invert the 8-bit data in parallel. 

3.1.2 OR operation 
The OR operation for two variables A and B generates a result of 1 if A or B ,  or both, are 1. 
However, if both A and B are zero, then the result is 0. 

A plus sign + (logical sum) or v symbol is normally used to represent OR. The 
four possible combinations of ORing two binary digits are 

o + o = o  
0 + 1 = 1  

1 + o =  1 

1 + 1 = 1  

A truth table is usually used with logic operations to represent all possible 
combinations of inputs and the corresponding outputs. The truth table for the OR operation 
is 

Inputs 

A B Output = A  + B 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
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A-D- B c = A + B  

FIGURE 3.3 Symbol for an OR gate 
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Figure 3.3 shows the symbolic representation of an OR gate. 
Logic gates using diodes provide good examples to understand how semiconductor devices 
are utilized in logic operations. Note that diodes are hardly used in designing logic gates. 
Figure 3.4 shows a two-input-diode OR gate. The diode (see Chapter 1) is a switch, and it 
closes when there is a voltage drop of 0.6 V between the anode and the cathode. Suppose 
that a voltage range of 0 to 2 V is considered as logic 0 and a voltage of 3 to 5 V is logic 
1. If both A and B are at logic 0 (say 1.5 V) with a voltage drop across the diodes of 0.6 V 
to close the diode switches, a current flows from the inputs through R to ground, and the 
output C will be at 1.5 V - 0.6 V = 0.9 V (logic 0). On the other hand, if one or both inputs 
are at logic 1 (say 4.5 V) the output C will be at 4.5 - 0.6 V = 3.9 V (logic 1). Therefore, 
the circuit acts as an OR gate. 

The 74HC32 (or 74LS32) is a commercially available quad 2-input 14-pin OR 
gate chip. This chip contains four 2-inputll -output independent OR gates as shown in 
Figure 3.5. 

To understand the logic OR operation, consider Figure 3.6. V is a voltage source, 
A and B are switches, and L is an electrical lamp. L will be turned ON if either switch A or B 
or both are closed; otherwise, the lamp will be OFF. Hence, L = A  + B. Computers normally 
contain an OR instruction to perform the OR operation between two binary numbers. For 
example, the computer can execute an OR instruction to OR 3A,, with 2 1 ,h on a bit by bit 
basis: 

3 A , , = 0 0 1 1  1 0 1 0  
2 1 , 6 = 0 0 1 0  0 0 0 1  w w  

3 16 

The computer typically utilizes eight two-input OR gates to accomplish this. 

3.1.3 AND operation 
The AND operation for two variables A and B generates a result of 1 if both A and B are 1. 

C=A+B 
Inputs { +3-i Output 

FIGURE 3.4 Diode OR gate 



56 Fundamentals of Digital Logic and Microcomputer Design 

A1 81 Y1 A2 82 Y2 GND 

FIGURE 3.5 Pin diagram for 74HC32 or 74LS32 

dl 

FIGURE 3.6 An example of the OR operation 

FIGURE 3.7 AND gate symbol 

However, if either A or B, or both, are zero, then the result is 0. 
The dot . and A symbol are both used to represent the AND operation. 

The AND operation between two binary digits is 
o . o = o  
0 . 1  = o  
1 . o = o  
1 . 1 = 1  

The truth table for the AND operation is 

Inputs 

A B O u t p u t = A , B = A B  

0 0 0 

0 1 0 

1 0 0 

1 1 1 
Figure 3.7 shows the symbolic representation of an AND gate. Figure 3.8 shows a two- 
input diode AND gate. 

As we did for the OR gate, let us assume that the range 0 to +2 V represents logic 
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FIGURE 3.8 Diode AND gate 

0 and the range 3 to 5 V is logic 1.  Now, if A and B are both HIGH (say 3.3 V) and the 
anode of both diodes at 3.9 V, the switches in D ,  and D, close. A current flows from +5 V 
through resistor R to +3.3 V input to ground. The output C will be HIGH (3.9 V). On the 
other hand, if a low voltage (say 0.5 V) is applied at A and a high voltage (3.3V) is applied 
at B. The value of R is selected in such a way that 1.1 V appears at the anode side of D,; 
at the same time 3.9 V appears at the anode side of D,. The switches in both diodes will 
close because each has a voltage drop of 0.6 V between the anode and cathode. A current 
flows from the +5 V input through R and the diodes to ground. Output C will be low (1.1 
V) because the output will be lower of the two voltages. Thus, it can be shown that when 
either one or both inputs are low, the output is low, so the circuit works as an AND gate. 
As mentioned before, diode logic gates are easier to understand, but they are not normally 
used these days. 

Transistors are utilized in designing logic gates. Diode logic gates are provided as 
examples in order to illustrate how semiconductor devices are utilized in designing them. 

The 74HC08 (or 74LS08) is a commercially available quad 2-input 14-pin AND 
gate chip. This chip contains four 2-inputll-output independent AND gates as shown in 
Figure 3.9. To illustrate the logic AND operation consider Figure 3.10. The lamp L will 
be on when both switches A and B are closed; otherwise, the lamp L will be turned OFF. 
Hence, 

L = A * B  
Computers normally have an instruction to perform the AND operation between two binary 
numbers. For example, the computer can execute an AND instruction to perform ANDing 

A1 B1 Y1 A2 8 2  Y2 GND 

FIGURE 3.9 Pin Diagram for 74HC08 or 74LS08 
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6- L = A . B  

I 
T 

V 

FIGURE 3.10 An example of the AND operation 

3 1 ,6 with A1 ,6 as follows: 

3 1 , ,  = 0 0 1  1 0 0 0 1  
A l , , = 1 0 1 0  0 0 0 1  

WpOJ 
2 16 

The computer utilizes eight two-input AND gates to accomplish this. 

3.2 Other Lopic ODerations 

The four other important logic operations are NOR, NAND, Exclusive-OR (XOR) and 
Exclusive-NOR (XNOR). 

3.2.1 NOR operation 
The NOR output is produced by inverting the output of an OR operation. Figure 3.1 1 
shows aNOR gate along with its truth table. Figure 3.12 shows the symbolic representation 
of a NOR gate. In the figure, the small circle at the output of the NOR gate is called the 
inversion bubble. The 74HC02 (or 74LS02) is a commercially available quad 2-input 14- 
pin NOR gate chip. This chip contains four 2-input/l-output independent NOR gates as 
shown in Figure 3.13. 

3.2.2 NAND operation 
The NAND output is generated by inverting the output of an AND operation. Figure 3.14 
shows a NAND gate and its truth table. Figure 3.15 shows the symbolic representation of 
a NAND gate. 

The 74HC00 (or 74LSOO) is a commercially available quad 2-input/l-output 14- 
pin NAND gate chip. This chip contains four 2-input/l-output independent NAND gates 
as shown in Figure 3.16. 

NOR gate Truth Table 

C = A + B  
C = A + B  

B 

0 

FIGURE 3.11 A NOR gate with its truth table 
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A B 

FIGURE 3.12 NOR gate symbol 

C=AB 

59 

0 0 
0 1 
1 0 
1 1 

FIGURE 3.13 Pin diagram for 74HC02 or 74LS02 

1 
1 
1 
0 

B 

FIGURE 3.14 A NAND gate and its truth table 

FIGURE 3.15 NAND gate symbol 

1 1  12 I 3  I 4  I 5  I 6  17 
A1 61 Y1 A2 62 Y2 GND 

FIGURE 3.16 Pin diagram for 74HC00 or 74LSOO 
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3.2.3 Exclusive-OR operation (XOR) 
The Exclusive-OR operation (XOR) generates an output of 1 if the inputs are different and 
0 if the inputs are the same. The 0 or V symbol is used to represent the XOR operation. 
The XOR operation between binary digits is 

o o o = o  
o o 1 = 1  
1 o o = 1  
1 o 1 = 0  

Most computers have an instruction to perform the XOR operation. Consider 
XORing 3A,, with 21 ,,. 

3 A , , = 0 0 1 1  1 0 1 0  
21,,  = 0 0 1 0  0 0 0 1  w u  

16 

It is interesting to note that XORing any number with another number of the 
same length but with all 1’s will generate the ones complement of the original number. For 

31,6@ FF,,  0 0  1 1  0 0 0 1  
1 1 1 1  1 1 1 1  

1 1 0 0  1 1 1 0  w Lo--, 

The truth table for Exclusive-OR operation is 

Inputs ou tpu t  

A B C = A O B  

0 0 0 

0 1 1 

1 0 1 

1 1 0 
From the truth table, A 0 B is 1 only when A = 0 and B = 1 or A = 1 and B = 0. 

Therefore, 
c = A o B = AB + AB 

Figure 3.17 shows an implementation of an XOR gate using AND and OR gates. 
Figure 3.18 shows the symbolic representation of the Exclusive-OR gate assuming that 
both true and complemented values of A and B are available. 

FIGURE 

B W  

3.17 AND-OR Implementation of the 

A B + A  B = A @  B 

Exclusive-OR gate 
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14 
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13 12 11 10 9 8 

FIGURE 3.18 XOR symbol 

1 2 3 4 5 6 7  

14 

A1 61 Y1 A2 82 Y2 GND 

FIGURE 3.19 Pin diagram for 74HC86 or 74LS86 

13 12 11 10 9 8 

B * * D O - =  

1 2 3 4 5 6 7  

XNOR ate Truth Table 1 
FIGURE 3.20 Exclusive-NOR symbol along with its truth table 

A1 R1 V1 V7 A3 R7 GNn 

FIGURE 3.21 Pin Diagram for 74HC266 or 74LS266 

The 74HC86 (or 74LS86) is a commercially available quad 2-input 14-pin 
Exclusive-OR gate chip. This chip contains four 2-inputA -output independent exclusive- 
OR gates as shown in Figure 3.19. 

3.2.4 Exclusive-NOR Operation (XNOR) 
The one’s complement of the Exclusive-OR operation is known as the Exclusive-NOR 
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operation. Figure 3.20 shows its symbolic representation along with -th table. The 
XNOR operation is represented by the symbol 0. Therefore, C= A G3B = A  0 B. The 
XNOR operation is also called equivalence. From the truth table, output C is 1 if both A 
and B are 0's or both A and B are 1 's; otherwise, C is 0. That is, C = 1, for A = 0 and B = 

O o r A =  1 a n d B =  1. H e n c e , C = A O B = A g + A B  
The 74HC266 (or 74LS266) is a quad 2-inpuVl -output 14-pin Exclusive-NOR 

gate chip. This chip contains four 2-inpuVl -output independent Exclusive-NOR gates 
shown in Figure 3.2 1. 

Note that the symbol C is chosen arbitrarily in all the above logic operations to 
represent the output of each logic gate. Also, note that all logic gates ( except NOT) can 
have at least two inputs with only one output. The NOT gate, on the other hand, has one 
input and one output. 

3.3 IEEE Svmbols for Lopic Gates 

The institute of Electrical and Electronics Engineers (IEEE) recommends rectangular shape 
symbols for logic gates: The original logic symbols have been utilized for years and will be 
retained in the rest of this book. IEEE symbols for gates are listed below: 

Gate Common Symbol IEEE Symbol 

OR " - P f = A + B  B '4.1- f = A + B 

Exclusive-OR B '$>f=A@B ' d T F f = A @ B  

f = A @ B  B A qTb f = K B  
B 

Exclusive-NOR 
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3.4 Positive and Nepative Logic 

A B 

L L 

L H 

H L 

H H 
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f 
H 

H 

H 

L 

0 1 

1 0 

1 1 

Using positive logic, (H = 1 and L = 0) the following table is obtained: 

1 

1 

0 

A 

A B 

1 1 

1 0 

0 1 

0 0 

B I f  

f 
0 

0 

0 

1 

0 O I 1  

This is the truth table for a NAND gate. However, negative logic, (H = 0 and L = 

1) provides the following table: 

This is the truth table for a NOR gate. Note that converting from positive to 
negative logic and vice versa for logic gates basically provides the dual (discussed later in 
this chapter) of a function. This means that changing 0’s to 1 ’s and 1’s to 0’s for both inputs 
and outputs of a logic gate, the logic gate is converted from a NOR gate to a NAND gate 
as shown in the example. In this book, the positive logic convention will be used. 

Note that positive logic and active high logic are equivalent (HIGH = 1, LOW = 

0). On the other hand, negative logic and active low logic are equivalent (HIGH = 0, LOW 
= 1). A signal is “active high” if it performs the required function when HIGH (H = 1). An 
“active low” signal, on the other hand, performs the required function when LOW (L = 0). 
A signal is said to be asserted when it is active. A signal is disasserted when it is not at its 
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active level. 
Active levels may be associated with inputs and outputs of logic gates. For 

example, an AND gate performs a logical AND operation on two active HIGH inputs and 
provides an active HIGH output. This also means that if both the inputs of the AND gate 
are asserted, the output is asserted. 

3.5 Boolean Algebra 

Boolean algebra provides basis for logic operations using binary variables. Alphabetic 
characters are used to represent the binary variables. A binary variable can have either 
true or complement value. For example, the binary variable A can be either A andor 2 in 
a Boolean function. 

A Boolean function is an operation expressing logical operations between binary 
variables. The Boolean function can have a value of 0 or 1. As an example of a Boolean 
function, consider the following: 

f = A B  + c  
Here, the Boolean functionfis 1 if both A and B are 1 or C is 1; othenvise,fis 0. 

Note that means that if A = 1, then A = 0. Thus, when B = 1, then B = 0. It can therefore 
be concluded that f is one when A = 0 and B = 0 or C = 1. 

A truth table can be used to represent a Boolean function. The truth table contains 
a combination of 1 ’s and 0’s for the binary variables. Furthermore, the truth table provides 
the value of the Boolean function as 1 or 0 for each combination of the input binary 
variables. Table 3.1 provides the truth table for the Boolean function f = 2 B + C. In the 
table, if A = 1, B = 1, and C = 0, f = 0.0 + 0 = 0. Note that table 3.1 contains three input 
variables (A, B, C )  and one output variable v). Also, by ORing ones in the truth table, 

TABLE 3.1 Truth Table forf= 2 B + C 

A B C l f  

O I :  1 

0 0 

0 0 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

C :f =AB+ 
FIGURE 3.22 Logic diagram for f = 2 B + C 
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the function f contains several terms; however, the function can be simplified using the 
techniques to be discussed later. 

A Boolean function can also be represented in terms of a logic diagram. Figure 
3.22 shows the logic diagram for f = A B  + C. The Boolean expression f = 2 B + C contains 
two terms, A and C, which are inputs to logic gates. Each term may include a single or 
multiple variables, called ‘‘literals,’’ which may or may not be complemented. For example, 
f = A + C contains three literals, 2, B, and C. Note that a variable and its complement are 
both called literals. For two variables, the literals are A,  B, 2, and B. 

Boolean functions can be simplified by using the rules (identities) o f  Boolean 
algebra. This allows one to minimize the number of gates in a logic diagram, which reduces 
the cost of implementing a logic circuit. 

3.5.1 Boolean Identities 
Here is a list of Boolean identities that are useful in simplifying Boolean expressions: 

1. a)A+O=A b)A*  1 = A  
2. a ) A + l = l  b) A . O  = 0 
3. a )A+A=A b)A.A=A 
4. a)A-+A= I b)A.A=O 
5 .  a) @ ) = A  
6. Commutative Law: 

a ) A + B = B + A  
7. Associative Law: 

a) A + (B + C )  = ( A  + B )  + C 
8. Distributive Law: 

a) A .  (B + C )  = A .  B + A .  C 
9. DeMorgan’s Theorem: 

a) A+B = A .  E b) = 2 + B 

b) A . B = B . A 

b) A . ( B  * C )  = (A  . B )  . C 

b)A + B e  C = ( A  + B) . (A + C )  

In the list, each identity identified by b) on the right is the dual of the corresponding identity 
a) on the left. Note that the dual of a Boolean expression is obtained by changing 1’s to 
0’s and 0’s to 1 ’s if they appear in the equation, and AND to OR and OR to AND on both 
sides of the equal sign. 

For example, consider identity 4. Relation 4a is the dual of relation 4b because the 
AND in the expression is replaced by an OR and then, 0 by 1. 

The Duality Principle of Boolean algebra states that a Boolean expression is 
unchanged if the dual of both sides of the equal sign is taken. Consider, for example, the 
Boolean function, 
f = B + A B  Therefore, f = B . ( l  + A )  

= B  
The dual o f 5  

fD = B . ( F f + B )  
fD = B . A + B . B = j j A + B  

= B ( A + l ) = B  
Hence, f =fD. In order to verify some of the identities, consider the following examples: 
i) Identity 2a) A + 1 = 1 

ForA =0, A + 1 = 0 + 1 = 1 
ForA = 1, A + 1 = 1 + 1 = 1 

ii) Identity 4b) A . A  = 0. If A = 1, then 2 = 0. Hence, A . A  = 1 * 0 = 0 
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iii) Identity 8b) A + B . C = (A  + B )  . ( A  + C )  is very useful in manipulating Boolean 
expressions. This identity can be verified by means of a truth table as follows: 

A 

0 
0 
1 
1 

iv) Identities 9a) and 9b) (DeMorgan’s Theorem) are useful in determining the one’s 
complement of a Boolean expression. DeMorgan’s theorem can be verified by means 
of a truth table as follows: 

- - 
B A B 3.B A + B  A+B A . B  A + B  
0 1 1 1 0 1 0 1 1 
1 1 0 0 1 0 0 1 1 
0 0 1 0 1 0 0 1 1 
1 0 0 0 1 0 1 0 0 

De Morgan’s Theorem can be expressed in a general form for n variables as follows: _ - _ _  
A + B + C + D + ... = A .  B ,  C .  D .  ... 
A .  B . C .  D -  ... = 7 + B+ c + D  + ... 

The logic gates except for the inverter can have more than two inputs if the 
logic operation performed by the gate is commutative and associative (identities 6a and 
7a). For example, the OR operation has these two properties as fol1ows:A + B = B + A 
(commutative) and (A + B) + C = A+ (B +C) = A + B + C (associative). This means 

-f 

(a) Implementation off = ABCD + ABCD + BC 

B 
C 
D 

f 

(b) implementation of the simplified function f = BC + D 

FIGURE 3.23 Implementation of Boolean hnction using logic gates 
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that the OR gate inputs can be interchanged. Thus, the OR gate can have more than two 
inputs . Similarly, using the identities 6b and 7b, it can be shown that the AND gate can 
also have more than two inputs. Note that the NOR and NAND operations, on the other 
hand, are commutative, but not associative. Therefore, it is not possible to have NOR and 
NAND gates with more than two inputs. However, NOR and NAND gates with more 
than two inputs can be obtained by using inverted OR and inverted AND respectively. 
The Exclusive-OR and Exclusive-NOR operations are both commutative and associative. 
Thus, these gates can have more than two inputs. However, Exclusive-OR and Exclusive- 
NOR gates with more than two inputs are uncommon from a hardware point of view. 

3.5.2 Simplification Using Boolean Identities 
Although there are no defined set of rules for minimizing a Boolean expression, appropriate 
identities can be used to accomplish this. Consider the Boolean function 

f=ABCD + ABCD + BC 
This equation can be implemented using logic gates as shown in Figure 3.23(a). 

f =BCD(A+~,)+BC By identity 4a) 
By identity 1 b) 

The expression can be simplified by using identities as follows: 

= B C D ~  1 BC 
= B C D + B C  

Assume BC = E, then BC = E and, 
f = E D + E ,  

= - (E + E)(E+D) By identity 8b) 
= E + D  By identity 4a) 

f = BC + D Substituting E = z, 
The simplified form is implemented using logic gates in Figure 3.23(b). The 

logic diagram in Figure 3.23(b) requires only one NAND gate and an OR gate. This 
implementation is inexpensive compared to the circuit of Figure 3.23(a). Both logic circuits 
perform the same function. The following truth table can be used to show that the outputs 
produced by both circuits are equivalent: 

A B C D 
0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

1 

0 

0 

1 

I 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

f=ABCD i- 2BCD + BC 
1 

1 

1 

1 

1 

1 

0 

1 

1 

1 

1 

1 

1 

f = B C + D  

1 

1 

1 

1 

1 

1 

0 

1 

1 

1 

1 

1 

1 
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1 1 0 1 

1 1 1 0 

1 1 1 1 

The following are some more examples for simplifying Boolean expressions using 
identities: 

_ _ _ _  - - -  - -  - 
i)  f = x + y + x y + x y z =  xy+xy+xyz=xy+xyz=xy( I  + z )  = 5 
ii) f = &cd + acd + Zcd + (10 ab) cd = &cd + cd 6 +g) + Z c d  = &d +&d + &d - 

= abcd 

iv) F = A T + A B  + A C = A  (B + C)+AB +A C = A  B + A  C+ AB + A  C 
= A  ( B  + B)+ C(A + 2) =A+C 

- -  _ - 
v) f = x + xy + x + y = x + xy + y= (x + X)(x+ y)  + j = x + y + j = x + 1 = 1 

vi) f = A ( B @ l ) ( x + B ) = A B  ( x + B ) = A B A + A B B = O  

v i i ) F = B ( A + B ) + A B  + B = A B + B B + A B  + B =  A B + B + A B  + B  
= I + A B + A B  = I  

viii)f=(x+y+z) ( X y + j z )  = Xyx+Xyy+Xyz+jzx+jzy+jzz 
= xy+xyz+jzx+jz = xy(1 +z)+jz(x+l) = i y+ j z  

xi) Show that f= (a+b)&+b) can be implemented using one Exclusive -OR gate. 
Solution: f= (a+z))(;;+b) using DeMorgan's theorem, 

xii) Show that f=(A+B)(E+F) can be implemented using two AND and one OR gates. 
Solution: f =(A+B)(E+F) = AB + EF using DeMorgan's theorem. 

-~ 
=(a+@ +(;;+b) = ( ; ; * ~ ) + + * ~ ) = & + a ~  = a @ b  _ _ _ _  

- - _ _  

xiii) Expressf=(X+zZ) (X + z) using only one two-input OR gate. 
Solution:f=(X+X) (X+Z)(X + 2) using the distributive law. Hence, f =  X+Z 

xiv) Express f forl=(z + B + C) + T C  usingonly one three input AND gate. 
Solution: Using DeMorgan's theorem, f= f=(A  + B + C) + E C  

= (ABC)*(ABC) = ABC 

3.5.3 Consensus Theorem 
The Consensus Theorem is expressed as AB + AC + BC = AB + AC 

The theorem states that the AND term BC can be eliminated from the expression 
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if one of the literals such as B is ANDed with the true value of another literal (A)  and the 
other term C is ANDed with its complement (A). This theorem can sometimes be applied 
to simplify Boolean equations. The Consensus Theorem can be proved as follows: 

AB + AC + BC = AB + AC + BC(A + A) 
= AB + Ac+ ABC+ABC 
=AB+ABC+AC+ABC 

=AB+AC 
= AB(1+ C) +AC(1+ B )  

The dual of the Consensus Theorem can be expressed as 
(A + B)(I + C)(B +C) = (A + B)(I + C) 

To illustrate how a Boolean expression can be manipulated by applying the Consensus 
Theorem, consider the following: - - 

f = ( B  +D)(B + C) 

= B B + B C + B B + C D  
=BC+BD+CB,sinceBB=O 

Because C is ANDed with B, and D is ANDed with its complement 3, by using the 
Consensus Theorem, Co can be eliminated. Thus, f = BC + 3 D. 

The Consensus Theorem can be used in logic circuits for avoiding undesirable 
behavior. To illustrate this, consider the logic circuits in Figure 3.24. In Figure 3.24(a), the 

B 

f = A B + k  

C 

(a) Logic circuit for f = AB + AC 

A B  

ZC 
f= 

BC 

AB+Z C+BC 

(b) Logic circuit forf= AB + AC + BC 
FIGURE 3.24 Logic circuit for the Consensus Theorem 
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output is one i) if B and C are 1 and A = 0 or ii) if B and C are 1 and A = 1. 
Suppose that in Figure 3.24(a), B = 1, C= 1, and A = 0. Assume that the propagation 

delay time of each gate is 10 ns (nanoseconds). The circuit outputfwill be 1 after 30 ns 
(3 gate delays). Now, if input A changes from 0 to 1, the outputs of NOT gate 1 and AND 
gate 2 will be 0 and 1 respectively after 10 ns. This will make outputf= 1 after 20 ns. The 
output of AND gate 3 will be low after 20 ns, which will not affect the output o f f .  

Now, assume that B and C stay at 1 while A changes from 1 to 0. The outputs of 
NOT gate 1 and AND gate 2 will be 1 and 0 respectively after 10 ns. Because the output 
of AND gate 3 is 0 from the previous case, this will change output of OR gate 4 to 0 for a 
brief period of time. After 10 ns, the output of AND gate 3 changes to 1, making the output 
offHIGH (desired value). Note that, for B = 1, C = 1, and A = 0, the outputfshould have 
stayed at 1 from the equationf= AB + ZC. However,fchanged to zero for a short period 
of time. This change is called a “glitch” or “hazard” and occurs from the gate delays in a 
circuit. Glitches can cause circuit malfunction and should be eliminated. Application of the 
Consensus theorem gets rid of the glitch. By adding the redundant term BC, the modified 
logic circuit forfis obtained. Figure 3.24(b) shows the logic circuit. Now, consider the 
case in which the glitch occurs in Figure 3.24(a) when B and C stay at 1 while A changes 
from 1 to 0. For the circuit in Figure 3.24(b) the glitch will disappear, because BC = 1 
throughout any changes in values of A and 2. Thus, minimization of logic gates might not 
always be desirable; rather, a circuit without any hazards would bt: the main objective of 
the designer. 

There are two types of hazards: static and dynamic. Static hazard occurs when a 
signal should remain at one value, but instead it oscillates a few times before settling back 
to its original value. Dynamic hazard occurs, when a signal should make a clean transition 
to a new logic value, but instead it oscillates between the two logic values before 
making the transition to its final value. Both types of hazards occur because of races in 
the various paths of a circuit. A race is a situation in which signals traveling through two 
or more paths compete with each other to affect a common signal. It is, therefore, possible 
for the final signal value to be determined by the winner of the race. One way to eliminate 
races is by applying the Consensus theorem as illustrated in the preceding example. 

3.5.4 
The complement of a function f can be obtained algebraically by applying DeMorgan’s 
Theorem. It follows from this theorem that the complement of a function can also be 
derived by taking the dual of the function and complementing each literal. 

Examde 3.1 
Find the complement of the functionf= C(AB + 2 BD + ABD, 
i) Using DeMorgan’s Theorem 
Solution 

function can be obtained: 

Complement of a Boolean Function 

ii) By taking the dual and complementing each literal 

Using DeMorgan’s Theorem as many times as required, the complement of the 
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7= <AB+~BD+ABB)  
- - 

= c+(AB+AED+~BE) 

= C+[ZZ.ABD.ABE) 

= c + (A + B)(A + B + O)(A + 3 + D )  

-- 

By taking the dual and complementing each literal, we have: - 
The dual of$ 
Complementing each literal: 

C + (A + B)(x + B  -!- D)@+ B +D) 
C + (2 + B)(A + B + D)(A + B + D) =y 

3.6 Standard ReDresentations 

The standard representations of a Boolean function typically contain either logical 
product (AND) terms called “minterms” or logical sum (OR) terms called “maxterms.” 
These standard representations make the minimization procedures easier. The standard 
representations are also called “Canonical forms.” 

A minterm is a product term of all variables in which each variable can be 
either complemented or uncomplemented. For example, there are four minterms for two 
variables, A and B. These minterms are A B, AB, AB, and AB. On the other hand, there are 
eight minterms for three variables, A, B, and C. These minterms are A B C, A BC, ABC, 
ABC, AB c, ABC, ABC, and ABC. These product terms represent numeric values from 0 
through 7. In general, there are 2“ minterms for n variables. 

A minterm is represented by the symbol rnj, where the subscript j is the decimal 
equivalent of the binary number of the minterm. For example, the decimal equivalents 
(j) of the binary numbers represented by the four minterms of two variables, A and B, are 
0 (2 B), 1(2 B), 2(A B), and 3 (AB). Therefore, the symbolic representations of the four 
minterms of two variables are rn,, rn,, rn2, and rn, as follows: 

-- - 
- - - - - - - 

Minterm Symbol _ _  A B 
0 0 A B  mo 

0 1 AB m1 

1 0 AB m2 

1 1 AB m3 

In general, the n minterms of p (n  = 29 variables are: rn,, m,, rn2, ... , rnn-, . 
It has been shown that a Boolean hnction can be defined by a truth table. A 

Boolean function can be exressed in terms of minterms. For example, consider the 
following truth table: 

A B f 
0 0 1 
0 1 0 
1 0 1 
1 1 1 

One can determine the function f by logically summing (ORing) the product 
terms for which f is 1. Therefore, 

f =AB + AB + AB 
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This is called the Sum-of-Products expression. A logic diagram of a sum-of-products 
expression contains several AND gates followed by a single OR gate. In terms of minterms, 
f can be represented as: 

f= C m(O,2,3) 
The symbol Z denotes the logical sum (OR) of the minterms. 

A maxterm, on the other hand, can be defined as a logical sum (OR) term that 
contains all variables in complemented or uncomplemented form. The four maxterms of 
two variables are A + B, 2 + B, A + B , and 2 + B. A maxterm is obtained from the logical 
sum of all the variables by complementing each variable. Each maxterm is represented by 
the symbol Mj, where the subscript j is the decimal equivalent of the binary number of the 
maxterm. Therefore, the four maxterms of the two variables, A and B, can be represented 
as follows: 

A B Maxterm Symbol 
0 0 A + B  Mo 
0 1 A + B  MI 

1 0 A + B  M2 
1 1 A+B M3 

In the preceding, consider maxterm M2 as an example. Since A = 1 and B = 0, the 
maxterm M, is found as 2 + B by taking the logical sum of the complement of A (since A 
= 1) and true value of B (since B = 0). In general, there are n maxterms (M,,, MI, ... , M+,) 
forp variables, where n = 2 p .  

The relationship between minterm and maxterm can be established by using 
DeMorgan’s theorem. Consider, for example, minterm m,  and maxterm M, for two 
variables: 

m , = A B ,  M , = A + B  

Taking the complement of m, ,  - 

i6 =AB 
- 

= A + B by DeMorgan’s Theorem 

= A + B  

= M ,  

Therefore m, = q, or & = M,. This implies that mj = q, or % = 4. That is, a minterm 
is the complement of its corresponding maxterm and vice versa. 

In order to represent a Boolean function in terms of maxterms, consider the 

following truth table: - 

s f A B 

0 0 1 0 
0 1 0 1 
1 0 0 1 
1 1 0 1 

Taking the logical sum of minterms of j ;  
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FIGURE 3.25 (a) Logic diagram of a sum of minterms 
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FIGURE 3.25 (b) Logic diagram of a product of maxterms 

By taking complement ofx  

= M I  . M2 - A 4 3  (since Mj = mj) 

= (A  + @(A + B)(A + E )  

This is called the product-ofsums expression. The logic diagram of a product- 
ofsums expression contains several OR gates followed by a single AND gate. Hence, 
f=IIM( 1 , 2 , 3 )  where the symbol II represents the logical product (AND) of maxterms M,, 
M2, and M3 in this case. Note that one can express a Boolean function in terms of maxterms 
by inspecting a truth table and then logically ANDing the maxterms for which the Boolean 
function has a value of 0. 

A Boolean function that is not expressed in terms of sums of minterms or product 
of maxterms can be represented by a truth table. The function can then be expressed in 
terms of minterms or maxterms. For example, consider f = A + BC. The functionfis not 
in a sum of minterms or product of maxterms form, since each term does not include all 
three variables A ,  B, and C. The truth table for f can be determined as follows: 
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A B C f = A + B c  

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 

From the truth table, the sum of minterm form cf= 1) is: 

From the truth table, the product of maxterm form cf= 0) is: 
f =Zm(2,4,5,6,7) = ABC + AB c + ABC + A B c  + ABC 

f=rIM(O, 1 , 3 ) = ( A + B + C ) ( A + B + c ) ( A + Z + C )  
The complement o f f ,  f = ZM(0, 1, 3), is obtained by the logical sum of 

minterms for f=O. Also, note that a function containing all minterms is 1. This means 
that in the above truth table, if f=l for all eight combinations of A, B, and C, then 
.f = Zm(0, 1, 2, 3, 4, 5, 6, 7) = 1. As mentioned before, the logic diagram of a sum of 
minterm form contains several AND gates and a single OR gate. This is illustrated by the 
logic diagram forf = Zm(2, 4, 5, 6, 7) = JB?? + AB C + ABC + ABC + ABC as shown 
in figure 3.25(a). Similarly, the logic diagram of a product of maxterm expression form 
contains several OR gates and a single AND gate. This is illustrated by the logic diagram 
for f =M(O, 1, 3 )  = (A + B + C)(A + B + c)(A + B + c) as shown in figure 3.25(b). 

Example 3.2 
Using the following truth table, express the Boolean hnctionfin terms of sum-of-products 
(minterms) and product-of-sums (maxterms): 

C f 
0 0 

1 1 

0 1 

1 1 

0 0 

1 0 

0 1 

1 0 
Solution 
From the truth table,f= 1 for minterms m,, m,, m,, and m6. Therefore, the Boolean function 
f can be expressed by taking the logical sum (OR) of these minterms as follows: 

f = Zm(l ,2 ,3 ,6 ,  ) = A  BC + ABC + ABC + A B c  
Now, let us expressfin terms of maxterms. By inspecting the truth table,.f= 0 for maxterms 
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M,, M4, M,, and M,. Therefore, the function f can be obtained by logically ANDing these 
maxterms as follows: 

f =W(O, 4,5, 7) = (A + B + C)(2 + B + C)(2 + B + c)(z + 3 + c) 

3.7 Karnaugh MaDs 

A Karnaugh map or simply a K-map is a diagram showing the graphical form of a truth 
table. Since there is no specific set of rules for minimizing a Boolean function using 
identities, it is difficult to know whether the minimum expression is obtained. The K-map 
provides a systematic procedure for simplifying Boolean functions of typically up to five 
variables. K-maps for more than five variables are difficult to use. However, a computer 
program using a tabular method such as the Quine-McCluskey algorithm can be used to 
minimize Boolean functions. 

The K-map is a diagram containing squares with each square representing one 
of the minterms of the Boolean function. For example, the K-map of two variables (A,B) 
contains four squares. The four minterms A B, AB, AB, and AB are represented by each 
square. Similarly, there are 8 squares for three variables, 16 squares for four variables, and 
32 squares for five variables. Since any Boolean function can be expressed in terms of 
minterms, the K-map can be used to visually represent a Boolean function. 

The K-map is drawn in such a way that there is only a 1 -bit change from one square 
to the next (Gray code). Squares can be combined in groups of 2” where n=0,1,2,3,4,5, 
and the Boolean function can be minimized by following certain rules. This minimum 

_ -  - 

FIGURE 3.26 Two-variable K-map 

FIGURE 3.27 K-Map for F = Zm(0,l) 

FIGURE 3.28 K-Map for F = Zm(0,2,3) 
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expression will reduce the total number of gates for implementation. Thus, the cost of 
building the logic circuit is reduced. 

3.7.1 Two-Variable K-map 
Figure 3.26 shows the K-map for two variables. Since there are four minterms with two 
variables, four squares are required to represent them. This is depicted in the map of 
Figure 3.26(a). Each square represents a minterm. Figure 3.26(b) shows the K-map for 
two variables. Since each variable has a value of 0 or 1, in the K-map of Figure 3.26(b), 
the 0 and 1 shown on the left of the map corresponds to A while the 0 and 1 on the top are 
assigned to the variable B. The squares containing minterms with one variable change are 
called “adjacent” squares. A square is adjacent of another square placed horizontally or 
vertically next to it. For example, consider the minterms m, and m,. Since mo= 2 B and 
m, = AB, there is a one variable change (B in m, and B in m,, 2 is same in both squares). 
Therefore, m, and m,  are adjacent squares. Similarly, other adjacent squares in the map 
include m, and m,, or m,  and m3. m,(A B) and m,(AB) are not adjacent squares since both 
variables change from 0’s to 1’s. The adjacent squares can be combined to eliminate one 
of the variables. This is based on the Boolean identities A + 2 = 1 or B + B = 1. 

The adjacent squares can also be identified by considering the map as a book. By 
closing the book at the middle vertical line, m, and m, will respectively be placed on m,  
and m,. Thus, m, and m, are adjacent; squares m, and m3 are also adjacent. Similarly, by 
closing the map at the middle horizontal line, m, will fall on m2 while m,  will be placed on 
m,. Thus, m, and m, or m, and m, are adjacent squares. 

Now, let us consider a Boolean function, F = Im(0,l). Figure 3.27 shows that 
the function F containing two minterms m, and m, are identified by placing 1 ’s in the 
corresponding squares of the map. In order to minimize the function F, the two squares 
can be combined as shown since they are adjacent. The map is then inspected for common 
variables looking at the squares vertically and horizontally. Since A = 0 is common to both 
squares, F = 2. This can be proven analytically by using Boolean identities as follows: 

F =  Im(0,l) = 2 B + ZB 

-- 

= A(B + B) = A (since B + B = 1) 
In a two-variable K-map, adjacent squares can be combined in groups of 2 or 4. 

Next, consider F=Zm(0,2,3). The K-map is shown in Figure 3.28. Where 1’s are 
placed in the squares defined by the minterms m,, m,, and m,. By combining the adjacent 
squares mo with m, and 172, with m,, the common terms can be determined to simplify the 
function F. For example, by inspecting m, and m2 vertically and horizontally, the term B is 
the common term. On the other hand, by looking at m2 and m, horizontally and vertically, 
variable A is the common term. The minimized form of the hnction F can be obtained by 
logically ORing these common terms. Therefore, 

Note that the function F =1 for F =Zm(O,l ,2 ,3)  in which all squares in the K-map are 1.  
F = A + B .  

3.7.2 Three-Variable K-map 
Figure 3.29 shows the K-map for three variables. Figure 3.29(a) shows a map with three 
literals in each square. There are eight minterms (m,,, m,, ... , m7) for three variables. Figure 
3.29(b) shows these minterms - one for each square in the K-map. 

Like the two-variable K-map, a square in a three-variable K-map is adjacent to 
the squares placed horizontally or vertically next to it. Consider the minterms m,, m2, m3, 
and m7. For example, m3 is adjacent to m,, m,, and m,; m,  is adjacent to m,; m, is adjacent 
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ABC 3 
FIGURE 3.29 Three-variable K-map 

to m,; ml is adjacent to m,. But, ml is adjacent neither to m, nor to m,; m,  is not adjacent to 
m, and vice versa. 

Like the two-variable map, the K-map can be considered as a book. The adjacent 
squares can also be determined by closing the book at the middle horizontal and vertical 
lines. For example, closing the book at the middle horizontal line, the adjacent pair of 
squares are m, and m4, m,  and mS, m, and ml, m2 and m6. On the other hand, closing the 
book at the middle vertical line, the adjacent pair of squares are m, and m2, m,  and m,, m4 
and m6, ms and m,. 

For a three variable K-map, adjacent squares can be combined in powers of 2: 1 
(2'3, 2 (2 ' ) ,  4 (2*) and 8 (2,). The Boolean hnction is 1 when all eight squares are 1. It is 
desirable to combine as many squares as possible. For example, grouping two (2l) adjacent 
squares will provide a product term of two literals and combining four (22) adjacent squares 
will provide a product term of one literal for a three-variable K-map. The following 
examples illustrate this. 

ExamDle 3.3 
Simplify the Boolean function 

using a K-map. 
AA, B, C )  = m(O,2,3,4,6,7) 

FIGURE 3.30 K-map forAA, B, C )  = Z m(O,2,3,4,6,7) 

FIGURE 3.31 K-map forAA, B, C )  = Z m(0, 1, 2, 6 )  
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Solution 
Figure 3.30 shows the K-map along with the grouping of adjacent squares. First, a 1 is 
placed in the K-map for each minterm that represents the function. Next, the adjacent 
squares are identified by squares next to each other. Therefore, rn,, m3, M,, and m, can be 
combined as a group of adjacent squares. The common term for this grouping is B. Note 
that combining four (2,) squares provides the result with only one literal, B. Next, by 
folding the K-map at the middle vertical line, adjacent squares rn,, rn,, rn,,-and m6 can be 
identified. Combining them together will provide the single common term C. Therefore, 

f = B + C  
This result can be verified analytically by using the identities as follows: 

f = Z rn(O,2,3,4,6, 7) 
= A B C +  ABC + A BC + A  BC+ A B C +  ABC 

= B C + BC +BC 

_ _  
= B C (A + A)+ BC(2 + A)  +BC(X + A)  

= C(B +B) +BC 
= C +BC 
= (B +C)(C + C) = B + C 

_ _  
- 

(using the Distributive Law) 

ExamDle 3.4 
Simplify the Boolean function 

using a K-map. 
Solution 
Figure 3.3 1 shows the K-map along with the grouping of adjacent squares. From the K- 
map, grouping adjacent squares and logically ORing common product terms, 

f = A B  + BC 

f ( A ,  B, C )  = Z m(0, 1,2,6)  

FIGURE 3.32 K-map for F = A B c  + A  BC + BC 

F = E  

(4 
FIGURE 3.33 Four-variable K-map 
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ExamDle 3.5 
Simplify the Boolean function 

using a K-map. 
Solution 
The function contains three variables, A, B, and C, and is not expressed in minterm form. 
The first step is to express the function in terms of minterms as follows: 

F = z B C + A B c +  BC(Ai-2)  

F(A, B, C) = 2 B c + A BC + BC 

= A B C +  A B C  + ABC +2B c 
= Z m(0, 1,4,5) 

Figure 3.32 shows the K-map. Note that the four (2,) adjacent squares are grouped to 
provide a single literal B by eliminating the other literals. Therefore, F = B. Although F 
is not expressed in minterm form, one can usually identify the squares with 1's in the K- 
map for the function F = A B C + A B + BC by inspection. This will avoid the lengthy 
process of converting such functions into minterm form. 

_ _ _  

3.7.3 Four-Variable K-map 
A four-variable K-map, depicted in Figure 3.33, contains 16 squares because there are 16 
minterms. Figure 3.33(a) includes four literals in each square. Figure 3.33(b) lists each 
minterm in its respective square. As before, a square is adjacent to the squares placed 
horizontally or vertically next to it. For example, rn, is adjacent to m,, m,, m6, and mi,. Also, 
by closing the K-map at the middle vertical line, the adjacent pairs of squares are m, and 
m,, rn, and m,, In4 and m6, m,,  and mI4, ma and m,,, and so on. On the other hand, closing it 
at the middle horizontal line will provide the following adjacent squares: mo and ma, m, and 
m,, m, and m,,, m, and m,,, and so on. 

For a four-variable K-map, adjacent squares can be grouped in powers of 2: 1 (2O), 
2 (2l), 4 (22), 8 (23), and 16 (24). The Boolean function is 1 when all 16 minterms are 1. 
Combining two adjacent squares will provide a product term of three literals; four adjacent 
squares will provide a product term of two literals; eight adjacent squares will yield a 
product term of one literal. 

ExamDle 3.6 
Simplify the Boolean function 

using a K-map. 
Solution 

f(A, B, C, 0) = Z m(0, 1,2,3,  8, 9, 10, 11, 12, 13, 14, 15) 
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FIGURE 3.35 K-map for F(A, B, C, D)  = 2 m(O,2,4,5,6,8,  10) 

-- -- 
F = A C + A D  

FIGURE 3.36 K-map for F = 2 B ?? + 2 B c + 2 B + 2 B C D 

BC 
A 00 01 1 1  10 

I I 

Essential Prime Implicants 7 AB 

FIGURE 3.37 

Figure 3.34 shows the K-map. The 8 adjacent squares combined in the bottom two rows 
yield the common product term of one literal, A .  Because the top row is adjacent to the 
bottom row, combining the minterms in these two rows will provide a common product 
term of a single literal, B. Therefore, by ORing these two terms, the minimized form of the 
function, F = A + B is obtained. 

K-map for Example 3.9 

ExamDle 3.7 
Simplify the Boolean functionf(A, B, C, 0) = 2: m(O,2,4,5,6, 8 ,  10) using a K-map. 
Solution 
Figure 3.35 shows the K-map. The common product term obtained by grouping the 
adjacent squares ma, m,, m4, and m6 will contain 2 0. The common product term obtained 
by grouping the adjacent squares ma, m2, m,, and m,, will be B 0. Combining the adjacent 
squares m4 and m5 will provide the common term 2 B c. ORing these common product 
terms will yield the minimum function, F(A, B, C, D )  = A D  + B + 2 B c. 
ExamDle 3.8 
Simplify the Boolean Function, F = 2 B c + 2 B c + 2 B D + 2 B C D using a K-map. 
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Prime Implicants BD, 6 and AB 

FIGURE 3.38 K-map for Example 3.10 

Solution 
Figure 3.36 shows the K-map. In the figure, the fimction F can be expressed in terms of 
minterms as follows: 

F = x B C ( D + i i ) + x B C ( D + D ) +  A B D ( C + Z ) + + B C D  
=ABCD + + B C D + A B C D  + A B C D + A B C D + A B Z D + A B C D  
= m,  + m, f m, + m4 + m6 -?- m4 + m, 
= m, f m, f m5 -?- m4 + m6 + m2 

Rearranging the terms: F = m, + m,  + m2 + m4 + rn, + m6 
Therefore, F = Z m(0, 1,2,4,5,6) 
These minterms are marked as 1 in the K-map. The adjacent squares are grouped as shown. 
The minimum form of the function, F = A C + A D. 

because m4 + m4 = m4 

_ -  _ -  

3.7.4 Prime Implicants 
A prime implicant is the product term obtained as a result of grouping the maximum number 
of allowable adjacent squares in a K-map. The prime implicant is called “essential” if it is 
the only term covering the minterms. A prime implicant is called “nonessential” if another 
prime implicant covers the same minterms. The simplified expression for a function can be 
determined using the K-map as follows: 
i) Determine all the essential prime implicants. 
ii) Express the minimum form of the function by logically ORing the essential prime 

implicants obtained in i) along with other prime implicants that may be required to 
cover any remaining minterms not covered by the essential prime implicants. 

FIGURE 3.39 K-map forf= Z m(2,4, 5,8, 9, 13) 
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Examde 3.9 
Find the prime implicants from the K-map of Figure 3.37 and then determine the simplified 
expression for the function. 
Solution 
The essential prime implicants are AB, 2 3 because minterms m, and m, can only be 
covered by the term 2 B and minterms m6 and m7 can only be covered by the term AB. 

The terms AC and BC are nonessential prime implicants because minterm m5 can 
be combined with either m, or m7. The term AC can be obtained by combining m5 with m7 
whereas the term BC is obtained by combining m5 with m,. The function can be expressed 
in two simplified forms as follows: 

f = A B  + AB + AC 
or 

f = 2 B + AB + BC 

ExamDle 3.10 
Find the essential prime implicants from the K-map of Figure 3.38 and then find the 
simplified expression for the function. 
Solution 
The prime implicants can be obtained as follows: 
1. By combining minterms m5, m7, m,,, and mI5,  the prime implicant BD is obtained. 
2. By combining minterms m,, m,,, m,,, and mI4, the prime implicant A D  is obtained. 
3. By combining minterms mlz,  m,,, mI4 ,  and mI5,  the prime implicant AB is obtained. 

The terms BD and AD are essential prime implicants whereas AB is a nonessential 
prime implicant because minterms m5 and m, can only be covered by the term BD and 
minterms m, and m,, can only be covered by the term AD. However, minterms mI2,  mI3, mI4,  
and mI5 can be covered by these two prime implicants (BD and AD). Therefore, the term AB 
is not an essential prime implicant. Because all minterms are covered by the essential prime 
implicants, BD and AD, the term AB is not required to simplify the function. Therefore, 

f = BD + A D .  

ExamDle 3.1 1 
Find the prime implicants and then simplify the hnction using a K-map. 

f = Z m(2,4, 5 ,  8; 9, 13) 
Solution 
Figure 3.39 shows the K-map. The essential prime implicants are A B C D, A B ??, and 
A B c because minterms m, and m5 can only be covered by the term 2 B c, minterms m, 

_ _  _ _  

1 

FIGURE 3.40 K-map forf(rl, B, C, D )  = 2 m(0, 1,4, 5 , 6 , 7 ,  8,9,  14, 15) 



Boolean Algebra and Digital Logic Gates 83 

and m, can only be covered by the term A B C, and minterm m2 can only be covered by the 
t e rmZB C D .  

Minterm m,3 can be combined with either m, or mg. Combining m,3 with m, will 
yield the term BCD; combining with m, will provide the term ACD . Therefore, minterm 
m,3 can be covered by either BCD or A c D .  Therefore, B c D  and ACD are nonessential 
prime implicants. Hence, the function has two simplified forms: 

f A B C + BCD 

+ A B f ACD 

f = 2 B Co f 2 B 

f = 2 B C o  + 2 B 
or 

3.7.5 
So far, the simplified Boolean functions derived from the K-map were expressed in sum- 
of-products form. This section will describe the procedure for obtaining the simplified 
Boolean function in product-of-sums form. 

In the K-map, the minterms of a function are represented by 1 ’s. If the empty 
squares in the K-map are identified as O’s, combining the appropriate adjacent squares 
will provide the simplified expression of the complement of the function u>. By taking the 
complement o f x  the simplified expression for the function,f; can be obtained. 

Expressing a Function in Product-of-sums Form Using a K-Map 

Examole 3.12 
Simplify the Boolean €unctionf(A, B, C, D) = Z m(0, 1,4, 5 ,6 ,7 ,  8, 9, 14, 15) in product- 
of-sums form using a K-map. 
Solution 
Figure 3.40 shows the K-map. Combining the O’s, a simplified expression for the 
complement of the function can be obtained as follows: 

f =  BC + ABC 
By DeMorgan’s Theorem, - _ _  

f = f = (BC -I- AB?) = (BC) (ABC) + (B + C) 9 (2 + B + C) 
The example illustrates the procedure for simplifying a function in product- 

of-sums form from its expression as a sum of minterms. The procedure is similar for 
simplifying a function expressed in product-of-sums (maxterms). 

To represent a function expressed in product-of-sums in the K-map, the 
complement of the function must first be taken. The squares will then be identified as 1 ’s 
€or the minterms of the complement of the function. For example, consider the following 
hnction expressed in maxterm form: 

f = (2 f B + C)(A + B f C ) ( A  + B + C) 
This function can be represented in the K-map by taking its complement and representing 
in terms of minterms as follows: 

f = A B C + ~ B C + ~ B C  
= Z m(O,3,4) 

Placing 1’s in the K-map form,, m,, and m4 will provide the minterms fo r3  The 
simplified expression for the sum-of-products form of the function, fcan be obtained by 
grouping 1 ’s. Finally, the product-of-sums form of the function, f ;  can be obtained by 
complementing the function,? 

3.7.6 Don’t Care Conditions 
The squares of a K-map are marked with 1’s for the minterms of a function. The other 
squares are assumed to be 0’s. This is not always true, because there may be situations 
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1 '  0 x 0 

7.- 'a 0 0 1 1 1  

m12 m l 3  m15 m14 

FIGURE 3.41 K-map for Example 3.13 

ti I: I 

FIGURE 3.42 Determineyby combining 0's and don't care conditions for Example 

FIGURE 3.43 

(4 

Five-Variable K-map 

Five-Variable K-map 

\c BC 
00 

01 

11 

10 

FIGURE 3.44 

A =  0 
'00 01 11 10 

K-map for Example 3.14 
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in which the function is not defined for all combinations of the variables. Such functions 
having undefined outputs for certain combinations of literals are called “incompletely 
specified functions.” One does not normally care about the value of the function for 
undefined minterms. Therefore, the undefined minterms of a function are called “don’t 
care conditions.” Simply put, the don’t care conditions are situations in which one or more 
literals in a minterm can never happen, resulting in nonoccurence of the minterm. 

As an example, BCD numbers include ten digits (0 through 9) and are defined by 
four bits (0000, through 1001,). However, one can represent binary numbers from 0000, 
through 1 11 1, using four bits. This means that the binary combinations 10102 through 
1 1 1 1, (1 O,, through 1 51,J can never occur in BCD. Therefore, these six Combinations (1 0 10, 
through 11 1 12) are don’t care conditions in BCD. The functions for these six combinations 
of the four literals are unspecified. The don’t care condition is represented by the symbol 
X. This means that the symbol X will be placed inside a square in the K-map for which the 
function is unspecified. The don’t care minterms can be used to simplify a function. The 
function can be minimized by assigning 1 ’s or 0’s for X’s in the K-map while determining 
adjacent squares. These assigned values of X’s can then be grouped with 1’s or 0’s in the 
K-map, depending on the combination that provides the minimum expression. Note that 
a don’t care condition may not be required if it does not help in minimizing the function. 
To help in understanding the concept of don’t care conditions, the following example is 
provided. 

Examde 3.13 
Simplify the functionf(A, B, C, D) = I: m(0, 2, 5, 8, 10, 12) using a K-map. Assume that 
the minterms m,, m4, m6, m,, and m,5 can never occur. 
Solution 
The don’t care conditions are 

d(A, B, C, 0) = I: m(l,4,6,  7, 15) 
Figure 3.41 shows the K-map. By assigning X = 1 and combining 1’s as shown, f can be 
expressed in sum-of-products form as follows: 

On the other hand, by assigning X = 0 and combining 0’s as shown in Figure 3.42, ycan 
be obtained as a product-of-sums. Thus, 

f = c D + x B + B D  

~ = _ C D + A D + B C  
f = f = C D + A D + B C  

= (Cii)(rn)(E) 
= (C + D)(X + D)(Z + C) 

3.7.7 Five-Variable K-map 
Figure 3.43 shows a five-variable K-map. The five-variable K-map contains 32 squares. It 
contains two four-variable maps for BCDE with A = 0 in one of the two maps and A = 1 in 
the other. The value of a minterm in each map can be determined by the decimal value of 
the five literals. For example, minterm mI4 from Figure 3.43(a) can be expressed in terms 
of the five literals as ABCDE. On the other hand, minterm m26 can be expressed in terms of 
the five literals from Figure 3.43(b) as ABCDE. 

When simplifying a function, each K-map can first be considered as an individual 
four-variable map with A = 0 or A = 1. Combining of adjacent squares will be identical 
to typical four-variable maps. Next, the adjacent squares between the two K-maps can 
be determined by placing the map in Figure 3.43(a) on top of the map in Figure 3.43(b). 

_ _  
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(i) 
Minterm A B C D 

0 0 0 0 0 J 

2 0 0 1 0 J 

4 0 1 0 0 J 

8 1 0 0 0 J 

5 0 1 0 1  

6 

~ 

10 

Two squares are adjacent when a square in Figure 3.43(a) falls on the square in Figure 
3.43(b) and vice versa. For example, minterm m, is adjacent to minterm mI6, minterm m1 is 
adjacent to minterm mI7, and so on. 

(ii) (iii) 
A B C D  A B C D  

0,2 0 0 - 0 J 0,2,4,6 0 - - 0 

0,4 0 - 0 0 J 0,2,8,10 - 0 - 0 
0,8 - 0 0 0 J 0,4,2,6 0 - - 0 
2,6 0 - 1 0 J 0,8,2,10 - 0 - 0 

J 2 , l O -  0 1 0  J 

1 0 1 0 J 4 , 6 0 1 - O J  

8, lO 1 0 - 0 J 

0 1 1 0 J 4 , 5 0 1 0 -  

Examde 3.14 
Simplify the function 

using a K-map. 
Solution 
Figure 3.44 shows the K-map. 

f = ZBD + BDE 
To find the adjacent squares, the K-maps are first considered individually. From Figure 
3.44(a), combining minterms m,,, m, , ,  mI4,  and mI5  will yield the product term 2BD. 

Minterms m,, and m13 are in the K-map of Figure 3.44(b). However, they are 
adjacent to minterms m3 and m7 in Figure 3.44(a). Combining m3, m7, ~ 1 9 ,  and m2, together, 
the product term BDE can be obtained. Literals A or 2 are not included here because 
adjacent squares belong to both A = 0 and A = 1. Therefore, the minimum form off is 

f = I B D  t BDE 

f(A, B, C, D, E) = Z m(3, 7, 10, 11, 14, 15, 19,23) 

3.8 OuineMcCluskev Method 
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ExamDle 3.15 
In Example 3.7, F(A, B, C, D) = C m(O,2 ,4 ,5 ,6 ,  8, 10) is simplified using a K-map. The 
minimum form is F = A D + B D + ABC. Verify this result using the Quine-McCluskey 
method. 

_ _  _ _  _ _  

Solution 
First arrange the binary representation of the minterms as shown in Table 3.2. In the 
table, the minterms are grouped according to the number of 1’s contained in their binary 
representations. For example, consider column (i). Because minterms m2, m4, and m, 
contain one 1, they are grouped together. On the other hand, minterms m5, m6, and m,, 
contain two 1 ’s, so they are grouped together. 

Next, consider column (ii). Any two minterms that vary by one bit in column (i) 
are grouped together in column (ii). Starting from the top row, proceeding to the bottom 
row, and comparing the binary representation of each minterm in column (i), pairs of 
minterms having only a one-variable change are grouped together in column (ii) with the 
variable bit replaced by the symbol -. For example, comparing m, = 0000 with m, = 0010, 
there is a one-variable change in bit position 1. This is shown in column (ii) by placing 
- in bit position 1 with the other three bits unchanged. Therefore, the top row of column 
(ii) contains 00-0. The procedure is repeated until all minterms are compared from top to 
bottom for one unmatched bit and are represented by replacing this bit position with - and 
other bits unchanged. A J is placed on the right-hand side to indicate that this minterm is 
compared with all others and its pair with one bit change is found. If a minterm does not 
have another minterm with one bit change, no check mark is placed on its right. This means 
that the prime implicant will contain four literals and will be included in the simplified of 
the function F. In column (i), for each minterm, a corresponding pair with one bit change 
is identified. These pairs are listed in column (ii). 

Finally, consider column (iii). Each minterm pair in column (ii) is compared to 
the next, starting from the top, to find another pair with one bit change; for example mo, m, 
= 0 0 4  and m4, m6 = 0 1 4 .  For this case, bit position 2 does not match. This bit position is 
replaced by - in the top row of column (iii). Therefore, in column (iii), the top row groups 
these four minterms 0 , 2 , 4 , 6  with ABCD as 0 - - 0. Similarly, all other pairs in column (ii) 
are compared from top to bottom for one bit change and are listed accordingly in column 
(iii) if an unmatched bit is found. A check mark is placed in the right of column (ii) if an 
unmatched bit is found between two pairs. Note that minterms 4 and 5 do not have any 
other pair in the list of column (ii) having one unmatched bit. Therefore, this pair is not 
checked on the right and must be included in the simplified form of F as a prime implicant 
containing three variables. The two rows of column (iii) (0,2,4,6 and 0,4,2,6) are the same 
and contain 0 - - 0. Therefore, this term should be considered once. Similarly, the groups 
0,2,8,10 and 0,8,2,10 containing -0-0 should be considered once. In column (iii), there are 
no more groups that exist with one unmatched bit. 

The comparison process stops. The prime implicants will be the unchecked terms 
ABC (from column (ii)) along with, 2 D and [from column (iii)]. Thus, the simplified 
form for F is 

- _  

F = 20 i- 80 i- ABC 

This agrees with the result of Example 3.7 
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Gate svmbol Equivalent Logic Diamam using NAND 
Gates 

A.A=A 

NOT 3 A+- 

A-D= :r* Two-input 
OR B 

A.B=A +B 

B 
Two-input 

AND 

B 
Invert-OR 

FIGURE 3.45 Logic equivalents using NAND gates 

3.9 ImDlementation of Digital Circuits with NAND. NOR. and Exclusive-OW 

Exclusive-NOR Gates 

This section first covers implementation of logic circuits using NAND and NOR gates. 
These gates are extensively used for designing digital circuits. The NAND and NOR 
gates are called “universal gates” because any digital circuit can be implemented with 
them. These gates are, therefore, more commonly used than AND and OR gates. Finally, 
Exclusive-NOR gates are used to design parity generation and checking circuits. 

3.9.1 NAND Gate Implementation 
Any logic operation can be implemented by NAND gates. Figure 3.45 shows how NOT, 
AND, OR, and AND-invert operations can be implemented with NAND gates. A Boolean 
function can be implemented using NAND gates by first obtaining the simplified expression 
of the function in terms of AND-OR- NOT logic operations. The function can then be 
converted to NAND logic. A function expressed in sum-of-products form can be readily 
implemented using NAND gates. 

ExamDle 3.16 
Implement the simplified function F = XY + XZ using NAND gates. 
Solution 
First implement the function using AND, OR, and NOT gates as follows: 

Now convert the AND, OR, and NOT gates to NAND gates as follows: 
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X. - -e  
Y-- 

Z __ 
t AND Gate 

The NOT gates can be represented as bubbles at the inputs of the OR gate as follows: 

Y - -  

Z-- F 
- 

f?omFigure 3.45 

Therefore, the function F = XY + X Z  can be implemented using only NAND gates as 
follows: 

This is a three-level implementation since 3 gate delays are required to obtain the output F. 

Examole 3.17 
Implement the following Boolean function using NAND gates: 

Assume both true and complemented inputs are available. 
Solution 
From the K-map of Figure 3.46, 

f(A, B,C, D) = cn f BCD f ACD 
Figure 3.47 shows the logic diagram using AND and OR gates. Note that the logic 
circuit of Figure 3.48 (c) has four gate delays. Figure 3.48 shows the various steps for 
implementing this circuit using NAND gates. In Figure 3.48(a), each AND gate of Figure 
3.47 is represented by an AND gate with two inverters at the output. For example, consider 
AND gate 1 of Figure 3.47. The AND gate and an inverter are used to form the NAND 
gate shown in the top row of Figure 3.48(b) with an inverter (indicated by a bubble at the 
OR gate input). AND gates 3 and 4 are represented in the same way as AND gate 1 in 
Figure 3.48(b). 

Finally, in Figure 3.48(c), the OR gate with the bubbles at the input in Figure 
3.48(b) is replaced by a NAND gate. Thus, the NAND gate implementation in Figure 
3.48(c) is obtained. 

f(A,B,C,D)=Zrn(O,3,4,8,11,12,15) 

Examole 3.18 
Implement the following functions with NAND gates: 

f = (CD f D)(AB) 
Assume both true and complemented inputs are available. 
Solution 
Figure 3.49 shows the AND-OR implementationofthe function. The AND-OR implementation 
in the figure can be converted to the NAND implementation as shown in Figure 3.50. 
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AB 

01 

11 

10 

FIGURE 3.46 K-map for Example 3.17 

FIGURE 3.47 Logic diagram for f = D + BCD + ACD 

AND Gate 2 

- AND Gate 1 

-f 
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D f 

' 4 7  I A 

FIGURE 3.48 Steps for NAND gate implementation of Figure 3.47 
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B I  

FIGURE 3.49 AND-OR implementation of Example 3.18 

f 

FIGURE 3.50 

3.9.2 NOR Gate Implementation 
Figure 3.51 shows the NOR gate equivalent logic diagrams for NOT, OR, AND, and OR- 
invert logic operations. A Boolean function can be implemented using NOR gates by first 
obtaining the simplified expression of the function in terms of AND and OR gates. The 
function can then be converted to NOR logic. A function expressed in product-of-sums can 
be implemented using NOR gates. 

NAND gate implementation of Figure 3.49 

Examale 3.19 
Implement the following function using NOR gates: 

Assume both true and complemented inputs are available. 
Solution 
Figure 3.52 shows the AND-OR implementation of the logic equation. Figure 3.53 shows 
the NOR implementation. 

f = w(x +j)(x + z) 

Examale 3.20 
Implement the following function using NOR gates: 

Note that both true and complemented inputs are not available. 
Solution 
Figure 3.54 shows the AND-OR implementation of the logic equation. Figure 3.55 shows 
the NOR implementation. 

f = a (b+c) (a + d) 

3.9.3 XOR / XNOR Implementations 
As mentioned before, the Exclusive-OR operation between two variables A and B can be 
expressed as 

A 0 B = AB -t AB. 
The Exclusive-NOR or equivalence operation between A and B can be expressed as 

The following identities are applicable to the Exclusive-OR operation: 
A 0 B= AOB = AB + AB. 

i) A @ o = A - I + A . o = A  
ii) A O I = A . O + A * I  = A  
iii) A @ A = A * A + A  * A = O  
iv) A @ x = A * A + A * A = A + A = l  

- -  
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Equivalent Logic Diagram using NOR 

FIGURE 3.51 Logic equivalents using NOR gates 

FIGURE 3.52 AND-OR implementation of Example 3.19 

X f - 
Y 

:=D--- NOR gate 

FIGURE 3.53 NOR implementation of Example 3.19 

d 

FIGURE 3.54 AND-OR implementation of Example 3.20 
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FIGURE 3.55 

Finally, Exclusive-OR is commutative and associative: 

NOR implementation of Example 3.20 

A O B  = B O A  
(A 0 A) O C = A  O (B 0 C) 

= A O B O C  
The Exclusive-NOR operation among three or more variables is called an “even 

function” because the Exclusive-NOR operation among three or more variables includes 
product terms in which each term contains an even number of 1 ’s. For example, consider 
Exclusive-NORing three variables as follows: 

f =_A 0- + B O C = ( A B + A B ) O C  
Let D = AB + AB. ThenD = AB + AB = AB + Z E .  Hence, 

f = D o c  

= (AB + zB)C i- (AB + 2 z)c 
Hence, 

f = ABC + 2 BC i- ABC + 2 B C 
Note that in this equation, f = 1 when one or more product terms in the equation 

are 1. However, by inspection, the binary equivalents of the right-hand side of the equation 
are 101, 01 1, 1 10, and 000. That is, the function is expressed as the logical sum (OR) of 
product terms containing even numbers of ones. Therefore, the function is called an even 
function. Similarly, it can be shown that Exclusive-OR operation among three or more 
variables is an odd function. 

Exclusive-OR or Exclusive-NOR operation can be used for error detection and 
correction using parity during data transmission. Note that parity can be classified as either 
odd or even. The parity is defined by the number of 1 ’s contained in a string of data bits. 
When the data contains an odd number of l’s, the data is said to have “odd parity”; On the 
other hand, the data has “even parity” when the number of 1’s is even. To illustrate how 
parity is used as an error check bit during data transmission, consider Figure 3.56. 

Suppose that Computer X is required to transmit a 3-bit message to Computer 
Y. To ensure that data is transmitted properly, an extra bit called the parity bit can be 
added by the transmitting Computer X before sending the data. In other words, Computer 
Xgenerates the parity bit depending on whether odd or even panty is used during the 
transmission. Suppose that odd parity is used. The odd parity bit for the three-bit message 
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Odd Parity Bit 
P 
1 

FIGURE 3.56 Parity generation and checking 

(a) P = A  @ B  @ C 

@) E = P @ A @  B e  C 

FIGURE 3.57 Implementation of parity generation and checking using XOR / XNOR 
gates 

will be as follows: 

0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 

Here P = 1 when the 3-bit message ABC contains an even number of 1 's. Thus, the parity 
bit will ensure that the 3-bit message contains an odd number of 1's before transmission. 
P = 1 when the message contains an even number of 1 's. Therefore, P is an even function. 
Thus, 

P = A O B O C .  
The transmitting Computer Xgenerates this parity bit. Computer Xthen transmits 

4-bit information (a 3-bit message along with the parity bit) to Computer Y. Computer Y 
receives this 4-bit information and checks to see whether each 4-bit data item conta-ins an 
odd number of 1's (odd parity). If the parity is odd, Computer Y accepts the 3-bit message; 
otherwise the computer sends the 4-bit information back to Computer Xfor retransmission. 
Note that Computer Y checks the parity of the transmitted data using the equation 

E = P @ A O B O C  
Here the error E = 1 if the four bits have an even number of ones (even parity). That is, at 
least one of the four bits is changed during transmission. On the other hand, the error bit, E 
= 0 if the 4-bit data has an odd number of ones. Figure 3.57 shows the implementation of 
the parity bit, P = A  0 B O  C, and the error bit, E = P O A  O B 0 C. 
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OUESTIONS AND PROBLEMS 

3.1 Perform the following operations. Include your answers in hexadecimal. 
A616 O R  3 116; F7A,, AND D8O,,5; 361, O 2A,, 

95 

3.2 Given A = IOOl , ,  B = 1 1012, find: A O R B ;  B A A;  2; A 0 A. 

3.3 Perform the following operation: A7,, 0 FF,,. What is the relationship of the result 
to A7,,? 

3.4 Prove the following identities algebraically and by means of truth tables: 
(a) (A + B ) ( m )  = 0 
(b) 
(c) x Y + x y + x y + x y =  1 

(e) (X + Y)(X + r, = X O Y  
(0 BC + ABC =AC = co (AB) 

A + AB = A  + B 

( 4  (A +AB)  = A B  

3.5 Simplify each of the following Boolean expressions as much as possible using 
identities: 
(a) x Y + ( l O x ) + A 2 + X y + X Z  
(b) ABC + ABZB + ABD 

( 4  (X+B(E) + r n + X z Y  
(c) BC + ABCD + ABCD + ABCLI 

3.6 Using DeMorgan’s theorem, draw logic diagrams for F = A B c  + A B + BC 
(a) 
(b) 
You may use two-input and three-input AND and OR gates for (a) and (b). 

Using only AND gates and inverters. 
Using only O R  gates and inverters. 

3.7 Using truth tables, express each one ofthe following functions and their complements 
in terms of sum of minterms and product of maxterms: 

(b) F = ( W + X + Y ) ( W X + Y )  
( 4  F = ABC + ABD + A B C  + ACD 

3.8 Express each of the following expressions in terms of minterms and maxterms. 

(b) 
(a) F = BC +AB + B(A + C) 

F = (A + B +C)(J + B) 

3.9 Minimize each of the following functions using a K-map: 
( 4  
(b) 
(c) 

F(A, B, C )  = I: m(0, 1,4, 5) 
F(A, B, C )  = I: m(0, 1,2,3,6)  
F(X, Y,  2) = I: m(O,2,4,6) 

3.10 Minimize each of the following expressions for F using a K-map. 
(a) 
(b) 
(c) 

F(A, B, C) = B C f ABC + AB?? 
F(A, B, C) = AB?? f BC 
F(A, B, C) = A C + A@ c + B?:) 
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3.1 1 

3.12 

3.13 

3.14 

3.15 

3.16 

3.17 

3.18 

Simplify each of the following functions for F using a K-map. 
(a) 
(b) 
(c) 
(d) 
(e) 
(f) 

F(W, X, Y, Z) = C m(0, 1,4, 5, 8, 9) 
F(A, B, C, D) =Zm(O, 2, 8, 10, 12, 14) 
F(A, B, C, D) = C m(2,4, 5,6, 7, 10, 14) 
F(W,X, Y, Z) =Crn(2,3,6,7, 8,9, 12, 13) 
F(W, X, Y, Z) = Z m(0,2,4,6, 8, 10, 12, 14) 
F(W, X, Y, Z) = 2 m(l,3,5,7,9,  11, 13, 15) 

Minimize each of the following expressions for Fusing a K-map in sums-of-product 
form: 
(a) F(W,X, Y,Z) = w x Y Z +  WYZ 
(b) 
(c) 

F = 2 E CZi + ~ C D  + ABCD 
F = (2 + B + c + D)(2 + B + c + @ ( A  + E + c + D) 

Find essential prime implicants and then minimize each of the following fhctions 
for Fusing a K-map: 
( 4  
(b) F ( W , X , Y , Z ) = Z m ( 2 , 3 , 6 , 7 , 8 , 9 , 1 2 , 1 3 , 1 5 )  

F(A, B, C, D) = C m(3,4, 5,7, 11, 12, 15) 

Minimize each of the following functions for f using a K-map and don't care 
conditions, d. 
(a) 

(b) 

f ( A ,  B, C )  = 2 m(l,2,4,7) 

AX, y, z )  = c m(2,6) 
d(A, B, C )  = I: m(5,6) 

d(X, Y,.Z)=Zm(O, 1,3,4,5,7)  
(c) f ( A ,  B, C, D )  = C m(0,2,3, 11) 

d(A, B, C, D) =I: m(1, 8,9,  10) 
(d) ,f(A,B,C,D)=I:m(4,5,10,11) 

d(A, B, C, D )  =2 4 1 2 ,  13, 14, 15) 

Minimize the following expression using the Quine-McCluskey method. Verify the 
results using a K-map. Draw logic diagrams using NAND gates. Assume true and 
complemented inputs. F(A, B, C, D )  = I: m(0, 1,4, 5, 8, 12) 

Minimize the following expression using a K-map: 

and then draw schematics using: 
( 4  NAND gates. 
(b) NOR gates. 

F = A B  + A B Z D + C D + A B C D  

Minimize the following function F(A, B, C, D)  = C m(6,7, 8,9) assuming that the 
condition AB = 1 1 can never occur. Draw schematics using: 
(a) NAND gates. 
(b) NOR gates. 

It is desired to compare two 4-bit numbers for equality. If the two numbers are 
equal, the circuit will generate an output of 1. Draw a logic circuit using a minimum 
number of gates of your choice. 
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3.19 

3.20 

3.21 

3.22 

3.23 

Show analytically that A 0 ( A  0 B) = B. 

Show that the Boolean function, f =A 0 B 0 AB between two variables, A and B, 
can be implemented using a single two-input gate. 
Design a parity generation circuit for a 5-bit data (4-bit message with an even parity 
bit) to be transmitted by computer X. The receiving computer Y will generate an 
error bit, E = 1, if the 5-bit data received has an odd parity; otherwise, E = 0. Draw 
logic diagrams for both parity generation and checking using XOR gates. 

Draw a logic diagram for a two-input (A,B) Exclusive-OR operation using only four 
two-input (A,B) NAND gates. Assume that complemented inputs A and B are not 
available. 

Determine by inspection whether the function, F in each of the following is odd or 
even, and comment on the result: 
(a) F = A O B O C  (b) F =  A O B O C  

- 




