
APPENDIX

VERILOG

1.1 Introduction to Verilov

Verilog describes a digital system as a set of modules. A module is a basic block in
Verilog. A typical Verilog segment is given below:

module <module name> // A typical Module
<port list>
<declarations>
<module items>
endmodule

In the above, the module is defined by the keyword module and endeded by
the keyword endmodule . The <module name> identifies a module uniquely. This means
that a name or an identifier is assigned to a module to identify it. This name must start with
an alpha character rather than a number. The two slashes (//) shown in the above Verilog
module is used before a single line comment. Verilog module, when invoked, creates a
unique object containing its name, variables, parameters, and inputloutput interface. The
objects are called instances and the process of obtaining objects from modules are known
as instantiation. Each port in the <port list> is defined by keywords i n p u t and o u t p u t
based on the port directions. Verilog also supports bidirectional ports which can be defined
by keyword i n o u t . The ports are included in parentheses with commas separating them.
A semicolon (;) is used to terminate the port statement. Ports provide' the module with a
means to connect to other modules. The wire declaration by keyword w i r e provides
internal connection in Verilog. All port declarations in Verilog are inherently defined as
wire. This means that a port is automatically declared as a wire if it is defined as i n p u t
or o u t p u t , or i n o u t .

Verilog includes a set of built-in logic gates such as OR, AND, XOR, NOT,
NOR, NAND, and XNOR. The outputs of these gates are one-bit data and are declared
as w i r e in Verilog. The built-in gates are utilized to provide a structural design called
netlist. The Netlist facilitates connections between one-bit wires and logic gates. Ports can
be internal or external to a module. Certain rules for port connections must be followed
for the Verilog simulator when modules are instantiated within other modules. Input ports
must be of the type Net (for all) internally. On the other hand, the inputs can be connected
externally to a variable which is reg or a w i r e . The output ports can be of the type
reg or w i r e internally. Output must always be connected to a w i r e (not reg) externally.
The i n o u t ports must always be of type w i r e . i n o u t ports must be connected to w i r e

externally.
Nets mean connection between hardware elements. Nets are driven continuously

713

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman
Copyright 0 2005 John Wiley & Sons, Inc.

714 Fundamentals of Digital Logic and Microcomputer Design

by the outputs of devices they are connected to. Nets are typically declared by the keyword
wire. Net is a class of data that includes w i r e as one data type. Verilog registers (defined
by keyword r e g) typically retain their values until a new value is stored. Verilog registers
are different from hardware registers which need a clock. Verilog register does not require a
clock. Also, Verilog register does not need a driver like the net. Values of Verilog registers
can be changed anytime during simulation by replacing with another value.

Keywords reg and wire are one-bit wide by default. To define a wider reg or
wire, the left and right bit positions are defined in square brackets separated by a colon.
For example, reg [7:0] a,b; declares two variables a and b as 8 bits with the most
significant bit as bit 7 (a[7] or b[7]) and the least significant bit as bit 0 (a[O] or b[O]).
Verilog contains approximately 100 keywords. Verilog keywords and identifiers are case
sensitive. This means that Fulladder and full-adder are distinct variables. Also, Verilog
keywords are reserved, and cannot be used as names.

The <declarations> define data objects as registers or wires. The <module
items> for behavioral modeling (to be discussed later) may be initial block or always block.
Verilog uses keywords b e g i n and e n d like Pascal to define a block. A typical initial
block is defined by using keyword i n i t i a l . The statements are contained between
keywords b e g i n and e n d as in conventional programs. The. always block is defined in a
similar manner except that a l w a y s instead of i n i t i a l is written before b e g i n . The
a l w a y s block is executed continuously and cannot be interrupted unless time control
feature of Verilog utilizing symbols such as @ is used. Note that the output of a typical
combinational logic circuit is altered with changes in input(s). The Verilog simulator
can use a l w a y s along with the symbol @ to stop execution of the a l w a y s block
continuously until changes in one or more inputs occur. For example, the statement
a l w a y s @ (a o r b o r c) means that a, b, and care three inputs to be used in the
always block that follows. The symbol @ allows the simulator to execute an i n i t i a l
block that may follow as long as there are no changes in the inputs; however, the always
block will be executed whenever changes in inputs occur. Note that all procedural blocks
are active concurrently. Constants in Verilog are decimal integers by default. However,
the syntax ‘b,’d, or ‘h can be used before a number to define it as binary, decimal or
hexadecimal. Furthermore, the total number of bits in a number can be represented by
placing the number before the quote. For example, 4 ’ b l l l l and 4’hf will represent 15
in decimal.

Verilog provides a conditional operator denoted by the symbol ?. For example,
consider the statement, a s s i g n z = s ? x : y; . Thismeans that ifs=l thenz=x,
else z=y for s=O. Note that in this expression, s is the condition, z=x is the true expression
while z=y is the false expression. Also, Verilog keyword p a r a m e t e r declares and assigns
value to a constant. For example, parameter x = 5; will assign the value of integer 5 to x.
Nesting ofmodules is not permitted in Verilog. That is, a module cannot be placed between
module and e n d m o d u l e of another module. However, modules can be instantiated within
other modules. This provides hierarchical modeling of design in Verilog. The name of a
Verilog module is not available outside the module unless hierarchical modeling is used.
The instance names must be defined when modules are instantiated.

Verilog offers a feature called reduction operator for the logic operations and,
nand, or, nor, xor and xnor. The reduction operation is performed bitwise from right to left
on the bits of the same word. As an example, consider the reduction operation &x where
x is a 4-bit number. In this case, the operation &x means x[3]&x[2]&x[l]&x[O].

To precisely model all logical conditions in a circuit, each bit in Verilog can be

Appendix I: Verilog 715

one of the following: l’bO, l’bl , l’bz (high impedance), or I’bx (don’t care). l’bO and
1 ’bl respectively correspond to 0 and 1. Verilog includes 1 ’bz for the situation when
the designer needs to define a high impedance state. Furthermore, Verilog includes 1 ’bx
to specify a don’t care condition. Sometimes, miswiring of gates may also result into an
unknown value of the output in certain situation. For example, if the designer makes a
mistake and connects outputs of two gates together. This output may want to assume a
value of either 0 or 1. This may cause physical damage to certain logic families. In order
for the simulator to detect such problems, 1 ’bx (don’t care) definition can be used for the
output.

A Verilog simulator includes a built-in system function called $time for
representing simulated time. This means that $time provides a measure of actual time for
the hardware to function when fabricated. $time is expressed as an integer value rather
than by time units such as seconds. However, designers typically use one time unit
as one nanosecond. Time control statements may be included in Behavioral Verilog. A
statement will not be executed with the symbol # followed by a number until the specified
number of time steps has elapsed. This allows Verilog to model propagation delays of
logic gates. The symbol # when used in test programs generates a sequence of patterns at
particular times that will behave like inputs to the hardware being designed. Also, if the
symbol @ is used before a statement, the statement that follows will not be executed until
the statement with @ is completed.

The test bench for the simulation is normally written by the designer. The test bench
tests the Verilog design by applying stimulas and providing outputs during simulation.
Test benches utilize procedural blocks which start with either the keywords initial or
always for providing stimulas for the test circuit. An example of a simple initial block
is provided below:
initial

begin
#O

#50

#50

x=l’bO; y=l’bO; z=l’bO;

x=l’bO; y=l‘bO; z=l’bl;

x=l‘bO; y=l’bl; z=l’bO;
end

In the above, keywords begin and end are used to define the block with the time
units defined by the symbol #. At time = 0, x = 0, y = 0 and z = 0. At time = 50 ns, x = 0, y
= 0 and z = 1. Finally, at time= 100 ns, x = 0, y = 1 a n d z = 0.

<module name>
<reg and wire declarations>
<Instantiate the Verilog design>
<Generate stimulus using initial and always keywords
<Produce the outputs using $monitor for verification>
endmodule

The inputs applied to the test (design) block for simulation are declared in the
stimulus block as reg data type. The outputs (responses) of the test block that are to be
monitored and verified are declared as wire data type. The test block has no inputs or
outputs. The stimulus block produces inputs for the test block and verifies the output of the

A simple test bench has the following structure:

716 Fundamentals of Digital Logic and Microcomputer Design

test block. initial and always procedural blocks can be used to produce the output.
The simulator can represent the output as waveforms or in tabular form using Verilog
system tasks such as $monitor. The syntax for $monitor is provided below:
$monitor (“time = %d x = %2d y = %3d z = %2b”,

$time, x, y, 2) ;

Verilog system task, $monitor can be used to display the output of the design
block under test. Verilog simulator allows the output to be represented in binary (%b or
%B), octal (%o or %O), decimal (%d or %D) or hexadecimal (%h or %H). $time is a
built-in function that provides the simulation time. In the above $monitor statement time, x,
and y are displayed in decimal while z is represented in binary. Another way to display the
output is by using system task $display. Notethat $display is used to display one time
value of variables. In contrast $monitor displays variables whenever changes in variables
occur during simulation. The syntax for $display is $display (“%b%d“, x, y) : which
will display x in binary and y in decimal. As mentioned before, there are three levels of
abstractions in Verilog. These are Structural, dataflow, and behavioral modeling. They
can be combined in an application. These abstractions are described along with Verilog
programming examples.

Verilog provides primitives which can be defined by the user to represent truth
table in a tabular form. These primitives are called User-Defined Primitives (UDP).
UDP descriptions are enclosed by keywords primitive and endprimitive rather than
keywords module and endmodule. There are two types of UDPs. These are Combinational
UDPs used for combinational circuits and Sequential UDPs used for sequential circuits.
As an example, a Verilog description using Combinational UDP for the 2-to1 multiplexer
of Table 4.1 1 is provided below. The truth table for the 2-to-1 multiplexer from Table
4.11:
Select input, S Output, Z

0 do
1 d,

//2tol multiplexer
primitive mux2tol (z,dO,dl,s);
output 2 ;

input d0,dl;
input s;
//Truth table is enclosed by keywords table and endtable
//The inputs are listed in order followed by colon(:)
//The output is always the last entry followed by semicolon(;)
//The symbol? in the table is used to represent don’t care
//condition
table
/ / dO dl s : z

l ? 0 : l ;
O ? 0 : o ;
? 1 l : l ;
? 0 1 : o ;

endtable
endprimitive
/ / stimulus for 2tol mux using UDP
module mux-stimulus;
reg i0,il;
reg s;

Appendix I: Verilog

XI'

xo-
e d

(Enable)

717

+ dI01
2-to4 __+ d[ll

Decoder __* d 121
__* d PI

wire out;
mux2tolmux(out, i0, il, s) ;
initial
begin
/ / set inputs
iO=1 , il=O;
#1 $display ("iO=%b, il=%b", i0, il) ;
//select i0
s=O ;
#1 $display("s=%b, out=%b", s,out) ;
//select il
s=l ;
#1 $display ("s=%b, out=%b", s, out) ;
end
endmodule
//simulation outputs
iO=1, il=O
s=o, out=l
s=l , out=0

1.1.1 Structural Modeling
The following Verilog structural description is provided for the 2-to-4 decoder of Figure
4.14. The figure is redrawn below for convenience:

/ / Structural description of a 2-to-4 decoder
module decoder2to4 (xl, x0, e, d);

input xl, x0, e;
output [0:3] d; //output vector d must be declared as wire.
wire [0:3] d; //if vector d is not declared as wire, Verilog
wire xll, x00; //will make vector d one bit by default.
not

invl (xll, xl),
inv2 (x00, x0);

andl (d[Ol, xll, xOO,e),
and2 (d[l], xll, x0, e),
and3 (d[2], xl, x00, e),
and4 (d[3], xl, x0, e);

and

endmodule
The above structural description for the 2-to-4 decoder contains three inputs

(xl, x0, e), and four outputs (d[O] through d[3]). The wire declaration provides internal
connections. Two NOT gates are used to obtain complements xl 1 and x00 of the inputs xl
and x0 respectively while the four AND gates are used for the outputs d[O] through d[3].
In the gate list such as andl (d [O] , xll, xoo, e) ; , the output d[O] is always listed
first followed by inputs x l l , x00, and e. The keyword and is written once for all AND
operators, and in this case, provides output d[O] by logically ANDing xl 1, x00, and e.

718 Fundamentals of Digital Logic and Microcomputer Design

Note that the Verilog keywords and names are case sensitive. Also, Verilog keywords are
reserved, and cannot be used as names. Note that if a Verilog operation is required several
times in a program such as not requiring twice in the above , the Verilog code can be
written in two ways. The two not operations, in the above, are written using the keyword
not followed by two different labels invl and inv2 separated by commas, and terminated
by ;. An alternate Verilog code for the two not operations can be written as follows:

not (xll, x l) ;
not (x00, x0);
Similarly, alternative codes for other logic operations in the above can be written.

A module instantiation statement associates the signals in the module instantiation with
the ports in a module definition. There are two ways to represent the association. These
are positional association, and named association. These two methods cannot be mixed. In
positional association, each signal in the module instantiation is mapped by position to the
corresponding signal in the module definition.
In order to illustrate positional association, consider the following Verilog program:
module system;

wire [3:0] d;
subsystem fl (d[3], d[ll, d[21, d[01);

endmodu le
module subsystem (w, x, y, z);

input x, y;
output w, z;

endmodu le
In the above program, the module system has an instance of the module subsystem

inside it. The connections to the subsystem are made by placing the bit vectors of the
identifier (d in this case) at the desired positions in the port definitions of the subsystem
module. In the above, d[3] is associated with w, d[l] with x, d[2] with y, and d[O] with z.
The ordering must be done properly. Therefore, in the positional association, the names of
the connecting signals must be included at the appropriate positions in the module port list.
Positional association is used for small systems while named association is used for large
systems.

In the named association, Verilog connects external signals by the port names
rather than by positions. The port connections can be specified in any order as long as the
port names in the module definition precisely match the external signals. For example,
the above Verilog program with positional association can be rewritten using named
association as follows:
module system;

wire [3:0] d;
subsystem fl (.w(d[O]) , . x (d [3 1) , .y(d[Zl) , .z(d[l])) ;

endmodu 1 e
module subsystem (w, x, y, z);

input x, y;
output w, 2 ;

e ndmodul e
In the above, d[O] is associated with w, d[l] with z, d[2] with y, and d[3] with

x. The ordering of the ports of instance fl of subsystem module is not important because
the signals are associated by names. Note that if an instance of a module contains an
unconnected port, the position of the port in the instantiation is left empty. For example,
consider a module representing a three-input OR gate with declaration as or3 (f, a, b, c);
. If it is desired to keep the input at position b unconnected, an instance of or3 will be

Appendix I: Verilog 719

or3 (f, a, , c); . Note that an unconnected module input is placed in high impedance state
automatically, and unconnected outputs are not used.

1.1.2 Dataflow Modeling
Dataflow modeling in Verilog allows a digital system to be designed in terms of its function.
Dataflow modeling utilizes Boolean equations, and uses a number of operators that can act
on inputs to produce outputs. Some of the operators are listed in the table below:
Verilog operators
Operation Symbol
Arithmetic addition +
Subtract -_
NOT of a single bit !
AND between two operands &&

OR between two operands I /
Bit-by-bit NOT -
Bit-by-bit logical AND &

Bit-by-bit XOR A

Logical Equality __

Bit-by-bit logical OR I

Bit-by-bit XNOR - A or A,

__
Less than <
Greater than >
Conditional ?
Concatenation { }

All Boolean equations are executed concurrently whenever any one of the values
on the right hand side of one or more equations changes. This is accomplished using
Verilog’s continuous assignment statement. This statement uses the keyword assign. A
continuous assignment statement is used to assign a value to a net. A net is not a verilog
keyword. It is used to specify the output (defined by output or wire using declaration
statements) of a gate. For example, consider the following assignment statement:
assign e = (a * b) & (- c I d);

The Boolean expression on the right hand side of the above equation is first
evaluated, and the AND gate output is connected to wire e. In order to illustrate dataflow
modeling in Verilog, consider the following program for a 2-to-4 decoder:
module decoder2to4 (e , a, b, do, dl, d2, d3);

input e, a, b;
output do, dl, d2, d3;
assign dO = (e & -a & -b);
assign dl = (e & - a & b);
assign d2 = (e & a & -b);
assign d3 = (e & a & b);

endmodu 1 e

equations using Boolean operators.
The above dataflow program uses Verilog keyword assign followed by Boolean

1.1.3 Behavioral Modeling
The Behavioral description in Verilog is used to describe the function of a design in an
algorithmic manner. Behavioral modeling is used in the initial stages of a design process to
determine design-related tradeoffs. Behavioral modeling in Verilog uses constructs similar

720 Fundamentals of Digital Logic and Microcomputer Design

to C language constructs. Verilog provides two types of procedural blocks. They are
represented using keywords initial (an initial block executes once), and always (an
always block executes continuously until simulation ends). The designer typically uses
“initial” procedural block to provide initializations for a simulation, and produce stimulus
waveforms for a simulation test bench.

The “always” procedural block provides a cyclic activity flow from simulation
time of zero. This means that the procedural statements in the always block are executed
continuously until simulation ends. The procedural statements in behavioral modeling
execute sequentially in the order they are listed in the source code. The outputs of the
procedural statements must be declared by the keyword reg. Input ports cannot be declared
as reg since they do not normally retain values, rather affect the changes in the external
signals they are connected to. Note that a reg data type retains its value until a new value
is assigned. As an illustration of behavioral modeling, Consider the following Verilog
program written using Behavioral modeling for the 2-to-4 decoder:

module decoder2to4 (e, i f d) ;
output [3:0] d;
input [l:O]i;
input e;
reg [3:0] d;

always @ (i or e)
if (e==l)

begin
case (i)

0: d = 4’b 0001;
1: d = 4’b 0010;
2: d = 4‘b 0100;
3: d = 4‘b 1000;
default d = 4‘b xxxx;

endcase
end

else
d = 4‘b 0000;

endmodule
In the above, i (2-bit) and e (1-bit) are declared as inputs while d is declared

as 4-bit reg output. The conditional statement if-else allows execution of the case
statements if e=logic 1. Note that the decoder is enabled when enable line, e equals logic
1. The logical operator == is used for logical equality in the if expression. If e= logic 1
, the statements (between case and endcase) are executed sequentially. The statement
if (e==l) is executed as soon as any of the inputs after @ in the always statement
changes. The case statement is used for multiple branching. For example, case (i)
determines the value of the 2-bit vector, i and compares it with the values with the list of
the statements. The assignment statement associated with the first value that matches is
executed. Since the vector i is a two-bit vector, it can be any of the four values from 0 to
3. For example, consider the statement 2: d= 4’bOlOO; . If i = lo,(2 in decimal), then
the case statement after executing 2: d= 4’bOlOO; will assign four-bit vector, d with the
binary value 0100. This means that the line 2 of the decoder output is high while others are
low. An optional default value can be used for the case statement. This is for assigning
other values such as don’t care (x) or high impedance (z). Also, in the above, if e= logic

Appendix I: Verilog 72 1

0, the 4-bit output vector,d is assigned with low values. This is shown as part of the else
statement. This means that the decoder is disabled.

1.2

In the following, Verilog descriptions of typical combinational logic circuits
provided.

Verilog descrbtions of tvDical combinational logic circuits

are

i) Write a Verilog description for a full adder using two half adders and an OR gate as
described in Section 4.5.1.
Solution
Assume x, y, z as three inputs and cout,sum as the two outputs of the full adder. x and y
can be applied as the inputs to the first half adder generating sum, s l = x 0 y and carry,
c l = xy. sl can be applied as one of the inputs to the second half adder with z as the other
input. The second half adder will produce a sum,
sum = x 0 y 0 z which is the desired sum of the full adder. The carry output, c2 of the
second half adder will be (x 0 y) z. c l and c2 can be logically ORed together to provide
the carry output (cout) of the Full adder.
The Verilog description is given below:
/ / Half Adder
module half-adder (s , c, x, y) ;

output s,c;
input x,y;
xor (s,x,Y);
and (c,x,Y);

endmodule
/ / Full adder is obtained by instantiating half adder twice
/ / (Hierarchical modeling)
module full-adder (sum, cout, x, y, z) ;

output sum,cout;
input x ,y , z ;
wire sl,cl,c2;
half-adder Bl(sl,cl,x,y);
half-adder B2 (sum,c2, sl, z) ;
or (cout, cl, c2) ;

endmodu 1 e
ii) Write a Verilog description along with the test bench for a 4-bit ripple-carry adder using
behavioral modeling.
Solution
Although the following program may not be an efficient one, it is included for illustrative
purposes. As mentioned before, the test bench usually does not have any inputs and
outputs. The inputs applied for simulation are declared as reg data type while the outputs
to be obtained from the simulation are declared as wire data type. Therefore, in this test
bench, the inputs (a, b, cin) to the design module are declared as reg data while outputs
(s, cout) are declared as wire data type. The initial block specifies several values to be
applied during simulation. The outputs are verified with the $monitor system task. The
simulator displays time, inputs, and outputs in binary (since %b is used) as soon as there
is a change in one or more input values. Note that the concatenate operator { } in {cout,s}
is used to combine cout and s as a 5-bit output.

722 Fundamentals of Digital Logic and Microcomputer Design

/ / 4 bit adder
module adder4 (cout, s, a, b, cin) ;

output cout;
output[3:0] s;
input [3 : 01 a, b;
input cin;
reg[3,01 s;
reg cout;
always @ (a or b or cin)

{ cout, s } = atbtcin;
begin

end
endmodule

/ / Test bench
module adder-test;

/ / declare variables
reg [3:0] a ,b ;
reg cin;
wire [3:01 s;
wire cout;

/ / Instantiate
adder4 A1 (cout, s, arb, cin) ;

initial
begin

$monitor ($time, "a=%b, b=%b, cin=%b, cout=%b, s=%b",
a, b, cin, cout,~);

end

initial
begin

/ / Stimulus inputs

a = 4'bOOOl; b = 4'b0010; cin = l'bO;
#10 a = 4'bOlOl; b = 4'bOOlO;
#10 a = 4'blOOO; b = 4'blOlO;
#10 a = 4'blOOl; b = 4'b0111;

end
endmodu 1 e
/ / Simulation outputs

0 a = 0001, b = 0010, cin = 0, cout = 0, s = 0011
10 a = 0101, b = 0010, cin = 0, cout = 0, s = 0111
20 a = 1000, b = 1010, cin = 0, cout = 1, s = 0010
30 a = 1001, b = 0111, cin = 0, cout = 1, s = 0000

iii) Write a Verilog description for a BCD to seven-segment code converter (Section 4.4)
for driving a common-cathode display for displaying the decimal digits 2, 4, and 9. The
converter will turn the display OFF for any other inputs.
S o h tion
module code-converter (bcd-in,seven-seg-out);

input [3:0] bcd-in;
output [6:0! seven-seg-out;

reg [6:0] seven-seg-out;
/ / bcd-in = abcdefg

Appendix I: Verilog 723

parameter two = 7’b1101101;
parameter four = 7‘b0110011;
parameter nine = 7’b1110011;
parameter other = 7’b0000000;
always @ (bcd-in)

case (bcd-in)
2: seven-seg-out = two;
4: seven-seg-out = four;

seven seg-out = nine; 9:
default: seven-seg-out = other;

-

endcase
e ndmodu 1 e

EXAMPLE 1.1
Write a Verilog description for f= A + B (Section 3.6) using structural modeling.
Solution
/ / file name: func.v
//written using structural modeling
module func(a, b, c, f);

input a, b, c;
output f;
wire yo, yl;
not (yor C) ;
and(y1, b, YO);
or(f, yl, a);

endmodule

EXAMPLE 1.2
Write a Verilog description for a two-input exclusive-OR gate using structural modeling.
Solution
The program is written as follows:
/ / Exclusive OR operation
/ / file name: xor-1.v
module xor-1 (a, b, y) ;

input a, b;
output y;
xor (y, a, b);

endmodu 1 e

EXAMPLE 1.3
Write a Verilog description for a 2 to 4 decoder with one high enable as described in
section 4.5.3. Use (a) behavioral modeling (b) dataflow modeling .
Solution
(a) Using behavioral modeling:
Note that {] is concatenate operator in Verilog.
module decoder(Y3, Y2, Y1, YO, A, B, en);

/ / Define inputs and outputs

input A, B;
input en;
reg Y3, Y2, Y1, YO;

output Y3, Y2, Y1, YO;

724 Fundamentals of Digital Logic and Microcomputer Design

always @ (A or B or en)
begin
/ / Use behavioral method for decoder
if (en == 1)
begin

case ({ A , B))
2'bOO: {Y3,Y2,Yl,YO} =

2'bOl: {Y3,Y2,Yl,YO) =

2'blO: {Y3,Y2,Yl,YO} =

2'bll: {Y3,Y2,Yl,YO] =

default: {Y3,Y2,Yl,YO)
endcase

end
if (en == 0)
{Y3,Y2,Yl,YO) = 4'bOOOO;
end
endmodule
(b) Using dataflow modeling:
/ / 2-to-4 decoder
/ / file name: dec0der.v
module decoder(E, X, Y, 20, 21, 22,

output ZO, 21, 22, 23;
input E, X, Y;
assign 20 = E & -X & -Y;
assign 21 = E & -X & Y;
assign 22 = E & X & -Y;
assign 23 = E & X & Y;

e ndmodu 1 e

4'bOOOl;
4'bOOlO;
4'bOlOO;
4'blOOO;
= 4'bxxxx;

2 3) ;

EXAMPLE 1.4
Write a Verilog description for the 2-to-1 multiplexer of figure 4.21 using structural
modeling. Figure 4.21 is redrawn below:

b
se

Solution

/ / file name: mux2.v

/ / 1/0 port declarations
module mux2(a, b, sel, cout);

output cout;
input a, b, sel;

wire yo, yl, y2;
/ / Instantiate logic gate primitives
not (y o , sel) ;
and(y1, a, YO);
and(y2, b, sel);
or(cout, yl, y2);

/ / Internal nets

endmodule

Appendix I: Verilog 725

EXAMPLE 1.5
Write a verilog description for a four-bit binary adder using hierarchical modeling.
Solution

/ / Define a 1-bit full-adder
/ / file name: fu1ladd.v
module fulladd(sum, c-out, a, b, c-in);

/ / 1/0 port declarations
output sum, c-out;
input a, b, c-in;

/ / Internal nets
wire sl, cl, c2;

/ / Instantiate logic gate primitives
xor (sl, a, b);
and (cl, a, b);

xor (sum, sl, c-in);
and (c2, sl, c-in);
or (c-out, c2, el);

endmodule

/ / Define a 4-bit binary adder
module fulladd4(sum, c-out, a, b, c-in);

/ / I/O port declarations
output [3:0] sum;

input [3:01 a, b;
input c-in;

output c-out;

/ / Internal nets
wire cl, c2, c3;

/ / Instantiate four 1-bit full adders.
fulladd faO(sum[O], cl, a[O], b[O], c-in);
fulladd fa1 (sum[l], c2, a[l], b[l], el);
fulladd fa2(sum[2], c3, a[2], b[2], c2);
fulladd fa3 (sum[3], c-out, a[3], b[31, c3);
endmodule
Note: In Verilog, nesting of modules is not permitted. That is, a module cannot be placed
between module and endmodule of another module. However, modules can be instantiated
within other modules. This provides hierarchical modeling of design in Verilog. In the
above program, the full-adder is defined by instantiating primitive gates. The next module
describes the 4-bit binary adder by instantiating four full-adders. The instantiation is done
by using the name of the module that is instantiated with the same port names in this case.

EXAMPLE 1.6
Write a Verilog description for a full-adder using 74138 decoder and gates (Figure 4.17).

726 Fundamentals of Digital Logic and Microcomputer Design

Solution
This problem implements a full adder using a 3to8 decoder and two 4 input AND gates
as shown in figure 4.17 in the text book. Behavioral modeling is used for implementation
of 3to8 decoder and the 4 input AND gate while Structural modeling is used for the
interconnection of the decoder with the AND gates using the schematic of figure 4.17 as
follows:

S

C

that the bubble,O at t
output indicates LOW when selected.

The 74138 is a 3to8 decoder with an active low output when selected and
only driven if the chip enable lines are in a valid state (Gl, G2A, G2B :
decoder is not selected, the outputs are tristated.

-- the outputs
= 100,). If

are
the

For the 4 input AND gate, the inputs are ANDed using the bit-wise’AND operator “&”.

//Description: Full Adder Using 3-to-8 MUX with AND gates
//implementation of a f u l l adder using 2 four input
//AND gates and one 3to8 decoder-74138

//APPROACH:Behavioral. for the implementation of the decoder and 4 input
//AND gates.
//Structural approach when combining the decoder and AND gates,
//decoder74138 3 to 8 decoder with active low outputs.

//INPUTS: --X, Y, Z (select lines)

/ / --G1, nG2A, nG2B (enable lines)
/ / Out[7:0] (eight output lines)

//OUTPUTS: --high impendance “Z” outputs when chip not selected
/ / --active low output on line selected. (if chip selected)
module decoder74138 (nout, G1, nG2A, nG2B, X , Y , Z);

output [7:01 n0ut;
input G1, nG2A, nG2B, X, Y, Z;
reg [7:0] n0ut;
always @(G1 or nG2A or nG2B or X or Y or Z)

begin

/ / chip enabled

/ / select conditions for select lines w/ active low outputs

if((G1, nG2A , nG2B) ==3’b100)

begin

case (I X, Y, 2))
0: nOut[7:0] = 8‘b1111-1110;
1: nOut[7:0] = 8’b1111-1101;
2: nOut[7:0) = 8’b1111-1011;
3: nOut[7:0] = 8’b1111-0111;
4: nOut[7:0] = 8’b1110-1111;
5: nOut[7:0] = 8’b1101-1111;
6: nOut[7:0] = 8’b1011-1111;
7: nOut[7:0] = 8’b0111-1111;

Appendix I: Verilog 727

default nOut [7:0] = 8'bx; //this should never happen
endcase

end
else

/ / chip disabled
begin

end
nOut [7:0] = 8'hzz;

end
endmodule
//AND4:4 input and gate

//INPUTS: --A,B, C,D

//OUTPUTS: --Out AND output of all four inputs

module AND4 (Out, A, B, C, D) ;
output out;
input A,B,C,D;
reg Out;
always@(A or B or C or D)

Out=A & B & C & D;
begin

end
endmodu 1 e

//Full-Add:Full adder using 3to8 decoder 74138 and 2 four input AND gates
//INPUTS : -- X , Y , Z (X bit to add, Y bit to add , Z carry to add)

//OUTPUTS: --S = sum bit
/ / --C = Carry out bit
module Full-Add (C,S,X,Y,Z);

output c , s;
input X , Y , 2;

wire [7:0] decoder-out;

/ / 3 to 8 decoder enabled with bits to be added as inputs

decoder74138 decoder74138-0(decoder-out [7:01,l'bl,l'bO,l'bO, X , Y , Z);

/ / use 4 input AND gates to do final sum and carry

AND4AND4 - O(S,decoder-out[O] ,decoder-out [3l ,decoder-out [51 ,decoder-out [6 l) ;

AND4AND4-1 (C,decoder-out[Ol ,decoder-out [11 ,decoder-out[21 ,decoder-out[41) ;
endmodule

//Full-Add-Test: test bench for f u l l adder implemented w/ 3to8 decoder
//and two 4 input AND gates

module Full-Add-Test;
reg X , Y , Z;
wire S , C ;

Full-Add Full-Add-0 (C,S,X,Y,Z);

initial
$monitor("Time=%Od, X= %b, Y = %b, Z= %b, S= %b, C= %b",

$time, X, Y, Z, S, C);

728 Fundamentals of Digital Logic and Microcomputer Design

i n i t i a l
b e g i n
#O
X = 1‘bO;Y = 1’bO;Z = l’bO;
#50

#50

#50

#50
X = 1‘bl;Y = 1’bl ;Z = l’bO;
#50
X = 1‘bO;Y = 1‘bl;Z = l ’ b l ;
#50

#50
X = 1’bO;Y = 1’bO;Z = l‘bO;
end
endmodule
Note: An alternative to Verilog code for the AND4 module in the above is provided
below. The codes from i n p u t to a l w a y s can be replaced by using the reduction operator
& as follows:

X = 1‘bO;Y = 1‘bO;Z = l ‘ b l ;

X = 1‘bO;Y = 1’bl;Z = l’bO;

X = 1’bl;Y = 1‘bO;Z = l’bO;

X = 1‘bl;Y = 1’bl ;Z = l ’ b l ;

i n p u t [3 : 0 1 A;
reg o u t ;
a s s i g n o u t = & A;

1.3

Sequential circuits are typically described in Verilog using behavioral modeling. Verilog
utilizes two basic statements in behavioral modeling. They are represented using keywords
i n i t i a l and a l w a y s . An i n i t i a l block is created using an i n i t i a l statement. The
i n i t i a l block executes once during simulation starting at time 0. For several blocks, each
block executes concurrently at time 0. Each block completes its execution independent
of the other blocks. Keywords b e g i n and e n d are normally used to group multiple
behavioral statements. Grouping is not required for a single behavioral statement.
The i n i t i a l blocks are typically used to provide initializations for a simulation and
produce stimulus waveforms for a simulation test bench. An a l w a y s block, on the other
hand, is defined using an a l w a y s statement. The a l w a y s block executes the statements
continuously starting at time 0 until simulation ends. Furthermore, Keywords i n i t i a l
and a l w a y s can be used to generate a clock signal for simulating a sequential circuit. An
example is provided below:
module c lock;
reg c lk ;
i n i t i a l

a l w a y s

i n i t i a l

Verilog descriotions of tvpical svnchronous seauential circuits

clk=l‘bO;

2 0 c lk=-c lk ;

Appendix I: Verilog 729

#2000 $ f i n i s h ;
endmodule

In the above, the i n i t i a l statement starts the clock at time=O. The a l w a y s
statement complements the clock every 20 time units with a time period of 40 time units.
The simulation is ended by the system task $ f i n i s h at 2000 time units.
Verilog provides timing controls to specify the simulation at which procedural statements
execute. Two such timing controls include delay- based timing control and event control.
Delay-based timing control in an expression defines the time between start of execution
of the statement and its completion. Symbol # is used to specify delays. An example is
given below:
i n i t i a l
b e g i n

5 x=2; / / D e l a y e x e c u t i o n o f x=2 b y 5 t i m e u n i t s

The event control expression, on the other hand, defines a condition based on
the change in value in a register or a net to trigger execution of a statement or a block of
statements. An event control is defined by the symbol @ along with the keyword a l w a y s .
Level-sensi$ve and edge-triggered events will be considered next. In synchronous sequential
circuits, level-sensitive and edge-triggered flip-flops are encountered. The level-sensitive
flip-flop can be accomplished by the following statement:
a l w a y s @ (x o r e n a b l e)

As soon as a change in x or enable occurs,.the procedural statements in the
a l w a y s block will be executed. Verilog provides the keywords p o s e d g e and n e g e d g e
to implement positive-edge triggered or negative-edge triggered clock. For example, the
statements a l w a y s @ posedge clock and a l w a y s @ n e g e d g e c l o c k will initiate
execution of the procedural statements in the always block respectively for positive clock
and negative clock. Since a sequential circuit is comprised of flip-flops and combinational
circuits, it can be represented using behavioral and dataflow modeling. Flip-flops can be
described with behavioral modeling using a l w a y s keyword while the combinational
circuit part can be assigned with dataflow modeling using a s s i g n keyword and Boolean
equations.

Note that a behavioral model in Verilog is defined using the keyword i n i t i a l
or a l w a y s followed by one or several procedural statements. The procedural statements in
behavioral modeling execute sequentially in the order they are listed in’the source code. The
final output of these statements must be of the reg data type rather than w i r e (normally
used for structural) data type. Note that wire continuously updates the output while the
reg stores the value until a new value is provided.

Next, the meaning of “procedural statement” will be discussed. A procedural
statement is an assignment in an i n i t i a l or a l w a y s statement. Also, procedural
statement assigns value to a register (data objects of type reg). There are three types
of procedural assignments. These are procedural assignment (uses = as the operator),
continuous procedural assignment (uses keyword a s s i g n with = as the operator), and
non-blocking procedural assignment (uses <= as the operator). The right hand side of a
procedural assignment is an expression which must evaluate to a value while the left hand
side is typically a r e g . The procedural continuous assignment retains the last output (when
a digital circuit is disabled) until it is enabled again. This is useful in modeling latches
and flip-flops. The first two procedural assignments that use the = operator execute the
statements sequentially. These statements are called blocking assignments. This means
that in blocking assignment, the next procedural assignment must wait until the present

730 Fundamentals of Digital Logic and Microcomputer Design

one is completed. In non-blocking procedural assignment, executions of the statements that
follow are not blocked. This means that the right hand side of the expression is evaluated
first, but assignment to the left hand side is not made until all expressions are evaluated.
Next, consider an example of the following blocking assignments:

reg a, b, c;
reg [3:0] x, y;
//Must place Behavioral statements in initial or always block
initial
begin

a=l; b=O; c=O;

y= 4‘bllll; x=y;
#10 y[l]= l’bO;

end
In the above, the statement b=O is executed only after a=l is executed. The

statements in the begin and end block can only execute in sequence since blocking
statements are used. All statements a = l through x=y are executed at time=O. However,
statement y [1] = 1’ bO is executed at time=lO since there is a delay of 10 time units in
this statement.

As mentioned before, non-blocking assignments permit scheduling of assignments
without blocking execution of the statements that follow. In order to illustrate non-blocking
assignments, the previous example is modified as follows:
reg a , b, c;
reg [3:01 x, y;
//Must place Behavioral statements in initial or always block
initial
begin

a=l ; b=O; c=O;
y= 4‘bllll; x=y;
y[l] <= #10 l‘bO;
x[l:O]<= #5 2’bOO

end
In the above, statements a=l through x=y are executed sequentially at time 0.

Then, the two non-blocking assignments are executed simultaneously. The statement y [1]
=l’bO is scheduled to execute after 10 time units while x [I: 01 = 2’bOO is scheduled
to be executed after 5 time units. The simulator schedules execution of a non-blocking
assignment, and then continues with the next statement in the block without waiting for
completion of the present statement. When the two non-blocking statements in the above
are executed, the right hand side expressions are evaluated first, and are stored in temporary
locations. The assignments to the left hand side are made after both the expressions are
completed. Non-blocking assignments are used in digital design where multiple concurrent
data transfers such as in a register transfer, take place after a common event (positive or
negative edge triggered clock).

For state machines, the inputs including clock, and outputs can be declared at
the beginning of a Verilog program. The states can be defined using parameter keyword
in Verilog which defines constants in a module. Statement using always along with
posedge or negedge can be used for the clock. Statements using case and i f -else can
be used to implement various state transitions.

Appendix I: Verilog 73 1

EXAMPLE 1.7
Write a Verilog description for a D flip-flop (a) with a positive edge reset and a negative
edge triggered clock. Use i f - e l se .

(b) with a positive edge triggered clock and a negative edge clear input. Use i f -else.
Solution

1.7 (a)
/ / D Flip-Flop
/ / Module DFF with synchronous reset
/ / file name: dff1op.v

module dfflop(q, d, clk, reset) ;
input d, clk, reset;
output q;
reg q;

//always do this when the reset is positive edge or clock is
//negative edge
always @(posedge reset or negedge clk)
/ / if it‘s reset q will equal to zero
if (reset)

/ / if it’s clock q will equal to d
else

en dmodu 1 e

q = l’bO;

q = d;

1.7 (b)

/ / FileName: D.v
//description: D flipflop
module D-ff (Q, Q-bar, CLR, CLK, D);
output Q, Q-bar;
input CLR, CLK, D;

reg Q, Q-bar;
always @(posedge CLK or negedge CLR)
begin
//When CLR == 0 (neg logic) Q is always 0
//else @ rising edge of clock, Q <-- D
if (!CLR)
begin

Q <= l‘bO;
Q-bar <= l’bl;

end
else

begin
Q <= D;
Q-bar <= !D;

/ / Q-bar <= !D;
end

end

endmodule

732 Fundamentals of Digital Logic and Microcomputer Design

EXAMPLE 1.8
Write a Verilog description for a JK flip-flop with negative edge triggered clock. Use
case statements.
Solution

/ / JK ff using case statements

/ / J = A and K=B as inputs

/ / Q and nQ are outputs

module j k-ff (A, B, clock, Q, nQ) ;

input A , B , clock;
output Q,nQ;
reg Q;
assign nQ=-Q
always @ (negedge clock)

case (t A , B J)
2‘ bOO : Q=Q;
2 bO 1 : Q=1’ bO ;
2‘blO:Q=l’bl;
2’bll :Q=-Q;
endc a s e

endmodule

EXAMPLE 1.9
Write a Verilog description for the state diagram of Figure 5.21. Use a reset input so that
the hardware can be initialized. Figure 5.21 is redrawn below:

Solution
//Description:state machine of Example 5.2
//File Name: fig5 21.v

//fig. 5.21 Implementation of state machine on figure 5.21
//APROACH : behavioral

Appendix I: Verilog 733

module fig5-21(Z , state , A , clk , reset);
outputz ;
output [l: 01 state;
re9 [1:0] currentstate , state;
reg Z ;
input A , clk , reset;
always @ (posedge clk)
begin
if (reset == 1) //need to reset to start from a known state at
//some point
currentstate = 0 ;
case (currentstate) //step thru all states per state table

0:
if(A == 1)
begin

state=l;
z = 0;

end

begin
else

state=O ;
z=1;

end
1:

if (A==l)
begin

state=2 ;
z = 0;

end

begin
else

state=3;
z = 0;

end
2:

if (A == 1)

state 3:
begin

2 = 1;
end
else

begin
state=O;
z=1;
end

3:
if (A==l)

734 Fundamentals of Digital Logic and Microcomputer Design

begin
state = 0;
z=1;

end
else
begin
state=l;
z=1;
end
default

if (A == 1)
begin
state = 2'bxx;
Z = l'bx;

end

begin
else

state = 2'bxx ;

Z = l'bx;
end

endcase
currentstate = state ;
pass
end
endmodule
module fig5-21-0 test;
reg A , clk, reset;
wire [1:01 state;

//update state for next time

wire Z ;
fig5-2 1 fig5-21 0 (Z, state,A, clk, reset) ; -

$time, state, A, 2 , reset) ;
initial

begin
#O
A= l'bO; //reset to state 0
reset=l'bl;
clk =l'bO;
#20
clk =l'bl;
#20
A= l'bO; //Input 1 to go to state 1
reset=l'bO;
clk =l'bO;
#20
clk = l ' b l ;
#20
A= l'bO; //Input 0 to go to state 3
reset=l'bO;
clk =l'bO;

Appendix I: Verilog 73 5

2 0
c l k =l‘bl;
#20
A= l‘bl; //Input 1 to go to state 0
reset=l’bO;
c l k =l’bO;
#20
c l k =l’bl;
#20
A= l’bO; //Input 0 to stay at state 0
reset=l’bO;
c l k =l’bO;
#20
c l k = l ‘ b l ;
2 0
A= l‘bO; //Input 1 to go to state 1
reset=l’bO;
c l k =l‘bO;
#20
c l k =l‘bl;
#20
A= l‘bl; //Input 1 to go to state 2
reset=l‘bO;
c l k =l‘bO;
#20
e l k =l‘bl;
2 0
A= l ‘ b l ; //Input 1 to go to state 3
reset=l’bO;
c l k =l‘bO;
#20
c l k =l’bl;
2 0
A= l’bl; //Input 1 to go to state 0
reset=l’bO;

c l k =l‘bO;
2 0
c l k =l’bl;
2 0
A= l‘bl; //done
reset=l’bO;
c l k =l’bO;
#20
c l k =l‘bl;
end

endmodule

736 Fundamentals of Digital Logic and Microcomputer Design

EXAMPLE 1.10
Write a Verilog description for the two-bit counter of example 5.5.
Solution

/ / exercise 5.5
module counter2bit (clock, reset, state) ;

input clock, reset;
output [1:01 state;
reg [1:0] state, next-state;
parameter so0 = 2’bOO,

so1 = 2‘b01,
s10 = 2‘b10,
sll = 2‘bll;

always @ (posedge clock or posedge reset)
begin

if (reset == 1)

else
state <= s00;

state <= next-state;
end

always @ (state)
begin

case (state)
so0 : next-state <= sol;
so1 : next-state <= s10;
s10 : next-state <= s l l ;
sll : next-state <= s00;

endcase
end

endmodul e
module test;

reg clock, reset;
wire [1:0] state;

counter2bit c2bit (clock, reset, state) ;
initial
begin

$display (” clock reset\tstate binary \tstate decimal”);
$monitor (“ %b\t %b\t %b\t %d “,

clock, reset, state, state) ;
#O reset = 0;
#1 reset = 1;
#1 reset = 0;
end
initial

begin
#O clock = 0;

#40 $finish;
end

endmodu 1 e
always #1 clock = -clock;

Appendix I: Verilog 73 7

Note: In the above, inclusion of \t with statements for $display and
$monitor provides horizontal tab.

=lock reset
0 0
1 1
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0
0 0
1 0

state binary state decimal
xx X

00 0
00 0
01 1
01 1
10 2
10 2
11 3
11 3
00 0
00 0
01 1
01 1
10 2
10 2
11 3
11 3
00 0
00 0
01 1
01 1
10 2
10 2
11 3
11 3
00 0
00 0
01 1
01 1
10 2
10 2
11 3
11 3
00 0
00 0
01 1
01 1
10 2
10 2
11 3

738

EXAMPLE I. 11
Write a Verilog description for the three-bit counter of Example 5.7.
Solution

Fundamentals of Digital Logic and Microcomputer Design

/ / example 5.7
module nonbinarycounter(clock, reset, state);
input clock, reset;
output [2:0] state;
reg [2 : 01 state, next-state;
parameter S O = 3'b000, sl = 3'b001,

s2 = 3'b010, s3 = 3'b011,
s4 = 3'b100, s5 = 3'b101,
s6 = 3'b110, s7 = 3'blll;

always @ (posedge clock or posedge reset)
begin

if (reset == 1)
state <= SO;

else
state <= next-state;

end

always @ (state)
begin

case (state)
SO : next-state <= s2;
sl : next-state <= s3;
s2 : next-state <= s3;
s3 : next-state <= s5;
s4 : next-state <= sl;
s5 : next-state <= s6;
s6 : next-state <= s7;
s7 : next-state <= SO;

endcase
end

endmodule
module test;

reg clock, reset;
wire [2:0] state;
nonbinarycounter nbc (clock, reset, state) ;

initial
begin
$display (" clock reset\tstate binary \tstate decimal");
$monitor (" %b\t %b\t %b\t %d n

clock, reset, state, state) ;
O reset = 0;
#1 reset = 1;
#1 reset = 0;
end
initial

begin
#O clock = 0;
#40 $finish;
end

always #1 clock = -clock;

Appendix I: Verilog 739

endmodule
N o t e : In the above, inclusion of \t with statements for $display and $monitor

-ovides horizontal tab.

:lock reset state binary state decimal

0 0 xxx X

1 1 000 0
0 0 000 0
1 0 010 2
0 0 010 2
1 0 011 3
0 0 011 3
1 0 101 5
0 0 101 5
1 0 110 6
0 0 110 6
1 0 111 I
0 0 111 7
1 0 000 0
0 0 000 0
1 0 010 2
0 0 010 2
1 0 011 3
0 0 011 3
1 0 101 5
0 0 101 5
1 0 110 6
0 0 110 6
1 0 111 7
0 0 111 1
1 0 000 0
0 0 000 0
1 0 010 2
0 0 010 2
1 0 011 3
0 0 011 3
1 0 101 5
0 0 101 5
1 0 110 6
0 0 110 6
1 0 111 I
0 0 111 1
1 0 000 0
0 0 000 0
1 0 010 2

740

EXAMPLE 1.12
Write a Verilog description for the General Purpose register of figure 5.41.
Solution
.

Fundamentals of Digital Logic and Microcomputer Design

* * * *
Description: Basic Cell
File Name: BasicCe1l.v
.
* * * /
module Basiccell(q, CLR, CLK, s, A 1 ;
output q;
input CLK, CLR;
input [1:0] s;
input [3:0] A;
wire data, q-bar;
mux4tol M 1 (data, s , A) ;

D-ff D O (q, q-bar, CLR, CLK, data) ;

endmodule

.
****Description: D Flip Flop
File Name: D.v

* * * /
module D-ff(Q, Q-bar, CLR, CLK, D) ;

output Q, Q-bar;
input CLR, CLK, D;

.

reg Q, Q-bar;
always @ (posedge CLK or negedge CLR)
begin //When CLR == 0 (neg logic) Q is always 0

//else I? rising edge of clock, Q <-- D
if (!CLR)

begin
Q <= l’bO;
Q-bar <= l’bl;

end

begin
else

end

Q <= D;
Q-bar <= !D;

e n d

endmodule
/ / The code for the 4 to 1 multiplexer used in the Basic cell is:
/ / Filename : mux4tol.v
//description: 4 to 1 multiplexer

module mux4tol(X, s, A);
output x;
input [1:01 s;
input [3:01 A;
assign X = (s == Z‘bOO)? A[O]:

(s == 2’b01)? A[1]:
(s == 2’b10)? A[1]: A[3];

endmodule

//description: General purpose register

Appendix I: Verilog 74 1

module GPR (Q, CLR, CLK, S, X, r-in, 1-in) ;
output [3:01 Q;
input CLR, CLK, r-in, 1-in;
input [1: 01 S ;

input [3:0] X;
wire [3:0] A;
Basiccell Cell3 (A[3] , CLR, CLK, S,
Basiccell Cell2 (A[21 , CLR, CLK, S,
Basiccell Cell1 (A[11 , CLR, CLK, S,
Basiccell Cell0 (A[O] , CLR, CLK, S ,
assign Q = A;

endmodule

1.4 Status register desim using Verilog

In this section, the Verilog description of the Status register of Example 6.1 will be
provided.

EXAMPLE 1.13
Write a Verilog description of the Status register of Figure 6.1.
Solut ion

VeriLogger Program, Test Bench and Results
/ / Status Register

module statsreg (stat, cfinal, cprev, clk, r) ;

input [3 : 0] r;

input cfinal, cprev, clk;

output [4:0] stat;

reg [4:0] stat;

/ *
output is shown at a positive edge of the clock.

* /

The status register is 5-bits. They will be latched and the

always@ (posedge clk)

begin

stat [O] <= r [3] A r [ZI Ar [l] A r [O] ; //Parity flag

stat [l] <= cfina1”cprev; //Overflow flag

stat[Z] <= -(r[3] (r[Z] Ir[l] Ir[O]); //Zero flag

stat[3] <= r[3]; //MSB

stat[4] <= cfinal; //Final carry

end

endmodule
/ / The following is a test bench to verify the results of our

module above.

module tbench;

reg [3:0] r-in;

reg cfinal-in, cprev-in, clock;

742 Fundamentals of Digital Logic and Microcomputer Design

wire [4:0] stat-out;

/ / module statsreg(stat, cfinal, cprev, clk, r) ;

statsreg SRegl (stat-out, cfinal-in, cprev-in, clock, r-in) ;

initial

begin

$monitor("Time=%Od clock=%b r - in=%b cfinal - in=%b cprev - in=%b

stat-out=%b", $time, clock, r-in, cfinal-in, cprev-in, stat-out) ;
end

always

begin
#1 clock=O;

#I clock=l;

end

initial

begin

#O r-in=O; cfinal-in=l; cprev-in=l;

#2
3 r_in=6; cfinal-in=l; cprev-in=O;

#2
#3 r_in=15; cfinal-in=O; cprev-in=O;
#2
#1 $finish;

end

endmodule

Time=O clock=x r_in=0000 cfinal-in=l cprev-in=l

Time=l clock=O r - in=0000 cfinal-in=l cprev-in=l

Time=2 clock=l r_in=0000 cfinal-in=l cprev-in=l

Time=3 clock=O r_in=0110 cfinal-in=l cprev-in=O

Time=4 clock=l r - in=0110 cfinal-in=l cprev-in=O

Time=5 clock=O r_in=0110 cfinal-in=l cprev-in=O

Time=6 clock=l r-in=llll cfinal-in=O cprev-in=O

Time=7 clock=O r-in=llll cfinal-in=O cprev-in=O
Time=8 clock=l r-in=llll cfinal_in=O cprev-in=O

stat-out=xxxxx

stat-out=xxxxx

stat_out=10100

stat_out=10100
stat_out=10010

stat_out=10010

stat_out=01000

stat_out=01000
stat_out=01000

1.5 CPU design using Veriloz

Memory can be modeled in Verilog as an array of registers. The following are some of
the typical examples of specifying memory in Verilog:
reg addr [0:2047]; / / Memory with 2K 1-bit words (Addresses

Appendix I: Verilog 743

/ / addrc01
/ / through addr[2047]).

reg [15:01 addr [0:4095]; / / Memory with 4K 16-bit words (Addresses
/ / addr[O] through addr[4095]).

reg [2 2 : 0] mem [52:0]; / / Memory of size 5 3 x 2 3 bits (Addresses mem[O]
/ / through mernr521).

data = rnem[locl / / Memory read operation. Read the contents of a
/ / memory
/ / location addressed by loc into a register
/ / called data.
/ / Memory write operation. Write the contents of
/ / a register
/ / called data into a memory location addressed
/ / by loc.

mem[loc] = data

Examale 1.14

Write a Verilog description for the ALU of Figure 7.24.
Solut ion

The verilog coding for 4-bit ripple carry adder is:
~ include "FA. v"
module Add4 (c-out, Sum, A, B, c-in) ;
//Add 2 4-bit numbers A & B with carry in
//output Sum and c-out

output [3:0] Sum;
input [3:0] A, B;
input c-in;
wire [2:0] carry;

output c-out;

//need 4 f u l l adders

FA fa0 (carry[Ol, Sum[O], A[Ol, B[O] I c-in) ;
FA fa1 (carry[ll I Sum[l], A[l], B[11 I carry[O]);
FA fa2 (carry[2], Sum[2], A[21 I B[21 I carry[ll) ;

FA fa3 (c-out, Sum[3] I A[3] I B[31 I carry[i]]) ;
endmodu 1 e

//The included code for full adder is:

module FA(c-out, sum, a, b, c-in);
//Full Adder

input a, b, c-in;
output sum, c-out;
assign{c-out, sum} = a + b + c-in;

endmodu 1 e
//The coding for multiplexer is:

module mux2tol (x, select, AO, Al) ;

input select, AO, Al;
assign x = (select)? Al: AO;
endmodu le

output x;

744 Fundamentals of Digital Logic and Microcomputer Design

//description: 4-bit ALU
module ALU(F, C-out, X, Y, fCode);
output [3:0] F;

input [3:01 X, Y;
input [1:0] fCode;
wire [3:0] B, Y-not, AU, LU, LU-0,
wire carry;

output C-out;

LU-1;

//Structure of Arithmetic unit
//Prep inverted Y
not (Y-not [O], Y [O]) ;

not(Y-not[ll, Y[11);
not (Y-not [21, Y [21) ;
not (Y-not [3], Y [31) ;

//Prep input B to adder
mux2tol BO(B[O], fCode[OI, Y[O], Y not[Ol);
mux2tol B1(B[1], fCode[O], Y[1], YInot[ll);
mux2tol B2 (B[2], fCode [O], Y [Z], Y-not [21) ;
mux2tol B3(B[3], fCode[OI, Y[31, Y_not[31);

//Feed signal to adder
Add4 Adder(carry, AU, X, B, fCode[Ol);
//Only when S1 = 0, we need carry
//otherwise carry should be 0
and(C-out, carry, -fCode[l]);

//Structure of logic unit;
//Input when SO == 0
and(LU-O[Ol, XlOl, Y I O I) ;
and(LU-O[lI, X[ll, Y[11);
and (LU-0 [2 1 , X [2 1 , Y [2 1) ;
and(LU_0[31, X[31, Y[31);
//Input when SO == 1
xor (LU-1 [OI, X[Ol, Y [Ol) ;
xor (LU-1 [ll, X[11, Y[11);
xor (LU-1[21, X[21, Y[21) ;
xor (LU-1 [3], X[31, Y[31) ;

//calc output of logic unit
mux2tol GO (LU[O] , fCode [O], LU-0 [O] , LU-1[01) ;
mux2tol Gl(LU[l], fCode[OI, LU-o[11, Lu-1[11);
mux2tol G2(LU[2], fCode[O], LU-0[21, LU-1[21);
mux2tol G3 (LU[3], fCode [O], LU-0 [3l, LU_1[3l) ;
//Connect arithmethic and logic unit together
mux2tol FO(F[O], fCode[ll, AU[Ol, LU 01);
mux2tol Fl(F[l], fCode[l], AU[ll, LU 11);
mux2tol F2(F[2], fCode[l], AU[2], LU 21);

mux2tol F3(F[3], fCode[ll, AU[31, LU
endmodul e

31);

Appendix I: Verilog 745

Ons I 120ns 14Ons 160 n s 180ns IlOOns

f F V 6 k : F
\ D r’, F -yz / \

;)m,F,v-) 2 - 3 1, 0 yi-/f 2 y, 3

YDX C 1 2 ~ D ~ ~ ~ 9 1 5 1 7 1 6 ’ ~ ~ ~ . - ,’-

ExamDle 1.15
Write a Verilog description for the microprogrammed CPU of section 7.4.

Solution
Xlinix ModelSim simulator is used to simulate the Verilog program. A test bench

is written to instantiate the CPU module and generate the clock.
Seven modules are created in the Verilog program to implement the

microprogrammed CPU. The modules are memcntrl, reg-tlbit, alu-tlbit, muxtlbit,
ram, processor and cpu. The design is created using hierarchical method. The cpu
module is at the top of the hierarchy, processor and memcntrl are under cpu module, and
finally the rest of the modules are under the processor.

The memcntrol contains the ROM, filled with a 23-bit value, which contains
a 4-bit condition select, a 6-bit branch address, and 13-bit control input (C12 - CO) for
the registers, ALU, and RAM. It also has the conditional statement that will make the
Microprogram Counter (MPC) to count up by one if the loadhncrement is LOW, or will
load the branch address passed by the control memory buffer if loadincrement is HIGH. The
processor module connects mux, a h , registers (regA, regIR, regMAR, regPC, regBUFF),
and the RAM. It also includes the instruction decoder and performs the following (Figure
7.58) : If condition select field = 0, loadhncrement = 0, no branch. I f condition select = 1
and Z = 1, branch. If condition select = 2 and C = 1, branch. If condition select = 3 and I3
= 1, branch. If condition select = 4 and XC2 = 1, branch. If condition select = 5 and XC 1 =

1, branch. If condition select = 6 and XC0 = 1, branch. If condition select = 7 and I0 = 1,
branch.

The 256 x 8 RAM holds program instructions and data. The program is stored
beginning at RAM address 0. This program tests two instructions (LOAD and ADD) of
the CPU. The program will first load a value into register A from RAM address 100, add
it to itself and store the result in register A.

The CPU module has only two inputs. These are reset and clock. It connects the
processor module with the memory control module to complete the hierarchy of the
microporgrammed CPU design.
Verilog code for the microprogrammed CPU is provided in the following:

/ / Microprogrammed Controller Module for the CPU
/ / Port declarations

746

module memcntrl (C-fn, Z, C, 13, XC2, XC1, XCO,IO, reset, clk);
input 2 , C, 13, XC2, XC1, XCO, 10, reset, clk;
output [12:0] C-fn;
reg [22:0] mem [52:01;
reg [12:0] C-fn;
reg [22:0] regCMDB;
reg [5:01 regMPC;
reg Id-inc;
/ / Binary microprogram
/ / The size of the control memory is 53 x 23 bits. The 23-bit
/ / control word consists of 13-bit control function containing CO
/ / through C12 with CO as bit 12 and C12 as bit 0. The condition
/ / select field is 4-bit wide (bits 19-22). For example, consider
/ / the code for line 0 with the operation PC <- 0 in the
/ / following. Since there is no condition in this operation,
/ / condition select field (CS) bits are 0‘s. The branch address
/ / field (Brn)bits are assumed as don’t cares arbitrarily. To
/ / clear PC to 0, CO = 1 (bit 12). To disable RAM, C6 = 1. C1,
/ / C2, C4, C7, C8 and C9 are initialized to 0‘s. Other bits are
/ / arbitrarily initialized as don’t cares.
initial
begin

Fundamentals of Digital Logic and Microcomputer Design

/ / 23-bit value contains a 4-bit condition select, a 6-bit branch
/ / address, and 13-bit control. input (C12 - CO) for the
/ / registers, ALU, and RAM.

/ / cs Brn Cntrl Func
mem[O] = 23’b0000xxxxxx100x0xlOOOxxx;
mem[l] = 23‘b0000xxxxxx00001xlOOOxxx;
mem[2] = 23’b0000xxxxxx010x01OOlOxxx;
mem[3] = 23’b0011001110000x0xl@OOxxx;
mem[4] = 23’b0110001000000x0xl@OOxxx;
mem[5] = 23‘b0101001010000x0xlOOOxxx;
mem[6] = 23‘b0100001100000x0xlOOOxxx;
mem[7] = 23‘b1000110100000x0xlOOOxxx;
mem[8] = 23’b0000xxxxxx000x0xlOOllll;
mem[9] = 23’b1000000001000x0xlOOOxxx;
mem[lO] = 23’b0000xxxxxx000x0xlOOllOO;

/ / 22 19 12 0

mem
mem
mern
mem
mem
mem
mem

111 = 23’b1000000001000x0xlOOOx~~;
121 = 23’b0000xx~~xx000~0~1001101;
131 = 23’b1000000001000~0~lOOOx~~;
141 = 23’b0110010111000~0xlOOOx~~;
151 = 23‘b0101100000000x0xlOOOx~~;
161 = 23’b0100101001000x0xlOOOx~~;
171 = 23’b0000xxxxxx00001xlOOOxxx;

mem[l8] = 23’b0000xxxxxx010x01OlOOxxx;
mem[l9] = 23’b0000xxxxxx00011xlOOOxxx;
mem[20] = 23’b0000xxxxxx000x01OlOOxxx;
mem[21] = 23rb0000xxxxxx000x0x1001110;
mem[22] = 23’b1000000001000x0xlOOOxxx;
mem[231 = 23’b0000xxxxxx0@001xlOOOxxx;
mem[24] = 23‘b0000xxxxxx010x01OlOOxxx;

Appendix I: Verilog

mem[25] = 23’b0000xxxxxx00011xlOOOxxx;
mem[26] = 23’b0111011110000x0xlOOOxxx;
mem[27] = 23’b0000xxxxxx000x01OlOOxxx;
mem[28] = 23’b0000xxxxxx000x0xlOOlOOl;
mem[29] = 23’b1000000001000x0xlOOOxxx;
mem[30] = 23’b0000xxxxxx000x00OOOOxxx;
mem[31] = 23’b1000000001000x0xlOOOxxx;
mem[32] = 23’b0000xxxxxx00001xlOOOxxx;
mem[33] = 23’b0000xxxxxx010x01OlOOxxx;
mem[34] = 23’b0000xxxxxx00011xlOOOxxx;
mem[35] = 23’b0000xxxxxx000x01OlOOxxx;
mem[36] = 23’b0111100111000x0xlOOOxxx;
mem[37] = 23’b0000xxxxxx000x0xlOOlOlO;
mem[38] = 23’b1000000001000x0xlOOOxxx;
mem[39] = 23’b0000xxxxxx000x0xlOOlOll;
mem[40] = 23’b1000000001000x0xlOOOxxx;
mem[41] = 23’b0000xxxxxx00001xlOOOxxx;
mem[42] = 23’b0000xxxxxx000x0xlOOOxxx;

747

mem
mem
mem
mem
mem
mem
mem
mem

431 = 23’b0111101111000~110000~~~;
441 = 23’b0001110010000x0xlOOOxxx;
451 = 23‘b0000x~~~xx010~0x1000~~~;
461 = 23’b1000000001000~0~1000~~~;
471 = 23’b0010110010000~0~1000~~~;
481 = 23’b1000000001000~0xlOOO~~~;
491 = 23‘b0000xxxxxx010~0xlOOO~xx;
5 0

mem[51
mem [52
end
a 1 ways

= 23’b0000xxxxxx001~010000~~~;
= 23’b1000000001000x0xlOOOxxx;
= 23’b1000110100000~0xlOOO~~~;

@ (reset)

if (reset)
begin / / when reset is active and reset is high

end
regMPC = 6‘b000000;// initialize MPC to zero

//conditional statement that will make the Microprogram Counter
//(MPC) to count up by one if the load/increment is low, or will
//load the branch address passed by the control memory buffer.

always @ (posedge clk) / / when clock is at positive edge
begin

regCMDB = mem[regMPC];
/ / register regCMDB contains 23-bit contents of memory addressed
/ / by regMPC

C-fn = regCMDB [12:0];
/ / control function equals to first 13 bits of register CMDB

/ / if condition select field = 0, load /increment = 0, no
/ / branch.
/ / if condition select = 1 and Z = 1, branch
/ / if condition select = 2 and C =1, branch
/ / if condition select = 3 and I3 = 1, branch
/ / if condition select = 4 and XC2 = 1, branch

748 Fundamentals of Digital Logic and Microcomputer Design

/ / if condition select = 5 and XC1 = 1, branch
/ / if condition select = 6 and XCO = 1, branch
/ / if condition select = 7 and I0 = 1, branch
/ / if condition select = 8 and load /increment= 1, branch

(regCMDB [22:19] == 0)?l'bO: / / if cmdb= 0 Id-inc = 0
(regCMDB [22:19] == 1)?Z: / / if cmdb= 1 Id-inc = 2
(regCMDB [22:19] == 2)?C: / / if cmdb= 2 Id-inc = C
(regCMDB [22:19] == 3)?I3: / / if cmdb= 3 Id-inc = I3
(regCMDB [22:191 == 4)?XC2: / / if cmdb= 4 ld-inc = XC2
(regCMDB [22:191 == 5)?XC1: / / if cmdb= 5 Id-inc =XC1
(regCMDB [22:191 == 6)?XCO: / / if cmdb= 6 ld-inc = XCO
(regCMDB [22:19] == 7)?IO: / / if cmdb= 7 Id-inc = I0
(regCMDB [22:19] == 8)?l'bl: / / if cmdb= 8 ld-inc = 1

assign Id-inc =

Id inc = x - l'bx; / / else
if (Id-inc)

else
regMPC = regCMDB [18:131; / / load branch address

regMPC = regMPC + 1; / / increment MPC by 1
end

endmodu 1 e

//Register 8 bit module

/ / General Purpose Register (GPR)
module reg-8bit (b, a, self clk);
input [7:0] a;
input [2:0] sel;
input clk;
output [7:0] b;
reg [7:01 b;

always @ (sel)
begin

b <= (sel==O)?b: / / b = b if sel = 0
(sel==l)?O : / / b= 0 if sel = 1
(sel==2)?b+l : / / b= btl if sel = 2
(sel==4) ?a: / / b= a if sel = 4
8'bx; / / else b=xxxxxxxx

end
endmodul e
//ALU module
/ / ALU with zero and carry flags
module alu-8bit (f, zflag, cflag, a, b, sel);
input [2:0] sel;
input [7:01 a, b;
output [7:01 f;
output zflag, c-flag;
reg z-flag, cflag;

initial
begin

z-flag = l'bO; / / initialize zero and carry flag to zero

end
c-flag = l'bO; / /

Appendix I: Verilog 749

assign f =(sel==O)?O : / / f=O if sel=O
(sel==l) ?b: / / f=b if sel=l
(sel==2)?atb: / / f=atb if sel=2
(sel==3)?a-b: / / f=a-b if sel=3
(sel==4)?a+l : / / f=a+l if sel=4
(sel==5)?a-l ://f=a-1 if sel=5
(sel==6) ?a&b://f=a&b if sel=6
(sel==7)?-a://f=-a if sel=7
8'bx; / / else f=xxxxxxxx

//Carry and Zero Flag registers
always @ (f)

begin
if (f==O) / / if alu output = 0, zero flag = 1

else if (f ! = 0 & (sel != 3'bxxx)) / / if f not zero
assign z-flag =l;

/ / and
/ / sel not xxx

assign z-flag = 0; / / zero flag = 0

end

always@ (f)

begin
if (sel==4 I sel==2)

if (carry) / / if alu outputs carry, carry flag = 1
assign c-flag = 1;
else if (!carry & (sel ! = 3'bxxx)) / / if not carry and

carry = (a[7l+b[7])*f[7l+a[71*b[71;

assign c-flag = 0; / / sel not xxx, carry = 0
end

e ndmodul e
//Processor module (Figures 7.53 and 7.56)
/ / Processor

module processor (13, XCO, XC1, XC2, XC3, 10, z-flag, c-flag, clock,
c0, cl, c2, c3, c4, c5, c6, c7, c8, c9, c10, cll, c12);
input clock;
input c0, cl, c2, c3, c4, c5, c6, c7, c8, c9, c10, cll, c12;
output 13, XCO, XC1, XC2, XC3, 10, z-flag, c-flag;
wire [7:0] IR-out;
wire [7:0] F-out, BUFF-out, RAM-dataout, RAM - addr, MAR-in, PC-out;
reg [7:0] regA-out;
reg 10, 13, XCO, XC1, XC2, XC3;

//module muxp8bit(z, sel, mux-in0, mux-inl);

Fundamentals of Digital Logic and Microcomputer Design

mux-8bit Muxl (MAR-in, c3, PC-out, BUFF-out) ;

//module alu-8bit (f, zflag, c-flag, a, b, sel) ;
alu-8bit ALUl (F-out, zflag, c-flag, regA-out, BUFF-out, (c10, cll,
c121);

//module reg-8bit (b, a, sel, clk) ;
//regP8bit regA(regA-in, F-out, (c9, l'bO, l'bO}, clock) ;
reg-8bit regIR(1R-out, RAM-dataout, {c8, l'bO, l'bO1, clock) ;
reg-8bit regMAR(RAM-addr, MAR-in, {c4, l'bO, l'bO], clock) ;
reg-8bit regPC(PC-out, RAM-dataout, {c2, cl, CO), clock);
reg-8bit regBUFF(BUFF-out, RAM-dataout, { c 7 , l'bO, l'bO1 , clock) ;

//module ram (dataout, memeaddr, datain, rw, en) ;
ram RAM1 (RAM-dataout, RAM-addr, regA-out, c5, c6) ;
initial
begin

xco <= 0; //initialize control signals to zero
xc1 <= 0;
xc2 <= 0;
xc3 <= 0;
I0 <= 0;
I3 <= 0;

end

always@ (clock)
begin

13 <= IR_out[3]; / / instruction decoder
I0 <= IR-out[O]; / / 13= irout[3] , I0 = irout[O]

case ((IR_out[2], IR-out[l]))

2'dO:begin XCO =1; XC1 =O; XC2 = 0; end //if irout[2:l]=O,XCO=l,

2'dl:begin XC1 =l; XCO =O; XC2 = 0; end / / if irout[2:1]=1,XCl=l,

2'd2:begin xC2 =1; XCO =O; XC1 =O; end / / if irout[2:1]=2,XC2=1,

iI'd3:begin XC3 =l; XCO =O; XCl=O; XC2= 0; end//if irout[2:1]=3,

//others zero

//others zero

//others zero

//XC3=1, others 0
default:

begin XCO =lfbx; XC1 = l'bx; XC2 = l'bx; XC3 =l'bx; end / / else

endcase
end

//everything x

Appendix I: Verilog 75 1

always @ (posedge clock)
begin

out= regA-out

= F-out

xxxxxxxx

regA-out <= (c9==O)?regA_out: / / if c9=0 , regA-

(c9==1) ?F-out: / / if c9 =1, regA-out

8'bx; / / else regA-out=

end
e ndmodu 1 e
//Mux 8 bit module
module mux-8bit (2 , self mux-in0, mux-inl) ;

input sel;
input [7:0] mux-in0, mux-inl;
output [7:0] z ;

/ / The output is defined as register
reg [7:0] z;

/ / The output changes whenever any of the inputs changes
always @(sel or mux-in0 or mux-inl)

/ / Check the control signal
case (sel)
l'bO:

l'bl:

endcase

z = mux inO; / / if sel= 0 , z = in0

z = mux - inl; / / if sel=l, z = in 1

-

endmodule

//256 x 8 Ram
module ram (dataout, memaddr, datain, rw, en) ;
//--------------Input ports-----------------------

input [7:0] memaddr;
input [7:0] datain;
input rw, en;
output [7 : 01 dataout;

reg [7:0] dataout ;
reg [7:0] mem [0:255];

initial
mem[O] = 8'b00001000; / / LDA mem <addr>
mem[l] = 100; / / <addr> = 100, A<-5
mem[2] = 8'b00001010; / / ADD A <- A + MEM<addr>
mem[3] = 100; / / <addr> = 100, A<-l0
mem[100] = 8'b00000101; / / init data = 5
always @ (rnemaddr or datain or rw)
begin : MEM - WRITE

//--------------Internal variables----------------

//--------------Code Starts Here------------------

if (!en & & !rw)

752 Fundamentals of Digital Logic and Microcomputer Design

mem[memaddr] = datain;
end
always @ (memaddr or rw or en)
begin : MEM-READ

if (!en & & rw)

dataout = mem[memaddr];
end
endmodu 1 e

//CPU module has only two inputs (system clock and system
reset)
module cpu (clock, reset) ;

input clock, reset;
wire xc2, xcl, xc0, i3, i0, z, c;
wire [12:0] cfn;
processor pl (.clock(clock) , .XC2 (xc2) , .XC1 (xcl) , .XCO (xc0) ,
. I3 (i3),
.IO(iO), . z - f l a g (z) , .c-flag(c), .cO(cfn[121), .cl(cfn[lll),
.c2(cfn[lO]),
.c3(cfn[9]), .c4(cfn[8]), .c5(cfn[7]) , .c6(cfn[6]), .c7(cfn[51),
. c8 (cfn [4]) , . c10 (cfn[2]) ,
) ;

memcntrl memc (.clk(clock) , .reset (reset), .XC2 (xc2) , .XC1 (xcl) ,
.XCO(xcO), .I3(i3), .IO(iO) , . Z (z) , .C(c), .C-fn(cfn));
endmodule

.c9 (cfn [3]) , . cll (cfn [l]) , . c12 (cfn[Ol)

/ / T e s t Bench for CPU module
module test-cpu;
reg clock, rst;
cpu dut (clock, rst);
initial / / Clock generator
begin / / generating clock with period of 2ns

clock = 0;
#lo01 forever
#lo00 clock = !clock;

initial / / Test stimulus
end

begin
rst = 1; / / reset goes high €or 3.5 ns then goes

#3500 rst = 0;
low

end
endmodu 1 e

Timing Diagram
All eleven instructions are tested successfully by simulating a sample program. Timing
diagrams are generated accordingly. The following simple program inside the 256 x 8 RAM
is simulated for testing the proper operation of two (LDA,ADD) of the eleven instructions.
The timing diagram of Figure 1.1 is generated. Note that PC is the program counter for
the sample program in the RAM, and MPC is the microprogram counter for the symbolic
program in the ROM (Figure 7.57) inside the memory control module.
Program for testing LDA and ADD :

Appendix I: Verilog

mem[O] = LDA / / A<- MEM <addr>
mem[l] = 100; / / <addr> = 100, A<-5
mem[2] = ADD / / A <- A f MEM<addr>
mem[3] = 100; / / <addr> = 100,A<-10
rnem[1001 = 8'b00000101; / / init data = 5

753

LDA (PC=O) instruction with reference address 100, goes through the subroutines
in the symbolic program (Figure 7.57): FETCH (MPC=l at t=2ns), branching to
MEMREF(MPC=14 at t=8ns), then to LDSTO(MPC=23 at t=lOns), all the way through
LOAD (MPC = 27 at t=l8ns), and back to FETCH. At t=23ns, register A holds 05H,
showing that it has loaded the contents of RAM memory address 100 (See figure J.l).
Next, ADD (PC=2) operation is performed using reference address 100. At this point,
ADD goes through the following subroutines in the symbolic program: FETCH (MPC=l
at t=24ns), branching to MEMREF(MPC=l4 at t=30ns), then to ADDSUB(MPG32 at
t=34ns), all the way through ADD(MPC=37 at t=44ns), then back to FETCH (See figure
J.l). At t=46ns, register A and BUFFER hold the contents of memory address 100. They
are now the inputs to the ALU. The ALU will add these two values and its output will then
go to register A, as commanded by the ADD<addr> instruction. At t=47ns, one can see
that the contents of register A have changed to OAH (10,J (See figure I. 1).

ilesl-cpuklock

ltesl-cpulr st

/lesl_cpu:duVpl/PC_ouI
Mesl_cpu;duli3l/regA_out

IleSI~cpuidul/pl/ALU1 h-flag
/tesl_cpu:du~pl/ALU1Ic_flag

/lesl_cpuldurlpl/regMARb
/lesl-cpu/dut'n??m/ld

k s - c p u l d u U m l X C Z

:lesr-cpu/dul/mlXCl

:lesi-cpu/dutlnm/XCO

/lesl_cpu:duVn'enc/I~

/lest_cpuidulim/regMFC

/lesl-cpu/d utimTYld-irK

Ons 2Ons 40ns 600s

Figure I. 1 Verilog Timing Diagram (Top diagram-CPU clock, Next-Reset,
Next-PC, Next-reg A, Next-Zflag, Next-Cflag, Next-regMAR, Next-13, Next-XC2, Next-
XC 1, Next-XCO, Next-10, Next-mpc, Next-ld-inc)

OUESTIONS AND PROBLEMS

I. 1 Write a Verilog description for each of the following:
(a) a 2-to-4 decoder using dataflow modeling , generating a low output when

(b) a 3-to-8 decoder using modeling description of your choice, generating a

(c) the 4 -to-16 decoder of Problem 4.15 using modeling description of your

selected by a high enable.

high output when selected by a high enable.

754 Fundamentals of Digital Logic and Microcomputer Design

choice.
(d) a 4-to- 1 multiplexer using conditional operator.
(e) a BCD to seven-segment converter for a common cathode display using

behavioral modeling.
(f) the 2-bit unsigned comparator of Section 4.5.2.

1.2 Write a Verilog description for:
(a) the transparent latch of Section 5.2.3.
(b) the gated D flip-flop of Figure 5.5a.
(c) a D flip-flop with a synchronous reset input and a positive edge triggered

clock. Use synchronous reset such that if reset ==O, the flip-flop is cleared to
0; on the other hand, if reset==l, the output of the flip-flop is unchanged until
the procedural statements are evaluated at the positive edge of the clock.

(d) the T flip-flop (using D-ff and XOR gate) of Problem 5.13(b).
(e) the state machine of Problem 5.19.
(f) a 4-bit binary ripple counter. Note that in a binary ripple counter, the clock

inputs of high order flip-flops are not triggered by the common clock, but
by the transition outputs of the low order flip-flops. The 4-bit binary ripple
counter contains four T flip-flops (obtained from D-ffs), with the output of
each ff connected to the clock input of the next higher-order ff. The clock
input is connected to the least significant T-ff. The 4-bit ripple counter can be
designed using four T flip-flops (tffl) through tff3). Each T-ff can be obtained
from a D-ff by connecting its output q to the input of an inverter, and then
connecting the inverter output to the D input; the T-ff has one input (T input
is the same as the clock input). This T-ff toggles every clock. The 4-bit
ripple counter can be obtained by connecting the clock to the tffl) clock input,
q0 of tffl) to clock input of tffl, q l output of tffl to clock input of tff2, and
q2 output of tff2 to the clock input of tff3. Use negative edge-triggered D-
ffs. Each D-ff will have a reset input to clear the ff.

(8) a 4-bit serial shift (right) register with a positive edge triggered reset and a
positive edge triggered clock. The 4-bit serial shift register can be obtained
by connecting four D-ff s to a common clock and a common reset. The four
D-ff s are cleared to 0 at the positive edge triggered clock and positive edge
triggered reset. Assume, v as the serial input bit connected to the D input of
the leftmost D-ff with z as its output; z is connected to the D input of the next
right D-ff with y as its output; y is connected to the D input of the next right
D-ff with x as its output; finally, x is connected to the D input of the rightmost
D-ff with w as its output.

(h) a 4-bit register with a reset input, a parallel load input and a positive edge-
triggered clock. The 4-bit register is cleared to 0 at the positive edge of the
reset. On the other hand, if the load input is high, 4-bit data is transferred to
the register at the positive edge of the clock. Use behavioral modeling.

(i) the counters of Problems 5.24(a) through 5.24(c).
6) the general purpose register of Problem 5.25.

1.3 Write a Verilog description for the Status register of Example 6.1 using structural
modeling.

Appendix I: Verilog 755

1.4 Write a Verilog description for the four-bit by four-bit unsigned multiplier
(repeated addition) using:
(a) Hardwired control (Section 7.3.5). (b) Microprogramming (Section
7.3.5).

