
11
INTEL AND MOTOROLA 32- &

64-BIT MICROPROCESSORS
This chapter provides a summary of the basic features of 32- and 64-bit microprocessors
manufactured by Intel and Motorola. Intel 80386 and Motorola 68020 are covered in detail
while an overview of the other 32-bit microprocessors is also included. Finally, a brief
coverage of the 64-bit microprocessors is provided.

11.1

This section describes the basic aspects of typical 32- and 64-bit microprocessors. Topics
include on-chip features such as pipelining, memory management, floating-point, and
cache memory implemented in typical 32- and 64-bit microprocessors.

The first 32-bit microprocessor was Intel’s problematic iAPX432, and
was introduced in 1980. Soon afterwards, the concept of “mainframe on a chip” or
“micromainframe” was used to indicate the capabilities of these microprocessors and to
distinguish them from previous 8- and 16-bit microprocessors.

The introduction of several 32-bit microprocessors revolutionized the
microprocessor world. The performance of these 32-bit microprocessors is actually more
comparable to that of superminicomputers such as Digital Equipment Corporation’s
VAXl1/750 and VAXl1/780. Designers of 32-bit microprocessors have implemented
many powerhl features of these mainframe computers to increase the capabilities of
the microprocessor chip sets. These include pipelining, on-chip cache memory, memory
management, and floating-point arithmetic.

As mentioned in Chapter 8, pipelining is the technique in which instruction
fetch and execute cycles are overlapped. This method allows simultaneous preparation
for execution of one or more instructions while another instruction is being executed.
Pipelining was used for many years in mainframe and minicomputer CPUs to speed up
the instruction execution time of these machines. The 32-bit microprocessors implement
the pipelining concept and simultaneously operate on several 32-bit words, which may
represent different instructions or part of a single instruction.

Although pipelining greatly increases the rate of execution of nonbranching code,
pipelines must be emptied and refilled each time a branch or jump instruction is in the code.
This may slow down the processing rate for code with many branches or jumps. Thus, there
is an optimum pipeline depth, which is strongly related to the instruction set, architecture,
and gate density attainable on the processor chip. For many of the applications run on the
32-bit microprocessors, the three-stage pipeline is considered a reasonably optimal depth.

With memory management, virtual memory techniques, traditionally a feature of
mainframes, are also implemented as on-chip hardware on typical 32-bit microprocessors.

TvDical Features of 32-bit and 64-bit MicroDrocessors

543

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

544 Fundamentals of Digital Logic and Microcomputer Design

This allows programmers to write programs much larger than those that could fit in the
main memory space available to the microprocessors; the programs are simply stored on a
secondary device, such as a disk drive, and portions of the program are swapped into main
memory as needed.

Segmentation circuitry has been included in many 32-bit microprocessor chips.
With this technique, blocks of code called “segments,” which correspond to modules of the
program and have varying sizes set by the programmer or compiler, are swapped. For many
applications, however, an alternative method borrowed from mainframes and superminis
called “paging” is used. Basically, paging differs from segmentation in that pages are of
equal sizes. Demand paging, in which the operating system automatically swaps pages as
needed, can be used with all 32-bit microprocessors.

Floating-point arithmetic is yet another area in which the new chips are mimicking
mainframes. With early microprocessors, floating-point arithmetic was implemented in
software, largely as a subroutine. When required, execution would jump to a piece of code
that would handle the tasks. This method, however, slows the execution rate considerably,
so floating-point hardware, such as fast bit-slice (registers and ALU on a chip) processors
and, in some cases, special-purpose chips, was developed. Other than the Intel 8087, these
chips behaved more or less like peripherals. When floating-point arithmetic was required,
the problems were sent to the floating-point processor and the CPU was freed to move
on to other instructions while it waited for the results. The floating-point processor is
implemented as on-chip hardware in typical 32-bit microprocessors, as in mainframe and
minicomputer CPUs. Caching or memory-management schemes are utilized with all 32-bit
microprocessors in order to minimize access time for.most instructions.

A cache, used for years in minis and mainframes, is a relatively small, high-speed
memory installed between a processor and its main memory. The theory behind a cache
is that a significant portion of the CPU time spent running typical programs is tied up in
executing loops; thus, the chances are good that if an instruction to be executed is not the
next sequential instruction, it will be one of some relatively small number of instructions
back, a concept known as locality of reference. Therefore, a high-speed memory large
enough to contain most loops should greatly increase processing rates. Cache memory is
included as on-chip hardware in typical 32-bit microprocessors.

Typical 32-bit microprocessors such as Pentium and PowerPC chips are
superscalar processors. This means that they can execute more than one instruction in one
clock cycle. Also, some 32-bit microprocessors such as the PowerPC contain an on-chip
real-time clock. This allows these processors to use modern multitasking operating systems
that require time keeping for task switching and for keeping the calendar date.

A few 32-bit microprocessors implement a multiple branch prediction feature.
This allows these microprocessors to anticipate jumps of the instruction flow ahead of
time. Also, some 32-bit microprocessors determine an optimal sequence of instruction
execution by looking at decoded instructions and then determining whether to execute
or hold the instructions. Typical 32-bit microprocessors use a “look ahead” approach to
execute instructions. Typical 32-bit microprocessors instruction pool for a sequence of
instructions and perform a usekl task rather than execute the present instruction and then
go to the next.

The 64-bit microprocessors include all the features of 32-bit microprocessors.
In addition, they also contain multiple on-chip integer and floating-point units, a larger
address and data bus. The 64-bit microprocessors can typically execute 4 instructions per
clock cycle and can run at a clock speed of more than 300 MHz.

Intel and Motorola 32- & 64-bit Microprocessors 545

The Pentium microprocessor is designed using a combination of mostly
microprogramming (CISC--Complex Instruction Set Computer) and some hardwired
control (RISC --Reduced Instruction Set Computer) whereas the PowerPC is designed
using hardwired control with almost no microcode. The PowerPC is a RISC microprocessor.
This means that a simple instruction set is included with PowerPC. The PowerPC
instruction set includes register to register, load, and store instructions. All instructions
involving arithmetic operations use registers; load and store instructions are utilized to
access memory. Almost all computations can be obtained from these simple instructions.
Finally, the 64-bit microprocessors are ideal candidates for data-crunching machines and
high-performance desktop systems/workstations.

11.2

This section provides a summary of Intel 32-bit and 64-bit microprocessors. The Intel line
of microprocessors has gone through many changes. The 8080/8085 (8-bit) was the first
major chip by Intel but did not see major use. In 1978, Intel introduced a more powerful
processor called the 8086. The 8086 is covered in detail in earlier sections of this chapter.
This chip had many improved features over the 8080/85. As mentioned before, the 8086
is a 16-bit processor and utilizes pipelining. Pipelining allows the processor to execute
and fetch instructions at the same time. The Intel line has progressed through the years
to the 80286, 80386, 80486, and Pentium. The general trend has been an expansion of
the bit width of the processors both internally and externally. The Pentium processor
was introduced in 1993, and the name was changed from 80586 to Pentium because of
copyright laws. The processor uses more than 3 million transistors and had an initial speed

Intel 32-Bit and 64-Bit MicroDrocessors

TABLE 11.1

Introduced

Maximum
Clock Speed
(M W

MIPS*
Transistors

On-chip cache
memory

Data bus
Address bus
Directly addr.

memory
Pins
Virtual

memory
On-chip

memory
management

and protection
Floating point

unit
* MIPS means m

Intel 803 86/80486/Pentium Micr
80386DX
October
1985
40

6
275,000

support
chips
available
32-bit
32-bit
4 GB

132
Yes

Yes

387DX

on of instruc

80386SX
June 1988

33

2.5
275,000

support
chips
available
16-bit
24-bit
16MB

100
Yes

Yes

387SX

ms per seconc

80486DX
April
1989
50

20
1.2
million
Yes

32-bit
32-bit
4 GB

168
Yes

Yes

on chip

lrocessors -
80486SX
April
1991
25

16.5
1.185
million
Yes

32-bit
32-bit
4 GB

168
Yes

Yes

487SX

80486DX2
March 1992

100

54
1.2 million

Yes

32-bit
32-bit
4 GB

168
Yes

Yes

on chip

hat the microprocessor can execute. MIPS

Pentium
March 1993

233

112
3.1 million

Yes

64-bit
32-bit
4 GB

273
Yes

Yes

on chip

typically used
as a measure of performance of a microprocessor. Faster microprocessors have a higher MIPS value.

546 Fundamentals of Digital Logic and Microcomputer Design

of 60 MHz. The speed has increased over the years to the latest speed of 233 MHz. Table
11 . I compares the basic features of the Intel 80386DX, 80386SX, 80486DX, 80486SX,
80486DX2, and Pentium. These are all 32-bit microprocessors. Note that the 80386SL (not
listed in the table) is also a 32-bit microprocessor with a 16-but data bus like the 80386SX.
The 80386SL can run at a speed of up to 25 MHz and has a direct addressing capability
of 32 MB. The 80386SL provides virtual memory support along with on-chip memory
management and protection. It can be interfaced to the 80387SX to provide floating-point
support. The 80386SL includes an on-chip disk controller hardware.

The Pentium microprocessor uses superscalar technology to allow multiple
instructions to be executed at the same time. The Pentium uses BICMOS technology,
which combines the speed of bipolar transistors and the power efficiency of CMOS
technology. The internal registers are only 32 bits even though externally it has a 64-bit
data bus. It has a 32-bit address bus, which allows 4 gigabytes of addressable memory
space. The math coprocessor is on-chip and is up to ten times faster than the 486 in
performing certain instructions. There are two execution units in the Pentium that allow
the multiple execution. The multiple execution only works for instructions that are data
independent, meaning that an instruction executed immediately after another using the
previous result cannot be done. The Pentium uses two execution units called the “U and
V pipes.” Each has five pipeline stages. The U pipe can execute any of the instructions
in the 80x86 set, but the V pipe executes only simple instructions. Another new feature of
the Pentium is branch prediction. This feature allows the Pentium to predict and prefetch
codes and advance them though the pipeline without waiting for the outcome of the zero
flag.

The implementation of virtual memory is an important feature of the Pentium.
It allows a total of 64 terabytes of virtual memory. The 386/486 allowed only a 4K page
size for virtual memory, but the Pentium allows either 4K or 4M page sizes. The 4K page
option makes it backward compatible with the 386/486 processors. The 4M page size
option allows mapping of a large program without fragmentation. It reduces the amount of
page misses in virtual memory mode.

In the next section, the Intel 80386 is. covered in detail.
Table 1 1.1 compares the basic features of 80386, 80486, and Pentium.

11.3 Intel 80386

The Intel 80386 is Intel’s first 32-bit microprogrammed microprocessor. Its introduction
in 1985 facilitated the introduction of Microsoft’s Windows operating systems. The high-
speed computer requirement of the graphical interface of Windows operating systems was
supplied by the 80386. Also, the on-chip memory management of the 80386 allowed
memory to be allocated and managed by the operating system. In the past, memory
management was performed by software.

The Intel 80386 is a 32-bit microprocessor and is based on the 8086. A variation
of the 80386 (32-bit data bus) is the 80386SX microprocessor, which contains a 16-bit
data bus along with all other features of the 80386. The 80386 is software compatible at
the object code level with the Intel 8086. The 80386 includes separate 32-bit internal and
external data paths along with 8 general-purpose 32-bit registers. The processor can handle
8-, 16-, and 32-bit data types. It has separate 32-bit data and address pins, and generates a
32-bit physical address. The 80386 can directly address up to 4 gigabytes (232) of physical
memory and 64 tetrabytes (246) of virtual memory. The 80386 can be operated from a

Intel and Motorola 32- & 64-bit Microprocessors 547

12.5-, 16-, 20-, 25-, 33-, or 40-MHz clock. The chip has 132 pins and is typically housed
in a pin grid array (PGA) package. The 80386 is designed using high-speed HCMOS 111
technology.

The 80386 is highly pipelined and can perform instruction fetching, decoding,
execution, and memory management functions in parallel. The on-chip memory
management and protection hardware translates logical addresses to physical addresses and
provides the protection rules required in a multitasking environment. The 80386 contains
a total of 129 instructions. The 80386 protection mechanism, paging, and the instructions
to support them are not present in the 8086.

The main differences between the 8086 and the 80386 are the 32-bit addresses
and data types and paging and memory management. To provide these features and other
applications, several new instructions are added in the 80386 instruction set beyond those
of the 8086.

11.3.1 Internal 80386 Architecture
The internal architecture of the 80386 includes several functional units that operate in
parallel. The parallel operation is known as “pipelined processing.” Fetching, decoding,
execution, memory management, and bus access for several instructions are performed
simultaneously. Typical functional units of the 80386 are these:

Bus interface unit (BIU)
Execution unit (EU)
Segmentation unit
Paging unit
The 80386 BIU performs similar function as the 8086 BIU. The execution

unit processes the instructions from the instruction queue. It contains mainly a control
unit and a data unit. The control unit contains microcode and parallel hardware for fast
multiplication, division, and effective address calculation. The data unit includes an ALU,
8 general-purpose registers, and a 64-bit barrel shifter for performing multiple bit shifts in
one clock cycle. The data unit carries out data operations requested by the control unit.
The segmentation unit translates logical addresses into linear addresses at the request of the
execution unit. The translated linear address is sent to the paging unit.

Upon enabling of the paging mechanism, the 80386 translates the linear addresses
into physical addresses. If paging is not enabled, the physical address is identical to the
linear address and no translation is necessary. The 80386 segmentation and paging units
support memory management functions. The 80386 does not contain any on-chip cache.
However, external cache memory can be interfaced to the 80386 using a cache controller
chip.

11.3.2 Processing Modes
The 80386 has three processing modes: protected mode, real-address mode, and virtual
8086 mode. Protected mode is the normal 32-bit application of the 80386. All instructions
and features of the 80386 are available in this mode. Real-address mode (also known as
“real mode”) is the mode of operation of the processor upon hardware reset. This mode
appears to programmers as a fast 8086 with a few new instructions. This mode is utilized
by most applications for initialization purposes only. Virtual 8086 mode (also called “V86
mode”) is a mode in which the 80386 can go back and forth repeatedly between V86 mode
and protected mode at a fast speed. When entering into V86 mode, the 80386 can execute
an 8086 program. The processor can then leave V86 mode and enter protected mode to

548

execute an 80386 program.
As mentioned, the 80386 enters real-address mode upon hardware reset. In this

mode, the protection enable (PE) bit in a control register-the control register 0 (CR0)-is
cleared to zero. Setting the PE bit in CRO places the 80386 in protected mode. When
the 80386 is in protected mode, setting the VM (virtual mode) bit in the flag register (the
EFLAGS register) places the 80386 in V86 mode.

Fundamentals of Digital Logic and Microcomputer Design

11.3.3 Basic 80386 Programming Model
The 80386 basic programming model includes the following aspects:

Memory organization and segmentation
Data types
Registers
Addressing modes
Instruction set

I/O is not included as part of the basic programming model because systems designers may
select to use I/O instructions for application programs or may select to reserve them for the
operating system.

Memory Organization and Segmentation
The 4-gigabyte physical memory of the 80386 is structured as 8-bit bytes.

Each byte can be uniquely accessed as a 32-bit address. The programmer can write
assembly language programs without knowledge of physical address space. The memory
organization model available to applications programmers is determined by the system
software designers. The memory organization model available to the programmer for each
task can vary between the following possibilities:
An address space includes a single array of up to 4 gigabytes. The 80386 maps the 4-
gigabyte space into the physical address space automatically by using an address-translation
scheme transparent to the applications programmers.
A segmented address space includes up to 16,383 linear address spaces of up to 4 gigabytes
each. In a segmented model, the address space is called the “logical” address space and
can be up to 64 terabytes. The processor maps this address space onto the physical address
space (up to 4 gigabytes by an address-translation technique).
Data Types

Data types can be byte (%bit), word (16-bit with the low byte addressed by n and
the high byte addressed by n + l), and double word (32-bit with byte 0 addressed by n and
byte 3 addressed by n + 3). All three data types can start at any byte address. Therefore, the
words are not required to be aligned at even-numbered addresses, and double words need
not be aligned at addresses evenly divisible by 4. However, for maximum performance,
data structures (including stacks) should be designed in such a way that, whenever possible,
word operands are aligned at even addresses and double word operands are aligned at
addresses evenly divisible by 4. That is, for 32-bit words, addresses should start at 0,4,8,
. . . for the highest speed.

Depending on the instruction referring to the operand, the following additional
data types are available: integer (signed 8-, 16-, or 32-bit), ordinal (unsigned 8-, 16-, or
32-bit), near pointer (a 32-bit logical address that is an offset within a segment), far pointer
(a 48-bit logical address consisting of a 16-bit selector and a 32-bit offset), string (8-, 16-,
or 32-bit from 0 bytes to 232 - 1 bytes), bit field (a contiguous sequence of bits starting at
any bit position of any byte and containing up to 32 bits), bit string (a contiguous sequence

Intel and Motorola 32- & 64-bit Microprocessors 549

I EAX I

AH YAL

1 , DH Dx DL

I j CH yx CL

I I BH Bx BL

-- Ed,

ECX

EBX

General re*enea
31 23 15 7 0

ooooooooooooooooo'v~ RF'O NT IOPL OF DF IF SF z o AF'O P I C F I

I ,
EBP BJP I

Vimnl8086 mode-X
Resume flag-X

Nested tank flag-X
VO privilage level-X

Directional flae-C 1
ovemow-s

17 0
Status and lnsmctian registers

31 1 2 3 I 15

I l l

--
(a) Applications register set

FIGURE 11.1 80386 registers

Sign flag-S ~

Intempt enable-X
Trap flag4

Zero flag-S
Auxiliary cany-S-

Parity flag-S
Carry fdg-S--

Notes: 0 or 1 indicates Intel resewed. Do not define.
S = stahls flag; C = conml flag; X = system flag.

(b) EFLAGS register

of bits starting at any position of any byte and containing up to 232 - 1 bits), and packed
unpacked BCD. When the 80386 is interfaced to a coprocessor such as the 80287 or
80387, then floating-point numbers are supported.

Registers
Figure 11.1 shows the 80386 registers. As shown in the figure, the 80386 has

16 registers classified as general, segment, status, and instruction pointer. The 8 general
registers are the 32-bit registers EAX, EBX, ECX, EDX, EBP, ESP, ESI, and EDT. The
low-order word of each of these 8 registers has the 8086 register name AX (AH or AL),
BX (BH or BL), CX (CH or CL), DX (DH or DL), BP, SP, SI, and DI. They are useful for
making the 80386 compatible with the 8086 processor.

The six 16-bit segment registers-CS, SS, DS, ES, FS, and GS-allow systems
software designers to select either a flat or segmented model of memory organization. The
purpose of CS, SS, DS, and ES is same as that of the corresponding 8086 registers. The
two additional data segment registers FS and GS are included in the 80386 so that the four
data segment registers (DS, ES, FS, and GS) can access four separate data areas and allow
programs to access different types of data structures.

The flag register is a' 32-bit register, named EFLAGS in Figure 1 1.1, that shows
the meaning of each bit in this register. The low-order 16 bits of EFLAGS is named
FLAGS and can be treated as a unit. This is useful when executing 8086 code because this
part of EFLAGS is similar to the FLAGS register of the 8086. The 80386 flags are grouped
into three types: status flags, control flags, and system flags.

The status flags include CF, PF, AF, ZF, SF, and OF, like the 8086. The control
flag DF is used by strings like the 8086. The system flags control I/O, maskable interrupts,

550 Fundamentals of Digital Logic and Microcomputer Design

debugging, task switching, and enabling of virtual 8086 execution in a protected,
multitasking environment. The purpose of IF and TF is identical to the 8086. Let us
explain some of the system flags:

IOPL (UO privilege level). This 2-bit field supports the 80386 protection feature.
NT (nested task). The NT bit controls the IRET operation. If NT = 0, a usual
return from interrupt is taken by the 80386 by popping EFLAGS, CS, and EIP from
the stack. If NT = 1, the 80386 returns from an interrupt via task switching.
FW (resume flag). is used during debugging.
VM (virtual 8086 mode). When the VM bit is set to 1, the 80386 executes 8086
programs. When the VM bit is 0, the 80386 operates in protected mode.
The instruction pointer register (EIP) contains the offset address relative to the
start of the current code segment of the next sequential instruction to be executed.
The low-order 16 bits of EIP is named IP and is useful when the 80386 executes
8086 instructions.

11.3.4 80386 Addressing Modes
The 80386 has 11 addressing modes, classified into registedimmediate and memory
addressing modes. The register/immediate type includes 2 addressing modes, and the
memory addressing type contains 9 modes.

Registedlmm ediate Modes
Instructions using the register or immediate modes operate on either register or

immediate operands. In register mode, the operand is contained in one of the 8-, 16-, or 32-
bit general registers. An example is DEC ECX, which decrements the 32-bit register ECX
by 1. In immediate mode, the operand is included as part of the instruction. An example
is MOV EDX, 5167812FH, which moves the 32-bit data 5167812F,, to the EDX register.
Note that the source operand in this case is in immediate mode.

Memory Addressing Modes
The other 9 addressing modes specify the effective memory address of an operand.

These modes are used when accessing memory. An 80386 address consists of two parts:
a segment base address and an effective address. The effective address is computed by
adding any combination of the following four elements:

Displacement. The 8- or 32-bit immediate data following the instruction is the
displacement; 16-bit displacements can be used by inserting an address prefix
before the instruction
Base. The contents of any general-purpose register can be used as a base.
Index. The contents of any general-purpose register except ESP can be used as an
index register. The elements of an array or a string of characters can be accessed
via the index register.
Scale. The index register’s contents can be multiplied (scaled) by a factor of 1,2,
4, or 8. A scaled index mode is efficient for accessing arrays or structures.
Effective Address, EA = base register + (index register x scale) + displacement
The 9 memory addressing modes are a combination of these four elements. Of

the 9 modes, 8 of them are executed with the same number of clock cycles because the
effective address calculation is pipelined with the execution of other instructions; the mode
containing base, index, and displacement elements requires one additional clock cycle.

Direct mode.The operand’s effective addresses is included as part of the
instruction as an 8-, 16-, or 32-bit displacement. An example is DEC WORD PTR

1.

2.
3.

4.

1.

Intel and Motorola 32- & 64-bit Microprocessors 55 1

2.

3.

4.

5.

6.

7.

8.

9.

11.3.5

[4000H].
Register indirect mode. A base or index register contains the operand’s effective
address. An example is MOV EBX, [ECXI .
Base mode. The contents of a base register is added to a displacement to obtain
the operand’s effective address. An example is MOV [EDX + 1 6] , EBX.
Index mode. The contents of an index register is added to a displacement to obtain
the operand’s effective address. An example is ADD START [ED1] , EBX.
Scaled index mode. The contents of an index register is multiplied by a scaling
factor (1, 2, 4, or 8), and the result is added to a displacement to obtain the
operand’s effective address. An example is MOV START [EBX * 8 3 , ECX.
Based index mode. The contents of a base register is added to the contents of
an index register to obtain the operand’s effective address. An example is MOV

ECX, [ESI] [EAX].
Based scaled index mode. The contents of an index register is multiplied by
a scaling factor (1, 2, 4, 8), and the result is added to the contents of a base
register to obtain the operand’s effective address. An example is MOV [ECX * 4]
[EDX], EAX.

Based index mode with displacement. The operand’s effective address is
obtained by adding the contents of a base register and an index register with a
displacement. An example isMOV [EBXI [EBP + OF24782AHl , ECX.
Based scaled index mode with displacement. The contents of an index register
is multiplied by a scaling factor, and the result is added to the contents of base
register and displacement to obtain the operand’s effective address. An example
isMOV [ESI * 81 [EBP + 6OH1,ECX.

80386 Instruction Set
The 80386 can execute all 16-bit instructions in real and protected modes. This is provided
in order to make the 80386 software compatible with the 8086. The 80386 uses either 8- or
32-bit displacements and any register as the base or index register while executing 32-bit
code. However, the 80386 uses either 8- or 16-bit displacements with the base and index
registers while executing 16-bit code. The base and index registers utilized by the 80386
for 16- and 32-bit addresses are as follows:

I6-Bit Addressing 32-Bit Addressing
Base register BX, BP Any 32-bit general-purpose register
Index register SI, DI Any 32-bit general-purpose register except ESP

Displacement 0, 8, 16 bits 0, 8, 32 bits
Scale factor None 1 , 2 , 4 , 8

In the following, the symbol () will indicate the contents of a register or a memory location.
A description of some of the new 80386 instructions is given next.

1. Arithmetic Instructions
There are two new sign extension instructions beyond those of the 8086.

CWDE
CDQ

Sign-extend 16 bit contents of AX to a 32-bit double word in EAX.
Sign-extend a double word (32 bits) in EAX to a quadword (64 bits) in
EDX:EAX

The 80386 includes all of the 8086 arithmetic instructions plus some new ones. Two

552 Fundamentals of Digital Logic and Microcomputer Design

of the instructions are as follows:

Instruction

ADC reg32/mem32, imm32

ADC reg32/mem32, imm8

Operation

[reg32 or mem32]+- [reg32 or mem32] + 32-bit
immediate data + CF
[reg32 or mem321 - [reg32 or mem321 + 8-bit . - ~ ~-

I immediate data sign-extended to 32 bits + CF

I D I V AL, reg8/mem8

I D I V AX, reg16imem16

Similarly, the other add instructions include the following:

EAX = quotient and EDX = remainder.
AX + reg8 or mem8 (signed division)
AL = quotient and AH = remainder.
DX:AX -+ reg 16 or mem 16 (signed division)
AX = quotient and DX = remainder.

ADC reg32/mem32, reg32/mem32
ADD reg32/mem32, imm32
ADD reg32/mem32, imm8
ADD reg3Ymem32, reg32/mem32

The 80386 SUB/SBB instructions have the same operands as the ADD/ADC
instructions.

The 80386 multiply instructions include all of the 8086 instructions plus some
new ones. Some of them are listed next:

I M U L AX, reg16/mem16

I M U L AL, reg8/mem8

I M U L regl6, reg16/mem16,imm8

I M U L reg32, reg32/mem32, imm8

(signed multiplication).
CF and OF flags are cleared to 0 if the EDX
value is 0; otherwise, they are set.
DX:AX - AX * reg16/mem16
(signed multiplication)
(signed multiplication) AX - AL * reg81
mem8
reg16 + regl6/mem16 * (imm8 sign-
extended to 16-bits) (signed multiplication).
The result is the low 16 bits of product.
reg32 + reg32/mem32 * (imm8 sign-
extended to 32 bits) (signed multiplication).

I The result is the low 32 bits of product.

The unsigned multiplication MUL instruction has the same operands as I M U L .
The 80386 divide instructions include all of the 8086 instructions plus some new ones.
Some of them are listed next:

Instruction I Operation
I D I V EAX, reg32/mem32 I EDX:EAX -+ reg32 or mem32 (signed division).

2. Bit Instructions

Intel and Motorola 32- & 64-bit Microprocessors 553

The six 80386 bit instructions are as follows:
BSF Bit scan forward
BSR Bit scan reverse
BT Bit test
BTC Bit test and complement
BTR Bit test and reset
BTS Bit test and set

These instructions are discussed separately next.
BSF (bit scan forward) takes the form

BSF d, S

regl6, reg16
regl6, meml6
reg32, reg32
reg32, mem32

BSF scans (checks) the 16-bit (word) or 32-bit (double word) number defined
by s from right to left (bit 0 to bit 15 or bit 31). The bit number of the first 1
found is stored in d. If the whole 16-bit or 32-bit number is 0, the ZF flag is set
to 1; Otherwise, ZF = 0. For example, consider BSF EBX, EDX. If (EDX) =

01241240,,, then after BSF EBX, EDX, (EBX) = 00000006,, and ZF = 0. The
bit number 6 in EDX (contained in the second nibble of EDX) is the first 1 found
when (EDX) is scanned from the right.
BSR (bit scan reverse) takes the form

BSR d, S
regl6, reg16
regl6, meml6
reg32, reg32
reg32, mem32

BSR scans (checks) the 16-bit or 32-bit number defined by s from the most
significant bit (bit 15 or bit 3 1) to the least significant bit (bit 0). The destination
operand d is loaded with the bit index (bit number) of the first set bit. If the bits
in the number are all O’s, ZF is set to 1 and operand d is undefined; ZF is reset to
0 if a 1 is found.
BT (bit test) takes the form

BT

BT assigns

d
rig 16,
mem 16,
reg 16,
mem 16,
reg32,
mem32,
reg32
mem32.
the bit value

S
reg 1 6
reg 1 6
imm8

of operand d (base) specified operand s (bit offset) to
the carry flag. Only CF is affected. If operand s is an immediate data, only 8 bits
are allowed in the instruction. This operand is taken modulo 32 so that the range
of immediate bit offset is from 0 to 3 1. This permits any bit within a register to
be selected. If d is a register, the bit value assigned to CF is defined by the value
of the bit number defined by s taken modulo the register size (16 or 32). If d is a
memory bit string, the desired 16 bits or 32 bits can be determined by adding s (bit
index) divided by the operand size (16 or 32) to the memory address of d. The bit
within this 16- or 32-bit word is defined by d taken modulo the operand size (16 or
32). If d is a memory operand, the 80386 may access 4 bytes in memory starting
at effective address plus 4 x [bit offset divided by 321. As an example, consider

554 Fundamentals of Digital Logic and Microcomputer Design

BT CX, DX. If (CX) = 08 1 F and (DX) = 002 1 16, then after BT CX, DX, because
the contents of DX is 33,,, the bit number 1 [remainder of 33/16 = 1 of CX (value
l)] is reflected in CF and therefore, CF = 1.
BTC (bit test and complement) takes the form

where d and s have the same definitions as for the BT instruction. The bit of d
defined by s is reflected in CF. After CF is assigned, the same bit of d defined by
s is ones complemented. The 80386 determines the bit number from s (whether s
is immediate data or register) and d (whether d is register or memory bit string) in
the same way as for the BT instruction.
BTR (bit test and reset) takes the form

Where d and s have the same definitions as for the BT instruction. The bit of d
defined by s is reflected in CF. After CF is assigned, the same bit of d defined
by s is reset to 0. Everything else applicable to the BT instruction also applies to
BTR.
BTS (bit test and set) takes the form

BTS is the same as BTR except that the specified bit in d is set to 1 after the bit
value of d defined by s is reflected in CF. Everything else applicable to the BT
instruction also applies to BTS.

BTC d, s

BTR d, s

BTS d, s

Set Byte on Condition Instructions
These instructions set a byte to 1 or reset a byte to 0 depending on any of the 16
conditions defined by the status flags. The byte may be located in memory or in a
1 -byte general register. These instructions are very useful in implementing Boolean
expressions in high-level languages. The general structure of these instructions is
SETcc (set byte on condition cc), which sets a byte to 1 if condition cc is true or else
resets the byte to 0.
As an example, consider SETB BL (set byte if below; CF = 1). If (BL) = 52,, and
CF = 1, then, after this instruction is executed, (BL) = 01 and CF remains at 1 ; all
other flags (OF, SF, ZF, AF, PF) are undefined. On the other hand, if CF = 0, then,
after execution of this instruction, (BL) = OO,,, CF = 0, and ZF = 1; all other flags are
undefined. The other SETcc instructions can similarly be explained.

Conditional Jumps and Loops
J E C X Z disp8 jumps if [ECX] = 0; disp8 means a relative address. JECXZ tests the
contents of the ECX register for zero and not the flags. If [ECX] = 0, then, after
execution of the J E C X Z instruction, the program branches with a signed 8-bit relative
offset (+127,, to -128,, with 0 being positive) defined by disp8. The J E C X Z instruction
is useful at the beginning of a conditional loop that terminates with a conditional loop
instruction such as LOOPNE label. J E C X Z prevents entering the loop with [ECX] =

0, which would cause the loop to execute up to 2’* times instead of zero times.
The loop instructions are listed next:

LOOP disp8

LOOP/LOOPZ disp8

Decrement CWECX by 1 and jump if
CWECX # 0
Decrement CWECX by 1 and jump if
CWECX * 0 or ZF = 1

Intel and Motorola 32- & 44-bit Microprocessors 555

L 0 0 P N E / L 0 0 P N Z
disp8

Decrement CX/ECX by 1 and jump if
CX/ECX f 0 or ZF = 0

The 80386 loop instructions are similar to those of the 8086 except that if the counter
is more than 16 bits, the ECX register is used as the counter.

5. Data Transfer Instructions
a. Move Instructions

The move instructions are described as follows:
MOVSX d, S Move and sign-extend
MOVZX d, S Move and zero-extend

regl6, reg8
regl6, mem8
reg32, reg8
reg32, mem8
reg32, reg16
reg32, meml6

MOVSX reads the contents of the effective address or register as a byte or a word
from the source, sign-extends the value to the operand size of the destination
(16 or 32 bits), and stores the result in the destination. No flags are affected.
MOVZX, on the other hand, reads the contents of the effective address or register
as a byte or a word, zero-extends the value to the operand size of the destination
(1 6 or 32 bits), and stores the result in the destination. No flags are affected. For
example, consider MOVSX BX, CL. If (CL) = 81,,and (BX) = 21AF,,, then,
after execution of this MOVSX, register BX contains FF8 1 ,6 and the contents of
CL do not change. Now, consider MOVZX CX, DH. If (CX) = F237,, and (DH)
= 85,,, then, after execution of this MOVZX, register CX contains 0085,, and DH
contents do not change.

b. Push and Pop Instructions
There are new push and pop instructions in the 80386 beyond those of the 8086:
PUSHAD and POPAD. PUSHAD saves all 32-bit general registers (the order is
E M , ECX, EDX, EBX, original ESP, EBP, ESI, and EDI) onto the 80386 stack.
PUSHAD decrements the stack pointer (ESP) by 32,, to hold the eight 32-bit
values. No flags are affected. POPAD reverses a previous PUSHAD. It pops the
eight 32-bit registers (the order is EDI, ESI, EBP, ESP, EBX, EDX, ECX, and
E M) . The ESP value is discarded instead of loading onto ESP. No flags are
affected. Note that ESP is actually popped but thrown away so that (ESP), after
popping all the registers, will be incremented by 32,,,

c. Load Pointer Instructions
There are five instructions in the load pointer instruction category: LDS, LES,
LFS, LGS, and LSS. The 80386 can have four versions for each one of these
instructions as follows:

LDS regl6, meml6:meml6
LDS reg32, mem16:mem32
LES regl6, meml6:meml6
LES reg32, mem16:mem32

556 Fundamentals of Digital Logic and Microcomputer Design

Note that mem 1 6:mem 16 or meml6:mem32 defines a memory operand containing
the pointers composed of two numbers. The number to the left of the colon
corresponds to the pointer’s segment selector; the number to the right corresponds
to the offset. These instructions read a full pointer from memory and store it in
the selected segment register:specified register. The instruction loads 16 bits into
DS (for LDS) or into ES (for LES). The other register loaded is 32 bits for 32-bit
operand size and 16 bits for 16-bit operand size. The 16- and 32-bit registers to
be loaded are determined by the reg1 6 or reg32 register specified.
The three instructions LFS, LGS, and LSS are associated with segment registers
FS, GS, and SS can similarly be explained.

6. Flag Control Instructions
There are two new flag control instructions in the 80386 beyond those of the 8086:
PUSHFD and POPFD. PUSHFD decrements the stack pointer by 4 and saves the 80386
EFLAGS register to the new top of the stack. No flags are affected. POPFD pops the
32 bits (double word) from the top of the stack and stores the value in EFLAGS. All
flags except VM and RF are affected.

7. Logical Instructions
There are new logical instructions in the 80386 beyond those of the 8086:

SHLD d,
SHRD d,

d
reg 16,
mem 16,
reg 16,
meml6,
reg32,
mem32,
reg32,
mem32,

s,
s,

reg 16,
reg 16,
reg 16,
regl6,
reg32,
reg32,
reg32,
reg32,

S

count Shift left double
count Shift right double
count
imm8
imm8
CL
CL
CL
imm8
CL
CL

For both SHLD and SHRD, the shift count is defined by the low 5 bits, so shifts from 0
to 3 1 can be obtained.

SHLD shifts the contents of d s by the specified shift count with the result stored
back into d; d is shifted to the left by the shift count with the low-order bits of d filled
from the high-order bits of s. The bits in s are not altered after shifting. The carry flag
becomes the value of the bit shifted out of the most significant bit of d. If the shift
count is zero, this instruction works as an NOP. For the specified shift count, the SF,
ZF, and PF flags are set according to the result in d. CF is set to the value of the last
bit shifted out. OF and AF are undefined.

SHRD shifts the contents of d s by the specified shift count to the right with the
result stored back into d. The bits in dare shifted right by the shift count, with the high-
order bits filled from the low-order bits of s. The bits in s are not altered after shifting.
If the shift count is zero, this instruction operates as an NOP. For the specified shift
count, the SF, ZF, and PF flags are set according to the value of the result. CF is set
to the value of the last bit shifted out. OF and AF are undefined.

Intel and Motorola 32- & 64-bit Microprocessors 557

As an example, consider SHLD BX, DX, 2. If (BX) = 183F,, and (DX) = OlFl,,,
then, after this SHLD, (BX) = 60FC,,, (DX) = OlFl ,,, CF = 0, SF = 0, ZF = 0, and PF
= 1. Similarly, the SHRD instruction can be illustrated.

8. String Instructions
a. Compare String Instructions

A new 80386 instruction, CMPS mem32, mem32 (or CMPSD) beyond the compare
string instructions available with the 8086 compares 32-bit words ES:EDI (second
operand) with DS:ESI and affects the flags. The direction of subtraction of CMPS
is (ESI) - (EDI). The left operand (ESI) is the source, and the right operand (EDI)
is the destination. This is a reverse of the normal Intel convention in which the
left operand is the destination and the right operand is the source. This is true for
byte (CMPSB) or word (CMPSW) compare instructions. The result of subtraction
is not stored; only the flags are affected. For the first operand (ESI), DS is used
as the segment register unless a segment override byte is present; for the second
operand (EDI), ES must be used as the segment register and cannot be overridden,
ESI and ED1 are incremented by 4 if DF = 0 and are decremented by 4 if DF = 1.
CMPSD can be preceded by the REPE or REPNE prefix for block comparison. All
flags are affected.
Load and Move String Instructions
There are new load and move instructions in the 80386 beyond those of 8086.
These are LODS mem32 (or LODSD) and MOVS mem32, mem32 (or MOVSD).
LODSD loads the (32-bit) double word from a memory location specified by DS:
ESI into EAX. After the load, ESI is automatically incremented by 4 if DF = 0
and decremented by 4 if DF = 1. No flags are affected. LODS can be preceded
by the REP prefix. LODS is typically used within a loop structure because hrther
processing of the data moved into EAX is normally required. MOVSD copies the
(32-bit) double word at the memory location addressed by DS:ESI to the memory
location at ES:EDI. DS is used as the segment register for the source and may be
overridden. After the move, ESI and ED1 are incremented by 4 if DF = 0 and are
decremented by 4 if DF = 1. MOVS can be preceded by the REP prefix for block
movement of ECX double words. No flags are affected.

There are new string I/O instructions in the 80386 beyond those of the 8086: I N S
mem32, DX (or INSD) and OUTS DX, mem32 (or OUTSD). I N S D inputs 32-bit
data from a port addressed by the contents of DX into a memory location specified
by ES:EDI. ES cannot be overridden. After data transfer, ED1 is automatically
incremented by 4 if DF = 0 and decremented by 4 if DF = 1. I N S D can be
preceded by the REP prefix for block input of ECX double words. No flags are
affected. OUTSD outputs 32-bit data from a memory location addressed by DS:
ESI to a port addressed by the contents of DX. DS can be overridden. After
data transfer, ESI is incremented by 4 if DF = 0 and decremented by 4 if DF =

1. OUTSD can be preceded by the REP prefix for block output of ECX double
words.
Store and Scan String Instructions
There is a new 80386 STOS mem32 (or STOSD) instruction. STOS stores the
contents of the EAX register to a double word addressed by ES and EDI. ES
cannot be overridden. After the storage, ED1 is automatically incremented by

b.

c. String I/O Instructions

d.

558 Fundamentals of Digital Logic and Microcomputer Design

4 if DF = 0 and decremented by 4 if DF = 1. No flags are affected. STOS can
be preceded by the REP prefix for a block fill of ECX double words. There is
also a new scan instruction, the SCAS mem32 (or SCASD) in the 80386. SCASD
performs the 32-bit subtraction (EAX) - [memory addressed by ES and EDI].
The result of subtraction is not stored, and the flags are affected. SCASD can be
preceded by the REPE or REPNE prefix for block search of ECX double words.
All flags are affected.

A modified version of the 8086 XLAT instruction is available in the 80386. XLAT
mem8 (XLATB) replaces the AL register from the table index to the table entry.
AL should be the unsigned index into a table addressed by DS:BX for a 16-bit
address and by DS:EBX for the 32-bit address. DS can be overridden. No flags
are affected.

e. Table Look-Up Translation Instruction

9. High-Level Language Instructions
Three instructions, ENTER, LEAVE, and BOUND, are included in the 80386. The
ENTER imml6,imm8 instruction creates a stack frame. The data imm8 defines the
nesting depth of the subroutine and can be from 0 to 3 1. The value 0 specifies the first
subroutine only. The data imm8 defines the number of stack frame pointers copied
into the new stack frame from the preceding frame. After the instruction is executed,
the 80386 uses EBP as the current frame pointer and ESP as the current stack pointer.
The data imml6 specifies the number of bytes of local variables for which the stack
space is to be allocated. If imm8 is zero, ENTER pushes the frame pointer EBP onto
the stack; ENTER then subtracts the first operand imml6 from the ESP and sets EBP
to the current ESP.

For example, a procedure with 28 bytes of local variables would have an ENTER
2 8 I 0 instruction at its entry point and a LEAVE instruction before every RET. The 28
local bytes would be addressed as offset from EBP. Note that the LEAVE instruction
sets ESP TO EBP and then pops EBP. The 80386 uses BP (low 16 bits of EBP) and SP
(low 16 bits of ESP) for 16-bit operands and uses EBP and ESP for 32-bit operands.

The BOUND instruction ensures that a signed array index is within the limits
specified by a block of memory containing an upper and lower bound. The 80386
provides two forms of the BOUND instruction:

BOUND regl6, mem32
BOUND reg32, mem64

The first form is for 16-bit operands. The second form is for 32-bit operands and is
included in the 80386 instruction set. For example, consider BOUND ED1 I ADDR.
Suppose (ADDR) = 32-bit lower bound d, and (ADDR + 4) = 32 bit upper bound d,,.
If, after execution of this instruction, (EDI) cd, orxl,, the 80386 traps to interrupt 5;
otherwise, the array is accessed.

The BOUND instruction is usually placed following the computation of an index
value to ensure that the limits of the index value are not violated. This permits a
check to determine whether or not an address of an array being accessed is within the
array boundaries when the register indirect with index mode is used to access an array
element. For example, the following instruction sequence will allow accessing an
array with base address in ESI, the index value in EDI, and an array lenght 50 bytes;
assuming the 32-bit contents of memory location, 20000100,, and 20000104,, are 0
and 49, respectively:

Intel and Motorola 32- & 44-bit Microprocessors 559

BOUND EDI, 20000 1 OOH
MOV EAX, [EDI][ESI]

ExamDle 11.1
Determine the effect of each of the following 80386 instructions:

(a) CDQ

(c) MOVSX ECX, E7H
(b) BTC CX, BX

Assume (EAX) = FFFFFFFFH, (ECX) = F1257124H, (EDX) = EEEEEEEEH, and (BX) =

0004H prior to execution of each of these given instructions.
Solution
(a) After CDQ,

(EAX) = FFFFFFFFH
(EDX) = FFFFFFFFH

(b) After BTC CX, BX, bit 4 of register CX is reflected in CF and then ones complemented
in CX, as is shown below.

Before BTC CX, BX :
[CX]=15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0

CF=O
1 's complement

After [C X] = W BTC CX, BX: 0 -I?=- 0 0 1 o u o -

7 1 3 4

Hence,
(CX) = 7 134H
(BX) = 0004H

(c) MOVSX ECX, E7H copies the 8-bit data E7H into the low byte of ECX and then sign-
extends to 32 bits. Therefore, after MOVSX ECX, E7H,

(ECX) = FFFFFFE7H

Examole 11.2
Write an 80386 assembly language program to multiply a signed 8-bit number in AL by a
signed 32-bit number in ECX. Assume that the segment registers are already initialized.
Solution

CBW Sign-extend byte to word
CWDE Sign-extend word to 32-bit
IMUL EAX, ECX ; Perform singed multiplication
HLT stop

ExamDle 11.3
Write an 80386 assembly language program to move two columns of ten thousand 32-bit
numbers from A (i) to B (i). In other words, move A (1) to B (l), A (2) to B (2), and so
on.
Solution
MOV ECX, 10000 Initialize counter
MOV BX, SOURCE - SEG Initialize DS
MOV DS, BX register
MOV BX, DEST-SEG Initialize ES

5 60 Fundamentals of Digital Logic and Microcomputer Design

ADS# 80386 wR#
Processor D/C##

]i Control Bus Cycle Definition Milo ,
LOCK# ,

Coprocessor Signalling BUSY#

ERROR#

HOLD ,

~ vcc
G m } Power Connections

Interrupts

FIGURE 11.2

MOV ES, BX register
MOV ESI, SOURCE - INDX ; Initialize ESI
MOV EDI, DEST - INDX Initialize ED1
CLD Clear DF to auto-increment
REP MOVSD MOV A (i) to
HLT B (i) . until ECX = 0

80386 Functional signal groups

11.3.6 80386 Pins and Signals
The 80386 contains 132 pins in Pin Grid Array (PGA) or other packages.
Figure 1 1.2 shows functional grouping of the 80386 pins. A brief description of the 80386
pins and signals is provided in the following. The # symbol at the end of the signal name
or the - symbol above a signal name indicates the active or asserted state when it is low.
When the symbol # is absent after the signal name or the symbol - is absent above a signal
name, the signal is asserted when high.

The 80386 has 20 Vcc and 21 GND pins for power distribution. These multiple
power and ground pins reduce noise. Preferably, the circuit board should contain Vcc and
GND planes.

CLK2 pin provides the basic timing for the 80386. This clock is then divided by
2 by the 80386 internally to provide the clock used for instruction execution. The 80386 is
reset by activating the RESET pin for at least 15 CLK2 periods. The RESET signal is level-
sensitive. When the RESET pin is asserted, the 80386 will start executing instructions
at address FFFF FFFOH. The 82384 clock generator provides system clock and reset
signals.

Do-D,, provides the 32-bit data bus. The 80386 can transfer 16- or 32-bit data via
the data bus.

The address pins A,-A,, along with the byte enable signals BEO# through BE3#
are used to generate physical memory or I/O port addresses. Using the pins, the 80386 can
directly address 4 gigabytes by physical memory (OOOOOOOOH through FFFFFFFFH).

The byte enable outputs, BEO# through BE3# of the 80386, define which bytes of
Do-D,, are utilized in the current data transfer. These definations are given below:

BEO# is low when data is transferred via Do-D,
BEI# is low when data is transferred via D,-D,,

Intel and Motorola 32- & 64-bit Microprocessors 56 1

BE2# is low when data is transferred via D,,-D,,
BE3# is low when data is transferred via D,,-D,,

The 80386 asserts one or more byte enables depending on the physical size of the operand
being transferred (1,2,3, or 4 bytes).

W/R#, D/C#, M/IO#, and LOCK# output pins specify the type of bus cycle being
performed by the 80386. W/R# pin, when HIGH, identifies write cycle and, when LOW,
indicates read cycle. D/C# pin, when HIGH, identifies data cycle , when LOW, indicates
control cycle. M/IO# differentiates between memory and I/O cycles. LOCK# distinguishes
between locked and unlocked bus cycles. W/R#, D/C#, and M/IO# pins define the primary
bus cycle. This is because these signals are valid when ADS# (address status output) is
asserted. Some of these bus cycles are listed below.

M/IO# D/C# W/R# Bus cycle type
Low Low Low TNTERRUPT ACKNOWLEDGE
Low High Low I/O DATA READ
Low High High I/O DATA WRITE
High Low Low MEMORY CODE READ
High High Low MEMORY DATA READ
High High High MEMORY DATA WRITE

The 80386 bus control signals include ADS# (address status), READY# (transfer
acknowledge), NA# (next address request), and BS16# (bus size 16).

The 80386 outputs LOW on the ADS# pin indicate a valid bus cycle (W/R#, D/
C#, MOO#) and bus enable / address (BEO#-BE3#, A,-A,,) signals.

When READY# input is LOW during a read cycle or an interrupt acknowledge
cycle, the 80386 latches the input data on the data pins and ends the cycle. When READY#
is low during a write cycle, the 80386 ends the bus cycle.

The NA# input pin is activated low by external hardware to request address
pipelining. BS16# input pin permits the 80386 to interface to 32- and 16-bit memory or
I/O. For 16-bit memory or I/O, BS16# input pin is asserted low by an external device, the
80386 uses the low-order half (D0-D,J of the data bus corresponding to BEO# and BEl#
for data transfer.

BS16# is asserted high for 32-bit memory or I/O. HOLD (input) and HLDA
(output) pins are 80386 bus arbitration signals. These signals are used for DMA transfers.
PEREQ, BUSY#, and ERROR# pins are used for interfacing coprocessors such as 80287
or 80387 to the 80386.

There are two interrupt pins or the 80386. These are WTR (maskable) and NMI
(nonmaskable) pins. NMI is leading-edge sensitive, whereas INTR is level-sensitive. When
INTR is asserted and if the IF bit in the EFLAGS is 1, the 80386 (when ready) responds
to the WTR by performing two interrupt acknowledge cycles and at the end of the second
cycle latches an 8-bit vector on Do-D, to identify the source of interrupt. Interrupts are
serviced in a similar manner as the 8086.

11.3.7 80386 Modes
As mentioned before, the 80386 can be operated in real, protected, or virtual 8086 mode.
These modes can be selected by some of the bits in the status register. Upon reset or
power-up, the 80386 operates in real mode. In real mode, the 80386 can access all the
8086 registers along with the 80386 32-bit register. In real mode, the 80386 can directly
address up to one megabyte of memory. The address lines A,-A,,, BEO#-BE3# are used

5 62

by the 80386 in this mode.
The protected mode provides more memory space than is provided by the real

mode. Furthermore, this mode supports on-chip memory management and protection
features along with a multitasking operating system. Finally, the virtual 8086 mode permits
the execution of 8086 programs, taking full advantage of the 80386 protection mechanism.
In particular, the virtual the 8086 mode allows execution of 8086 operating system and
application programs concurrently with the 80386 operating system and application
programs.

Fundamentals of Digital Logic and Microcomputer Design

11.3.8 80386 System Design
In this section, the 80386 is interfaced to typical EPROM chips. As mentioned in the last
section the 80386 address and data lines are not multiplexed. There is a total of thirty
address pins (A2-A3,) on the chip. A, and A, are decoded internally to generate four byte
enable outputs, BEO#, BEl#, BE2#, and BE3#. In real mode, the 80386 utilizes 20-bit
addresses and A, through A,, address pins are active and the address pins A,, through A,,
are used in real mode at reset, high for code segment (CS)-based accesses, low for others,
and always low after CS changes. In the protected mode, on the other hand, all address
pins A, through A,, are active. In both modes, A, and A, are obtained internally. In all
modes, the 80386 outputs on the byte enable pins to activate appropriate portions of the
data to transfer byte (8-bit), word (16-bit), and double-word (32-bit) data as follows:

Byte Enable Pins Data Bus
BEO# Do-D,
BEl# D,-D,,
BE2# D,,-Dn
BE3# D,,-D,~

The 80386 supports dynamic bus sizing. This feature connects the 80386 with 32-
bit or 16-bit data busses for memory or I/O. The 80386 32-bit data bus can be dynamically
switched to a 16-bit bus by activating the BS16# input from high to low by a memory or
I/O device. In this case, all data transfers are performed via D,-Dls pins. 32-bit transfers
take place as two consecutive 16-bit transfers over data pins Do through Dls. On the other
hand, the 32-bit memory or I/O device can activate the BSl6# pin HIGH to transfer data
over Do-D,, pins.

The 80386 address pins A, and A, specify the four addresses of a four byte (32-
bit) word. Consider the following :

4 I D24, 4 3 Q6 9 Qs D * , D, Do

I ! DataPins Ll
The contents of the memory addresses which include 0, 4, 8, ... with A,A, = 00,

are transferred over Do-D,. Similarly, the contents of addresses which include 1,5,9, ...,
with A,A, = 01, are transferred over D,, -D8. On the other hand, the contents of memory
addresses 2, 6, 10, ... with A,A, = 10, are transferred over D,,-D23 while contents of
addresses 3, 7, 11, ... with A,A, = 11, are transferred over D,,-D3,. Note that A,A, is
encoded from BE3# -BEO#. The following figure depicts this:

Intel and Motorola 32- & 64-bit Microprocessors 563

FFFFFFFF

FFFFFFFE

00000002H

00000001 H

OOOOOOOOH

80386
Physical
Memory

BANK 3
1 gigabyte

FFFFFFFF

F F F F F F F B

00000007H

00000003H

BANK2
1 gigabyte

B M 1
1 gigabyte

F F F F F F F9

BANK0
1 gigabyte

FFFFFFFC

FFFFFFF8

00000004H

OOOOOOOOH

G
D, -Do

E O#

In each bank, a byte can be accessed by enabling one of the byte enables, BEO#
-BE3#. For example, in response to execution of a byte-MOVE instruction such as MOV
[00000006H], BL, the 80386 outputs low on BE2# and high on BEO#, BE1# and BE3# and
the content of BL is written to address 00000006H. On the other hand, when the 80386
executes a MOVE instruction such as MOV [0 0 0 0 0 0 0 4 HI AX, the 80386 drives BEO#
and BE1# to low. The locations 00000004H and 00000005H are written with the contents
of AL and AH via Do-D, and D,-D,, respectively. For 32-bit transfer, the 80386 executing
a MOVE instruction from an aligned address such as MOV [0 0 0 0 0 0 0 4 H] EAX, drives
all bus enable pins (BEO# -BE3#) to low and writes four bytes to memory locations
00000004H through 00000007H from EAX. Byte (8-bit), aligned word (16-bit), and
aligned double-word (32-bit) are transferred by the 80386 in a single bus cycle.
The 80386 performs misaligned transfers in multiple cycles. For example, the 80386
executing a misaligned word MOVE instruction such as MOV [0 0 0 0 0 0 0 3 HI AX drives
BE3# to low in the first bus cycle and writes into location 00000003H (bank 3) from AL in
the first bus cycle. The 80386 then drives BEO# to low in the second bus cycle and writes
into location 00000004H (bank 0) from AH. This transfer takes two bus cycles.

[0 0 0 0 0 0 02 HI EAX, on the other
hand, takes two bus cycles. In the first bus cycle, the 80386 enables BE2# and BE3#, and
writes the contents of low 16-bits of EAX into addresses 00000002H and 00000003H from
banks 2 and 3 respectively. In the second cycle, the 80386 enables BEO# and BE1# to
low and then writes the contents of upper 16-bits of EAX into addresses 00000004H and
00000005H.

In the following, design concepts associated with the 80386’s interface to memory
will be discussed. The 80386 device will use 128 Kbyte, 32-bit wide memory. Four
27C256’s (32 K x 8 HCMOS EPROMs) are used.

Since the 27C256 chip is 32K x 8 chip, the 80386 address lines A,-A,6 are used for
addressing the 27C256’s. The 80386 M/IO#, D/C#, W/R#, and BEO#-BE3# are also used.
Figure 11.3 shows a simplified 80386 - 27C256 interface.
In figure 1 1.3, A, A,,, BE3#-BEO#, D/C#, and ADS# pins of the 80386 are used to generate
four byte enable signals, EO, E l , E2, and E.

The 80386 outputs low on ADS# (Address status) pin to indicate valid bus cycle
(W/R#, D/C#, M/IO#) and address (BEO# -BE34 signals.

The 80386 A, and A, bits (obtained internally) indicate which portion of the data
bus will be used to transfer data. For example, A, A, = 1 1 means that contents of addresses
such as 00G00003H, 00000007H, ... will be used by the 80386 to transfer data via its
D,,-D,,pins. BE3#-BEO# and D/C# are used to produce the byte enable signals which

A 32-bit misaligned transfer such as MOV

_ _ -

5 64 Fundamentals of Digital Logic and Microcomputer Design

MAO#
WR#

READY#

BS16#

BE3#-BEO#
D/C#

ADS#

80386

A 16

24 - 31

D 16 - D 23

D 8 - D 1 5

DO-D,

NA#

FIGURE 11.3

From output of
byte enable
logic circuit -

EO

Byte Enable

Logic Circuit

I I I
I I

+is v

80386/27C256 Interface.

are connected to the ?% pin of the appropriate EPROM. The inverted M/IO# is logically
ORed with the W/R# pin. The output of this OR gate is connected to the pin of all four
EPROM's.
EO, E l , E2, and are ANDed and connected to the READY# pin. When the READY#
pin is asserted LOW, the 80386 latches or reads data. Until READY# pin is asserted LOW
by the external device, the 80386 inserts wait states. One must ensure that the data is ready
before READY# is asserted. The BS16# is asserted HIGH by connecting it to inverted
ADS# to indicate 32-bit memory. NA# is connected to +5 V to disable pipelining.

_ - -

The memory map can be determined as follows:

EPROM#l :

Don't cares
Assume zeros to Ones

= 00000000H, 00000004H, ... , OOOlFFFCH

Similarly, the memory maps for other EPROMs are :
EPROM#2: 00000001H, 00000005H, ... ,0001 FFFDH
EPROM#3: 00000002H, 00000006H, ... ,0001 FFFEH
EPROM#4: 00000003H, 00000007H, ... , OOOlFFFFH

11.3.9 80386 I/O
The 80386 can use either a standard I/O or a memory-mapped I/O technique.

Intel and Motorola 32- & 44-bit Microprocessors 565

The address decoding required to generate chip selects for devices using standard
I/O is often simpler than that required for memory-mapped devices. But, memory-mapped
I/O offers more flexibility in protection than standard I/O does.

The 80386 can operate with 8-, 16-, and 32-bit peripherals. Eight-bit I/O devices
can be connected to any of the four 8-bit sections of the data bus. For efficient operation,
32-bit I/O devices should be assigned to addresses that are even multiples of four. For
standard I/O, the 80386 includes there types of I/O instructions. These are direct, indirect,
and string 110 instructions which include the following:
Direct

For 8-bit :

For 16-bit:

Indirect
For 8-bit :

For 16-bit:

For 32-bit:

String
For 8-bit :

For 16-bit:

For 32-bit:

IN AL, PORT
OUT PORT, AL
IN AX, PORT
OUT PORT, AX

IN AL, DX
OUT DX, AL
IN AX, DX
OUT DX, AX
IN EAX, DX
OUT DX, EAX

INSB, (ES:DI) - ((DX))

OUTSB ((DX)) -(ES:SI)

INSW, , (ES:DI) - ((DX))

OUTSW, (ES:SI) - ((DX))

INSD, (ES:EDI) - ((DX))

OUTSD, ((DX)) +- (ES:ESI)

DI +DI 1

SI - SI 2 1

(DI) - DI 2 2

(SI) c- SI 2 2

ED1 .+ ED1 2 4

ESI + ESI t 4

11.4 Intel 80486 Micromocessor

The Intel 80486 is an enhanced 80386 microprocessor with on-chip floating-point
hardware.

11.4.1 Intel 80486B0386 Comparison
Table 1 1.2 compares the basic features of the 80486 with those of the 80386.

11.4.2 Special Features of the 80486
The Intel 80486 is a 32-bit microprocessor, like the Intel 80386. It executes the complete
instruction set of the 80386 and the 80387DX floating-point coprocessor. Unlike the
80386, the 80486 on-chip floating-point hardware eliminates the need for an external
floating-point coprocessor chip and the on-chip cache minimizes the need for an external
cache and associated control logic.

566

TABLE 11.2 80386 vs. 80486

Characteristic 80386 80486
Introduced in 1985; 386SX in 1988 1989

Fundamentals of Digital Logic and Microcomputer Design

Main features

Data bus size accommodated
On-chip Cache
Address bus size
On-chip transistors
Directly addressable memory
Virtual memory size
Clock
Pins

Address and data buses
Registers

Adds’ paging 32-bit extension,
on chip address translation, and
greater speed than 8086. 32-bit
microprocessor
16-, 32-bit
No; Can be interfaced externally
32-bit
275,000
4 Gigabytes
64 Terabytes
25 MHz to 50 MHz
100 for 80386SX; 168 for other
80386’s
non-multiplexed
8 32-bit general purpose registers
32-bit EIP and Flag register
6 16-bit segment registers
6 64-bit segment descriptor
registers
4 32-bit system control registers

(CRO-CR3)

Adds on-chip cache, floating-
point unit, and greater
speed than 386. 32-bit
microprocessor.
8-, 16-, 32-bit
Yes
32-bit
1.2 million
4 Gigabytes
64 Terabytes
25 MHz to 100 MHz
168

non-multiplexed
All registers listed under the
80386 plus the following
registers:
8 80-bit
8 2-bit
8 16-bit
3 16-bit
2 48-bit

Address Defined by A,-A,,; BEO#-BE3# Same as the 80386
Address HOLD Not available The AHOLD input pin causes

the 80486 to float its address
bus in the next clock cycle.
This allows an external device
to drive an address into the
80486 for internal cache line
invalidation.
Three pins are used:

HLDA output pin
BREQ output

Direct Memory Access Two pins are used:
(DMA) HOLD input pin HOLD input pin

HLDA output pin

Bus backoff Not available The BOFF# input pin

On-chip memory management Yes
hardware
Operating modes: Real,
Protected, and Virtual 8086
modes 8086
On-chip floating-point No
hardware
Instructions 129 including the floating-point

Yes. Does not support max-
imum or minimum modes like the

instrucions where the 80386 is
interfaced to the 80387

-~
indicates that another bus
master needs to complete
a bus cycle in order for the
80486’s current cycle to
complete.
Yes

Same as the 80386

Yes

All 80386 instructions
including the floating-point
instructions for the on-chip
floating-point hardware plus

Intel and Motorola 32- & 64-bit Microprocessors 567

The 80486 is object code compatible with the 8086, 8088, 80186, 80286, and
80386 processors. It can perform a complete set of arithmetic and logical operations on 8-,
16-, and 32-bit data types using a full-width ALU and eight general-purpose registers. Four
gigabytes of physical memory can be addressed directly via its separate 32-bit addresses
and data paths. An on-chip memory management unit is added, which maintains the
integrity of memory in the multitasking and virtual-memory environments. Both memory
segmentation and paging are supported.

The 80486 has an internal 8 Kbyte cache memory. This provides fast access to
recently used instructions and data. The internal write-through cache can hold 8 Kbytes
of data or instructions. The on-chip floating-point unit performs floating-point operations
on the 32-, 64-, and 80- bit arithmetic formats specified in the IEEE standard and is object
code compatible with the 8087, 80287, and 80387 coprocessors. The fetching, decoding,
execution, and address translation of instructions is overlapped within the 80486 processor
using instruction pipelining. This allows a continuous execution rate of one clock cycle per
instruction for most instructions.

Like the 80386, the 80486 processor can operate in three modes (set in software):
real, protected, and virtual 8086 mode. After reset or power up, the 80486 is initialized in
real mode. This mode has the same base architecture as the 8086, but allows access to the
32-bit register set of the 80486 processor. Nearly all of the 80486 processor instructions
are available, but the default operand size is 16 bits. The main purpose of real mode is to
set up the processor for protected mode.

Protected mode, or protected virtual address mode, is where the complete
capabilities of the 80486 become available. Segmentation and paging can both be used in
protected mode. All 8086,80286, and 386 processor software can be run under the 80486
processor’s hardware-assisted protection mechanism.

Virtual 8086 mode is a submode for protected mode. It allows 8086 programs to
be run but adds the segmentation and paging protection mechanisms of protected mode. It
is more flexible to run 8086 in this mode than in real mode because virtual 8086 mode can
simultaneously execute the 80486 operating system and both 8086 and 80486 processor
applications.

The 80486 is provided with a bus backoff feature. Using this, the 80486 will float
its bus signals if another bus master needs control of the bus during a 80486 bus cycle and
then restart its cycle when the bus again becomes available. The 80486 includes dynamic
bus sizing. Using this feature, external controllers can dynamically alter the effective
width of the data bus with 8-, 16-, or 32-bit bus widths.

In terms of programming models, the Intel 80386 has very few differences with
the 80486 processor. The 80486 processor defines new bits in the EFLAGS, CRO, and
CR3 registers. In the 80386 processor, these bits were reserved, so the new architectural
features should be a compatibility issue.

11.4.3 80486 New Instructions Beyond Those of the 80386
There are six basic instructions plus floating-point instructions added to the 80486
instruction set beyond those of the 80386 instruction set as follows:

1. Three New Application Instructions
BSWAP
XADD
CMPXCHG

2. Three New System Instructions

568 Fundamentals of Digital Logic and Microcomputer Design

I N V D
WBINVD
INVLPG

The 80386 can execute all its floating-point instructions when the 80387 is
present in the system. The 80486, on the other hand, can directly execute all its floating-
point instructions (same as the 80386 floating-point instructions) because it has the on-chip
floating-point hardware.

The three new application instructions included with the 80486 are BSWAP reg32;
XADD dest, source; and CMPXCHG dest, source. BSWAP reg32 reverses the byte order
of a 32-bit register, converting a value in littlebig endian form to big/little endian form.
That is, the BSWAP instruction exchanges bits 7-0 with bits 31-24 and bits 15-8 with bits
23-1 6 of a 32-bit register. Executing this instruction twice in a row leaves the register with
the original value. When BSWAP is used with a 16-bit operand size, the result left in the
destination operand is undefined. Consider an example of a 32-bit operand: If (EAX) =

12345678H, then after BSWAP EAX, the contents of EAX are 78563412H. Note that little
endian is a byte-oriented method in which the bytes are ordered (left to right) as 3, 2, 1,
and 0, with byte 3 being the most significant byte. Big endian on the other hand, is also a
byte-oriented method where the bytes are ordered (left to right) as 0, 1,2, and 3 with byte
0 being the most significant byte. The BSWAP instruction speeds up execution of decimal
arithmetic by operating on four digits at a time.

XADD dest, source has the form

XADD dest, source
regUrnem8, reg8
reg 1 6/mem 16, reg 16
reg321mem32, reg32

The XADD dest, source instruction loads the destination into the source and then
loads the sum of the destination and the original value of the source into the destination.
For example, if (AX) = 0123H, (BX) = 9876H, then after XADD AX, BX, the contents of
AX and BX are respectively 9999H and 0123H.

CMPXCHG dest, source has the form:
CMPXCHG dest, source

reg8/mem8, reg8
regl6/meml6, reg16
reg32/mem32, reg32

The CMPXCHG instruction compares the (AL, AX or EAX register) with the destination.
If they are equal, the source is loaded into the destination; Otherwise, the destination is
loaded into the AL,AX or EAX. For example, if (DX) = 4324H, (AX) = 4532H, and (BX)
= 4532H, then after CMPXCHG BX, DX, the ZF flag is set to one and (BX) = 4324H.

11.5 Intel Pentium Microprocessor

Table 1 1.3 summarizes the fundamental differences between the basic features of 486 and
Pentium families. Microprocessors have served largely separate markets and purposes:
business PCs and engineering workstations. The PCs have used Microsoft’s DOS and
Windows operating systems whereas the workstations have used various features of UNIX.

Intel and Motorola 32- & 64-bit Microprocessors 569

TABLE 11.3 Basic Differences Between 80486 and Pentium Processor

Feature 486 Processor Pentium Processor
Clock 25 to 100 MHz 60 to 233 MHz
Address and data buses 32-bit data bus 64-bit data bus

32-bit address bus 32-bit address bus
Pipeline model Single Dual
Internal cache 8K for both data and instruction 8k for data and 8k for

instruction
Number of transistors 1.2 million 3.2 million
Performance at 66 MHZ 54 MIPS 112 MIPS
in MIPS (millions of
instructions per second)
Number of pins 168 273

The PCs have not been utilized in the workstation market because of their relatively modest
performance, especially with regard to complicated graphics display and floating-point
calculations. Workstations have been kept out of the PC market partially because of their
high prices and hard-to-use system software.

The Pentium has brought the PCs up to workstation-class computational
performance with sophisticated graphics. The Intel Pentium is a 32-bit microprocessor with
a 64-bit data bus. The Intel Pentium, like its predecessor the Intel 80486, is 100% object
code compatible with 8086/80386 systems. BICMOS(Bipo1ar and CMOS) technology is
used for the Pentiurn.

The Pentium processor has three modes of operation; real-address mode (also
called “real mode”), protected mode, and system management mode. The mode determines
which instructions and architecture features are accessible. In real-address mode, the
Pentium processor runs programs written for 8086 or for the real-address mode of an 80386
or 80486.

The architecture of the Pentium processor in this mode is identical to that of the
8086 microprocessor. In protected mode, all instruction and architectural features of the
Pentium are available to the programmer. Some of the architectural features of the Pentium
processor include memory management, protection, multitasking, and multiprocessing.
While in protected mode, the virtual 8086 (v86) mode can be enabled for any task. For
the v86 mode, the Pentium can directly execute “real-address-mode’’ 8086 software in a
protected, multitasking environment.

The Pentium processor is also provided with a system management mode (SMM)
similar to the one used in the 80486SL, which allows to design for low power usage. SMM
is entered through activation of an external interrupt pin (system management interrupt,
SMI#). In December 1994, Intel detected a flaw in the Pentium chip while performing
certain division calculations. The Pentium is not the first chip that Intel has had problems
with. The first version of the Intel 80386 had a math flaw that Intel quickly fixed before
there were any complaints. Some experts feel that Intel should have acknowledged the
math problem in the Pentium when it was first discovered and then have offered to replace
the chips. In that case, the problem with the Pentium most likely would have been ignored
by the users. However, Intel was heavily criticized by computer magazines when the
division flaw in the Pentium chip was first detected.

The flaw in the division algorithm in the Pentium was caused by a problem with a
look-up table used in the division. Errors occur in the fourth through the fifteenth significant

570 Fundamentals of Digital Logic and Microcomputer Design

decimal digits. This means that in a result such as 5.78346, the last three digits could be
incorrect. For example, the correct answer for the operation 4,195,835 - (4,195,835 +
3,145,727) + (3,145,727) is zero. The Pentium provided a wrong answer of 256. IBM
claimed this problem can occur once every 24 days. Intel eventually fixed the division
flaw problem in the Pentium.

The Pentium microprocessor is based on a superscalar design. This means that
the processor includes dual pipelining and executes more than one instruction per clock
cycle; note that scalar microprocessors such as the 80486 family have only one pipeline
and execute one instruction per clock cycle, and superscalar processors allow more than
one instruction to be executed per clock cycle.

The Pentium microprocessor contains the complete 80486 instruction set along
with some new ones that are discussed later. Pentium’s on-chip memory management unit
is completely compatible with that of the 80486.

The Pentium includes faster floating-point on-chip hardware than the 80486.
Pentium’s on-chip floating-point hardware has been completely redesigned over the
80486. Faster algorithms provide up to ten times speed-up for common operations such
as add, multiply, and load. The two instruction pipelines and on-chip floating-point unit
are capable of independent operations. Each pipeline issues frequently used instructions
in a single clock cycle. The dual pipelines can jointly issue two integer instructions in one
clock cycle or one floating-point instruction (under certain circumstances, two floating-
point instructions) in one clock cycle.

Branch prediction is implemented in the Pentium by using two prefetch buffers,
one to prefetch code in a linear fashion and one to prefetch code according to the contents
of the branch target buffer (BTB), so the required code is almost always prefetched before
it is needed for execution. Note that the branch addresses are stored in the branch target
buffer (BTB).

There are two instruction pipelines, the U pipe and the V pipe, which are not
equivalent and interchangeable. The U pipe can execute all integer and floating-point
instructions, whereas the V pipe can only execute simple integer instructions and the
floating-point exchange register contents (FXCH) instructions.
The instruction decode unit decodes the prefetched instructions so that the Pentium can
execute them. The control ROM includes the microcode for the Pentium processor and
has direct control over both pipelines. A barrel shifter is included in the chip for fast shift
operations.

11.5.1 Pentium Registers
The Pentium processor includes the same registers as the 80486. Three new system flags
are added to the 32-bit EFLAGS register.

11.5.2
The Pentium includes the same addressing modes as the 80386/80486.
The Pentium microprocessor includes three new application instructions and four new

system instructions beyond those of the 80486. One of the new application instruction
is the CMPXCHG8B. As an example, CMPXCHG8B reg64 or mem64 compares the 64-bit
value in EDX:EAX with the 64 bit contents of reg64 or mem64. If they are equal, the
64-bit value in ECX:EBX is stored in reg64 or mem64; otherwise the content of reg64 or
mem64 is loaded into EDX:EAX.
Pentium floating-point instructions execute much faster than those of the 80486 instructions.

Pentium Addressing Modes and Instructions

Intel and Motorola 32- & 64-bit Microprocessors 57 1

For example, a 66-MHz Pentium microprocessor provides about three times the floating-
point performance of a 66-MHz Intel 80486 DX2 microprocessor.

11.5.3 Pentium versus 80486: Basic Differences in Registers, Paging, Stack
Operations, and Exceptions
Registers of the Pentium Processor versus Those of the 80486
This section discusses the basic differences between the Pentium and 80486 control, debug,
and test registers.

One new control register, CR4, is included in the Pentium. CR4 contains bits
that enable certain extensions to the 80486 provided in the Pentium processor. These
extensions include functions for handling certain hardware error conditions.

The Pentium processor defines the type of breakpoint access by two bits in
DR7 to perform breakpoint functions such as break on instruction execution only, break
on data writes only, and break on data reads or writes but not instruction fetches. The
implementation of test registers on the 80486 used for testing the cache has been redesigned
in the Pentium processor.
Paging

functions of the 80486 to support larger page sizes.
Stack Operations

The Pentium, 80486, and 80386 microprocessors push a different value of SP on
the stack for a PUSH instruction than does the 8086. The 32-bit processors push the value
of the SP before it is decremented whereas the 8086 pushes the value of the SP after it is
decremented.
Exceptions

The Pentium processor implements new exceptions beyond those of the 80486.
For example, a machine check exception is newly defined for reporting parity errors and
other hardware errors.

External hardware interrupts on the Pentium may be recognized on different
instruction boundaries due to the pipelined execution of the Pentium processor and
possibly an extra instruction passing through the V pipe concurrently with an instruction in
the U pipe. When the two instructions complete execution, the interrupt is then serviced.
Therefore, the EIP pushed onto the stack when servicing the interrupt on the Pentium
processor may be different than that for the 80486 (i.e., it is serviced later). The priority of
exceptions is the same on both the Pentium and 80486.

11.5.4 Pentium Input/Output
The Pentium processor handles I/O in the same way as the 80486. The Pentium can use
either standard I/O or memory-mapped I/O. Standard I/O is accomplished by using IN/OUT
instructions and a hardware protection mechanism. When memory-mapped I/O is used,
memory-reference instructions are used for inpudoutput and the protection mechanism is
provided via segmentation or paging.

The Pentium can transfer 8, 16, or 32 bits to a device. Like memory-mapped I/O,
16-bit ports using standard I/O should be aligned to even addresses so that all 16 bits can
be transferred in a single bus cycle. Like double words in memory-mapped I/O, 32-bit
ports in standard I/O should be aligned to addresses that are multiples of four. The Pentium
supports I/O transfer to misaligned ports, but there is a performance penalty because an
extra bus cycle must be used.

The Pentium processor provides an extension to the memory management/paging

5 72 Fundamentals of Digital Logic and Microcomputer Design

The INS and OUTS instructions move blocks of data between I/O ports and
memory. The INS and OUTS instructions, when used with repeat prefixes, perform block
input or output operations. The string IiO instructions can operate on byte (8-bit) strings,
word (16-bit) strings, or double word (32-bit) strings. When the Pentium is running in
protected mode, IiO operates as in real address mode with additional protection features.

11.5.5 Applications with the Pentium
The performance of the Pentium’s floating-point unit (FPU) makes it appropriate for wide
areas of numeric applications:

Pentium’s FPU can accept decimal operands and produce extra decimal results
of up to I8 digits. This greatly simplifies accounting programming. Financial
calculations that use power functions can take advantage of exponential and
logarithmic functions.
Many minicomputer and mainframe large simulation problems can be executed
by the Pentium. These applications include complex electronic circuit simulations
using SPICE and simulation of mechanical systems using finite element
analysis.
The Pentium’s FPU can move and position machine control heads with accuracy
in real time. Axis positioning can efficiently be performed by the hardware
trigonometric support provided by the FPU. The Pentium can therefore be used
for computer numerical control (CNC) machines.
The pipelined instruction feature of the Pentium processor makes it an ideal
candidate for DSP (digital signal processing) and related applications for
computing matrix multiplications and convolutions.
Other possible application areas for the Pentium include robotics, navigation, data
acquisition, and process control.

11.5.6 Pentium versus Pentiurn Pro
The Pentium was first introduced by Intel in March 1993, and the Pentium Pro was
introduced in November 1995. The Pentium processor provides pipelined superscalar
architecture. The Pentium processor’s pipelined implementation uses five stages to extract
high throughput and the Pentium Pro utilizes 12-stage, superpipelined implementation,
trading less work per pipestage for more stages. The Pentium Pro processor reduced its
pipestage time by 33% compared with a Pentium processor, which means the Pentium Pro
processor can have a 33% higher clock speed than a Pentium processor and still be equally
easy to produce from a semiconductor manufacturing process. A 200-MHz Pentium Pro
is always faster than a 200-MHz Pentium for 32-bit applications such as computer-aided
design (CAD), 3-D graphics, and multimedia applications.

The Pentium processor’s superscalar architecture, with its ability to execute two
instructions per clock, was difficult to exceed without a new approach. The new approach
used by the Pentium Pro processor removes the constraint of linear instruction sequencing
between the traditional “fetch” and “execute” phases, and opens up a wide instruction pool.
This approach allows the “execute” phase of the Pentium Pro processor to have much more
visibility into the program’s instruction stream so that better scheduling may take place.
This allows instructions to be started in any order but always be completed in the original
program order.

Microprocessor speeds have increased tremendously over the past 10 years, but
the speed of the main memory devices has only increased by 60 percent. This increasing

Intel and Motorola 32- & 64-bit Microprocessors 573

TABLE 11.4 Pentium vs. Pentium Pro

Pentium Pentium Pro
First introduced March 1993
2 instructions per clock cycle
Primary cache of 16K
Current clock speeds of 100, 120, 133, 150,
166,200, and 233 MHz
More silicon is needed to produce the chip

Designed for operating systems written in

Introduced November 1995
3 instructions per clock cycle
Primary cache of 16K
Current clock speeds 166, 180,200 MHz

Tighter design reduces silicon needed and makes
chip faster (shorter distances between transistors)
Designed for operating systems written in 32-bit

memory latency, relative to the microprocessor speed, is a fundamental problem that
the Pentium Pro is designed to solve. The Pentium Pro processor “looks ahead” into its
instruction pool at subsequent instructions and will do useful work rather than be stalled.
The Pentium Pro executes instructions depending on their readiness to execute and not on
their original program order. In summary, it is the unique combination of improved branch
prediction, choosing the best order, and executing the instructions in the preferred order
that enables the Pentium Pro processor to improve program execution over the Pentium
processor. This unique combination is called “dynamic execution.”

The Pentium Pro does a great job running some operating systems such as
Windows NT or Unix. The first release of Windows 95 contains a significant amount of
16-bit code in the graphics subsystem. This causes operations on the Pentium Pro to be
serialized instead of taking advantage of the dynamic execution architecture. Nevertheless,
the Pentium Pro is up to 30% faster than the fastest Pentium in 32-bit applications. Table
1 1.4 compares the basic features the Pentium with those of the Pentium Pro.

11.5.7
The 32-bit Pentium II processor is Intel’s latest addition to the Pentium line of
microprocessors, which originated form the widely cloned 80x86 line. It basically takes
attributes of the Pentium Pro processor plus the capabilities of MMX technology to yield
processor speeds of 333, 300, 266, and 233 MHz. The Pentium I1 processor uses 0.25
micron technology (this refers to the width of the circuit lines on the silicon) to allow
increased core frequencies and reduce power consumption. The Pentium I1 processor took
advantage of four new technologies to achieve its performance ratings:

Pentium I1 / Celeron / Pentium I1 XeonTM / Pentium I11 / Pentium 4

Dynamic Execution
Intel MMX Technology
Single-Edge-Contact Cartridge

Dual Independent Bus Architecture (DIB)

DIB was first implemented in the Pentium Pro processor to address bandwidth
limitations. The DIB architecture consists of two independent buses, an L2 cache bus and
a system bus, to offer three times the bandwidth performance of single bus architecture
processors. The Pentium I1 processor can access data from both buses simultaneously to
accelerate the flow of information within the system.

Dynamic execution was also first implemented in the Pentium Pro processor.
It consists of three processing techniques to improve the efficiency of executing
instructions.
These techniques include multiple branch prediction, data flow analysis, and speculative

5 74 Fundamentals of Digital Logic and Microcomputer Design

execution. Multiple branch prediction uses an algorithm to determine the next instruction
to be executed following a jump in the instruction flow. With data flow analysis, the
processor determines the optimum sequence for processing a program after looking at
software instructions to see if they are dependent on other instructions. Speculative
execution increases the rate of execution by executing instructions ahead of the program
counter that are likely to be needed.

MMX (matrix math extensions) technology is Intel’s greatest enhancement to
its microprocessor architecture. MMX technology is intended for efficient multimedia
and communications operations. To achieve this, 57 new instructions have been added to
manipulate and process video, audio, and graphical data more efficiently. These instructions
support single-instruction multiple-data (SIMD) techniques, which enable one instruction
to perform the same function on multiple pieces of data. Programs written using the new
instructions significantly enhance the capabilities of Pentium 11.

The final feature in Intel’s Pentium I1 processor is single-edge-contact (SEC)
packaging. In this packaging arrangement, the core and L2 cache are fully enclosed in a
plastic and metal cartridge. The components are surface mounted directly to a substrate
inside the cartridge to enable high-frequency operation.

Intel Celeron processor utilizes Pentium I1 as core .The Celeron processor family
includes: 333 MHz, 300A MHz, 300 MHz, and 266 MHz processors.The Celeron 266
MHz and 300 MHz processors do not contain any level 2 cache. But the Celeron 300A
MHz and 333 MHz processors incorporate an integrated L2 cache. All Celeron processors
are based on Intel’s 0.25 micron CMOS technology. The Celeron processor is designed
for inexpensive or “Basic PC” desktop systems and can run Windows 98. The Celeron
processor offers good floating-point (3D geometry calculations) and multimedia (both
video and audio) performance.

The Pentium I1 Xeon processor contains large, fast caches to transfer data at super
high speed through the processor core. The processor can run at either 400 MHz or 450
MHz. The Pentium I1 Xeon is designed for any mid-range or higher Intel-based server
or workstation.The 450 MHz Pentium I1 Xeon can be used in dual-processor (two-way)
workstations and servers. The 450 MHz Pentium I1 Xeon processor with four-way servers
is expected to be available in the future.

The Pentium 111 operates at 450 MHz and 500 MHz. It is designed for desktop
PCs. The Pentium 111 enhances the multimedia capabilities of the PC, including full screen
video and graphics. Pentium 111 Xeon processors run at 500 MHz and 550 MHz. They are
designed for mid-range and higher Internet-based servers and workstations. It is compatible
with Pentium I1 Xeon processor-based platforms. Pentium I11 Xeon is also designed for
demanding workstation applications such as 3-D visualization, digital content creation, and
dynamic Internet content development. Pentium 111-based systems can run applications on
Microsoft Windows NT or UNIX-based environments. The Pentium 111 Xeon is available
in a number of L2 cache versions such as 5 12-Kbytes, 1-Mbyte, or 2-Mbytes (500 MHz);
512 Kbytes (550 MHz) to satisfy a variety of Internet application requirements.

The Intel Pentium 4 is an enhanced Pentium 111 processor. It is currently available at
1.30,1.40,1 S O , and 1.70 GHz. The chip’s all-new internal design contains Intel NetBurstTM
micro-architecture. This provides the Pentium 4 with hyper pipelined technology (which
doubles the pipeline depth to 20 stages), a rapid execution engine (which pushes the
processor’s ALUs to twice the core frequency), and 400 MHz system bus. The Pentium 4
contains 144 new instructions. Furthermore, inclusion of an improved Advanced Dynamic
Execution and an improved floating point pushes data efficiently through the pipeline.

Intel and Motorola 32- & 64-bit Microprocessors 575

This enhances digital audio, digital video and 3D graphics. Along with other features such
as streaming SIMD Extensions 2 (SSE2) that extends MMXTM technology, the Pentium 4
gives the advanced technology to get the most out of the Internet. Finally, the Pentium
4 offers high performance when networking multiple PCs, or when attaching Pentiurn 4
based PC to home consumer electronic systems and new peripherals.

11.6 MercedIIA-64

Intel and Hewlett-Packard recently announced a 64-bit microprocessor called “Merced”
and also known as “Intel Architecture-64” (IA-64) or Itanium. The microprocessor is not
an extension of Intel’s 32-bit 80x86 or Pentium series processors, nor is it an evolution
of HP’s 64-bit RISC architecture. IA-64 is a new design that will implement innovative
fonvard-looking features to help improve parallel instruction processing: that is, long
instruction words, instruction prediction, branch elimination, and speculative loading.
These techniques are not necessarily new concepts, but they are implemented in ways that
are much more efficient.

An 80x86 instruction varies in length from 8 to 108 bits, and the microprocessor
spends time and work decoding each instruction while scanning for the instruction
boundaries during execution. In addition, Pentium processors frantically try to reorder
instructions and group them so that two instructions can be fed into two processing
pipelines simultaneously. Although improving performance, this approach is still rather
ineffective and has a high cost of logic circuitry in the chip.

The IA-64 packs three instructions into a single 128-bit bundle-something
Intel calls “explicitly parallel instruction computing” (EPIC). During compilation of a
program, the compiler explicitly tells the microprocessor inside the 128-bit packet which
of the instructions can be executed in parallel. Hence, the microprocessor does not need to
scramble at run-time to discover and reorder instructions for parallel execution because all
of this has already been done at compilation. While trying to keep the instruction pipeline
full, 80x86 or Pentium family processors try to predict which way branches will take place
and speculatively execute instructions along the predicted path. In case of wrong guesses,
the microprocessor must discard the speculative results, flush the pipelines, and reload the
correct instructions into the pipe. This results in a large loss of microprocessor cycles.

In dealing with branch prediction, the IA-64 puts the burden on the compiler.
Wherever practical, the compiler inserts flags into the instruction packets to mark
separate paths from a branch instruction. These flags, known as “predicates,” allow the
microprocessor to funnel instructions for a specific branch into a pipe and execute
each branch separately and simultaneously. This effectively lets the microprocessor
process different paths of a branch at the same time, then discard the results of the path it
does not need.

One drawback of the 80x86 processor series is the fact that data is not fetched
from memory until the microprocessor needs it and calls for it. The IA-64 implements
speculative loading, which allows the memory and I/O devices to be delivering data to the
microprocessor before the processor actually needs it, eliminating some of the delays the
80x86 processor incurs while waiting for data to appear on the bus.

During compilation of a program, the compiler scans the source code and when it
sees an upcoming load instruction, removes it and inserts a speculative load instruction a
few cycles ahead of it. In this manner, the IA-64 is able to continue executing code while
minimizing delay time that the memory or I/O devices inherently incur.

576 Fundamentals of Digital Logic and Microcomputer Design

11.7 Overview of Motorola 32- and 64-bit Microarocessors

This section provides an overview of the state-of-the-art in Motorola’s microprocessors.
Motorola’s 32-bit microprocessors based on 68HC000 architecture include the MC68020,
MC68030, MC68040, and MC68060. Table 11.5 compares the basic features of some of
these microprocessors with the 68HC000.

The PowerPC family of microprocessors were jointly developed by Motorola,
IBM, and Apple. The PowerPC family contains both 32- and 64-bit microprocessors. One
of the noteworthy feature of the PowerPC is that it is the first top-of-the-line microprocessor
to include an on-chip real-time clock (RTC). The RTC is common in single-chip
microcomputers rather than microprocessors. The PowerPC is the first microprocessor to
implement this on-chip feature, which makes it easier to satisfy the requirements of time-
keeping for task switching and calendar date of modem multitasking operating systems. The
PowerPC microprocessor supports both the Power Mac and standard PCs. The PowerPC
family is designed using RISC architecture

11.7.1 Motorola MC68020
The MC68020 is Motorola’s first 32-bit microprocessor. The design of the 68020 is based
on the 68HC000. The 68020 can perform a normal read or write cycle in 3 clock cycles
without wait states as compared to the 68HC000, which completes a read or write operation
in 4 clock cycles without wait states. As far as the addressing modes are concerned, the
68020 includes new modes beyond those of the 68HC000. Some of these modes are
scaled indexing, larger displacements, and memory indirection. Furthermore, several new
instructions are added to the 68020 instruction set, including the following:

Bit field instructions are provided for manipulating a string of consecutive bits
with a variable length from 1 to 32 bits.

TABLE 11.5 Motorola MC68HC000 vs. MC68020/68030/68040

MC68HC000 MC68020 MC68030 MC68040
Comparable Clock 33MHz 33 MHz 33 MHz 33 MHz
Speed
Pins
Address Bus
Addressing Modes
Maximum Memory
Memory
Management
Cache (on chip)

Floating Point

Total Instructions

ALU size

(4MHz min)*
64,68
24-bit
14
16 Megabytes
NO

NO

NO

56

One 16-bit

(8 MHz min.)*
114
32-bit
18
4 Gigabytes
By interfacing the
68851 MMU chip
Instruction cache

By interfacing
68881/68882
floating-point
coprocessor chip
101

Three 32-bit

(8 MHz min.)*
118
32-bit
18
4 Gigabytes
On-chip MMU

Instruction and
data cache
By interfacing
68881/68882
floating-point
coprocessor chip
103

Three 32-bit

(8 MHz min.)*
118
32-bit
18
4 Gigabytes
On-chip MMU

Instruction and
data cache
On-chip
floating point
hardware

103 plus
floating- point
instructions
Three 32-bit

ALU ALU’s ALU’s ALU’s
*Higher clock speeds available

Intel and Motorola 32- & 64-bit Microprocessors 577

Two new instructions are used to perform conversions between packed BCD and
ASCII or EBCDIC digits. Note that a packed BCD is a byte containing two BCD
digits.
Enhanced 68000 array-range checking (CHK2) and compare (CMP2) instructions
are included. CHK2 includes lower and upper bound checking; CMP2 compares a
number with lower and upper values and affects flags accordingly.
Two advanced instructions, namely, CALLM and RTM, are included to support
modular programming.
Two compare and swap instructions (CAS and CAS2) are provided to support
multiprocessor systems.

A comparison of the differences between the 68020 and 68HC000 will be provided later
in this section.

The 68030 and 68040 are two enhanced versions of the 68020. The 68030 retains
most of the 68020 features. It is a virtual memory microprocessor containing an on-chip
MMU (memory management unit). The 68040 expands the 68030 on-chip memory
management logic to two units: one for instruction fetch and one for data access. This
speeds up the 68040’s execution time by performing logical-to-physical-address translation
in parallel. The on-chip floating-point capability of the 68040 provides it with both integer
and floating-point arithmetic operations at a high speed. All 68HC000 programs written
in assembly language in user mode will run on the 68020/68030 or 68040. The 68030 and
68040 support all 68020 instructions except CALLM and RTM. Let us now focus on the
68020 microprocessor in more detail.

MC68020 Functional Characteristics
The MC68020 is designed to execute all user object code written for the 68HC000. Like the
68HC000, it is manufactured using HCMOS technology. The 68020 consumes a maximum
of 1.75 W. It contains 200,000 transistors on a 318” piece of silicon. The chip is packaged
in a square (1.345” x 1.345”) pin grid array (PGA) and other packages. It contains 169 pins
(1 14 pins used) arranged in a 13 x 13 matrix.

The processor speed of the 68020 can be 12.5, 16.67,20,25, or 33 MHz. The chip
must be operated from a minimum frequency of 8 MHz. Like the 68HC000, it does not
have any on-chip clock generation circuitry. The 68020 contains 18 addressing modes and
101 instructions. All addressing modes and instructions of the 68HC000 are included in the
68020. The 68020 supports coprocessors such as the MC6888 1 /MC68882 floating-point
and MC6885 1 MMU coprocessors.

These and other hnctional characteristics of the 68020 are compared with the
68HC000 in Table 1 1.6. Some of the 68020 characteristics in Table 11.6 will now be
explained.

Three independent ALUs are provided for data manipulation and address
calculations
A 32-bit barrel shift register (occupies 7% of silicon) is included in the 68020 for
very fast shift operations regardless of the shift count.
The 68020 has three SPs. In the supervisor mode (when S = l), two SPs can be
accessed. These are MSP (when M = 1) and ISP (when M = 0). ISP can be used
to simplify and speed up task switching for operating systems.
The vector base register (VBR) is used in interrupt vector computation. For
example, in the 68HC000, the interrupt vector address is obtained by using VBR
+ 4 x 8-bit vector.

578

TABLE 11.6

Fundamentals of Digital Logic and Microcomputer Design

Functional Characteristics, MC68HC000 vs. MC68HC020

Characteristic 68HCOOO 68020
Technology HCMOS HCMOS
Number of pins

Control unit

Clock

ALU
Address bus
size
Data bus size

Instructions and
data access

Instruction
cache

Directly
addressable
memory
Registers

64,68

Nanomemory (two-level
memory)
6 MHz, IOMHz, 12.5 MHz,
16.67 MHz, 20 MHz, 25 MHz,
33 MHz (4 MHz minimum
requirement).
One 16-bit ALU
24 bits with A, encoded from
UDS and fi.
The 68HC000 can only be
configured as 16-bit memory (two
8-bit chips) via Do-D, for odd
addresses and D,-D,S for even
addresses during byte transfers;
for word and long word, uses Do-
D,5. The I/O can be configured
as byte (one 8-bit word) or 16-bit
(two 8-bit words).
Instructions must be at even
addresses for .B, .W, and .L. Byte
data can be accessed at either
even or odd addresses while
word and long word data must be
at even addresses.
None

16 megabytes

8 32-bit data registers
7 32-bit address registers
2 32-bit SPs
1 32-bit PC (24 bits used)
1 16-bit SR

169 (1 3 x 13 matrix; pins come out
at bottom of chip; 114 pins currently
used.)
Nanomemory (two-level memory)

12.5 MHz, 16.67 MHz,20 MHz,25
MHz, 33 MHz (8 MHz minimum
requirement).

Three 32-bit ALUs
32 bits with no encoding of A, is
required.
The 68020 can be configured as 8-bit
memory (a single 8-bit chip) via D,,-D2,
pins or 16-bit memory (two 8-bit chips)
via D,, - D,, pins or 32-bit memory
(four 8-bit chips) via D,,-Do pins. I/O
can be configured as 8-bit or 16-bit or
32-bit.

Instructions must be accessed at even
addresses for .B, .W, and .L; data
accesses can be at either even or odd
addresses for .B, .W, .L.

128K 16-bit word cache. At start of
an instruction fetch, the 68020 always
outputs LOW on ECS (early cycle
start) pin and accesses the cache. If
instruction is found in the cache, the
68020 inhibits outputting LOW on AS
pin; otherwise, the 68020 sends LOW
on AS pin and reads instruction from
main memory.
4 gigabytes (4,294,964,296 bytes)

-

8 32-bit data registers
7 32-bit address registers
3 32-bit SPs
1 32-bit PC (all bits used)
1 16-bit SR
1 32-bit VBR (vector base register)
2 3-bit function code registers (SFC and
DFC)
1 32-bit CAAR (cache address register)
1 CACR (cache control register)

Intel and Motorola 32- & 64-bit Microprocessors 579

Addressing
modes
Instruction set
Barrel shifter
Stack pointers

Status register
Coprocessor
interface

FCO, FC 1, FC2
pins

14

56 instructions
No
USP, SSP

T, S, I O J I , 12, X, N, Z, V, C
Emulated in software; that is, by
writing subroutines, coprocessor
functions such as floating-point
arithmetic can be obtained.

FCO, FCl, FC2 = 11 1 means
interrupt acknowledge.

18

10 1 instructions
Yes. For fast-shift operations.
USP, MSP (master SP), ISP (interrupt
SP)
TO, T1, S, M, IOJl, 12, X, N, Z, V, C
Can be directly interfaced to
coprocessor chips, and coprocessor
functions such as floating-point
arithmetic can be obtained via 68020
instructions.
FCO, FCI, FC2 = 1 1 1 means CPU
space cycle; then by decoding A1 6-
A 19, one can obtain breakpoints,
coprocessor functions, and interrupt
acknowledge.

The SFC (source function code) and DFC (destination function code) registers are
3 bits wide. These registers allow the supervisor to move data between address
spaces. In supervisor mode, 3-bit addresses can be written into SFC or DFC
using such instructions such as MOVEC A2 I SFC. The upper 29 bits of SFC are
assumed to be zero. The MOVES. W (A0) I DO can then be used to move a word
from a location within the address space specified by SFC and [AO] to DO. The
68020 outputs [SFC] to the FC2, FC 1, and FCO pins. By decoding these pins via
an external decoder, the desired source memory location addressed by [AO] can
be accessed.
The new addressing modes in the 68020 include scaled indexing, 32-bit
displacements, and memory indirection. To illustrate the concept of scaling,
consider moving the contents of memory location 50,, to A1 . Using the 68000,
the following instruction sequence will accomplish this

M0VEA.W #lo, A0
M0VE.W #lo, DO
ASL #2, DO
M0VEA.L 0 (AO, DO.W), A1

The scaled indexing mode can be used with the 68020 to perform the same as
follows:

M0VEA.W #lo, A0
M0VE.W #lo, DO
M0VEA.L (0, AO, D0.W * 4), A1

Note that [DO] here is scaled by 4. Scaling by 1, 2, 4, or 8 can be obtained.
The new 68020 instructions include bit field instructions to better support
compilers and certain hardware applications such as graphics, 32-bit multiply
and divide instructions, pack and unpack instructions for BCD, and coprocessor
instructions. Bit field instructions can be used to input A/D converters and
eliminate wasting main memory space when the A/D converter is not 32 bits
wide. For example, if the A/D is 12 bits wide, then the instruction BFEEXTU
$22320000 { 2 : 13) I DO will input bits 2-13 of memory location $22320000
into DO. Note that $22320000 is the memory-mapped port, where the 12-bit A/D
is connected at bits 2-13. The next A/D can be connected at bits 14-25, and so
on.

580 Fundamentals of Digital Logic and Microcomputer Design

FC2, FC1, FCO = 1 11 means CPU space cycle. The 68020 makes CPU space
access for breakpoints, coprocessor operations, or interrupt acknowledge cycles.
The CPU space classification is generated by the 68020 based upon execution
of breakpoint instructions or coprocessor instructions, or during an interrupt
acknowledge cycle. The 68020 then decodes AI6-Al9 to determine the type of
CPU space. For example, FC2, FCl, FCO = 11 1 and A,,, A,,, A,,, A,, = 0010
mean coprocessor instruction.
For performing floating-point operation, the 68HC000 user must write subroutines
using the 68HC000 instruction set. The floating-point capability in the 68020 can
be obtained by connecting a floating-point coprocessor chip such as the Motorola
68881. The 68020 has two coprocessor chips: the 68881 (floating point) and the
6885 1 (memory management). The 68020 can have up to eight coprocessor chips.
When a coprocessor is connected to the 68020, the coprocessor instructions are
added to the 68020 instruction set automatically, and this is transparent to the
user. For example, when the 68881 floating-point coprocessor is added to the
68020, instructions such as FADD (floating-point add) are available to the user.
The programmer can then execute the instruction FADD F D O , FD1. Note that
registers FDO and FDl are in the 68881. When the 68020 encounters the FADD
instruction, it writes a command in the command register in the 6888 1, indicating
that the 68881 has to perform this operation. The 68881 then responds to this
by writing in the 68881 response register. Note that all coprocessor registers are
memory mapped. Hence, the 68020 can read the response register and obtain the
result of the floating-point add from the appropriate locations .
The 68HC000 DTACK pin is replaced by two pins on the 68020: DSACKl and
DSACKO. These pins are defined as follows:

DSACKO DSACKO Device Size
0 0 3 2-bit device
0 1 16-bit device
1 0 8-bit device
1 1 Data not ready; insert wait states

The 68020 can be configured as a byte, 16-bit, or 32-bit memory system. As a
byte memory system, the data pins of a single 8-bit memory containing all addresses in
increments of one can be connected to the 68020 D3,-D2, pins. All data transfers occur
via pins D3,-D2,. The byte memory chip informs the 68020 of its size by activating
DSACKl = 1 and DSACKO = 0 so that the 68020 transfers data via its D,,-D,, pins. For
byte instructions, one byte is transferred via these pins; for word (1 6-bit) instructions, two
consecutive bytes are transferred via these pins; for long word (32-bit) instructions, four
consecutive bytes are transferred via these pins.

When the 68020 is configured as a word (16-bit) memory system, two byte
memory chips are interfaced to the 68020 via its D3,- D,, pins. The data pins of the byte
memory chips containing even and odd addresses are connected to the 68020 pins D3,-
D,, and D,,-D,,, respectively. The memory chips inform the 68020 of the 16-bit memory
configuration by activating DSACKl = 0 and DSACKO = 1. The 68020 then uses D,,-D,,
to transfer data for byte, word, or long word instructions. For byte instructions, one byte is
transferred via pins D,,-D,, or D,,-D,, depending on whether the address is even or odd.
For word instructions, the contents of both even and odd addresses are transferred via pins
D,,-D,, with even-address byte via D,,-D,, pins and odd-addressed byte via D,,-D,, pins;

Intel and Motorola 32- & 64-bit Microprocessors 58 1

for long word instructions, four consecutive bytes are transferred via pins D3,-D,, with
the contents of even addresses via pins D,,-D,, using additional cycles. Data transfer can
be aligned or misaligned. For 16-bit memory systems, a word or long word instruction
with data transfer starting at an even address is called an “aligned transfer.” For example,
the instruction MOVE . W D1 I $ 3 0 0 0 0 0 0 0 will store one data byte at the even address
$30000000 via pins D,I-D24 and one data byte at the odd address $30000001 via pins
D23-D,, in one cycle. On the other hand, MOVE . W DO I $ 3 0 0 0 0 0 0 1 is a misaligned
transfer. The 68020 transfers one byte to $30000001 via pins D,,-D,, in the first cycle
and another byte to $30000002 via pins D3,-D24 in the second cycle. Thus, the misaligned
transfer for word instruction takes two cycles in a 16-bit memory configuration. For 32-
bit transfers, MOVE . L D1 I $ 3 0 0 0 0 0 0 0 is an aligned transfer. During the first cycle,
the 68020 transfers 8-bit contents of the highest byte of DO to $30000000 via pins D3,-
D24, and the next 8-bit contents of DO to $30000001 via pins D2,-DI6. During the second
cycle, the 68020 transfers next byte of DO to $30000002 via pins D,,-D,, and the lowest
byte of register DO to $30000003 via pins D2,-DI,. Thus, for aligned transfer with 16-bit
memory configuration, the 68020 transfers data in two cycles for 32-bit transfers. Next,
consider the instruction, MOVE . L DO, $ 3 0 0 0 0 0 0 1. This is a misaligned transfer. The
68020 transfers the most significant byte of DO to $30000001 via pins D,,-D,, in the first
cycle, the next byte of register DO to $30000002 via pins D,,-D,,, and the next byte of DO
to $30000003 via pins D23-D,, in the second cycle and finally, the lowest byte of DO to
address $30000004 via pins D3,-D24 in the third cycle. Thus, for misaligned transfers in a
16-bit memory configuration, the 68020 requires 3 cycles to transfer data for long word
instructions.

When the 68020 is configured as a 32-bit memory system, four byte memory
chips are connected to D,,-Do. The memory chip with data pins connected to D3,-D24
contains addresses 0, 4, 8, ...; the,memory chip with data pins connected to D,,-D,,
contains addresses 1, 5, 9, ...; the memory chip with data pins connected to D,,-D,
includes addresses 2, 6, 10, . . .; and the memory chip with data pins connected to D,-Do
contains addresses 3,7, 1 1, The memory chips inform the 68020 of the 32-bit memory
configuration by activating DSACKl = 0 and DSACKO = 0. The 68020 then uses pins
D,,-Do to transfer data for byte, word, or long word instructions. For byte instructions,
data is transferred via the appropriate 8 data pins of the 68020 depending on the address in
one cycle. For word instructions starting at addresses 0,4, 8, . . ., addresses 1, 5,9, . . ., and
addresses 2, 6, 10, . . . , data are aligned, and will be transferred in one cycle. For example,
consider MOVE . W D1 I $2 0 0 0 0 0 0 5. The 68020 transfers the contents of D 1 (bits 15-8)
to address $20000005 via pins D,,-D,, and contents of register D1 (bits 7-0) to address
$20000006 via pins D,,-D, in one cycle. On the other hand, MOVE . W D1 I $2 0 0 0 0 0 0 7
is a misaligned transfer. In this case, the 68020 transfers the contents of register D1 (bits
15-8) to address $20000007 via pins D,-Do in the first cycle and the contents of D1 (bits
7-0) to address $20000008 via pins D,,-D,, in the second cycle.

For long word instructions, data transfers with addresses starting at 0,4, 8, . . . are
aligned transfers. They will be performed in one cycle. Data with addresses in all other
three chips are misaligned and will require additional cycles. For I/O configuration, one to
four chips can be connected to the appropriate D,,-Do pins as required by an application.
The addresses in the I/O chips will be memory mapped and connected to the appropriate
portions of pins D,,-Do in the same way as the memory chips.

MC68020 Programmer’s Model

582 Fundamentals of Digital Logic and Microcomputer Design

i-
d

m % >

1

k
v J

0

FIGURE 11.4 MC68020 programming model

The MC68020 programmer’s model is based on sequential, nonconcurrent instruction
execution. This implies that each instruction is completely executed before the next
instruction is executed. Although instructions might operate concurrently in actual
hardware, they do not operate concurrently in the programmer’s model.

Figure 11.4 shows the MC68020 user and supervisor programming models. The
user model has fifteen 32-bit general-purpose registers (DO-D7 and AO-A6), a 32-bit
program counter (PC), and a condition code register (CCR) contained within the supervisor
status register (SR). The supervisor model has two 32-bit supervisor stack pointers (ISP
and MSP), a 16-bit status register (SR), a 32-bit vector base register (VBR), two 3-bit

Intel and Motorola 32- & 64-bit Microprocessors

T1

583

TO1 S M 0 12111 101 0) 01 OIX N Z V I C
w

Zero
Negative
Extend
Interrupt priority mask
Masterhntermpt state
Supervisorhser state
Trace enable

System byte
User byte

(condition code register)

FIGURE 11.5 MC68020 status register

alternate function code registers (SFC and DFC), and two 32-bit cache-handling (address
and control) registers (CAAR and CACR). The user stack pointer (USP) A7, interrupt
stack pointer (ISP) A7’, and master stack pointer (MSP) A7” are system stack pointers.

The status register, as shown in Figure 1 1.5, consists of a user byte (condition code
register, CCR) and a system byte. The system byte contains control bits to indicate that the
processor is in the trace mode (TI, TO), supervisoduser state (S), and master/intermpt state
(M). The user byte consists of the following condition codes: carry (C), overflow (V), zero
(Z), negative (N), and extend (X).

The bits in the 68020 user byte are set or reset in the same way as those of the
68HCOOO user byte. Bits 12,11,10, and S have the same meaning as those of the 68HC000.
In the 68020, two trace bits (TI, TO) are included as opposed to one trace bit (T) in the
68HC000. These two bits allow the 68020 to trace on both normal instruction execution
and jumps. The 68020 M bit is not included in the 68HC000 status register.

The vector base register (VBR) is used to allocate the exception processing vector
table in memory. VBR supports multiple vector tables so that each process can properly
manage independent exceptions. The 68020 distinguishes address spaces as supervisor1
user and program/data. To support full access privileges in the supervisor mode, the
alternate function code registers (SFC and DFC) allow the supervisor to access any address
space by preloading the SFCDFC registers appropriately. The cache registers (CACR and
CAAR) allow software manipulation of the instruction code. The CACR provides control
and status accesses to the instruction cache; the CAAR holds the address for those cache
control functions that require an address.

MC68020 Addressing Modes
Table 1 1.7 lists the MC68020’s 18 addressing modes. Table 1 1.8 compares the addressing

5 84 Fundamentals of Digital Logic and Microcomputer Design

TABLE 11.7 68020 Addressing Modes
Mode Syntax

Register direct
Data register direct
Address register direct
Register indirect

Dn
An

Address register indirect (AM) (An)
Address register indirect with postincrement (An)+
Address register indirect with predecrement
Address register indirect with displacement
Register indirect with index
Address register indirect with index (8-bit displacement)
Address register indirect with index (base displacement)

(d8, An, Xn)
(bd, An, Xn)

Memory indirect
Memory indirect, postindexed
Memory indirect, preindexed
Program counter indirect with displacement
Program counter indirect with index
PC indirect with index @bit displacement)
PC indirect with index (base displacement)
Program counter memory indirect
PC memory indirect, postindexed
PC memory indirect, preindexed
Absolute

(d8, PC, Xn)
(bd, PC, Xn)

Absolute short (xxx).W
Absolute long (xxx).L
Immediate #data

Notes:
Dn
An

d8, d l 6

Xn

bd

od

data register, DO -D7
address register, AO-A6
2’s complement or sign-extended displacement; added as part of
effective address calculation; size is 8 (d8) or 16 (d16) bits; when
omitted, assemblers use a value of 0
address or data register used as an index register; form is Xnsize
* scale, where size is .W or .L (indicates index register size) and
scale is 1,2,4, or 8 (index register is multiplied by scale); use of
size andlor scale is optional
2’s complement base displacement; when present, size can be 16 or
32 bits
outer displacement, added as part of effective address calculation
after any memory indirection; use is optional with a size of 16 or
32 bits
program counter
immediate value of 8, 16, or 32 bits
effective address

[] = use as indirect address to long word address
ARI = Address Register Indirect

Intel and Motorola 32- & 64-bit Microprocessors 585

modes of the 68HC000 with those of the MC68020. Because 68HC000 addressing modes
were covered earlier in this chapter in detail with examples, the 68020 modes not available
in the 68HC000 will be covered in the following discussion.

ARI (Address Register Indirect) with Index (Scaled) and 8-Bit Displacement
Assembler syntax: (d8, An, Xn.size * scale)
EA = (An) + (Xnsize * scale) + d8
Xn can be W or L.

If the index register (An or Dn) is 16 bits, then it is sign-extended to 32 bits and multiplied
by 1, 2 , 4 or 8 to be used in EA calculations. An example is MOVE. W (0 I A2 I D2 . W
* 2) , D1. Suppose that [A21 = $50000000, [D2.W] = $1000, and [$50002000] = $1571;
then, after the execution of this MOVE, [Dl],,, , 6 = $1571 because EA = $5000000 +
$1000 * 2 + 0 = $50002000.

ARI (Address Register Indirect) with Index and Base Displacement
Assembler syntax: (bd, An, Xn.size * scale)
EA = (An) + (Xnsize * scale) + bd
Base displacement, bd, has value 0 when present or can be 16 or 32 bits.

The following figure (next page) shows the use of ARI with index, Xn, and base
displacement, bd, for accessing tables or arrays:

TABLE 11.8 Addressing Modes, MC68HC000 vs. MC68020

AddressinP Modes Available Svntax 68HCOOO 68020
Data register direct Dn Yes Yes
Address register direct
Address register indirect (AN)
ARI with postincrement
ARI with predecrement
ARI with displacement (1 6-bit disp)
ARl with index @-bit disp)
ARI with index (base disp; 0, 16, 32)
Memory indirect (postindexed)
Memory indirect (preindexed)
PC indirect with disp. (16-bit)
PC indirect with index (8-bit disp)
PC indirect with index (base disp)
PC memory indirect (postindexed)
PC memory indirect (preindexed)
Absolute short
Absolute long

Yes
Yes
Yes .
Yes
Yes
Yes*
No
No
No
Yes

Yes*
No
No
No
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes*
Yes
Yes
Yes
Yes

Yes*
Yes
Yes
Yes
Yes
Yes

Immediate #<data> Yes Yes
*68HC000 has no scaling capability; 68020 can scale Xn by 1,2,4,or 8.

586 Fundamentals of Digital Logic and Microcomputer Design

Xn * Scale

An example is M0VE.W ($5000, A2, D1.W * 4), D5. If [A21 = $30000000, [Dl.W] =

$0200, and [$30005800] = $01 74, then, after execution of this MOVE, [D5],,, 16bifs = $0174
because EA = $5000 + $30000000 + $0200 * 4 = $30005800.

Memory Indirect
Memory indirect mode is distinguished from address register indirect mode by the

use of square brackets in the assembler notation. The concept of memory indirect mode is
depicted in the following figure:

I I

~ ~ ~ 4 5 1)

$20000500 X X O O

Here, register A5 points to the effective address $20000501. Because CLR ([A5 3) is a
16-bit clear instruction, 2 bytes in location $20000501 and $20000502 are cleared to 0.

Memory indirect mode can be indexed with scaling and displacements. There are
two types of memory indirect mode with scaled indexing and displacements: postindexed
memory indirect mode and preindexed memory indirect mode. For postindexed memory
indirect mode, an indirect memory address is first calculated using the base register (An)
and base displacement (bd). This address is used for an indirect memory access of a long
word followed by adding a scaled indexed operand and an optional outer displacement (od)
to generate the effective address. Note that bd and od can be zero, 16 bits, or 32 bits. In
postindexed memory indirect mode, indexing occurs after memory indirection.

Assembler syntax: ([bd, An], Xn.size * scale, od)
EA = ([bd + An]) + (Xn.size * scale + od)

AnexampleisM0VE.W ([$ 0 0 0 4 , All , D 1 . W * 2 , 2) , D2.If[A1]=$20000000,
[$2000004] = $00003000, [Dl .W] = $0002, and [$00003006] = $1A40, then, after execution
of this MOVE, intermediate pointer = (4 + $20000000) = $20000004, [$2000004], which is
$00003000 used as a pointer. Therefore, EA = $00003000 + $00000004 + 2 = $00003006.

For memory indirect preindexed mode, the scaled index operand is added to
the base register (An) and base displacement (bd). This result is then used as an indirect
address into the data space. The 32-bit value at this address is read and an optional outer
displacement (od) is added to generate the effective address. The indexing, therefore,
occurs before indirection.

Hence, [D2],,, 16bits= $1A40.

Assembler syntax: ([bd, An, Xn.size * scale], od)

Intel and Motorola 32- & 64-bit Microprocessors

EA = (bd, An + Xnsize * scale) + od
As an example of the preindexed mode, consider several I/O devices in a system.

The addresses of these devices can be held in a table pointed to by An, bd, and Xn. The
actual programs for these devices can be stored in memory pointed to by the respective
device addresses plus od.

The memory indirect preindexed mode will now be illustrated by a numerical
example. Consider

M0VE.W ([$ 0 0 0 2 , Al,DO.W*2], Z), D 1
If [All = $20000000, [DO.W] = $0004, [$2000000A] = $00121502, [$00121504] = $F124,
then after execution of this MOVE, intermediate pointer = $20000000 + $0002 + $0004*2
= $2000000A. Therefore, [$2000000A], which is $00121502, is used as a memory pointer.
Hence, [Dl] low 16 bits = $F124.

587

MC68020 Instruction Set
The MC68020 instruction set includes all 68HC000 instructions plus some new ones. Some
of the 68HC000 instructions are enhanced. Over 20 new instructions are added to provide
new functionality. A list of these instructions is given in Table 11.9.

Succeeding sections will discuss the 68020 instructions listed next:
68020 new privileged move instructions
RTD instruction
CHK/CHKZ and CMP/CMP2 instructions
TRAPcc instructions
Bit field instructions

TABLE 11.9 68020 New Instructions

Instruction Description
BFCHG Bit field change
BFCLR Bit field clear-
BFEXTS Bit field signed extract
BFEXTU Bit field unsigned extract
BFFFO Bit field find first one set
B F I N S Bit field insert
BFSET Bit field set
BFTST Bit field test
CALLM Call module
CAS Compare and swap
CAS 2
CHK2
CMP2
cpBcc
cpDBcc

c p G E N Coprocessor general function
cpRESTORE Coprocessor restore internal state
cpSAVE Coprocessor save internal state
cpSETcc
cpTFL4Pcc

PACK Pack BCD
RTM Return from module
UNPK Unpack BCD

Compare and swap (two operands)
Check register against upper and lower bounds
Compare register against upper and lower bounds
Coprocessor branch on coprocessor condition
Coprocessor test condition, decrement, and branch

Coprocessor set according to coprocessor condition
Coprocessor trap on coprocessor condition

588 Fundamentals of Digital Logic and Microcomputer Design

PACK and UNPK instructions
Multiplication and division instructions
68HC000 enhanced instructions

68020 New Privileged Move Instructions
The 68020 new privileged move instructions can be executed by the 68020 in the supervisor
mode. They are listed below:

Instruction Operand Size Operation Notation
MOVE 16 SR + destination MOVE SR, (EA)
MOVEC 32 Rc -+ Rn MOVEC. L Rc, &

Rn + Rc M0VEC.L h , R c

Source using SFC - Rn
MOVES 8, 16, 32 Rn + destination using DFC MOVES. S Rn, (EA)

MOVES. S (EA),Rn
Note that Rc includes VBR, SFC, DFC, MSP, ISP, USP, CACR, and CAAR. Rn can be
either an address or a data register.

The operand size (.L) indicates that the MOVEC operations are always long word.
Notice that only register to register operations are allowed. A control register (Rc) can
be copied to an address or a data register (Rn) or vice versa. When the 3 bit SFC or DFC
register is copied into Rn, all 32 bits of the register are overwritten and the upper 29 bits
are “0.”

The MOVES (move to alternate space) instruction allows the operating system
to access any addressed space defined by the function codes. It is typically used when
an operating system running in the supervisor mode must pass a pointer or value to a
previously defined user program or data space. The operand size (.S) indicates that the
MOVES instruction can be byte (.B), word (.W), or long word (.L). The MOVES instruction
allows register to memory or memory to register operations. When a memory to register
move occurs, this instruction causes the contents of the source function code register to
be placed on the external function hardware pins. For a register to memory move, the
processor places the destination function code register on the function code pins. The
MOVES instruction can be used to move information from one space to another.

Examde 11.3
(a) Find the contents of address $70000023 and the function code pins FC2, FCI , and FCO
after execution of MOVES. B D 5 , (A5). Assume the following data prior to execution
of this MOVES instruction: [SFC] = OOl,, [DFC] = 101, , [A51 = $70000023, [D5] =

$718F2A05, [$70000020] = $01, [$70000021] = $F1, [$70000022] = $A2, [$70000023]
= $2A
Solution
After execution of this MOVES instruction,

(b) The following 68000 instruction sequence:

is used by a subroutine to access a parameter whose address has been passed into A0 and
then moves the parameter to D3. Find the equivalent 68020 instruction.
Solution
Return and Delocate Instruction

The return and delocate (RTD) instruction is useful when a subroutine has the
responsibility to remove parameters off the stack that were pushed onto the stack by the
calling routine. Note that the calling routine’s JSR (jump to subroutine) or BSR (branch to

FC2 FCl FCO = 101,, [$70000023] = $05
MOVEA. L
M0VE.W (AO) ,D3

8 (A7) , A0

MOVE. W ([8, A7]) , D3

Intel and Motorola 32- & 64-bit Microprocessors 589

subroutine) instructions do not automatically push parameters onto the stack prior to the
call as do the CALLM instructions. Rather, the pushed parameters must be placed there
using the MOVE instruction. The format of the RTD instruction is shown next:

Instruction Operand Size Operation Notation
(SP) + PC, SP + 4 + d + SP RTD # <disp> RTD Unsized

As an example, consider RTD #8, which, at the end of a subroutine, deallocates 8 bytes of
unwanted parameters off the stack by adding 8 to the stack pointer and returns to the main
program. The size of the displacement is 16-bit.
CHWCHK2 and CMP/CMP2 Instructions

The 68020 check instruction (CHK) compares a 32-bit twos complement integer
value residing in a data register (Dn) against a lower bound (LB) value of zero and against
an upper bound (UB) value of the programmer’s choice. The upper bound value is located
at the effective address (EA) specified in the instruction format. The CHK instruction has
the following format: CHK . S (EA), Dn where the operand size (. S) designates word (.W)
or long word (.L).
If the data register value is less than zero (Dn < 0) or if the data register is greater than the
upper bound (Dn > UB), then the processor traps through exception vector 6 (offset $18) in
the exception vector table. Of course, the operating system or the programmer must define
a check service handler routine at this vector address. The condition codes after execution
of the CHK are affected as follows: If Dn < 0 then N = 1; if Dn > UB (upper bound) then
N =O. If 0 s Dn s UB then N is undefined. X is unaffected and all other flags are undefined
and program execution continues with the next instruction.

The CHK instruction can be used for maintaining array subscripts because all
subscripts can be checked against an upper bound (i.e., UB = array size - 1). If the compared
subscript is within the array bounds (i.e., 0 s subscript value s UB value), then the subscript
is valid, and the program continues normal instruction execution. If the subscript value
is out of array limits (i.e., 0 > subscript value or subscript value > UB value), then the
processor traps through the CHK exception.

Examale 11.4
Determine the effects of execution of CHK.L (A5), D3, where A5 represents a memory
pointer to the array’s upper bound value. Register D3 contains the subscript value to be
checked against the array bounds. Assume the following data prior to execution of this
CHK instruction:

[D3] = $01507126
[A51 = $00710004
[$00710004] = $01500000

Solution
The long word array subscript value $01507126 contained in data register D3 is compared
against the long word UB value $01 500000 pointed to by address register AS. Because the
value $01507126 contained in D3 exceeds the UB value $01500000 pointed to by A5, the
N bit is cleared. (X is unaffected and the remaining CCR bits are undefined.) This out-of-
bounds condition causes the program to trap to a check exception service routine.

590 Fundamentals of Digital Logic and Microcomputer Design

Enter check
exception

service

0 < D3.L > $01500000
:. N = 0, TRAP

D ~ / I 1
Memory ~ 1 routine

A5=$00710004 0 1 5 0 0 0 0 0 m CCR
~ X N Z V C

The operation of the CHK instruction can be summarized as follows:
Instruction Operand Size Operation Notation

CHK 16,32 If Dn < 0 or Dn > source, then TRAP CHK (EA), Dn
The 68020 CMP.S (EA), Dn instruction subtracts (EA) from Dn and affects the

condition codes without any result. The operand size designator (.S) is either byte (.B) or
word (.W) or long word (.L).

Both the CHK2 and the CMP2 instructions have similar formats:
CHK2. S (EA), Rn

CMP2. S (EA), Rn
They compare a value contained in a data or address register (designated by Rn

) against two (2) bounds chosen by the programmer. The size of the data to be compared
(.S) may be specified as byte (.B), word (.W), or long word (.L). As shown in the following
figure, the lower bound (LB) value must be located in memory at the effective address
(EA) specified in the instruction, and the upper bound (UB) value must follow immediately
at the next higher memory address. That is, UB addr = LB addr + size, where size = B (+l),
W (+2), or L (+4).

and

I Memorv I
EA 4 Lower bound I

EA + size Upper bound -l----i
If the compared register is a data register (i.e., Rn = Dn) and the operand size (.S)

is a byte or word, then only the appropriate low-order part of the data register is checked.
If the compared register is an address register (i.e., Rn = An) and the operand size (.S) is
a byte or word, then the bound operands are sign-extended to 32 bits and the extended
operands are compared against the full 32 bits of the address register. After execution of
CHK2 and CMP2, the condition codes are affected as follows:

cany = 1 if the contents of Dn are out of bounds

Z = 1 if the contents of Dn are equal to either bound
= 0 otherwise.

= 0 otherwise.

In the case where an upper bound equals the lower bound, the valid range for
comparison becomes a single value. The only difference between the CHK2 and CMP2
instructions is that, for comparisons determined to be out ofbounds, CHK2 causes exception
processing utilizing the same exception vector as the CHK instructions, whereas the CMP2
instruction execution affects only the condition codes.

In both instructions, the compare is performed for either signed or unsigned

Intel and Motorola 32- & 64-bit Microprocessors 591

bounds. The 68020 automatically evaluates the relationship between the two bounds to
determine which kind of comparison to employ. If the programmer wishes to have the
bounds evaluated as signed values, the arithmetically smaller value should be the lower
bound. If the bounds are to be evaluated as unsigned values, the programmer should make
the logically smaller value the lower bound.

The following CMP2 and CHK2 instruction examples are identical in that they
both utilize the same registers, comparison data, and bound values. The difference is how
the upper and lower bounds are arranged.

Before CMP2.W(A2), D1

D 1 7 1

Memory

Operation After

Signed comparison CCR

-$5000<Dl.W <+$5000 x ? 0 ? 0
:. c = 0 m

W ' A2+2 = $00007002

-$5000# Dl.W++ $5000
A2=$00007000 -1 ~ :. z = 0

1 are undefined

not
affected
N and V

In this example, the word value $BOO0 contained in memory (as pointed to by
address register A2) is the lower bound and the word value $5000 immediately following
$BOO0 is the upper bound. Because the lower bound is the arithmetically smaller value,
the programmer is indicating to the 68020 to interpret the bounds as signed numbers. The
twos complement value $BOO0 is equivalent to an actual value of -$5000. Therefore,.the
instruction evaluates the word contained in data register D1 ($0200) to determine whether
it is greater than or equal to the upper bound, +$5000, or less than or equal to the lower
bound, -$5000. Because the compared value $0200 is within bounds, the carry bit (C) is
cleared to 0. Also, because $0200 is not equal to either bound, the zero bit (Z) is cleared.
The following figure shows the range of valid values that D1 could contain:

$8000 $BOO0 0000 ~1 .w $5000 $7FFF

-32 K -$S,OOO +$SO00 +32K - I
Rang-

values (signed)

A typical application for the CMP2 instruction would be to read in a number of
user entries and verify that each entry is valid by comparing it against the valid range
bounds. In the preceding CMP2 example, the user-entered value would be in register D1
and register A2 would point to a range for that value. The CMP2 instruction would verify
whether the entry is in range by clearing the CCR carry bit if it is in bounds and setting the
carry bit if it is out of bounds.

592

Examde 11.6
Determine the effects of execution of C H K 2 . W (A2) , D1. Assume the following data
prior to execution of this C H K 2 instruction:

Fundamentals of Digital Logic and Microcomputer Design

Sol

This time, the value $5000 located in memory is the lower bound and the value
$BOO0 is the upper bound.

Now, because the lower bound contains the logically smaller value, the programmer
is indicating to the 68020 to interpret the bounds as unsigned numbers, representing only a
magnitude. Therefore, the instruction evaluates the word contained in register D 1 ($0200)
to determine whether it is greater than or equal so the lower bound, $5000, or less than or
equal to the upper bound, $B000. Because the compared value $0200 is less than $5000,
the carry bit is set to indicate an out of bounds condition and the program traps to the CHK/
C H K 2 exception vector service routine. Also, because $0200 is not equal to either bound,
the zero bit (Z) is cleared. The figure above shows the range of valid values that D1 could
contain.

A typical application for the C H K 2 instruction would be to cause a trap exception
to occur if a certain subscript value is not within the bounds of some defined array. Using
the C H K 2 example format just given, if we define an array of 100 elements with subscripts
ranging from 0- 99,,, and if the two words located at (A2) and (A2 + 2) contain 50 and 99,
respectively, and register D1 contains lOO,,, then execution of the C H K 2 instruction would
cause a trap through the C H K / C H K ~ exception vector. The operation of the C M P 2 and
C H K 2 instructions are summarized as follows:

Instruction Operand Size Operation Notation
CMP2 8,16,32 Compare Rn < source - lower bound or Rn > CMP2 (EA), Rn

source - upper bound and set CCR
CHK2 If Rn < source - lower bound or Rn > source CHK2 (EA), Rn

- upper bound, then TRAP
8, 16,32

Trap-on-Condition Instructions
The new trap condition (TRAPCC) instruction allows a conditional trap exception

on any of the condition codes shown in Table 1 1.1 0. These are the same conditions that are

Intel and Motorola 32- & 64-bit Microprocessors 593

TABLE 11.10 Conditions for TRAPcc

Code Description Result -
CC Carry clear C
CS Carry set C
E Q Equal Z
F Nevertrue , 0

G E Greater or equal N * V + N - 8
GT Greater than N * V * Z + R - v * z

-
H I High C *z
LE Less or equal Z + N v+ V
LS Low or same c + z
LT Less than N * V + N * V
M I Minus N
NE Notequal Z
PL Plus N
T Always true 1

vc Overflow clear V
VS Overflow set V

-

-

allowed for the set-on-condition (SCC) and the branch-on-condition (Bcc) instructions. The
TRAPcc instruction evaluates the selected test condition based on the state of the condition
code flags, and if the test is true, the 68020 initiates exception processing by trapping
through the same exception vector as the TRAPV instruction (vector 7, offset $1C, VBR =

VBR + offset). The trap-on-condition instruction format is
TRAPcc or TRAPcc.S #<data>

where the operand size (.S) designates word (.W) or long word (.L).
If either a word or long word operand is specified, a 1 - or 2-word immediate operand

is placed following the instruction word. The immediate operand(s) consists of argument
parameters that are passed to the trap handler to hrther define requests or services it should
perform. If cc is false, the 68020 does not interpret the immediate operand(s) but instead
adjusts the program counter to the beginning of the following instruction. The exception
handler can access this immediate data as an offset to the stacked PC. The stacked PC is
the next instruction to be executed.

A summary of the TRAPcc instruction operation is shown next:
Instruction Operand Size Operation Notation

TRAPcc None If cc, then TRAP TRAPcc
16 Same
32 Same

T R A P c c . W #<data>
T R A P c c . L #<data>

Bit Field Instructions
The bit field instructions, which allow operations to clear, set, ones complement,

input, insert, and test one or more bits in a string of bits (bit field), are listed on the next
page. Note that the condition codes are affected according to the value in the field before
execution of the instruction. All bit field instructions affect the N and Z bits as shown for
BFTST. That is, for all instructions, Z = 1 if all bits in a field prior to execution of the
instruction are zero; Z = 0 otherwise. N = 1 if the most significant bit of the field prior
to execution of the instruction is one; N = 0 otherwise. C and V are always cleared. X is

594 Fundamentals of Digital Logic and Microcomputer Design

always unaffected. Next, consider BFFFO. The offset of the first bit set 1 in a bit field is
placed in Dn; if no set bit is found, Dn contains the offset plus the field width.
Immediate offset is from 0 to 31, whereas offset in Dn can be specified fiom -23‘ to Z3‘
- 1. All instructions are unsized. They are useful for memory conservation, graphics, and
communications. The bit field instructions are listed below:

Instruction Operand Size Operation Notation
BFTST 1-32 Field MSB - N, BFTST (EA)

Z = 1 if all bits in field are
zero; Z = 0 otherwise

{offset:width}

BFCLR 1-32 0’s -+ Field BFCLR (EA)
{offset:width}

BFSET 1-32 1’s -+ Field BFSET (EA)
{ offset:width}

BFCHG 1-32 Field -j Field BFCHG (EA)
{offset:width}

BFEXTS 1-32 Field -+ Dn; BFEXTS (EA)
sign-extended {offset:width}, Dn

BFEXTU 1-32 Field - Dn; BFEXTU (EA)
Zero-extended { offset:width}, Dn

BFINS 1-32 Dn +- field B F I N S Dn, (EA)

BFFFO 1-32 Scan for first bit-set in field BFFFO (EA)

~

{ offset:width}

{offset:width}, Dn

As an
contents:

example, consider BFCLR $5 0 0 2 { 4 : 12

$5001
$5002

$5003
$5004

(Base address)

1 . Assume the

~ Bit number

following memory

Bit 7 of the base address $5002 has the offset 0. Therefore, bit 3 of $5002 has the
offset value of 4. Bit 0 of location $5001 has offset value -1, bit 1 of $5001 has offset value
-2, and so on. The example BFCLR instruction just given clears 12 bits starting with bit 3
of $5002. Therefore, bits 0-3 of location $5002 and bits 0-7 of location $5003 are cleared
to 0. Therefore, the memory contents change as follows:

$5001

$5002

$5003

$5004

7 6 5 4 3 2 1 0

Width 12

The use of bit field instructions may result in memory savings. For example,
assume that an input device such as a 12-bit A D converter is interfaced via a 16-bit port
of a MC68020 based microcomputer. Now, suppose that 1 million pieces of data are to be
collected from this port. Each 12 bits can be transferred to a 16-bit memory location or bit
field instructions can be used.

Using a 16-bit location for each 12 bits:
Memory requirements = 2 x 1 million

= 2 million bytes

Intel and Motorola 32- & 64-bit Microprocessors

Using bit fields:
12 bits = 1.5 bytes

Memory requirements = 1.5 x 1 million
= 1.5 million bytes

Savings = 2 million bytes - 1.5 million bytes
= 500,000 bytes

-16
-8

$5004-+O

595

1 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1

ExamDle 11.7
Determine the effect of each of the following bit field instructions:

BFCHG $5004{D5:D6]
BFEXIU $5004{2:4},D5
BFINS D4, (AO) {D5:D6}
BFFFO $5004{D6:4},D5

Assume the following data prior to execution of each of the given instructions. Register
contents are given in hex, CCR and memory contents in binary, and offset to the left of
memory in decimal.

A0 [OOOO 5004 1
D5 1 FFFF FFFF 1
D6 10000000041

CCK 1 01001 j
D4 17125 F214 I

Solution
BFCHG $5004 {D5:D6}
Offset = - 1, Width = 4

Memory

7 6 5 4 3 2 1 0

+8
+16
+24
+32
+40

X N Z V C
CCR

BFEXTU $5004 {2:4},D5
Offset = 2, Width = 4

X N Z V C
CCR F O n l

D5 10 0 0 0 0 0 0 21

BFINS D4, (AO) {D5:D6}
Offset = - 1, Width = 4

X N Z V C c w l C C K I m q
$5004 1 0 0

BFFFO $5004 {D6:4],D5
Offset = 4, Width = 4

596 Fundamentals of Digital Logic and Microcomputer Design

X N Z V C
CCR -1

Pack and Unpack Instructions
The details of the PACK and UNPK instructions are listed next:

Instruction Operand Size Operation Notation
PACK 1 6 - 8 Unpacked source + #data PACK -(An), - packed destination -(An), #<data>

PACK Dn,
Dn,#<data>

UNPK 8 + 16 Packed source - unpacked UNPK -(An),
source -(An), #<data>
unpacked source + #data ---f
unpacked destination Dn,#<data>

UNPK Dn,

Both instructions have three operands and are unsized. They do not affect the
condition codes. The PACK instruction converts two unpacked BCD digits to two packed
BCD digits:

U L l 8 7 4 3
Unpacked BCD: 0 0 0 01 BCDOlO 0 0 01 BCDl

The UNPK instruction reverses the process and converts two packed BCD digits
to two unpacked BCD digits. Immediate data can be added to convert numbers from one
code to another. That is, these instructions can be used to translate codes such as ASCII or
EBCDIC to a BCD and vice versa.

The PACK and UNPK instructions are useful when I/O devices such as an ASCII
keyboard and an ASCII printer are interfaced to an MC68020-based microcomputer.
Data can be entered into the microcomputer via the keyboard in ASCII codes. The PACK
instruction can be used with appropriate adjustments to convert these ASCII codes into
packed BCD. Arithmetic operations can be performed inside the microcomputer, and the
result will be in packed BCD. The UNPK instruction can similarly be used with appropriate
adjustments to convert packed BCD to ASCII codes for outputting to the ASCII printer.

ExamDle 11.8
Determine the effect of execution of each of the following
PACK and U N P K instructions:

PACK DO,D5,#$0000

U N P K D4,D6,#$3030
PACK- (A l) , - (A 4) , #$OOOO

UNPK- (A 3) , - (A 2) , #$3030
Assume the following data prior to execution of each of the above instructions:

Intel and Motorola 32- & 64-bit Microprocessors 597

$507124~1 Fl
$507 124B2
S507124B3
$507 124B4
$507 124B5
$507 124B6
$507124B7 27
$507 124B8

Solution
PACK DO,D5,#$0000

[DO]=32 37

+ 00 00

32 37

low
word

4 1
[D5]= 27

Note that ASCII code for 2 is $32 and for 7 is $37. Hence, this packsinstruction
converts ASCII code to packed BCD.
PACK - (Al) , - (A4), $0000

71 24B2] = 37 3237
71 24B1]= 32 ~ 0000

3237
4d :. [3005 OOAO] = 27 packed BCD

.Hence, this pack instruction with the specified data converts two ASCII digits to
their equivalent packed BCD form.

:. [D6]=XXXX 33 35
[D4]=XXXXXX 35

Therefore, this UNPK instruction with the assumed data converts from packed
BCD in D4 to ASCII code in D6; the contents of D4 are not changed.
UNPK - (A3), - (AZ) , #$3030

[$5071 24B8] = 27

30 30
32 37

:. [$300500A2] = 37
[$300500A1] = 32

This UNPK instruction with the assumed data converts two packed BCD digits to
their equivalent ASCII digits.

598

Multiplication and Division Instructions

instructions:

Fundamentals of Digital Logic and Microcomputer Design

The 68020 includes the following signed and unsigned multiplication

Instruction Operand Size Operation
MULS . W (EA), Dn
or
MULU
MULS . L (EA), Dn
or
MULU

MULS . L (EA),Dh:Dn
or
MULU multiplication

16 x 16 - 32 (EA)16 * (Dn)16 - (Dn)32

32 x 32 --j 32 (EA) * Dn .+ Dn
Dn holds 32 bits of the result after
multiplication. Upper 32 bits of the
result are discarded.
(EA) * Dn --j Dh:Dn
(EA) holds 32-bit multiplier before

Dh holds high 32 bits of product
after multiplication.
Dn holds 32-bit multiplicand before
multiplication and low 32 bits of
product after multiplication.

32 x 32 - 64

(EA) can use all modes except An. The condition codes N; Z. and V are affected;
C is always cleared to 0, and X is unaffected for both MULS and MULU. For signed
multiplication, overflow (V = 1) can only occur for 32 x 32 multiplication, producing a
32-bit result if the high-order 32 bits of the 64-bit product are not the sign extension of the
low-order 32 bits. In the case of unsigned multiplication, overflow (V = 1) can occur for 32
x 32 multiplication, producing a 32-bit result if the high-order 32 bits of the 64-bit product
are not zero.

Both MULS and MULU have a word form and a long word form. For the word
form (16 x 16), the multiplier and multiplicand are both 16 bits and the result is 32 bits.
The result is saved in the destination data register. For the long word form (32 x 32), the
multiplier and multiplicand are both 32 bits and the result is either 32 bits or 64 bits. When
the result is 32 bits for a 32-bit x 32-bit operation, the low-order 32 bits of the 64-bit
product are provided.

The signed and unsigned division instructions of the 68020 include the following,
in which the source is the divisor, the destination is the dividend.

Instruction Operation
DIVS . W (EA), Dn
or
DIVU
DIVS. L (EA), Dq
or No remainder is provided.
DIVU
DIVS . L (EA),Dr:Dq

DIVU
DIVSL. L (EA),Dr:Dq
or Dr contains 32-bit dividend
DIVUL

32/16 - 16r:16q

32/32 - 329

64/32 -+ 32r:32q
O r

Dr/(EA) - 32r:32q

(EA) can use all niodes except An. The condition codes for either signed or

Intel and Motorola 32- & 64-bit Microprocessors 599

unsigned division are affected as follows: N = 1 if the quotient is negative; N = 0 otherwise.
N is undefined for overflow or divide by zero. Z = 1 if the quotient is zero; Z = 0 otherwise,
Z is undefined for overflow or divide by zero. V = 1 for division overflow; V = 0 otherwise.
X is unaffected. Division by zero causes a trap. If overflow is detected before completion
of the instruction, V is set to 1, but the operands are unaffected.

Both signed and unsigned division instructions have a word form and three long
word forms. For the word form, the destination operand is 32 bits and the source operand
is 16 bits. The 32-bit result in Dn contains the 16-bit quotient in the low word and the 16-
bit remainder in the high word. The sign of the remainder is the same as the sign of the
dividend.

For the instruction
DIVS . L (EA), Dq
or
DIVU

both destination and source operands are 32 bits. The result in Dq contains the 32-bit
quotient and the remainder is discarded.

For the instruction
DIVS . L (EA), Dr:Dq
or
DIVU

the destination is 64 bits contained in any two data registers and the source is 32 bits.
The 32-bit register Dr (DO-D7) contains the 32-bit remainder and the 32-bit register Dq
(DO-D7) contains the 32-bit quotient.

For the instruction
DIVSL. L (EA), Dr:Dq
or
DIVUL

the 32-bit register Dr (DO-D7) contains the 32-bit dividend and the source is also 32 bits.
After division, Dr contains the 32-bit remainder and Dq contains the 32-bit quotient.

ExamDle 11.9
Determine the effect of execution of each of the following multiplication and division
instructions:

MULU . L # $ 2 , D5 if [D5] = $FFFFFFFF
MULS. L #$2, D5 if [D5] = $FFFFFFFF

DIVS. L #$2, D5 if [D5] = $FFFFFFFC

MULU. L #$2, D5 if [D5] = $FFFFFFFF

MULU . L #$2, D5 : D2 if [D5] = $2ABC1800 and [D2] = $FFFFFFFF

DIVS . L #$2, D2 : DO if [D2] = $FFFFFFFF and [DO] = $FFFFFFFC
DIVSL. L #$2, D6 : D1 if [Dl] = $00041234 and [D6] = $FFFFFFFD

Solution

$FFFFFFFF

00000001 FFFFFFFE

V,= 1 Low 32-bit
mce result in D5

this is
nonzero

* $00000002 --

Therefore, [DS] = SFFFFFFFE, N = 0 since the most significant bit of the result is

600 Fundamentals of Digital Logic and Microcomputer Design

0, Z = 0 because the result is nonzero, V = 1 because the high 32 bits of the 64-bit
product are not zero, C = 0 (always), and X is not affected.
MULS . L # $2, D5 if [D5] = $FFFFFFFF

$FFFFFFFF (-1)

$FFFFFFFF $-E (-2)

* $00000002 (+2)

Result in D5

Therefore, [D5] = SFFFFFFFE, X is unaffected, C = 0, N = 1, V = 0, and Z = 0.
MULU . L #$2, D5 : D2 if [D5] = $2ABC1800 and D2 = $FFFFFFFF

$ F F F F F F F F
* $00000002

00000001 FFFFFFFE

D5 D2
--

Here N = 0, Z = 0, V = 0, C = 0, and X is not affected.
DIVS . L #$2, D 5 if [D5] = $FFFFFFFC

-2 -
FFFF FFFE

- 1 -
t2 4

[D5] = $FFFFFFFE, X is unaffected, N = 1, Z = 0, V = 0, and C = 0 (always).
DIVS . L #$2, D2 : DO if [D2] = $FFFFFFFF and [DO] = $FFFFFFFC

-2 0
F--L--. A

q = FFFF FFFE, r = 0000 0000
00000002 FFFF FFFF FFFF FFFC
L-J ' \-----,

2 -4

[D2] = $00000000 = remainder, [DO] = $FFFFFFFE = quotient, X is unaffected,
Z = 0, N = 1, V = 0, and C = 0 (always).
DIVSL. L #$2, D6 : D1 if [DI] = $00041234 and [D6] = $FFFFFFFD

-1 -1
<-> r - w

q = FFFFFFFF, r = FFFFFFFF
0000 0002 I C F Z F T

-3

[D6] = $FFFFFFFF = remainder, [Dl] = $FFFFFFFF = quotient, X is unaffected,
N = 1 , Z = 0, V = 0, and C = 0 (always).

MC68HC000 Enhanced Instructions
The MC68020 includes the enhanced version of the instructions as listed next:

Instruction Operand Size Operation
BRA label 8 , 16, 32 P C + d + P C
Bcc label 8, 16, 32 If cc is true, then PC + d - PC;

else next instruction

Destination - #data - CCR is affected
Destination - 0 + CCR is affected
An -+ -(SP); SP + An; SP + d + SP

BSR label 8, 16, 32 PC + -(SP); PC + d 4 PC
CMPI . S #data, (EA)
T S T . S (EA)
L I N K . S An, -d 16,32
EXTB. L Dn 32 Sign-extend byte to long word

8, 16, 32
8, 16, 32

Intel and Motorola 32- & 64-bit Microprocessors 60 1

Note that S can be B, W, or L. In addition to 8- and 16-bit signed displacements for
BRA, Bcc, and BSR like the 68HC000, the 68020 also allows signed 32-bit displacements.
LINK is unsized in the 68HC000. (EA) in CMPI and TST supports all 68HC000 modes
plus PC relative. An example is CMP1.W #$2000, (START, PC). In addition to EXT.W Dn
and EXT.L Dn like the 68HC000, the 68020 also provides an EXTB.L instruction.

ExamDle 11.10
Write a program in 68020 assembly language to multiply a 32-bit signed number in D2 by
a 32-bit signed number in D3 by storing the multiplication result in the following manner:
(a) Store the 32-bit result in D2.
(b) Store the high 32 bits of the result in D3 and the low 32 bits of the result in D2.
Solution

MULS.L D3,D2
FINISH JMP FINISH

MULS . L
FINISH JMP FINISH

(4

(b) D3, D3 : D2

Examde 11.1 1
Write a program in 68020 assembly language to convert 10 packed BCD bytes (20
BCD digits) stored in memory starting at address $00002000 and above, to their ASCII
equivalents and, store the result in memory locations starting at $FFFF8000.
Solution

M0VEA.W #$2000,AO ; Load starting addr. of BCD array into A0
M0VEA.W #$8000,A1 ; Load starting addr. of ASCII array into A1
MOVEQ. L #9, DO ; Load data length into DO

START M0VE.B (AO)+,Dl ; Load a packed BCD byte
UNPK Dl,D2,#$3030; Convert to ASCII
M0VE.W D2, (Al)+ ; Store ASCII data to addr. pointed to by A 1
DBF.W D0,START ; Decrement and branch if false

FINISH JMP FINISH ; otherwise stop

M68020 Pins and Signals
The 68020 is arranged in a 13 x 13 matrix array (1 14 pins defined) and fabricated in a pin
grid array (PGA) or other packages such as RC suffix package. Both the 32-bit address
(AO-A31) and data (DO-D31) pins of the 68020 are nonmultiplexed. The 68020 transfers data

3 . 2 1 ~

Transfer

I

I 2 . 0 m

MC68020
Microprocessor

,CDIS Cache Control

1,CLK * 2 micron HCMOS Drocess

'('3) *Power Dissipation = 1.75W (max)

FIGURE 11.6 MC68020 functional signal groups

602 Fundamentals of Digital Logic and Microcomputer Design

with an 8-bit device via D,,-D24, with a 16-bit device via D,,-D3,, and with a 32-bit device
via D3,-Do. Figure 1 1.6 shows the MC68020 functional signal group. Table 11.1 1 lists
these signals along with a description of each. There are 10 Vcc (+5 V) and 13 ground pins
to distribute power in order to reduce noise.

Like the MC68HC000, the three function code signals FC2, FC1, and FCO identify
the processor state (supervisor or user) and the address space of the bus cycle currently
being executed except that the 68020 defines the CPU space cycle as follows:

FC2 FCI FCO Cycle type
0 0 0 Undefined, reserved
0 0 1 User data space
0 1 0 User program space
0 1 1 Undefined, reserved
1 0 0 Undefined, reserved
1 0 1 Supervisor data space
1 1 0 Supervisor program space
1 1 1 CPU space

Note that in the 68HC000, FC2, FCl, FCO = 11 1 indicates the interrupt
acknowledge cycle. In the MC68020, it indicates the CPU space cycle. In this cycle, by
decoding the address lines A,,-A,,, the MC68020 can perform various types of functions
such as coprocessor communication, breakpoint acknowledge, interrupt acknowledge, and
module operations as follows:

A , , A,, A,, A, , Function performed
0 0 0 0 Breakpoint acknowledge
1 0 0 1 Module operations
0 0 1 0 Coprocessor communication
1 1 1 1 Interrupt acknowledge

Note that A,,, A,*, A,,, A,, = 001 1, to 11 10, is reserved by Motorola. In the
coprocessor communication CPU space cycle, the MC68020 determines the coprocessor
type by decoding A,,-A,, as follows:

A , , A,, A , , Coprocessor Type
0 0 0 MC6885 1 paged memory management unit
0 0 1 MC6888 1 floating-point coprocessor
The 68020 offers a feature called “dynamic bus sizing,” which enables designers

to use 8-bit and 16- and 32-bit memory and 110 devices without sacrificing system
performance. The SIZO, SIZl, DSACKO and DSACKl pins are used to implement this.
These pins are defined as follows:

SIZl SIZO Number of Bytes Remaining to be Transferred
0 1 Byte
1 0 Word
1 1 3bytes

0 1 16-bit device
1 0 8-bit device
1 1 Data not ready; insert wait states

During each bus cycle, the external device indicates its width via DSACKO and
DSACKl. The DSACKO and DSACKl pins are used to indicate completion of bus cycle.

Intel and Motorola 32- & 64-bit Microprocessors

TABLE 11.11 Hardware Signal Index
Signal Name Mnemonic Function

603

32-bit address bus used to address any of Address bus

Data bus

Function codes

Size

Read-modify-write cycle

External cycle start
Operand cycle start

Address strobe
Data strobe

Readwrite
Data buffer enable
Data transfer and size
acknowledge

Cache disable
Interrupt priority level
Autovector

Interrupt pending
Bus request

Bus grant

Bus grant acknowledge

Reset
Halt

Bus error

Clock
Power supply

&-A31

Do-D,,

FCO-FC2

SIZO/SIZI

__
RMC

ECS
ocs
-
-

-
AS
DS
-

m-
DBEN
DSACKO/
DSACKl

-
CDIS
IPLO-IPL2
AVEC

IPEND
BR

BG

BGACK

RESET
HALT

BERR

CLK
vcc

-__

-

-

-

4,294,961,296 bytes
32-bit data bus used to transfer 8,16,24, or 32 bits of
data per bus cycle
3-bit function code used to identify the address space
of each bus cycle
Indicates the number of bytes remaining to be
transferred for this cycle; these signals, together with
A0 and Al , define the active sections of the data bus.
Provides an indicator that the current bus cycle is part
of an indivisible read-modify-write operation
Provides an indication that a bus cycle is beginning
Identical operation to that of ECS except that ocs is
asserted only during the first bus cycle of an operand
transfer
Indicates that a valid address is on the bus
Indicates that valid data is to be placed on the data bus
by an external device or has been placed on the data
bus by the MC68020
Defines the bus transfer as a 68020 read or write
Provides an enable signal €or external data buffers
Bus response signals that indicate the requested data
transfer operation are completed; in addition, these
two lines indicate the use of the external bus port on a
cycle-by-cycle basis
Dynamically disables the on-chip cache
Provides an encoded interrupt level to the processor
Requests an autovector during an interrupt
acknowledge cycle
Indicates that an interrupt is pending
Indicates that an external device requires bus
mastership
Indicates that an external device may assume bus
mastership
Indicates that an external device has assumed bus
control
System reset
Indicates that the processor should suspend bus
activity
Indicates that an illegal bus operation is being
attempted
Clock input to the processor
+5 volt * 5% power supply

Ground GND Ground connection

At the start of a bus cycle, the 68020 always transfers data to lines Do-D,,, taking into
consideration that the memory or J/O device may be 8, 16, or 32 bits wide. After the first
bus cycle, the 68020 knows the device size by checking the DSACKO and DSACKl pins
and generates additional bus cycles if needed to complete the transfer.

Unlike the 68HC000, the 68020 permits word and long word operands to start at
an odd address. However, i f the starting address is odd, additional bus cycles are required to

604 Fundamentals of Digital Logic and Microcomputer Design

OPO OP 1 OP2

complete the transfer. For example, for a 16-bit device, the 68020 requires 2 bus cycles for
a write to an even address such as MOVE . L D1 $4 0 0 0 2 0 5 0 to complete the operation.
On the other hand, the 68020 requires 3 bus cycles for MOVE . L D1 $4 0 0 0 2 0 5 1 for a
16-bit device to complete the transfer. Note that, as in the 68HC000, instructions in the
68020 must start at even addresses.

Next, consider an example of dynamic bus sizing. The four bytes of a 32-bit data
can be defined as follows:

OP3

If this data is held in a data register Dn and is to be written to a memory or 110
location, then the address lines A, and A, define the byte position of data. For a 32-bit
device, A,A, = 00 (addresses 0, 4, 8,), AIA, = 01 (addresses 1, 5, 9, ...), A,A, = 10
(addresses 2, 6, 10, ...), and A,A, = 11 (addresses 3,7, 11, ...) will store OPO, OPl,OP2,
and OP3, respectively. This data is written via the 68020 D,,-Do pins. However, if the
device is 16-bit, data is always transferred as follows:

All even-addressed bytes via pins D3!-D,,.
All odd-addressed bytes via pins D2,-DI6.

Finally, for an 8-bit device, both even- and odd-addressed bytes are transferred
via pins D3,-D2,.

The 68020 always starts transferring data with the most significant byte first. As
an example, consider MOVE. L D1 $2 0 10 7 4 2 0. In the first bus cycle, the 68020 does
not know the size of the device and, hence, outputs all combinations of data on pins D,,-D,,
taking into consideration that the device may be 8, 16, or 32 bits wide. Assume that the
content of D1 is $02A10512 (OPO = $02, OP1 = $Al, OP2 = $05, and OP3 = $12). In
the first bus cycle, the 68020 sends SIZl SIZO = 00, indicating a 32-bit transfer, and then
outputs data on its D,,-Do pins as follows:

D3 1 :D24 D23 :D16 D, :D, DT :DO

I $02 1 $A1 I $05 I $12 1

If the device is 8-bit, it will take data $02 from pins D,,-D,, in the first cycle and
will then assert DSACKl and DSACKO as 10, indicating an 8-bit device. The 68020 then
transfers the remaining 24 bits ($A1 first, $05 next, and $12 last) via pins D3,-D2., in three
consecutive cycles, with a total of four cycles being necessary to complete the transfer.

However, if the device is 16-bit, in the first cycle the device will take the 16-bit
data $02A1 via pins D,,-D,, and will then assert DSACKl and DSACKO as 01, indicating
a 16-bit device. The 68020 then transfers the remaining 16 bits ($05 12) via pins D3,-D,, in
the next cycle, requiring a total of two cycles for the transfer.

Finally, if the device is 32-bit, the device receives all 32-bit data $02A10512 via
pins D,,-D, and asserts DSACKl DSACKO = 00 to indicate completion of the transfer.
Aligned data transfers for various devices are as follows :
For 8-bit device:

Intel and Motorola 32- & 64-bit Microprocessors

Register D:&]

68020pins D31 D24 SIZl SIZO A1 A0 DSACKl DSACKO

0 +--Bit number

--

First cycle 02 0 0 0 0 1 0
Second cycle 0 1 1 0

Fourth cycle 0 1 1 1 1 0
1 0 1 0 Third cycle 1 A

605

For 16-bit device:
68020pinS 4 1 D24 &3 D16 SIZl SIZO Al A0 m l D m O
First cycle m] 0 0 0 0 0 1
Secondcycle wl 1 0 1 0 0 1

For 32-bit device:

~-
SIZl SIZO A1 A, DSACKl DSACKO 68020pin~ D31 DO

First cycle 1-1 0 0 0 0 0 0

Next, consider a misaligned transfer such as M0VE.W D1, $02010741 with [Dl]
= $20F107A4. The 68020 outputs $0707A4XX on its D,,-Do pins in its first cycle where
XX are don’t cares. Data transfers to various devices are summarized below:
For 8-bit device:

+Bit number

-~ Register D1 /my
68020pins D3, Q4 SIZl SIZO A1 A0 DSACKl DSACKO

Firstcycle 1 0 0 1 1 0
Second cycle 0 1 1 0 1 0

For 16-bit device:

--
68020pins D,, D2,,DZ3 D,, SIZl SIZO A, A0 DSACKl DSACKO

1 0 0 1 0 1
0 1

First cycle
Second cycle

For 32-bit device:

--
68020pin~ D31 Q4D23 4 6 4 5 D& Do SIZl SIZO A1 A0 DSACKl DSACKO
First cycle I I 07 I A4 I I 1 0 0 1 0 0

Let us explain some of the other 68020 pins.
T h e m (external cycle start) pin is an MC68020 output pin. The MC68020 asserts

this pin during the first one half clock of every bus cycle to provide the earliest indication
of the start of a bus cycle. The use of ECS must be validated later with AS, because the
MC68020 may start an instruction fetch cycle and then abort it if the instruction is found in
the cache. In the case of a cache hit, the MC68020 does not assert AS, but provides A,,-A,,
SIZl, SIZO, and FC2-FCO outputs.

The MC68020 AVEC input is activated by an external device to service an
autovector interrupt. The AVEC has the same function as VPA on the 68HC000. The

~

606 Fundamentals of Digital Logic and Microcomputer Design

hnctions of the other signals, such as AS, Rlw, IpL2 - m, m, m, and BGACK, are
similar to those of the MC68HC000.

The MC68020 system control pins are functionally similar to those of the
MC68HC000. However, there are some minor differences. For example, for hardware
reset, RESET and HALT pins need not be asserted simultaneously. Therefore, unlike the
68HC000, the RESET and HALT pins are not required to be tied together in the MC68020
system.

The RESET and HALT pins are bidirectional and open drain (external pull-up
resistances are required), and their functions are independent. The RESET signal is a
bidirectional signal. The RESET pin, when asserted by an external circuit for a minimum
of 520 clock periods, the RESET pin resets the entire system including the MC68020.
Upon hardware reset, the MC68020 completes any active bus cycle in an orderly manner
and then performs the following:

Reads the 32-bit content of address $00000000 and loads it into the ISP (the
contents of $00000000 are loaded to the most significant byte of the ISP and so
on).
Reads the 32-bit contents of address $00000004 into the PC (contents of
$00000004 to most significant byte of the PC and so on).
Sets the I2 I1 I0 bits of the SR to 1 1 1, sets the S bit in the SR to 1, and clears the
T1, TO, and M bits in the SR.
Clears the VBR to $00000000.
Clears the cache enable bit in the CACR.
All other registers are unaffected by hardware reset.
When the RESET instruction is executed, the MC68020 asserts the RESET pin

for 512 clock cycles and the processor resets all the external devices connected to the
RESET pin. Software reset does not affect any internal register.

As mentioned earlier while describing dynamic bus sizing, the 68020 always
drives all data lines during a write operation. Furthermore, for all inputs there is a sample
window of at least 20 ns during which the 68020 latches the input level. To guarantee the
recognition of a certain level on a particular falling edge of the clock, the input level must
be held stable throughout this sample window, 20 ns; otherwise, the level recognized by
the MC68020 is unknown or legal.

During data transfer operations, the 68020 can use either synchronous or
asynchronous operation. In synchronous operation, the 68020 clock is used to generate
DSACKl , DSACKO, and other asynchronous inputs. Also, in synchronous operation, if
the DSACKl and DSACKO are asserted for the required window of at least 20 ns (at least
5 ns before and at least 15 ns after the falling edge of S2) on the falling edge S2, the 68020
latches valid data on the falling edge of S4 on a read cycle. The 68020 does not generate
any wait states if DSACKl and DSACKO are asserted at the falling edge of S2; otherwise
the 68020 inserts wait cycles like the 68HC000 and latches data at the falling edge of the
following cycle as soon as DSACKl and DSACKO are asserted. A minimum of three clock
cycles are required for a read operation.

In asynchronous operation, clock frequency independence at a system level is
achieved and the 68020 is used in an asynchronous manner. This typically requires using
the bus signals such as AS, m, DSACKl, and DSACKO to control data transfer. Using
asynchronous operation, AS starts the bus cycle and DS is used as a condition of valid
data on a write cycle. Decoding of SIZ1, SIZO, A,, and A, provides enable signals, which
indicate the portion of the data bus that is used in data transfer. The memory or I/O chip

- -

~ _ _ _

Intel and Motorola 32- & 64-bit Microprocessors 607

then responds by placing the requested data on the correct portion of the data bus for a
read cycle or latching the data on a write cycle and asserting DSACK1, and DSACKO,
corresponding to the memory or I/O port size (%bit, 16-bit, or 32-bit), to terminate the bus
cycle. If no memory or I/O device responds or the address is invalid, the external control
logic asserts the and HALT signal(s) to abort or retry the bus cycle or
retries the bus cycle.

In asynchronous operation, the DSACKl, and DSACKO signals are allowed to be
asserted before the data from memory or an I/O device is valid on a read cycle. The 68020
latches data according to Parameter #3 1 provided in Motorola manuals. (Parameter #3 1
is a maximum of 60 ns for the 12.5-MHz 68020, a maximum of 50 ns for the 16.67-MHz
68020, and a maximum of 43 ns for the 20-Mhz 68020, and maximum time is specified
from the assertion of AS to the assertion of DSACKl , and DSACKO. This is because the
68020 will insert wait cycles in one-clock-cycle increments until DSACKI, and DSACKO
are recognized as asserted.)

or

MC68020 System Design
The following 8-MHz 68020 system design will use a 128 KE3 32-bit wide supervisor data
memory. Four 27C256’s (32K x 8 HCMOS EPROM with 120-ns access time) are used for
this purpose. Because the memory is 32 KB, the 68020 address lines A,-A,, are used for
addressing the 27C256’s. The 68020 SIZl, SIZO, A,, A,,, DSACK1, and DSACKO pins are
utilized for selecting the memory chips.

Table 11.12 shows the table for designing the enable logic for the four 27C256
chips. The 68020 A,, pin is used to distinguish between memory and I/O. A,, = 0 is used to
select the memory chips; A,, = 1 is used to select I/O chips (not shown in the design). Table
1 1.13 shows the K-maps for the enable logic. A logic diagram can be drawn for generating
the memory byte enable signals DBBEl, DBBE2, DBBE3, and DBBE4.

The 68020 system with 32-bit memory consists of four 27C256’s, each connected
to its associated portion of the system data bus (Dj,-D24, D,,-D,,, D,,-D,, and D,-Do).

TABLE 11.12

~ _ _ _ _ _ _

Table for memory enables for 32-bit memory

1 0

1 1

srzi srzo A , A , DBBEl I DBBE22 DBBE33 DBBE44
0 1 0 0 1 0 0 0

0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1
0 0 1 1 0 0
0 1 0 1 1 0
1 0 0 0 1 1

1 1 0 0 0 1
0 0 1 1 1 0
0 1 0 1 1 1
1 0 0 0 1 1

1 1 0 0 0 1

0 0 0 0 1 1 1 1
0 1 0 1 1 1

1 0 0 0 1 1
1 1 0 0 0 1

608 Fundamentals of Digital Logic and Microcomputer Design

TABLE 11.13 K-maps for Enable Signals for Memory

S

K-MAPI

_ _
DBBEll =A1

"MAP2

K-MAP3

I + S I Z I . S I ~ O . ~ + S I z I & K

K-MAP4

Ai DBBEll -
- DBBEI
DS AD

DBBEZ

DS

slzo

To manipulate this memory configuration, 32-bit data bus control byte enable logic is
incorporated to generate byte enable signals (m, m, m, and m).
These byte enables are generated by using 68020's SIZ I , SIZO, A,, A,, A,,, and DS pins as
shown in the individual logic diagrams of the byte enable logic. A PAL can be programmed
to implement this logic. A schematic of the 68020-27C256 interface is shown in Figure
11.7.

Because the 68020 clock is used to generate DSACK1, and DSACKO, the 68020
operates in synchronous mode.

A 74HC138 decoder is used for selecting memory banks to enable the appropriate
memory chips. The 74HC138 is enabled by AS = 0. The output line 5 (FC2FClFCO = 101
for supervisor data) is used to select the memory chips. Assuming don't cares to be zeros
and also note that A,, = 0 for memory, the supervisor data memory map is obtained as
follows:

EPROM # 1 $00000000, $00000004, . . . , $0001 FFFC
EPROM #2 $00000001, $00000005, . . ., $0001FFFD
EPROM #3 $00000002, $00000006, . . . , $0001 FFFE
EPROM #4 $00000003, $00000007, . . ., $0001FFFF

DSACKI and DSACKO are generated by ANDing the m, m, m,

Intel and Motorola 32- & 64-bit Microprocessors 609

5
9
s,
5
'E

i"

h

FIGURE 11.7 68020/27C256 System

and DBBE4 outputs of the byte enable logic circuit. When one or more EPROM chips are
selected, the appropriate enables (DBBE1-DBBE4) will be low, thus asserting DSACKl
= 0 and DSACKO = 0. This will tell the 68020 that the memory is 32 bits wide. Data from
the selected memory chip(s) will be placed on the appropriate data pins of the 68020.
For example, in response to execution of the instruction MOVE . W $0 0 0 0 0 0 0 1, DO in
the supervisor mode, the 68020 will generate appropriate signals to generate DBBEl= 1,
DBBE2= 0, DBBE3= 0, DBBE4= 1, W- = 1, and output 5 of the decoder = 0
This will select EPROM #2 and EPROM #3 chips. Thus, the contents of address

$00000001 are transferred to DO (bits 8-15) and the contents of address $00000002 are
moved to DO (bits 0-7). The supervisor program, user program, and user data memories
can be connected in a similar way (not shown in the figure). For each memory space, four
memory chips are required.

Let us discuss the timing requirements of the 68020/27C256 system. Because the

___-

_ _ _ _ _ _ _ _ _

610 Fundamentals of Digital Logic and Microcomputer Design

68020 clock is used to generate DSACKl and DSACKO, the 68020 operates in synchronous
mode. This means that the 68020 checks DSACKl and DSACKO for LOW at the falling
edge of S2 (two cycles). From the 68020 timing diagram (Motorola manual), AS, DS, and
all other output signals used in memory decoding go to LOW at the end of approximately
one clock cycle. For an 8-MHz 68020 clock, each cycle is 125 ns. From byte enable logic
diagrams, a maximum of four gate delays (40 ns) are required. Therefore, the selected
EPROM(s) will be enabled after 165 ns (125 ns + 40 ns). With 120-11s access time, the
EPROM(s) will place data on the output lines after approximately 285 ns (165 ns + 120 ns).
With an 8-MHz 68020 clock, DSACKl and DSACKO will be checked for LOW (32-bit
memory) after two cycles (250 ns) and if LOW, the 68020 will latch data after three cycles
(375 ns). Hence, no delay circuit is required for DSACKl and DSACKO.. In case a delay
circuit is required, a ring counter can be used. Note that the 20-ns window requirement
for DSACKl and DSACKO inputs (5 ns before and 15 ns after the falling edge of S2) is
satisfied.

_ _

MC68020 VO
The 68020 I/O handling features are very similar to those of the 68000. This

means that the 68020 uses memory-mapped I/O, and the 68230 I/O chip can be used for
programmed 110. The external interrupts are handled via the 68020 IPL2, IPLl, and IPLO
pins using autovectoring and nonautovectoring pins. However, the 68020 uses a new pin
called AVEC rather than VPA (68HC000) for autovectoring. Nonautovectonng is handled
using DSACKO = 0 and DSACKl = 0 rather than DTACKO= 0 (as with the-68HC000).
Note that the 68020 does not have the VPA pin. Like the 68HC000, the 68020 uses the m,
m, and BGACK pins for DMA transfer. The 68020 exceptions are similar to those of the
68000 with some variations such as coprocessor exceptions.

11.7.2 Motorola MC68030
The MC68030 is a virtual memory microprocessor based on the MC68020 with additional
features. The MC68030 is designed by using HCMOS technology and can be operated at
clock rates of 16.67 and 33 MHz. The MC68030 contains all features of the MC68020,
plus some additional ones. The basic differences between the MC68020 and MC68030 are
as follows:

-- -

-

Characteristics MC 68020 MC68030
On-chip cache 256-byte instruction cache 256-byte instruction cache and

On-chip memory None
management unit (MMU)
Instruction set 101

256 byte data cache
Paged data memory management
(demand page of the MC68851)
103 (four new instructions are
for on-chip MMU); CALLM
and RTM instructions are not
supported.

Like the MC68020, the MC68030 also supports 7 data types and 18 addressing modes. The
MC68030 110 is identical to the MC68020.

11.7.3 Motorola MC68040 / MC68060
This section presents an overview of the Motorola MC68040 and MC 68060 32-bit
microprocessors. The MC68040 is Motorola’s enhanced 68030, 32-bit microprocessor,
implemented in HCMOS technology. Providing balance between speed, power, and
physical device size, the MC68040 integrates on-chip MC68030-compatible integer unit,

Intel and Motorola 32- & 64-bit Microprocessors 61 1

an MC6888 1/ MC68882-compatible floating-point unit (FPU), dual independent demand-
paged memory management units (MMUs) for instruction and data stream accesses, and
an independent 4 IU3 instruction and data cache. A high degree of instruction execution
parallelism is achieved through the use of multiple independent execution pipelines,
multiple internal buses, and separate physical caches for both instruction and data accesses.
The MC68040 also includes 32-bit nonmultiplexed external address and data buses.
The MC68060 is a superscalar (two instructions per cycle) 32-bit microprocessor. The
68060, like the Pentium, is designed using a combination of RISC and CISC architectures
to obtain high performance. For some reason, Motorola does not offer MC68050
microprocessor. The 68060 is fully compatible with the 68040 in the user mode. The 68060
can operate at 50- and 66-MHz clocks with performance much faster than the 68040. An
striking feature of the 68060 is the power consumption control. The 68060 is designed
using static HCMOS to reduce power during normal operation.

11.7.4 PowerPC Microprocessor
This section provides an overview of the hardware, software, and interfacing features
associated with the RISC microprocessor called the PowerPC. Finally, the basic features
of both 32-bit and 64-bit PowerPC microprocessors are discussed

Basics of RISC
RISC is an acronym for Reduced Instruction Set Computer. This type of microprocessor
emphasizes simplicity and efficiency. RISC designs start with a necessary and sufficient
instruction set. The purpose of using RISC architecture is to maximize speed by reducing
clock cycles per instruction. Almost all computations can be obtained from a few simple
operations. The goal of RISC architecture is to maximize the effective speed of a design
by performing infrequent operations in software and frequent functions in hardware, thus
obtaining a net performance gain. The following summarizes the typical features of a RISC
microprocessor:

1.

2.
3.

4.
5.

6.

7.

The RISC microprocessor is designed using hardwired control with little or
no microcode. Note that variable-length instruction formats generally require
microcode design. All RISC instructions have fixed formats, so microcode design
is not necessary.
A RISC microprocessor executes most instructions in a single cycle.
The instruction set of a RISC microprocessor typically includes only register,
load, and store instructions. All instructions involving arithmetic operations use
registers, and load and store operations are utilized to access memory.
The instructions have a simple fixed format with few addressing modes.
A RISC microprocessor has several general-purpose registers and large cache
memories.
A RISC microprocessor processes several instructions simultaneously and thus
includes pipelining.
Software can take advantage of more concurrency. For example, Jumps occur
after execution of the instruction that follows. This allows fetching of the next
instruction during execution of the current instruction.
RISC microprocessors are suitable for embedded applications. Embedded

microprocessors or controllers are embedded in the host system. This means that the
presence and operation of these controllers are basically hidden from the host system.
Typical embedded control applications include office automation systems such as laser

612 Fundamentals of Digital Logic and Microcomputer Design

printers. Since a laser printer requires a high performance microprocessor with on-chip
floating-point hardware, RISC microprocessors such as PowerPC are ideal for these types
of applications.

RISC microprocessors are well suited for applications such as image processing,
robotics, graphics, and instrumentation. The key features of the RISC microprocessors
that make them ideal for these applications are their relatively low level of integration in
the chip and instruction pipeline architecture. These characteristics result in low power
consumption, fast instruction execution, and fast recognition of interrupts. Typical 32- and
64-bit RISC microprocessors include PowerPC microprocessors.

IBMlMotorolalApple PowerPC 601
This section provides an overview of the basic features of PowerPC microprocessors. The
PowerPC 601 was jointly developed by Apple, IBM, and Motorola. It is available from IBM
as PP 601 and from Motorola as MPC 601. The PowerPC 601 is the first implementation
of the PowerPC family of Reduced Instruction Set Computer (RISC) microprocessors.
There are two types of PowerPC implementations: 32-bit and 64-bit. The PowerPC 601
implements the 32-bit portion of the IBM PowerPC architectures and Motorola 881 00
bus control logic. It includes 32-bit effective (logical) addresses, integer data types of
8, 16, and 32 bits, and floating-point data types of 32 and 64 bits. For 64-bit PowerPC
implementations, the PowerPC architecture provides 64-bit integer data types, 64-bit
addressing, and other features necessary to complete the 64-bit architecture.

The 601 is a pipelined superscalar processor and is capable of executing three
instructions per clock cycle. A pipelined processor is one in which the processing of an
instruction is broken down into discrete stages, such as decode, execute, and write-back
(the result of the operation is written back in the register file).

Because the tasks required to process an instruction are broken into a series of
tasks, an instruction does not require the entire resources of an execution unit. For example,
after an instruction completes the decode stage, it can pass on to the next stage, and the
subsequent instruction can advance into the decode stage. This improves the throughput
of the instruction flow. For example, it may take three cycles foi an integer instruction to
complete, but if there are no stalls in the integer pipeline, a series of integer instructions can
have a throughput of one instruction per cycle. Each unit is kept busy in each cycle.
A superscalar processor is one in which multiple pipelines are provided to allow instructions
to execute in parallel. The PowerPC 601 includes three execution units: a 32-bit integer
unit (IU), a branch processing unit (BPU), and a pipelined floating-point unit (FPU).

The PowerPC 601 contains an on-chip, 32 IU3 unified cache (combined instruction
and data cache) and an on-chip memory management unit (MMU). It has a 64-bit data bus
and a 32-bit address bus. The 601 supports single-beat and four-beat burst data transfer
for memory accesses. Note that a single-beat transaction indicates data transfer of up to
64 bits. The PowerPC 601 uses memory-mapped I/O. Input/output devices can also be
interfaced to the PowerPC 601 by using the I/O controller. The 601 is designed by using an
advanced, CMOS process technology and maintains full compatibility with TTL devices.

The PowerPC 601 contains an on-chip real-time clock (RTC). The RTC was
normally an 110 device completely outside the CPU in earlier microcomputers. Although the
RTC appearing inside the microcomputer chip is common on single-chip microcomputers,
this is the first time the RTC is implemented inside a top-of-the-line microprocessor such
as the PowerPC. This implication is that modem multitasking operating systems require
time keeping for task switching as well as keeping the calendar date. The 601 real-time

Intel and Motorola 32- & 64-bit Microprocessors 613

clock (RTC) on-chip hardware provides a measure of real time in terms of time of day and
date, with a calendar range of 136.19 years.

To specify the ordering of four bytes (ABCD) within 32 bits, the 601 can use
either the ABCD (big-endian) or DCBA (little-endian) ordering. The 601 big- or little-
endian modes can be selected by setting the LM bit (bit 28) in the HID0 register. Note
that big-endian ordering (ABCD) assigns the lowest address to the highest-order eight bits
of the multibyte data. On the other hand, little-endian byte ordering (DCBA) assigns the
lowest address to the lowest order (rightmost) 8 bits of the multibyte data.

Note that Motorola 68XXX microprocessors support big-endian byte ordering
whereas Intel 8OXXX microprocessors support little-endian byte ordering.

PowerPC 601 Registers
PowerPC 601 registers can be accessed depending on the program’s access

privilege level (supervisor or user mode). The privilege level is determined by the privilege
level (PR) bit in the machine status register (MSR). The supervisor mode of operation is
typically used by the operating system, and user mode is used by the application software.
The PowerPC 601 programming model contains user- and supervisor-level registers. Some
of these are

The user-level register can be accessed by all software with either user or
supervisor privileges.
The 32-bit GPRs (general-purpose registers, GPRO-GPR3 1) can be used as the
data source or destination for all integer instructions. They can also provide data
for generating addresses.
The 32-bit FPRs (floating-point registers, FPRO-FPR31) can be used as data
sources and destinations for all floating-point instructions.
The floating-point status and control register (FPCSR) is a user control register in
the floating-point unit (FPU). It contains floating-point status and control bits such
as floating-point exception signal bits, exception summary bits, and exception
enable bits.
The condition register (CR) is a 32-bit register, divided into eight 4-bit fields,
CRO-CR7. These fields reflect the results of certain arithmetic operations and
provide mechanisms for testing and branching.
The remaining user-level registers are 32-bit special purpose registers-SPRO,
SPR1, SPR4, SPR5, SPR8, and SPR9.
SPRO is known as the MQ register and is used as a register extension to hold
the product for the multiplication instructions and the dividend for the divide
instructions. The MQ register is also used as an operand of long shift and rotate
instructions.
SPRl is called the integer exception register (XER). The XER is a 32-bit register
that indicates carries and overflow bits for integer operations. It also contains two
fields for load string and compare byte indexed instructions.
SPR4 and SPRS respectively represent two 32-bit read only registers and hold
the upper (RTCU) and lower (RTCL) portions of the real-time clock (RTC). The
RTCU register maintains the number of seconds from a time specified by software.
The RTCL register maintains the fraction of the current second in nanoseconds.
SPRS is the 32-bit link register (LR). The link register can be used to provide
the branch target address and to hold the return address after branch and link
instructions.

614 Fundamentals of Digital Logic and Microcomputer Design

SPR9 represents the 32-bit count register (CTR). The CTR can be used to hold a
loop count that can be decremented during execution of certain branch instructions.
The CTR can also be used to hold the target address for the branch conditional to
count register instruction.

PowerPC 601 Addressing Modes
The effective address (EA) is the 32-bit address computed by the processor when

executing a memory access or branch instruction or when fetching the next sequential
instruction. Since the PowerPC is based on the RISC architecture, arithmetic and logical
instructions do not read or modify memory.

Load and store operations have two types of effective address generation:

i) Register Indirect with Immediate Index Mode
Instructions using this mode contain a signed 16-bit index (d operand in the 32-

bit instruction) which is sign extended to 32-bits, and added to the contents of a general-
purpose register specified by five bits in the 32-bit instruction (rA operand) to generate
the effective address. A zero in the rA operand causes a zero to be added to the immediate
index (d operand). The option to specify rA or 0 is shown in the instruction descriptions of
the 601 user’s manual as the notation (rAlO).

An example is lbz rD,d (rA) where rA specifies a general-purpose register (GPR)
containing an address, d is the the 16-bit immediate index and rD specifies a general-
purpose register as destination. Consider l bz r l I 2 0 (r 3) . The effective address (EA)
is the sum r3+20. The byte in memory addressed by the EA is loaded into bits 3 1 through
24 of register r l . The remaining bits in r l are cleared to zero. Note that the registers rl and
r3 represent GPRl and GPR3 respectively.

ii) Register Indirect with Index Mode
Instructions using this addressing mode add the contents of two general-purpose

registers (one GPR holds an address and another holds the index). An example is lbzx rD,
rA, rB where rD specifies a GPR as destination, rA specifies a GPR as the index, and rB
specifies a GPR holding an address. Consider lbzx r l I r 4 I r 6 . The effective address
(EA) is the sum (r410)+(r6). The byte in memory adressed by the EA is loaded into register
rl (24-3 1). The remaining bits in register rD are cleared to zero.

PowerPC 601 conditional and unconditional branch instructions compute the
effective address (EA) or the next instruction address using various addressing modes A
few of them are described below:

Branch Relative Branch instructions (32-bit wide) using the relative mode
generate the address of the next instruction by adding an offset and the current
program counter contents. An example of this mode is an instruction be s t a r t
unconditionally jumps to the address PC + start.
Branch Absolute Branch instructions using this mode include the address of
the next instruction to be executed. For example, the instruction ba begin
unconditionally branches to the absolute address “begin” specified in the
instruction.
Branch to Link Register Branch instructions using this mode branch to the
address computed as the sum of the immediate offset and the address of the
current instruction. The instruction address following the instruction is placed
into the link register. For example, the instruction b l I s t a r t unconditionally
jumps to the address computed from current PC contents plus start. The return

Intel and Motorola 32- & 64-bit Microprocessors 615

address is placed in the link register.
Branch to Count Register Instructions using this mode branch to the address
contained in the current register. Consider b c t t r B I means branch
conditional to count register. This instruction branches conditionally to the address
specified in the count register.

The BI operand specifies the bit in the condition register to be used as the
condition of the branch. The BO operand specifies how the branch is affected by
or affects condition or count registers. Numerical values specifying BI and BO
can be obtained from the 601 manual.
Note that some instructions combine the link register and count register modes.

An example is bcc t r BO, B I . This instruction first performs the same operation as the
bcttr and then places the instruction address following the instruction into the link register.
This instruction is a form of “conditional call” because the return address is saved in the
link register.

Typical PowerPC 601 Instructions

BO,

The 601 instructions are divided into the following categories:
1. Integer Instructions
2. Floating-point Instructions
3. Loadstore Instructions
4. Flow Control Instructions
5. Processor Control Instructions

Integer instructions operate on byte (8-bit), half-word (1 6-bit), and word (32-bit) operands.
Floating-point instructions operate on single-precision and double-precision floating-point
operands.

Integer Instructions
The integer instructions include integer arithmetic, integer compare, integer rotate

and shift, and integer logical instructions. The integer arithmetic instructions always set
the integer exception register bit, CA, to reflect the carry out of bit 7. Integer instructions
with the overflow enable (OE) bit set will cause the XER bits SO (summary overflow
-overflow bit set due to exception) and OV (overflow bit set due to instruction execution)
to be set to reflect overflow of the 32-bit result. Some examples of integer instructions
are provided in the following. Note that rS, rD, rA, and rB in the following examples are
32-bit general purpose registers (GPRs) of the 601 and SIMM is 16-bit signed immediate
number.

add r D , r A , SIMM performs the following immediate operation: rD + (rAl0) +
SIMM; rAl0) can be either (rA) or 0. An example is add r D , r A , SIMM or add
r D , 0 , SIMM.
add r D , r A , r B performs rD - rA + rB.
add. r D , r A , r B adds with CR update as follows: rD - rA + rB. The dot suffix
enables the update of the condition register.
s u b f r D , r A , r B performs rD - rB - rA.
s u b r D , r A , r B performs the same operation as subf but updates the condition code
register.
addme r D , r A performs the (add to minus one extended) operation: rD - (rA) +
FFFF FFFFH + CA bit in XER.
s u b f m e r D , r A performs the (subtract from minus one extended) operation: rD -

616 Fundamentals of Digital Logic and Microcomputer Design

(x) + FFFF FFFFH + CA bit in XER, where (x) represents the ones complement of
the contents of rA.
mulhwu rD, rA, rB performs an unsigned multiplication of two 32-bit numbers in
rA and rB. The high-order 32 bits of the 64-bit product are placed in rD.
mulhw rD, rA, rB performs the same operation as the mulhwu except that the
multiplication is for signed numbers.
mullw rD, rA, rB places the low order 32-bits of the 64-bit product (rA)*(rB) into
rD. The low-order 32-bit products are independent whether the operands are treated as
signed or unsigned integers.
mulli rD, rA, SIMMplaces the low-order32 bits ofthe48-bit product (rA)*SIMM,,
into rD. The low-order bits of the 32-bit product are independent whether the operands
are treated as signed or unsigned integers.
divw rD, rA, rB divides the 32-bit signed dividend in rA by the 32-bit signed
divisor in rB. The 32-bit quotient is placed in rD and the remainder is discarded.
divwu rD, rA, rB is the same as the divw instruction except that the division is for
unsigned numbers.
cmpi crfD, L, rA, SIMM compares 32 bits in rA with immediate SIMM treating
operands as signed integer. The result of comparison is placed in crfd field (0 for CRO,
1 for CRl , and so on) of the condition register. L=O indicates 32-bit operands while
L=l represents the 64-bit operands. For example, cmpi 0 , 0, rA, 2 0 0 compares
32 bits in register rA with immediate value 200 and CRO is affected according to the
comparison.
xor rA, rS , rB performs exclusive-or operation between the contents of rS and rB.
The result is placed into register rA.
extsb rA, rS places bits 24-31 ofrS into bits 24-31 of rA. Bit 24 of rS is then sign
extended through bits 0-23 of rA.
slw rA, rS, rB shifts the contents of rS left by the shift count specified by rB [27-
3 11. Bits shifted out of position 0 are lost. Zeros are placed in the vacated positions on
the right. The 32-bit result is placed into rA.
srw rA, rS, rB is similar to slw rA, rS, rB except that the operation is for right
shift.

Floating-Point Instructions
Some of the 601 floating-point instructions are provided below:

f add f rD, f rA, f rB adds the contents of the floating-point register, frA to the
contents of the floating-point register frB. If the most significant bit of the resultant
significand is not a one, then the result is normalized. The result is rounded to the
specified position under control of the FPSCR register. The result is rounded to the
specified precision under control of the FPSCR register. The result is then placed in
frD.

Note that this fadd instruction requires one cycle in execute stage, assuming
normal operations; however, there is an execute stage delay of three cycles if the next
instruction is dependent.

The 601 floating point addition is based on “exponent comparison and add by
one” for each bit shifted, until the two exponents are equal. The two significands are
then added algebraically to form an intermediate sum. If a carry occurs, the sum’s
significand is shifted right one bit position and the exponent is increased by one.
f sub f rD, f rA, f rB performs frA - frB, normalization, and rounding of the result

Intel and Motorola 32- & 64-bit Microprocessors 617

are performed in the same way as the f add instruction.

Normalization and rounding of the result are performed in the same way as the fadd.
Floating-point multiplication is based on exponent addition and multiplication of the
significands.
f d i v f r D , f r A , f r B performs the floating-point division frD + frA/frB. No
remainder is provided. Normalization and rounding of the result are performed in the
same way as the f add instruction.
f m s u b f r D , f r A , F r C , f r B perfoms frD - frA * frC - frB. Normalization and
rounding of the result are performed in the same way as the f add instruction.

f m u l f r D , f r A , f r C performsfrD+ frA*frC.

LoaaStore Instructions
Some examples of the 601 load and store instructions are

lhzx r D , r A , r B loads the half word (16 bits) in memory addressed by the sum
(rA/O) + (rB) into bits 16 through 3 1 of rD. The remaining bits of rD are cleared to
zero.
s t h u x r S , r A , r B stores the 16-bit half word from bits 16-31 of register rS in
memory addressed by the sum (rAl0) + (rB). The value (rAl0) + rB is placed into
register rA.
l m w r D , d (r A) loads n (where n = 32 - D and D = 0 through 31) consecutive words
starting at memory location addressed by the sum (r10) + d into the general-purpose
register specified by rD through r3 1.
s t m u r S , d (r A) is similar to l m w except that s t m w stores n consecutive words.

Flow Control Instructions
Flow control instructions include conditional and unconditional branch

instructions. An example of one of these instructions is
bc (branch conditional) BO, B I , target branch with offset target if the condition bit
in CR specified by bit number BI is true (The condition “true” is specified by a value
in BO).

For example, bc 1 2 , 0 , t a rge t means that branch with offset target if the
condition specified by bit 0 in CR (BI = 0 indicates the result is negative) is true
(specified by the value BO = 12 according to Motorola PowerPC 601 manual).

Processor Control Znstructions
Processor control instructions are used to read from and write to the machine state register

(MSR), condition register (CR), and special status register (SPRs). Some examples of
these instructions are
m f c r r D places the contents of the condition register into rD.
m t m s r r S places the contents of rS into the MSR. This is a supervisor-level
instruction.
m f i m s r r D places the contents of MSR into rD. This is a supervisor-level instruction.

PowerPC 601 Exception Model
All 601 exceptions can be described as either precise or imprecise and either synchronous
or asynchronous. Asynchronous exceptions are caused by events external to the processor’s
execution. Synchronous exceptions, on the other hand, are handled precisely by the 601
and are caused by instructions; precise exception means that the machine state at the time
the exception occurs is known and can be completely restored. That is, the instructions

618 Fundamentals of Digital Logic and Microcomputer Design

that invoke trap and system call exceptions complete execution before the exception is
taken. When exception processing completes, execution resumes at the address of the next
instruction.

An example of a maskable asynchronous, precise exception is the external
interrupt. When an asynchronous, precise exception such as the external interrupt occurs,
the 601 postpones its handling until all instructions and any exceptions associated with
those instructions complete execution. System reset and machine check exceptions are two
nomaskable exceptions that are asynchronous and imprecise. These exceptions may not
be recoverable or may provide a limited degree of recoverability for diagnostic purpose.

Asynchronous, imprecise exceptions have the highest priority with the
synchronous, precise exceptions having the next priority and the asynchronous, precise
exceptions the lowest priority.
The 601 exception mechanism allows the processor to change automatically to supervisor
state as a result of exceptions. When exceptions occur, information about the state of the
processor is saved to certain registers rather than in memory as is usually done with other
processors in order to achieve high speeds. The processor then begins execution at an
address (exception vector) predetermined for each exception. The exception handler at the
specified vector is then processed with processor in supervisor mode.

601 System Interface
The pins and signals of the PowerPC 601 include a 32-bit address bus and 52 control and
information signals. Memory access allows transfer sizes of 8, 16, 24, 32, 40, 48, 56, or
64 bits in one bus clock cycle. Data transfer occurs in either single-beat transactions or
four-beat burst transactions. Both memory and I/O accesses can use the same bus transfer
protocols. The 601 also has the ability to define memory areas as I/O controller interface
areas. The 601 uses the TS pin for memory-mapped accesses and the XATS pin for I/O
controller interface accesses.

Summary of PowerPC 601 Features
The PowerPC 601 is a RISC-based superscalar microprocessor. That is, it can execute two
or more instructions per cycle. The PowerPC 601 is based on loadhtore architectures. This
means that all instructions that access memory are either loads or stores, and all operate
instructions are from register to register. Both load and store instructions have 32-bit fixed-
length instructions along with 32-bit integer and 32-bit floating-point registers.

The PowerPC 601 includes two primary addressing modes: register plus
displacement and register plus register. In addition, the 601 load and store instructions
perform the load or store operation and also modify the index register by placing the
effective address just computed. In the PowerPC 60 1, Branch target addresses are normally
determined by using program counter relative mode. That is, the branch target address
is determined by adding a displacement to the program counter. However, as mentioned
before, conditional branches in the 601 may test fields in the condition code register and
the contents of a special register called the count register (CTR). A single 601 branch
instruction can implement a loop-closing branch by decrementing the CTR, testing its
value, and branching if it is nonzero.

The PowerPC 601 saves the return address for certain control transfer instructions
such as subroutine call in a general-purpose register. The 601 does this in any branch
by setting the link (LK) bit to one. The return address is saved in the link register. The
PowerPC 60 1 utilizes sophisticated pipelines. The 60 1 uses relatively short independent

Intel and Motorola 32- & 64-bit Microprocessors

TABLE 11.14

619

PowerPC 601 vs. 620

Features PowerPC 601 PowerPC 620
Technology HCMOS HCMOS
Transistor count 2.8 million I million
Clock speed 50 MHz, 66 MHz 133 MHz
Size of the microprocessor 32-bit 64-bit
Address bus 32-bit 40-bit
Data bus 64-bit 128-bit

pipelines with more buffering. The 601 does a lot of computation in each pipe stage. The
601 has a unified (combined) 32 KE3 cache. That is, instructions and data reside in the same
cache in the 601. Finally, the 601 offers high performance by utilizing sophisticated design
tricks. For example, the 601 includes powerful instructions such as floating-point multiply-
add and update loadlstore that perform more tasks with fewer instructions.

PowerPC 64-Bit Microprocessors
PowerPC 64-bit microprocessors include the PowerPC 620, 603e, 7501740, and 604e.
These microprocessors are 64-bit superscalar processors. This means that they can execute
more than one instruction in a cycle. Table 1 1.14 compares the basic features of the 32-bit
PowerPC 601 with the 64-bit PowerPC 620.

There are a few versions of the 64-bit PowerPC available: PowerPC 603e,
PowerPC 750/740, and PowerPC 604e. The PowerPC 603e microprocessor is available
at speeds of 250, 275, and 300 MHz. The 603e has high performance and low power
consumption, which makes it suited for applications found in the embedded system market.
The PowerPC 603e is used in the Power Macintosh C500 series, which offers features such
as accelerated multimedia, advanced video capture, and publishing. The PowerPC 750/740
is available at speeds up to 266 MHz and uses only 5 watts of power. The unique features
offered by this microprocessor are built-in power-saving modes, an on-chip thermal sensor
to regulate processor temperature, and a choice of packaging configurations. The PowerPC
604e microprocessor, another member of the PowerPC family, provides speeds of 350
MHz and using 8.0 watts of power. Like Intel, Motorola used the 0.25 micron process
technology to achieve this speed. The PowerPC 604e is intended for high-end Macintosh
and Mac-compatible systems.

Apple) utilized
PowerPC 750 for Apple’s iMac and Power Macintosh personal computers. Apple’s G3
(later version) used Motorola’s copper-based PowerPC microprocessor, providing speed
of up to 400 MHz.

11.7.5 Motorola’s State-of-the-art Microprocessors
As part of their plans to carry the PowerPC architecture into the future, Motorola /IBMl
Apple already announced AltiVec extensions for the PowerPC family. The result is the
MPC7400 PowerPC microprocessor. This microprocessor is available in 400 MHz, 450
MHz and 500 MHz clock speeds. Motorola’s AltiVec technology is the foundation for the
Velocity Engine of Apple Computer’s next generation desktop computers. For example,
Apple rececently announced Power Mac G5 which uses Motorola’s 64-bit microprocessor,
G5. AltiVec extensions are somewhat comparable to the MMX extensions in Intel’s
Pentium family. AltiVec has independent processing units while Intel tied MMX to the
floating-point unit. Both utilize SIMD (Chapter 8). A comparison of some of the features

Apple Computer’s original G3 (Marketing name used by

620

of AltiVec vs. MMX is provided below:

Fundamentals of Digital Logic and Microcomputer Design

Features AltiVec MMX
Size 128 bits at a time 64 bits at a time
Instructions 162 instructions 57 instructions
Registers 32 registers 8 registers
Unit Independent tied to Floating-point Unit

In AltiVec, each processing unit can work independent of the others. This provides more
parallelism by separate units. Since Intel tied MMX to floating-point unit, Pentiums can
perform either floating-point math or switch over to MMX, but not both simultaneously.
The switch requires a mode change that can cost hundreds of cycles, both going into and
coming out of MMX mode. It may be very tricky with Pentiums to write good and efficient
codes when mixing of modes are required in some computing algorithms.

AltiVec can vetorize the floating-point operations. This means that one can use
AltiVec to work on some data in the Floating-point Unit, then load the data in the AltiVec
side (Vector Unit) without any significant mode switch. This may save hundreds of cycles
. Also, this allows programmers to do more with the Vector Unit since they can go back
and forth to mix and match.

The biggest drawback with MMX or AltiVec is getting programmers to use
them. Programmers are required to use assembly language for MMX. Therefore, a few
programmers used MMX for dedicated applications. For example, Intel hand tuned some
photoshop filters for Adobe. Programmers can use C language with AltiVec. Therefore, it
is highly likely that more programmers will use AltiVec than MMX.

In the future, Motorola and IBM plan to introduce the PowerPC series 2K. It is
expected that the chip will contain 100 million transistors and have clock speeds greater
than 1 GHz.

OUESTIONS AND PROBLEMS

11.1

11.2

11.3

11.4

11.5

Discuss the typical features of 32-bit and 64-bit microprocessors.

(a) What is the basic difference between the 80386 and 80386SX?
(b) What is the basic difference between the 80386 and 80486?

What is the difference between the 80386 protected, real-address, and virtual
8086 modes?

Discuss the basic features of the 80486.

Assume the following 80386 register contents
(EBX) = 0000 1 OOOH
(ECX) = 04000002H
(EDX) = 20005000H

prior to execution of each of the following 80386 instructions. Determine the
contents of the affected registers andor memory locations after execution of each
of the following instructions and identify the addressing modes:

(a)MOV [EBX * 41 [ECX], EDX
(b)MOV [EBX * 21 [ECX + 2020H1, EDX

Intel and Motorola 32- & 64-bit Microprocessors 62 1

11.6

11.7

11.8

11.9

1.10

1.11

1.12

11.13

11.14

11.15

11.16

11.17

11.18

11.19

11.20

Determine the effect of each of the following 80386 instructions:
(a) MOVZX EAX, CH

Prior to execution of this MOVZX instruction, assume
(EAX) = 8000 1234H
(ECX) = 00008080H

(b) MOVSX EDX, BL
Prior to execution of this MOVSX assume

(EDX) = FFFFFFFFH
(EBX) = 05218888H

Write an 80386 assembly program to add a 64-bit number in ECX: EDX with
another 64-bit number in EAX: EBX. Store the result in EAX: EBX.

Write an 80386 assembly program to divide a signed 32-bit number in DX:AX by
an 8-bit signed number in BH. Store the 16-bit quotient and 16-bit remainder in
AX and DX respectively.

Write an 80386 assembly program to compute
N

where N = 1000 and the 4 ’ s are signed 32-bit numbers.
Assume that Z: can be stored as a 32-bit number.

Discuss 80386 I/O.

Compare the on-chip hardware features of the 80486 and Pentium micro-
processors.

What are the sizes of the address and data buses of the 80486 and the Pentium?

Identify the main differences between the 80486 and the Pentium.

What are the clock speed, pipeline model, number of on-chip transistors, and
number of pins on the 80486 and Pentium processors?

Discuss typical applications of Pentium.

Identify the main differences between the Intel 80386 and 80486.

What is meant by the 80486 BUS BACKOFF feature?

How many pipeline stages are in Pentium and Pentium Pro?

How many new instructions are added to the 80486 beyond those of the 80386?

Given the following register contents,
(EBX) = 7F27 108AH
(ECX) = 2A157241H

622

11.21

1 1.22

11.23

1.24

1.25

1.26

11.27

11.28

11.29

11.30

11.31

1 1.32

1 1.33

11.34

Fundamentals of Digital Logic and Microcomputer Design

what is the content of ECX after execution of the following 80486 instruction
sequence:

MOV EBX, ECX
BSWAP ECX
BSWAP ECX
BSWAP ECX
BSWAP ECX

If (EBX) = 0123A212H and (EDX) = 46B12310H, then what are the contents of
EBX and EDX after execution of the 80486 instruction XADD EBX, EDX?

If (BX) = 271AH, (AX) = 712EH, and (CX) = 1234H, what are the contents of
AX after execution of the 80486 instruction CMPXCHG CX, BX?

What are three modes of the Pentium processor? Discuss them briefly.

What is meant by the statement, “The Pentium processor is based on a superscalar
design”?

What are the purposes of the U pipe and V pipe of the Pentium processor?

What are the sizes of the data and instruction caches in the Pentium?

Summarize the basic differences among Pentium, Pentium Pro, and Pentium 11,
Celeron, Pentium I1 Xeon, Pentium 111, and Pentium 111 Xeon processors.

Why are the Pentium Pro’s complete capabilities not used by the Windows 95
operating system?

Summarize the basic features of the InteUHewlett-Packard “Merced”
microprocessor.

Summarize the basic differences between the 68000, 68020, 68030, 68040 and
68060.

What is the unique feature of the Power PC microprocessor family?

Name three new 68020 instructions that are not provided with the 68000.

Find the contents of the affected registers and memory locations after execution of
the 68020 instruction MOVE ($ 1 0 0 0, A5, D3 . W* 4) , D1. Assume the following
data prior to execution of this MOVE:

[A51 = $0000F210, [$00014218] = $4567
[D3] = $00001002, [$0001421A] = $2345
[Dl] = $F125012A

Assume the following 68020 memory configuration:

Intel and Motorola 32- & 64-bit Microprocessors 623

11.35

11.36

11.37

11.38

0

Find the contents of the affected memory locations after execution of MOVE . W

#$1234, ([All) .

Find the 68020 compare instruction with the appropriate addressing mode to
replace the following 68000 instruction sequence:

ASL.L #1,D5
CMP.L 0 (AO,D5.L) ,DO

Find the contents of D1, D2, A4, and CCR and the memory locations after
execution of each of the following 68020 instructions:

(a) BFSET $5000 {D1:lO}
(b) BFINS D2, (A4) {Dl:D4}

Assume the data given in Figure P11.36 prior to execution of each of these
instructions.

Memory
7 0

$5000

-16
-8

+
+8

+16

Pl] = $00000004, [D4] = $00000004
[D2] = $12345678, [A41 = $00005000

[Dl] = $00000004, [D4] = $00000004
[D2] = $12345678, [A41 = $00005000

FIGURE P11.36

Identify the following 68020 instructions as valid or invalid. Justify your
answers.
(a) DIVS AO,D1
(b) CHK.B DO, (AO)
(c) M0VE.L DO, (AO)
It is given that [AO] = $1025671A prior to execution of the MOVE.

Determine the values of the Z and C flags after execution of each of the following
68020 instructions:
(a) CHK2. W (A5) , D3
(b) CMP2.L $2001,A5

624 Fundamentals of Digital Logic and Microcomputer Design

Assume the following data prior to execution of each of these instructions:

Memory

$2000 -fi
2004
1E21

[D3] = $02001 740, [A51 = $0002004

11.39 Write a 68020 assembly program to add two 64-bit numbers in DlDO with another
64-bit number in D2D3. Store the result in DlDO.

11.40 Write a 68020 assembly program to multiply a 32-bit signed number in D5 by
another 16-bit signed number in D1. Store the 64-bit result in D58 l .

Write a subroutine in 68020 assembly language to compute
Assume the X,’s are signed 32-bit numbers and the array starts at $50000021.
Neglect overflow.

y=c g
1 1.41 i=1

11.42 Write a program in 68020 assembly language to find the first one in a bit field
which is greater than or equal to 16 bits and less than or equal to 5 12 bits. Assume
that the number of bits to be checked is divisible by 16. If no ones are found, store
zero in D3; otherwise store the offset of the first set bit in D3, and then stop.
Assume A2 contains the starting address of the array, and D2 contains the number
of bits in the array.

1 1.43 Write a program in 68020 assembly language to multiply a signed byte by a 32-bit
signed number to obtain a 64-bit result. Assume that the numbers are respectively
pointed to by the addresses that are passed on to the user stack by a subroutine
pointed to by (A7+6) and (A7+8). Store the 64-bit result in D2:Dl.

1 1.44 What is meant by 68020 dynamic bus sizing?

1 1.45 Consider the 68020 instruction MOVE . B D1, $0 0 0 0 0 0 1 6. Find the 68020 data
pins over which data will be transferred if DSACKl DSACKO = 00. What are
the 68020 data pins if DSACKl DSACKO = 1 O?

1 1.46 If a 32-bit data is transferred using 68020 MOVE . L DO, $5 0 6 0 7 0 1 1 instruction
to a 32-bit memory with [DO] = $81F27561, how many bus cycles are needed to
perform the transfer? What are A,A, equal to during each cycle? What is the SIZl
SIZO code during each cycle? What bytes of data are transferred during each bus
cycle?

1 1.47 Discuss 68020 I/O.

1 1.48 What do you mean by the unified cache of the 601? What is its size?

Intel and Motorola 32- & 64-bit Microprocessors 625

11.49

1 1 S O

11.51

11.52

11.53

1 1.54

11.55

List the user-level and general-purpose registers of the 601.

Name one supervisor-level register in the 601. What is its purpose?

How does the 601 MSR indicate the following:
(a) The 601 executes both the user- and supervisor- level instructions.
(b) The 60 1 executes only the user-level instructions.

Explain the operation performed by each of the following 601 instructions:
(a) add. rl , r2, r3
(b) divwu r2,r3,r4
(c) e x t s b rl,r2

Discuss briefly the exceptions included in the PowerPC 601.

Compare the basic features of the 601 with the 620. Discuss PowerPC 64-bit
,up 's.

Summarize the basic features of Motorola's state-of-the-art microprocessors.

