
MEMORY, I/O, AND
PARALLEL

PROCESSING
This chapter describes the basics of memory, input/output(I/O) techniques, and parallel
processing. Topics include memory array design, memory management concepts, cache
memory organization, input/output methods utilized by typical microprocessors, and
fundamentals of parallel processing.

8.1 Memorv Orpanization

8.1.1 Introduction
A memory unit is an integral part of any microcomputer system, and its primary purpose
is to hold instructions and data. The major design goal of a memory unit is to allow it to
operate at a speed close to that of the processor. However, the cost of a memory unit is
so prohibitive that it is practically not feasible to design a large memory unit with one
technology that guarantees a high speed. Therefore, in order to seek a trade-off between the
cost and operating speed, a memory system is usually designed with different technologies
such as solid state, magnetic, and optical.

In a broad sense, a microcomputer memory system can be divided into three
groups:

Processor memory
Primary or main memory
Secondary memory

Processor memory refers to a set of microprocessor registers. These registers are used to
hold temporary results when a computation is in progress. Also, there is no speed disparity
between these registers and the microprocessor because they are fabricated using the same
technology. However, the cost involved in this approach limits a microcomputer architect
to include only a few registers in the microprocessor. The design of typical registers is
described in Chapters 5, 6 and 7.

Main memory is the storage area in which all programs are executed. The
microprocessor can directly access only those items that are stored in main memory.
Therefore, all programs must be within the main memory prior to execution. CMOS
technology is normally used these days in main memory design. The size of the main
memory is usually much larger than processor memory and its operating speed is slower
than the processor registers. Main memory normally includes ROMs and RAMS. These are
described in Chapter 6.

299

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

300 Fundamentals of Digital Logic and Microcomputer Design

Electromechanical memory devices such as disks are extensively used as
microcomputer’s secondary memory and allow storage of large programs at a low cost.
These secondary memory devices access stored data serially. Hence, they are significantly
slower than the main memory. Popular secondary memories include hard disk and floppy
disk systems. Programs are stored on the disks in files. Note that the floppy disk is
removable whereas the hard disk is not. Secondary memory stores programs in excess
of the main memory. Secondary memory is also referred to as “auxiliary” or “virtual”
memory. The microcomputer cannot directly execute programs stored in the secondary
memory, so in order to execute these programs, the microcomputer must transfer them to
its main memory by a program called the “operating system.”

Programs in disk memories are stored in tracks. A track is a concentric ring of
programs stored on the surface of a disk. Each track is further subdivided into several
sectors. Each sector typically stores 512 or 1024 bytes of information. All secondary
memories use magnetic media except the optical memory, which stores programs on a
plastic disk. CD-ROM is an example of a popular optical memory used with microcomputer
systems. The CD-ROM is used to store large programs such as a C++ compiler. Other
state-of-the-art optical memories include CD-RAM, DVD-ROM and DVD-RAM. These
optical memories are discussed in Chapter 1.

In the past, one of the most commonly used disk memory with microcomputer
systems was the floppy disk. The floppy disk is a flat, round piece of plastic coated with
magnetically sensitive oxide material. The floppy disk is provided with a protective jacket
to prevent fingerprint or foreign matter from contaminating the disk’s surface. The 3%-
inch floppy disk was very popular because of its smaller size and because it didn’t bend
easily. All floppy disks are provided with an off-center index hole that allows the electronic
system reading the disk to find the start of a track and the first sector.

The storage capacity of a hard disk varied from 10 megabytes (MB) in 1981 to
hundreds of gigabytes (GB) these days. The 3 M-inch floppy disk, on the other hand, can
typically store 1.44 MB. Zip disks were an enhancement in removable disk technology
providing storage capacity of 100 MB to 750 MB in a single disk with access speed similar
to the hard disk. Zip disk does not use a laser. Rather, it uses a magnetic-coated Myler
inside, along with smaller read/write heads, and a rotational speed of 3000 rpm. The
smaller heads allow the Zip drive to store programs using 2,118 tracks per inch, compared
to 135 tracks per inch on a floppy disk. Floppy disks are being replaced these days by USB
(Universal Serial Bus) Flash memory. Note that USB is a standard connection for computer
peripherals such as CD burners. Also, flash memory gets its name because the technology
uses microchips that allow a section of memory cells called blocks to be erased in a single
action called a “flash”. USB flash memory offers much more storage capacity than floppy
disks, and can typically store 16 megabytes up to multiple gigabytes of information.

8.1.2 Main Memory Array Design
From the previous discussions, we notice that the main memory of a microcomputer is
fabricated using solid-state technology. In a typical microcomputer application, a designer
has to implement the required capacity by interconnecting several small memory chips.
This concept is known as the “memory array design.” In this section, we address this topic.
We also show how to interface a memory system with a typical microprocessor.

Now let us discuss how to design ROM/RAM arrays. In particular, our discussion
is focused on the design of memory arrays for a hypothetical microcomputer. The pertinent
signals of a typical microprocessor necessary for main memory interfacing are shown in

Memory, I/O, and Parallel Processing 301

Address
Bw

l6 - Bus

FIGURE 8.1
interfacing

Pertinent signals of a typical microprocessor required for main memory

FIGURE 8.2 A typical 1K x 8 RAM chip

Figure 8.1. In Figure 8.1, there are 16 address lines, A,* through &, with A, being the least
significant bit. This means that this microprocessor can directly address a maximum of 216
= 65,536 or 64K bytes of memory locations. The control line M / m goes to LOW if the
microprocessor executes an I/O instruction, and it is held HIGH if the processor executes
a memory instruction. Similarly, the control line W w goes to HIGH to indicate that the
operation is READ and it goes to LOW for WRITE operation. Note that all 16 address lines
and the two control lines described so far are unidirectional in nature; that is, information
can always travel on these lines from the processor to external units. Also, in Figure 8.1
eight bidirectional data lines D, through Do (with Do being the least significant bit) are
shown. These lines are used to allow data transfer from the processor to external units and
vice versa.

In a typical application, the total amount of main memory connected to a
microprocessor consists of a combination of both ROMs and RAMS. However, in the
following we will illustrate for simplicity how to design memory array using only the
RAM chips.

The pin diagram of a typical 1K x 8 RAM chip is shown in Figure 8.2. In this
RAM chip there are 10 address lines, A, through A,, so one can read or write 1024 (21°
= 1024) different memory words. Also, in this chip there are 8 bidirectional data lines
D, through Do so that information can travel back and forth between the microprocessor
and the memory unit. The three control lines m, CS2, and are used to control the
RAM unit according to the truth table shown in Figure 8.3. From this truth table it can
be concluded that the RAM unit is enabled only when m= 0 and CS2 = 1 . Under this
condition,

To connect a microprocessor to ROM/RAM chips, three address-decoding
techniques are usually used: linear decoding, full decoding, and memory decoding using

= 0 and W- = 1 imply write and read operations respectively.

3 02 Fundamentals of Digital Logic and Microcomputer Design

cs1 c s 2 w- I Function

Write Operation

Read Operation

The chip is not selected

X means Don’t Care
FIGURE 8.3

PLD. Let us first discuss how to interconnect a microprocessor with a 4K RAM chip array
comprised of the four 1K RAM chips of Figure 8.2 using the linear decoding technique.
Figure 8.4 uses the linear decoding to accomplish this.

In this approach, the address lines A, through A, of the microprocessor are
connected to all RAM chips. Similarly, the control lines M/mand W-ofthe microprocessor
are connected to the control lines CS2 and W- respectively of each RAM chip. The high-
order address bits A,, through A,, directly act as chip selects.

In particular, the address lines A,, and A , , select the RAM chips I and I1
respectively. Similarly, the address lines A,, and A,, select the RAM chips I11 and IV
respectively. A,, and A,, are don’t cares and are assumed to be 0. Figure 8.5 describes how

Truth table for controlling RAM

P
-

P
-

P
-

A,-A, Wl6- RIW

D - D
RAMchip 1’

FIGURE 8.4
technique

Microprocessor connected to 4K RAM using linear select decoding

Memory, I/O, and Parallel Processing 303

Address Range
in Hexadecimal

3800-3BFF

3400-37FF

2C00-2FFF

1 COO- 1 FFF

RAM Chip
Number

I

I1
I11

IV

FIGURE 8.5 Address map of the memory organization of Figure 8.4

the addresses are distributed among the four 1K RAM chips. This method is known as
“linear select decoding,” and its primary advantage is that it does not require any decoding
hardware. However, if two or more lines of A,, through A,, are low at the same time, more
than one RAM chip are selected, and this causes a bus conflict. Because of this potential
problem, the software must be written in such a way that it never reads into or writes
from any address in which more than one of the bits A,, through A,, are low. Another
disadvantage of this method is that it wastes a large amount of address space. For example,

A,, A,, A,,
0 0 0

0 0 1

0 1 0

0 1 1

~ ~~

Selected RAM Chip

RAM chip I

RAM chip I1

RAM chip I11

RAM chip IV

I A,, A,, A,, A,, A,, A,, M l i 6 R64

I

FIGURE 8.6
memory addressing

Interconnecting a microprocessor with a 4K RAM using full decoded

Address Range
in Hexadecimal

0000-03FF

0400-07FF

0800-OBFF

OCOO-OFFF
~ ~ ~~

FIGURE 8.7 Address map of the memory organization of Figure 8.6

RAM Chip
Number

I

I1

111

IV

Memory, I/O, and Parallel Processing

c
Logical
Address

305

Logical
Address

-
Physical
Address

Ph$cal

of both off-board disk (secondary memory) and on-board semiconductor main memory
must be designed into a system. This requires a mechanism to manage the two-way flow
of information between the primary (semiconductor) and secondary (disk) media. This
mechanism must be able to transfer blocks of data efficiently, keep track of block usage,
and replace them in a nonarbitrary way. The main memory system must, therefore, be able
to dynamically allocate memory space.

An operating system must have resource protection from corruption or abuse by
users. Users must be able to protect areas of code from each other while maintaining the
ability to communicate and share other areas of code. All these requirements indicate the
need for a device, located between the microprocessor and memory, to control accesses,
perform address mappings, and act as an interface between the logical (Programmer’s
memory) and the physical (Microprocessor’s directly addressable memory) address
spaces. Because this device must manage the memory use configuration, it is appropriately
called the “memory management unit (MMU).” Typical 32-bit processors such as the
Motorola 68030/68040 and the Intel 80486Pentium include on-chip MMUs. The MMU
reduces the burden of the memory management function of the operating system.

The basic functions provided by the MMU are address translation and protection.
The MMU translates logical program addresses to physical memory address. Note that
in assembly language programming, addresses are referred to by symbolic names. These
addresses in a program are called logical addresses because they indicate the logical
positions of instructions and data. The MMU translates these logical addresses to physical
addresses provided by the memory chips. The MMU can perform address translation in
one of two ways:

1.
2.

By using the substitution technique as shown in Figure 8.8(a)
By adding an offset to each logical address to obtain the corresponding physical
address as shown in Figure 8.8(b)
Address translation using the substitution technique is faster than the offset

method. However, the offset method has the advantage of mapping a logical address to any
physical address as determined by the offset value.

Memory is usually divided into small manageable units. The terms “page” and
“segment” are frequently used to describe these units. Paging divides the memory into
equal-sized pages; segmentation divides the memory into variable-sized segments. It is
relatively easier to implement the address translation table if the logical and main memory
spaces are divided into pages.

There are three ways to map logical addresses to physical addresses: paging,
I I

Logical
Address

OFFSET

I I 1 I

.
Physical
Address

FIGURE 8.8 (a) Address translation using the substitution technique;
(b) Address translation by the offset technique

3 06 Fundamentals of Digital Logic and Microcomputer Design

segmentation, and combined PagingJsegmentation. In a paged system, a user has access to a
larger address space than physical memory provides. The virtual memory system is managed
by both hardware and software. The hardware included in the memory management unit
handles address translation. The memory management software in the operating system
performs all functions including page replacement policies to provide efficient memory
utilization. The memory management software performs functions such as removal of the
desired page from main memory to accommodate a new page, transferring a new page
from secondary to main memory at the right instant of time, and placing the page at the
right location in memory.

If the main memory is full during transfer from secondary to main memory, it is
necessary to remove a page from main memory to accommodate the new page. Two popular
page replacement policies are first-in-first-out (FIFO) and least recently used (LRU). The
FIFO policy removes the page from main memory that has been resident in memory for
the longest amount of time. The FIFO replacement policy is easy to implement, but one of
its main disadvantages is that it is likely to replace heavily used pages. Note that heavily
used pages are resident in main memory for the longest amount of time. Sometimes this
replacement policy might be a poor choice. For example, in a time-shared system, several
users normally share a copy of the text editor in order to type and correct programs. The
FIFO policy on such a system might replace a heavily used editor page to make room for
a new page. This editor page might be recalled to main memory immediately. The FIFO,
in this case, would be a poor choice. The LRU policy, on the other hand, replaces the page
that has not been used for the longest amount of time.

In the segmentation method, the MMU utilizes the segment selector to obtain a
descriptor from a table in memory containing several descriptors. A descriptor contains
the physical base address for a segment, the segment’s privilege level, and some control
bits. When the MMU obtains a logical address from the microprocessor, it first determines
whether the segment is already in the physical memory. If it is, the MMU adds an offset
component to the segment base component of the address obtained from the segment
descriptor table to provide the physical address. The MMU then generates the physical
address on the address bus for selecting the memory. On the other hand, if the MMU
does not find the logical address in physical memory, it interrupts the microprocessor. The
microprocessor executes a service routine to bring the desired program from a secondary
memory such as disk to the physical memory. The MMU determines the physical address
using the segment offset and descriptor as described earlier and then generates the physical
address on the address bus for memory. A segment will usually consist of an integral
number of pages, each, say, 256 bytes long. With different-sized segments being swapped
in and out, areas of valuable primary memory can become unusable. Memory is unusable
for segmentation when it is sandwiched between already allocated segments and if it is not

FIGURE 8.9 Memory fragmentation (external)

Memoy, I/O, and Parallel Processing 3 07

large enough to hold the latest segment that needs to be loaded. This is called “external
fragmentation” and is handled by MMUs using special techniques. An example of external
fragmentation is given in Figure 8.9. The advantages of segmented memory management
are that few descriptors are required for large programs or data spaces and that internal
fragmentation (to be discussed later) is minimized. The disadvantages include external
fragmentation, the need for involved algorithms for placing data, possible restrictions on
the starting address, and the need for longer data swap times to support virtual memory.

Address translation using descriptor tables offers a protection feature. A segment
or a page can be protected from access by a program section of a lower privilege level. For
example, the selector component of each logical address includes one or two bits indicating
the privilege level of the program requesting access to a segment. Each segment descriptor
also includes one or two bits providing the privilege level of that segment. When an
executing program tries to access a segment, the MMU can compare the selector privilege
level with the descriptor privilege level. If the segment selector has the same or higher
privilege level, then the MMU permits the access. If the privilege level of the selector is
lower than that of the descriptor, the MMU can interrupt the microprocessor, informing
it of a privilege-level violation. Therefore, the indirect technique of generating a physical
address provides a mechanism of protecting critical program sections in the operating
system. Because paging divides the memory into equal-sized pages, it avoids the major
problem of segmentation-external fragmentation. Because the pages are of the same size,
when a new page is requested and an old one swapped out, the new one will always fit
into the vacated space. However, a problem common to both techniques remains-internal
fragmentation.

Internal fragmentation is a condition where memory is unused but allocated due
to memory block size implementation restrictions. This occurs when a module needs, say,
300 bytes and page is 1 K bytes, as shown in Figure 8.10

In the paged-segmentation method, each segment contains a number of pages. The
logical address is divided into three components: segment, page, and word. The segment
component defines a segment number, the page component defines the page within the
segment, and the word component provides the particular word within the page. A page
component of n bits can provide up to 2“ pages. A segment can be assigned with one or
more pages up to maximum of 2“ pages; therefore, a segment size depends on the number
of pages assigned to it.

A protection mechanism can be assigned to either a physical address or a logical
address. Physical memory protection can be accomplished by using one or more protection
bits with each block to define the access type permitted on the block. This means that

PAGES Z E 1 K
IF 300 BYTES NEEDED 1 K BYTES ARE ALLOCATED

MEMORY UNUSED BUT ALLOCATED BECAUSE OF
IMPLEMENTATION RESTRICTIONS ON BLOCK SIZES PAGE

ALLOCATED

FIGURE 8.10 Memory fragmentation (internal)

308 Fundamentals of Digital Logic and Microcomputer Design

each time a page is transferred from one block to another, the block protection bits must
be updated. A more efficient approach is to provide a protection feature in logical address
space by including protection bits in descriptors of the segment table in the MMU.
Virtual memory is the most fundamental concept implemented by a system that performs
memory-management functions such as space allocation, program relocation, code sharing
and protection.The key idea behind this concept is to allow a user program to address
more locations than those available in a physical memory. An address generated by a user
program is called a virtual address. The set of virtual addresses constitutes the virtual
address space. Similarly, the main memory of a computer contains a fixed number of
addressable locations and a set of these locations forms the physical address space. The
basic hardware for virtual memory is implemented in modem microprocessors as an on-
chip feature. These contemporary processors support both cache and virtual memories. The
virtual addresses are typically converted to physical addresses and then applied to cache.

In the early days, when a programmer used to write a large program that could
not fit into the main memory, it was necessary to divide the program into small portions so
each one could fit into the primary memory. These small portions are called overlays. A
programmer has to design overlays so that they are independent of each other. Under these
circumstances, one can successively bring each overlay into the main memory and execute
them in a sequence.

Although this idea appears to be simple, it increases the program-development
time considerably.
However, in a system that uses a virtual memory, the size of the virtual address space is
usually much larger than the available physical address space. In such a system, aprogrammer
does not have to worry about overlay design, and thus a program can be written assuming a
huge address space is available. In a virtual memory system, the programming effort can be
greatly simplified. However, in reality, the actual number of physical addresses available
is considerably less than the number of virtual addresses provided by the system. There
should be some mechanism for dividing a large program into small overlays automatically.
A virtual memory system is one that mechanizes the process of overlay generation by
performing a series of mapping operations.

A virtual memory system may be configured in one of the following ways:
Paging systems
Segmentation systems

In a paging system, the virtual address space is divided into equal-size blocks
called pages. Similarly, the physical memory is also divided into equal-size blocks called
frames. The size of a page is the same as the size of a frame. The size of a page may be 5 12,
1024 or 2048 words.

In a paging system, each virtual address may be regarded as an ordered pair (p,
n), where p is the page number and n is the word number within the page p. Sometimes the
quantity n is referred to as the displacement, or offset. A user program may be regarded as
a sequence of pages, and a complete copy of the program is always held in a backup store
such as a disk. A page p of the user program can be placed in any available page frame p’
of the main memory. A program may access a page if the page is in the main memory. In a
paging scheme, pages are brought from secondary memory and are stored in main memory
in a dynamic manner. All virtual addresses generated by a user program must be translated
into physical memory addresses. This process is known as dynamic address translation and
is shown in Figure 8.1 1.

When a running program accesses a virtual memory location v = (p, n), the

Memory, I/O, and Parallel Processing 309

V I M address
page number
displacement

Page
frame

numbers

} i*h

FIGURE 8.1 1 Paging Systems-Virtual versus Main Memory Mapping

mapping algorithm finds that the virtual page p is mapped to the physical frame p'. The
physical address is then determined by appending p' to n.

This dynamic address translator can be implemented using a page table. In most
systems, this table is maintained in the main memory. It will have one entry for each virtual
page of the virtual address space. This is illustrated in the following example.

Examde 8.1
Design a mapping scheme with the following specifications:

Virtual address space = 32K words
Main memory size = 8K words
Page size = 2K words
Secondary memory address = 24 bits

32K words can be divided into 16 virtual pages with 2K words per page, as
Solution

follows: .
VIRTUAL ADDRESS PAGE NUMBER

0-2047 0

2048-4095 1

4096-6 143 2

6144-819 1 3

8 192- 10239 4

10240- 12287 5

12288- 14335 6

14336-1 6383 7

16384- 1843 1 8

18432-20479 9

20480-22527 10

22528-24575 11

24576-26623 12

310 Fundamentals of Digital Logic and Microcomputer Design

26624-28671 13

28672-30719 14

30720-32767 15
Since there are 8K words in the main memory, 4 frames with 2K words per frame

are available:

PHYSICAL ADDRESS FRAME NUMBER

0-2047 0

2048-4095 1

4096-6 143 2

6 1 44-8 1 9 1 3

Since there are 32K addresses in the virtual space, 15 bits are required for the
virtual address. Because there are 16 virtual pages, the page map table contains 16 entries.
The 4 most-significant bits of the virtual address are used as an index to the page map
table, and the remaining 1 1 bits of the virtual address are used as the displacement to locate
a word within the page frame. Each entry of the page table is 32 bits long. This can be
obtained as follows:

1 bit for determining whether the page table is in main memory or not (residence

2 bits for main memory page frame number.
bit).

24 bits for secondary memory address
- 5 bits for future use. (Unused)
32 bits total

The complete layout of the page table is shown in Figure 8.12. Assume the virtual
address generated is 01 1 1 000 0010 1101. From this, compute the following:
Virtual page number = 7,,
Displacement = 43 ,o

From the page-map table entry corresponding to the address 01 1 1, the page can be
found in the main memory (since the page resident bit is 1).

The required virtual page is mapped to main memory page frame number 2.
Therefore, the actual physical word is the 43rd word in the second page frame of the main
memory.

So far, a page referenced by a program is assumed always to be found in the main
memory. In practice, this is not necessarily true. When a page needed by a program is not
assigned to the main memory, a page fault occuns. A page fault is indicated by an interrupt,
and when this interrupt occurs, control is transferred to a service routine of the operating
system called the page-fault handler. The sequence of activities performed by the page-
fault handler are summarized as follows:

The secondary memory address of the required page p is located from the page table.
Page p from the secondary memory is transferred into one of the available main
memory frames by performing a block-move operation.
The page table is updated by entering the frame number where page p is loaded and by
setting the residence bit to 1 and the change bit to 0.

When a page-fault handler completes its task, control is transferred to the user
program, and the main memory is accessed again for the required data or instruction. All

Memoiy, YO, and Parallel Processing 31 1

FIGURE 8.12 Mapping Scheme for the Paging System of Example 8.1

these activities are kept hidden from a user. Pages are transferred to main memory only
at specified times. The policy that governs this decision is known as the fetch policy.
Similarly, when a page is to be transferred from the secondary memory to main memory,
all frames may be full. In such a situation, one of the frames has to be removed from the
main memory to provide room for an incoming page. The frame to be removed is selected
using a replacement policy. The performance of a virtual memory system is dependent
upon the fetch and replacement strategies. These issues are discussed later.

The paging concept covered so far is viewed as a one-dimensional technique
because the virtual addresses generated by a program may linearly increase from 0 to some
maximum value M. There are many situations where it is desirable to haveamultidimensional
virtual address space. This is the key idea behind segmentation systems.

Each logical entity such as a stack, an array, or a subroutine has a separate virtual
address space in segmentation systems. Each virtual address space is called a segment, and
each segment can grow from zero to some maximum value. Since each segment refers to a
separate virtual address space, it can grow or shrink independently without affecting other
segments.

In a segmentation system, the details about segments are held in a table called
a segment table. Each entry in the segment table is called a segment descriptor, and it
typically includes the following information:

Segment base address b (starting address of the segment in the main
memory)
Segment length 1 (size of a segment)

3 12 Fundamentals of Digital Logic and Microcomputer Design

Segment table

Base address I Length I IF1 d Corn para lor

L = 1 anlywhen

2' = 1 implies
lenglh vlolaum

address
Physlcal

Main memory

I 0 B i . j
FIGURE 8.13 Address Translation in a Segmentation System. (Note that 2 = 2')

Segment presence bit
Protection bits

From the structure of a segment descriptor, it is possible to create two or more
segments whose sizes are different from one another. In a sense, a segmentation system
becomes a paging system if all segments are of equal length. Because ofthis similarity, there
is a close relationship between the paging and segmentation systems from the viewpoint of
address translation.

A virtual address, V, in a segmentation system is regarded as an ordered pair (s,
d), where s is the segment number and d is the displacement within segment s. The address
translator for a segmentation system can be implemented using a segment table, and its
organization is shown in Figure 8.13.

The details of the address translation process is briefly discussed next.
Let V be the virtual address generated by the user program. First, the segment

number field, s, of the virtual address V is used as an index to the segment table. The base
address and length of this segment are b, and l,, respectively. Then, the displacement d of
the virtual address V is compared with the length of the segment I , to make sure that the
required address lies within the segment. If d is less than or equal to l,, then the comparator
output Z will be high. When d 5 I,, the physical address is formed by adding b, and d. From
this physical address, data is retrieved and transferred to the CPU. However, when d > I,
, the required address lies out of the segment range, and thus an address out of range trap
will be generated. A trap is a nonmaskable interrupt with highest priority.

In a segmentation system, a segment needed by a program may not reside in main
memory. This situation is indicated by a bit called a valid bit. A valid bit serves the same
purpose as that of a page resident bit, and thus it is regarded as a component of the segment
descriptor. When the valid bit is reset to 0, it may be concluded that the required segment
is not in main memory.

Memory, YO, and Parallel Processing 313

This means that its secondary memory address must be included in the segment
descriptor. Recall that each segment represents a logical entity. This implies that we can
protect segments with different protection protocols based on the logical contents of the
segment. The following are the common protection protocols used in a segmentation
system:

Read only
Execute only
Read and execute only
Unlimited access
No access

protection codes and these codes have to be included in a segment descriptor.

address, one of the following traps may be generated:

Thus it follows that these protection protocols have to be encoded into some

In a segmented memory system, when a virtual address is translated into a physical

Segment fault trap is generated when the required segment is not in the main
memory.
Address violation trap occurs when d >I,.
Protection violation trap is generated when there is a protection violation. 9

In response, the operating system has to perform the following activities:
When a segment fault occurs, control will be transferred to the operating system.

First, it finds the secondary memory address of the required segment from its segment
descriptor.
Next, it transfers the required segment from the secondary to primary memory.
Finally, it updates the segment descriptor to indicate that the required segment is in the
main memory.

After performing the preceding activities, the operating system transfers control
to the user program and the data or instruction retrieval or write operation is repeated.

A comparison of the paging and segmentation systems is provided next. The
primary idea behind a paging system is to provide a huge virtual space to a programmer,
allowing a programmer to be relieved from performing tedious memory-management tasks
such as overlay design. The main goal of a segmentation system is to provide several
virtual address spaces, so the programmer can efficiently manage different logical entities
such as a program, data, or a stack.

The operation of a paging system can be kept hidden at the user level. However,
a programmer is aware of the existence of a segmented memory system.

To run a program in a paging system, only its current page is needed in the main
memory. Several programs can be held in the main memory and can be multiplexed. The
paging concept improves the performance of a multiprogramming system. In contrast, a
segmented memory system can be operated only if the entire program segment is held in
the main memory.

In a paging system, a programmer cannot efficiently handle typical data structures
such as stacks or symbol tables because their sizes vary in a dynamic fashion during
program execution. Typically, large pages for a symbol table or small pages for a stack
cannot be created. In a segmentation system, a programmer can treat these two structures
as two logical entities and define the two segments with different sizes.

The concept of segmentation encourages people to share programs efficiently.
For example, assume a copy of a matrix multiplication subroutine is held in the main
memory. Two or more users can use this routine if their segment tables contain copies of

3 14 Fundamentals of Digital Logic and Microcomputer Design

the segment descriptor corresponding to this routine. In a paging system, this task cannot
be accomplished efficiently because the system operation is hidden from the user. This
result also implies that in a segmentation system, the user can apply protection features to
each segment in any desired manner. However, a paging system does not provide such a
versatile protection feature.

Since page size is a fixed parameter in a paging system, a new page can always be
loaded in the space used by a page being swapped out. However, in a segmentation system
with uneven segment sizes, there is no guarantee that an incoming segment can fit into the
free space created by a segment being swapped out.

In a dynamic situation, several programs may request more space, whereas some
other programs may be in the process of releasing the spaces used by them. When this
happens in a segmented memory system, there is a possibility that uneven-sized free spaces
may be sparsely distributed in the physical address space. These free spaces are so irregular
in size that they cannot normally be used to satisfy any new request. This is called an
external fragmentation, and an operating system has to merge all free spaces to form a
single large useful segment by moving all active segments to one end of the memory. This
activity is known as memory compaction. This is a time-consuming operation and is a pure
overhead. Since pages are of equal size, no external fragmentation can occur in a paging
system.

In a segmented memory system, a programmer defines a segment, and all segments
are completely filled.

The page size is decided by the operating system, and the last page of a program
may not be filled completely when a program is stored in a sequence of pages. The space
not filled in the last page cannot be used for any other program. This difficulty is known as
internal fragmentation-a potential disadvantage of a paging system.

In summary, the paging concept simplifies the memory-management tasks to be
performed by an operating system and therefore, can be handled efficiently by an operating
system. The segmentation approach is desirable to programmers when both protection and

(Segment number) (Page #) (Displacement)

12 12 bits I

Segment table Paae table

I

)its I

I ' P h y s i c a i a d d r e s s 4

FIGURE 8.14 Address-translation Scheme for a Paged-segmentation System

Memory, YO, and Parallel Processing 315

sharing of logical entities among a group of programmers are required.
To take advantage of both paging and segmentation, some systems use a different

approach, in which these concepts are merged. In this technique, a segment is viewed as
a collection of pages. The number of pages per segment may vary. However, the number
of words per page still remains fixed. In this situation, a virtual address V is an ordered
triple (s, p, d), where s is the segment number and p and d are the page number and the
displacement within a page, respectively.

The following tables are used to translate a virtual address into a physical
address:

Page table: This table holds pointers to the physical frames.
Segment table: Each entry in the segment table contains the base address of
the page table that holds the details about the pages that belong to the given
segment.

The address-translation scheme of such a paged-segmentation system is shown
in Figure 8.14:
First, the segment number s of the virtual address is used as an index to the
segment table, which leads to the base address b, of the page table.
Then, the page number p of the virtual address is used as an index to the page
table, and the base address of the frame number p' (to which the page p is
mapped) can be found.
Finally, the physical memory address is computed by adding the displacement
d of the virtual address to the base address p' obtained before.

To illustrate this concept, the following numerical example is provided.

ExamDle 8.2
Assume the following values for the system of Figure 8.14:

Now, determine the value of the physical address using the following

Length of the virtual address field =32 bits
Length of the segment number field = I 2 bits
Length of the page number field = 8 bits
Length of the displacement field =12 bits

information:
Value of the virtual address field = 000FAOBA,,
Contents of the segment table address (OOO),, = OFF,,
Contents of the page table address (1F9,,) = AC,,

Solution
From the given virtual address, the segment table address is 000,, (three high-order
hexadecimal digits of the virtual address). It is given that the contents of this segment-able
address is OFF,,. Therefore, by adding the page number p (fourth and fifth hexadecimal
digits of the virtual address) with OFF,,, the base address of the page table can be determined
as:

OFF,, + FA,, = 1F9,,
Since the contents of the page table address 1F9,, is AC,,, the physical address can be
obtained by adding the displacement (low-order three hexadecimal digits of the virtual
address) with AC,, as follows:
ACOOO,, + OOOBA,, = ACOBA,,
In this addition, the displacement value OBA is sign-extended to obtain a 20-bit number
that can be directly added to the base value p'. The same final answer can be obtained if p'

316 Fundamentals of Digital Logic and Microcomputer Design

I
Frame number

FIGURE 8.15

and d are first concatenated. Thus, the value of the physical address is ACOBA,,.
The virtual space of some computers use both paging and segmentation, and it is called
a linear segmented virtual memory system. In this system, the main memory is accessed
three times to retrieve data (one for accessing the Dage table: one for accessing the segment

Address Translation Using a TLB

Y Y - . -
table; and one for accessing the data itself).
Accessing the main memory is a time-consuming operation. To speed up the retrieval
operation, a small associative memory (implemented as an on-chip hardware in modem
microprocessors) called the translation lookaside buffer (TLB) is used. The TLB stores the
translation information for the 8 or 16 most recent virtual addresses. The organization of a
address translation scheme that includes a TLB is shown in Figure 8.15.

In this scheme, assume the TLB is capable of holding the translation information
about the 8 most recent virtual addresses.

The pair (s, p) of the virtual address is known as a tag, and each entry in the TLB
is of the form: y

the frame p'

When a user program generates a virtual address, the (s, p) pair is associatively
compared with all tags held in the TLB for a match. If there is a match, the physical address
is formed by retrieving the base address of the frame p' from the TLB and concatenating
this with the displacement d. However, in the event of a TLB miss, the physical address
is generated after accessing the segment and page tables, and this information will also be
loaded in the TLB. This ensures that translation information pertaining to a future reference
is confined to the TLB. To illustrate the effectiveness of the TLB, the following numerical
example is provided.

ExamDle 8.3
The following measurements are obtained from a computer system that uses a linear
segmented memory system with a TLB:

Memory, I D , and Parallel Processing 317

Number of entries in the TLB = 16
Time taken to conduct an associative search in the TLB = 160 ns
Main memory access time = 1 p s

Determine the average access time assuming a TLB hit ratio of 0.75.
Solution
In the event of a TLB hit, the time needed to retrieve the data is:

tl = TLB search time + time for one memory access
= 160ns+ l p s
= 1.160ps

However, when a TLB miss occurs, the main memory is accessed three times to retrieve
the data. Therefore, the retrieval time t2 in this case is

t2 = TLB search time + 3 (time for one memory access)
= 1 6 0 n s + 3 p s
=3.160 p s

The average access time,
t,, = htl + (1 - h)t2

where h is the TLB hit ratio.
The average access time t,, = 0.75 (1.6) + 0.25 (3.160) psec
= 1.2 + 0.79 psec
= 1.99 psec
This example shows that the use of a small TLB significantly improves the

efficiency of the retrieval operation (by 33%). There are two main reasons for this
improvement. First, the TLB is designed using the associated memory. Second, the TLB
hit ratio may be attributed to the locality of reference. Simulation studies indicate that it
is possible to achieve a hit ratio in the range of 0.8 to 0.9 by having a TLB with 8 to 16
entries.

In a computer based on a linear segmented virtual memory system, the performance
parameters such as storage use are significantly influenced by the page size p. For instance,
when p is very large, excessive internal fragmentation will occur. If p is small, the size of the
page table becomes large. This results in poor use of valuable memory space. The selection
of the page size p is often a compromise. Different computer systems use different page
sizes. In the following, important memory-management strategies are described. There
are three major strategies associated with the management:

Fetch strategies
Placement strategies
Replacement strategies

All these strategies are governed by a set of policies conceived intuitively. Then
they are validated using rigorous mathematical methods or by conducting a series of
simulation experiments. A policy is implemented using some mechanism such as hardware,
software, or firmware.

Fetch strategies deal with when to move the next page to main memory. Recall
that when a page needed by a program is not in the main memory, a page fault occurs.
In the event of a page fault, the page-fault handler will read the required page from the
secondary memory and enter its new physical memory location in the page table, and the
instruction execution continues as though nothing has happened.

In a virtual memory system, it is possible to run a program without having any
page in the primary memory. In this case, when the first instruction is attempted, there is
a page fault. As a consequence, the required page is brought into the main memory, where

318 Fundamentals of Digital Logic and Microcomputer Design

the instruction execution process is repeated again. Similarly, the next instruction may
also cause a page fault. This situation is handled exactly in the same manner as described
before. This strategy is referred to as demand paging because a page is brought in only
when it is needed. This idea is useful in a multiprogramming environment because several
programs can be kept in the main memory and executed concurrently.

However, this concept does not give best results ifthe page fault occurs repeatedly.
For instance, after a page fault, the page-fault handler has to spend a considerable amount of
time to bring the required page from the secondary memory. Typically, in a demand paging
system, the effective access time t,, is the sum of the main memory access time t and p,
wherep is the time taken to service a page fault. Example 8.4 illustrates the concept.

Example 8.4
(a)

(b)

Solution
(a)

Assuming that the probability of a page fault occurring is p, derive an expression
for t,, in terms oft , p, and p.
Suppose that t = 500 ns and p = 30 ms, calculate the effective access time t,, if it
is given that on the average, one out of 200 references results in a page fault.

If a page fault does not occur, then the desired data can be accessed within a time
t. (From the hypothesis the probability for a page fault not to occur is 1 - p) . If the
page fault occurs, then p time units are required to access the data. The effective
access time is

Since it is given that one out of every 200 references generates a page fault, p =
11200. Using the result derived in part (a):

42” = (I - P) t + P p
(b)

t,, = [(1 - 0.005) x 0.5 + 0.005 x 30,0001 PS
= [0.995 x 0.5 + 1501 p s = [0.4975 + 1501 ps
= 150.4975 ps

These parameters have a significant impact on the performance of a time-sharing
system.

As an alternative approach, anticipatory fetching can be adapted. This conclusion
is based on the fact that in a short period of time addresses referenced by a program are

FIGURE 8.16 Stream of Page References

Total number
01 dislncl pages

8“ a picgram

L 7!c---:
FIGURE 8.17
Window Size m

Relationship between One Cardinality of the Working Set and the

Memory, I/O, and Parallel Processing 319

clustered around a particular region of the address space. This property is known as locality
of reference.
The working set of a program W(m, t) is defined as the set of m most recently needed pages
by the program at some instant of time t . The parameter m is called the window of the
working set. For example, consider the stream of references shown in Figure 8.16:

From this figure, determine that:
W(4,tJ = (293) W(4,tz) = {1,2,31 W(5,tJ = { 12,3941
In general, the cardinality of the set W(0, t) is zero, and the cardinality of the set W(m, t)
is equal to the total number of distinct pages in the program. Since m + 1 most-recent page
references include m most-recent page references:

In this equation, the symbol # is used to indicate the cardinality of the set W(m, t) . When
m is varied from 0 to 00, #W(m, t) increases exponentially. The relationship between m and
#W(m, t) is shown in Figure 8.17.

In practice, the working set of program varies slowly with respect to time.
Therefore, the working set of a program can be predicted ahead of time. For example, in
a multiprogramming system, when the execution of a suspended program is resumed, its
present working set can be reasonably estimated based on the value of its working set at
the time it was suspended. If this estimated working set is loaded, page faults are less likely
to occur. This anticipatory fetching further improves the system performance because the
working set of a program can be loaded while another program is being executed by the
CPU. However, the accuracy of a working set model depends on the value of m. Larger
values of m result in more-accurate predictions. Typical values of m lie in the range of
5000 to 10,000.

To keep track of the working set of a program, the operating system has to perform
time-consuming housekeeping operations. This activity is pure overhead, and thus the
system performance may be degraded.
Placement strategies are significant with segmentation systems, and they are concerned
with where to place an incoming program or data in the main memory. The following are
the three widely used placement strategies:

First-fit technique
Best-fit technique
Worst-fit technique

The first-fit technique places the program in the first available free block or hole
that is adequate to store it. The best-fit technique stores the program in the smallest free
hole of all the available holes able to store it. The worst-fit technique stores the program in
the largest free hole. The first-fit technique is easy to implement and does not have to scan
the entire space to place a program. The best-fit technique appears to be efficient because
it finds an optimal hole size. However, it has the following drawbacks:

#[W(m + 1, t)] c #[W(m, t)]

It is very difficult to implement.
It may have to scan the entire free space to find the smallest free hole that can hold the
incoming program. Therefore, it may be time-consuming.
It has the tendency continuously to divide the holes into smaller sizes. These smaller
holes may eventually become useless.

Worst-fit strategy is sometimes used when the design goal is to avoid creating
small holes. In general, the operating system maintains a list known as the available space
list (ASL) to indicate the free memory space. Typically, each entry in this list includes the
following information:

320

After each allocation or release, the operating system updates the ASL. In the
following example, the mechanics of the various placement strategies presented earlier are
explained.

ExamDle 8.5
The available space list of a computer memory system is specified as follows:

Fundamentals of Digital Logic and Microcomputer Design

Starting address of the free block
Size of the free block

STARTING BLOCK SIZE
ADDRESS (IN WORDS)

100 50

200 150

450 600

1,200 400
Determine the available space list after allocating the space for the stream of

requests consisting of the following block sizes:
25, 100, 250, 200, 100, 150
a) Use the first-fit method.
b) Use the best-fit method.
c) Use the worst-fit method.
Solution

a) First-fit method. Consider the first request with a block size of 25. Examination
of the block sizes of the available space list reveals that this request can be satisfied by
allocating from the first available block. The block size (50) is the first of the available
space list and is adequate to hold the request (25 blocks). Therefore, the first request with
25 blocks will be allocated from the available space list starting at address 100 with a block
size of 50. Request 1 will be allocated starting at an address of 100 ending at an address 100
+ 24 = 124 (25 locations including 100). Therefore, the first block of the available space list
will start at 125 with a block size of 25. The starting address and block size of each request
can be calculated similarly.

b) Best-fit method. Consider request 1. Examination of the available block size
reveals that this request can be satisfied by allocating from the first smallest available block
capable of holding it. Request 1 will be allocated starting at address 100 and ending at 124.
Therefore, the available space list will start at 125 with a block size of 25.

c) Worst-fit method. Consider request 1 . Examination of the available block sizes
reveals that this request can be satisfied by allocating from the third block (largest) starting
at 450. After this allocation the starting address of the available list will be 500 instead of
450 with a block size of 600 - 25 = 575. Various results for all the other requests are shown
in Figure 8.1 8.

In a multiprogramming system, programs of different sizes may reside in the
main memory. As these programs are completed, the allocated memory space becomes
free. It may happen that these unused free spaces, or holes, become available between two
allocated blocks, or partitions. Some of these holes may not be large enough to satisfy the
memory request of a program waiting to run. Thus valuable memory space may be wasted.
One way to get around this problem is to combine adjacent free holes to make the hole size
larger and usable by other jobs. This technique is known as coalescing of holes.

It is possible that the memory request made by a program may be larger than

Memory, I/O, and Parallel Processing

Worst
fit

321

1200 400 1200 400 1450 150

100 50 100 50 100 50

200 150 200 150 200 150

500 575 600 475 850 225

Request 1 Request 2 Request 3
(100) (250)

1200

First
fit

-

Best
fit

400 1200 400 1200 400

I 125 I 25 I 125 I 25 -I 125-r 25 ~

1400

I 200 I 150 I 300 I 50 I 300 I 50

200 1400 200 1550 50

I 200 I 150 I 300 I 50 I 300 I 50
I

I 450 I 600 I 450 I 600 I 450 I 600

Request 4

300 I 50 I 300 I 50 I 300 I 50 1
900 I 150 I 1000 I 50 I 1000 1 50 I

300 300 300
I

650 I 400 I 650 I 400 I 800 I 250 I

850 I 225 I 950 I 125 I 850 I 125 I

FIGURE 8.18 Memory Map after Allocating Space for All Requests Given Example
Using Different Placement Strategies

Hdw c 4
x x x x
x x x x

. .-.~“ c 4
x x x x
x x x x

FIGURE 8.19 Memory Status before Compaction

~~

x x x x
x x x x

FIGURE 8.20 Memory Status after Compaction

any free hole but smaller than the combined total of all available holes. If the free holes
are combined into one single hole, the request can be satisfied. This technique is known
as memory compaction. For example, the status of a computer memory before and after
memory compaction is shown in Figures 8.19 and 8.20, respectively.

Placement strategies such as first-fit and best-fit are usually implemented as
software procedures. These procedures are included in the operating system’s software.
The advent of high-level languages such as Pascal and C greatly simplify the programming
effort because they support abstract data objects such as pointers. The available space list
discussed in this section can easily be implemented using pointers.

The memory compaction task is performed by a special software routine of
the operating system called a garbage collector. Normally, an operating system runs the
garbage collector routine at regular intervals.

In a paged virtual memory system, when no frames are vacant, it is necessary

322 Fundamentals of Digital Logic and Microcomputer Design

Pagestream 2 3 2 4 6 2 5 6 1 4 6

Pointer to the Hit Hit
front element
of the queue Hit ratio = 211 1

FIGURE 8.21 Hit Ratio Computation for Example 8.6

to replace a current main memory page to provide room for a newly fetched page. The
page for replacement is selected using some replacement policy. An operating system
implements the chosen replacement policy. In general, a replacement policy is considered
efficient if it guarantees a high hit ratio. The hit ratio h is defined as the ratio of the number
of page references that did not cause a page fault to the total number of page references.

The simplest of all page replacement policies is the FIFO policy. This algorithm
selects the oldest page (or the page that amved first) in the main memory for replacement.
The hit ratio h for this algorithm can be analytically determined using some arbitrary stream
of page references as illustrated in the following example.

Examole 8.6
Consider the following stream of page requests.

Determine the hit ratio h for this stream using the FIFO replacement policy. Assume the
main memory can hold 3 page frames and initially all of them are vacant.
Solution
The hit ratio computation for this situation is illustrated in Figure 8.21.

From Figure 8.21, it can be seen that the first two page references cause page
faults. However, there is a hit with the third reference because the required page (page 2)
is already in the main memory. After the first four references, all main memory frames
are completely used. In the fifth reference, page 6 is required. Since this page is not in
the main memory, a page fault occurs. Therefore, page 6 is fetched from the secondary
memory. Since there are no vacant frames in the main memory, the oldest of the current
main memory pages is selected for replacement. Page 6 is loaded in this position. All other
data tabulated in this figure are obtained in the same manner. Since 9 out of 11 references
generate a page fault, the hit ratio is 2/11.

The primary advantage of the FIFO algorithm is its simplicity. This algorithm
can be implemented by using a FIFO queue. FIFO policy gives the best result when
page references are made in a strictly sequential order. However, this algorithm fails if
a program loop needs a variable introduced at the beginning. Another difficulty with the
FIFO algorithm is it may give anomalous results.
Intuitively, one may feel that an increase in the number of page frames will also
increase the hit ratio. However, with FIFO, it is possible that when the page frames are
increased, there is a drop in the hit ratio. Consider the following stream of requests:

1 ,2 ,3 ,4 ,5 , 1 ,2 ,5 , 1 ,2 ,3 ,4 , 5 , 6 , 5
Assume the main memory has 4 page frames; then using the FIFO policy there is a

hit ratio of 4/15. However, if the entire computation is repeated using 5 page frames, there

2 ,3 ,2 ,4 ,6 ,2 ,5 ,6 , 1,436

Memory, I/O, and Parallel Processing 323

Page reference 2 3 2 4 6 2 5 6 1 4 6

5 - + 5 - + 7 - + 1 - + 1
6 6 6 6 6

- - -

Pointer to the Hit Hit Hit Hit Hit
page to be
replaced Hit ratio = 5/11

FIGURE 8.22 Hit Ratio Computation for Example 8.7

is a hit ratio of 3/15. This computation is left as an exercise.
Another replacement algorithm of theoretical interest is the optimal replacement

policy. When there is a need to replace a page, choose that page which may not be needed
again for the longest period of time in the future.

The following numerical example explains this concept.

Example 8.7
Using the optimal replacement policy, calculate the hit ratio for the stream of page references
specified in Example 8.6. Assume the main memory has three frames and initially all of
them are vacant.
Solution
The hit ratio computation for this problem is shown in Figure 8.22.

From Figure 8.22, it can be seen that the first two page references generate page
faults. There is a hit with the sixth page reference, because the required page (page 2)
is found in the main memory. Consider the fifth page reference. In this case, page 6 is
required. Since this page is not in the main memory, it is fetched from the secondary
memory. Now, there are no vacant page frames. This means that one of the current pages
in the main memory has to be selected for replacement. Choose page 3 for replacement
because this page is not used for the longest period of time. Page 6 is loaded into this
position. Following the same procedure, other entries of this figure can be determined.
Since 6 out of 1 1 page references generate a page fault, the hit ratio is 511 1.

The decision made by the optimal replacement policy is optimal because it makes
a decision based on the future evolution. It has been proven that this technique does not
give any anomalous results when the number of page frames is increased. However, it is not
possible to implement this technique because it is impossible to predict the page references
well ahead of time. Despite this disadvantage, this procedure is used as a standard to
determine the efficiency of a new replacement algorithm. Since the optimal replacement
policy is practically unfeasible, some method that approximates the behavior of this policy
is desirable. One such approximation is the least recently used (LRU) policy.
According to the LRU policy, the page that is selected for replacement is that page that has
not been referenced for the longest period of time. Example 8.8 illustrates this.

Example 8.8
Solve Example 8.7 using the LRU policy.
Solution
The hit ratio computation for this problem is shown in Figure 8.23.

In the figure we again notice that the first two references generate a page fault,

324 Fundamentals of Digital Logic and Microcomputer Design

Page reference 2 3 2 4 6 2 5 6 1 4 6

page to be
replaced

Hd ratio = 4t11

FIGURE 8.23 Hit Ratio Computation for Example 8.9

whereas the third reference is a hit because the required page is already in the main memory.
Now, consider what happens when the fifth reference is made. This reference requires page
6, which is not in the memory.

Also, we need to replace one of the current pages in the main memory because
all frames are filled. According to the LRU policy, among pages 2, 3, and 4, page 3 is the
page that is least recently referenced. Thus we replace this page with page 6. Following
the same reasoning the other entries of Figure 8.23 can be determined. Note that 7 out of
1 1 references generate a page fault; therefore, the hit ratio is 4/11. From the results of the
example, we observe that the performance of the LRU policy is very close to that of the
optimal replacement policy. Also, the LRU obtains a better result than the FIFO because it
tries to retain the pages that are used recently.
Now, let us summarize some important features of the LRU algorithm.

In principle, the LRU algorithm is similar to the optimal replacement policy except
that it looks backward on the time axis. Note that the optimal replacement policy
works forward on the time axis.
If the request stream is first reversed and then the LRU policy is applied to it, the
result obtained is equivalent to the one that is obtained by the direct application of the
optimal replacement policy to the original request stream.
It has been proven that the LRU algorithm does not exhibit Belady’s anamoly. This is
because the LRU algorithm is a stack algorithm. A page-replacement algorithm is said
to be a stack algorithm if the following condition holds:

In the preceding relation the quantity Pt(i) refers to the set of pages in the main memory
whose total capacity is i frames at some time t. This relation is called the inclusion
property. One can easily demonstrate that FIFO replacement policy is not a stack
algorithm, This task is left as an exercise.
The LRU policy can be easily implemented using a stack. Typically, the page numbers
of the request stream are stored in this stack. Suppose that p is the page number being
referenced. If p is not in the stack, then p is pushed into the stack. However, if p is
in the stack, p is removed from the stack and placed on the top of the stack. The top
of the stack always holds the most recently referenced page number, and the bottom
of the stack always holds the least-recent page number. To see this clearly, consider
Figure 8.24, in which a stream of page references and the corresponding stack instants
are shown. The principal advantage of this approach is that there is no need to search
for the page to be replaced because it is always the bottom most element of the stack.
This approach can be implemented using either software or microcodes. However, this
method takes more time when a page number is moved from the middle of the stack.
Alternatively, the LRU policy can be implemented by adding an age register to each
entry of the page table and a virtual clock to the CPU. The virtual clock is organized
so that it is incremented after each memory reference. When a page is referenced, its

P,(i) C P,(i + 1)

Memory, I/O, and Parallel Processing 325

2 3 4 2 5

i
3 1

11 4 4

FIGURE 8.24 Implementation of the LRU Algorithm Using a Stack

age register is loaded with the contents of the virtual clock. The age register of a page
holds the time at which that page was most recently referenced. The least-recent page
is that page whose age register value is minimum. This approach requires an operating
system to perform time-consuming housekeeping operations. Thus the performance of
the system may be degraded.
To implement these methods, the computer system must provide adequate hardware
support. Incrementing the virtual clock using software takes more time. Thus the
operating speed ofthe entire system is reduced. The LRU policy can not be implemented
in systems that do not provide enough hardware support. To get around this problem,
some replacement policy is employed that will approximate the LRU policy.
The LRU policy can be approximated by adding an extra bit called an activity bit to
each entry of the page table. Initially all activity bits are cleared to 0. When a page is
referenced, its activity bit is set to 1. Thus this bit tells whether or not the page is used.
Any page whose activity bit is 0 may be a candidate for replacement. However, the
activity bit cannot determine how many times a page has been referenced.
More information can be obtained by adding a register to each page table entry. To
illustrate this concept, assume a 16-bit register has been added to each entry of the
page table. Assume that the operating system is allowed to shift the contents of all the
registers 1 bit to the right at regular intervals. With one right shift, the most-significant
bit position becomes vacant. If it is assumed that the activity bit is used to fill this
vacant position, some meaningful conclusions can be derived. For example, if the
content of a page register is OOOO,,, then it can be concluded that this page was not in
use during the last 16 time-interval periods. Similarly, a value FFFF,, for page register
indicates that the page should have been referenced at least once in the last 16 time-
interval periods. If the content of a page register is FFOO,, and the content of another
one is OOFO,,, the former was used more recently.
If the content of a page register is interpreted as an integer number, then the least-recent
page has a minimum page register value and can be replaced. If two page registers
hold the minimum value, then either of the pages can be evicted, or one of them can be
chosen on a FIFO basis.
The larger the size of the page register, the more time is spent by the operating
system in the update operations. When the size of the page register is 0, the history
of the system can only be obtained via the activity bits. If the proposed replacement
procedure is applied on the activity bits alone, the result is known as the second-
chance replacement policy.
Another bit called a dirty bit may be appended to each entry of the page table. This bit
is initially cleared to 0 and set to 1 when a page is modified.
This bit can be used in two different ways:

The idea of a dirty bit reduces the swapping overhead because when the dirty
bit of a page to be replaced is zero, there is no need to copy this page into the

326 Fundamentals of Digital Logic and Microcomputer Design

secondary memory, and it can be overwritten by an incoming page. A dirty
bit can be used in conjunction with any replacement algorithm.
A priority scheme can be set up for replacement using the values of the dirty
and activity bits, as described next.

PRIORITY ACTIVITY DIRTY MEANING

LEVEL BIT BIT

0 0 0 Neither used nor modified.

1 0 1 Not recently used but modified.

2 1 0 Used but not modified.

3 1 1 Used as well as dirty.
Using the priority levels just described, the following replacement policy can
be formulated: When it is necessary to replace a page, choose that page whose
priority level is minimum. In the event of a tie, select the victim on a FIFO basis.
In some systems, the LRU policy is approximated using the least frequently used

(LFU) and most frequently used (MFU) algorithms. A thorough discussion of these
procedures is beyond the scope of this book.
One of the major goals in a replacement policy is to minimize the page-fault rate. A
program is said to be in a thrashing state if it generates excessive numbers of page
faults. Replacement policy may not have a complete control on thrashing. For example,
suppose a program generates the following stream of page references:

1,2,3,4, 1,2,3,4, 1,2,3,4,. . .
If it runs on a system with three frames it will definitely enter into thrashing state

even if the optimal replacement policy is implemented.
There is a close relationship between the degree of multiprogramming and thrashing.
In general, the degree of multiprogramming is increased to improve the CPU use.
However, in this case more thrashing occurs. Therefore, to reduce thrashing, the degree
of multiprogramming is reduced. Now the CPU utilization drops. CPU utilization and
thrashing are conflicting performance issues.

8.1.4 Cache Memory Organization
The performance of a microcomputer system can be significantly improved by introducing
a small, expensive, but fast memory between the microprocessor and main memory.
This memory is called “cache memory” and this idea was first introduced in the IBM
360/85 computer. Later on, this concept was also implemented in minicomputers such
as the PDP-I 1/70. With the advent of VLSI technology, the cache memory technique is
gaining acceptance in the microprocessor world. Studies have shown that typical programs
spend most of their execution times in loops. This means that the addresses generated by
a microprocessor have a tendency to cluster around a small region in the main memory,
a phenomenon known as “locality of reference.” Typical 32-bit microprocessors can
execute the same instructions in a loop from the on-chip cache rather than reading them
repeatedly from the external main memory. Thus, the performance is greatly improved. For
example, an on-chip cache memory is implemented in Intel’s 32-bit microprocessor, the
80486/Pentium, and Motorola’s 32-bit microprocessor, the MC 68030/68040. The 80386
does not have an on-chip cache, but external cache memory can be interfaced to it.

The block diagram representation of a microprocessor system that employs a
cache memory is shown in Figure 8.25. Usually, a cache memory is very small in size and

Memory, I/O, and Parallel Processing 327

FIGURE 8.25
memory

Memory organization of a microprocessor system that employs a cache

+-
Hex Address = 12 bits

Address

F F F F F

256 x 16
Cache Memory
Address = 8 bits
Data = 16 bits

FIGURE 8.26 Addresses for main memory and cache memory

its access time is less than that of the main memory by a factor of 5 . Typically, the access
times of the cache and main memories are 100 and 500 ns, respectively. If a reference
is found in the cache, we call it a “cache hit,” and the information pertaining to the
microprocessor reference is transferred to the microprocessor from the cache. However,
if the reference is not found in the cache, we call it a “cache miss.” When there is a cache
miss, the main memory is accessed by the microprocessor and, the instructions andor data
are then transferred to the microprocessor from the main memory. At the same time, a
block containing the desired information needed by the microprocessor is transferred from
the main memory to cache. The block normally contains 4 to 16 words, and this block is
placed in the cache using the standard replacement policies such as FIFO or LRU. This
block transfer is done with a hope that all future references made by the microprocessor
will be confined to the fast cache.

The relationship between the cache and main memory blocks is established using
mapping techniques. Three widely used mapping techniques are Direct mapping, Fully
associative mapping, and Set-associative mapping. In order to explain these three mapping
techniques, the memory organization of Figure 8.26 will be used. The main memory is
capable of storing 4K words of 16 bits each. The cache memory, on the other hand, can store
256 words of 16 bits each. An identical copy of every word stored in cache exists in main

328 Fundamentals of Digital Logic and Microcomputer Design

memory. The microprocessor first accesses the cache. If there is a hit, the microprocessor
accepts the 16-bit word from the cache. In case of a miss, the microprocessor reads the
desired 16-bit word from the main memory and this 16-bit word is then written to the
cache. A cache memory may contain instructions only (Instruction cache) or data only
(Data cache) or both instructions and data (Unified cache).

Direct mapping uses a RAM for the cache. The microprocessor's 12-bit address
is divided into two fields, an index field and a tag field. Because the cache address is 8 bits
wide (28 = 256), the low-order 8 bits of the microprocessor's address form the index field,
and the remaining 4 bits constitute the tag field. This is illustrated in Figure 8.26.

In general, if the main memory address field is m bits wide and the cache memory
address is n bits wide, the index field will then require n bits and the tag field will be (rn
- n) bits wide. The n-bit address will access the cache. Each word in the cache will include
the data word and its associated tag. When the microprocessor generates an address for
main memory, the index field is used as the address to access the cache. The tag field of

010

247

445

Memory Address

00 1

002

100 2714

101 23B4

2F17

3245

OFAl

200

20 1

200

20 1

2FF -1
Main Memory

Index 0O:::l

01

02 A370

FF 1523

Cache Memory

FIGURE 8.27 Direct mapping numerical example

JT l 2

t"'---++L
FIGURE 8.28 Associative mapping, numerical example

Memory, I/O, and Parallel Processing 329

the main memory is compared with the tag field in the word read from cache. A hit occurs
if the tags match. This means that the desired data word is in cache. A miss occurs if there
is no match, and the required word is read from main memory. It is written in the cache
along with the tag. One of the main drawbacks of direct mapping is that numerous misses
may occur if two or more words with addresses having the same index but with different
tags are accessed several times. This situation should be avoided or can be minimized by
having such words far apart in the address lines. Let us now illustrate the concept of direct
mapping for a data cache by means of a numerical example of Figure 8.27. All numbers are
in hexadecimal.

The content of index address 00 of cache is tag = 0 and data = 013F. Suppose that
the microprocessor wants to access the memory address 100. The index address 00 is used
to access the cache. The memory address tag 1 is compared with the cache tag of 0. This
does not produce a match. Therefore, the main memory is accessed and the data 2714 is
transferred into the microprocessor. The cache word at index address 00 is then replaced
with a tag of 1 and data of 2714.

The fastest and the most expensive cache memory utilizes an associative memory.
This method is known as “fully associative mapping.” Each element in associative memory
contains a main memory address and its content (data). When the microprocessor generates
a main memory address, it is compared associatively (simultaneously) with all addresses
in the associative memory. If there is a match, the corresponding data word is read from
the associative cache memory and sent to the microprocessor. If a miss occurs, the main
memory is accessed and the address along with its corresponding data are written to the
associative cache memory. If the cache is full, certain policies such as FIFO are used as
replacement algorithms for the cache. The associative cache is expensive but provides
fast operation. The concept of an associative cache is illustrated by means of a numerical
example in Figure 8.28. Assume all numbers are in hexadecimal.

The associative memory stores both the memory address and its contents (data).
The figure shows four words stored in the associative cache. Each word in the cache is
the 12-bit address along with its 16-bit contents (data). When the microprocessor wants
to access memory, the 12-bit address is placed in an address register and the associative
cache memory is searched for a matching address. Suppose that the content of the
microprocessor address register is 445. Because there is a match, the microprocessor
reads the corresponding data OFAl into an internal data register.

Set-associative mapping is a combination of direct and associative mapping. Each
cache word stores two or more main memory words using the same index address. Each
main memory word consists of a tag and its data word. An index with two or more tags
and data words forms a set. When the microprocessor generates a memory request, the
index of the main memory address is used as the cache address. The tag field of the main
memory address is then compared associatively (simultaneously) with all tags stored under
the index. If a match occurs, the desired data word is read. If a match does not occur, the

Index Tag Data Data

01

FIGURE 8.29 Set-associative mapping, numerical example with set size of 2

330

data word, along with its tag, is read from main memory and also written into the cache.
The hit ratio improves as the set size increases because more words with the same

index but different tags can be stored in the cache. The concept of set-associative mapping
can be illustrated by the numerical example shown in figure 8.29. Assume that all numbers
are in hexadecimal.

Each cache word can store two or more memory words under the same index
address. Each data item is stored with its tag. The size of a set is defined by the number of
tag and data items in a cache word. A set size of two is used in this example. Each index
address contains two data words and their associated tags.Each tag includes 4 bits, and
each data word contains 16 bits. Therefore, the word length = 2 x (4 + 16) = 40 bits. An
index address of 8 bits can represent 256 words. Hence, the size of the cache memory is
256 x 40. It can store 5 12 main memory words because each cache word includes two data
words.

The hex numbers shown in Figure 8.29 are obtained from the main memory
contents shown in Figure 8.27. The words stored at addresses 000 and 200 of main memory
of figure 8.27 are stored in cache memory (shown in Figure 8.29) at index address 00.
Similarly, the words at addresses 101 and 201 are stored at index address 01. When the
microprocessor wants to access a memory word, the index value of the address is used
to access the cache. The tag field of the microprocessor address is then compared with
both tags in the cache associatively (simultaneously) for a cache hit. If there is a match,
appropriate data is read into the microprocessor. The hit ratio will improve as the set size
increases because more words with the same index but different tags can be stored in the
cache. However, this may increase the cost of comparison logic.

There are two ways of writing into cache: the write-back and write-through
methods. In the write-back method, whenever the microprocessor writes something into
a cache word, a “dirty” bit is assigned to the cache word. When a dirty word is to be
replaced with a new word, the dirty word is first copied into the main memory before it
is overwritten by the incoming new word. The advantage of this method is that it avoids
unnecessary writing into main memory.

In the write-through method, whenever the microprocessor alters a cache address,
the same alteration is made in the main memory copy of the altered cache address. This
policy can be easily implemented and also ensures that the contents of the main memory
are always valid. This feature is desirable in a multiprocesssor system, in which the main
memory is shared by several processors. However, this approach may lead to several
unnecessary writes to main memory.

One of the important aspects of cache memory organization is to devise a method
that ensures proper utilization of the cache. Usually, the tag directory contains an extra bit
for each entry, called a “valid” bit. When the power is turned on, the valid bit corresponding
to each cache block entry of the tag directory is reset to zero. This is done in order to
indicate that the cache block holds invalid data. When a block of data is first transferred
from the main memory to a cache block, the valid bit corresponding to this cache block is
set to 1. In this arrangement, whenever the valid bit is zero, it implies that a new incoming
block can overwrite the existing cache block. Thus, there is no need to copy the contents of
the cache block being replaced into the main memory.

The performance of a system that employs a cache can be formally analyzed as
follows: If tc, h, and r,,, specify the cache-access time, hit ratio, and the main memory
access time, respectively; then the average access time can be determined as shown in the
equation below:

Fundamentals of Digital Logic and Microcomputer Design

Memory, I/O, and Parallel Processing 33 1

t,,= ht,+(l -h)(t ,+t,)
The hit ratio h always lies in the closed interval 0 and 1, and it specifies the

relative number of successful references to the cache. In the above equation, when there is
a cache hit, the main memory will not be accessed; and in the event of a cache miss, both
main memory and cache will be accessed. Suppose the ratio of main memory access time
to cache access time is y, then an expression for the efficiency of a system that employs a
cache can be derived as follows:

Efficieny= E = 2
- t c -

ht, + (1 - h)(tc + t m)

- 1

- 1

-
h+(l -h) (l+?)

-
h + (l -h)(l + y)

1 - -
1 + y (1 - h)

Note that E is maximum when h = 1 (when all references are confined to the
cache). A hit ratio of 90% (h = 0.90) is not uncommon with many contemporary systems.

ExamDle 8.9
Calculate t,,, y, and E of a memory system whose parameters are as indicated:

t , = 160 ns
t,,, = 960 ns
h = 0.90

Solution
to,= h t , + (l - h)(t,+t,)

= 0.9 (1 60) + (0.1) (960 + 160)
= 144+ 112
= 256 ns

y = r = - - 160 -
t m 960

=0.625 1 -
1 +y(l - h) - 1 +6(0.1) E =

This result indicates that by employing a cache, efficiency is improved by 62.5%.
Assume the unit of mapping is a block; then the relationship between the main and cache
memory blocks can be established by using a specific mapping technique.

In hl ly associative mapping, a main memory block i can be mapped to any cache
block j, where 0 i M - 1 and 0 j N - 1 Note that the main memory has M blocks
and the cache is divided into N blocks. To determine which block of main memory is
stored into the cache, a tag is required for each block. Hence,

Tag (j) = address of the main memory block stored in the cache block j .
Suppose M = 2m and N = 2"; then m and n bits are required to specify the addresses of
a main and cache memory block, respectively. Also, block size = 2", where w bits are
required to specify a word in a block.
For Associative maminz : m bits of the main memory are used as a tag; and N tags are

332

needed since there are N cache blocks.
Main memory address = (Tag + w)bits.

For Direct mawing: High order (m-n) bits are used as a tag.
Main memory address = (Tag + n + w)bits

For Set-associative mawinp:
Tag field = (m - n + s) bits, where Blocks/set = 2.
Cache set number = (n - s) bits
Main memory address = (Tag size + cache set number + w) bits.

Fundamentals of Digital Logic and Microcomputer Design

Examde 8.10
The parameters of a computer memory system are specified as follows:

Determine the sizes of the tag field along with the main memory address using each of the
following methods:

Main memory size = 8K blocks
Cache memory size =5 12 blocks
Block size = 8 words

(a) Fully associative mapping
(b) Direct mapping
(c) Set associative mapping with 16 blockdset
Solution
With the given data, compute the following:

M = 8K = 8192 = 213, and thus m = 13.
N = 512 = 29, and thus n = 9.
Block size = 8 words = 2' words, and thus we require 3 bits to specify a word
within a block.

Using this information, we can determine the main and cache memory address formats as
shown next:

IQ Main memory address > I
I(16 bits ,I

I' Block number >I- Word 4
I(13 bits 3 bits ,I

I(Cache memory address >I
I* 12 .*I

I(Block number +k------ Word *I
I< 9 ;I: 3 4

(a) In this case, the size of the tag field is m = 13 = bits:
Size of the main memory address = Tag (bits) + Word (bits)

= 13 bits + 3 bits
= 16 bits

Memory, I/O, and Parallel Processing 333

(b) In this case, the size of the tag field is m - n = 13-9=4 bits:

Ii Main memory address fl
L 16 bits PI

1- Tag ------I- Cache block number -1- Word -1
1- 4 bits -----+I- 9 bits -1-3 bits -1

(c) s = 16 = 24, and thus s = 4. Therefore, the size of the tag field is m - n + s =13-9+4=8
bits:

IC Main memory address ,I
I4 16 bits > I
I

I+------ Tag -1- Cache set number \I Word --I
1-8 bits A 5 bits -1- 3 bits ------+I

Examde 8.11
The access time of a cache memory is 50 ns and that of the main memory is 500 ns. It is
estimated that 80% of the main memory requests are for read and the remaining are for
write. The hit ratio for read access only is 0.9 and a write-through policy is used.

(a) Determine the average access time considering only the read cycles.
(b) What is the average time if the write requests are also taken into

consideration
Solution
(a) to,, = ht, + (1 - h)(tc + t,)

= 0.9 x 50 + (0.1)(550)
= 45 + 55 ns
= 100ns

(b) fread/wr,re = (read request probability) x tavread + (1 - read request probability) x t,,
read request probability = 0.8
write requestprobability = 0.2

frrvread = t,, = 100 ns (result of part (a))
faywrite = 500 ns (because both the main and cache memories are updated at the

same time)
tread/wrrre = 0.8 x 100 + 0.2 x 500

= 80 + 100 ns
= 180 ns

The growth in 1C technology has allowed manufacturers to fabricate a cache on
the CPU chip. The on-chip cache of Motorola’s 32-bit microprocessor, the MC68020, is
discussed next.

The MC68020 on-chip cache is a direct mapped instruction cache. Only
instructions are cached; data items are not. This cache is a collection of 64 entries, where
each cache entry consists of a 26-bit tag field and 32-bit instruction data. The tag field

334

24-bt FC Valid
memqaddress 2 blt

1-0ut 01.64

Fundamentals of Digital Logic and Microcomputer Design

Instruction
data

3241 memory address

r J.
\

I

25 I' 25

FC2 FCl FCO A31 All A7 A2 A1 A0

I
-

1
- Replacement

t--t data

16,. I' 16

1 ~ O i n s t ~ ~ ~ i o n
execulion unit

Match if Vald bit

Hit

1 ~ O i n s t ~ ~ ~ i o n
execulion unit

FIGURE 8.30

includes the following components:

MC68020 On-chip Cache Organization

High-order 24 bits of the memory address.
The most-significant bit FC2 of the function code. In the MC68020 processor,
the 3-bit function code combination FC2 FC1 FCO is used to identify the status
of the processor and the address space (discussed in Chapter 10) of the bus
cycle. For example, FC2 = 1 means the processor operates in the supervisory
or privileged mode. Otherwise, it operates in the user mode. Similarly, when
FC 1 FCO = 0 1, the bus cycle is made to access data. When FC 1 FCO = 10, the
bus cycle is made to access code.
Valid bit.

A block diagram of the MC68020 on-chip cache is shown in Figure 8.30.
If an instruction fetch occurs when the cache is enabled, the cache is first checked

to determine if the word requested is in the cache. This is achieved by first using 6 bits of
the memory address (A7-A2) to select one of the 64 entries of the cache. Next, address bits
A3 1 -A8 and function bit FC2 are compared to the corresponding values of the selected
cache entry. If there is a match and the valid bit is set, a cache hit is occurs.

In this case, the address bit A1 is used to select the proper instruction word stored
in the cache and the cycle ends. If there is no match or the valid bit is cleared, and a
cache miss occurs. In this case, the instruction is fetched from external memory. This
new instruction is automatically written into the cache and the valid bit is set. Since the
processor always pre fetches instructions from the external memory in the form of long
words, both instruction data words of the cache will be updated regardless of which word
caused the miss.

Memory, YO, and Parallel Processing

1 -

I
I
I
I
I

335

2-cycle I 3-cycle
access I access

lnslruction System
Instructmn

unit
execution cache Systembus memory

I
I

FIGURE 8.31 MC68020 Instruction Cache.

The MC68020 on-chip instruction cache obtains a significant increase in
performance by reducing the number of fetches required to external memory. Typically,
this cache reduces the instruction execution time in two ways. First, it provides a two-
clock-cycle access time for an instruction that hits in the cache (see Figure 8.3 1); second, if
the access hits in the cache, it allows simultaneous instruction and data access to occur. Of
these two benefits, simultaneous access is more significant, since it allows 100% reduction
in the time required to access the instruction rather than the 33% reduction afforded by
going from three to two clocks.

Finally, microprocessors such as Intel Pentium I1 support two-levels of cache.
These are L1 (Level 1) and L2 (Level 2) cache memories. The L1 cache (Smaller in size)
is contained inside the processor chip while the L2 cache (Larger in size) is interfaced
external to the microprocessor. The L1 cache normally provides separate instruction and
data caches. The processor can directly access the L1 cache while the L2 cache normally
supplies instructions and data to the L1 cache. The L2 cache is usually accessed by the
microprocessor only if L1 misses occur. This two-level cache memory enhances the
performance of the microprocessor.

8.2 InDutIOutDut

One communicates with a microcomputer system via the I/O devices interfaced to it.
The user can enter programs and data using the keyboard on a terminal and execute the
programs to obtain results. Therefore, the I/O devices connected to a microcomputer system
provide an efficient means of communication between the microcomputer and the outside
world. These I/O devices are commonly called “peripherals” and include keyboards, CRT
displays, printers, and disks.

The characteristics of the I/O devices are normally different from those of the
microcomputer. For example, the speed of operation of the peripherals is usually slower
than that of the microcomputer, and the word length of the microcomputer may be different
from the data format of the peripheral devices. To make the characteristics of the I/O
devices compatible with those of the microcomputer, interface hardware circuitry between
the microcomputer and I/O devices is necessary. Interfaces provide all input and output
transfers between the microcomputer and peripherals by using an I/O bus. An I/O bus
carries three types of signals: device address, data, and command.

The microprocessor uses the I/O bus when it executes an I/O instruction. A typical
YO instruction has three fields. When the computer executes an I/O instruction, the control
unit decodes the op-code field and identifies it as an I/O instruction. The CPU then places
the device address and command from respective fields of the I/O instruction on the 110
bus. The interfaces for various devices connected to the I/O bus decode this address, and

336 Fundamentals of Digital Logic and Microcomputer Design

an appropriate interface is selected. The identified interface decodes the command lines
and determines the function to be performed. Typical functions include receiving data
from an input device into the microprocessor or sending data to an output device from the
microprocessor. In a typical microcomputer system, the user gets involved with two types
of I/O devices: physical I/O and virtual I/O. When the computer has no operating system,
the user must work directly with physical I/O devices and perform detailed I/O design.

There are three ways of transferring data between the microcomputer and physical
I/O device:

1. Programmed I/O
2. Interrupt I/O
3. Direct memory access (DMA)

The microcomputer executes a program to communicate with an external device
via a register called the “I/O port” for programmed I/O. An external device requests the
microcomputer to transfer data by activating a signal on the microcomputer’s interrupt
line during interrupt I/O. In response, the microcomputer executes a program called the
interrupt-service routine to carry out the function desired by the external device. Data
transfer between the microcomputer’s memory and an external device occurs without
microprocessor involvement with direct memory access.

In a microcomputer with an operating system, the user works with virtual I/O
devices. The user does not have to be familiar with the characteristics of the physical
I/O devices. Instead, the user performs data transfers between the microcomputer and the
physical I/O devices indirectly by calling the I/O routines provided by the operating system
using virtual I/O instructions.

Basically, an operating system serves as an interface between the user programs
and actual hardware. The operating system facilitates the creation of many logical or virtual
110 devices, and allows a user program to communicate directly with these logical devices.
For example, a user program may write its output to a virtual printer. In reality, a virtual
printer may refer to a block of disk space. When the user program terminates, the operating
system may assign one of the available physical printers to this virtual printer and monitor
the entire printing operation. This concept is known as “spooling” and improves the system
throughput by isolating the fast processor from direct contact with a slow printing device. A
user program is totally unaware of the logical-to-physical device-mapping process. There
is no need to modify a user program if a logical device is assigned to some other available
physical device. This approach offers greater flexibility over the conventional hardware-
oriented techniques associated with physical I/O.

8.2.1 Programmed IIO
A microcomputer communicates with an external device via one or more registers called
“110 ports” using programmed I/O. I/O ports are usually of two types. For one type, each
bit in the port can be individually configured as either input or output. For the other type, all
bits in the port can be set up as all parallel input or output bits. Each port can be configured
as an input or output port by another register called the “command” or “data-direction
register.” The port contains the actual input or output data. The data-direction register is an
output register and can be used to configure the bits in the port as inputs or outputs.

Each bit in the port can be set up as an input or output, normally by writing a 0 or
a 1 in the corresponding bit of the data-direction register. As an example, if an 8-bit data-
direction register contains 34H, then the corresponding port is defined as follows:

Memory, YO, and Parallel Processing

o

337

1 0 0 Data-direction

__

m] vopori

+ + + + + + + I .
In this example, because 34H (0011 0100) is sent as an output into the data-

direction register, bits 0, 1, 3, 6, and 7 of the port are set up as inputs, and bits 2, 4, and
5 of the port are defined as outputs. The microcomputer can then send output to external
devices, such as LEDs, connected to bits 2,4, and 5 through a proper interface. Similarly,
the microcomputer can input the status of external devices, such as switches, through bits
0, 1, 3, 6, and 7. To input data from the input switches, the microcomputer assumed here
inputs the complete byte, including the bits to which LEDs are connected. While receiving
input data from an I/O port, however, the microcomputer places a value, probably 0, at the
bits configured as outputs and the program must interpret them as “don’t cares.” At the
same time, the microcomputer’s outputs to bits configured as inputs are disabled.

For parallel I/O, there is only one data-direction register, usually known as the
“command register” for all ports. A particular bit in the command register configures all
bits in the port as either inputs or outputs. Consider two I/O ports in an I/O chip along with
one command register. Assume that a 0 or a 1 in a particular bit position defines all bits of
ports A or B as inputs or outputs. An example is depicted in the following:

Other control information
such as timer control signals -
7 2 1 0

0 1 Command register

Some I/O ports are called “handshake ports.” Data transfer occurs via these
ports through exchanging of control signals between the microcomputer and an external
device.

I/O ports are addressed using either standard I/O or memory-mapped I/O
techniques. The “standard I/O” (also called “isolated I/O” by Intel) uses an output pin such
as M/I% pin on the Intel 8086 microprocessor chip. The processor outputs a HIGH on
this pin to indicate to memory and the I/O chips that a memory operation is taking place.
A LOW output from the processor to this pin indicates an I/O operation. Execution of IN
or OUT instruction makes the M / n LOW, whereas memory-oriented instructions, such
as MOVE, drive the M / m to HIGH. In standard I/O, the processor uses the M / n pin to
distinguish between I/O and memory. For typical processors, an %bit address is commonly
used for each I/O port. With an %bit 110 port address, these processors are capable of
addressing 256 ports. In addition, some processors can also use 16-bit 110 ports. However,
in a typical application, four or five I/O ports may usually be required. Some of the address
bits of the microprocessor are normally decoded to obtain the I/O port addresses. With

338 Fundamentals of Digital Logic and Microcomputer Design

“memory-mapped VO”, the processor, on the other hand, does not differentiate between
I/O and memory, and therefore, does not use the M / m control pin. The processor uses a
portion of the memory addresses to represent I/O ports. The I/O ports are mapped as part of
the processor’s main memory addresses which may not physically exist, but are used by the
microprocessor’s memory-oriented instructions such as MOVE to generate the necessary
control signals to perform I/O. Motorola microprocessors do not have the control pin such
as M / E pin and use only “memory-mapped I/O’ while Intel microprocessors can use
both types.

When standard I/O is used, typical processors normally use 2-byte M or OUT
instruction as follows:

rN { 2-byte instruction for

the specified I10 port
into the processor’s register

port number inputting data from

OUT { 2-byte instruction for
port number outputting data from

the register into the
specified I10 port

With memory-mapped I/O, the processor normally uses instructions, namely,
MOVE, as follows:

MOVE where M= I instruction
M, reg Port address for inputting I/O data

mapped into memory into a register

MOVE where M= t instruction for outputting
reg, M Port address data from a register

mapped into memory into the specified port

There are typically two ways via which programmed I/O can be utilized. These
are unconditional I/O and conditional I/O. The processor can send data to an external

The processor
o*pLIs or inpm
data lo or from

FIGURE 8.32 Flowchart for conditional programmed I/O

b

(end of Busy conversion) 4

b
butput enable

1 Microcomputer 1 I A/D Converter I
FIGURE 8.34 Interfacing an A D converter to a microcomputer

D6 8-bit
D, tri-state
D, digital

output
ND tri-state converter 8-bit ! ;::]

D, . D, . Do

device at any time using unconditional I/O. The external device must always be ready for
data transfer. A typical example is when the processor outputs a 7-bit code through an
110 port to drive a seven-segment display connected to this port. In conditional I/O, the
processor outputs data to an external device via handshaking. This means that data transfer
occurs via exchanging of control signals between the processor and an external device.
The processor inputs the status of the external device to determine whether the device is
ready for data transfer. Data transfer takes place when the device is ready. The flow chart
in Figure 8.32 illustrates the concept of conditional programmed I/O.

The concept of conditional I/O will now be demonstrated by means of data transfer
between a processor and an analog-to-digital (A/D) converter. Consider, for example, the
A/D converter shown in Figure 8.33. This A/D converter transforms an analog voltage V,
into an %bit binary output at pins D,-Do. A pulse at the START conversion pin initiates
the conversion. This drives the BUSY signal LOW. The signal stays LOW during the
conversion process. The BUSY signal goes to HIGH as soon as the conversion ends.
Because the A/D converter’s output is tristated, a LOW on the OUTPUT ENABLE transfers
the converter’s outputs. A HIGH on the OUTPUT ENABLE drives the converter’s outputs
to a high impedance state.

The concept of conditional I/O can be demonstrated by interfacing the A/D
converter to a typical processor. Figure 8.34 shows such an interfacing example. The user
writes a program to carry out the conversion process. When this program is executed, the
processor sends a pulse to the START pin of the converter via bit 2 of port A. The processor
then checks the BUSY signal by inputting bit 1 of port A to determine if the conversion is
completed. If the BUSY signal is HIGH (indicating the end of conversion), the processor
sends a LOW to the OUTPUT ENABLE pin of the A/D converter. The processor then
inputs the converter’s Do-D, outputs via port B. If the conversion is not completed, the

340

processor waits in a loop checking for the BUSY signal to go to HIGH.

Fundamentals of Digital Logic and Microcomputer Design

8.2.2 Interrupt I/O
A disadvantage of conditional programmed I/O is that the microcomputer needs to check
the status bit (BUSY signal for the A/D converter) by waiting in a loop. This type of I/O
transfer is dependent on the speed of the external device. For a slow device, this waiting
may slow down the microcomputer’s capability of processing other data. The interrupt I/O
technique is efficient in this type of situation.

Interrupt I/O is a device-initiated I/O transfer. The external device is connected
to a pin called the “interrupt (INT) pin” on the processor chip. When the device needs an
I/O transfer with the microcomputer, it activates the interrupt pin of the processor chip.
The microcomputer usually completes the current instruction and saves the contents of the
current program counter and the status register in the stack.

The microcomputer then automatically loads an address into the program counter
to branch to a subroutine-like program called the “intempt-service routine.” This program
is written by the user. The external device wants the microcomputer to execute this
program to transfer data. The last instruction of the service routine is a RETURN, which
is typically similar in concept to the RETURN instruction used at the end of a subroutine.
The RETURN from interrupt instruction normally loads the program counter and the status
register with the information saved in the stack before going to the service routine . Then,
the microcomputer continues executing the main program. An example of interrupt I/O is
shown in Figure 8.35.

Assume the microcomputer is MC68000 based and executing the following
program:

ORG $ 2 0 0 0
M0VE.B #$81, DDRA ; configure bits 0 and I

M0VE.B #$OO, DDRB ; configure Port B as input
M0VE.B #$81, PORTA ; send start pulse to A/D

M0VE.B #$01, PORTA
CLR . W DO ; clear 16-bit register DO to 0

; of port A as outputs

; and H I G H to OUTPUT ENABLE

BEGIN M0VE.W D1, D2

The extensions .B and . W represent byte and word operations. Note that the symbols $ and
indicate hexadecimal number and immediate mode respectively. The preceding program
is arbitrarily written. The program logic can be explained using the MC68000 instruction
set. Ports DDRA and DDRB are assumed to be the data-direction registers for ports A
and B, respectively. The first four MOVE instructions configure bits 0 and 7 of port A as
outputs and port B as the input port, and then send a trailing START pulse (HIGH and then
LOW) to the A/D converter along with a HIGH to the OUTPUT ENABLE. This HIGH
OUTPUT ENABLE is required to disable the MD’s output. The microcomputer continues
with execution of the CLR . W DO instruction. Suppose that the BUSY signal becomes
HIGH, indicating the end of conversion during execution of the CLR . W DO instruction.
This drives the INT signal to HIGH, interrupting the microcomputer. The microcomputer
completes execution ofthe current instruction, CLR . W DO. It then saves the current contents
of the program counter (address BEGIN) and status register automatically and executes
a subroutine-like program called the service routine. This program is usually written by
the user. The microcomputer manufacturer normally specifies the starting address of the

Memory, I D , and Parallel Processing 341

service routine, or it may be provided by the user via external hardware. Assume this
address is $4000, where the user writes a service routine to input the AID converter’s
output as follows:

ORG $4000
M0VE.B #$OO, PORTA ; Activate OUTPUT ENABLE.
M0VE.B PORTB, D1 Input A/D
RTE Return and restore PC and SR.

In this service routine, the microcomputer inputs the A/D converter’s output.
The return instruction RTE, at the end of the service routine, pops address BEGIN and
the previous status register contents from the stack and loads the program counter and
status register with them. The microcomputer executes the MOVE. W D1, D2 instruction
at address BEGIN and continues with the main program. The basic characteristics of
interrupt I/O have been discussed so far. The main features of interrupt I/O provided with
a typical microcomputer are discussed next.

Interrupt Types
There are typically three types of interrupts: external interrupts, traps or internal interrupts,
and software interrupts. External interrupts are initiated through the microcomputer’s
interrupt pins by external devices such as A/D converters. External interrupts can hrther
be divided into two types: maskable and nonmaskable. Nonmaskable interrupt can not
be enabled or disabled by instructions while microprocessor’s instruction set contains
instructions to enable or disable maskable interrupt. For example, Intel 8086 can disable
or enable maskable interrupt by executing instructions such as CLI (Clear interrupt
flag in the Status register to 0) or STI (Set interrupt flag in the Status register to 1) . The
8086 recognizes the maskable interrupt after execution of the STI while ignores it upon
execution of the CLI. Note that the 8086 has an interrupt-flag bit in the Status register. The
nonmaskable interrupt has a higher priority than the maskable interrupt. If both maskable
and nonmaskable interrupts are activated at the same time, the processor will service the
nonmaskable interrupt first. The nonmaskable interrupt is typically used as a power failure
interrupt.‘ Processors normally use +5 V DC, which is transformed from 110 V AC. If the
power falls below 90 V AC, the DC voltage of +5 V cannot be maintained. However, it
will take a few milliseconds before the AC power drops below 90 V AC. In these few
milliseconds, the power-failure-sensing circuitry can interrupt the processor. The interrupt-
service routine can be written to store critical data in nonvolatile memory such as battery-
backed CMOS RAM, and the interrupted program can continue without any loss of data
when the power returns.

converter
Port B

Bit 0

FIGURE 8.35 Microcomputer A/D converter interface via interrupt 110

342 Fundamentals of Digital Logic and Microcomputer Design

Some processors such as the 8086 are provided with a maskable handshake
interrupt. This interrupt is usually implemented by using two pins - INTR and INTA.
When the INTR pin is activated by an external device, the processor completes the current
instruction, saves at least the current program counter onto the stack, and generates an
interrupt acknowledge (INTA). In response to the INTA, the external device provides an
8-bit number, using external hardware on the data bus of the microcomputer. This number
is then read and used by the microcomputer to branch to the desired service routine.

Internal interrupts, or traps, are activated internally by exceptional conditions
such as overflow, division by zero, or execution of an illegal op-code. Traps are handled
in the same way as external interrupts. The user writes a service routine to take corrective
measures and provide an indication to inform the user that an exceptional condition has
occurred. Many processors include software interrupts, or system calls. When one of these
instructions is executed, the processor is interrupted and serviced similarly to external or
internal interrupts. Software interrupt instructions are normally used to call the operating
system. These instructions are shorter than subroutine calls, and no calling program is
needed to know the operating system’s address in memory. Software interrupt
instructions allow the user to switch from user to supervisor mode. For some processors,
a software interrupt is the only way to call the operating system, because a subroutine call
to an address in the operating system is not allowed.

-

- -

Interrupt Address Vector
The technique used to find the starting address of the service routine (commonly known as
the interrupt address vector) varies from one processor to another. With some processors,
the manufacturers define the fixed starting address for each interrupt. Other manufacturers
use an indirect approach by defining fixed locations where the interrupt address vector is
stored.

Saving the Microprocessor Registers
When a processor is interrupted, it saves at least the program counter on the stack so that
the processor can return to the main program after executing the service routine. Typical
processors save one or two registers, such as the program counter and status register, before
going to the service routine. The user should know the specific registers the processor
saves prior to executing the service routine. This will allow the user to use the appropriate
return instruction at the end of the service routine to restore the original conditions upon
return to the main program.

Interrupt Priorities
A processor is typically provided with one or more interrupt pins on the chip. Therefore, a
special mechanism is necessary to handle interrupts from several devices that share one of
these interrupt lines. There are two ways of servicing multiple interrupts: polled and daisy
chain techniques.

i) Polled Interrupts
Polled interrupts are handled by software and are therefore are slower than daisy chaining.
The processor responds to an interrupt by executing one general-service routine for all
devices. The priorities of devices are determined by the order in which the routine polls
each device. The processor checks the status of each device in the general-service routine,
starting with the highest-priority device, to service an interrupt. Once the processor
determines the source of the interrupt, it branches to the service routine for the device.

Memory, I/O, and Parallel Processing

Processor PB ,
PA I

PBO

PA,

INT

343

1

4

4

7 1
Device Device Device

1 2 N

4 1 1
FIGURE 8.36 Polled interrupt

Start
(from processor)

AID converter

Output enable

Do- D,

From bit N
of port A

of the processor

___) To I ~ N
Op’

porl B

FIGURE 8.37

Figure 8.36 shows a typical configuration of the polled-interrupt system.
In Figure 8.36, several external devices (device 1, device 2, ..., device N) are

connected to a single interrupt line of the processor via an OR gate (not shown in the
figure). When one or more devices activate the INT line HIGH, the processor pushes the
program counter and possibly some other registers onto the stack. It then branches to an
address defined by the manufacturer of the processor. The user can write a program at this
address to poll each device, starting with the highest-priority device, to find the source of
the interrupt. Suppose the devices in Figure 8.36 are MD converters. Each converter, along
with the associated logic for polling, is shown in Figure 8.37.

Assume that in Figure 8.36 two AID converters (device 1 and device 2) are
provided with the START pulse by the processor at nearly the same time. Suppose the
user assigns device 2 the higher priority. The user then sets up this priority mechanism in
the general-service routine. For example, when the BUSY signals from device 1 andor 2
become HIGH, indicating the end of conversion, the processor is interrupted. In response,
the processor pushes at least the program counter onto the stack and loads the PC with the
interrupt address vector defined by the manufacturer.

The general interrupt-service routine written at this address determines the source
of the interrupt as follows: A 1 is sent to PA1 for device 2 because this device has higher
priority. Ifthis device has generated an interrupt, the output (PB 1) of the AND gate in Figure
8.37 becomes HIGH, indicating to the processor that device 2 generated the interrupt. If
the output of the AND gate is 0, the processor sends a HIGH to PA0 and checks the output

Device N and associated logic for polled interrupt

344 Fundamentals of Digital Logic and Microcomputer Design

INT

Processor -
INTA

DO- D 7

Device Device Device

. . . .

Hardware for
generating the
interrupt
address vector

FIGURE 8.38 Daisy chain interrupt

Analog signal I ",
Do- D,

AID converter

I When low. o r o v e d e s K
for the. next device

INTA from
processor

To INT line of the processor

When high, initiates external . hardware for providing the
interrupt address vector for
this device to the processor

FIGURE 8.39 Each device and the associated logic in a daisy chain

(PBO) for HIGH. Once the source of the interrupt is determined, the processor can be
programmed to jump to the service routine for that device. The service routine enables the
A/D converter and inputs the converter's outputs to the processor.

Polled interrupts are slow, and for a large number of devices, the time required
to poll each device may exceed the time to service the device. In such a case, a faster
mechanism, such as the daisy chain approach, can be used.

ii) Daisy Chain Interrupts
Devices are connected in a daisy chain fashion, as shown in Figure 8.38, to set

up priority systems. Suppose one or more devices interrupt the processor. In response, the
processor pushes at least the PC and generates an interrupt acknowledge (INTA) signal to
the highest-priority device (device 1 in this case). If this device has generated the interrupt,
it will accept the INTA; otherwise, it will pass the INTA onto the next device until the
INTA is accepted.

Once accepted, the device provides a means for the processor to find the intermpt-

Memory, I/O, and Parallel Processing 345

address vector by using external hardware. Assume the devices in Figure 8.38 are A/D
converters. Figure 8.39 provides a schematic for each device and the associated logic.

Suppose the processor in Figure 8.39 sends a pulse to start the conversions of
the A/D converters of devices 1 and 2 at nearly the same time. When the BUSY signal
goes to HIGH, the processor is interrupted through the INT line. The processor pushes
the program counter and possibly some other registers. It then generates a LOW at the
interrupt-acknowledge INTA for the highest-priority device (device 1 in Figure 8.38).
Device 1 has the highest priority-it is the first device in the daisy chain configuration
to receive m. If A/D converter 1 has generated the BUSY HIGH, the output of the
AND gate becomes HIGH. This signal can be used to enable external hardware to provide
the interrupt-address vector on the processor’s data lines. The processor then branches to
the service routine. This program enables the converter and inputs the A/D output to the
processor via Port B. If A/D converter #1 does not generate the BUSY HIGH, however, the
output of the AND gate in Figure 8.39 becomes LOW (an input to device 2’s logic) and the
same sequence of operations takes place. In the daisy chain, each device has the same logic
with the exception of the last device, which must accept the INTA. Note that the outputs of
all the devices are connected to the INT line via an OR gate (not shown in Figure 8.38)

8.2.3 Direct Memory Access @MA)
Direct memory access (DMA) is a technique that transfers data between a microcomputer’s
memory and an I/O device without involving the microprocessor. DMA is widely used in
transferring large blocks of data between a peripheral device such as a hard disk and the
microcomputer’s memory. The DMA technique uses a DMA controller chip for the data-
transfer operations. The DMA controller chip implements various components such as a
counter containing the length of data to be transferred in hardware in order to speed up data
transfer. The main functions of a typical DMA controller are summarized as follows:

The I/O devices request DMA operation via the DMA request line of the controller
chip.
The controller chip activates the microprocessor HOLD pin, requesting the
microprocessor to release the bus.
The processor sends HLDA (hold acknowledge) back to the DMA controller, indicating
that the bus is disabled. The DMA controller places the current value of its internal
registers, such as the address register and counter, on the system bus and sends a
DMA acknowledge to the peripheral device. The DMA controller completes the DMA
transfer.

There are three basic types of DMA: block transfer, cycle stealing, and interleaved
DMA. For block-transfer DMA, the DMA controller chip takes over the bus from the
microcomputer to transfer data between the microcomputer memory and I/O device. The
microprocessor has no access to the bus until the transfer is completed. During this time,
the microprocessor can perform internal operations that do not need the bus. This method
is popular with microprocessors. Using this technique, blocks of data can be transferred.

Data transfer between the microcomputer memory and an I/O device occurs on
a word-by-word basis with cycle stealing. Typically, the microprocessor is generated
by ANDing an INHIBIT signal with the system clock. The system clock has the same
frequency as the microprocessor clock. The DMA controller controls the INHIBIT line.
During normal operation, the INHIBIT line is HIGH, providing the microprocessor clock.
When DMA operation is desired, the controller makes the INHIBIT line LOW for one
clock cycle. The microprocessor is then stopped completely for one cycle. Data transfer

346 Fundamentals of Digital Logic and Microcomputer Design

between the memory and I/O takes place during this cycle. This method is called “cycle
stealing” because the DMA controller takes away or steals a cycle without microprocessor
recognition. Data transfer takes place over a period of time.

With interleaved DMA, the DMA controller chip takes over the system bus when
the microprocessor is not using it. For example, the microprocessor does not use the bus
while incrementing the program counter or performing an ALU operation. The DMA
controller chip identifies these cycles and allows transfer of data between the memory and
I/O device. Data transfer takes place over a period of time for this method.

Because block-transfer DMA is common with microprocessors, a detailed
description is provided. Figure 8.40 shows a typical diagram of the block-transfer
DMA. In the figure, the I/O device requests the DMA transfer via the DMA request line
connected to the controller chip. The DMA controller chip then sends a HOLD signal to
the microprocessor, and it then waits for the HOLD acknowledge (HLDA) signal from the
microprocessor. On receipt of the HLDA, the controller chip sends a DMA ACK signal
to the I/O device. The controller takes over the bus and controls data transfer between
the RAM and 110 device. On completion of the data transfer, the controller interrupts the
microprocessor by the INT line and returns the bus to the microprocessor by disabling the
HOLD and DMA ACK signals.

The DMA controller chip usually has at least three registers normally selected
by the controller’s register select (RS) line: an address register, a terminal count register,
and a status register. Both the address and terminal counter registers are initialized by
the microprocessor. The address register contains the starting address of the data to be
transferred, and the terminal counter register contains the desired block to be transferred.
The status register contains information such as completion of DMA transfer. Note that the

Decoding
logic

7-
Address cs

Data
lines

Controller

Address
lims HOLD

110
device

Data
lines

FIGURE 8.40 Typical block transfer

Memory, UO, and Parallel Processing 347

I
I

Programmed VO Interrupt VO Direct Memory Access
(DMA)

Cycle Stealing
Standard VO M ~ ~ ~ ~ -

Isolated VO
or Mapped VO Interleaved

or
Port VO

External Internal

Maskable Non-maskable Due to Software
(can be (cannot be enabled or exceptional such as
enabled disabled by conditions TRAP .. -. ._

such as instructions or disabled instructions

by instructions) overflow

FIGURE 8.41

DMA controller implements logic associated with data transfer in hardware to speed up the
DMA operation.

I/Ostructure of a typical microcomputer

8.3 Summarv of 1 / 0

Figure 8.4 1 summarizes various I/O devices associated with a typical microprocessor.

8.4 Fundamentals of Parallel Processing

The term “parallel processing” means improving the performance of a computer system
by carrying out several tasks simultaneously. A high volume of computation is often
required in many application areas, including real-time signal processing. A conventional
single computer contains three functional elements: CPU, memory, and I/O. In such a
uniprocessor system, a reasonable degree of parallelism was achieved in the following
manner:

1. The IBM 3704 68 and CDC 6600 computers included a dedicated I/O processor.
This additional unit was capable of performing all I/O operations by employing the DMA
technique discussed earlier. In these systems, parallelism was achieved by keeping the CPU
and I/O processor busy as much as possible with program execution and I/O operations
respectively.

2. In the CDC 6600 CPU, there were 24 registers and 10 execution units. Each
execution unit was designed for a specific operation such as addition, multiplication, and
shifting. Since all units were independent of each other, several operations were performed
simultaneously.

3. In many uniprocessor systems such as IBM 360, parallelism was achieved
by using high-speed hardware elements such as carry-look-ahead adders and carry-save
adders.

4. In several conventional computers, parallelism is incorporated at the instruction-
execution level. Recall that an instruction cycle typically includes activities such as op
code fetch, instruction decode, operand fetch, operand execution, and result saving. All
these operations can be carried out by overlapping the instruction fetch phase with the

348 Fundamentals of Digital Logic and Microcomputer Design

Single-instruction stream-multiple-data stream
Multiple-instruction stream-single-data stream
Multide-instruction stream-multide-data stream

instruction execution phase. This is known as instruction pipelining. This pipelining
concept is implemented in the state-of-the-art microprocessors such as Intel’s Pentium
series.

5. In many uniprocessor systems, high throughput is achieved by employing
high speed memories such as cache and associative memories. The use of virtual memory
concepts such as paging and segmentation also allows one to achieve high processing rates
because they reduce speed imbalance between a fast CPU and a slow periphal device such
as a hard disk. These concepts are also implemented in today’s microprocessors to achieve
high performance.

6. It is a common practice to achieve parallelism by employing software methods
such as multiprogramming and time sharing in uniprocessors. In both techniques, the CPU
is multiplexed among several jobs. This results in concurrent processing, which improves
the overall system throughput.

SIMD
MISD
MIMD

8.4.1
Over the last two decades, parallel processing has drawn the attention of many research
workers, and several high-speed architectures have been proposed. To present these results
in a concise manner, different architectures must be classified in well defined groups.
All computers may be categorized into different groups using one of three classification
methods:

General Classifications of Computer Architectures

1. Flynn
2 . Feng
3. Handler
The two principal elements of a computer are the processor and the memory. A

processor manipulates data stored in the memory as dictated by the instruction. Instructions
are stored in the memory unit and always flow from memory to processor. Data movement

I) CS$<,, ; \

\y y I
1

Inwudioils 1 1, i I Data

NCillQry

FIGURE 8.42 Processor-Memory Interaction

I NAME OF THE ARCHITECTURE NAME OF THE I ARCHITECTURE IN
ABBREVIATED FORM

Single-instruction stream-single-data stream 1 SISD

FIGURE 8.43 Classification of Computers Using Flynn’s Method

Memory, NO, and Parallel Processing 349

is bidirectional, meaning data may be read from or written into the memory. Figure 8.42
shows the processor-memory interaction.

The number of instructions read and data items manipulated simultaneously by
the processor form the basis for Flynn’s classification. Figure 8.43 shows the four types
of computer architectures that are defined using Flynn’s method. The SISD computers
are capable of manipulating a single data item by executing one instruction at a time. The
SISD classification covers the conventional uniprocessor systems such as the VAX- 1 1,
IBM 370, Intel 8085, and Motorola 6809. The processor unit of a SISD machine may
have one or many functional units. For example, the VAX-l1/780 is a SISD machine with
a single functional unit. CDC 6600 and IBM 370/168 computers are typical examples of
SISD systems with multiple functional units. In a SISD machine, instructions are executed
in a strictly sequential fashion. The SIMD system allows a single instruction to manipulate
several data elements. These machines are also called vector machines or array processors.
Examples of this type of computer are the ILLIAC-IV and Burroughs Scientific Processor
(BSP).

The ILLIAC-IV was an experimental parallel computer proposed by the University
of Illinois and built by the Burroughs Corporation. In this system, there are 64 processing
elements. Each processing element has its own small local memory unit. The operation of
all the processing elements is under the control of a central control unit (CCU). Typically,
the CCU reads an instruction from the common memory and broadcasts the same to all
processing units so the processing units can all operate on their own data at the same
time. This configuration is very useful for carrying out a high volume of computations
that are encountered in application areas such as finite-element analysis, logic simulation,
and spectral analysis. Modern microprocessors such as Intel Pentium I1 use the SIMD
architecture.

By definition, MISD refers to a computer in which several instructions manipulate
the same data stream concurrently. The notion of pipelining is very close to the MISD
definition.

A set of instructions constitute a program, and a program operates on several data
elements. MIMD organization refers to a computer that is capable of processing several
programs simultaneously. MIMD systems include all multiprocessing systems. Based on
the degree of processor interaction, multiprocessor systems may be further divided into two
groups: loosely coupled and tightly coupled. A tightly coupled system has high interaction
between processors. Multiprocessor systems with low interprocessor communications are
referred to as loosely coupled systems.

In Feng’s approach, computers are classified according to the number of bits
processed within a unit time. However, Handler’s classification scheme categorizes
computers on the basis of the amount of parallelism found at the following levels:

CPU
ALU
Bit

A thorough discussion of these schemes is beyond the scope of this book. Since
contemporary microprocessors such as Intel Pentium I1 use SlMD architechture, a basic
coverage of SIMD is provided next. The SIMD computers are also called array processors.
A synchronous array processor may be defined as a computer in which a set of identical
processing elements act under the control of a master controller (MC). A command given
by the MC is simultaneously executed by all processing elements, and a SIMD system is
formed. Since all processors execute the same instruction, this organization offers a great

350

7

MCM

MCU

4

Fundamentals of Digital Logic and Microcomputer Design

Control
information

Control
information

Processor
array

r-------i

' I
p, I

1 PM, I
I i I
I I

I

I t

FIGURE 8.44 A Typical Array Processor Organization

FIGURE 8.45 A Four-segment Pipeline

attraction for vector processing applications such as matrix manipulation.
A conceptual organization of a typical array processor is shown in Figure 8.44.

The Master Controller (MC) controls the operation of the processor array. This array
consists of N identical processing elements (Po through P,.]). Each processing element Pi is
assumed to have its own memory, PM', to store its data. The MC of Figure 8.44 contains
two major components:

The MCU is the CPU of the master controller and includes an ALU and a set of
registers. The purpose of the MCM is to hold the instructions and common data.
Each instruction of a program is executed under the supervision of the MCU in a sequential
fashion. The MCU fetches the next instruction, and the execution of this instruction will
take place in one of the following ways:

The master control unit (MCU)
The master control memory (MCM)

Memoly, I/O, and Parallel Processing 351

If the instruction fetched is a scalar or a branch instruction, it is executed by
the MC itself.
If the instruction fetched is a vector instruction, such as vector add or vector
multiply, then the MCU broadcasts the same instruction to each Pi, of the
processor array, allowing all P,’s to execute this instruction simultaneously.

Assume the required data is already within the processing element’s private
memory. Before execution of a vector instruction, the system ensures that appropriate data
values are routed to each processing element’s private memory. Such an operation can be
performed in two ways:

All data values can be transferred to the private memories from an external
source via the system data bus.
The MCU can transfer the data values to the private memories via the control
bus.

In an array processor like the one shown in Figure 8.44, it may be necessary
to disable some processing elements during a vector operation. This is accomplished
by including a mask register, M, in the MCU. The mask register contains a bit, mi, for
each processing element, pi. A particular processing element, pi, will respond to a vector
instruction broadcast by the MCU only when its mask bit, mi, is set to 1; otherwise,
the processing element. Pi, will not respond to the vector instruction and is said to be
disabled.

In an array processor, it may be necessary to exchange data between processing
elements. Such an exchange of data between processing elements takes place through the
path provided by the interprocessor communication network (IPCN). Data exchanges
refers to exchanges between scratchpad registers of the processing elements and exchanges
between private memories of the processing elements.

8.4.2 Pipeline Processing
The purpose of this section is to provide a brief overview of pipelining.
Basic Concepts
Assume a task T is carried out by performing four activities: Al, A2, A3, and A4, in that
order. Hardware Hi is designed to perform the activity Ai. Hi is referred to as a segment,
and it essentially contains combinational circuit elements. Consider the arrangement shown
in Figure 8.45.

In this configuration, a latch is placed between two segments so the result computed
by one segment can serve as input to the following segment during the next clock period.
The execution of four tasks T1, T2, T3, and T4 using the hardware of Figure 8.45 is
described using a space-time chart shown in Figure 8.46.
Initially, task T1 is handled by segment 1. After the first clock, segment 2 is busy with TI
while segment 1 is busy with T2. Continuing in this manner, the task T1 is completed at the
end of the fourth clock. However, following this point, one task is shipped out per clock.
This is the essence of the pipeline concept. A pipeline gains efficiency for the same reason
as an assembly line does: Several activities are performed but not on the same material.
Suppose ti and L denote the propagation delays of segment i and the latch, respectively.
Then the pipeline clock period T can be expressed as follows:

T = max (Ti, T2, . . . Tn) + L
The segment with the maximum delay is known as the bottleneck, and it decides

Consider the execution of m tasks using an n-segment pipeline. In this case, the
the pipeline clock period T. The reciprocal of T is referred to as the pipeline frequency.

352 Fundamentals of Digital Logic and Microcomputer Design

Segment 4

Segment 3

Segment 2
Segment 1

1 2 3

FIGURE 8.46 Overlapped Execution of Four Tasks Using a Pipeline

first task will be completed after n clocks (because there are n segments) and the remaining
m-1 tasks are shipped out at the rate of one task per pipeline clock.

Therefore, n + (m - 1) clock periods are required to complete m tasks using an
n-segment pipeline. If all rn tasks are executed without any overlap, mn clock periods are
needed because each task has to pass through all n segments. Thus speed gained by an n
segment pipeline can be shown as follows:

number of clocks
required when there

mn - - speedup - is no overlap -
P(n) number of clocks n + m - I

required when tasks
arc overlapped in
time

P(n) approaches n when m approaches infinity. This implies that when a large
number of tasks are carried out using an n-segment pipeline, an n-fold increase in speed
can be expected.
The previous result shows that the pipeline completes m tasks in the m + n - 1 clock
periods. Therefore, its throughput can be defined as follows:

throughput number of
of an n- tasks
segment = U(n) = computed =
pipeline per unit

m
(n + rn - l)T

time

For a large value of m, U(n) approaches 1/T, which is the pipeline frequency.
Thus the throughput of an ideal pipeline is equal to the reciprocal of its clock period. The
efficiency of an n-segment pipeline is defined as the ratio of the actual speedup to the
maximum speedup realized.

efficiency
of an n-
segment maximum speedup n
pipeline

actual speedup - P(n)
- - = E(n) =

This illustrates that when m is very large, E(n) approaches 1 as expected.

Memory, YO, and Parallel Processing 353

In many modem computers, the pipeline concept is used in carrying out two tasks:
arithmetic operations and instruction execution.

Arithmetic Pipelines
The pipeline concept can be used to build high-speed multipliers. Consider the multi-
plication P = M * Q, where M and Q are 8-bit numbers. The 16-bit product P can be
expressed as:

P = M(q,27+q626+q525+q,24+q,23+q222+q,2'+q,20). Hence, P =ZMqi2'. This result can also

be rewritten as: P =C Si

where, S j = Mq,2' and each Si represents a 16-bit partial product. Each partial product is the
shifted multiplicand. All 8 partial products can be added using several carry-save adders.

This concept can be extended to design an n x n pipelined multiplier. Here n
partial products must be summed with 2n bits per partial product. So, as n increases, the
hardware cost associated with a fully combinational multiplier increases in an exponential
fashion. To reduce the hardware cost, large multipliers are designed.

The pipeline concept is widely used in designing floating-point arithmetic units.
Consider the process of adding two floating point numbers A = 0.9234 * 1 O4 and B = 0.48 *
lo2. First, notice that the exponents of A and B are unequal. Therefore, the smaller number
should be modified so that its exponent is equal to the exponent of the greater number.
For this example, modify B to 0.0048 * lo4. This modification step is known as exponent
alignment. Here the decimal point of the significand 0.48 is shifted to the right to obtain
the desired result. After the exponent alignment, the significands 0.9234 and 0.0048 are
added to obtain the final solution of 0.9282 * lo4.

For a second example, consider the operation A - B, where A = 0,9234 * 1 O4 and
B = 0.9230 * lo4. In this case, no exponent alignment is necessary because the exponent
of A equals to the exponent of B. Therefore, the significand of B is subtracted from the
significand
of A to obtain 0.9234 - 0.9230 = 0.0004. However, 0.0004 * lo4 cannot be the final answer
because the significand, 0.0004, is not normalized. A floating-point number with base b is
said to be normalized if the magnitude of its significand satisfies the following inequality:
llb 5 Isignificandl< 1.

In this example, since b = 10, a normalized floating-point number must satisfy the
condition:

0.1 I Isignificand(< 1
(Note that normalized floating-point numbers are always considered because for each real-
world number there exists one and only one floating-point representation. This uniqueness
property allows processors to make correct decisions while performing compare
operations).

The final answer is modified to 0.4 * 10,. This modification step is known as
postnormalization, and here the significand is shifted to the left to obtain the correct
result.

In summary, addition or subtraction of two floating-point numbers calls for four
activities:

1. Exponent comparison
2. Exponent alignment
3. Significand addition or subtraction
4. Postnormalization

I

I

1 3

3 54

Segment 1

Fundamentals of Digital Logic and Microcomputer Design

Exponent comparison unit

Input

A

Segment 2

1
I Latch

1 1

Exponent alignment unit

segment

FIGURE 8.47 A Pipelined Floating-point Add/Subtract Unit

Significand addisubtract
unit

Based on this result, a four-segment floating-point adder/subtracter pipeline can
be built, as shown in Figure 8.47.

It is important to realize that each segment in this pipeline is primarily composed
of combinational components such as multiplexers. The shifter used in this system is the
barrel shifter discussed earlier. Modem microprocessors such as Motorola MC 68040
include a 3-stage floating-point pipeline consisting of operand conversion, execute, and
result normalization.

Segment 4

Instruction Pipelines
Modern microprocessors such as Motorola MC 68020 contain a 3-stage instruction
pipeline. Recall that an instruction cycle typically involves the following activities:

1. Instruction fetch 2. Instruction decode 3. Operand fetch
4. Operation execution 5. Result routing.
This process can be effectively carried out by using the pipeline shown in Figure

8.48. As mentioned earlier, in such a pipelined scheme the first instruction requires five
clocks to complete its execution. However, the remaining instructions are completed at
a rate of one per pipeline clock. Such a situation prevails as long as all the segments are
busy.

In practice, the presence of branch instructions and conflicts in memory accesses
poses a great problem to the efficient operation of an instruction pipeline.

Post normalization unit

Memory, I/O, and Parallel Processing

s1

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

I1 12 13 14 15

1
I 1 Latch

Instruction fetch
unit

I Latch I

I Instruction decode I unit

I Latch
I

Operand fetch unit

Latch

unit ,*
Result routing unit L2

355

Latch + c
FIGURE 8.48 A Five-segment Instruction Pipeline

356 Fundamentals of Digital Logic and Microcomputer Design

For example, consider the execution of a stream of five instructions: 11,12,13,14, and IS
in which I3 is a conditional branch instruction. This stream is processed by the instruction
pipeline (Figure 8.48) as depicted in Figure 8.49.

When a conditional branch instruction is fetched, the next instruction cannot be
fetched because the exact target is not known until the conditional branch instruction has
been executed. The next fetch can occur once the branch is resolved. Four additional clocks
are required due to 13.

Suppose a stream of s instructions is to be executed using an n-segment pipeline. If
c is the probability for an instruction to be a conditional branch instruction, there will be sc
conditional branch instructions in a stream of s instructions. Since each branch instruction
requires n - 1 additional clocks, the total number of clocks required to process a stream of
s instructions is
An instruction cycle constitutes n pipeline clocks. Therefore, the total number of
instruction cycles required to execute an instruction is

I = n
The average number of instructions executed per instruction cycle is

n _ - S sn -
I - (n + s - l) + s c (n - l) - (s - 1)

(n + s - 1) + sc(n - 1)

(n +s- 1) +sc(n - 1)

7 + 7 +c(n - 1)

For a large value of s, the preceding result can be simplified as shown on the following
page:

n l imS -
S-m I - 1 +c(n - 1)

For n = 5, the equation becomes:
c
J

1 +4c

For no conditional branch instructions (c = 0), 5 instructions per instruction cycle
are executed. This is the best result produced by a five-segment pipeline. If 25% of the

MEMORY ADDRESS INSTRUCTION

2000 LDA X

200 1 INC Y
2002 JMP 2050

2003 SUB 2

2050 STA W

FIGURE 8.50 A Hypothetical Program

Memory, YO, and Parallel Processing 357

MEMORY ADDRESS

2000

200 1

2002

2003

2004

205 1

FIGURE 8.51 Modified Sequence

INSTRUCTION

LDA X

INC Y

JMP 2051

NOP

SUB 2

STA W

Instruction
fetch

Instruction NOP
execute 205 1

FIGURE 8.52 Pipelined Execution of a Hypothetical Instruction Sequence

instructions are branch instructions only,

= 2.5 instructions 1 + 4 * 0.25

per instruction cycle can be executed. This shows how pipeline efficiency is significantly
decreased even with a small percentage of branch instructions.

.In many contemporary systems, branch instructions are handled using a strategy
called Target Prefetch. When a conditional branch instruction is recognized, the immediate
successor of the branch instructions and the target of the branch are prefetched. The latter
is saved in a buffer until the branch is executed. If the branch condition is successhl, one
pipeline is still busy because the branch target is in the buffer.
Another approach to handle branch instructions is the use of the delayed branch concept. In
this case, the branch does not take place until after the following instruction. To illustrate

MEMORY ADDRESS INSTRUCTION

2000 LDA X

2001 JMP 2050

2002 INC Y

2003 SUB Z

2050 STA W

FIGURE 8.53 Instruction Sequence with Branch Instruction Reversed

358 Fundamentals of Digital Logic and Microcomputer Design

Instruction
fetch

Instruction
execute

INC Y STA W

JMP
LDA 2050

JMP
LDA 2050

INC Y

FIGURE 8.54 Execution of the Reversed-instruction Sequence

Memory Memory Memory Memory
module 0 module 1 module 2 module 3

FIGURE 8.55 Memory Interleaving

this, consider the instruction sequence shown in Figure 8.50.

to JMP 205 1. The program semantics remain unchanged. This is shown in Figure 8.5 1.

pipeline, as shown in Figure 8.52:

Suppose the compiler inserts a NOP instruction and changes the branch instruction

This modified sequence depicted in Figure 8.5 1 will be executed by a two-segment

Instruction fetch
Instruction execute

Because of the delayed branch concept, the pipeline still functions correctly
without damage.

The efficiency of this pipeline can be further improved if the compiler produces a
new sequence as shown in Figure 8.53.

In this case, the compiler has reversed the instruction sequence. The JMP
instruction is placed in the location 2001, and the INC instruction is moved to memory
location 2002. This reversed sequence is executed by the same 2-segment pipeline, as
shown in Figure 8.54.

It is important to understand that due to the delayed branch rule, the INC Y
instruction is fetched before the execution of JMP 2050 instruction; therefore, there is no
change in the order of instruction execution. This implies that the program will still produce
the same result. Since the NOP instruction was eliminated, the program is executed more
efficiently.
The concept of delayed branch is one of the key characteristics of RISC as it makes
concurrency visible to a programmer.

Memory, I/O, and Parallel Processing 359

As does the presence of branch instructions, memory-access conflicts cause
damage to pipeline performance. For example, if the instructions in the operand fetch
and result-saving units refer to the same memory address, these operations cannot be
overlapped.

To reduce such memory conflicts, a new approach called memory interleaving
is often employed. For this case, the memory addresses are distributed among a set of
memory modules, as shown in Figure 8.55.
In this arrangement, memory is distributed among many modules. Since consecutive
addresses are placed into different modules, the CPU can access several words in one
memory access.

OUESTIONS AND PROBLEMS

8.1 What is the basic difference between main memory and secondary memory?

8.2 Compare the basic features of hard disk, floppy disk and Zip disk.

8.3 What are the main differences between CD and DVD memories?

8.4 Name the methods used in main memory array design. What are the advantages
and disadvantages of each.

8.5 The block diagram of a 512 x 8 RAM chip is shown in Figure P8.5. In this
arrangement, the memory chip is enabled only when m= L and CS2 = H.
Design a 1K x 8 RAM system using this chip as the building block. Draw a
neat logic diagram of your implementation. Assume that the microprocessor can
directly address 64K with a W- and 8 data pins. Using linear decoding and don’t-
care conditions as l’s, determine the memory map in hex.

1 L A,-A, --t /8 %-Do

WE = Low lor Write
High lor Read

(Chip select 1) ~-

(Chip select 2) -

FIGURE PS.5

3 60

8.6

8.7

8.8

8.9

8.10

Fundamentals of Digital Logic and Microcomputer Design

FIGURE P8.6

Consider the hardware schematic shown in Figure P8.6.
(a) Determine the address map of this system. Note: MEMR=O €or read,

MEMR=I for write and, M/E=O for I/O and M/IX=l for memory.
(b) Is there any possibility of bus conflict in this organization? Clearly justify

your answer.

Interface a microprocessor with 16-bit address pins and 8-bit data pins and a W-
pin to a 1K x 8 EPROM chip and two 1K x 8 RAM chips such that the following
memory map is obtained:

Device Size Address Assignment (in hex)
EPROM chip l K x 8 8000-83FF
RAM chip 0 1 K x 8 9000-93FF
RAM chip 1 1 K x 8 C000-C3FF

Assume that both EPROM and RAM chips contain two enable pins; CE and OE
for the EPROM, CE and WE for each RAM. Note that WE =1 and WE = 0 mean
read and write operations for the RAM chip. Use a 74138 decoder.

Repeat Problem 8.7 to obtain the following memory map using a
decoder:

74138

Device Size Address Assignment in hex
EPROM chip 1 K x 8 7000-73FF
RAM chip 0 1 K x 8 D000-D3FF
RAM chip 1 1 K x 8 F000-F3FF

What is meant by "foldback" in linear decoding?

Comment on the importance of the following features in an operating
system implementation:
(a) Address translation
(b) Protection

Memory, I/O, and Parallel Processing

Op-code BR IR

36 1

Displacement

8.1 1

8.12

8.13

8.14

8.15

8.16

8.17

Explain briefly the differences between segmentation and paging.

Draw a block diagram showing the address and data lines for the 2716, 2732,
and 2764 EPROM chips.

How many address and data lines are required for a 1 M x 16 memory chip.

A microprocessor with 24 address pins and 8 data pins is connected to a 1K
x 8 memory chip with one-chip enable. How many unused address bits of the
microprocessor are available for interfacing other 1K x 8 memory chips. What is
the maximum directly addressable memory available with this microprocessor?

Design a direct mapped virtual memory system with the following
specifications:

Size of the virtual address space = 64K
Size of the physical address space = 8K
Page size = 5 12 words
Total length of a page table entry = 24 bits

A virtual memory system has the following specifications:

Pagesize=512

From the page table the following mapping is recognized:

Size of the virtual address space = 64K
Size of the physical address space = 4K

VIRTUAL PAGE NUMBER PHYSICAL PAGE FRAME
NUMBER

0 0
3 1
7 2
4 3
10 4
12 5
24 6
30 7

(a)
(b)

Find all virtual addresses that will generate a page fault.
Compute the main memory address for the following virtual addresses:

24, 3784, 10250, 30780

Assume a computer has a segmented memory with paged segments. (Fig. P8.17)
The instruction format of this machine is as shown:

3 62 Fundamentals of Digital Logic and Microcomputer Design

Op-code field

4-bit displacement field
The contents of the specified base and index registers are added with the
displacement to produce a virtual address whose format is shown next:

Virtual Addrcss

2-bit base register field BR
2-bit index register field IR

1 segment I page [offset 1
lt---3----.l-2 -I----5-l

The virtual address is translated into a physical address by means of segment
and page tables, which are stored in the main memory. The segment table entry
contains the starting address of its page table and the page table entry contains the
address of the location which holds the page frame number. The segment table
base address register contains the start address of the segment table. The final
physical address is the sum of the page table entry and the offset from the virtual
address. Consider the following situation:
(a)
(b)
physical address?

Compute the physical address needed by the given situation
Howmany two-operand summations are required to compute one

I","cll"n MI,,,

1100 1 0 0 I I iuon

Stlgrncnt
t d b k

24

25

26

27

28

19

30

3 1

32

33

34

10 bits

llloMM00

I]MI I IMO

IUI0llOM)I

3 M o l W o O l I

Baserindex regiran

1 - I

FIGURE P 8.17

Memov, YO, and Parallel Processing 363

8.18

8.19

8.20

8.21

8.22

8.23

8.24

8.25

8.26

8.27

Assume a main memory has 4 page frames and initially all page frames are empty.
Consider the following stream of references;

Calculate the hit ratio if the replacement policy used is as follows.
(a) FIFO
(b) LRU

1,2,3,4,5, 1,2,6, 1 ,2 ,3 ,4 ,5 ,6 ,5

Repeat Problem 8.18 when the main memory has 5 page frames instead of 4.
Comment on your results.

Consider the stream of references given in Problem 8.1 8. Plot a graph between the
hit ratio and the number of frames &I in the main memory after computing the hit
ratio for all valuesfin the range of 1 to 8. Assume LRU policy is used. (Hint: Use
the stack algorithm.)

What is the size of a decoder with one chip enable (m) to obtain a 64K x 32
memory from the 4K x 8 chips? Where are the inputs and outputs of the decoder
connected?

What is the advantage of having a cache memory? Name a 32-bit microprocessor
that does not contain an on-chip cache.

Discuss the various cache-mapping techniques.

A microprocessor has a main memory of 8K x 32 and a cache memory of 4K
x 32. Using direct mapping, determine the sizes of the tag field, index field, and
each word of the cache.

A microprocessor has a main memory of 4K x 32. Using a cache memory address
of 8 bits and set-associative mapping with a set size of 2, determine the size of
the cache memory.

A microprocessor can directly address one megabyte of memory with a 16-
bit word size. Determine the size of each cache memory word for associative
mapping.

A typical computer system has a 32K main memory and a 4K fully associative
cache memory. The cache block size is 8 words. The access time for the main
memory is 10 times that of the cache memory.
(a) How many hardware comparators are needed?
(b) What is the size of the tag field?
(c) If a direct mapping scheme were used instead, what would be the size of the

tag field?
(d) Suppose the access efficiency is defined as the ratio of the average access

time with a cache to the average access time without a cache, determine the
access efficiency assuming a cache hit ratio h of 0.9.

(e) If the cache access time is 200 nanoseconds, what hit ratio would be required
to achieve an average access time equal to 500 nanoseconds?

3 64

8.28

8.29

8.30

8.3 1

8.32

8.33

8.34

8.35

8.36

8.37

Fundamentals of Digital Logic and Microcomputer Design

A set associative cache has a total of 64 blocks divided into sets of 4 blocks
each.
(a) Main memory has 1024 blocks with 16 words per block. How many bits are

needed in each of the tag, set, and word fields of the main memory address?
(b) A computer system has 32K words of main memory and a set associative

cache. The block size is 16 words and the TAG field of the main memory
address is 5-bit wide. If the same cache were direct mapped, the main memory
will have a 3-bit TAG field. How many words are there in the cache? How
many blocks are there in a cache set?

Under what condition does the set associative mapping method become one of the
following?
(a) Direct mapping
(b) Fully associative mapping

Discuss the main features of Motorola 68020 on-chip cache.

What is the basic difference between:
(a) Standard I/O and memory-mapped I/O?
(b) Programmed I/O and virtual I/O?
(c) Polled I/O and interrupt I/O?
(d) A subroutine and interrupt I/O?
(e) Cycle-stealing, block transfer, and interleaved DMA?
(f) Maskable and nonmaskable interrupts?
(8) Internal and external interrupts?
(h) Memory mapping in a microprocessor and memory-mapped 1/0?

Explain the significance of interleaved memory organization in pipelined
computers.

Discuss the basic differences between SISD and SIMD.

The Cray - I computer has one CPU, and 12 functional units. Up to a maximum
of 8 functional units can be cascaded to form a chain. Each functional unit is
pipelined and the number of pipeline segments vary from 1 to 14. Each functional
unit is capable of manipulating 64-bit data. Is it possible to describe this machine
using Flynn’s approach? Explain.

Consider a processor array with 4 floating-point processors (FPP). Suppose that
each FPP takes 4 time units to produce one result, how long it would take to carry
out 100 floating point operations? Is there any performance improvement if the
same 100 floating-point operations are carried out using a 4-segment pipelined
processor in which each segment takes 1 time unit to produce the result (Ignore
latch delay)?

Explain the significance of masking in array processors.

Consider the floating-point pipeline discussed in section 8.4.2. Assume:

Memory, I/O, and Parallel Processing 365

8.38

8.39

8.40

8.41

Ti = 40 ns
T, = 180 ns
Ti = 20 ns
(a) Determine the pipeline clock rate.
(b) Find the time taken to add 1000 pairs of floating-point numbers using this

pipeline.
(c) What is the efficiency of the pipeline when 2000 pairs of floating-point

numbers are added?

T, = 100 ns
T, = 60 ns

Design a pipeline multiplier using canylsave adders (CSA) and carry-look-ahead
adders to multiply a stream of input numbers XO, X1, X2, by a fixed number Y.
Assume all Xs and Ys are 6-bit numbers. The output should be a stream of 12-bit
products YXO, YXl , YX2. Draw a neat schematic diagram of your design.

Consider the execution of 1000 instructions using a 6-segment pipeline.
(a) What is the average number of instructions executed per instruction cycle

when C = 0.2?
(b) What must be the value of C so execution of at least 4 instructions per

instruction cycle is always allowed.

Describe the methods used to handle branches in a pipeline instruction execution
unit.

Modify each of the following programs so the data flow in the 2-segment pipeline
(Figure 8.52) is properly regularized:
(a)

MEMORY ADDRESS
2000
200 1
2002
2003

2040

MEMORY ADDRESS
2000
200 1
2002
2003
2004

INSTRUCTION
LDA X
DCR Y
JMP 2040
SUB Z

STA W

INSTRUCTION
LDA X
DCR Y
JNZ 2040
SUB Z

STAW
2040

