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DESIGN OF COMPUTER 

INSTRUCTION SET 
AND THE CPU 

This chapter describes the design of the instruction set and the central processor unit 
(CPU). Topics include op-code encoding, design of typical microprocessor registers, the 
arithmetic logic unit (ALU), and the control unit. 

7.1 

A program consists of a sequence of instructions. An instruction performs operations on 
stored data. There are two components in an instruction: an op-code field and an address 
field. The op-code field defines the type of operation to be performed on data, which 
may be stored in a microprocessor register or in the main memory. The address field may 
contain one or more addresses of data. When data are read from or stored into two or more 
addresses by the instruction, the address field may contain more than one address. For 
example, consider the following instruction: 

MOVE DO, D1 

Desim of the ComDuter Instructions 

Op-code field Address field 
Assume that this computer uses DO as the source register and D 1 as the destination 

register. This instruction moves the contents of the microprocessor register DO to register 
D 1. The number and types of instructions supported by a microprocessor vary from one 
microprocessor to another and primarily depend on the microprocessor architecture. The 
number of instructions supported by a typical microprocessor depends on the size of 
the op-code field. For example, an 8-bit op-code can specify a maximum of 256 unique 
instructions. 

As mentioned before, a computer only understands 1 ’s and 0’s. This means that 
the computer can execute an instruction only if it is in binary. A unique binary pattern must 
be assigned to each op-code by a process called “op-code encoding.” 

The Block code method is one of the simplest techniques of designing instructions. 
In this approach, a fixed length of binary pattern is assigned to each op-code. For example, an 
n-bit binary number can represent 2” unique op-codes. Consider for example, a hypothetical 
instruction set shown in Figure 7.1. In this figure, there are 8 different instructions that can 
be encoded using three bits i,, i,, i, as shown in Figure 7.2. A 3-to-8 decoder can be used to 
encode the 8 hypothetical instructions as shown in Figure 7.3. 

An n-to-2” decoder is required for an n-bit op-code. As n increases, the cost of the 
decoder and decoding time will also increase. In some op-code encoding techniques such as 

237 

Fundamentals of Digital Logic andhficrocomputer Design. M. Rafiquzzaman 
Copyright 0 2005 John Wiley & Sons, Inc. 



238 Fundamentals of Digital Logic and Microcomputer Design 

the “expanding op-code” method, the length of the instruction is a function of the number 
of addresses used by the instruction. For example, consider a 16-bit instruction in which 
the lengths of the op-code and address fields are 5 bits and 1 1 bits respectively. Using such 
an instruction format, 32 ( F )  operations allowing access to 2048 (2”) memory locations 
can be specified. Now, if the size of the instruction is kept at 16 bits but the address field 
is increased to 12 bits, the op-code length will then be decreased to 4 bits. This change will 
specify 16 (24) operations with access to 4096 (212) memory locations. Thus, the number of 

Instruction Operation Performed 

MOVE reg,, reg, 

CLR reg reg - 0 

ADD reg,, reg, 

SUB reg,, reg, 

AND reg,, reg, 

OR reg,, reg, 

reg, - reg, 

reg, + reg, + reg, 

reg, + reg - reg, 

reg, - reg, AND reg, 

reg, - reg, OR reg, 

I N C  reg 

JMP addr 

reg + reg + 1 

PC - addr; Unconditionally 
Jump to addr 

FIGURE 7.1 A hypothetical instruction set 

Instruction 

MOVE 

CLR 

ADD 

SUB 

AND 

OR 

I N C  

JMP 

3-Bit Op-Code 

4 i ,  ill 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

FIGURE 7.2 Op-code encoding using block code 

FIGURE 7.3 Instruction decoder 
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operations is reduced by 50% and the number of memory locations is increased by 100%. 
This concept is used in designing instructions with expanding op-code technique. 

Consider an instruction format with 8-bit instruction length and a 2-bit op-code 
field. Four unique two-address (3 bits for each address) instructions can be specified. This 
is depicted in Figure 7.4. If three rather than four two-address instructions are used, eight 
one-address instructions can be specified. This is shown in Figure 7.5. The length of the 
op-code field for each one-address instruction is 5 bits. Thus, the length of the op-code 
field increases as the number of address field is decreased. Now, if the total number of 
one-address instructions is reduced from 8 to 7, then eight 0-address instructions can also 
be specified. This is shown in Figure 7.6. 

7.2 Reduced Instruction Set ComDuter (RISC) 

RISC, which stands for reduced instruction set computer, is a generation of faster and 
inexpensive machines. The initial application of FUSC principles has been in desktop 
workstations. Note that the PowerPC is a RISC microprocessor. The basic idea behind 

OP- Code Address 1 Address 2 
(2-bits) (3-bits) (3-bits) 

i ,  i, 

0 0  x2 XI xo Y2 YI Yo 

0 1  x2 XI xo Y2 YI Yo 

1 0  x2 xi xo Y2 Yl Yo 

1 1  x2 XI xo Y2 YI Yo 

FIGURE 7.4 Four two-address instructions 

OP code Address 1 Address 2 
(3 bits) (3 bits) 

i 1  io 

x 2  x,  xo 

x 2  x,  xo 

Y, Y, Y o  

Y, Y, Y o  
instructions 

1 0  x z  x, xo Y, Y, Yo 

5-b1l+( 1 1  0 0 0 1  Y , Y , Y o  
opcode 0 0 1  Y, Y, Yo 

1 1  0 1 0  Y , Y , Y o  

1 1  1 0 0  Y , Y , Y o  
1 1  1 0 1  Y , Y , Y o  
1 1  1 1 0  Y , Y , Y o  

1 1  1 1 1  Y , Y , Y O  
Y , Y , Y o  

1 1  0 1  1 Y z Y , Y o  Eight 
1 -address 

FIGURE 7.5 Three 2-address and eight 1 -address instructions 
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1 1  0 1  1 Y I Y ,  Y 
1 1  1 0 0  y, y, y 
1 1  1 0 1  Y , Y , Y  
1 1  1 1 0  y2 y,  y 

1 -address 

&bit +I 1 1 1 1 1  0 0 0  I oocode 1 1 1 1 1  0 0 1  
Eight 1 1  

\ '  : :  )-address 
nstructions 

1 1 1  
_ _ _  
_ _ _  

0 1 0  _ _ _  
_ _ _  

FIGURE 7.6 5 two-address, 7 one-address, and 8 zero-address instr tions 

RISC is for machines to cost less yet run faster, by using a small set of simple instructions 
for their operations. Also, RISC allows a balance between hardware and software based on 
functions to be achieved to make a program run faster and more efficiently. The philosophy 
of RISC is based on six principles: reliance on optimizing compilers, few instructions and 
addressing modes, fixed instruction format, instructions executed in one machine cycle, 
only call/return instructions accessing memory, and hardwired control. 

The trend has always been to build CISCs (complex instruction set computers), 
which use many detailed instructions. However, because of their complexity, more 
hardware would have to be used. The more instructions, the more hardware logic is needed 
to implement and support them. For example, in a RISC machine, an ADD instruction takes 
its data from registers. On a CISC, each operand can be stored in any of many different 
forms, so the compiler must check several possibilities. Thus, both RISC and CISC have 
advantages and disadvantages. However, the principles of understanding optimizing 
compilers and what actually happens when a program is executed lead to RISC. 

Case Study: RISC I (University of California, Berkeley) 
The RISC machine presented in this section is the one investigated at the University of 
California, Berkeley. The RISC I is designed with the following design constraints: 

1. Only one instruction is executed per cycle. 
2. All instructions have the same size. 
3. Only load and store instructions can access memory. 
4. High-level languages (HLL) are supported. 
Two high level Languages (C and Pascal) were supported by RISC I. A simple 

architecture implies a fewer transistors, and this leads to the fact that most pieces of a RlSC 
HLL system are in software. Hardware is utilized for time-consuming operations. Using 
C and Pascal, a comparison study was made to determine the frequency of occurrence of 
particular variable and statement types. Studies revealed that integer constants appeared 
most frequently, and a study of the code produced revealed that the procedure calls are the 
most time-consuming operations. 
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opcode(7) I scc(1) I dest(5) 

i) Basic FUSC Architecture 
The RISC I instruction set contains a few simple operations (arithmetic, logical, and shift). 
These instructions operate on registers. Instruction, data, addresses and registers are all 
32 bits long. RISC instructions fall in four categories: ALU, memory access, branch, and 
miscellaneous. The execution time is given by the time taken to read a register, perform 
an ALU operation, and store the result in a register. Register 0 always contains a 0. Load 
and store instructions move data between registers and memory. These instructions use 
two CPU cycles. Variations of memory-access instructions exist in order to accommodate 
sign-extended or zero-extended %bit, 16-bit and 32-bit data. Though absolute and register 
indirect addressing are not directly available, they may be synthesized using register 0. 
Branch instructions include CALL, RETURN, and conditional and unconditional jumps. 
The following instruction format is used: 

sourcel(5) imm(1) I source2(13) 

For register-to-register instructions, dest selects one of the 32 registers as destination of 
the result of the operation that is itself performed on registers source 1 and source2. If 
imm equals 0, the low-order 5 bits of source2 specify another register. If imm equals 1, 
then source2 is regarded as a sign-extended 13-bit constant. Since the frequency of integer 
constants is high, the immediate field has been made an option in every instruction. Also, 
SCC determines whether the condition codes are set. Memory-access instructions use source 
1 to specify the index register and source2 to specify offset. 

ii) Register Windows 
The procedure-call statements take the maximum execution time. A RISC program has 
more call statements, since the complex instructions available in CISC are subroutines 
in RISC. The RISC register window scheme strives to make the call operation as fast as 
possible and also to reduce the number of accesses to data memory. The scheme works as 
follows. 

Using procedures involve two groups of time-consuming operations, namely, 
saving or restoring registers on each callheturn and passing parameters and results to and 
from the procedure. Statistics indicate that local variables are the most frequent operands. 

This creates a need to support the allocation of locals in the registers. One available 
scheme is to provide multiple banks of registers on the chip to avoid saving and restoring of 
registers. Thus each procedure call results in a new set of registers being allocated for use 
by that procedure. The return alters a pointer that restores the old set. A similar scheme is 
adopted by RISC. However, there are some registers that are not saved or restored; these 
are called global registers. In addition, the sets of registers used by different processes 
are overlapped in order to allow parameters to be passed. In other machines, parameters 
are usually passed on the stack with the calling procedure using a register to point to the 
beginning of the parameters (and also to the end of the locals). Thus all references to 
parameters are indexed references to memory. In RISC I the set of window registers (r10 to 
r3 1) is divided into three parts. Registers r26 to 1-3 1 (HIGH) contain parameters passed from 
the calling procedure. Registers r16 to r25 (LOCAL) are for local storage. Registers r l0  to 
1-15 (LOW) are for local storage and for parameters to be passed to the called procedure. 
On each call, a new set of r l 0  to r3 1 registers is allocated. The LOW registers of the caller 
are required to become the HIGH registers of the called procedure. This is accomplished 
by having the hardware overlap the LOW registers of the calling frame with the HIGH 
registers of the called frame. Thus without actually moving the information, parameters are 
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transferred. 
Multiple register banks require a mechanism to handle the case in which there 

are no free register banks available. RISC handles this problem with a separate register- 
overflow stack in memory and a stack pointer to it. Overflow and underflow are handled 
with a trap to a software routine that adjusts the stack. The final step in allocating variables 
in registers is handling the problem of pointers. RISC resolves this by giving addresses to 
the window registers. If a portion of the address space is reserved, we can determine with 
one comparison whether an address points to a register or to memory. Load and store are 
the only instructions that access memory and they take an extra cycle already. Hence this 
feature may be added without reducing the performance of the load and store instructions. 
This permits the use of straightforward computer technology and still leaves'a large fraction 
of the variables in registers. 

iii) Delayed Jump 
A normal RISC I instruction cycle is long enough to execute the following sequence of 
operations: 

1. Read a register. 
2. Perform an ALU operation. 
3. Store the result back into a register. 
Performance is increased by prefetching the next instruction during the current 

instruction. To facilitate this, jumps are redefined such that they do not occur until after the 
following instruction. This is called delayed jump. 

7.3 Desim of the CPU 

The CPU contains three elements: registers, the ALU (Arithmetic Logic Unit), and the 
control unit. These topics are discussed next. Verilog and VHDL descriptions along with 
simulation results of a typical CPU are provided in Appendices I and J respectively. 

7.3.1 Register Design 
The concept of general-purpose and flag registers is provided in Chapters 5 and 6. The main 
purpose of a general-purpose register is to store address or data for an indefinite period of 
time. The computer can execute an instruction to retrieve the contents of this register 
when needed. A computer can also execute instructions to perform shift operations on the 
contents of a general-purpose register. This section includes combinational shifter design 
and the concepts associated with barrel shifters. 

A high-speed shifter can be designed using combinational circuit components 
such as a multiplexer. The block diagram, internal organization, and truth table of a typical 
combinational shifter are shown in Figure 7.7. From the truth table, the following equations 
can be obtained: 

yo = s1 soi, + s,soi., + sls0i.2 + s1s0i., 

The 4 x 4 shifter of Figure 7.7 can be expanded to obtain a system capable of 

This design can be extended to obtain a more powerful shifter called the barrel 
rotating 16-bit data to the left by 0, 1,2, or 3 positions, which is shown in Figure 7.8. 
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i3 iz il io i., i.2 i l  
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i3 i2 i, io 
Block Diagram 

S1 

so I I 1 I 

Internal Schematic 

0 1  1 i, i-, i-, L~ Left shift three times ’ 

Truth Table (X is don’t care in the above) 

FIGURE 7.7 4 x 4 combinational shifter 

shifter. The shift is a cycle rotation, which means that the input binary information is 
shifted in one direction; the most significant bit is moved to the least significant position. 

The block-diagram representation of a 16 x 16 barrel shifter is shown in Figure 
7.9. This shifter is capable of rotating the given 16-bit data to the left by n positions, where 
0 5; n s 15. Figure 7.9 shows the truth table representing the operation of the shifter. The 
barrel shifter is an on-chip component for typical 32-bit and 64-bit microprocessors. 
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~ Count Shift ~ 

output I 

(b) Truth Table 
FIGURE 7.8 
2, or 3 positions 

Combinational shifter capable of rotating 16-bit data to the left by 0, 1, 

7.3.2 Adders 
Addition is the basic arithmetic operation performed by an ALU. Other operations such as 
subtraction and multiplication can be obtained via addition. Thus, the time required to add 
two numbers plays an important role in determining the speed of the ALU. 

The basic concepts of half-adder, full adder, and binary adder are discussed in 
Section 4.5.1. The following equations for the full-adder were obtained. Assume x, = x, y, 
= y ,  c, = z,  and C,+, = C in Table 4.6. 

 sum,^, = T i c ,  +x,y ,c ,  + x , k F  +x,y,c, 
- -  

= x, 0 y ,  0 c, 

The logic diagrams for implementing these equations are given in Figure 7.10. 
As has been made apparent by Figure 7.10, for generating C#+, from c,, two gate 

delays are required. To generate S, from c,, three gate delays are required because c, must 
be inverted to obtain c. Note that no inverters are required to get x, or y ,  from x, or y,, 
respectively, because the numbers to be added are usually stored in a register that is a 
collection of flip-flops. The flip-flop generates both normal and complemented outputs. 

- -  
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iy= Barrel 16x16 SMfter $ ), amounl Shift 

so 

(a) Block Diagram of a 16 x 16 Barrel Shifter 

(b) Truth Table of the 16 x 16 Barrel Shifter 

FIGURE 7.9 Barrel shifter 

For the purpose of discussion, assume that the gate delay is A time units, and the actual 
value of A is decided by the technology. For example, if transistor translator logic (TTL) 
circuits are used, the value of A will be 10 ns. 

By cascading n full adders, an n-bit binary adder capable of handling two n-bit 
operands (X and Y) can be designed. The implementation of a 4-bit ripple-cany or binary 
adder is shown in Figure 7.1 1. When two unsigned integers are added, the input carry, co, 
is always zero. The 4-bit adder is also called a “carry-propagate adder” (CPA), because 
the carry is propagated serially through each full adder. This hardware can be cascaded to 
obtain a 16-bit CPA, as shown in Figure 7.12; co = 0 or 1 for multiprecision addition. 

Although the design of an n-bit CPA is straightforward, the carry propagation 
time limits the speed of operation. For example, in the 16-bit CPA (see Figure 7.12), the 
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- 
x i  
y ,  

5 S, 

x ,  
y,  
- 

xi 
Y, 

(b) Carry 
FIGURE 7.10 Logic circuit of full adder 

(a) Block Diagram of a 4-bit Ripple-Carry Adder 

y, x, y, 5 y, x, yo 5 

(b) 
FIGURE 7.1 1 Implementation of a 4-bit Ripple-Carry Adder 

addition operation is completed only when the sum bits so through sI5 are available. 
To generate sIs, c , ~  must be available. The generation of cI5 depends on the 

availability of cI4, which must wait for cI3 to become available. In the worst case, the carry 
process propagates through 15 full adders. Therefore, the worst-case add-time of the 16-bit 
CPA can be estimated as follows: 

Four 4-bit Full Adders are Cascaded to implement a 4-Bit Ripple-Carry Adder 



Time taken for carry to propagate 
through 15 full adders (the delay 
involved in the path from co to cI5) 

Time taken to generate sI5 from cI5 

Total = 3 3 A  

= 1 5 * 2 A  

= 3 A  

If A = 10 ns, then the worst-case add-time of a 16-bit CPA is 330 ns. This delay 
is prohibitive for high-speed systems, in which the expected add-time is typically less 
than 100 ns, which makes it necessary to devise a new technique to increase the speed of 
operation by a factor of 3. One such technique is known as the “carry look-ahead.’’ In this 
approach the extra hardware is used to generate each carry (c,, i > 0 ) directly from co. To 
be more practical, consider the design of a 4-bit carry look-ahead adder (CLA). Let us see 
how this may be used to obtain a 16-bit adder that operates at a speed higher than the 16-bit 
CPA. 

Recall that in a full adder for adding X,, Y,, and C,, the output carry C,,, is related 
to its carry input C,, as follows: 

The result can be rewritten as 

whereG,=X,Y, andP,=X,+ Y, 
The function G, is called the carry-generate function, because a carry is generated 

when X, = Y, = 1. IfX, or Y, is a 1, then the input carry C, is propagated to the next stage. For 
this reason, the function P, is often referred to as the “carry-propagate” function. Using G, 
and P,, Cl, C,, C,, and C, can be expressed as follows: 

c,+, =KY, + XC, + yc, 

c,+i = G,+ PIC, 

C, = Go + POCO 
C, = GI + PIC,  
C, = G, + P,C, 
C, = G, + P,C, 
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go= 

Po= 

FIGURE 7.13 

Therefore C,,  C,, C3, and C, can be generated directly from Co. For this reason, these 
equations are called “carry look-ahead equations,” and the hardware that implements these 
equations is called a “4-stage look-ahead circuit” (4-CLC). The block diagram of such 
circuit is shown in Figure 7.13. 
The following are some important points about this system: 

A Four-Stage Carry Look-ahead Circuit 

A 4-CLC can be implemented as a two-level AND-OR logic circuit (The first level 
consists of AND gates, whereas the second level includes OR gates). 
The outputs go and po are useful to obtain a higher-order look-ahead system. 

To construct a 4-bit CLA, assume the existence of the basic adder cell shown 
in Figure 7.14. Using this basic cell and 4-bit CLC, the design of a 4-bit CLA can be 
completed as shown in Figure 7.15. Using this cell as a building block, a 16-bit adder can 
be designed as shown in Figure 7.16. 

The worst-case add-time of this adder can be calculated as follows: 

& 

f romX,,Y,(Osis  15) ... A 

For P,, G, generation 

To generate C, from Co ... 2 8  

To generate C, from C, ... 2A 

To generate C,, from C, ... 2A 

To generate C,, from C,, ... 2A 

To generate S,, from C,, ... 3 8  

Total delay ... 12A 

A graphical illustration of this calculation can be shown as follows: 
Data available H GiPi --t C, 3 CS 3 C I ~  2 CIS ~ S I S  

From this calculation, it is apparent that the new 16-bit adder is faster than the 16-bit 
CPA by a factor of 3. In fact, this system can be speeded up further by employing another 
4-bit CLC and eliminating the carry propagation between the 4-bit CLA blocks. For this 
purpose, the g, and p ,  outputs generated by the 4-bit CLA are used. This design task is left 
as an exercise to the reader. 

A 2A 
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G, - 
p, +- 
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BA + XI 

Y, (Basicadder) - 
FIGURE 7.14 Basic CLA cell 

I 1 

4 
C 
L 
C 

FIGURE 7.15 A 4-bit CLA 

p !  4-bit CIA 

X,> -x. Y,, Y .  

4-bit CLA 

FIGURE 7.16 Design of a 16-bit adder using 4-bit CLAs 
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If there is a need to add more than 3 operands, a technique known as “carry-save 
addition” is used. To see its effectiveness, consider the following example: 

44 
28 
32 
- 79 
- 63+Sum vector 

L t C a r r y  vector 
M+Fina l  answer 

In this example, four decimal numbers are added. First, the unit digits are added, 
producing a sum of 3 and a carry digit of 2. Similarly, the tens digits are added, producing 
a sum digit of 6 and a carry digit of 1. Because there is no carry propagation from the 
unit digit to the tenth digit, these summations can be carried out in parallel to produce 
a sum vector of 63 and a carry vector of 12. When all operands are exhausted, the sum 
and the shifted carry vector are added in the conventional manner, which produces the 
final answer. Note that the carry is propagated only in the last step, which generates the 
final answer no matter how many operands are added. The concept is also referred to as 
“addition by deferred carry assimilation.” 

7.3.3 Addition, Subtraction, Multiplication and Division of unsigned and signed 
numbers 
The procedure for addition and subtraction of two’s complement signed binary numbers 
is straightforward. The procedure for adding unsigned numbers is discussed in Chapter 
2. Also, addition of two 2’s complement signed numbers was included in Chapter 2. Note 
that binary numbers represented in two’s complement form contain both unsigned numbers 
(Most Significant Bit = 0) and signed numbers (Most Significant Bit = 1). The procedure for 
adding two 2’s complement signed numbers using pencil and paper is provided below: 

Add the two numbers along with the sign bits. Check the overflow bit (V) using V 
= C, 0 C, where C, is the final carry and C, is the previous carry. If V = 0, then the result 
of addition is correct. On the other hand, if V = 1 , then the result is incorrect; one needs to 
increase the number of bits for each number, and repeat the addition operation until V = 0 
to obtain the correct result. 

Subtraction of two 2’s complement signed binary numbers using pencil and paper 
can be performed as follows: 

Take the 2’s complement of subtrahend along with the sign bit and add it to the 
minuend . The result is correct if there is no overflow. The result is wrong if there is an 
overflow. In case of overflow, increase the number of bits for each number, repeat the 
subtraction operation until the overflow is zero to obtain the correct result. Note that if 
there is a final carry after performing the 2’s complement subtraction, the result is positive. 
On the other hand, if there is no final carry after 2’s complement subtraction, the result is 
negative. 

Computers utilize common hardware to perform addition and subtraction 
operations for both unsigned and signed numbers. The instruction set of computers 
typically include the same ADD and SUBTRACT instructions for both unsigned and signed 
numbers. The interpretations of unsigned and signed ADD and SUBTRACT operations are 
performed by the programmer. For example, consider adding two 8-bit numbers, A and B 
( A = FF,, and B= FF,, ) using the ADD instruction by a computer as follows: 



Design of Computer Instruction Set and the CPU 

1 1 1 1 1 1 1 - Intermediate carries 
FF,,= 1111 1111 

+ FF,,= 1111 1111 
---________________________ 

Final carry -1 11  11 11 10 = FE,, 

25 1 

When the above addition is interpreted as an unsigned operation by the programmer, the 
result will be 
A + B =FF,, + FFl6 = 255,,+ 255,,= 510,, which is FE,, with a carry as shown above. 
However, if the addition is interpreted as a signed operation, then, A + B =FF,, + FF,, = 

(-1 ,,) + (- 1 ,,) = -2], which is FE,, as shown above, and the final carry must be discarded by 
the programmer. Similarly, the unsigned and signed subtraction can be interpreted by the 
programmer. 

Typical 8-bit microprocessors, such as the Intel 8085 and Motorola 6809, do not 
include multiplication and division instructions due to limitations in the circuit densities 
that can be placed on the chip. Due to advances in semiconductor technology, 16-, 32-, and 
64-bit microprocessors usually include multiplication and division algorithms in a ROM 
inside the chip. These algorithms typically utilize an ALU to carry out the operations. one 
can write a program that multiplies two numbers. Although this solution seems viable, the 
operational speed is unsatisfactory. 

For application environments such as real-time digital filtering, in which the 
processor is expected to perform 32 to 64 eight-bit multiplication operations within 100 
p e c  (sampling frequency = 10 kHz), speed is an important factor. New device technologies 
such as BICMOS and HCMOS, allow manufacturers to pack millions of transistors in a 
chip. Consequently, state-of-the-art 32-bit microprocessors such as the Motorola 68060 
(HCMOS) and Intel Pentium (BICMOS) designed using these technologies, have a 
larger instruction set than their predecessors, which includes multiplication and division 
instructions. In this section, multiplier design principles are discussed. Two unsigned 
integers can be multiplied using repeated addition as mentioned in Chapter 2. Also, they 
can be multiplied in the same way as two decimal numbers are multiplied by paper and 
pencil method. Consider the multiplication of two unsigned integers, where the multiplier 
Q = 15 and the multiplicand is M = 14, as illustrated: 

In the paper and pencil algorithm, shifted versions of multiplicands are added. 
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FIGURE 7.17 
the Paper and Pencil Algorithm 

Generalized Version of the Multiplication of Two 4-bit Numbers Using 

a. Bast Cell 

FIGURE 

b. Infernal Organizabon 

7.18 4 x4 Array Multiplier 

This procedure can be implemented by using combinational circuit elements such as AND 
gates and FULL adders. Generally, a 4-bit unsigned multiplier Q and a 4-bit unsigned 
multiplicand M can be written as M: m, m2 m, m, and Q: q, q2 ql q,.The process of 
generating the partial products and the final product can also be generalized as shown in 

FIGURE 7.19 ROM-based 4x4 Multiplier 
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Figure 7.17. Each cross-product term (mi qj) in this figure can be generated using an AND 
gate. This requires 16 AND gates to generate all cross-product terms that are summed by 
full adder arrays, as shown in Figure 7.18. 
Consider the generation of p2 in Figure 7.18(b). From Figure 7.1 7, p 2  is the sum of m2qo, 
m,q, and m0q2. The sum of these three elements is obtained by using two full adders. (See 
column for p2 in Figure 7.18). The top full-adder in this column generates the sum m,q, + 
m,q,. This sum is then added to m0q2 by the bottom full-adder along with any carry from 
the previous full-adder for pI. 
The time required to complete the multiplication can be estimated by considering the 
longest carry propagation path comprising of the rightmost diagonal (which includes the 
full-adder forp, and the bottom full-adders forp, andp,), and the last row (which includes 
the full-adder for p6 and the bottom full-adders for p4 and ps ) .  The time taken to multiply 
two n-bit numbers can be expressed as follows: 

In this equation, all cross-product terms miqi can be generated simultaneously by an array 
of AND gates. Therefore, only one AND gate delay is included in the equation. Also, 
the rightmost diagonal and the bottom row contain (n - 1) full-adders each for the n x n 
multiplier. 
Assuming that A = A cur~p,opagofion = 2gate delays = 2A, the preceding expression can 
be simplified as shown: 
T(n) = 28  + (2n - 2)2A = (4n - 2)A. 
The array multiplier that has been considered so far is known as Braun’s multiplier. 
The hardware is often called a nonadditive multiplier (NM), since it does not include 
any additive inputs. An additive multiplier (AM) includes an extra input R, it computes 
products of the form 
P = M * Q + R  
This type of multiplier is useful in computing the sum of products of the form EXiYi. 
Both an NM and an AM are available as standard 1C blocks. Since these systems require 
more components, they are available only to handle 4- or 8-bit operands. 
Alternatively, the same 4x4 NM discussed earlier can be obtained using a 256 x 8 ROM 
as shown in Figure 7.19. 
It can be seen that a given MQ pair defines a ROM address, where the corresponding 8-bit 
product is held. The ROM approach can be used for small-scale multipliers because: 

The technological advancements allow the manufacturers to produce low-cost 
ROMs. 
The design effort is minimum. 

T(n) + A ANDgure + (n - ) A currypropagarion + - A currypropugurion 

In case of large multipliers, ROM implementation is unfeasible, since large-size ROMs 
are required. For example, in order to implement an 8 x 8 multiplier, a 216 x 16 ROM is 
required. If the required 8 x 8 product is decomposed into a linear combination of four 4x4 
products, an 8 x 8 multiplier can be implemented using four 256 x 8 ROMs and a few 4-bit 
parallel adders. However, PLDs can be used to accomplish this. 
Signed multiplication can be performed using various algorithms. A simple algorithm 
follows. 

In the case of signed numbers, there are three possibilities: 
1.  M and Q are in sign-magnitude form. 
2. M and Q are in ones complement form. 
3. M and Q are in twos complement form. 

For the first case, perform unsigned multiplication of the magnitudes without the sign 
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bits. The sign bit of the product is determined as M, 0 Qn, where M, and Qn are the most 
significant bits (sign bits) of the multiplicand (M> and the multiplier (Q), respectively. For 
the second case, proceed as follows: 

Step 1 : If M, = 1, then compute the ones complement of M. 
Step 2: If Q, = 1, then compute the ones complement of Q. 
Step 3: Multiply the n - 1 bits of the multiplier and the multiplicand. 
Step 4: S, = M, 0 Qn 
Step 5: If S, = 1, then compute the ones complement of the result obtained in Step 3. 
Whenever the ones complement of a negative number (sign bit = 1) is taken, the 

sign is reversed. Hence, with respect to the multiplier, the inputs are always a positive 
quantity. When the sign of the bit is negative, however (M, 0 Q, = l), the result must be 
presented in the ones complement form. This is why the ones complement of the product 
found by the unsigned multiplier is computed. When M and Q are in twos complement 
form, the same procedure is repeated, with the exception that the twos complement must be 
determined when Q, = 1, M, = 1, or M, 0 Q, = 1. Consider M and Q as twos complement 
numbers. Suppose M =  1 100, and Q = 01 1 1,. Because M, = 1, take the twos complement of 
M = 0 100,; because Qn = 0, do not change Q. Multiply 0 1 1 1 , and 0 100, using the unsigned 
multiplication method discussed before. The product is 0001 1 100,. The sign of the product 
S, = M, 0 Qn = 1 0 0 = 1. Hence, take the twos complement of the product 000 1 1 100, to 
obtain 11 lOOlOO,, which is the final answer: -28,,. 

As mentioned in Chapter 2, unsigned division can be performed using repeated 
subtraction. However, the general equation for division can be used for signed division. 
Note that the general equation for division is Dividend = Quotient *Divisor + Remainder. 
For example, consider dividend = - 9, divisor = 2. Three possible solutions are shown 
below: 

(a) 
(b) 
(c) 

- 9 = - 4  * 2 -  1, Quotient = - 4 ,  Remainder =-  1. 
- 9 ~ - 5  * 2 + 1, Quotient = - 5, Remainder = +l.  
- 9 = - 6 * 2 + 3, Quotient = - 6, Remainder = +3. 

However, the correct answer is shown in (a) in which, Quotient = - 4 and Remainder = 

- 1. Hence, for signed division, the sign of the remainder is the same as the sign of the 
dividend, unless the remainder is zero. Typical microprocessors such as Motorola 68XXX 
follow this convention. 

7.3.4 ALU Design 
Functionally, an ALU can be divided up into two segments: the arithmetic unit and 

the logic unit. The arithmetic unit performs typical arithmetic operations such as addition, 
subtraction, and increment or decrement by 1. Usually, the operands involved may be 
signed or unsigned integers. In some cases, however, an arithmetic unit must handle 4-bit 
binary-coded decimal (BCD) numbers and floating-point numbers. Therefore, this unit 
must include the circuitry necessary to manipulate these data types. As the name implies, 
the logic unit contains hardware elements that perform typical operations such as Boolean 
NOT and OR. In this section, the design of a simple ALU using typical combinational 
elements such as gates, multiplexers, and a 4-bit parallel adder is discussed. For this 
approach, an arithmetic unit and a logic unit are first designed separately; then they are 
combined to obtain an ALU. 

For the first step, a two-function arithmetic unit, as shown in Figure 7.20 is 
designed. The key element of this system is a 4-bit parallel adder. The multiplexers select 
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FIGURE 7.20 

either Y or 7 for the 3-input of the parallel adder. In particular, if so = 0, then B = R 
otherwise B = 7. Because the selection input (so) also controls the input carry (CJ, the 
following results: 

Ifs,=OthenF=Xplus Y 

Organization of an arithmetic unit 

else F = Xplus Tplus 1 
= Xminus Y 

This arithmetic unit generates addition and subtraction operations. For the second step, let 
us design a two-function logic unit; this is shown in Figure 7.21. From Figure 7.21 it can be 
seen that when so = 0, the output G = X AND Y; otherwise the output G = X@ Y. Note that 
from these two Boolean operations, other operations such as NOT and OR can be derived 
by the following Boolean identities: 

x O R y = x @ y @ x y  
Therefore, NOT and OR operations can be obtained by using additional hardware 

and the circuit of Figure 7.21. The outputs generated by the arithmetic and logic units can 
be combined by using a set of multiplexers, as shown in Figure 7.22. From this organization 
it can be seen that when the select line s, = 1, the multiplexers select outputs generated by 
the logic unit; otherwise, the outputs of the arithmetic unit are selected. 

More commonly, the select line, s,, is referred to as the mode input because it 
selects the desired mode of operation (arithmetic or logic). A complete block diagram 
schematic of this ALU is shown in Figure 7.23. The truth table illustrating the operation of 
this ALU is shown in Figure 7.24. This table shows that this ALU is capable of performing 
2 arithmetic and 2 logic operations on the 4-bit operands Xand Y. 

The rapid growth in IC technology permitted the manufacturers to produce an 
ALU as an MSI block. Such systems implement many operations, and their use as a system 

l o x = ;  
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FIGURE 7.21 Organization of a 4-bit two-function logic unit 

FIGURE 7.22 Combining the outputs generated by the arithmetic and logic units 

component reduces the hardware cost, board space, debugging effort, and failure rate. 
Usually, each MSI ALU chip is designed as a 4-bit slice. However, a designer can easily 
interconnect n such chips to get a 4n-bit ALU. Some popular 4-bit ALU chips are the 
74381 and 74181. The 74381 ALU performs 3 arithmetic and 2 miscellaneous operations 
on 4-bit operands. The 74 18 1 ALU performs 16 arithmetic and 16 Boolean operations on 
two 4-bit operands, using either active high or active low data. A complete description and 
operational characteristics of these devices may be found in the data books. 

Typical 8-bit microprocessors, such as the Intel 8085 and Motorola 6809, do not 
include multiplication and division instructions due to limitations in the circuit densities that 
can be placed on the chip. Due to advanced semiconductor technology, 16-, 32-, and 64-bit 
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FIGURE 7.24 Truth table controlling the operations of the ALU of Figure 7.23 

microprocessors usually include multiplication and division algorithms in a ROM inside 
the chip. These algorithms typically utilize an ALU to carry out the operations. Verilog 
and VHDL descriptions along with simulation results of typical ALU’s are included in 
Appendices I and J respectively. 

7.3.5 
The main purpose of the control unit is to translate or decode instructions and generate 
appropriate enable signals to accomplish the desired operation. Based on the contents of 
the instruction register, the control unit sends the selected data items to the appropriate 
processing hardware at the right time. The control unit drives the associated processing 
hardware by generating a set of signals that are synchronized with a master clock. 

The control unit performs two basic operations: instruction interpretation 
and instruction sequencing. In the interpretation phase, the control unit reads (fetches) 
an instruction from the memory addressed by the contents of the program counter into 

Design of the Control Unit 
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the instruction register. The control unit inputs the contents of the instruction register. It 
recognizes the instruction type, obtains the necessary operands, and routes them to the 
appropriate functional units of the execution unit (registers and ALU). The control unit 
then issues the necessary signals to the execution unit to perform the desired operation and 
routes the results to the specified destination. 

In the sequencing phase, the control unit generates the address of the next 
instruction to be executed and loads it into the program counter. To design a control unit, 
one must be familiar with some basic concepts such as register transfer operations, types of 
bus structures inside the control unit, and generation of timing signals. These are described 
in the next section. 

There are two methods for designing a control unit: hardwired control and 
microprogrammed control. In the hardwired approach, synchronous sequential circuit 
design procedures are used in designing the control unit. Note that a control unit is a clocked 
sequential circuit. The name “hardwired control” evolved from the fact that the final 
circuit is built by physically connecting the components such as gates and flip-flops. In the 
microprogrammed approach, on the other hand, all control functions are stored in a ROM 
inside the control unit. This memory is called the “control memory.” RAMS and PALS are 
also used to implement the control memory. The words in this memory are called “control 
words,” and they specify the control functions to be performed by the control unit. The 
control words are fetched from the control memory and the bits are routed to appropriate 
functional units to enable various gates. An instruction is thus executed. Design of control 
units using microprogramming (sometimes calledfirmware to distinguish it from hardwired 
control) is more expensive than using hardwired controls. To execute an instruction, the 
contents of the control memory in microprogrammed control must be read, which reduces 
the overall speed of the control unit.The most important advantage of microprogramming is 
its flexibility; many additions and changes are made by simply changing the microprogram 
in the control memory. A small change in the hardwired approach may lead to redesigning 
the entire system. 

There are two types of microprocessor architectures: CISC (Complex Instruction 
Set Computer) and RISC (Reduced Instruction Set Computer). CISC microprocessors 
contain a large number of instructions and many addressing modes while RISC 
microprocessors include a simple instruction set with a few addressing modes. Almost all 
computations can be obtained from a few simple operations. RISC basically supports a 
small set of commonly used instructions which are executed at a fast clock rate compared 
to CISC which contains a large instruction set (some of which are rarely used) executed 
at a slower clock rate. In order to implement fetch /execute cycle for supporting a large 
instruction set for CISC, the clock is typically slower. In CISC, most instructions can 
access memory while RISC contains mostly loadhtore instructions. The complex 
instruction set of CISC requires a complex control unit, thus requiring microprogrammed 
implementation. RISC utilizes hardwired control which is faster. CISC is more difficult to 
pipeline while RISC provides more efficient pipelining. An advantage of CISC over RISC 
is that complex programs require fewer instructions in CISC with a fewer fetch cycles 
while the RISC requires a large number of instructions to accomplish the same task with 
several fetch cycles. However, RISC can significantly improve its performance with a faster 
clock, more efficient pipelining and compiler optimization. PowerPC and Intel 8OXXX 
utilize RISC and CISC architectures respectively. Intel Pentium family, on the other hand, 
utilizes a combination of RISC and CISC architectures for providing high performance. 
The Pentium uses RISC (hardwired control) to implement efficient pipelining for simple 
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FIGURE 7.25 16-Bit register transfer from R, to R, 
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FIGURE 7.26 An enable input controlling register transfer 

instructions. CISC (microprogrammed control) for complex instructions is utilized by the 
Pentium to provide upward compatibility with the Intel 8086/80X86 family. 

Basic Concepts 
Register transfer notation is the fundamental concept associated with the control 

unit design. For example, consider the register transfer operation of Figure 7.25. The 
contents of 16-bit register R, are transferred to 16-bit register R,  as described by the 
following notation: 

4 -  Ro 

The symbol +- is called the transfer operator. However, this notation does not 
indicate the number of bits to be transferred. A declaration statement specifying the size of 
each register is used for the purpose: 

Declare registers RO [ 1 6 ] ,  R1 [16] 
The register transfer notation can also be used to move a specific bit from one 

register to a particular bit position in another. For example, the statement 

means that bit 14 of register R, is moved to bit 1 of register R,. 
An enable signal usually controls transfer of data from one register to another. 

For example, consider Figure 7.26. In the figure, the 16-bit contents of register R, are 
transferred to register R, if the enable input E is HIGH; otherwise the contents of R, and R, 
remain the same. Such a conditional transfer can be represented as 

E: R, +- R, 
Figure 7.27 shows a hardware implementation of transfer of each bit of R, and R,. 

The enable input may sometimes be a function of more than one variable. For example, 
consider the following statement involving three 16-bit registers: If R, < R, and R, [ 11 = 1 
then R, - R, . 

The condition R,, < R,  can be determined by an 8-bit comparator such that the 
output y of the comparator goes to 0 if R, < R,. The conditional transfer can then be 

R,  [11+ R, ~ 4 1  
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FIGURE 7.28 Hardware implementation E R ,  - R, where E = y * R, [l] 

Declare registers R[81 ,M[81 ,Q[81; 
Declare buses inbus[8],outbus[8]; 

Start: R + 0, M - inbus; Clear register R to 0 and move 
multiplicand 

Q - inbus; Transfer multiplier 

If Q < > 0 then go t o  loop; repeatifQ#O 

Outbus - R; 
Loop : R +- R + M, Q +- Q-1; Add multiplicand 

Halt: Go to Halt: 

FIGURE 7.29 
8-bit result) 

Register transfer description of 8 x 8 unsigned multiplication (Assume 

expressed as follows: E: R, +- R, where E = y  . R, [l]. Figure 7.28 depicts the hardware 
implementation. 

A number of wires called “buses” are normally used to transfer data in and out 
of a digital processing system. Typically, there will be a pair of buses (“inbuses” and 
“outbuses”) inside the CPU to transfer data from the external devises into the processing 
section and vice versa. Like the registers, these buses are also represented using register 
transfer notations and declaration statements. For example, “Declare inbus [ 161 and outbus 
[16]” indicate that the digital system contains two 16-bit wide data buses (inbus and 
outbus). R, - inbus means that the data on the inbus is transferred into register R, when 
the next clock arrives. An equate (=) symbol can also be used in place of -. For example, 
“outbus = R,  [15:8]” means that the high-order 8 bits of the 16-bit register R,  are made 
available on the outbus for one clock period. An algorithm implemented by a digital system 
can be described by using a set of register transfer notations and typical control structures 
such as if-then and go to. For example, consider the description shown in Figure 7.29 for 
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multiplying two 8-bit unsigned numbers (Multiplication of an 8-bit unsigned multiplier 
by an 8-bit multiplicand) using repeated addition. 

The hardware components for the preceding description include an 8-bit inbus, an 
8-bit outbus, an 8-bit parallel adder, and three 8-bit registers, R, M,  and Q. This hardware 
performs unsigned multiplication by repeated addition. This is equivalent to unsigned 
multiplication performed by assembly language instruction. 

A distinguishing feature of this description is to describe concurrent operations. 
For example, the operations R - 0 and M - inbus can be performed simultaneously. As 
a general rule, a comma is inserted between operations that can be executed concurrently. 
On the other hand, a semicolon between two transfer operations indicates that they must be 
performed serially. This restriction is primarily due to the data path provided in the hardware. 
For example, in the description, because there is only one input bus, the operations M - 
inbus and Q + inbus cannot be performed simultaneously. Rather, these two operations 
must be carried out serially. However, one of these operations may be overlapped with the 
operation R - 0 because the operation does not use the inbus. The description also includes 
labels and comments to improve readability of the task description. Operations such as R 
+- 0 and M - inbus are called “micro-operations”, because they can be completed in one 
clock cycle. In general, a computer instruction can be expressed as a sequence of micro- 
operations. 

The rate at which a microprocessor completes operations such as R - R 
+ M is determined by its bus structure inside the microprocessor chip. The cost of the 
microprocessor increases with the complexity of the bus structure. Three types of bus 
structures are typically used: single-bus, two-bus, and three-bus architectures. 

The simplest of all bus structures is the single-bus organization shown in Figure 
7.30. At any time, data may be transferred between any two registers or between a register 
and the ALU. If the ALU requires two operands such as in response to an ADD instruction, 
the operands can only be transferred one at a time. In single-bus architecture, the bus must 
be multiplexed among various operands. Also, the ALU must have buffer registers to hold 
the transferred operand. 

In Figure 7.30, an add operation such as R, - R, + R, is completed in three clock 
cycles as follows: 

First clock cycle: The contents of R,  are moved to buffer register B, of the ALU. 
Second clock cycle: The contents of R, are moved to buffer register B, of the ALU. 
Third clock cycle: The sum generated by the ALU is loaded into R,. 

A single-bus structure slows down the speed of instruction execution even though 
data may already be in the microprocessor registers. The instruction’s execution time is 
longer if the operands are in memory; two clock cycles may be required to retrieve the 
operands into the microprocessor registers from external memory. 
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To execute an instruction such as ADD between two operands already in register, 
the control logic in a single-bus structure must follow a three-step sequence. Each step 
represents a control state. Therefore, a single-bus architecture requires a large number of 
states in the control logic, so more hardware may be needed to design the control unit. 
Because all data transfers take place through the same bus one at a time, the design effort 
to build the control logic is greatly reduced. 

Next, consider a two-bus architecture, shown in Figure 7.3 1. All general-purpose 
registers are connected to both buses (bus A and bus B )  to form a two-bus architecture. The 
two operands required by the ALU are, therefore, routed in one clock cycle. Instruction 
execution is faster because the ALU does not have to wait for the second operand, unlike 
the single-bus architecture. The information on a bus may be from a general-purpose 
register or a special-purpose register. In this arrangement, special-purpose registers are 
often divided into two groups. Each group is connected to one of the buses. Data from two 
special-purpose registers of the same group cannot be transferred to the ALU at the same 
time. 

In the two-bus architecture, the contents of the program counter are always 
transferred to the right input of the ALU because it is connected to bus A .  Similarly, the 
contents of the special register MBR (memory buffer register, to hold up data retrieved 
from external memory) are always transferred to the left input of the ALU because it is 
connected to bus B. 
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In Figure 7.3 1, an add operation such as R, * R, + R, is completed in two clock 

First clock cycle: The contents of R, and R, are moved to the inputs of ALU. 
The ALU then generates the sum in the output register. 

Second clock cycle: The sum from the output register is routed to R,. 

cycles as follows: 

The performance of a two-bus architecture can be improved by adding a third 
bus (bus C), at the output of the ALU. Figure 7.32 depicts a typical three-bus architecture. 
The three-bus architecture perform the addition operation R, + R,  + R, in one cycle as 
follows: 

The contents of R,  and R, are moved to the inputs of the 
ALU via bus A and bus B respectively. The sum generated 
by the ALU is then transferred to R, via bus C. 

The addition of the third bus will increase the system cost and also the complexity 
of the control unit design. 

Note that the bus architectures described so far are inside the microprocessor chip. 
On the other hand, the system bus connecting the microprocessor, memory, and I/O are 
external to the microprocessor. 

Another important concept required in the design of a control unit is the generation 
of timing signals. One of the main tasks of a control unit is to properly sequence a set of 
operations such as a sequence of n consecutive clock pulses. To cany out an operation, 
timing signals are generated from a master clock. Figure 7.33 shows the input clock pulse 
and the four timing signals To, T , ,  T,, and T3. A ring counter (described in Chapter 5) can 
be used to generate these timing signals. To carry out an operation Pi at the ith clock pulse, 
a control unit must count the clock pulses and produce a timing signal T,. 

First cycle: 

1. 

2. 
3. 
4. 

5 .  

Hardwired Control Design 
The steps involved in hardwired control design are summarized as follows: 

Derive a flowchart from the problem definition and validate the algorithm by 
using trial data. 
Obtain a register transfer description of the algorithm from the flowchart. 
Specify a processing hardware along with various components. 
Complete the design of the processing section by establishing the necessary 
control inputs. 
Determine a block diagram of the controller. 

Timing Sigrui 

Timing Signal 
T, 

FIGURE 7.33 Timing signals 
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6 .  
7. 

8. 

Obtain the state diagram of the controller. 
Specify the characteristic of the hardware for generating the required timing 
signals used in the controller. 
Draw the logic circuit of the controller. 
The following example is provided to illustrate the concepts associated with 

implementation of a typical instruction in a control unit using hardwired control. The 
unsigned multiplication by repeated addition discussed earlier is used for this purpose. A 4- 

M <- Muniplicand 

R <-- R + M 

I c 

V 

FIGURE 7.34 Flowchart for 4-bit x 4-bit multiplication 
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Iteration 2 
1 0 0 0  0 1 0 0  0 0 0 1  R <-- R + M 

Q <-- Q - 1 

Iteration 3 
R <-- R + M 1 1 0 0  0 1  0 0  0 0 0 0  

‘y, Product =12,, 

Q <-- Q - 1 

FIGURE 7.35 Verification of the unsigned multiplication algorithm 
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bit by 4-bit unsigned multiplication will be considered. Assume the result of multiplication 
is 4 bits. 
Step I :  Derive a flowchart from the problem definition and then validate the algorithm 
using trial data. 
Figure 7.34 shows the flowchart. In the figure, Mand Q are two 4-bit registers containing 
the unsigned multiplicand and unsigned multiplier respectively. Assume that the result of 
multiplication is 4-bit wide. The 4-bit result of the multiplication called the “product” will 
be stored in the 4-bit register, R. The contents of R are then output to the outbus. 

The flowchart in Figure 7.34 is similar to an ASM chart and provides a hardware 
description of the algorithm. The sequence of events and their timing relationships are 
described in the flowchart. For example, the operations, R +- 0 and M + multiplicand 
shown in the same block are executed simultaneously. Note that M - multiplicand via 
inbus and Q +- multiplier via inbus must be performed serially because both operations 
use a single input bus for loading data. These operations are, therefore, shown in different 

Clear Register to 0 and move multiplicand 

Perform addition, decrement counter 

Start: R - 0, M + inbus; 
Q + i n b u s ;  Transfer Multiplier 

If Q < > 0 then goto Loop; RepeatifQ+ 0 
outbus +- R; 

L O O P :  R + R + M, Q + Q -1; 

H a l t :  Go to Halt; 

FIGURE 7.36 Register transfer description 4-bit x 4-bit unsigned multiplication 
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blocks. Because R - 0 does not use the inbus, this operation is overlapped, in our case, 
with initializing of M via the inbus. This simultaneous operation is indicated by placing 
them in the same block. 

The algorithm will now be verified by means of a numerical example as shown 
in Figure 7.35. Suppose M =  0100, = 4,, and Q = 001 1, = 310; then R = product = 1100, = 

Step 2: Obtain a register transfer description of the algorithm from the flowchart. Figure 
7.36 shows the description of the algorithm. 
Step 3: Specify a processing hardware along with various components. 
The processing section contains three main components: 

1210 

General-purpose registers 
4-bit adder 
Tristate buffer 
Figure 7.37 shows these components. The general-purpose register is a trailing 

edge-triggered device. 
Three operations (clear, parallel load, and decrement) can be performed by 

applying the appropriate inputs at C, L, and D. All these operations are synchronized at the 
trailing (high to low) edge of the clock pulse. 

The 4-bit adder can be implemented using 4-bit adder circuits. The tristate buffer 
is used to control data transfer to the outbus. 
Step 4: Complete the design of the processing section by establishing the necessary 

control inputs. 
Figure 7.38 shows the detailed logic diagram of the processing section, along with 

the control inputs. 
Step 5: Determine a block diagram of the controller. Figure 7.39 shows the block 
diagram. 

The controller has three inputs and seven outputs. The Reset input is an 
asynchronous input used to reset the controller so that a new computation can begin. The 
Clock input is used to synchronize the controller’s action. All activities are assumed to be 
synchronized with the trailing edge of the clock pulse. 
Step 6: Obtain the state diagram of the controller. 

The controller must initiate a set of operations in a specified sequence. Therefore, 
it is modeled as a sequential circuit. The state diagram of the unsigned multiplier controller 
is shown in Figure 7.40. 

Initially, the controller is in state To. At this point, the control signals C,, and C, are 
HIGH. Operations R + 0 and M + inbus are carried out with the trailing edge of the next 
clock pulse. The controller moves to state TI with this clock pulse. When the controller is 
in T2, R - R + M and Q - Q - 1 are performed. 

All these operations take place at the trailing edge of the next clock pulse. The 
controller moves to state T, only when the unsigned multiplication is completed. The 
controller then stays in this state forever. A hardware reset input causes the controller to 
move to state To, and a new computation will start. 

In this state diagram, selection of states is made according to the following 
guidelines: 

If the operations are independent of each other and can be completed within 
one clock cycle, they are grouped within one control state. For example, in 
Figure 7.40, operations R +- 0 and M - inbus are independent of each other. 
With this hardware, they can be executed in one clock cycle. That is, they are 
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1 4  
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FIGURE 7.38 Detailed logic diagram of the processing section 

FIGURE 7.39 Block diagram of the unsigned multiplier controller 

4 z=1 

z=o 

T.4 

8 

Control 
State 

TO 

TI 

TP 

T3 

T4 

T5 

Operation 
Performed 

R t 0, M t inbus 

Q t inbus 

R t R + M ,  

None 

outbus t R 

None 

Q t Q - 1  

Control Signal 
to be 

activated 

co, c1 
CP 

CB, c4, c6 

None 

c5 

None 

(a) State Diagram (b) Controller action 

FIGURE 7.40 Controller description 
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Input Cbck 
puke 

Timing Signal 
To 

Timing Signal 

Timing T2 Signal yy-- 
Timing Signal 

T ,  

+ t  
T, 

FIGURE 7.41 Timing signals generated by the controller 

microoperations. However, if they cannot be completed within the To clock cycle, 
either clock duration must be increased or the operations should be divided into a 
sequence of microoperations. 
Conditional testing normally implies the introduction of new states. For example, 
in the figure, conditional testing of Z introduces the new state T3. 
One should not attempt to minimize the number of states. When in doubt, new 
states must be introduced. The correctness of the control logic is more important 
than the cost of the circuit. 

Step 7: Specify the characteristics of the hardware for generating the required timing 
signals. 

There are six states in the controller state diagram. Six nonoverlapping timing 
signals (To through T,) must be generated so that only one will be high for a clock pulse. 
For example, Figure 7.41 shows the four timing signals To, T,, T,, and T3. A mod-8 counter 
and a 3-to-8 decoder can be used to accomplish this task. Figure 7.42 shows the mod-8 
counter. 
Step 8: Draw the logic circuit of the controller. 

Figure 7.43 shows the logic circuit of the controller. The key element of the 
implementation in Figure 7.43 is the sequence controller (SC) hardware, which sequences 

External Data 

Clock 

0, 0 ,  0, 

w 
Counter Output 

C L E Cloc Action 

1 X X X Clear 

0 1 X J Load external 

0 0 1 J Count up 

0 0  0 J No operation 

k 

data 

Note: X = don’t care 

(a) Block Diagram (b) Function Table 

FIGURE 7.42 Characteristics of the counter used in the controller design 
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Inputs 

Z T, T, 
0 1 X 

X X 1 

Clock J 

outputs 

L d* d, do 
1 0 1 0 

1 1 0 1 

FIGURE 7.43 Logic diagram of the unsigned multiplier controller 

(a) Truth Table 

Or Array (Sum Array) 

(b) PLA Implementation 
FIGURE 7.44 Sequence controller design 
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the controller according to the state diagram of Figure 7.40. Figure 7.44(a) shows the truth 
table for the SC controller. 

Consider the logic involved in deriving the entries of the SC truth table. The mod- 
8 counter is loaded (or initialized) with the specified external data if the counter control 
inputs C and L are 0 and 1 respectively from Figure 7.42. In this counter, the counter load 
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control input L overrides the counter enable control input E. 
From the controller’s state diagram of Figure 7.40, the controller counts up 

automatically in response to the next clock pulse when the counter load control input L = 

0 because the enable input E is tied to HIGH. Such normal sequencing activity is desirable 
for the following situations: 

Fundamentals of Digital Logic and Microcomputer Design 

Present control state is To, T I ,  T,, T4. 
Present control state is T3 and Z = 1 ; the next state is T4. 
The SC must load the counter with the appropriate count when the counter is 

required to load the count out of its normal sequence. 
For example, from the controller’s state diagram of Figure 7.40, if the present 

control state is T3 (counter output O,O,O,= 01 1) and if Z = 0, the next state is T2. When 
these input conditions occur, the counter must be loaded with external value 010 at the 
trailing edge of the next clock pulse (T, = 1 only when O,O,O,= 010. Therefore, the SC 
generates L = 1 and d2dld0 = 010. 

Similarly, from the controller’s state diagram of Figure 7.40, if the present state 
is T,, the next control state is also T,. The SC must generate the outputs L = 1 and d2d,do = 

101. The SC truth table of Figure 7.41 shows these out-of-sequence counts. For each row 
of the SC truth table of Figure 7.44(a), a product term is generated in the PLA: 

Po i- 2T3 and PI = T,. 
The PLA (Figure 7.44b) generates four outputs: L, d,, d,, and do. Each output is 

directly generated by the SC truth table and the product terms. The PLA outputs are as 
follows: 

L = P,+P,  
d2 = P, 
d,  = P o  
do = P ,  

The controller design is completed by relating the control states (To through T,) to 
the control signals (C, though C,) as follows: 

C, = C, = To 
C, = TI 
c = c = c =  
C, = T4 

3 4 6 T 2  

From these equations, when the control is in state To or T,, multiple micro- 
operations are performed. Othenvise,when the control is in state TI or T4, a single micro- 
operation is performed. 

The unsigned multiplication algorithm just implemented using hardwired control 
can be considered as an unsigned multiplication instruction with a microprocessor. To 
execute this instruction, the microcomputer will read (fetch) this multiplication instruction 
from external memory into the instruction register located inside the microprocessor. The 
contents of this instruction register will be input to the control unit for execution. The control 
unit will generate the control signals C ,  through C, as shown in Figure 7.43. These control 
signals will then be applied to the appropriate components of the processing section in 
Figure 7.38 at the proper instants of time shown in Figure 7.40. Note that the control signals 
are physically connected to the hardware elements of Figure 7.38. Thus, the execution of 
the unsigned multiplication instruction will be completed by the microprocessor. 

Microprogrammed Control Unit Design 
As mentioned earlier, a microprogrammzd control unit contains programs written 
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using microinstructions. These programs are stored in a control memory normally in a 
ROM inside the CPU. To execute instructions, the microprocessor reads (fetches) each 
instruction into the instruction register from external memory. The control unit translates 
the instruction for the microprocessor. Each control word contains signals to activate one 
or more microoperations. A program consisting of a set of microinstructions is executed 
in a sequence of micro-operations to complete the instruction execution. Generally, all 
microinstructions have two important fields: 

Control word 
Next address 
The control field indicates which control lines are to be activated. The next 

address field specifies the address of the next microinstruction to be executed. The concept 
of microprogramming was first proposed by W. V. Wilkes in 195 1 utilizing a decoder and 
an 8 x 8 ROM with a diode matrix. This concept is extended further to include a control 
memory inside the CPU. The cost of designing a CPU primarily depends on the size of the 
control memory. The length of a microinstruction, on the other hand, affects the size of the 
control memory. Therefore, a major design effort is to minimize the cost of implementing 
a microprogrammed CPU by reducing the length of the microinstruction. 

The length of a microinstruction is directly related to the following factors: 
The number of micro-operations that can be activated simultaneously. This is 
called the “degree of parallelism.” 
The method by which the address of the next microinstruction is determined. 
All microinstructions executed in parallel can be included in a single 

microinstruction with a common op-code. The result is a short microprogram. However, 
the length of the microinstruction increases as parallelism grows. 

The control bits in a microinstruction can be organized in several ways. One 
obvious way is to assign a single bit for each control line. This will provide full parallelism. 
No decoding of the control field is necessary. For example, consider Figure 7.45 with two 
registers, Xand Y with one outbus. 

In figure 7.45, the contents of each register are transferred to the outbus when the 

FIGURE 7.45 An example of a register transfer 

do d l  

Decoder li ;t04i ii 
unused c No 

1 ‘0 operation 

FIGURE 7.46 Encoded format 
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Control Bits 

C, C, 

appropriate control line is activated: 
C,: outbus + X 
C,: outbus +- Y 

Here, each operation can be performed one at a time because there is only one 
outbus. A single bit can be assigned to perform each transfer as follows: 

Operation 
Performed 

1 0 

0 1 

0 0 

Outbus - X  

Outbus-Y 

No operation 

This method is called “unencoded format.” 
The three operations can be implemented using two bits and a 2-to-4 decoder 

as shown in Figure 7.46. This is called “encoded format.” The relationship between the 
encoded and actual control information is as follows: 

Encoded Bits 

d ,  dn 

Operation 
Performed 

0 1 I Outbus-x 

1 0 Outbus - y  

Note that a 5-bit control field is required for five operations. However, three 
encoded bits are required for five operations using a 3 to 8 decoder. Hence, the encoded 
format typically provides a short control field and thus results in short microinstructions. 
However, the need for a decoder will increase the cost. Therefore, there is a trade-off 
between the degree of parallelism and the cost. Microinstructions can be classified into 
two groups: horizontal and vertical. The horizontal microinstruction mechanism provides 
long microinstructions, a high degree of parallelism, and little or no encoding. The vertical 
microinstruction method, on the other hand, offers short microinstructions, limited 
parallelism, and considerable decoding. 

Microprogramming is the technique of writing microprograms in a 
microprogrammed control unit. Writing microprograms is similar to writing assembly 
language programs. Microprograms are basically written in a symbolic language called 
microassembly language. These programs are translated by a microassembler to generate 
microcodes, which are then stored in the control memory. 

In the early days, the control memory was implemented using ROMs. However, 
these days control memories are realized in writeable memories. This provides the 
flexibility of interpreting different instruction set by rewriting the original microprogram, 
which allows implementation of different control units with the same hardware. Using 
this approach, one CPU can interpret the instruction set of another CPU. The design of a 
microprogrammed control unit is considered next. The 4-bit x 4-bit unsigned multiplication 
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Control 
Memory 
Address 

Control Word 

0 START R - 0, M - i n b u s ;  

1 Q + i n b u s ;  

2 LOOP R -R -t M I  Q + Q - 1; 

3 If Z = 0 t h e n  g o t o  Loop; 

4 o u t b u s  - R; 

5 HALT Go t o  HALT 

FIGURE 7.47 Symbolic microprogram for 4-bit x 4-bit unsigned multiplication using 
repeated addition 

C , :R-0  
C, : M - inbus 

C, : F - 1 + r 

C, : outbus - R 

%- Control Memory C, : Q - inbus 
(CM) 

6 x 1 2  

C, Q + Q - 1 

1 l2 
Condition Branch CWR C , : R - - F  Control (cornmi 

Select Adder Functions 

I 2 ,  3 J . 4  
c,c ,  .. c, 

FIGURE 7.48 Microprogrammed unsigned multiplier control unit 

using hardwired control (presented earlier) is implemented by microprogramming. The 
register transfer description shown in Figure 7.36 is rewritten in symbolic microprogram 
language as shown in Figure 7.47. Note that the unsigned 4-bit x 4-bit multiplication uses 
repeated addition. The result (product) is assumed to be 4 bits wide. 

To implement the microprogram, the hardware organization of the control unit 
shown in Figure 7.48 can be used. The various components of the hardware of Figure 7.48 
are described in the following: 

Microprogram Counter (MPC). The MPC holds the address of the next 
microinstruction to be executed. It is initially loaded from an external source 
to point to the starting address of the microprogram. The MPC is similar to the 
program counter (PC). The MPC is incremented after each microinstruction fetch. 
If a branch instruction is encountered, the MPC is loaded with the contents of the 
branch address field of the microinstruction. 
Control Word Register (CWR). Each control word in the control memory in 
this example is assumed to contain three fields: condition select, branch address, 
and control function. Each microinstruction fetched from the Control Memory is 
loaded into the CWR. The organization of the CWR is same for each control word 

1. 

2. 
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and contains the three fields just mentioned. In the case of a conditional branch 
microinstruction, if the condition specified by the condition select field is true, 
the MPC is loaded with the branch address field of the CWR; otherwise, the MPC 
is incremented to point to the next microinstruction. The control function field 
contains the control signals. 
MUX (Multiplexer). The MUX is a condition select multiplexer. It selects one 
of the external conditions based on the contents of the condition select field of the 
microinstruction fetched into the CWR. 

3. 

In Figure 7.48, a 2-bit condition select field is required as follows: 

~~ ~ 

Condition Select Field 

0 0 

Interpretation 

No branching (no condition) 

0 1 I Branch i f Z =  0 

' 

1 0 I Unconditional branching 

ROM Address Control Word Comments 
In decimal In binary Condition Branch Control Function 

Select Address Co C1 C2 C, C4 C5 C6 
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 R t 0 , M t i n b u s  
1 0 0 1 0 0 0 0 0 0 0 1 0  0 0 O Q t i n b u s  
2 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 R t R + M , Q t Q - 1 ,  

3 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 I fZ=Othengoto  

4 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 o u t b u s t R  
5 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 Gotoaddress5(HALT) 

R t F  

address 2 (loop) 

From Figure 7.47 six control memory address (addresses 0 through 5) are required 
for the control memory to store the microprogram. Therefore, a 3-bit address is necessary 
for each microinstruction. Hence, three bits for the branch address field are required. From 
Figure 7.48 seven control signals (C, through C,) are required. Therefore, the size of the 
control function field is 7 bits wide. Thus, the size of each control word can be determined 
as follows: 

size of a = size of the condition + size of the branch + number 
control word select field address field of control 

signals 

2 + 3 + 7 - - 

12 bits - - 

Therefore, the size of the control memory is 6 bits x 12 bits because the 
microprogram requires six addresses (0 through 5) and each control word is 12 bits wide. 
The size of the CWR is 12 bits. The complete binary listing of the microprogram is shown 
in Figure 7.49. 
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Let us now explain the binary program. Consider the first line of the program. 
The instruction contains no branching. Therefore, the condition select field is 00. The 
contents of the branch in this case filled with 000. In the control function field, two micro- 
operations, C, and C,, are activated. Therefore, both C, and 
C,  are set to 1; C, through C, are set to 0. 

(address 0) of Figure 7.49: 
This results in the following binary microinstruction shown in the first line 

Condition Branch Control 
Select Address Function 

00 000 1 100000 

Next, consider the conditional branch instruction of Figure 7.49. This 
microinstruction implements the conditional instruction “If Z = 0 then go to address 2.” In 
this case, the microinstruction does not have to activate any control signal of the control 
function field. Therefore, C, through C, are zero. The condition select field is 01 because 
the condition is based on Z = 0. Also, if the condition is true (Z  = 0), the program branches 
to address 2. Therefore, the branch address field contains 010,. Thus, the following binary 
microinstruction is obtained: 

Condition Branch Control 
Select Address Function 

01 010 000000 

The other lines in the binary representation of the microprogram can be explained 
similarly. To execute an unsigned multiplication instruction implemented using the 
repeated addition just described, a microprogrammed microprocessor will fetch the 
instruction from external memory into the instruction register. To execute this instruction, 
the microprocessor uses the control unit of Figure 7.48 to generate the control word based 
on the microprogram of Figure 7.49 stored in the control memory. The control signals 
C, through C, of the control function field of the CWR will be connected to appropriate 
components of Figure 7.38 The instruction will thus be executed by the microprocessor. 

By examining the microprogram in Figure 7.49, it is obvious that the control 
function field contains all zeros in case of branch instructions. In a typical microprogram, 
there may be several conditional and unconditional branch instructions. Therefore, a lot of 
valuable memory space inside the control unit will be wasted if the control field is filled 
with zeros. In practice, the format of the control word is organized in a different manner to 
minimize its size. This reduces the implementation cost of the control unit. Whenever there 
are several branch instructions, the microinstructions, can be formatted by using a method 
called multiple microinstruction format. In this approach, the microinstructions are divided 
into two groups: operate and branch instructions. 

An operate instruction initiates one or more microoperations. For example, after 
the execution of an operate instruction, the MPC will be incremented by 1. In the case of a 
branch instruction, no microoperation will usually be initiated, and the MPC may be loaded 
with a new value. 
This means that the branch address field can be removed from the microinstruction format. 
Therefore, the control function field is used to specify the branch address itself. Typically, 



ROM Address Control Word 
In decimal In binary Condition Branch Control Function 

Select Address Co C, Cz C3 C4 Cs CC, 
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 
1 0 0 1 0 0 0 0 0 0 0 1 0  0 0 
2 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 

0 1 1 0 I 0 1 0 0 0 0 0 0 0 0 

4 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
5 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 

1 3  

each microinstruction will have two fields, as shown next: 

Comments 

R t 0 , M t i n b u s  
O Q t i n b u s  

R t F  
I fZ=Othengoto  
address 2 (loop) 
o u t b u s t R  
Gotoaddress5(HALT) 

R t R + M , Q t Q - 1 ,  

CONDITION- 
SELECT FIELD 

If S, So = 00, the microinstruction is considered as an operate instruction, and 
the contents of the control function field are treated as the control signals. Assume the 
Condition Select Field is encoded as follows: 

CONTROL FUNCTION FIELD 

Sl S O  

0 0 No branch 
0 1 Branch if cond-1 = 1 
1 1 Branch if cond-2 = 1 
1 0 Unconditional branch 

If S, So = 01, the instruction is regarded as a branch instruction, and the contents 
of the control field are assumed to be a 7-bit branch address. In this example, it is assumed 
that when S, So = 01, the MPC will be loaded with the appropriate address specified by C, 
C, C4 C3 C, C, C, if the condition Z = 0 is satisfied; on the other hand, if S, So = 10, an 
unconditional branch to the address specified by the Control Function I Branch Address 
Field occurs. 

In order to illustrate this concept, the microprogram for 4-bit by 4-bit unsigned 
multiplication of Figure 7.49 is rewritten using the multiple instruction format as shown in 
Figure 7.50. 

It can be seen from the figure 7.50 that the total size of the control store is 54 
bits (6 x 9 = 54). In contrast, the control store of figure 7.49 contains 72 bits. For large 
microprograms with many branch instructions, tremendous memory savings can be 
accomplished using the multiple microinstructon format. Addresses 0, 1, 2, and 4 contain 
microinstructions with the contents of the conditional select field as 00, and are considered 
as operate instructions. In this case, the contents of the control fimction field are directed 
to the processing hardware. 

Address 3 contains a conditional branch instruction since the contents of the 
condition select field are 01 ; while address 5 contains an unconditional branch instruction 
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I , I 

scsc4c3  c2 CI 
b 

To the Pmcesrcng Section 

FIGURE 7.51 Microprogrammed Controller for the Microprogram of Figure 7.50. 
CPU 

7 A 0 

Memory 

256 x 8 
RAM 

FIGURE 7.52 Programming Model of a Simple Processor 

(halt instruction; that is, jump to the same address) since the condition select field is 10. 
Hence, the 7-bit control function field directly specifies the desired branch addresses 2 and 
5, respectively. Figure 7.5 1 shows the hardware schematic. 

7.4 

Next, the design of a microprogrammed processor is illustrated. The programming model 
of this processor is shown in Figure 7.52. 
The CPU contains two registers: 
1. An 8-bit register A 
The flag register holds only zero (Z) and carry (C) flags. All programs and data are stored in 
the 256 x 8 RAM. The detailed hardware schematic of the data-flow part of this processor 
is shown in Figure 7.53. 
From Figure 7.53, it can be seen that the hardware organization includes four more 8-bit 
registers, PC, IR, MAR, and BUFFER. These registers are transparent to a programmer. 
The 8-bit register BUFFER is used to hold the data that is retrieved from memory. In this 
system, only a restricted number of data paths are available. These paths are controlled by 
the control inputs C, through C,, as defined in Table 7.1. 

Desim of a MicroDroPrammed CPU 

2. A 2-bit flag register F 
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256 A 8 

Data out 

FIGURE 7.53 Hardware Schematic of the Simple Processor (Note: 8-bit PC is 
connected to eight 2 to 1 MUXs-- Not shown above) 

From Figure 7.54, notice that the proposed instruction set contains 11  instructions. The 
first 7 instructions are classified as memory reference instructions, since they all require 
a memory address (which is an 8-bit number in this case). The last 4 instructions do not 
require any memory address; they are called nonmemory reference instructions. Each 
memory reference instruction is assumed to occupy 2 consecutive bytes in the RAM. The 
first byte is reserved for the op-code, and the second byte indicates the 8-bit memory 
address. In contrast, a nonmemory reference instruction takes only one byte of storage. 
This instruction set supports only two addressing modes: implicit and direct. Both branch 
instructions are assumed to be absolute mode branch instructions. The op-code encoding 
for this instruction set is carried out in a logical manner, as explained in Figure 7.55. 
The bit I3 of Figure 7.55 decides the instruction type. If I3 = 1, it is a memory reference 
instruction (MRI), otherwise it is a nonmemory reference instruction (NMRI). 
Within the memory reference category, instructions are classified into four groups, as 
follows: 

GROUP NO. INSTRUCTIONS 
0 Load and store 
1 Add and subtract 
2 Jumps 
3 Logical 

There are two instructions in the first three groups. Bit I, is used to determine the desired 
instruction of a particular group. If Io of group 0 equals zero, it is the load (LDA) instruction; 
otherwise it is the store (STA) instruction. Nevertheless, no such classification is required 
for group 3 and the nonmemory reference instructions. 

As mentioned before, the instruction execution involves the following steps: 
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c,: PC - 0 

TABLE 7.1 Definitions of the Control Inputs C,-C, 

MICROOPERATION I COMMENT 

Clear PC to zero. 

C5GC,: BUFFER - M ((MAR)) 

C,C,: MAR - BUFFER 

C,cC,: IR - M ((MAR)) 

C,: A +- F 

C, C,: M ((MAR)) - A 
-- 

C , : P C - P C + 1  I Advance the PC. 

Read the data from the memory and save the 
result in BUFFER. 

Transfer the content of the BUFFER into MAR. 

Read the data from memory and save the result 
into IR. 

Transfer the ALU output into the A register. 

Save contents of register A into memory. 

C,C,G: PC - M ((MAR)) 

C,C,: MAR - PC 
- 

Read the data from the memory and save it in the 
PC. 

Transfer the contents of the PC into MAR. 

Cl 

0 

0 

0 

0 

1 

1 

1 

1 

Step 1: 
Step 2: 
Step 3: 

Step 4: 
Step 5: 
Step 6: 

1 c,, CI, 

0 0 

0 1 

1 0 

1 1 

0 0 

0 1 

1 0 

1 1 

F 

0 

R 

L+R 

L-R 

L+ 1 

L- 1 

L AND R 

NOT L 

Fetch the instruction. 
Decode the instruction to find out the required operation. 
If the required operation is a halt operation, then go to Step 6; 
otherwise continue. 
Retrieve the operands and perform the desired operation. 
Go to Step 1. 
Execute an infinite LOOP. 

The first step is known as the fetch cycle, and the rest are collectively known 
as the execution cycle. To decode the instruction, the hardware shown in Figure 7.56 is 
used. 

With this hardware and the status flags (Z and C), a microprogram to implement 
the instruction set can be written. The symbolic version of this microprogram is shown in 
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(add&: 8-bit memory address in binary 
taddrH): 8-bit memory address in hex 

MRI: memory reference instruction 
NMRI: nonmemory reference instruction. 

FIGURE 7.54 Instruction Set to be Implemented 

Figure 7.57. 
The hardware organization of the microprogrammed control unit for this situation 

shown in Figure 7.58 directly follows the symbolic listing shown in Figure 7.57. No 
attempt has been made toward arriving at a minimal microprogram. Rather, the concept 
was presented. The task of translating the symbolic microprogram of Figure 7.57 into a 
binary microprogram is left as an exercise. 



Design of Computer Instruction Set and the CPU 28 1 

TC: 
GN: 

Type classifier (if I3 = 1, then it is a MRI; otherwise it is 
Group number within a type 

( I 2  I1 Group no. 

0 0 0 

0 1 1 

1 0 2 

1 1 3 1 
SC: Subcategory within a group 

FIGURE 7.55 Op-code Encoding Logic 

a NMRI) 

FIGURE 7.56 Instruction-decoding Hardware 
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Svmbolic MicroDrogram: 

ROM Address 

0 

1 FETCH 

2 

3 

4 

5 

6 

7 

8 CMA 

9 

10 INCA 

1 1  

12 DCRA 

13 

14 MEMREF 

15 

16 

17 AND 

18 

19 

20 

21 

22 

23 LDSTO 

24 

25 

26 

27 LOAD 

28 

29 

30 STO 

31 

PC- 0; 

MAR - PC; 

IR - M ((MAR)), PC - PC + 1; 

IF 1, = 1 then go to MEMREF; 

IF XC, = 1 then go to CMA; 

IF XC, = 1 then go to INCA; 

IF XC, = 1 then go to DCRA; 

Go to HALT; 

A - A; 
Go to FETCH; 

A - A + l ;  

Go to FETCH; 

A - A -  1; 

Go to FETCH; 

IF XC, = 1 then go to LDSTO; 

These operations constitute the 
fetch cycle. 

Here we decode the 
instructions. 

Execute CMA instructions. 

Execute INCA instruction. 

Execute DCRA instruction. 

Here we branch to the various 
groups of the memory 
reference instruction. 

IF XC, = 1 then go to ADSUB; 

IF XC, = 1 then go to JMPS; 

MAR - PC; 

BUFFER - M ((MAR)), PC - PC + 1; 

MAR + BUFFER; 

BUFFER - M ((MAR)); 

A - A A BUFFER; 

Go to FETCH; 

MAR - PC; 

BUFFER +- M ((MAR)), PC - PC + 1; 

MAR - BUFFER; 

IF I, = 1 then go to STO; 

BUFFER + M ((MAR)); 

A + BUFFER; 

Go to FETCH; 

M ((MAR)) +- A; 

Go to FETCH; 

Execute AND instruction. 

FIGURE 7.57 Symbolic Microprogram that implements the instruction set of figure 
7.54 
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- 0  - 
Z - 1  

C 2 

13 3 

xc2 4 MUX - 
xc 1 .5 
xco - 6  
10 7 

"CL - 8  

A 
Condition 

select 
field Interpretation ,I 4 

0000 No branch 
0001 Branchif 2 1 
001 0 Branch if C = 1 
001 1 Branch if 13 = 1 
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4 
Load16 

MPC Reset 

6 

Control memory 
(52 x 33) 

23 

Condition Branch Control CMDB 
select address functions 

J 6 4  c 
co c,, 

32 ADSUB MAR-PC; 

33 

34 MAR - BUFFER ; 

35 BUFFER 6 M ((MAR)); 

36 IF I, = 1 then go to SUB; 

37 ADD A - A + BUFFER, Execute ADD instruction 

38 Go to FETCH; 

39 SUB A + A - BUFFER; Execute SUB instruction 

40 Go to FETCH; 

41 JMPS MAR - PC; 

42 

43 

44 JOZ IF Z = 1 then go to LOADPC; Execute JZ instruction 

BUFFER - M ((MAR)), PC + PC + 1 ; 

IF I, = 1 then go to JOC; 

IF I, = 1 then go to JOC; 

45 P C - P C + l ;  

46 Go to FETCH; 

47 JOC IF C = 1 then go to LOADPC; Execute JC instruction 

48 P C t P C + l ;  

49 Go to FETCH; 

50 LOADPC PC - M((MAR)); 

51 Go to FETCH; 

52 HALT Go to HALT; Execute HALT instruction 

FIGURE 7.57 Continued 
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FIGURE 7.59 A microprogram of size A x B 

Upper integer of 

Microprogram Nanoprogram 

Nanoprogram 
Control Memory 

FIGURE 7.60 Nanomemory 

O0 01 

10 

3 x 4 nanocontrol store 

000 
00 1 
010 
01 1 
100 
101 
110 

0100 El 
FIGURE 7.61 7 x 4-bit single control memory 

000 
00 1 
010 
01 1 
100 
101 
110 

7 x 2-bit mici rocontrol store 

FIGURE 7.62 Two-level store (nanomemory) 
I t 9  4 
I I+- 70 4 

640 x 9 

store 
640 1 Microcontrol 

FIGURE 7.63 68000 nanomemory 
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Example 7.1 
If the following two instructions are to be added to the instruction set of Figure 7.54, write 
a symbolic microprogram for the CPU of section 7.3 that describes the execution of each 
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instruction: 

GENERAL FORMAT 

( 4  CLRA 

(b) PRSA 

OPERATION DESCRIPTION 

A+O Clear register A 

A+ 11 11 11 1 1 Set register A to all ones 

Solution: 
(a) CLRA: A+O 

(b) PRSA: A t 0  
A+A 
go to FETCH 

go to FETCH 
; Use ALU’s zero output (C,,C,,C,,=OOO) 
9 

; Use ALU’s zero output (C,,C, ,C,,=OOO) 
, 

Nanomemory is another approach for reducing the size of the control memory. 
This technique contains a two-level memory: control memory and nanomemory. At the 
outset, are may feel that the two-level memory will increase the overall cost. In fact, it 
reduces the cost of the system by minimizing the memory size. 

The concept of nanomemory is derived from a combination of horizontal and 
vertical instructions. However, this method provides trade-offs between them. 

Motorola uses nanomemory to design the control units of their popular 16-bit and 
32-bit microprocessors, including the 68000, 68020, 68030, and 68040. The nanomemory 
method provides significant savings in memory when a group of micro-operations occur 
several times in a microprogram. Consider the microprogram of Figure 7.59, which contains 
A microinstructions B bits wide. The size of the control memory to store this microprogram 
is AB bits. Assume that the microprogram has n (n < A )  unique microinstructions. These n 
microinstructions can be held in a separate memory called the “nanomemory” of size nB 
bits. Each of these n instructions occurs once in the nanomemory. Each microinstruction 
in the original microprogram is replaced with the address that specifies the location of the 
nanomemory in which the original B-bit-wide microinstructions are held. 

Because the nanomemory has n addresses, only the upper integer of log,n bits 
is required to specify a nanomemory address. This is illustrated in Figure 7.60. The 
operation of microprocessor employing a nanomemory can be explained as follows: The 
microprocessor’s control unit reads an address from the microprogram. The content of this 
address in the nanomemory is the desired control word. The bits in the control word are used 
by the control unit to accomplish the desired operation. Note that a control unit employing 
nanomemory (two-level memory) is slower than the one using a conventional control 
memory (single memory). This is because the nanomemory requires two memory reads 
(one for the control memory and the other for the nanomemory). For a single conventional 
control memory, only one memory fetch is necessary. This reduction in control unit speed 
is offset by the cost of the memory when the same microinstructions occur many times in 
the microprogram. 

Consider the 7 x 4-bit microprogram stored in the single control memory of Figure 
7.61. This simplified example is chosen to illustrate the nanomemory concept even though 
this is not a practical example. In this program, 3 out of 7 microinstructions are unique. 
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Therefore, the size of the microcontrol store is 7 x 2 bits and the size of the nanomemory 
is 3 x 4 bits. This is shown in Figure 7.62. 

Memory requirements for the single control memory = 7 x 4 = 28 bits. Memory 
requirements for nanomemory = (7 x 2 + 3 x 4) bits = 26 bits. Therefore, the saving 
using nanomemory = 28 - 26 = 2 bits. For a simple example like this, 2 bits are saved. 
The HMOS 68000 control unit nanomemory includes a 640 x 9-bit microcontrol store 
and a 280 x 70-bit nanocontrol store as shown in Figure 7.63. In Figure 7.63, out of 640 
microinstructions, 280 are unique. If the 68000 were implemented using a single control 
memory, the requirements would have been 640 x 70 bits. Therefore, 

Memory savings = (640 x 70) - (640 x 9 + 280 x 70) bits 

= 19,440 bits 
= 44,800 - 25,360 

This is a tremendous memory savings for the 68000 control unit. 

DUESTIONS AND PROBLEMS 

7.1 

7.2 

7.3 

7.4 

7.5 

7.6 

It is desired to implement the following instructions using block code: ADD, 
SUB, XOR, MOVE, HALT. Draw a block diagram. 

The instruction length and the size of an address field are 9 bits and 3 bits 
respectively. Is it possible to have 

6 two-address instructions 
15 one-address instructions 
8 zero-address instructions 

using expanding op-code technique? Justify your answer. 

Using the instruction format of Problem 7.2, is it possible to have 
7 two-address instructions 
7 one-address instructions 
8 zero-address instructions 

using expanding opcode technique? Justify your answer. 

Assume that it is desired to have 2 two-address, 7 one-address, and 25 zero- 
address instructions in a computer instruction set. Using expanding op-code 
technique with a 2-bit op-code and 3-bit address field, is it possible to accomplish 
the above? If so, justify your answer and determine the instruction length. 

Assume that using an instruction length of 9 bits and the address field size of 3 
bits, 5 two-address and 10 one-address instructions have already been designed, 
using expanding op-code technique. Is it possible to have at least 48 zero-address 
instructions that can be added to the instruction set? 

Design a combinational logic shifter with 4-bit input and 4-bit output as follows: 



- 
OE 

1 
0 
0 
0 
0 

7.7 

7.8 

7.9 

7.10 

7.1 1 

7.12 

7.13 

Shift Count 4 - bit output 

s, so 
X X High Impedance output lines 
0 0 No Shift 
0 1 Right Shift once 
1 0 Right Shift twice 
1 1 Right Shift three times 

where X means don’t care. Using multiplexers and tristate buffers, draw a logic 
diagram. 

Draw a logic diagram for a 4 x 4 barrel shifter. 

Using a minimum number of full adders and multiplexers, design an incremented 
decrementer circuit as follows: If S = 0, output y = x + 1 ; otherwise, y = x - 1. 
Assume x and y are 4-bit signed numbers and the result is 4 bits wide. 

Design a combinational circuit to compute the absolute value of an 8-bit twos 
complement number. Use %bit binary adder and exclusive-OR gates. Draw a 
logic circuit. 

Using a 4-bit CLA as the building block, design an 8-bit adder. 

Design: 
(a) 

(b) 

(c) 

a 16-bit adder whose worst-case add-time is 10A using a 4-bit CLA as a 
building block. 
the fastest 64-bit adder using a 4-bit CLA as the building block. Estimate 
the worst-case add-time of your design. 
a combinational circuit to compute the fimctionf(x) = (3/8) * x where x 
is a 4-bit 2’s  complement number. 

Design an arithmetic logic unit to perform the following hnctions: 

A minus B 
A AND B 
A O R B  

Use multiplexers, binary adders, and gates as needed. Assume that A and B are 
4-bit numbers. Draw a logic circuit. 

Design a combinational circuit that will perform the following operations: 

B 
15 
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7.14 
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_--_ 

Assume that A is a 4-bit number and B = u3 a, a ,  a,. Draw a logic diagram. 

Design a 4-bit ALU to perform the following operations: 

S F 
0 
1 0 

Logical Left Shift A once 

7.15 

7.16 

7.17 

7.18 

7.19 

7.20 

7.2 1 

7.22 

Assume that A is a 4-bit number. Draw a logic diagram using a binary adder, 
multiplexers, and inverters as necessary. 

Design a 4-bit arithmetic unit as follows: 

S I F 
A plus B 

Assume that A and B are 4-bit numbers 

Design an ALU to perform the following operations: 

O B  
XO 

_ _ _ _  
Assume that x and y are 4-bit numbers, and B= y3 y ,  y ,  y,. Draw a logic diagram. 

Assume two 2’s complement signed numbers, M =  1 1 1 1 1 1 1 1 , and Q = 1 1 1 1 1 100,. 
Perform the signed multiplication using the algorithm described in Section 7.2.2. 

What is the purpose of the control unit in a microprocessor? 

Draw a logic diagram to implement the following register transfers: 
(a) If the content of the 8-bit register R is odd, then 

x + x o y  
else x+ x AND y 

Assume x and y are 4 bits wide. 
(b) If the number in the 8-bit register R is negative, then x + x - 1 else x - 

x + 1. Assume x and y are 4 bits wide. 

Discuss briefly the merits and demerits of single-bus, two-bus, and three-bus 
architectures inside a control unit. 

What is the basic difference between hardwired control, microprogramming, and 
nanoprogramming? Name the technique used for designing the control units of 
the Intel 8086, Motorola 68000, and PowerPC. 

Using the following components: 4-bit general-purpose register, 4-bit 
adderhubtractor, and tristate buffer, and assuming the inbus and outbus are 
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4 bits wide, design a control unit using hardwired control to perform the 
following operations. You may use counters, decoders, and PLAs as required. 

I 

Clock R 4  

4-bit General c 
Purpose Register 

~ 

7.23 

7.24 

7.25 

4 

D- 

1 

F 4 4  

X 
,L-4  

Control 
Input 

t 
Y 

R C L D Clock 

0 1 0 0  1 
0 0 1 0  1 
0 0 0 1  1 
1 0 0 0  .J 
0 0 0 0  .J 

Control 
Input 

1 

0 

Control 
Input 

1 
0 

Action 
Clear 
Load External d 
Decrement by ( 
Logical Right Sl 
No Change 

F 
I + r  
I - r  

Y 

X 
High 

lmpedence 

(a) 

(b) 

Outbus - 4 x A .  Assume A is a 4-bit unsigned number and the result is 
4 bits wide. 
If  the 4-bit number in register B is odd, outbus +- 0; otherwise outbus - 
A + ( B  I 2). Assume A and B are unsigned 4 bit numbers. Also, assume 
data is already loaded into B. 
If the content of a 4-bit register Q = 0, perform R + M and then transfer 
the 4-bit result to outbus. On the other hand, if the content of the 4-bit 
register Q # 0, perform R - 0 and then transfer the 4-bit result to the 
outbus. Assume M and R are 4 bits wide. 

(c) 

Repeat Problem 7.22 using microprogramming. 

Discuss the basic differences between microprogramming and nano- 
programming. 

(a) A conventional microprogrammed control unit includes 1024 words by 
85 bits. Each of 5 12 microinstructions are unique. Calculate the savings 
if any by having a nanomemory. Calculate the sizes of microcontrol 
memory and nanomemory. 
Consider the following 14 x 6 microprogram using a conventional 
control memory: 

(b) 
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so Y, 

0 1 4  
0 0 0  Circuit 

- 
o x ,  so 

1 1 1  

0000 
000 1 
0010 
001 1 
0100 
0101 
01 10 
0111 
1000 
1001 
1010 
101 1 
1100 
1101 
1110 

000001 
00001 1 
0000 10 
00001 1 
0000 1 0 B 000001 

Implement this microprogram in a nanomemory. Justify the use of either a single- 
control memory or a two-level memory for the program. 

7.26 Discuss the basic differences between CISC and RISC. 

7.27 Design and implement a combinational circuit that will work as follows: 

Shift left A 
A lus B lus 1 

1 Shift left A + 1 
Note that A and B are 4-bit operands 

7.28 i) Design a combinational circuit that will satisfy the following 
specification. 

ii) Using the results of part i), design a 4-bit, 8-function arithmetic unit 
ii) will function as described next: 

A plus B 
0 A plus 

that 
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1 
1 
1 

29 1 

0 1 A plus B plus 1 
1 0 A plus B plus 1 
1 1 A  

1 1 1  0 1  0 I A plus 1 I 

0 l o  1 1  
0 1 1  l o  

A plus E 
A plus B 

7.29 Design a 4-bit, 8-function arithmetic unit that will meet the following 
specifications: 

1 
1 
1 
1 

s 2  I s 1  I so I F  
0 l o  l o  I 2A 

0 0 2Aplus 1 
0 1 A plus B plus 1 
1 0 A plus B plus 1 
1 1 A 

I o I 1 I 1 I ~ m i n u s 1  I 

(b) Using another selection bit S1, modify the circuit of i) to include the 
arithmetic and logic functions as follows: 
- s1 - SO FUNCTION TO BE PERFORMED 
0 0 F = A p l u s B  
0 1 F - B  
1 0 F = shift left (logical) A 
1 1 F = A  

(c) Design a 4-bit logic unit that will function as follows: 

7.3 1 Design and implement a 6 x 6 array multiplier. 

7.32 Design an unsigned 8 x 4 non-additive multiplier using additive-multiplier- 
module whose block diagram representation is as follows: 
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M Q 

1 
P -  M.0- Y 

Assume that M, Q, and Y are unsigned integers. 

7.33 Using four 256 x 8 ROMS and 4-bit parallel adders, design a 8 x 8 unsigned, 
nonadditive multiplier. Draw a logic diagram of your implementation. 

7.34 Consider the registers and ALU shown in Figure P7.34: 

C, - 

Load 8 

The intemretation of various control points are summarized as follows: 

R minus S A + F  
R and S 
R EX-OR 

FIGURE P7.34 

Answer the following questions by writing suitable control word(s). Each control 
word must be specified according to the following format: C, C ,  C2 C, Co 
For example: 

c4 c3 c2 c, co 
1 0 0 0 1 ; A - A p l u s B  
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(a) 

(b) 

How will the A register be cleared? (Suggest at least two possible ways.) 
DIRECT CLEAR input is not available. 
Suggest a sequence of control words that exchanges the contents of A 
and B registers (exchange means A .E- B and B -+ A). 

7.35 Consider the following algorithm: 
Declare registers A [8], B [8], C [8]; 
START: A - 0; B * 0000 10 10; 
LOOP: A + A + B; B + B - 1; 

If B < > 0 then go to LOOP 
C c- A; 

HALT: Go to HALT 
Design a hardwired controller that will implement this algorithm. 

7.36 It is desired to build an interface in order establish communication between a 32- 
bit host computer and a front end 8-bit microcomputer (See Figure P7.36). The 
operation of this system is described as follows: 
Step 1: First the host processor puts a high signal on the line “want” (saying that 

it needs a 32-bit data) for one clock period. 
Step 2: The interface recognizes this by polling the want line. 
Step 3: The interface unit puts a high signal on the line “fetch” for one clock 

period (that is it instructs the microcomputer to fetch an 8-bit data). 
Step 4: In response to this, the microcomputer samples the speech signal, 

converts it into an 8-bit digital data and informs the interface that the 
data is ready by placing a high signal on the “ready” line for one clock 
period. 

Step 5: The interface recognizes this (by polling the ready line), and it reads the 
8-bit data into its internal register. 

.Step 6: The interface unit repeats the steps 3 through 5 for three more times (so 
that it acquires 32-bit data from the microcomputer). 

Step 7: The interface informs the host computer that the latter can read the 32-bit 
data by placing a high signal on the line “takeit” for one clock period. 

Step 8: The interface unit maintains a valid 32-bit data on the 32-bit output bus 
until the host processor says that it is done (the host puts a high signal on 
the line “done” for one clock period). In this case, the interface proceeds 
to step 1 and looks for a high on the “want” line. 

(a) 
(b) 
(c) 
(d) 

Provide a Register Transfer Language description of the interface. 
Design the processing section of the interface. 
Draw a block diagram of the interface controller. 
Draw a state diagram of the interface controller. 
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Speech Sample and hold 

signat -* plus 
lowpass titter 

-* 
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want 
Micro- fetch Interface +-- 32-blt 

-* computer t- 

7.37 Solve Problem 7.35 using the microprogrammed approach. 

7.38 Design a microprogrammed system to add numbers stored in the register pair AB 
and CD. A, B, C, and D are 8-bit registers. The sum is to be saved in the register 
pair AB. Assume that only an 8-bit adder is available. 

7.39 The goal of this problem is to design a microprogrammed 3rd order FIR (Finite 
impulse response) digital filter. In this system, there are 4 coefficients w,, w,, 
w,, and w3. The output y ,  (at the kth clock period) is the discrete convolution 
product of the inputs ( x ~ )  and the filter coefficients. This is formally expressed as 
follows: 

y ,  = wg *x, + WI *xk-1 + w2* x,-2+ w,* Xk-3 
In the above summation, x, represents the input at the kth clock period 

while xk-, represents input at (k- i)th sample period. For all practical purposes, we 
assume that our system is causal and so xi = 0 for i < 0. The processing hardware 
is shown in Figure P7.39. This unit includes 8 eight-bit registers (to hold data and 
coefficients), N D  (Analog digital converter), MAC (multiplier accumulator), and 
a D/A (Digital analog converter). The processing sequence is shown below: 

1 Initialize coefficient registers 
2 
3 
4 

5 
6 
7 

Clear all data registers except x, 
Start N D  conversion (first make sc = 1 and then retract it to 0) 
Wait for one control state (To make sure that the conversion is 
complete) 
Read the digitized data into the register x, 
Iteratively calculate filter output y,  (use MAC for this) 
Pass y ,  to D/A (Pass Accumulator’s output to D/A via Rounding 
ROM) 

8 Movethedatatoreflectthetimeshift(x,_,=x,_, , X ~ . ~ - X , - ~  - 

9 G o t 0 3  
(a) Specify the controller organization. 
(b) Produce a well documented listing of the binary microprogram 
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sc 
(slan mnverston) 

AnalDg 

(mnicient databus) 

dm 
(data move) 

(dala dear) 

Deader 

i-' I I I I  I l l  I I 

le 
(baa enable) 

I 
I- - I I 

I 

I- 
L - - - - - - - - - - - - - - - 

filter 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Rounding 

16 

? MAC 

FIGURE P7.39 

7.40 Your task is to design a microprogrammed controller for a simple robot with 4 
sensors (see Fig. A). The sensor output will go high only if there is a wall or an 
obstruction within a certain distance. For example, if F= 1, there is an obstruction 
or wall in the forward direction. In particular, your controller is supposed to 
communicate with a motor controller unit shown in Fig. B. The flow chart that 
describes the control algorithm is shown in Fig. C. The outputs such as MFTS, 
MRT, MLT, MUT, and STP, andd the status signals such as FMC, and TC will be 
high for one clock period. Assume that a power on reset causes the controller to 
go the WAIT STATE 0. 



296 

F 1  

R 1  

L ,1 * 
B 1 
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1 

1 

I Make a U-Turn (MUT) 

Make a Right Turn (MRT) 

Make a Left Turn (MLT) - 

Robot 
1 Stop robot(STR) 

1 

F: forward direction sensor 
R: right direction sensor 
L: left direction sensor 
B: backward direction sensor 

Figure A 

FIGURE P7.40a 
(a) Specify the controller organization. 

Stan 

Clock 

$ 4 4 4 4  
Motor 

controller 
unit 

Turn Completed (TC) 

Fonvard Motion Completed (FMC) 

Figure 0 

FIGURE P7.40b 
(b) Provide a well documented listing of the binary microprogram. 



Design of Computer Instruction Set and the CPU 297 

MFTS = 1 b 
No 

No 
A MRT = 1 

1r 
MLT = 1 

L 
r 

I’ 

STP = 1 9 Wait slate 6- 

-7i Wait slate 

+J$ = l ?  

L . 
r 

Figure C 

FIGURE P7.40~ 

7.41 It is desired to add the following instructions to the instruction set shown in 
Figure 7.54. 

(a) MVIA tdata8) A 6 (data% This is an immediate mode move 
GENERAL FORMAT OPERATION DESCRIPTION 

instruction. 
The first byte contains the op-code 
while the second byte contains the 8- 
bit data. 

(b) NEGA A + -  A This instruction negates the contents 
o f A  

Write a symbolic microprogram that describes the execution of each instruction. 

7.42 Explain how the effect of an unconditional branch instruction of the following 
form is simulated: 
JP taddri 
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Use the instruction set shown in Figure 7.54. 

7.43 Using the instruction set shown in Figure 7.54, write a program to add the contents 
of the memory locations 64,, through 6D,, and save the result in the address 
6% 

7.44 Show that it is possible to specify 675 microoperations using a 10 bit control 
function field. 

7.45 A microprogram occupies 100 words and each word typically emits 70 control 
signals. The architect claims that by using a 2’ x 70 nanomemory (for some i > 0), 
it is possible to save 4260 bits. If this were true, determine the number of distinct 
control states in the original microprogram (Note that here when we say a control 
state we refer only to the control function field). 
Hint: You may have to employ a trial and error approach to solve this problem. 


