
this print for content only—size & color not accurate spine = 0.638" 272 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Expert Service-Oriented Architecture
in C# 2005, SECOND EDITION
Dear Reader,

Service-oriented architecture (SOA) is a new, evolving model for building distrib-
uted applications. SOA is built on loosely coupled components that exchange
SOAP/XML messages. Web services are a key component in SOA because they
exchange messages. Until recently, XML Web services built in ASP.NET have been
unable to support business-critical systems because they lacked important
service guarantees: security, reliability, and performance. This has now
changed with the release of Web Services Enhancements 3.0 (WSE).

WSE 3.0 is a powerful complement to ASP.NET that allows you to build the
next generation of Web services. WSE 3.0 implements industry-standard Web
service specifications, including WS-Security and WS-Addressing, for building
truly interoperable Web services that are not tied to a single vendor. WSE 3.0
integrates with the ASP.NET processing pipeline to provide advanced support
for secure, reliable XML messages. In addition, WSE 3.0 provides an intuitive,
flexible application programming interface that automatically generates the
SOAP message attributes for secure, reliable messages.

We wrote this book because we are passionate about SOA and Web services
development. Our book teaches you the concepts behind SOA and shows you
in very practical terms how to build business-critical Web services using
ASP.NET and WSE 3.0. Our book will show you how to take your Web services
development to the next level using the best of today’s technology.

Prepare to be informed, and prepare to be inspired!

Jeffrey Hasan, M.Sc., MCSD, and Mauricio Duran, MCP

US $39.99

Shelve in
.NET

User level:
Advanced

www.apress.com

SOURCE CODE ONLINE
forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

Join online discussions:

Hasan,
Duran

SECOND
EDITION

THE EXPERT’S VOICE® IN .NET

Jeffrey Hasan
with Mauricio Duran

Expert
Service-Oriented
Architecture in C# 2005

SECOND EDITION

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN 1-59059-701-X

9 781590 597019

53999

6 89253 59701 9

Jeffrey Hasan

Performance Tuning and
Optimizing ASP.NET
Applications

Professional .NET
Framework

ADO.NET Programmer’s
Reference

Professional VB6 Web
Programming

Companion eBook

See last page for details
on $10 eBook version

Defining Web services development with ASP.NET and WSE 3.0

Service-Oriented Architecture in C# 2005

Companion
eBook

Available

Expert

Jeffrey Hasan with Mauricio Duran

Expert Service-Oriented
Architecture in C# 2005
Second Edition

701xFM.qxd 7/14/06 5:43 PM Page i

Expert Service-Oriented Architecture in C# 2005, Second Edition

Copyright © 2006 by Jeffrey Hasan, Mauricio Duran

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-701-9

ISBN-10 (pbk): 1-59059-701-X

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Hassell
Technical Reviewers: Mathew Upchurch, Omar Del Rio
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Matt Wade

Project Manager: Richard Dal Porto
Copy Edit Manager: Nicole LeClerc
Copy Editors: Jennifer Whipple, Ami Knox
Assistant Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Dina Quan
Proofreader: Liz Welch
Indexer: Michael Brinkman
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

701xFM.qxd 7/14/06 5:43 PM Page ii

Contents at a Glance

About the Authors . xi

About the Technical Reviewers . xiii

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 Introducing Service-Oriented Architecture . 1

■CHAPTER 2 The Web Services Description Language . 15

■CHAPTER 3 Design Patterns for Building Message-Oriented
Web Services . 31

■CHAPTER 4 Design Patterns for Building Service-Oriented
Web Services . 57

■CHAPTER 5 Web Services Enhancements 3.0 . 83

■CHAPTER 6 Secure Web Services with WS-Security . 107

■CHAPTER 7 Extended Web Services Security with WS-Security
and WS-Secure Conversation . 133

■CHAPTER 8 SOAP Messages: Addressing, Messaging, and Routing 169

■CHAPTER 9 Beyond WSE 3.0: Looking Ahead to Windows Communication
Foundation (WCF) . 205

■APPENDIX References . 225

■INDEX . 235

iii

701xFM.qxd 7/14/06 5:43 PM Page iii

701xFM.qxd 7/14/06 5:43 PM Page iv

Contents

About the Authors . xi

About the Technical Reviewers . xiii

Acknowledgments . xv

Introduction . xvii

■CHAPTER 1 Introducing Service-Oriented Architecture 1

Overview of Service-Oriented Architecture . 1

What Are Web Services, Really? . 3
Components of Web Service Architecture . 6

WS-I Basic Profile, WS- Specifications, and Web Services
Enhancements . 11

Introducing the WS-I Basic Profile . 11

Introducing the WS- Specifications . 13

Introducing Web Services Enhancements . 13

Summary . 14

■CHAPTER 2 The Web Services Description Language 15

Elements of the WSDL Document . 15

The <types> Element . 18

The <message> Element . 18

The <operation> Element . 19

The <portType> Element . 21

The <binding> Element . 21

The <port> Element . 22

The <service> Element . 23

The WSDL 1.1 Specification . 23

Working with WSDL Documents . 26

How to Generate a WSDL Document . 27

What to Do with the WSDL Document . 28

Summary . 28

v

701xFM.qxd 7/14/06 5:43 PM Page v

■CONTENTSvi

■CHAPTER 3 Design Patterns for Building Message-Oriented
Web Services . 31

How to Build a Message-Oriented Web Service . 31

Step 1: Design the Messages and the Data Types 31

Step 2: Build the XSD Schema File for the Data Types 32

Step 3: Create a Class File of Interface Definitions for the
Messages and Data Types . 32

Optional Step 3A: Generate the WSDL Document Manually 32

Step 4: Implement the Interface in the Web Service
Code-Behind File . 32

Step 5: Generate a Proxy Class File for Clients Based on the
WSDL Document . 32

Step 6: Implement a Web Service Client Using a Proxy
Class File . 33

Next Steps . 33

Design and Build a Message-Oriented Web Service 34

The Role of XML Messages and XSD Schemas 34

The Role of the Interface Definition Class File 40

Messages vs. Types . 47

Consume the Web Service . 49

Build the Web Service Consumer . 49

Summary . 55

■CHAPTER 4 Design Patterns for Building Service-Oriented
Web Services . 57

How to Build Service-Oriented Web Services . 57

Step 1: Create a Dedicated Type Definition Assembly 61

Step 2: Create a Dedicated Business Assembly 61

Step 3: Create the Web Service Based on the Type Definition
Assembly . 62

Step 4: Implement the Business Interface in the Web Service 62

Step 5: Generate a Web Service Proxy Class File Based on the
WSDL Document . 63

Step 6: Create a Web Service Client . 63

Design and Build a Service-Oriented Web Service 63

Create the Definition Assembly (Step 1) . 64

Create the Business Assembly (Step 2) . 66

Create the Web Service (Steps 3–5) . 68

Create the Web Service Client (Step 6) . 70

701xFM.qxd 7/14/06 5:43 PM Page vi

Design and Build a Service Agent . 75

Implement the StockTrader SOA Application Using a
Service Agent . 76

The External Web Service (StockQuoteExternalService) 78

The Service Agent (StockTraderServiceAgent) 78

The Business Assembly (StockTraderBusiness) 80

Summary . 81

■CHAPTER 5 Web Services Enhancements 3.0 . 83

Overview of the WS- Specifications . 83

Business Significance of the WS- Specifications 84

Introducing the WS- Specifications . 86

Interoperability . 86

Composability . 86

Security . 86

Description and Discovery . 87

Messaging and Delivery . 87

Transactions . 87

The WS- Specifications Covered in This Book . 87

Introducing Web Services Enhancements 3.0 . 89

How the WSE Processing Infrastructure Works 89

How WSE Works with ASP.NET . 91

Install and Configure WSE 3.0 . 96

X.509 Certificate Support . 100

X.509 Certificates Explained . 100

Installing the X.509 Test Certificates . 101

Set ASP.NET Permissions to Use the X.509 Certificates 103

Final Thoughts on WSE . 106

Summary . 106

■CHAPTER 6 Secure Web Services with WS-Security 107

The WS-Security Specification . 107

Secure Web Services in an SOA . 111

Implement WS-Security Using the WSE 3.0 Toolkit 112

WSE 3.0 Security Policies . 115

Turnkey Security Assertions . 117

Securing the StockTrader Application Using WSE 3.0 118

Authorization . 130

Summary . 132

■CONTENTS vii

701xFM.qxd 7/14/06 5:43 PM Page vii

■CHAPTER 7 Extended Web Services Security with WS-Security
and WS-Secure Conversation . 133

Authentication Models . 133

Direct Authentication . 133

Brokered Authentication . 135

Implementing Brokered Authentication . 137

Brokered Authentication Using Mutual Certificates 137

Brokered Authentication Using Kerberos . 146

Prevent Replay Attacks Using Time Stamps, Digital Signatures, and
Message Correlation . 159

Use Time Stamps for Message Verification 159

Use Username Token Nonce Values for Message Verification 160

Use Message Correlation and Sequence Numbers for
Message Verification . 161

Establish Trusted Communication with WS-Secure Conversation 162

Overview of Secure Conversation . 163

How to Implement Secure Conversation Using WSE 3.0 166

Final Thoughts on Secure Conversation . 166

Summary . 167

■CHAPTER 8 SOAP Messages: Addressing, Messaging,
and Routing . 169

Communication Models for Web Services . 170

Overview of WS-Addressing . 172

Overview of the WS-Addressing Constructs 173

WSE 3.0 Implementation for WS-Addressing 175

Security Considerations for WS-Addressing 177

Overview of Messaging . 178

Comparing Messaging with the HTTP and TCP Protocols 178

Representing SOAP Messages in the WSE 3.0 Messaging
Framework . 179

SOAP Senders and SOAP Receivers . 181

Traditional XML Web Services vs. SOAP Messaging
over HTTP . 187

Properties of Message-Enabled Web Services 188

■CONTENTSviii

701xFM.qxd 7/14/06 5:43 PM Page viii

Overview of Routing and Referral . 189

Build a SOAP Router for the Load Balancing Routing Model 190

Overview of the SOAPSender . 191

Overview of the SOAPService . 192

Overview of the SOAPRouter . 193

Send a Stock Quote Request Using the SOAPSender 195

Routing vs. WS-Referral . 195

Routing and Security . 196

Routing vs. WS-Addressing . 196

Integrate Web Services and MSMQ . 197

Use MSMQ for Reliable Messaging . 197

Create a Message Queue Trigger . 198

Create a Web Service That Uses MSMQ . 199

Implement the Web Service Client . 202

Summary . 203

■CHAPTER 9 Beyond WSE 3.0: Looking Ahead to Windows
Communication Foundation (WCF) . 205

Overview of WCF . 206

The WCF Service Model . 207

The WCF Connector . 211

Hosting Environments . 211

Messaging Services . 212

System Services . 212

Understanding WCF Web Services . 213

What Is a WCF Web Service? . 213

Understanding WCF Applications and Infrastructure 214

The WCF Service Layer . 214

Ports . 215

Typed Channels . 217

Service Manager . 217

Transports and Formatters . 218

How to Get Ready for WCF . 219

WSE 3.0 and WCF . 220

Summary . 223

■CONTENTS ix

701xFM.qxd 7/14/06 5:43 PM Page ix

■APPENDIX References . 225

Service-Oriented Architecture (General) . 225

XML Schemas and SOAP . 226

WS- Specifications (General) . 227

Web Services Enhancements 2.0 and 3.0 (General) 227

WS-Security . 228

WS-Policy . 230

WS-Secure Conversation . 230

WS-Addressing . 231

WS-Messaging . 231

WS-Routing and WS-Referral . 232

WS-Reliable Messaging . 232

Windows Communication Foundation (Indigo) . 232

Miscellaneous . 233

■INDEX . 235

■CONTENTSx

701xFM.qxd 7/14/06 5:43 PM Page x

About the Authors

■JEFFREY HASAN is the president of Bluestone Partners Inc., a software
development and consulting company based in Orange County, California
(http://www.bluestonepartners.com). His company provides architectural
design and software development services to businesses that implement
advanced Microsoft technologies. Jeff is an experienced architect and
.NET developer, and is the coauthor of several books and articles on .NET
technology, including Performance Tuning and Optimizing ASP.NET
Applications (Apress, 2003). Jeff has a master’s degree from Duke University
and is a Microsoft Certified Solution Developer (MCSD). When he is not

working, Jeff likes to play guitar, mountain bike, and travel to far-flung corners of the world.
His most recent travels have taken him from southern Spain to Monterrey, Mexico, and on to
Québec with a few stops in between. Contact Jeff at jeffh@bluestonepartners.com.

■MAURICIO DURAN is the vice president of nearshore development of the Venice Consulting
Group (http://www.veniceconsulting.com), a consulting firm specializing in time-sensitive
and mission-critical system development. He is president of Sieena Software, a software
development company that implements solutions using state-of-the-art technology (http://
www.sieena.com). He is also a software architect specializing in Microsoft technologies with
more than eight years of experience in software development. He has worked as a consultant
for companies such as General Electric, Hewlett-Packard, Merrill Lynch, and Boeing.
Mauricio holds a bachelor of science degree in computer systems from the Instituto
Tecnológico de Monterrey.

xi

701xFM.qxd 7/14/06 5:43 PM Page xi

701xFM.qxd 7/14/06 5:43 PM Page xii

About the Technical
Reviewers

■MATHEW UPCHURCH is a technical consultant with numerous years in the IT industry. He can
be seen in Southern California banging his head against the latest beta APIs from Microsoft
and wondering when exactly we will reach code nirvana. In between having a loving family—
his beautiful wife and three gorgeous daughters—and slaving away at code, he enjoys turning
his guitar amplifier to 11 and seeing if the neighbors mind (distortion is good). He would also
like to thank God above all else that he is able to do what he loves for a living (and, amazingly,
getting paid for it).

■OMAR DEL RIO is director of nearshore operations of the Venice Consulting Group, one of the
nation’s fastest growing and most innovative technology development firms using the hybrid
nearshore development model. Omar has more than nine years of experience in software
development and its associated processes; he is certified in Microsoft technologies and also
holds a Six Sigma certification.

Omar holds a master of business administration degree from the Illinois Institute of
Technology, and a computer systems engineering degree from Tec de Monterrey.

xiii

701xFM.qxd 7/14/06 5:43 PM Page xiii

701xFM.qxd 7/14/06 5:43 PM Page xiv

Acknowledgments

The book you hold in your hands is the culmination of months of hard work and a passionate
desire to create a high-quality, informative text on service-oriented architecture using Web
Services Enhancements 3.0. Like all major projects, it would not have been possible without
the hard work and dedication of a great many people. The authors wish to thank the superb
staff at Apress, and, of course, this book could not have been completed without the support
of our friends and families.

xv

701xFM.qxd 7/14/06 5:43 PM Page xv

701xFM.qxd 7/14/06 5:43 PM Page xvi

Introduction

We software architects and developers live in a fascinating time. With the release of the .NET
Framework in 2000, Web services technology has swept into our programming toolset and
into our collective consciousness. Web services are the killer application for XML. Web services
are the “new way” to call distributed objects remotely. Web services will take all of our integra-
tion headaches away and allow formerly incompatible systems to communicate again. What
Microsoft developer has not recently thought to himself, “should I be building my application
with Web services?”

What .NET developer has not recently thought to himself, “I’m confused”?
Every tidal wave has a genesis, and a momentum, and a final destination where it typi-

cally crashes head-on into a stable landmass and causes havoc and confusion. Web services
technology is a tidal wave.

The genesis is Microsoft’s strategic decision to simplify SOAP-based Web services devel-
opment using a seamless set of integrated classes in the .NET Framework. The momentum is
provided by a relentless marketing machine that promotes Web services as the solution for
many of our worst IT problems. One destination is us, the architects and the developers who
must understand this technology and learn how to implement it. Another destination is the
manager, who must make strategic decisions on how to put this technology to its best use.

The Web services technology tidal wave has created confusion for .NET developers
because, quite simply, we do not know the best way to use it. We are wrapped up in miscon-
ceptions about what the technology is for, and this affects our judgment in using it properly.
We will spend the first chapter clarifying these misconceptions, but let me reveal one:

Misconception: Web services are for making remote procedure calls to distributed objects.

Reality: Web services are not optimized for RPCs. This is not what they are best at. Web
services work best when they respond to messages, not to instructions.

Until now, we could safely give developers time to absorb the new Web services technol-
ogy. We needed time to play around with the .NET Framework and to get used to a new
development approach. Web services development using the .NET Framework is stunning in
its simplicity. It is equally stunning in its oversimplification of a deep and sophisticated tech-
nology. Play time is over; now it’s time we grow up.

Web services play a key role in a greater whole known as service-oriented architecture
(SOA). Quite simply, SOA is an architecture based on loosely coupled components that
exchange messages. These components include the clients that make message-based service
requests, and the distributed components that respond to them. In an SOA, Web services are
critically important because they consume and deliver messages.

xvii

701xFM.qxd 7/14/06 5:43 PM Page xvii

■INTRODUCTIONxviii

It is difficult to tackle topics such as SOA and Web services without invoking the ire of
developers working on other platforms such as J2EE and IBM WebSphere. We have full respect
for these platforms and for the efforts of the developers and the architects who use them.
These guys and girls “get it,” and they have been doing it for longer than we Microsoft-oriented
developers have. Let’s give credit where credit is due, but then move on. Because if you are
reading this book, it is a safe assumption that you are interested in SOA the Microsoft way. If
this describes you, then please buy this book and read on!

So why don’t we Microsoft/.NET developers “get it”? It is not for lack of intelligence, nor is
it for lack of an ability to understand sophisticated architectures. We don’t get it because we
have been misled as to why Web services are important. Let us roughly restate our original
assertion:

Web services work best with messages. They are not optimized to handle specific instruc-
tions (in the form of direct, remote procedure calls).

Most of us have been “trained” to this point to use Web services for implementing SOAP-
based remote procedure calls. This is where we have been misled, because SOAP is about the
worst protocol you could use for this purpose. It is verbose to the point where the response
and request envelopes will likely exceed in size the actual input parameters and output
response parameters that you are exchanging!

At this point, we hope we have left you with more questions than answers. We have stated
things here that you can only take our word on, but why should you believe us?

This is exactly what we are trying to get at. We want to shake you out of your Web services
comfort zone and to help you rethink the technology and think of the bigger picture that is
SOA. We devote the first part of this book to clearing up the misconceptions. And we devote
the second part of this book to showing you how to implement Web services in an SOA.

Free your mind.

Who This Book Is For
This book is a practical reference written for intermediate to advanced .NET solution develop-
ers and architects who are interested in SOA and Web services development. The book focuses
on two key areas:

• How to build message-oriented and service-oriented Web services

• Understanding WSE 3.0

Solution developers and architects alike will find a lot in this book to hold their interest.
The material in the book provides detailed conceptual discussions on SOA combined with
in-depth C# code samples. The book avoids rehashing familiar concepts and focuses instead
on how to rethink your approach to Web services development using today’s best tools and
industry-standard specifications. The book was written using the production version of
WSE 3.0 that was released shortly following Visual Studio 2005, so you have the benefit of
the latest and greatest developments with both Visual Studio and WSE.

701xFM.qxd 7/14/06 5:43 PM Page xviii

What This Book Covers
This book covers SOA and cutting-edge Web services development using the WS- specifica-
tions and WSE 3.0. The first half of the book shows you how to think in terms of messages
rather than procedure calls. It shows you how to design and build message- and service-
oriented Web services that provide the security and the functionality that companies and
businesses will require before they are ready to widely adopt Web services technology.

The second half of the book focuses on WSE 3.0, which provides infrastructure and devel-
oper support for implementing industry-standard Web service specifications, including

WS-Security: Integrates a set of popular security technologies, including digital signing
and encryption based on security tokens, including X.509 certificates.

WS-Policy: Allows Web services to document their requirements, preferences, and capa-
bilities for a range of factors, though is mostly focused on security. For example, a Web
service policy will include its security requirements, such as encryption and digital sign-
ing based on an X.509 certificate.

WS-Addressing: Identifies service endpoints in a message and allows for these endpoints
to remain updated as the message is passed along through two or more services. It largely
replaces the earlier WS-Routing specification.

WS-Messaging: Provides support for alternate transport channel protocols besides HTTP,
including TCP. It simplifies the development of messaging applications, including asyn-
chronous applications that communicate using SOAP over HTTP.

WS-Secure Conversation: Establishes session-oriented trusted communication sessions
using security tokens.

The WS- specifications are constantly evolving as new specifications get submitted and
existing specifications get refined. They address essential requirements for service-oriented
applications. This book aims to get you up to speed with understanding the current WS- speci-
fications and how the WSE 3.0 product works and where Web services technology is headed
for the next few years.

If you are interested in taking your Web services development to the next level, you will
find this book to be an invaluable reference.

Chapter Summary
This book is broken into nine chapters, progressing from introductory conceptual informa-
tion to advanced discussions of the WS- specifications and their implementation in WSE 3.0.
You will get the most out of this book if you read at least the first five chapters in sequence.
These chapters contain reference information and conceptual discussions that are essential
to understanding the material in the second half of the book. The remaining chapters of the
book cover all of the WS- specifications that are implemented by WSE 3.0. Finally, the book
closes with a chapter on the Windows Communication Foundation (WCF), which is the name
for a managed communications infrastructure for building service-oriented applications. The
purpose of the WCF chapter is to show you the direction that service-oriented application
development is headed, and to show you how your work with WSE 3.0 will help you make the
transition to WCF very smooth.

■INTRODUCTION xix

701xFM.qxd 7/14/06 5:43 PM Page xix

The summary of the chapters is as follows:

Chapter 1, Introducing Service-Oriented Architecture: This chapter introduces the con-
cepts behind SOA and the characteristics of a Web service from the perspective of SOA.
This chapter reviews the following topics:

• SOA concepts and application architecture.

• The WS-I Basic Profile.

• The WS- specifications.

• WSE 3.0 (an introduction).

Chapter 2, The Web Services Description Language: This chapter reviews the WSDL 1.1
specification and the elements of a WSDL document. This information is essential to
understanding what makes up a service. The concepts that are presented here will come
up repeatedly throughout the book, so make sure you read this chapter! This chapter
includes the following:

• The seven elements of the WSDL document (types, message, operation, portType,
binding, port, and service), which together document abstract definitions and
concrete implementation details for the Web service.

• How to work with WSDL documents using Visual Studio .NET.

• How to use WSDL documents.

Chapter 3, Design Patterns for Building Message-Oriented Web Services: This chapter
shows you how to build message-oriented Web services, as opposed to RPC-style Web
services, which most people end up building with ASP.NET even if they do not realize it.
The goal of this chapter is to help you rethink your approach to Web services design so
that you can start developing the type of message-oriented Web services that fit into an
SOA framework. This chapter covers the following:

• Definition of a message-oriented Web service.

• The role of XML and XSD schemas in constructing messages.

• How to build an XSD schema file using the Visual Studio .NET XML Designer.

• Detailed review of a six-step process for building and consuming a message-
oriented Web service. This discussion ties into the sample solutions that
accompany the chapter.

Chapter 4, Design Patterns for Building Service-Oriented Web Services: This chapter
extends the discussion from Chapter 3 and shows you how to build Web services that
operate within a service-oriented application. This chapter includes the following:

• A discussion on building separate type definition assemblies that are based on
XSD schema files.

• How to build a business assembly for delegating service processing.

■INTRODUCTIONxx

701xFM.qxd 7/14/06 5:43 PM Page xx

• Detailed review of a six-step process for building and consuming a service-
oriented Web service. This discussion ties into the sample solutions that
accompany the chapter.

• How to build a service agent, which is unique to SOA.

Chapter 5, Web Services Enhancements 3.0: This chapter provides a detailed overview of
WSE 3.0. This chapter covers the following:

• Overview of the WS- specifications.

• Introduction to WSE 3.0—what it contains, what it does, how it integrates with
ASP.NET, and how to install it.

• Overview of X.509 certificates—the WSE sample digital certificates are used
frequently throughout the sample applications. Certificate installation can be
difficult, so this section shows you what you need to do.

Chapter 6, Secure Web Services with WS-Security: This is the first of three chapters that
provide detailed discussions on the WSE implementations of the WS- specifications.
Security typically refers to two things: authentication and authorization. This chapter
contains the following:

• Overview of the WS-Security specification and implementation, including the
enhanced declarative model in WSE 3.0.

• Review of common security scenarios, including an overview on important secu-
rity objects and concepts such as security tokens, digital signatures, and
encryption.

• How to implement WS-Security using WSE 3.0 and the username-
ForCertificateSecurity turnkey security assertion.

• Review of declarative vs. imperative authorization.

Chapter 7, Extended Web Services Security with WS-Security and WS-Secure Conversation:
This chapter reviews how WSE 3.0 can secure other common Web service deployment
scenarios. This chapter covers the following:

• Overview of the direct and brokered authentication models.

• How to implement brokered authentication using Kerberos and mutual
certificates.

• How to prevent reply attacks, using time stamps, digital signatures, and message
correlation.

• Overview of the WS-Secure Conversation specification, which is enhanced in
WSE 3.0.

• How to implement a secure conversation between a Web service and its client,
using a security token service provider.

■INTRODUCTION xxi

701xFM.qxd 7/14/06 5:43 PM Page xxi

Chapter 8, SOAP Messages: Addressing, Messaging, and Routing: This chapter covers sev-
eral WS- specifications that work together to provide a new messaging framework for Web
services. Traditional Web services are built on the HTTP request/response model. WSE 3.0
provides a messaging framework that expands the supported transport protocols to
include TCP and an optimized in-process transport protocol, in addition to HTTP. These
protocols are not natively tied to a request/response communications model, so you can
implement alternative models, such as asynchronous messaging solutions. This chapter
also reviews the WS-Addressing specification, which enables messages to store their own
addressing and endpoint reference information. This chapter includes the following:

• Overview of communication models for Web services.

• Overview of the WS-Addressing specification, including a discussion of message
information headers vs. endpoint references.

• Overview of how WSE implements the WS-Addressing specification.

• Overview of the WS-Messaging specification and the WSE implementation, which
provides support for alternate message transport protocols and communication
models.

• How to implement a TCP-based Web service using SOAP sender and receiver
components.

• Overview of the WS-Routing and WS-Referral specifications, which allow messages
to be redirected between multiple endpoints.

• How to build a SOAP-based router using WSE, WS-Routing, and WS-Referral.

• How to integrate MSMQ with Web services in order to implement one form of
reliable messaging.

Chapter 9, Beyond WSE 3.0: Looking Ahead to Windows Communication Foundation
(WCF): WCF (formerly code named Indigo) provides infrastructure and programming
support for service-oriented applications. WCF will be released in late 2006 as part of the
upcoming Vista operating system. It focuses on messages, providing support for creating
messages, for delivering messages, and for processing messages. With WCF there is less
ambiguity in your services: the infrastructure forces you to be message oriented and to
work with well-qualified XML-based data types. WSE 3.0 and its future revisions will pro-
vide you with excellent preparation for working with WCF in the future. This chapter
contains the following:

• Overview of WCF architecture, including the Indigo service layer, the WCF
connector, hosting environments, messaging services, and system services.

• Understanding WCF Web services.

• Understanding WCF applications and infrastructure.

• How to get ready for WCF.

• WSE 3.0 and WCF.

■INTRODUCTIONxxii

701xFM.qxd 7/14/06 5:43 PM Page xxii

Notes on the Second Edition
This book is the second edition release of Expert Service-Oriented Architecture: Using the Web
Services Enhancements 2.0. Readers of the previous edition will find that about 60 percent of
the material has been rewritten to cover breaking changes and new features in WSE 3.0. The
five introductory chapters of this book are similar to the first edition, although all code sam-
ples and screen captures have been updated to reflect WSE 3.0 and Visual Studio 2005.

The most significant change in WSE 3.0 is in the area of security implementation, with the
introduction of the turnkey security scenarios, which are natively supported, common security
scenarios that can be implemented using straightforward policy declaration files. Policy files
were important in WSE 2.0, but in WSE 3.0 they assume an even greater importance, to the
point that in most cases you will not need to write custom code with the WSE 3.0 API. Corre-
spondingly, the second edition of this book reduces the amount of .NET code compared to
what was presented in the first edition, and instead focuses more on how to achieve your
goals using declarative policy files. The exception is in the area of SOAP messaging, which
allows you to build custom SOAP senders and receivers that operate over alternate protocols
instead of HTTP. This area is still code-intensive compared to other functional areas that are
supported by WSE 3.0.

It is important to note that the WSE 3.0 product is not a full upgrade to WSE 2.0; rather it is
a complementary product that improves on certain areas (such as security implementation)
while leaving other areas essentially untouched (such as SOAP messaging). The full WSE 2.0
functionality has been subsumed into the WSE 3.0 product, so you will not need to use both
products. However, what this means is that you can leverage many aspects of your WSE 2.0
experience into WSE 3.0, which will prevent productivity disruption and will allow you more
time to focus on important enhancements in WSE 3.0.

If you have already purchased the first edition of this book you will still find a lot of value
in this second edition, particularly in Chapters 6 and 7 on security implementations, which
are significantly enhanced in WSE 3.0. These chapters have been completely rewritten for this
edition. If you are new to this book you will find it to be a comprehensive resource for building
service-oriented Web services using the WSE 3.0 product.

Code Samples and Updates
This book is accompanied by a rich and varied set of example solutions. The sample solutions
were built using the production version of WSE 3.0 that was released on November 7, 2005.
The code examples are chosen to illustrate complicated concepts clearly. Although Web Ser-
vices Enhancements are conceptually complicated, this does not mean that they translate into
complex code. In fact, the situation is quite the opposite. You will be surprised at how clear
and straightforward the code examples are, plus you will find that most WSE-supported func-
tionality can be accessed and administered via declarative policy files that do not require you
to write a single line of .NET code.

■Note The sample solutions are available for download at http://www.apress.com.

■INTRODUCTION xxiii

701xFM.qxd 7/14/06 5:43 PM Page xxiii

Visit http://www.bluestonepartners.com/soa.aspx for updates to the book and sample
solutions, and for errata corrections. Check there often, because WSE is expected to undergo
several revisions between now and the release of the WCF. In addition, the topic of SOA con-
tinues to evolve rapidly, and every month brings new, interesting developments.

And now, once more into the breach, dear friends, once more . . .

■INTRODUCTIONxxiv

701xFM.qxd 7/14/06 5:43 PM Page xxiv

Introducing Service-Oriented
Architecture

Service-oriented architecture (SOA) represents a new and evolving model for building
distributed applications. Services are distributed components that provide well-defined inter-
faces that process and deliver XML messages. A service-based approach makes sense for
building solutions that cross organizational, departmental, and corporate domain bound-
aries. A business with multiple systems and applications on different platforms can use SOA
to build a loosely coupled integration solution that implements unified workflows.

Overview of Service-Oriented Architecture
The concept of services is familiar to anyone who shops online at an e-commerce web site.
Once you place your order, you have to supply your credit card information, which is typically
authorized and charged by an outside service vendor. Once the order has been committed,
the e-commerce company coordinates with a shipping service vendor to deliver your pur-
chase. E-commerce applications provide a perfect illustration of the need for an SOA. If the
credit card billing component is offline or unresponsive, you do not want the sales order
process to fail. Instead, you want the order to be collected and the billing operation to proceed
at a later time. Figure 1-1 provides a conceptual workflow for an e-commerce business that
uses multiple services to process orders.

Figure 1-1. Service-based workflow for an e-commerce business

1

C H A P T E R 1

701xCH01.qxd 7/17/06 12:48 PM Page 1

SOA is like other distributed architectures in that it enables you to build applications that
use components across separate domain boundaries. SOA uses Web services as application
entry points, which are conceptually equivalent to the proxy and stub components of tradi-
tional component-based distributed systems, except that the interactions between the Web
service provider and the consumer are more loosely coupled.

SOA is also unique in that it incorporates those factors that are critically important to
business: service reliability, message integrity, transactional integrity, and message security. In
the real world, businesses cannot take a chance on services that may not successfully process
a request. It is a given that disparate systems may be up or down at various times, or that sys-
tems may differ in their responsiveness due to varying loads, but none of this is an excuse for
allowing service request messages to simply drop away into the void. Furthermore, there can
be no ambiguity as to how a service must be called. If a system publishes its capabilities as a
web-enabled service, it needs to clearly document how the service must be called.

SOA addresses many of the availability and scalability issues in today’s applications.
Most applications implement a rigid synchronous communication model with a linear work-
flow that is highly susceptible to failures at any point. SOA assumes that errors can and will
occur, so it implements strategies for handling them. For example, if a service fails to accept
a message request the first time, the architecture is designed to retry the delivery. And if the
service is entirely unavailable (which should never occur in a robust SOA), the architecture is
designed to avoid possible catastrophic failures that may disrupt the entire service request.
SOA improves reliability because temporary failure in one part of the workflow will not bring
down the entire business process.

In a broader sense, SOA represents a maturing process, that is, the “growing up” of Web
services and integration technologies. SOA recognizes that mission-critical systems built
on distributed technology must provide certain guarantees. They must ensure that service
requests will be routed correctly, that they will be answered in a timely fashion, and that they
will clearly publish their communication policies and interfaces.

In an SOA solution, the distributed application uses service components that reside in
separate domains. Service components operate inside their own trust boundary and encap-
sulate their own data. They are maintained and updated independently of, though loosely
coupled with, the applications that use them.

Figure 1-2 shows a conceptual SOA that summarizes the three main entities in a typical
SOA solution:

• Service providers

• Service consumers

• Service directories

The consumer can use the Universal Discovery, Description, and Integration (UDDI) reg-
istry to discover or reference the description of a service provider. Interestingly, in Figure 1-2,
Service Provider #1 references a service provider (Service Provider #2). In this role, Service
Provider #1 is equivalent to a service consumer and can reference the UDDI registry for infor-
mation about Service Provider #2.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE2

701xCH01.qxd 7/17/06 12:48 PM Page 2

Figure 1-2. Conceptual SOA solution

The communication between the services and the consumer is in the form of XML mes-
sages that are qualified according to defined XSD schemas. XML messages are discrete entities
that may be transported, rerouted, and referenced at any point along the business workflow.
Messages promote higher levels of reliability and scalability because they can be stored, and
the services that process the messages can append additional information, which provides for
a clear and unambiguous chain of custody across the business workflow. In addition, mes-
sages can be queued in the event that a service is temporarily unavailable or backlogged.

XML messages are unlike traditional remote procedure calls (RPCs), which do not provide
a discrete structure for encapsulating a method “request.” Traditional RPCs cannot typically
be cached or held in a queue to wait for a better time to service the request. Instead, tradi-
tional RPCs typically time out if the receiving component does not respond within the
expected length of time. In addition, RPCs are not qualified to a reference schema (although
they must conform to type libraries for custom data types). Here lies the first important
lesson for developing SOA solutions: the Web services in the solution must be designed to be
message-oriented rather than RPC-oriented. This topic is the exclusive focus of Chapter 3.

What Are Web Services, Really?
Many of us are so familiar with current Web services technology that we often do not stop to
think about what services really are. However, you will need to if you are going to fully under-
stand what makes SOA so significant. Let’s pull out four definitions that collectively describe
what services are:

• Services are autonomous components that process well-defined XML messages.

• Services provide a well-defined interface that is described by an XML-based document
called the Web Services Description Language (WSDL) document, otherwise known as
the WSDL contract. This documents the operations (methods) that the service supports,
including data type information and binding information for locating and communi-
cating with the Web service operations.

• Services provide endpoints that consumers and other services can bind to, based on
the service’s port address (typically a URL).

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 3

701xCH01.qxd 7/17/06 12:48 PM Page 3

• Services are analogous to traditional object-oriented (OO), type-based components in
that they provide a defined interface and they execute one or more operations. How-
ever, a key difference is that service consumers can flexibly bind to a service, whereas
OO component consumers must set more rigid references. Service consumers can
respond flexibly to changes in a service provider interface because it is easy to regen-
erate the proxy class using the updated WSDL document. However, if a traditional
component changes its interface, the consumer itself must be recompiled in order to
avoid type mismatch errors. Components are tightly integrated to their consumers and
can break them. Service consumers, however, do not have to recompile if their service
changes. Instead, they simply have to rebind to the updated WSDL document. This is
what is known as loose coupling, or loosely coupled services.

Of course, if the service drastically changes its method signatures, problems may result
in the consumer. For example, the consumer may not have the ability to supply new and
modified input parameters for the updated methods. But as with any kind of interface-based
programming, it is understood that you cannot make significant changes to an existing method
signature, especially in terms of dropping existing input parameters, or changing the type def-
initions for existing input or output parameters. In Web services terms, this extends to the
XML schema–based input and output messages that are exchanged by the service, as well
as to its supported operations. Just as with traditional components, services should ideally
remain backward-compatible as their interfaces evolve, although this is not a requirement as
it is for classic OO programming. Web services technically only need to honor their current
contract as documented by their WSDL document, which allows potential clients to dynami-
cally bind to the service using the latest contract interface. Still, it is a significant advantage
that service consumers are autonomous from the services that they consume. This promotes
better stability in the SOA solution as the member services evolve.

There are five important properties of services in contrast to traditional type-based
components:

Services are described by a WSDL contract, not by type libraries: The WSDL contract fully
describes every aspect of the service, including its operations, its types, and its binding
information. WSDL is fully described in Chapter 2. In this sense it is much more complete
than traditional type libraries.

Service descriptions can be easily extended: The WSDL contract is based on an extensible
document structure that readily incorporates additional information beyond the core
service description. For example, security and policy information may be stored within
the WSDL document as custom SOAP elements. In fact, all of the Web services enhance-
ments that implement SOA infrastructure support can be documented as custom SOAP
elements. At its most basic level, SOAP is a stateless, one-way messaging protocol. But it is
also highly extensible, which makes it an excellent medium for storing and transporting
Web service enhancement information.

Services provide a service guarantee: Traditional type definitions provide no guarantees.
They are what they are, and you simply use them. But what happens if the type definition
gets out of sync with the component it is supposed to describe? This happens all the time
in the COM+ world, which relies on the Windows registry to store associated references

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE4

701xCH01.qxd 7/17/06 12:48 PM Page 4

between registered components and their type libraries. Every developer has experienced
so-called DLL Hell, in which successive installations and removals of upgraded compo-
nents cause incorrect type information to be retained in the registry. Technically, this is a
versioning problem. But in more general terms this example points to the fact that there
is no service guarantee in the world of type libraries. You just have to hope that the com-
ponent is registered with the correct type library.

Services, on the other hand, can implement a service guarantee in the form of a policy
description that is contained within the WSDL contract. So-called policy assertions are
published with the contract to describe what level of service the consumer can expect,
and how the service operations can be expected to respond. There are many advantages
to policy assertions, not the least of which is that you could implement code in your con-
sumer so that it will only work with a service that enforces a minimum policy guarantee.
Should this policy ever change, then your consumer is designed not to use the service any
longer. In a very sophisticated application, you could design your consumer to autodis-
cover an alternate service using the UDDI registry.

Services allow for things to go wrong: When you call a method on a traditional type-based
component, you are making a leap of faith that the call will execute successfully. The real-
ity is that the vast majority of calls do go through, creating a sense of complacency that
this is always the case. But in the service-oriented world, where the supporting infrastruc-
ture is vastly more intricate and decoupled, you cannot have such a high level of faith that
calls will always go through. Recall that XML messages are the gold currency of service
requests. Messages can experience trouble at many steps along the way. Trouble in the
transport channel can prevent them from being delivered. Trouble in the service’s server
or firewall can prevent the service from ever responding to a received message. Further-
more, messages may be tampered with, so that they are malformed or suspect when they
do reach their intended target.

SOA accommodates all of these many potential problems using a set of technologies that
maintain the integrity of a service request even if things go wrong along the way. These
include reliable messaging, transaction support, and authentication mechanisms to
ensure that only trusted parties are involved in the service request (including certificate-
based mechanisms).

Services provide flexible binding: Services fully describe themselves using the WSDL con-
tract. This information includes documentation of the service operations as well as data
type information, referenced by well-defined XML schemas. This enables clear and
unambiguous qualified references. The best part is that a consumer does not have to
have any prior knowledge of a data type, as long as its XML namespace is documented
by or referenced by the WSDL contract. For example, consider a consumer that calls a
stock quote service. This service provides a RequestQuote method that returns a
custom complex data type called Quote, which includes current and previous share
price information, as well as 52-week high and low values. The consumer has no
advanced knowledge of how the Quote data type is structured, but it does not need
to as long as it can reference the qualified associated XSD schema.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 5

701xCH01.qxd 7/17/06 12:48 PM Page 5

Services can also be registered in a UDDI registry, which enables them to be searched for
by consumers and other services. The UDDI registry is very thorough and includes a ref-
erence to the WSDL contract information, as well as a summary of supported messages
in a search-efficient format. This is useful for many reasons. For example, a consumer
may only wish to call services that utilize a specific set of XSD schemas (such as industry-
specific standard schemas). The UDDI registry enables that consumer to search for
services that conform to this requirement.

Components of Web Service Architecture
Experienced developers are comfortable with n-tier application architecture, in which the
components of an application are broken out across separate layers, or tiers. At a minimum,
this includes the three classic layers: user interface (front end), business layer (middle tier),
and data layer (back end).

Now let’s consider how an SOA solution is broken out in terms of layers and constituent
components. Figure 1-3 illustrates a basic SOA solution.

Figure 1-3. Basic SOA solution

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE6

701xCH01.qxd 7/17/06 12:48 PM Page 6

The box around service interfaces, business components, and business workflows repre-
sents the conceptual business layer (middle tier). This layer encapsulates the service
interfaces, which in .NET terms are the .asmx Web service files and the code-behind that
directly relates to verifying and relaying incoming messages (but excludes actual business
logic). The .asmx files should delegate the business processing to dedicated business compo-
nents and/or a business workflow process (essentially a sequenced chain of components in
a workflow). This may be a different approach to Web services coding than you are used to,
because, typically, all processing code is placed directly in the code-behind file of the .asmx
Web service. In an SOA, it is important to design the Web service components themselves so
that they truly act as gateways to dedicated business components or workflows.

The service interface has the following properties:

• It supports the communication requirements that the service specifies in its WSDL con-
tract (specifically, in its binding information). This includes the format and transport
protocols that the service responds to (e.g., SOAP over HTTP).

• It supports the security requirements that the service specifies. In .NET terms, the
.asmx code-behind can implement code that verifies incoming XML messages to
ensure that they contain the required security tokens or headers.

• It supports the methods (operations) that the service specifies in its WSDL contract. In
.NET terms, the .asmx file provides methods that correspond to the service operations,
but the actual business processing should be handed off to dedicated components and
workflow.

Figure 1-3 also shows that there are two categories of service consumers that have entry
points into the business layer. The first is a traditional user interface, shown on the left of the
diagram, such as a Windows form or an ASP.NET web page. This type of user interface is part
of the same domain where the service components reside. The second category of front-end
consumers is the external Web service clients and other services, shown at the top of the dia-
gram. These two categories are well-known to developers. If you develop a Web service for
external use, you can just as easily call it internally within its application domain. Of course,
it is more efficient to call the Web service’s delegated business components, because when
you are internal to the domain, you do not need to route requests through the .asmx gateway
using special transport and messaging protocols (e.g., HTTP and SOAP). This is yet another
reason all Web services logic should be abstracted out to dedicated business components.

The architecture in Figure 1-3 is a good start, but it quickly breaks down under the
demand of more sophisticated SOA applications. Figure 1-4 provides one example of a more
complex SOA solution.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 7

701xCH01.qxd 7/17/06 12:48 PM Page 7

Figure 1-4. Complex SOA solution

Figure 1-4 illustrates an architecture in which two separate Web services access the same
back-end business components. Each Web service provides a distinct service interface, each
of which is suitable for a different type of client. For example, Web Service 1 may provide
access to a public, unsecured subset of functions, whereas Web Service 2 provides access to
a restricted, secured subset of functions. In addition, Figure 1-4 introduces two new entities
that play an important role in complex SOA solutions:

Service agent: The service agent manages communications between one service and
another, or between a business object and an external service. In doing so, it simplifies
those interactions by shielding translation quirks between the consumer and the
provider.

Business facade: The business facade acts as a trust boundary between incoming service
requests (from a client, another service, or a service agent) and the middle-tier business
components that service those requests.

Let’s consider each of these in turn.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE8

701xCH01.qxd 7/17/06 12:48 PM Page 8

Service Agent
Business components are the engines of applications because they contain the logic to make
the application work. In addition, business components know where to find information,
whether it comes from a back-end database or from an external data source. In classic
Windows-based n-tier architecture, we are used to thinking of business components as self-
sufficient. But sometimes business components need to retrieve information from external
sources in order to do their work. In SOA terms, sometimes business components need to call
external services.

The service agent is responsible for managing communication between a business object
and an external service. Service agents are extremely important because they simplify the
amount of work that a business object has to do when it needs to use an external service. A
service agent is a locally installed assembly that provides a well-known interface to the busi-
ness object. Service agents do the manual legwork of communicating with external services
and implementing whatever infrastructure is required to do so. This is useful for two impor-
tant reasons:

• Business objects do not have to implement the infrastructure that is required to com-
municate with an external service. Instead, they communicate their requests to a local
assembly (the service agent) using a mutually understood interface.

• Business objects avoid the maintenance work that is required to keep service interac-
tions up-to-date. For example, if an external Web services interface changes, the service
agent takes care of updating its proxy class and reworking the code implementation as
needed. The business object can continue to communicate with the service agent in
the same manner, even as the underlying communication details change.

We cannot resist using a travel analogy to describe the role that service agents play. Let’s
say you and a friend are traveling in Madrid. Your friend is fluent in both English and Spanish,
but is too lazy to read the guidebook and has no idea what to see in the city. You only speak
English, but you read the guidebook cover to cover, and you know that the Prado Museum
cannot be missed—if only you knew how to get there from your hotel. So you need to ask
directions, but cannot communicate with the locals. Your friend can ask for directions, but
needs to know from you where you are trying to go. The analogy is hopefully clear! You are the
business component, your friend is the service agent, and the friendly locals act as the exter-
nal service.

Business Facade
The business facade is not as intuitive as the service agent because it has no analogy in tradi-
tional component-based development. Essentially, the business facade is a trust boundary
that sits between middle-tier business components and the service interfaces that call them.
The business facade plays the roles of both a service agent and a service interface, and it only
applies in situations where there are two or more service interfaces associated with the middle
tier. It provides a common interface for multiple service interfaces to interact with. In addi-
tion, the business facade may provide additional security, authentication, or screening on
incoming service requests.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 9

701xCH01.qxd 7/17/06 12:48 PM Page 9

Figure 1-5 provides another SOA solution that illustrates the usefulness of the business
facade.

Figure 1-5. SOA illustrating the business facade

In this example, the service layer must handle requests from a wide variety of services,
and it must support three separate service interfaces. A business facade is necessary to man-
age requests from several incoming service interfaces and to ensure that the requests get
communicated to the business components in a consistent fashion.

■Note The concept of a business facade follows the well-known session facade design pattern. For an
overview of this design pattern, please consult the article “Java Modeling: A UML Workbook” at http://
www-106.ibm.com/developerworks/java/library/j-jmod0604/.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE10

701xCH01.qxd 7/17/06 12:48 PM Page 10

WS-I Basic Profile, WS- Specifications, and
Web Services Enhancements
The difference between Web services technology today vs. SOA is in the level of available
infrastructure support. Infrastructure in this context refers to the helper technologies and
assemblies that support the implementation of an SOA solution. Stand-alone Web services
require very little additional infrastructure support beyond what they already get from the
.NET Web services assemblies and the built-in HTTP handlers. However, as you have seen in
the conceptual overview, SOA requires a lot of infrastructure support, including multiple
transport options, security infrastructure, and support for reliable messaging, to name a few.
Different companies, including Microsoft and IBM, are working together to establish standard
specifications that cover the full range of supporting technologies for SOA infrastructure.

It is an unfortunate reality that Web services specifications are developed and advanced
in a politically charged environment where companies are often rivals rather than partners.
Corporate animosity causes companies to disagree on the right specifications. Sometimes dif-
ferent groups of companies pursue separate specifications that apply to the same purpose.
Nonprofit organizations such as OASIS provide a forum for companies to cooperate in the
advancement and development of Web services specifications. Read more about OASIS at
http://www.oasis-open.org.

Introducing the WS-I Basic Profile
The Web Services Interoperability Organization (WS-I) has one primary goal: to establish stan-
dard specifications so that Web services can be interoperable across different platforms. In
other words, the organization wants Web services to be able to work together no matter which
platform they reside on or which development tool they were created with. The specifications
cover a wide range of areas, from transport protocols to security, and are collectively grouped
together as the WS-I Basic Profile.

■Note The WS-I Basic Profile is the first in what is expected to be several future and evolving profiles.
The Basic Profile specifies exact version numbers for its compliant specifications. For example, it includes
SOAP 1.1, WSDL 1.1, and XML 1.0. Future profiles will use updated versions, but it takes a long time to
establish new specifications, so do not expect new profiles very frequently. View the WS-I Basic Profile
Version 1.1 at http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html.

Figure 1-6 illustrates the high-level grouping of interoperable Web services specifications
that have been published jointly by Microsoft, IBM, and others. The WS-I Basic Profile covers
most of the specifications in the bottom three layers of the diagram, namely the specifications
for Transport, Messaging, and Description. The additional layers are covered by the various
WS- specifications including WS-Security, WS-Reliable Messaging, and WS-Transactions, to
name just a few. Some of the WS- specifications fall within the lower three layers as well,
including WS-Addressing for the Messaging layer, and WS-Policy for the Description layer.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 11

701xCH01.qxd 7/17/06 12:48 PM Page 11

Note that this figure is adapted directly from a joint Microsoft-IBM white paper titled “Secure,
Reliable, Transacted Web Services: Architecture and Composition” (September 2003). Please
see the “References” section in the Appendix of this book for more information.

Figure 1-6. Interoperable Web services specifications, including the WS-I Basic Profile

The high-level groupings of Web services specifications fall into these categories:

Transport: This group defines the communication protocols for moving raw data between
Web services. It includes HTTP, HTTPS, and SMTP.

Messaging: This group defines how to format the XML messages that Web services
exchange. It includes the SOAP specification for encoding messages, and the XML and
XSD specifications for the message vocabulary. The specifications are independent of a
particular transport protocol. The Messaging group also includes the WS-Addressing
specification, which decouples destination information for the request from the under-
lying transport protocol. WS-Addressing can, for example, be used to define multiple
destinations for an XML message.

Description: This group defines specifications that allow a Web service to describe itself.
The core specifications are WSDL (for the service contract), and XSD (for defining data
type schemas). It also includes the WS-Policy specification, which describes the policy
that a Web service enforces when it communicates with a client. For example, a Web
service may have specific requirements for how its interface operations are called. The
WS-Policy specification allows the Web service to tell prospective clients what rules to
follow in order to execute a successful service request. Finally, this group includes the
UDDI specification for discovering and describing Web services.

Service Assurances: Web services cannot simply exchange XML messages. They must also
provide the client with some assurance that the messages will be transmitted in a secure
way and that the client can expect some kind of response, even if something goes wrong
at some point in the workflow. This group of specifications includes WS-Security (which
provides authentication mechanisms), WS-Reliable Messaging (to ensure the delivery of
messages over unreliable networks), and several transaction-related specifications.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE12

701xCH01.qxd 7/17/06 12:48 PM Page 12

Service Composition: The wide array of specifications in the WS-I Basic Profile cannot be
implemented in every Web service. Developers must pick and choose which specifica-
tions are important for a particular Web service. To enable this, Web services supports
service composition, which allows developers to selectively pick specifications and to
aggregate them and record them in the WSDL document.

Introducing the WS- Specifications
We introduce you to the WS- specifications again in Chapter 5, and then cover them in detail
in the remaining chapters of this book. Briefly, here is a summary of the most important
WS- specifications and their purposes:

WS-Security: Integrates a set of popular security technologies, including digital signing
and encryption based on security tokens, including X.509 certificates.

WS-Policy: Allows Web services to document their requirements, preferences, and capa-
bilities for a range of factors, though it is mostly focused on security. For example, a Web
service policy will include its security requirements, such as encryption and digital
signing based on an X.509 certificate.

WS-Addressing: Identifies service endpoints in a message and allows for these endpoints
to remain updated as the message is passed along through two or more services. It largely
replaces the earlier WS-Routing specification.

WS-Messaging: Provides support for alternate transport channel protocols besides HTTP,
including TCP. It simplifies the development of messaging applications, including
asynchronous applications that communicate using SOAP over HTTP.

WS-Secure Conversation: Establishes session-oriented, trusted communication sessions
using security tokens.

WS-Reliable Messaging: Provides mechanisms to help ensure the reliable delivery of mes-
sages, even when one or more services in the chain are unavailable. This specification
includes message delivery notifications so that a sender knows whether a receiver has
successfully obtained a sent message. Note that WS-Reliable Messaging will be supported
in the upcoming Windows Communication Foundation (WCF) release, formerly code
named Indigo.

The WS- specifications are constantly evolving as new specifications get submitted and
existing specifications get refined. However, the core set of specifications presented here will
likely continue to form the cornerstone of specifications for some time to come, since they
address essential requirements for SOA applications.

Introducing Web Services Enhancements
Web Services Enhancements (WSE) provides developers with .NET managed assemblies for
implementing the WS- specifications in conformance with the WS-I Basic Profile. WSE is an
evolving product and does not currently support all of the Web services specifications, but it
does support many important ones, such as WS-Security and WS-Secure Conversation. Keep

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE 13

701xCH01.qxd 7/17/06 12:48 PM Page 13

in mind, though, that even currently supported specifications will continue to evolve in future
releases of WSE. In some cases, this is because the specification is currently only partially
implemented in WSE.

At a more conceptual level, WSE currently exists to provide additional infrastructure sup-
port for SOA solutions, beyond what is already provided by the .NET Framework. Microsoft
chose to put WSE on a different release cycle than its .NET Framework releases, so that it
would have the flexibility to vary the release schedule. Recall that SOA is governed by a num-
ber of technology standards and specifications that are themselves going through changes.
WSE has to be on a flexible release cycle in order to keep up with the newer versions of these
technology standards.

WSE is introduced again in Chapter 5 and is also the focus of the second half of this book,
where we will cover the various WS- specifications in detail. WSE is what allows you to code
several of the WS- specifications in message-oriented, service-oriented .NET applications.

■Note WSE 3.0 is now a fully supported product that is wire-level compatible with the upcoming WCF, and
is scheduled for release at the end of 2006. This means that you can confidently build your Web services
with WSE 3.0 without being concerned about needing future expensive and disruptive migration efforts to
make your Web services WCF-compatible.

Summary
This chapter introduced the main concepts behind SOA, which refers to distributed applica-
tions based on Web services technology. We defined what Web services actually are, within the
context of SOA, and reviewed the main aspects of SOA. We briefly introduced the WS-I Basic
Profile, the WS- specifications, and WSE, all of which are covered in detail in the second half of
this book starting with Chapter 5.

CHAPTER 1 ■ INTRODUCING SERVICE-ORIENTED ARCHITECTURE14

701xCH01.qxd 7/17/06 12:48 PM Page 14

The Web Services Description
Language

Web services are formally and fully described using an XML-based document called the
Web Services Description Language (WSDL) document. The WSDL document communicates
metadata information about the Web service to potential clients and shows them what opera-
tions (methods) the Web service supports and how to bind to them.

Visual Studio .NET automatically generates WSDL documents for your XML Web services
and uses them behind the scenes, although it conveniently allows you to avoid opening the
actual WSDL documents. WSDL documents are, for example, used by Visual Studio .NET when
you select the Add Web Reference menu option to allow your project to use the methods of an
outside Web service.

In this chapter, we will describe the elements of a WSDL document so that you can under-
stand how it fully describes a Web service. We will also show you those aspects of the WSDL
document that you may wish to edit manually.

Elements of the WSDL Document
In an SOA, the WSDL document is a critically important document, and one that you will need
to understand in detail so that you can exert tighter control over the Web services that you
develop. This is because development tools such as Visual Studio .NET create the most generic
WSDL documents with bindings only for the SOAP protocol.

Web services can exchange messages over several different protocols in addition to SOAP,
including HTTP POST, HTTP GET, and SMTP. However, keep in mind that SOAP is the most
suitable protocol for exchanging complex XML-based messages. If you have built a true
service-oriented Web service, then these messages cannot, for example, be represented using
simple URL arguments as are used by the HTTP GET protocol. You can use the HTTP POST
protocol to exchange XML messages, but XML is not qualified with namespaces, nor does it
provide the organized SOAP structure that is so critical to technologies such as WSE 2.0. You
can see a comparison between the messages exchanged over SOAP vs. HTTP POST by brows-
ing a Web service directly. Visual Studio .NET generates a generic input page for each Web
method that shows you how the exchanged input and output messages will be generated.

WSDL documents fully describe a Web service, including the operations that it supports,
the messages that it exchanges, and the data types that these messages use (both intrinsic and
custom). The best way to approach a WSDL document is to understand that different XML

15

C H A P T E R 2

701xCH02.qxd 7/14/06 4:55 PM Page 15

elements take responsibility for describing different levels of detail. For example, the
<message> element is a detailed listing of the types that factor into a given message. On
the other hand, the <operation> element simply lists the messages that factor into a given
operation without going into any detail as to what these messages look like. This additional
information would be unnecessary because the <message> element already does an excellent
job of documenting the types that factor into a given message. This division of responsibility
makes the WSDL document very efficient but at the same time hard to read, because you have
to look in several places to assemble the full details of the documented Web service. But if you
keep in mind that this is the approach that the WSDL document is following, you will find the
document much easier to understand.

■Note All chapter code samples installed on a Windows 2003 server will try to install their web sites
under IIS (Internet Information Services) if IIS is installed and configured. If IIS 6 is installed, make sure
to configure .NET 2.0 to be the default version for IIS to use. Visual Studio will prompt you to convert the
project to .NET 2.0 if this is not done.

The WSDL document is itself an XML document, so it obeys the rules that you expect for
any well-formed XML document. This begins with schema namespace definitions, which are
included as a root element in the WSDL document that’s using the <definitions> element. A
typical WSDL document includes several schema definitions, but the most important one is
the following:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/">

The <definitions> root element encloses the contents of the WSDL document entirely.
All of the elements presented next are child elements of the <definitions> root element.

The WSDL document contains seven primary XML elements (in addition to the
<definitions> root element), all of which belong to the schema listed previously. The seven
XML elements fall into two main groups:

• Abstract description: XML elements that document the Web service interface, including
the methods that it supports, the input parameters, and the return types

• Concrete implementation: XML elements that show the client how to physically bind to
the Web service and to use its supported operations

There are four XML elements for abstract description:

<types>: This element lists all of the data types that are exchanged by the XML messages
as input parameters or return types. The <types> element is equivalent to an embedded
XSD schema definition file.

<message>: This element describes a SOAP message, which may be an input, an output, or
a fault message for a Web service operation. A SOAP message is subdivided into parts that
are represented by <part> child elements and that document the types that are included
in the SOAP message.

CHAPTER 2 ■ THE WEB SERVICES DESCRIPTION LANGUAGE16

701xCH02.qxd 7/14/06 4:55 PM Page 16

<operation>: This element is analogous to a method definition; however, it only allows
you to define input, output, and fault messages that are associated with the operation.
You can then consult the individual message details to determine what input parameters
and return types are involved.

<portType>: This element lists all of the operations that a Web service supports. The
<port> element corresponds to a single Web service, while the <portType> element
describes the available operations. The previous three elements (<types>, <message>, and
<operation>) all describe granular, individual pieces of the Web service operations and its
message types. The <portType> element avoids many of these lower-level details and
instead provides a high-level summary of the operations (and associated input, output,
and fault messages) that the Web service provides. The <portType> element provides a
single location for a client to browse the offerings of a particular Web service.

There are three XML elements for concrete implementation:

<binding>: This element links the abstract and concrete elements together within a WSDL
document. The <binding> element is associated with a specific <portType> element, and
it also lists the address of the Web service that is associated with the <portType> element.
Finally, the <binding> element lists the protocol that is used to communicate with the
Web service.

<port>: This element defines the Uniform Resource Identifier (URI) where the Web service
is located, and it also implements a <binding> element.

<service>: This element encloses one or more <port> elements.

Figure 2-1 shows the high-level structure of a WSDL document and how the various XML
elements relate to each other within the document. The following sections examine each of
the seven elements in further detail.

Figure 2-1. WSDL document structure

CHAPTER 2 ■ THE WEB SERVICES DESCRIPTION LANGUAGE 17

701xCH02.qxd 7/14/06 4:55 PM Page 17

The <types> Element
The <types> element lists all of the data types that are exchanged by the XML messages as
input parameters or return types. The <types> element is equivalent to an embedded XSD
schema definition file. For design purposes, it is useful to separate your XSD schema defini-
tions into another file. This allows you to reference type information independently of the
WSDL document, which is important because it provides a central reference point for validat-
ing XML documents against a single source. You can then import the XSD schema file into the
WSDL document using a separate <import> root element as follows:

<import namespace="http://www.bluestonepartners.com/schemas/StockTrader/"
location="http://www.bluestonepartners.com/schemas/StockTrader.xsd" />

With this approach the <types> element is no longer needed, so you can just include it as
an empty element as follows:

<types/>

Having shown you this approach, we need to immediately point out that it does not con-
form to the WS-I Basic Profile, which states that the <import> element may only be used to
import another WSDL document, not an external XSD schema file. You will still need to design
and build XSD schema files separately from the WSDL document; however, once this task is
complete, you will need to embed the XSD elements directly within the WSDL document’s
<types> section. The <import> element must not appear within a WSDL document for XSD
schema information. This rule holds true for WSDL documents that are generated by either
WSE 2.0 or by WSE 3.0.

You cannot omit the <types> element, even if it is unused, because this will generate
parsing errors in the WSDL document.

XSD schema definition files are described in detail in Chapter 3. They are essential docu-
ments for describing the data types of XML messages in an SOA. The discussion in Chapter 3
shows you how to build XSD schema files manually and then incorporate them into a WSDL
document. You will also use XSD schema files to autogenerate code-based type definitions.

The <message> Element
The <message> element describes a SOAP message, which may be an input, an output, or a
fault message for a Web service operation. A SOAP message is subdivided into parts that are
represented by <part> child elements and that document the types that are included in the
SOAP message.

For example, consider a Web method called RequestQuote. It accepts a stock ticker sym-
bol and returns a complex XML Quote message, which contains multiple levels of detail,
including the opening and closing prices of the stock, as well as long-term statistics such as
52-week high and low values. A client that expects to use the RequestQuote method does not
care how this Web method is implemented. However, the client does need to know the struc-
ture of the messages for communicating with the Web method (or operation, as it is referred to
in WSDL).

CHAPTER 2 ■ THE WEB SERVICES DESCRIPTION LANGUAGE18

701xCH02.qxd 7/14/06 4:55 PM Page 18

The RequestQuote operation uses a request (input) message and a response (output)
message. The input message looks like this:

<message name="RequestQuoteSoapIn">
<part name="Symbol" element="s1:Symbol" />

</message>

The output message looks like this:

<message name="RequestQuoteSoapOut">
<part name="RequestQuoteResult" element="s1:Quote" />

</message>

Both messages use types from a namespace called StockTrader, which is referenced in
the <definitions> element of the WSDL document. The <message> element does not need to
document what these types look like; it simply needs to reference them. Notice that the opera-
tion’s parameters are documented within the <message> root element using <part> child
elements. If the RequestQuote operation required five input parameters, the corresponding
input <message> element would include five corresponding <part> child elements.

The <operation> Element
The <operation> element is analogous to a method definition; however, it only allows you to
define input, output, and fault messages that are associated with the operation. You can then
consult the individual message details to determine what input parameters and return types
are involved.

In the previous section, we described the <message> element using an example operation
called RequestQuote. We presented the input and output messages, but observant readers
will notice that we did not formally associate these messages to the same operation beyond
verbally stating that they were associated. This is what the <operation> element is for. It is
responsible for formally associating messages with a given operation. The <message> element
is a root element; so, in theory, you can define a message within the WSDL document and then
use it across multiple operations. This is perfectly legal within the WSDL document.

Here is what the <operation> element looks like for the RequestQuote operation:

<operation name="RequestQuote">
<input message="tns:RequestQuoteSoapIn" />
<output message="tns:RequestQuoteSoapOut" />
<fault message="tns:ExceptionMessage" />

</operation>

Notice that no additional description is provided for the messages beyond their names.
For more details, you must reference the corresponding <message> elements.

Operations can be defined in one of four modes:

• Request/Response: The client sends a request message to the Web service, and the Web
service returns a response message.

• One Way: The client sends a request message to the Web service but receives no
response message in return.

CHAPTER 2 ■ THE WEB SERVICES DESCRIPTION LANGUAGE 19

701xCH02.qxd 7/14/06 4:55 PM Page 19

• Solicit/Response: This is the reverse of Request/Response. The Web service sends a mes-
sage to the client, and then the client sends a response message to the Web service.

• Notification: This is the reverse of One Way. The Web service sends a message to the
client but receives no response message in return.

The WSDL document does not contain special attributes for describing how an operation
is called. Instead, you must infer this information by the arrangement and inclusion (or exclu-
sion) of input and output messages. Although we have used the concept of request and
response messages to describe the interaction between Web service and client, this model
does not really apply in a WSDL document. Instead, we refer to input and output messages.
The difference may be semantic, but in a WSDL document, Web services never make requests
or send input messages to a client. Any message that originates from a Web service is referred
to as an output message, even in Solicit/Response or Notification mode. Accordingly, here is
how you define each of the four modes in WSDL:

• Request/Response: The client sends a request message to the Web service, and the Web
service returns a response message.

<operation name="MyOperation">
<input message="MyInputMessage" />
<output message=" MyOutputMessage" />

</operation>

• One Way: The client sends a request message to the Web service but receives no
response message in return.

<operation name="MyOperation">
<input message="MyInputMessage" />

</operation>

• Solicit/Response: This is the reverse of Request/Response. The Web service sends a mes-
sage to the client, and then the client sends a response message to the Web service. The
<operation> element lists the output and input messages in reverse order.

<operation name="MyOperation">
<output message=" MyOutputMessage" />
<input message="MyInputMessage" />

</operation>

• Notification: This is the reverse of One Way. The Web service sends a message to the
client but receives no response message in return.

<operation name="MyOperation">
<output message=" MyOutputMessage" />

</operation>

CHAPTER 2 ■ THE WEB SERVICES DESCRIPTION LANGUAGE20

701xCH02.qxd 7/14/06 4:55 PM Page 20

The <portType> Element
The <portType> element lists all of the operations that a Web service supports. The <port>
element (described later in this chapter) corresponds to a single Web service, while the
<portType> element describes the available operations. The previous three elements (<types>,
<message>, and <operation>) all describe granular, individual pieces of the Web service oper-
ations and its message types. The <portType> element avoids many of these lower-level details
and instead provides a high-level summary of the operations (and associated input, output,
and fault messages) that the Web service provides. The <portType> element provides a single
location for a client to browse the offerings of a particular Web service.

The four elements that we have discussed so far are presented in order of decreasing
granularity. Whereas an <operation> element lists a collection of <message> elements (which
in turn list a collection of <types> elements), a <portType> element lists a collection of
<operation> elements.

For example, here is the <portType> element (named StockTraderServiceSoap) for a Web
service that supports two operations, RequestQuote and PlaceTrade:

<portType name="StockTraderServiceSoap">
<operation name="RequestQuote">
<input message="tns:RequestQuoteSoapIn" />
<output message="tns:RequestQuoteSoapOut" />
<fault message=" tns:ExceptionMessage" />

</operation>
<operation name="PlaceTrade">
<input message="tns:PlaceTradeSoapIn" />
<output message="tns:PlaceTradeSoapOut" />

</operation>
</portType>

You may be surprised to see the <portType> listing like this. We have pointed out on sev-
eral occasions how the WSDL document is designed for efficiency. If this were entirely the
case, then you would expect the <portType> element to look more like this:

<portType name="StockTraderServiceSoap">>
<operation name="RequestQuote" />
<operation name="PlaceTrade" />

</portType>

There is no easy explanation as to why the WSDL document takes a less efficient
approach with the <portType> element other than to speculate that it is designed to be a
one-stop location for a client to retrieve a summary of the operations that the Web service
supports.

The <binding> Element
The <binding> element links the abstract and concrete elements together within a WSDL doc-
ument. The <binding> element is associated with a specific <portType> element, and it also
lists the address of the Web service that is associated with the <portType> element. Finally, the
<binding> element lists the protocol that is used to communicate with the Web service.

CHAPTER 2 ■ THE WEB SERVICES DESCRIPTION LANGUAGE 21

701xCH02.qxd 7/14/06 4:55 PM Page 21

Keep in mind that the <portType> element is nothing more than an abstract definition for
a Web service, which is a concrete entity that implements a set of operations. The <binding>
element simply formalizes the association between a <portType> and a Web service.

Here is what the <binding> element looks like for a Web service that supports a single
operation called RequestQuote, and which communicates using the SOAP protocol:

<binding name="StockTraderServiceSoap" type="tns:StockTraderServiceSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />
<operation name="RequestQuote">
<soap:operation
soapAction="http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote"

style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>

</operation>
</binding>

There is no new abstract information here that you do not already know from the
discussion so far. For example, you already know the name of the <portType>, which is
StockTraderServiceSoap. And you already know that it includes an <operation> element
named RequestQuote. But the concrete information is new. The <binding> element informs
you that the Web service uses the SOAP transport protocol. The <soap:operation> element
tells you the name of the Web method that is associated with the RequestQuote operation, but
it does not reveal the physical location of the Web service. (The soapAction attribute includes
the namespace for the RequestQuote schema element, which appears to resemble a physical
URL path.) Finally, you learned that the Web method uses literal encoding and a document
style, which are both required settings for exchanging SOAP messages.

The <port> Element
The <port> element defines the URL where the Web service is located, and it also implements
a <binding> element. As you know, we have already defined the <binding> element for the
Web service, but it does not indicate the physical location of the Web service. This is what the
<port> element is for.

Here is what the <port> element looks like for the StockTraderServiceSoap <binding>
element:

<port name="StockTraderServiceSoap" binding="tns:StockTraderServiceSoap">
<soap:address location="http://localhost/StockTrader/StockTrader.asmx" />

</port>

Finally, you learn the physical location of the Web service, via the <soap:address>
element.

CHAPTER 2 ■ THE WEB SERVICES DESCRIPTION LANGUAGE22

701xCH02.qxd 7/14/06 4:55 PM Page 22

The <service> Element
The <service> element encloses one or more <port> elements. It is essentially a collection of
one or more Web service bindings. In most cases, your WSDL document will describe one Web
service only, so the <service> element itself will provide no additional value. However, the
WSDL specification requires that all <port> elements be contained within the <service> ele-
ment. The listing in the previous section actually appears within a <service> element called
StockTraderService as follows:

<service name="StockTraderService">
<port name="StockTraderServiceSoap" binding="tns:StockTraderServiceSoap">
<soap:address location="http://localhost/StockTrader/StockTrader.asmx" />

</port>
</service>

The WSDL 1.1 Specification
The WSDL 1.1 specification that describes the complete document structure can be found at
http://www.w3.org/TR/wsdl. It is worth looking at the original specification because you will
find useful elements that you can use even though they are not widely known or even gener-
ated using GUI tools such as Visual Studio .NET. For example, the <operation> element
contains a child element called <documentation> that allows you to insert an English lan-
guage description of what the operation does. Here is an example:

<operation name="RequestQuote">
<documentation>

Returns a delayed 30-minute quote for a given stock ticker symbol.
This operation returns a Quote XML type as defined in the XSD schema at:
http://www.bluestonepartners.com/schemas/StockTrader.xsd

</documentation>
<input message="s1:RequestQuoteSoapIn" />
<output message="s1:RequestQuoteSoapOut" />

</operation>

The <documentation> element adds a welcome level of readability to the WSDL docu-
ment, which is challenging at best to read with human eyes.

If you were to distill a WSDL document down to its most basic set of associated elements,
it would look like this:

<definitions>
<types />
<message />
<operation>

<message />
</operation>
<portType>

<operation />
</portType>

CHAPTER 2 ■ THE WEB SERVICES DESCRIPTION LANGUAGE 23

701xCH02.qxd 7/14/06 4:55 PM Page 23

<binding>
<operation />

</binding>
<service>

<port>
<binding />

</port>
</service>

</definitions>

Listing 2-1 shows the actual WSDL document for the StockTrader Web service that we will
be working with in detail in the following chapters. You do not need to read the document
line-by-line; but try scanning it and notice how much information you can get about the Web
service without having seen any other documentation about it.

Listing 2-1. The WSDL Document for the StockTrader Web Service

<?xml version="1.0" encoding="utf-8" ?>
<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s0="http://www.bluestonepartners.com/schemas/StockTrader/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://www.bluestonepartners.com/schemas/StockTrader"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http://www.bluestonepartners.com/schemas/StockTrader"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<import namespace="http://www.bluestonepartners.com/schemas/StockTrader/"
location="http://www.bluestonepartners.com/schemas/StockTrader.xsd" />

<types/>
<message name="RequestAllTradesSummarySoapIn">

<part name="Account" element="s1:Account" />
</message>
<message name="RequestAllTradesSummarySoapOut">

<part name="RequestAllTradesSummaryResult" element="s1:Trades" />
</message>
<message name="RequestTradeDetailsSoapIn">

<part name="Account" element="s1:Account" />
<part name="TradeID" element="s1:TradeID" />

</message>
<message name="RequestTradeDetailsSoapOut">

<part name="RequestTradeDetailsResult" element="s1:Trade" />
</message>
<message name="PlaceTradeSoapIn">

<part name="Account" element="s1:Account" />
<part name="Symbol" element="s1:Symbol" />
<part name="Shares" element="s1:Shares" />

CHAPTER 2 ■ THE WEB SERVICES DESCRIPTION LANGUAGE24

701xCH02.qxd 7/14/06 4:55 PM Page 24

<part name="Price" element="s1:Price" />
<part name="tradeType" element="s1:tradeType" />

</message>
<message name="PlaceTradeSoapOut">

<part name="PlaceTradeResult" element="s1:Trade" />
</message>
<message name="RequestQuoteSoapIn">

<part name="Symbol" element="s1:Symbol" />
</message>
<message name="RequestQuoteSoapOut">

<part name="RequestQuoteResult" element="s1:Quote" />
</message>
<portType name="StockTraderServiceSoap">

<operation name="RequestAllTradesSummary">
<input message="tns:RequestAllTradesSummarySoapIn" />
<output message="tns:RequestAllTradesSummarySoapOut" />

</operation>
<operation name="RequestTradeDetails">

<input message="tns:RequestTradeDetailsSoapIn" />
<output message="tns:RequestTradeDetailsSoapOut" />

</operation>
<operation name="PlaceTrade">

<input message="tns:PlaceTradeSoapIn" />
<output message="tns:PlaceTradeSoapOut" />

</operation>
<operation name="RequestQuote">

<input message="tns:RequestQuoteSoapIn" />
<output message="tns:RequestQuoteSoapOut" />

</operation>
</portType>
<binding name="StockTraderServiceSoap" type="tns:StockTraderServiceSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

<operation name="RequestAllTradesSummary">
<soap:operation

soapAction="http://www.bluestonepartners.com/schemas/StockTrader/ ➥

RequestAllTradesSummary" style="document" />
<input>

<soap:body use="literal" />
</input>
<output>

<soap:body use="literal" />
</output>

</operation>
<operation name="RequestTradeDetails">

<soap:operation
soapAction="http://www.bluestonepartners.com/schemas/StockTrader/ ➥

CHAPTER 2 ■ THE WEB SERVICES DESCRIPTION LANGUAGE 25

701xCH02.qxd 7/14/06 4:55 PM Page 25

RequestTradeDetails" style="document" />
<input>

<soap:body use="literal" />
</input>
<output>

<soap:body use="literal" />
</output>

</operation>
<operation name="PlaceTrade">

<soap:operation soapAction="http://www.bluestonepartners.com/schemas/ ➥

/StockTrader/PlaceTrade" style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
<operation name="RequestQuote">

<soap:operation
soapAction="http://www.bluestonepartners.com/schemas/StockTrader/ ➥

RequestQuote" style="document" />
<input>

<soap:body use="literal" />
</input>
<output>

<soap:body use="literal" />
</output>

</operation>
</binding>
<service name="StockTraderService">

<port name="StockTraderServiceSoap" binding="tns:StockTraderServiceSoap">
<soap:address location="http:// www.bluestonepartners.com/StockTrader.asmx" />

</port>
</service>
</definitions>

This concludes the overview of the elements that make up a WSDL document. You can
reference the complete WSDL document for this Web service in the sample code (available
from the Source Code/Download section of the Apress web site at http://www.apress.com),
under Chapter 2\WSDL Documents\. You may find the file easier to read if you open it in
Visual Studio .NET or from within XML document editing software.

Working with WSDL Documents
Now that you understand the structure of a WSDL document, the next questions are how do
you actually generate one, and what do you do with it once you have it generated? These are

CHAPTER 2 ■ THE WEB SERVICES DESCRIPTION LANGUAGE26

701xCH02.qxd 7/14/06 4:55 PM Page 26

not trivial questions, because the WSDL document is complex, and you will want to keep your
manual alterations of the document to a minimum. Parsing errors are very easy to generate in
a WSDL document from even the smallest of misapplied edits.

How to Generate a WSDL Document
The easiest way to generate a WSDL document is to use a tool such as Visual Studio .NET.
There is very much a chicken-and-the-egg relationship between a WSDL document and the
Web service implementation that it describes. That is, you can write the code first and gener-
ate the WSDL document later. Or you can manually write the WSDL document first, and then
use it to autogenerate the code definition. Because it is very difficult to generate a WSDL docu-
ment by hand, you are better off writing the code implementation first and then using Visual
Studio .NET to generate the WSDL document for you.

Web services must be message-oriented if they are to be of any use in an SOA. Chapters 3
and 4 provide a detailed discussion of how to build message-oriented Web services. It is essen-
tial that you follow good design patterns and practices when building Web services for an SOA.

Assuming that you have built a message-oriented Web service according to the best
patterns and practices (as discussed in the following chapters), you can generate a WSDL
document by browsing the .asmx file of your Web service and clicking the Service Description
link in the default client page. This link simply appends ?WSDL to the URL of the .asmx file.
Figure 2-2 shows the default client page for the StockTraderService Web service and the corre-
sponding Service Description link.

Figure 2-2. The default client page for the StockTraderService Web service

The Service Description link will display the WSDL document in a tree view–like format,
wherein you can collapse and expand individual elements. This format is very useful for work-
ing your way through the document and learning how it is structured. Alternatively, you can
copy the WSDL document from the browser window and then view it in an XML document
editing application.

CHAPTER 2 ■ THE WEB SERVICES DESCRIPTION LANGUAGE 27

701xCH02.qxd 7/14/06 4:55 PM Page 27

What to Do with the WSDL Document
Once you have autogenerated the WSDL document, there are three main things that you will
want to do with it. First, you will need to abstract out the data type information from the
embedded <types> element into a separate XSD schema file. This is essential in an SOA so
that other Web services and clients can have access to the same centralized schema definition
file of the custom data types.

Second, you can use a command-line tool called wsdl.exe to autogenerate proxy classes
that clients can use to interact with the Web service. You can replicate the same feature in
Visual Studio .NET by adding a Web reference from a client project to a Web service.

Third, you can use the same utility with alternate switches to generate server-side code
implementations of the Web service contract. You may either generate abstract classes, or you
can generate service interface code methods that can be directly implemented rather than
overridden. These code-generation capabilities are useful for creating a server-side “back-
end” implementation based on an established Web service contract. You will see examples of
this in Chapters 3 and 4, where we use the utility to generate stub classes for the sample Web
service implementation.

As you become a more sophisticated Web services developer, you will end up spending
more time developing outside of the comfortable environment of Visual Studio .NET. This is
because you will grow to need a higher level of control over your Web services development
than Visual Studio .NET can currently provide.

Summary
In this chapter, you studied the structure of a WSDL document and found that it contains
seven XML elements in addition to a root element called <definitions>. The seven additional
elements are divided into two groups: one set provides an abstract description of the Web
service, while the other set provides concrete implementation details that associate the
abstract descriptions with the physical Web service.

The XML elements for abstract description are:

<types>: This element lists all of the data types that are exchanged by the XML messages
as input parameters or return types.

<message>: This element describes a SOAP message, which may be an input, output, or
fault message for a Web service operation.

<operation>: This element is analogous to a method definition; however, it only allows
you to define input, output, and fault messages that are associated with the operation.

<portType>: This element lists all of the operations that a Web service supports.

The XML elements for concrete implementation are:

<binding>: This element links the abstract and concrete elements together within a WSDL
document.

<port>: This element defines the URL where the Web service is located, and it also imple-
ments a <binding> element.

<service>: This element encloses one or more <port> elements.

CHAPTER 2 ■ THE WEB SERVICES DESCRIPTION LANGUAGE28

701xCH02.qxd 7/14/06 4:55 PM Page 28

This chapter concluded with a brief look at how to generate and work with WSDL docu-
ments. In the following two chapters, we will give you a detailed look at how to build
message-oriented Web services and how to work with WSDL documents and XSD schema
definition files.

CHAPTER 2 ■ THE WEB SERVICES DESCRIPTION LANGUAGE 29

701xCH02.qxd 7/14/06 4:55 PM Page 29

701xCH02.qxd 7/14/06 4:55 PM Page 30

Design Patterns for Building
Message-Oriented
Web Services

In an SOA, the purpose of Web services is to exchange and process XML messages, not simply
to act as hosts for remote procedure call (RPC) style methods. The difference is that messages
are bound to rich and complex operations, whereas RPC-style methods simply return a dis-
crete result that is directly correlated to a specific set of input parameters. For example, a
message-oriented Web method will accept a stock ticker symbol and return a detailed stock
quote in response. In contrast, an RPC-style Web method will return a simple output value.

Unfortunately, development tools such as Visual Studio place a method-centric focus on
Web services that causes you to lose sight of the bigger design picture and to take the under-
lying infrastructure for granted. It is very easy to build a Web service by creating an .asmx file
and then throwing together several loosely related RPC-style Web method implementations.
However, this is the wrong design approach because such a Web service fails to provide an
integrated set of message endpoints. In simpler terms, the Web service fails to provide a serv-
ice. The right design approach is always to think in terms of operations and XML messages
and to consider how the Web service methods work together to provide a service.

This chapter begins with a challenge for you to set aside what you have learned about
Web services development until now and to open your mind to a different design approach—
one that is based on integrated XML messages, not on RPC-style methods.

How to Build a Message-Oriented Web Service
There are six steps involved in building a message-oriented Web service, which is simply a
Web service that exchanges XML schema–based input and output messages rather than
simple parameter-oriented values. The steps are described in the following sections.

Step 1: Design the Messages and the Data Types
Conceptually design what the messages and data types will look like. UML class diagrams are
the best way to capture this information, and there is the added benefit that many of today’s
UML tools support XML schema generation directly from UML class diagrams.

31

C H A P T E R 3

701xCH03.qxd 7/17/06 12:54 PM Page 31

Step 2: Build the XSD Schema File for the Data Types
Use an XML designer tool to build the XSD schema file for all of the data types that are
exchanged by the Web service methods. Visual Studio 2005’s XML Designer is a good tool,
but you can use any XML designer tool that you are comfortable working with.

Step 3: Create a Class File of Interface Definitions for the
Messages and Data Types
The interface definition class (IDC) file provides the abstract definitions of the Web service
methods and its data types. This class file derives from the System.Web.Services.WebService
class, so it can be readily implemented in a Web services code-behind file. The .NET Frame-
work provides a command-line tool called xsd.exe for generating an IDC file based on an XSD
schema file. This will manually generate class definitions for the data types. You can add this
class file to your Web service project and then manually insert abstract definitions for the Web
methods.

Optional Step 3A: Generate the WSDL Document Manually
If you are brave enough, you can generate the WSDL document manually once you have built
the XSD schema file. However, the only real benefit you gain from this step is that you are then
able to fully generate the IDC file using the wsdl.exe command-line tool. It is easier to follow
step 3 (explained previously), using xsd.exe combined with manual coding of the abstract
method definitions. The syntax of WSDL documents is very difficult to build correctly by hand.
(Chapter 2 of this book, which reviews the structure of WSDL documents, is essential reading,
so that you can understand how the WSDL document is structured and how it relays Web serv-
ice metadata to Web service clients.)

Step 4: Implement the Interface in the Web Service
Code-Behind File
Your hard work in steps 1 through 3 pays off, and you are now ready to implement code
for the Web methods. The Web service .asmx code-behind class derives from the
System.Web.Services.WebService class by default, as does the IDC file from step 3, so you
can derive the .asmx code-behind class directly from the interface definition class instead of
directly from System.Web.Services.WebService. You can then implement code for each of the
methods.

Step 5: Generate a Proxy Class File for Clients Based on the
WSDL Document
Web services have no reason to exist unless they are being used by clients. In this step, you
generate a proxy class file based on the Web service WSDL document so that clients know
how to call your Web service, and know what messages and data types will be exchanged. The
wsdl.exe command-line tool will automatically generate this proxy class for you based on the
WSDL document. And Visual Studio 2005 will automatically generate the WSDL document for
you, so no manual work is required.

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES32

701xCH03.qxd 7/17/06 12:54 PM Page 32

You can actually skip this step if you are developing with Visual Studio 2005, because it
will dynamically generate the proxy class file for you when you add a Web reference (for your
Web service) to a client project. However, we prefer to manually generate the proxy class file so
that we can either alter it or have it ready for clients who are using a development tool without
code-generating wizards.

Step 6: Implement a Web Service Client Using a Proxy Class File
This final step hooks a client to your Web service. If you are using Visual Studio 2005, simply
add a (dynamic) Web reference to the Web service in your client project, and this will auto-
matically generate the proxy class file for you. This wizard will also make the necessary
adjustments to your application configuration file to record the location of the Web service.
Alternatively, you can manually add the proxy class file from step 5 to your project, update the
configuration file, and begin coding. The client essentially does nothing more than delegate
method calls to the Web service. Valid clients include Web applications, Windows Forms appli-
cations, console applications, or even other Web services.

Next Steps
This process is obviously more involved than simply creating a new .asmx file and immedi-
ately implementing code. But it is the right way to do things because it abstracts out the Web
service definitions and the code implementations. Visual Studio and the .NET Framework pro-
vide all of the tools that you need to autogenerate the XML-based files and the code, so the
amount of manual work is kept to a minimum.

The rest of this chapter dissects the various moving parts that make up a message-
oriented Web service. You will gain a precise understanding of how multiple files and tools
work together to define and implement a message-oriented Web service. We will also provide
selective implementation examples that collectively show you how to build this type of Web
service from scratch.

WHAT ARE DESIGN PATTERNS?

Design patterns are loosely described as time-tested, established solutions to recurring design problems.
Formal design patterns are highly structured and follow strict templates. The design patterns that are pre-
sented in this book do not follow this rigorous format, but they are in keeping with the spirit of design
patterns because they factor in industry-accepted practices for approaching recurring design problems.

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES 33

701xCH03.qxd 7/17/06 12:54 PM Page 33

Design and Build a Message-Oriented Web Service
This section provides the information that you need in order to build a message-oriented Web
service. It is organized along the same six steps presented earlier and provides both concep-
tual information and implementation information.

The Role of XML Messages and XSD Schemas
The starting point in designing a Web service is to determine what XML messages it will
exchange—specifically, what messages it will respond to, and what messages it will return.
Figure 3-1 shows the standard architecture for a client that interacts with a Web service via a
proxy class. This architecture is based on the principle that the client and the Web service both
have a common understanding of the messages and data types that are exchanged between
them. This understanding can only be achieved if the Web service publishes a clear document
of the operations that it supports, the messages it exchanges, and the types that it uses. This
document is the WSDL document (described in Chapter 2). The WSDL document is the main
reference for describing a Web service, and it includes embedded type definitions and mes-
sage definitions, among other things.

Figure 3-1. Web services architecture showing communication between the client and service

Consider the example Web service, StockTrader, from Chapter 2 that provides methods for
retrieving stock quotes and placing trades. Listing 3-1 presents one of the Web methods called
RequestQuote that accepts a stock ticker symbol and returns a detailed stock quote.

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES34

701xCH03.qxd 7/17/06 12:54 PM Page 34

Listing 3-1. Pseudocode for the RequestQuote Web Method

[WebMethod]
public Quote RequestQuote(string Symbol)
{

// implementation code
}

public class Quote
{

public string Symbol;
public string Company;
public string DateTime;
public System.Double High;
public System.Double Low;
public System.Double Open;
public System.Double Last;
public System.Double Change;
public System.Double PercentChange;
public System.Double Previous_Close;
public string High_52_Week;
public string Low_52_Week;

}

This code listing represents a Quote type object and a method called RequestQuote that
returns a Quote object. The RequestQuote method actually represents two messages: an input
(or request) message that includes a stock ticker symbol; and an output (or response) message
that provides a detailed stock quote. A client can only use the RequestQuote method if it can
also understand the response. In other words, the client has to fully understand the definition
of the Quote type in order to make use of the RequestQuote method. This is exactly the kind of
information that WSDL documents and XSD schema files document.

Listing 3-2 shows what the RequestQuote input and output messages look like in WSDL.

Listing 3-2. WSDL for the RequestQuote Input and Output Messages, Including Associated Types

<wsdl:message name="RequestQuoteSoapIn">
<wsdl:part name="parameters" element="tns:RequestQuote" />

</wsdl:message>
<wsdl:message name="RequestQuoteSoapOut">

<wsdl:part name="parameters" element="tns:RequestQuoteResponse" />
</wsdl:message>

<wsdl:portType name="StockTraderSoap">
<wsdl:operation name="RequestQuote">

<wsdl:input message="tns:RequestQuoteSoapIn" />
<wsdl:output message="tns:RequestQuoteSoapOut" />

</wsdl:operation>
</wsdl:portType>

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES 35

701xCH03.qxd 7/17/06 12:54 PM Page 35

<wsdl:types>
<s:schema elementFormDefault="qualified"

targetNamespace="http://www.bluestonepartners.com/schemas/StockTrader/">
<s:import namespace="http://www.bluestonepartners.com/Schemas/StockTrader/" />
<s:element name="RequestQuote">

<s:complexType>
<s:sequence>

<s:element minOccurs="0" maxOccurs="1"
name="Symbol" type="s:string" />

</s:sequence>
</s:complexType>

</s:element>
<s:element name="RequestQuoteResponse">

<s:complexType>
<s:sequence>

<s:element minOccurs="0" maxOccurs="1"
name="Quote" type="s1:Quote" />

</s:sequence>
</s:complexType>
</s:element>

</s:schema>
</wsdl:types>

Listing 3-3 shows what the Quote type and Symbol type look like in an XSD schema file.

Listing 3-3. XSD Schema for the Quote and Symbol Types

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="StockTrader"

targetNamespace="http://www.bluestonepartners.com/Schemas/StockTrader/"
elementFormDefault="qualified"
xmlns="http://www.bluestonepartners.com/Schemas/StockTrader/"
xmlns:mstns="http://www.bluestonepartners.com/Schemas/StockTrader/"
xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
<xs:complexType name="Quote">

<xs:sequence>
<xs:element name="Symbol" type="xs:string" />
<xs:element name="Company" type="xs:string" />
<xs:element name="DateTime" type="xs:string" />
<xs:element name="High" type="xs:double" />
<xs:element name="Low" type="xs:double" />
<xs:element name="Open" type="xs:double" />
<xs:element name="Last" type="xs:double" />
<xs:element name="Change" type="xs:double" />
<xs:element name="PercentChange" type="xs:double" />
<xs:element name="High_52_Week" type="xs:double" />
<xs:element name="Low_52_Week" type="xs:double" />

</xs:sequence>

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES36

701xCH03.qxd 7/17/06 12:54 PM Page 36

</xs:complexType>
<xs:element name="Symbol" type="xs:string"></xs:element>

</xs:schema>

This schema representation of the Quote type is significant because it qualifies the type
definition based on a specific target namespace, in this case http://www.bluestonepartners.
com/schemas/StockTrader/. Although there may be many variations of the Quote type in the
world, this specific qualified definition is unique. The Symbol type is nothing more than a
standard string type element, but it is qualified to a specific namespace and therefore
becomes more than just a standard element. Schema files are essential to ensure that a
Web service and its clients are absolutely clear on the messages and type definitions that
are being exchanged between them. Schema files are how you define messages.

■Note XSD schema files should always define types using nested elements rather than attributes. This
makes the file easier to read and reduces the possibility of errors during processing.

The Quote and Symbol types look very similar if they are embedded directly in the WSDL
document within the <types> section; and you should always assign qualified namespace
information to embedded types. In addition, you should always abstract type definitions out
to a separate XSD schema file for reference purposes, even though it is redundant to the
embedded type information contained within the WSDL document. Separate XSD schema
files are useful for a lot of reasons. Most importantly, they allow different Web services to use
the same qualified types and to reference them based on a single XSD schema file in a single
physical location. Life would get very confusing if you had multiple embedded definitions of
the same qualified data type floating around in cyberspace. In addition, dedicated XSD
schema files help you validate XML messages. In .NET you can load an XSD file into an Xml-
ValidatingReader object and use it to validate XML messages. You can also use schema files
with the xsd.exe command-line utility to generate class file definitions for types.

■Note The target namespace is typically expressed as a Uniform Resource Identifier (URI), but it is not
required to resolve to an actual location. The schema definitions that are presented in this book happen to be
stored as XSD files at http://www.bluestonepartners.com/soa.aspx. For your convenience, they are
also included in the sample code downloads (available in the Source Code/Download section on the Apress
web site at http://www.apress.com).

Design the XML Messages and XSD Schemas (Step 1)
XML messages represent the operations that your Web service supports, and they correlate to
implemented Web methods. XML messages do not contain implementation logic. Instead,
they simply document the name of an operation and its input and output types. XML mes-
sages must be designed in conjunction with XSD schema files. The best starting point is to

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES 37

701xCH03.qxd 7/17/06 12:54 PM Page 37

construct a UML diagram for the operation. Figure 3-2 shows a UML class diagram for the
RequestQuote operation and its associated input and output data types.

Figure 3-2. UML class diagram for the RequestQuote operation

The UML class diagrams will map conceptually to XSD schemas, so you do not have to
sketch out any XML during the design phase unless it helps you to better visualize the XML
messages and types. For example, here is what the Quote type will look like within a SOAP
response (with the embedded namespaces omitted for clarity):

<Quote>
<Symbol>MSFT</Symbol>
<Company>Microsoft Corporation</Company>
<DateTime>11/17/2003 16:00:00</DateTime>
<High>26.12</High>
<Low>24.68</Low>
<Open>25.49</Open>
<Last>25.15</Last>
<Change>-0.36</Change>
<PercentChange>-0.0137</PercentChange>
<Previous_Close>25.49</Previous_Close>
<High_52_Week>35</High_52_Week>
<Low_52_Week>22</Low_52_Week>

</Quote>

For design purposes, you can simplify the XML down to this:

<Quote>
<Symbol />
<Company />
<DateTime />
<High />
<Low />
<Open />
<Last />

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES38

701xCH03.qxd 7/17/06 12:54 PM Page 38

<Change />
<PercentChange />
<Previous_Close />
<High_52_Week />
<Low_52_Week />

</Quote>

Clearly, it is a lot of work to sketch out even this simplified XML by hand, and it does not
provide any additional value beyond what the UML diagram provides. In fact, it provides less
because this sketched out XML provides no type information. So the message here is that for
efficiency you should design your XML messages using UML or any appropriate shorthand
notation. This is the extent of the design work that is minimally required, and you should
never shortcut this step.

Build the XSD Schema File (Step 2)
Once you have established what your XML messages and data types will look like, it is time to
start building them. XSD schema files are the building blocks for XML messages, so you need
to design the schema files first. XSD schema files may be coded by hand, but it is easier to use
a visual designer tool, such as Visual Studio 2005’s XML Designer. To access the designer, sim-
ply add a new XSD schema file to a project. Visual Studio provides both a visual design view
and an XML design view. Figure 3-3 illustrates the visual design view for StockTrader.xsd,
which defines all of the data types for this chapter’s StockTrader sample application.

Figure 3-3. The Visual Studio 2005 XML Designer, showing the StockTrader.xsd schema

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES 39

701xCH03.qxd 7/17/06 12:54 PM Page 39

The XML Designer includes toolbox elements that you can drag onto the surface of the
designer and then fill in, as shown in Figure 3-4. For example, it provides a toolbox element for
XML complex types. Simply drag this element onto the designer and provide a name for the
complex type. Then start specifying the included types by their name and type. Once you are
finished defining all of the types, switch to the XML view to view the resulting XML. You can
then copy and paste the XML into a Notepad file and save it with an .xsd extension.

Figure 3-4. The Visual Studio 2005 XML Designer toolbox

You do not need to build the XML message documents by hand because they are created
as part of the WSDL document, which Visual Studio 2005 will automatically generate. But you
will need to code the abstract method definitions in an IDC file so that the WSDL generator
knows what XML messages to create. The IDC file contains type definitions and abstract
method definitions.

The Role of the Interface Definition Class File
The IDC file contains two important sets of information:

• Class definitions for all custom types that are exchanged by the Web service

• Abstract class definitions for each operation that the Web service supports

Listing 3-4 provides the code for an IDC file for the RequestQuote operation and its asso-
ciated types.

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES40

701xCH03.qxd 7/17/06 12:54 PM Page 40

Listing 3-4. The IDC File for the RequestQuote Operation and Its Associated Types

using System;
using System.Web.Services;
using System.Web.Services.Description;
using System.Web.Services.Protocols;
using System.Xml.Serialization;

namespace StockTrader
{

public abstract class StockTraderStub : System.Web.Services.WebService
{

public abstract Quote RequestQuote(string Symbol);
}

[XmlTypeAttribute(Namespace=
"http://www.bluestonepartners.com/schemas/StockTrader/")]

public class Quote
{

public string Symbol;
public string Company;
public string DateTime;
public System.Double High;
public System.Double Low;
public System.Double Open;
public System.Double Last;
public System.Double Change;
public System.Double PercentChange;
public System.Double Previous_Close;
public System.Double High_52_Week;
public System.Double Low_52_Week;
}

}

Notice the following important points:

• The definition file includes one stub class that encapsulates all operations and then any
number of additional classes for the data types.

• The interface definitions for the operations are enclosed within an abstract class called
StockTraderStub. The stub class derives from the System.Web.Services.WebService
class, so it can be implemented in a Web service. In this listing it contains a single
abstract function definition for the RequestQuote operation.

• The definition file contains a separate class definition for the Quote type. This is how
you are able to reference the Quote type from code-behind.

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES 41

701xCH03.qxd 7/17/06 12:54 PM Page 41

• The definition file only contains class definitions for custom types (such as Quote),
not for simple elements such as Symbol, which is a standard string (as qualified in the
http://www.w3.org/2001/XMLSchema namespace). We make special mention of this
because it may appear inconsistent with our earlier XSD schema file that includes an
element definition for Symbol. But it is not inconsistent, because the xsd.exe compiler
resolves the Symbol element to a standard string, which therefore requires no special
entry in the IDC file.

■Note You may be confused by the difference between abstract classes vs. interfaces. An interface is a
completely abstract set of members with no implementation logic. An abstract class supports implementa-
tions in its methods (although it is not required). Abstract classes are useful because they provide the
benefits of interfaces combined with the convenience of reusable code. (Notice, however, that abstract
classes may limit extensibility in C#, which does not permit multiple inheritance.)

XML Serialization Attributes
The interface definition classes are decorated with XML serialization attributes that bind the
classes to specific namespaces, attributes, and elements in the XSD schema file. Consider, for
example, the following:

[return: XmlElement("Quote",
Namespace = "http://www.bluestonepartners.com/schemas/StockTrader/")]

public abstract Quote RequestQuote(string Symbol);

This unambiguously states that the RequestQuote operation returns an object of type
Quote, as qualified in the http://www.bluestonepartners.com/schemas/StockTrader/ name-
space. In fact, this namespace is documented liberally throughout the IDC file. It can never
appear too often because XML messages must be as unambiguous as possible.

XML and SOAP serialization attributes give you direct control over the way in which the
XML messages get serialized within the request and response SOAP messages. You should
always set the SoapDocumentMethod reflection attribute to use bare encoding for parame-
ters. This ensures that complex types (such as Quote) remain serialized as elements within the
SOAP message:

[WebMethod()]
[SoapDocumentMethod(Use=SoapBindingUse.Literal,

ParameterStyle=SoapParameterStyle.Bare)]
public abstract Quote RequestQuote(string Symbol);

If you do not use bare encoding, complex types may end up serialized as attributes, which
may interfere with schema validation. This is known as wrapped encoding. Bare encoding
looks like this

<Quote>
<Symbol>MSFT</Symbol>

</Quote>

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES42

701xCH03.qxd 7/17/06 12:54 PM Page 42

while wrapped encoding looks like this

<Quote Symbol="MSFT" />

Wrapped encoding will generate fewer XML characters and a smaller SOAP payload, but it
may create big problems if custom types cannot be validated against their XSD schema files.

Table 3-1 summarizes important properties of the serialization attribute, including how
certain property values influence the processing behavior of a Web service.

REFLECTION ATTRIBUTES

Reflection attributes allow you to add additional metadata to a wide variety of code elements, including
classes and methods. Attributes modify the way that the element is processed. For example, the
[WebMethod] attribute designates a standard method or function as capable of accepting serialized XML
messages. Of course, reflection attributes must have meaning to the processing code in order to be applied.
Reflection attributes may include properties that provide additional metadata information. For more on reflec-
tion attributes, consult the MSDN online article on attributes, located at MSDN Home ➤ MSDN Library ➤
.NET Development ➤ Visual Studio .NET ➤ Visual Basic and Visual C# ➤ Reference ➤ Visual C# Language
➤ C# Language Specification.

Table 3-1. The SoapDocumentMethod Serialization Attribute and Selected Properties

Attribute Property Description

Use Specifies the encoding style of the messages. The options are
Literal and Encoded. (The options are specified in code using the
System.Web.Services.Description.SoapBindingUse enumeration.)

ParameterStyle Specifies whether the parameters are wrapped in a single
element within the body of the SOAP message, or whether they
are unwrapped. (The options are specified in code using the
System.Web.Services.Protocols.SoapParameterStyle enumeration.)

OneWay Specifies whether the Web service client will receive a response to its
request, or whether the request will be one-way only (without a
response).

Binding Associates a Web method with a specific operation within the binding
that is specified for the Web service. The Web service binding is set at
the Web service level using the WebServiceBinding serialization
attribute—for example, [System.Web.Services.
WebServiceBindingAttribute(Name="StockTraderServiceSoap",
Namespace="http://www.bluestonepartners.com/schemas/
StockTrader")]public class StockTraderProxy :
System.Web.Services.Protocols.SoapHttpClientProtocol {}.

RequestNamespace Specifies the namespace URI that defines the request elements.

RequestElementName Specifies the name of the request element as it is defined in the
applicable XSD schema file.

ResponseNamespace Specifies the namespace URI that defines the response elements.

ResponseElementName Specifies the name of the response element as it is defined in the
applicable XSD schema file.

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES 43

701xCH03.qxd 7/17/06 12:54 PM Page 43

Generate an IDC File (Step 3)
IDC files can be generated in three ways:

• wsdl.exe: This command-line tool generates a full IDC file (including abstract classes
and types) based on a WSDL document. The tool generates code for XML Web service
clients and XML Web services using ASP.NET from WSDL contract files, XSD schemas,
and .discomap discovery documents. The general usage of the wsdl.exe utility is
wsdl.exe <url or path> <options>. The <options> placeholder is occupied by one or
more switches. Table 3-2 summarizes selected command-line switches for the
wsdl.exe utility.

Table 3-2. Selected Command-Line Switches for the wsdl.exe Utility

Switch Description

<url or path> A URL or path to a WSDL contract, an XSD schema, or a .discomap document.

/server A switch that generates an abstract class for an XML Web service
implementation using ASP.NET based on the contracts. The default is to
generate client proxy classes.

/out:<filename> The file name for the generated proxy code. The default name is derived from
the service name. The short form is /o:.

/sharetypes A switch that generates a single type definition for types that are shared
between multiple Web service WSDL bindings. This feature is new to .NET
Framework 2.0 and avoids creating multiple type definitions (in code) for the
same service types. This in turn releases the developer from getting stuck with
type definition versioning issues.

/protocol Overrides the default protocol from HTTP POST to SOAP, SOAP12, or
HTTP GET.

• xsd.exe: This command-line tool generates the type section only for the IDC file based
on an XSD schema file. You can use this autogenerated file as a starting point and then
manually insert the abstract class definitions for each of the Web service operations.
The general usage of the utility is xsd.exe <schema>.xsd /classes: dataset [/o:]. Table 3-3
summarizes selected command-line switches for the xsd.exe utility.

Table 3-3. xsd.exe Selected Command-Line Switches

Switch Description

<schema>.xsd The name of a schema containing the elements to import.

/classes A switch that generates classes for this schema. The short form is /c.

/dataset A switch that generates subclassed DataSet for this schema. The short
form is /d.

/out:<directoryName> The output directory to create files in. The default is the current
directory. The short form is /o.

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES44

701xCH03.qxd 7/17/06 12:54 PM Page 44

• WseWsdl3.exe: This command-line tool generates code for WSE 3.0 Web service clients
based on either a WSDL document or an XSD schema file. You can use this tool to gen-
erate a proxy class and a full IDC file (including abstract classes and types), all based
on the specified WSDL document. The general usage of the utility is WseWsdl3.exe
<schema>.xsd /classes. Table 3-4 summarizes selected command-line switches for the
WseWsdl3.exe utility. Note that WseWsdl3.exe supports the same set of switches as the
previous WSE 2.0 version of the utility WseWsdl.exe.

Table 3-4. WseWsdl3.exe Selected Command-Line Switches

Switch Description

/type The switch that overrides the proxy type from SoapClient (default) to
WebClient, which derives the generated proxy class from
WebServicesClientProtocol, as opposed to the default SoapClient class.

/protocol The switch that overrides the default protocol from HTTP POST to
SOAP, SOAP12, or HTTP GET.

/out:<directoryName> The output directory to create files in. The default is the current
directory. The short form is /o.

Here is how you generate an IDC file using wsdl.exe:

C:\> wsdl /server /o:StockTraderStub.cs StockTrader.wsdl StockTrader.xsd

Here is how you generate an IDC file using xsd.exe:

C:\> xsd StockTrader.xsd /c

■Note In order to use the wsdl.exe and xsd.exe command-line tools from any directory location on your
computer, you will probably need to set an environment variable that points to the directory location of the
utilities. On our computer we created a user environment variable called PATH with a value of c:\Program
Files\Microsoft Visual Studio 8\SDK\v2.0\BIN. Alternatively, if you are using Visual Studio 2005, from the
Programs menu group you can select Visual Studio 2005 Tools ➤ Visual Studio 2005 Command Prompt.

If you are following the steps in this chapter, your only option for generating an IDC file at
this point is to partially generate it using xsd.exe and the XSD schema file. You have not yet
defined the operations anywhere other than by design in the initial UML diagram in step 1.
So your next step is to use the UML diagram to manually add abstract class definitions to the
autogenerated IDC file. This is the approach we always take because it is far easier than the
alternative, which is to generate WSDL by hand. Generating WSDL manually is prone to errors
and takes far longer than it will take you to update a few lines in code, as is the case with the
partially generated IDC file.

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES 45

701xCH03.qxd 7/17/06 12:54 PM Page 45

Implement the Interface Definition in the Web Service (Step 4)
Once the interface definitions are in place, the last remaining step is to implement them in
the Web service code-behind. The first step is to derive the Web service class file from the
interface definition; and the second step is to override the abstract methods, as shown in
Listing 3-5.

Listing 3-5. Deriving the Web Service .asmx Code-Behind Class from the Generated Interface
Definition Class (StockTraderStub)

// Step 1 (Before View): Implement the StockTraderStub class
[WebService(Namespace = "http://www.bluestonepartners.com/schemas/StockTrader")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class StockTraderService : StockTraderStub
{

// Contains abstract methods (not shown)
}

// Step 2 (After View): Override and implement each of the abstract class methods
[WebService(Namespace = "http://www.bluestonepartners.com/schemas/StockTrader")]
public class StockTraderService : StockTraderStub
{

[WebMethod]
[return: XmlElement(ElementName = "Quote",

Namespace = "http://www.bluestonepartners.com/schemas/StockTrader/")]
public override Quote RequestQuote(string Symbol)
{

// Implementation code goes here
}

}

You need to set namespace names for both the Web service class and the interface defini-
tion classes. We usually include all classes within the same namespace, but there is no rule
about this. If you do use different namespaces, then in the Web service class file you will need
to import the namespace for the interface definition classes.

At this point everything is in place to complete the implementation of the Web service
methods. All operations and types are fully described and ready to be referenced from the
Web service class file. Listing 3-6 shows an example implementation of the PlaceTrade Web
method, which places a trade order and returns the trade details in a custom object type
called Trade.

Listing 3-6. The PlaceTrade Web Method

[WebMethod]
[SoapDocumentMethod(RequestNamespace=

"http://www.bluestonepartners.com/schemas/StockTrader/",
ResponseNamespace="http://www.bluestonepartners.com/schemas/StockTrader/",
Use=SoapBindingUse.Literal, ParameterStyle=SoapParameterStyle.Bare)]

[return: XmlElement("Trade", Namespace=

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES46

701xCH03.qxd 7/17/06 12:54 PM Page 46

"http://www.bluestonepartners.com/schemas/StockTrader/")]
public override Trade PlaceTrade(string Account, string Symbol, int Shares, ➥

System.Double Price, TradeType tradeType)
{

Trade t = new Trade();
t.TradeID = System.Guid.NewGuid().ToString();
t.OrderDateTime = DateTime.Now.ToLongDateString();
t.Symbol = Symbol;
t.Shares = Shares;
t.Price = Price;
t.tradeType = tradeType;
// Initialize the Trade to Ordered, using the TradeStatus enumeration
t.tradeStatus = TradeStatus.Ordered;
// Code Not Shown: Persist trade details to the database by account number
// and trade ID, or to a message queue for later processing
// Code goes here
return t; // Return the Trade object

}

Notice that we have reapplied all of the XML and SOAP serialization attributes that were
included in the IDC file. You need to do this to ensure that they take effect. Also notice the use
of several custom types, including Trade (a complex type that stores the trade details), Trade-
Type (an enumeration for the type of trade being executed), and TradeStatus (an enumeration
for the current status of the trade).

Assuming that you have followed the steps so far, your Visual Studio 2005 Solution
Explorer will look like Figure 3-5.

Figure 3-5. The Visual Studio 2005 Solution Explorer showing the StockTrader Web service

Messages vs. Types
The discussion so far has drawn a distinction between messages and types. For example, Fig-
ure 3-2 outlines a message called RequestQuote that returns a type called Quote. This begs the
question as to why they are different. Why can’t the IDC file treat the RequestQuote message
as just another custom data type? This means you would need to include a custom class to
represent RequestQuote, just as you create one to represent Quote.

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES 47

701xCH03.qxd 7/17/06 12:54 PM Page 47

This is not a trick question. The answer is that you can. There is no reason you cannot add
a RequestQuote data type as its own custom class in the proxy stub file. To illustrate the dis-
tinction, Listing 3-7 shows you what this would look like. The listing is based on the shell of an
autogenerated proxy stub file with different class signatures for RequestQuote and Quote. In
addition, we have added a new custom data type for RequestQuote, shown in bold.

Listing 3-7. A Proxy Stub File That Includes the RequestQuote Message As a Custom Data Type

public abstract class StockTraderService : System.Web.Services.WebService
{

public abstract Quote RequestQuote(string Symbol);
}

public class Quote
{

// Quote properties not shown (e.g., Symbol, Open, Last, etc.)
}

public class RequestQuote
{

public string Symbol;
}

Notice that the class signature for the RequestQuote operation contains no mention of
the Quote object, which as you know is the output data type of the operation. It is not men-
tioned because the class signature reflects the input parameters only. Figure 3-6 shows a
partial view of the StockTraderWithOperations.xsd schema file, which adds four additional
complex types for each of the four supported Web service operations.

Not only is it legal to include separate class signatures for the Web service operations, but
you will need to do so if you have to manually retrieve the SOAP message body for a requested
operation. Chapter 8 reviews services that use the TCP protocol and a specialized class called
the SoapReceiver, which manually deserializes an incoming SOAP request message. The dese-
rialized message body is mapped to an instance of the RequestQuote class, so you need to
have a defined class signature. (Otherwise, you will need to write custom XPath queries to
extract the operation name and input parameter values.)

Chapter 9 is many pages and concepts away, so until we reach there, it will not be neces-
sary to create separate class signatures for the Web service operations. And, unfortunately,
the .NET Framework’s WSDL generator will not be able to differentiate a message from a data
type, unless you have implemented RequestQuote as a Web method in an .asmx file (to use
just one example of a Web service operation). So for no other reason than convenience, you
should continue creating .asmx code for each of the supported Web service operations. You
can also start adding the operations to the associated XML schema file, so that they are there
when you need them in the future. (The sample project for this chapter includes two versions
of the StockTrader XML schema file: StockTrader.xsd and StockTraderWithOperations.xsd.)

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES48

701xCH03.qxd 7/17/06 12:54 PM Page 48

Figure 3-6. The Visual Studio 2005 XML Designer, showing the StockTraderWithOperations.xsd
schema

Consume the Web Service
The hard part of the development is done, as is much of the value-added material in this
chapter. By now you should have a good understanding of how to approach the development
process for message-oriented Web services. Visual Studio 2005 allows you to take shortcuts in
the development process, but you need to avoid temptation and do the manual work that is
required to create well-documented Web services.

Build the Web Service Consumer
The proxy class file provides synchronous and asynchronous invocation mechanisms for each
of the Web service operations and derives from System.Web.Services.Protocols.SoapHttp-
ClientProtocol. It also provides class definitions for the Web service types, just like the IDC file.
The proxy file does not include abstract methods; it only includes implemented methods.
So you do not have to implement every method that the proxy class file provides. In addition,
the consumer class does not need to derive from the service proxy class. You simply create
instances of the proxy class as needed.

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES 49

701xCH03.qxd 7/17/06 12:54 PM Page 49

Generate the Client Proxy Class File (Step 5)
You have done a lot of manual work to get to this point: You have manually created schema
files and interface definitions, and you have implemented the operations as Web service
methods. To generate a client proxy file, you can rely on the wsdl.exe utility to do the work
for you in generating the proxy stub. The proxy file is similar to the IDC file in that it includes
class definitions for types and operations. But it is derived from the System.Web.Services.
Protocols.SoapHttpClientProtocol namespace, and its purpose is to provide a programmatic
interface between the client and the Web service. The proxy class works with the underlying
Web services infrastructure to make requests and receive responses using SOAP.

■Note You can ignore the material in this section if you use Visual Studio 2005 and work with the Add Web
Reference Wizard. This wizard will automatically generate the proxy file for you, and you will not need to
work directly with the WSDL document. Read this section only if you want to know what happens under the
hood when you create a client proxy class file.

Assuming that you have completed the previous development steps correctly, your WSDL
document will be in good shape, and you can trust that it accurately represents the messages
and types that your Web service exchanges. You can use Visual Studio 2005 to generate the
WSDL file.

To generate the WSDL document, right-click the StockTrader.asmx file and select the View
in Browser menu option. Append ?WSDL to the end of the URI, as in

http://localhost/StockTrader.asmx?WSDL

The WSDL document will open in a new browser window. You can copy and paste the
XML into Notepad and save it with a .wsdl file extension. You will need to edit this file in
three ways:

• Remove dash characters from the WSDL browser view.

• Verify that the embedded type information (within the <types> tags) matches the type
definitions within the XSD schema file you generated earlier.

• Remove the <service> element, which will bind the proxy to a static Web service loca-
tion. (Instead, you will add a dynamic location to the client’s configuration file.)

Listing 3-8 shows what the processed WSDL document will look like, assuming that
RequestQuote is the only operation that the Web service supports.

Listing 3-8. The WSDL Document for the StockTrader Web Service Filtered to Show All Elements
Related to the RequestQuote Web Method

<?xml version="1.0" encoding="utf-8" ?>
<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES50

701xCH03.qxd 7/17/06 12:54 PM Page 50

xmlns:s0="http://www.bluestonepartners.com/schemas/StockTrader/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://www.bluestonepartners.com/schemas/StockTrader"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
targetNamespace="http://www.bluestonepartners.com/schemas/StockTrader"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<import namespace="http://www.bluestonepartners.com/schemas/StockTrader/"
location="http://www.bluestonepartners.com/schemas/StockTrader.xsd" />

<types />
<message name="RequestQuoteSoapIn">

<part name="Symbol" element="s0:Symbol" />
</message>
<message name="RequestQuoteSoapOut">

<part name="RequestQuoteResult" element="s0:Quote" />
</message>
<portType name="StockTraderServiceSoap">

<operation name="RequestQuote">
<input message="tns:RequestQuoteSoapIn" />
<output message="tns:RequestQuoteSoapOut" />

</operation>
</portType>
<binding name="StockTraderServiceSoap" type="tns:StockTraderServiceSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

<operation name="RequestQuote">
<soap:operation
soapAction="http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote"
style="document" />

<input>
<soap:body use="literal" />

</input>
<output>

<soap:body use="literal" />
</output>

</operation>
</binding>
</definitions>

Notice that we are using the <import> tag to pull in the type definitions from the refer-
ence XSD schema file, which is qualified at http://www.bluestonepartners.com/schemas/, and
which is physically located at http://www.bluestonepartners.com/schemas/StockTrader.xsd.
We are using this tag in order to avoid reprinting the lengthy embedded type information. This
approach does not technically invalidate the WSDL file, although it does put the file out of
compliance with the WS-I Basic Profile, Rule R2001, which disallows the import of external
XSD schema files as a substitute for embedded type information.

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES 51

701xCH03.qxd 7/17/06 12:54 PM Page 51

Next, run the wsdl.exe command-line utility to generate a client proxy file:

C:\> wsdl /o:StockTraderProxy.cs StockTrader.wsdl StockTrader.xsd

You can then add the proxy class file to the Web service consumer’s project, as we will dis-
cuss in the next section.

Implement the Web Service Consumer (Step 6)
Listing 3-9 shows a sample of the autogenerated service proxy class.

Listing 3-9. The Autogenerated Service Proxy Class

[System.Web.Services.WebServiceBindingAttribute(Name="StockTraderServiceSoap",
Namespace="http://www.bluestonepartners.com/schemas/StockTrader")]

public class StockTraderProxy : ➥

System.Web.Services.Protocols.SoapHttpClientProtocol {

public StockTraderProxy() {}

[System.Web.Services.Protocols.SoapDocumentMethodAttribute(
"http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote",
Use=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Bare)]

[return: System.Xml.Serialization.XmlElementAttribute("Quote",
Namespace="http://www.bluestonepartners.com/schemas/StockTrader/")]

public Quote RequestQuote([System.Xml.Serialization.XmlElementAttribute(
Namespace="http://www.bluestonepartners.com/schemas/StockTrader/")]
string Symbol)

{
object[] results = this.Invoke("RequestQuote", new object[] {Symbol});
return ((Quote)(results[0]));

}

public System.IAsyncResult BeginRequestQuote(string Symbol, ➥

System.AsyncCallback callback, object asyncState)
{

return this.BeginInvoke("RequestQuote", new object[] { ➥

Symbol}, callback, asyncState);
}

public Quote EndRequestQuote(System.IAsyncResult asyncResult)
{

object[] results = this.EndInvoke(asyncResult);
return ((Quote)(results[0]));

}
}

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES52

701xCH03.qxd 7/17/06 12:54 PM Page 52

[System.Xml.Serialization.XmlTypeAttribute(
Namespace="http://www.bluestonepartners.com/schemas/StockTrader/")]

public class Quote
{

string Symbol;
// Additional type definitions go here (not shown)

}

This class was entirely autogenerated by the wsdl.exe utility. The only modification we
made was to change the autogenerated name of the proxy class from StockTraderService to
our preferred name of StockTraderProxy.

Figure 3-7 shows the Visual Studio 2005 Solution Explorer as it appears when you add a
consumer project to the same solution file as the StockTrader Web service. Note that this is
done for convenience to make debugging the projects simpler. In reality, the Web service and
the consumer projects would be located on separate servers, and likely in different domains.

■Note This chapter does not provide specific instructions for how to create the consumer project, so
please refer directly to the code samples that accompany this chapter.

Figure 3-7. The Visual Studio 2005 Solution Explorer shows the StockTrader Web service and the
Web service consumer project.

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES 53

701xCH03.qxd 7/17/06 12:54 PM Page 53

Figure 3-8 shows a form-based implementation of the consumer that allows you to
receive stock quotes and place trades.

Figure 3-8. A consumer application for the StockTrader Web service

Listing 3-10 shows a sample of the implementation code behind the RequestQuote
button.

Listing 3-10. Web Service Consumer Code

private void btnQuote_Click(object sender, System.EventArgs e)
{

// Create an instance of the Web service proxy
StockTraderProxy serviceProxy = new StockTraderProxy();

// Retrieve the Web Service URI from app.config
serviceProxy.Url = ConfigurationSettings.AppSettings["remoteHost"];

// Call the Web service to request a quote
Quote q = serviceProxy.RequestQuote(this.txtSymbol.Text);

// Display the Quote results in the form
this.lblCompany.Text = q.Company;
this.lblSymbol.Text = q.Symbol;
this.lblTradeDateTime.Text = q.DateTime;
this.lblLastTrade.Text = q.Last.ToString();
this.lblPreviousClose.Text = q.Previous_Close.ToString();
this.lblChange.Text = q.Change.ToString();

}

Notice that the client code references a configuration element called <remoteHost> that
provides the URI for the StockTrader Web service. It should be entered into the project’s
.config file as shown in Listing 3-11.

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES54

701xCH03.qxd 7/17/06 12:54 PM Page 54

Listing 3-11. The Web.config File for the Web Service Consumer

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<appSettings>
<add key="remoteHost" value="http://localhost/StockTrader/StockTrader.asmx"/>

</appSettings>
</configuration>

This concludes the discussion of how to build a basic message-oriented Web service.

Summary
The purpose of Web services is to exchange and process XML messages, not to act as simple
endpoints for remote procedure calls. In this chapter, you learned a six-step process for
designing and building a message-oriented Web service from scratch:

Step 1: Design the messages and the data types.

Step 2: Build the XSD schema file for the data types.

Step 3: Create a class file of interface definitions for the messages and data types.

Step 4: Implement the interface in the Web service code-behind file.

Step 5: Generate a proxy class file (for clients) based on the WSDL.

Step 6: Implement a Web service client using a proxy class file.

The goal of this chapter is to help you rethink your approach to Web services design so
that you can start developing the type of message-oriented Web services that fit into an SOA
framework.

CHAPTER 3 ■ DESIGN PATTERNS FOR BUILDING MESSAGE-ORIENTED WEB SERVICES 55

701xCH03.qxd 7/17/06 12:54 PM Page 55

701xCH03.qxd 7/17/06 12:54 PM Page 56

Design Patterns for Building
Service-Oriented Web Services

Message-oriented Web services are the building blocks for service-oriented applications.
In the previous chapter, you learned how message-oriented Web services are constructed, and
what sets them apart from traditional RPC-style Web services. The main difference is that
messages typically include complex types that are defined using custom XML schema files.
Message-oriented Web services are effective at executing operations, whereby the input
parameters feed into a process rather than dictating the process.

In contrast, procedure-style method calls are straightforward operations with a strong
dependency on the input arguments. For example, the message-oriented StockTrader Web
service provides a PlaceTrade operation that accepts the trade specifications, executes a com-
plex trade operation, and then returns the details of the trade encapsulated in a complex data
type (the Trade object). The simple input parameters trigger a complex operation and cause a
complex type to be returned. There is no direct correlation between the input parameters and
the complexity of the operation. In contrast, one example of a procedure-style Web method
is a simple arithmetic Add operation that accepts two numeric input parameters. This Web
method has nothing complicated happening internally, nor does it require that a complex
data type be returned. What you get out of the method is directly correlated to what you send
into it.

In this chapter, we need to make another conceptual leap, this time from message-
oriented Web services to service-oriented Web services. Messages do not go away in this new
architecture; they are just as important as ever. What is different is that Web services are not
the central player in the architecture.

How to Build Service-Oriented Web Services
Service-oriented Web services act more as smart gateways for incoming service requests than
as destinations in and of themselves. Let’s revisit the complex SOA diagram from Chapter 1,
reprinted here as Figure 4-1.

57

C H A P T E R 4

701xCH04.qxd 7/17/06 1:05 PM Page 57

Figure 4-1. Complex SOA

Notice that Web services are not the ultimate endpoint destinations in this architecture.
Instead, their purpose is to authenticate and authorize incoming service requests, and then to
relay the request details to back-end business components and workflows for processing. This
fact by no means diminishes the importance of their role; it just switches perspectives. Web
services have certain unique properties that make them essential to this architecture:

• Web services process SOAP messages.

• Web services provide accessible (and discoverable) endpoints for service requests.

• Web services (optionally) authenticate and authorize incoming service requests. In
this role they selectively filter incoming service requests and keep out unauthorized
requests. (This feature is technically optional but it is an important available feature
with WSE 3.0, and so is listed here as an essential property).

In contrast, other components in the architecture, such as the business components, do
not have any of these properties. They do not expose publicly accessible endpoints. They

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES58

701xCH04.qxd 7/17/06 1:05 PM Page 58

do not process SOAP requests directly. And they do not have the same ability to filter out
incoming service requests based on security tokens. Note that business components can
implement custom security checks through mechanisms such as code access security (CAS)
and Active Directory checks, but these options are not comparable to the available mecha-
nisms for Web services, which can accept encrypted and signed requests, and which inspect
several aspects of the request directly, not just the identity of the caller.

So we have established that Web services play a unique role in SOA, one where they are an
important support player rather than the ultimate destination endpoint. But what does this
translate to in practical terms, and how is it different from before? The implication is that you
need to build Web services differently to maximize the effectiveness of their role in SOA appli-
cations. This includes the following:

A renewed emphasis on breaking out Web service code-behind into separate class files and
assemblies: This includes abstract IDC files (based on the applicable WSDL document). It
also includes generating a dedicated assembly for encapsulating custom data type defini-
tions (so that common data types may be used across multiple services and components
using a common reference assembly).

Delegation of all business process logic to back-end business components: The Web service
code-behind should be focused exclusively on preprocessing incoming request messages
and then relaying the request details to the appropriate back-end business component.
The Web service code-behind should not handle any business processing directly.

A focus on new kinds of service-oriented components: SOA architecture creates a need for
different kinds of service components that may have no equivalent in other architectures.
For example, SOA applications rely heavily on service agent components, which act as the
middleman between separate Web services and which relay all communications between
them. (You will learn how to build a service agent component in the section “Design and
Build a Service Agent” later in this chapter.)

Be forewarned: some of the material in this chapter may strike you as unusual or
unorthodox and certainly more complex than you are used to seeing with Web services devel-
opment. This is not surprising given that SOA applications are still relatively new. Recall that it
took several years for the n-tier architecture model to become fully formed and to gain wide
acceptance as a standard. SOA will also go through an evolution. Some ideas will gain accept-
ance, while others will fall by the wayside. This chapter quite likely contains some of both, so
read the chapter, absorb the material, and take with you as much or as little as you like.

The primary requirement that SOA imposes on a system is that its business functionality
must be accessible through more than one type of interface and through more than one kind
of transport protocol. Enterprise developers have long understood the need to separate out
business functionality into a dedicated set of components. In Chapter 3, the StockTrader Web
service implemented its business logic directly, based on an IDC file (defined in a separate,
though embedded, class file). This approach is incorrect from an SOA perspective for two
reasons:

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES 59

701xCH04.qxd 7/17/06 1:05 PM Page 59

Web services should not implement business logic directly in their methods: They should
delegate this processing to dedicated business assemblies. This is because you cannot
assume that the business logic will always be accessed through a Web service. What hap-
pens, for example, when a new requirement comes through asking you to implement an
alternate interface that cannot or will not interact with a Web service? You need to have a
separate, ready-to-use assembly for the business logic.

Web services and their associated WSDL documents should not be the original reference
points for interface definitions: Certainly, a WSDL document must conform to an estab-
lished interface definition, but it should not be establishing what that definition is. This
information belongs in a dedicated reference assembly, and should be stored as an inter-
face definition that can be implemented in different kinds of components.

The previous version of the StockTrader Web service is not compatible with SOA because
it prevents common functionality from being accessible via multiple interfaces. To put it in
blunt terms, the StockTrader Web service is simply incompatible with SOA because it is not
abstract enough. What it needs to do instead is to act as a trusted interface to a back-end
StockTrader business component. It cannot directly contain implementation for the Stock-
Trader functions (such as getting quotes and placing trades). Instead, it must delegate this
functionality to a back-end business component and focus on its primary role of authenticat-
ing and authorizing incoming service requests and then relaying these service requests to the
back-end business component. In conjunction to this, the Web service is also responsible for
relaying responses back to the client.

Consider another aspect to this architecture: type definitions. If you separate out
common functionality across multiple components, how do they maintain a common under-
standing of type definitions? For example, how does every component maintain the same
understanding of the Quote and Trade data types? XML Web services and their clients can
share XSD schema information for custom data types via the service’s published WSDL
document. But this is not an efficient way to share type information between a middle-tier
business component and a Web service, especially when the Web service is delegating
requests to the business component. The more efficient approach is to generate a dedicated
assembly that encapsulates the data type definitions as custom classes, and to include a refer-
ence to this assembly from wherever the custom data types are needed.

I have covered several challenging conceptual points, so now let’s move on to code, and
actually build a service-oriented Web service. Figure 4-2 is an architecture (and pseudo-UML
diagram) that provides an alternate architecture for the original StockTrader Web service, one
that will enable it to participate better in a larger SOA. Notice that the type definitions and
interface definitions have been broken out into a separate assembly called StockTraderTypes,
which is referenced by several components in the architecture.

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES60

701xCH04.qxd 7/17/06 1:05 PM Page 60

Figure 4-2. Revised architecture for the StockTrader Web service showing how several components
reference the common StockTraderTypes definition assembly

Based on this UML diagram, there are six steps involved in building a message-oriented
Web service that is compatible with SOA.

Step 1: Create a Dedicated Type Definition Assembly
Create a dedicated definition assembly for interfaces and type definitions. This assembly will
be referenced by any component, service, or application that needs to use the interfaces or
types.

Step 2: Create a Dedicated Business Assembly
Create a dedicated business assembly that implements logic for established interfaces and
type definitions. This business assembly must reference the definition assembly from step 1.
This ensures that the business assembly implements every available method definition.

Once this step is complete, you have the flexibility to build any kind of n-tier solution
using the definition and business assemblies. This chapter focuses on building a service-
oriented application that includes a Web service. But you could just as easily go a different
route and build any kind of n-tier solution using the definition and business assemblies
developed so far.

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES 61

701xCH04.qxd 7/17/06 1:05 PM Page 61

This point underscores the fact that in an SOA, Web services are simply a gateway to a set
of methods and types that are controlled by other assemblies. The Web service itself merely
provides a set of SOAP-enabled endpoints that are accessible over one or more transport
protocols.

Step 3: Create the Web Service Based on the Type Definition
Assembly
In the previous version of the StockTrader Web service, the definition information for the Web
method implementations came from a dedicated IDC file, which provided abstract class defi-
nitions and class-based type definitions. But now this file is no longer needed because you
have a dedicated definition assembly. The new Web service simply needs to import the defini-
tion assembly to have access to the required types and to the required interface.

Step 4: Implement the Business Interface in the Web Service
The Web service needs to import the business assembly so that it can delegate incoming serv-
ice requests. Remember, the current architecture calls for a different level of abstraction,
whereby the Web service itself does not control its interface, its data types, or the processing of
business logic. Instead, it relies on other assemblies for this reference information and for this
processing capability.

By implementing the interface, you ensure that you will not miss any methods because
the project will not compile unless every interface method is implemented in the Web service.
So, the definition assembly provides the interface definition, while the business assembly pro-
vides the processing capability for each method. All incoming Web service requests should be
delegated to the business component, rather than implementing the business logic directly in
the Web service.

The methods in this class file must be decorated with any required reflection attributes,
such as WebMethod and SoapDocumentMethod. You always had to do this, so this is not
new. But there is added importance now because many of these attributes will not be deco-
rated elsewhere. Or if they are, they will not propagate to your class file. For example, the
SoapDocumentMethod attributes are not included in the interface definition assembly
(although the XML serialization attributes are). These attributes are not automatically carried
over to the class file when it implements the definition assembly. As a matter of practice, we
make sure that the interface definition assembly is decorated with the required serialization
attributes, but we leave out attributes that relate to WebService and WebMethod attributes.
This approach is implementation agnostic, meaning that it makes no assumptions about
what kind of class file will implement the interface definition assembly.

■Note Reflection attributes provide additional metadata for your code. The .NET runtime uses this meta-
data for executing the code. Class members are said to be decorated with attributes. Reflection attributes
are a powerful tool because they enable the same code listing to be processed in different ways, depending
on how it is decorated. Chapter 3 has a more complete discussion of reflection attributes, and Table 3-1
provides detailed property descriptions for the SoapDocumentMethod attribute.

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES62

701xCH04.qxd 7/17/06 1:05 PM Page 62

Step 5: Generate a Web Service Proxy Class File Based on the
WSDL Document
Proxy class files can still be generated directly from the Web service WSDL document, so this
step does not have to change with a revised architecture in order to still work. However, the
autogenerated proxy class file will not automatically utilize the dedicated definition assembly.
This creates a significant issue because the proxy class file maintains its own type and inter-
face definitions. Your goal is to have a central repository for this information. So in the interest
of type fidelity, you need to modify the autogenerated proxy file to utilize the definition
assembly rather than a separate copy of the same information.

Separate copies can be modified, and there is nothing to stop you from altering a proxy
file so that it can no longer call the Web service it is intended for. This is why it is good to
derive all types and interfaces from a common source.

Step 6: Create a Web Service Client
The Web service client uses the generated proxy class file from step 5 to set a reference to the
new Web service. The client must also reference the type definition assembly from step 1, so
that both the client and the Web service have a common understanding of the data types that
are used by the Web services and its associated business assembly.

Some readers may see a red flag here because this approach creates a very tight coupling
between the client and the Web service due to their mutual dependence on the same refer-
ence assembly. In contrast, it would be much easier to create a loosely coupled client that
autogenerates a proxy file itself, using the Web service WSDL document. This autogenerated
proxy file would include both methods and data types, so it would deviate from the more
abstract approach that we are presenting here—namely, the approach of separating type defi-
nitions and method definitions into a dedicated assembly.

I am not advocating that you should always enforce this level of tight coupling between a
Web service and its client. By definition, Web services are loosely coupled to their clients. This
alternate approach is simply that—an alternate approach that can be implemented if the sce-
nario is appropriate. In some cases, this approach will not even be feasible because the client
may not have access to a dedicated assembly. But this approach may be warranted in other
cases, particularly when you have a sensitive business workflow and you want to prevent any
kind of miscommunication between a service and a client.

So, as with all the material in this book, absorb the information, consider the different
approaches, but then decide which approach is most appropriate for your business
requirements.

Design and Build a Service-Oriented Web Service
This section provides the information that you need to build a message-oriented Web service
for use in an SOA. It is organized along the same six steps presented earlier and provides both
conceptual information and implementation information.

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES 63

701xCH04.qxd 7/17/06 1:05 PM Page 63

Create the Definition Assembly (Step 1)
The definition assembly provides two important sets of information:

• Class definitions for all custom types that are exchanged in the system

• Interface definitions for each operation that the system supports

In this sense it is not unlike the autogenerated IDC file from Chapter 3. Recall that the
type information in this file (StockTraderStub.cs) is autogenerated from an XSD schema file
using the xsd.exe tool. The operations are manually inserted as abstract class methods that
must be overridden by whatever class implements this file.

There are two differences between the definition assembly and the IDC file:

The operations are documented as interfaces rather than abstract class methods. This is
because a given class can only derive from one other class at a time. Web service classes,
for example, must derive either directly or indirectly from the System.Web.Services.
WebService class. The Web service class cannot implement an additional interface
unless it is provided as an invariant interface.

The definition assembly does not include Web service and SOAP-related attribute decora-
tions. This is because it will be referenced from a variety of different assemblies, some of
which have nothing to do with Web services. However, the definition assembly can still
include XML serialization attributes.

Figure 4-3 shows a UML class diagram for the definition assembly. Notice the following
two important points:

1. The type definitions are encapsulated in dedicated classes (e.g., Quote).

2. The method definitions are contained within an interface class called IStockTrader.

It is possible for a client project to reference the StockTraderTypes assembly solely for the
purpose of accessing the custom data type definitions. The client does not need to implement
the interface class, just because it is included in the assembly. But of course if they do, they
will be required to implement every member of the interface.

To create the definition assembly, start by creating a new Class Library project in
Visual Studio 2005 called StockTraderTypes, and add to it a single class file also called
StockTraderTypes.

Listing 4-1 shows high-level pseudocode for the StockTraderTypes definition assembly.

Listing 4-1. Pseudocode Listing for the StockTraderTypes Definition Assembly

namespace StockTraderTypes
{

public interface IStockTrader {}
public class Quote {}
public class Trade {}
public class Trades {}
public enum TradeStatus {}
public enum TradeTypes {}

}

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES64

701xCH04.qxd 7/17/06 1:05 PM Page 64

Figure 4-3. UML class diagram for the StockTraderTypes definition assembly

Listing 4-2 presents a more detailed code listing, excluding XML serialization attributes.
These attributes are important because they directly relate the code elements to XML ele-
ments in the associated XSD schema (which is assigned to a qualified namespace at http://
www.bluestonepartners.com/schemas/StockTrader/).

Listing 4-2. Detailed Code Listing for the StockTraderTypes Definition Assembly

using System;
using System.Xml.Serialization;

namespace StockTraderTypes
{
public interface IStockTrader
{
Quote RequestQuote(string Symbol);

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES 65

701xCH04.qxd 7/17/06 1:05 PM Page 65

Trade PlaceTrade(string Account, string Symbol, int Shares, ➥

System.Double Price, TradeType tradeType);
Trade RequestTradeDetails(string Account, string TradeID);
Trades RequestAllTradesSummary(string Account);

}

public class Quote
{
public string Symbol;
public string Company; // Additional type members not shown

}

public class Trade
{
public string TradeID;
public string Symbol; // Additional type members not shown

}

public class Trades
{
public string Account;
public Trade[] Bids;
public Trade[] Asks;

}

public enum TradeStatus
{
Ordered,
Filled, // Additional type members not shown

}

public enum TradeType
{
Bid,
Ask

}

}

This is all the work that is required to create a definition assembly that can be reused
across other components, services, and applications.

Create the Business Assembly (Step 2)
The business assembly implements the IStockTrader interface that is defined in the Stock-
TraderTypes definition assembly. This logic was previously implemented directly in the Web
service class file. But this design is very limiting because it isolates the business logic inside a

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES66

701xCH04.qxd 7/17/06 1:05 PM Page 66

specialized class file. The business assembly provides a standard middle-tier component that
can be referenced and invoked by a wide variety of consumers, not just Web services.

Creating the business assembly requires three steps:

1. Create a new Class Library project in Visual Studio 2005 called StockTraderBusiness,
and add to it a single class file also called StockTraderBusiness.

2. Set a reference to the StockTraderTypes assembly. For now you can create all projects
in the same solution, and then set a reference to the StockTraderTypes project (from
the Projects tab in the Add Reference dialog box).

3. Import the StockTraderTypes namespace into the StockTraderBusiness class file and
implement the IStockTrader class. Implement code for each of the interface opera-
tions. You will get compiler errors if you attempt to build the solution without
implementing all of the operations.

Listing 4-3 displays the pseudocode listing for the StockTraderBusiness business
assembly.

Listing 4-3. Pseudocode Listing for the StockTraderBusiness Business Assembly

using System;
using StockTraderTypes;

namespace StockTraderBusiness
{

public class StockTraderBusiness : StockTraderTypes.IStockTrader
{
public Quote RequestQuote(string Symbol)
{

// Implementation code not shown
}
public Trade PlaceTrade(string Account, string Symbol, int Shares, ➥

System.Double Price, TradeType tradeType)
{

// Implementation code not shown
}
public Trade RequestTradeDetails(string Account, string TradeID)
{

// Implementation code not shown
}
public Trades RequestAllTradesSummary(string Account)
{

// Implementation code not shown
}

}

}

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES 67

701xCH04.qxd 7/17/06 1:05 PM Page 67

The business assembly is the sole location for implemented business logic and the final
destination for incoming service requests. The previous listing looks very spare because it
does not show the implementation code for any of the methods. You can refer to the sample
project to view the full code listing. Very little implementation code is shown in this chapter
because it is of secondary importance. It is more important that you feel comfortable with the
interfaces and the architecture of the components.

Create the Web Service (Steps 3–5)
The previous version of the StockTrader Web service implemented an IDC file for operations
and types. This file is no longer needed because the same information is now provided by the
definition assembly.

Create a new Web service project named StockTraderContracts in the Visual Studio 2005
solution, and rename the .asmx file to StockTraderContracts. Use the Add Reference dialog
box to set references to the StockTraderBusiness and StockTraderTypes assemblies.

Listing 4-4 displays the pseudocode listing for the StockTraderContracts Web service.

Listing 4-4. Pseudocode Listing for the StockTraderContracts Web Service

using System.Web;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Web.Services.Description;

using StockTraderTypes;
using StockTraderBusiness;

namespace StockTrader
{

public class StockTrader : System.Web.Services.WebService, ➥

StockTraderTypes.IStockTrader
{

[WebMethod]
[SoapDocumentMethod(RequestNamespace= ➥

"http://www.bluestonepartners.com/schemas/StockTrader/",
ResponseNamespace="http://www.bluestonepartners.com/schemas/StockTrader/",
Use=SoapBindingUse.Literal, ParameterStyle=SoapParameterStyle.Bare)]

[return: System.Xml.Serialization.XmlElement("Quote", Namespace=
"http://www.bluestonepartners.com/schemas/StockTrader/")]

public Quote RequestQuote(string Symbol)
{

// Implementation code not shown
}
[WebMethod]
//XML and SOAP serialization attributes not shown
public Trade PlaceTrade(string Account, string Symbol, int Shares, ➥

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES68

701xCH04.qxd 7/17/06 1:05 PM Page 68

System.Double Price, TradeType tradeType)
{

// Implementation code not shown
}
[WebMethod]
//XML and SOAP serialization attributes not shown
public Trade RequestTradeDetails(string Account, string TradeID)
{

// Implementation code not shown
}
[WebMethod]
//XML and SOAP serialization attributes not shown
public Trades RequestAllTradesSummary(string Account)
{

// Implementation code not shown
}

}

}

The Web service methods no longer implement their own business logic. Instead, every
method must delegate incoming requests to the business assembly. For example, Listing 4-5
shows how the RequestQuote Web method delegates an incoming service request to the
RequestQuote method in the business assembly.

Listing 4-5. Delegation in the RequestQuote Web Method

[WebMethod]
// XML and SOAP attributes not shown
public Quote RequestQuote(string Symbol)
{

StockTraderBusiness b = new StockTraderBusiness();
Quote q = b.RequestQuote(Symbol);
return q;

}

The code is extremely simple because the Web service and the business assembly share
the same type definitions and implement the same interface. The communication between
the parties is seamless because they share a common vocabulary.

Figure 4-4 shows the Solution Explorer window for the project, with the References nodes
expanded so that you can see how the assembly references are configured in each of the proj-
ects: StockTraderTypes, StockTraderBusiness, and StockTraderContracts. In addition, this
figure includes the client console application, StockTraderConsole, which is described in
step 6.

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES 69

701xCH04.qxd 7/17/06 1:05 PM Page 69

Figure 4-4. The Solution Explorer view for the StockTraderAdvanced solution

Create the Web Service Client (Step 6)
In this example, you are going to see how to build a tightly coupled Web service client that
references the same definition assembly as the Web service itself. But as we clarified earlier,
it is often advisable to implement a loosely coupled Web service client, whereby the client
generates its own proxy file based on the Web service WSDL document and its associated XSD
schemas. In fact, SOA promotes loose coupling between Web services and consumers.

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES70

701xCH04.qxd 7/17/06 1:05 PM Page 70

As we stated earlier, our purpose in building a tightly coupled Web service client is to
show you an alternate approach to building clients. In some cases, you will want to build a
tightly coupled Web service client in order to prevent any miscommunication or misunder-
standing between the Web service and its client as to what methods and types are supported.
Certainly, type definitions can change, and so tight coupling can add an additional burden to
the developer of the client. However, WSDL definitions can also change just as easily, and
there is no clear way for a Web service to communicate interface changes to its clients.

Ultimately, we advocate the design approach of loose coupling between a Web service
and its clients. The alternative tightly coupled approach that we are presenting here simply
has the Web service itself referencing a type definition assembly and delegating all of its busi-
ness logic to a dedicated business assembly. Technically, this is tight coupling between the
Web service and client, as opposed to the traditional loose coupling between client and serv-
ice, where the proxy class is generated as needed based on the current Web service WSDL
specification. The material in this chapter provides everything you need to understand and
implement both loosely coupled and tightly coupled designs. We will look at both approaches
next.

Build a Loosely Coupled Web Service Client
Add a new console application named StockTraderConsole to the Visual Studio 2005 solution,
and then do one of the following:

• Generate the proxy class manually with the wsdl.exe command-line utility applied to
the Web service WSDL document.

• Use the Add Reference wizard in Visual Studio 2005 to automatically generate the proxy
class in the client project.

Once you have generated the proxy class, you simply reference it directly from the client
code, as shown in Listing 4-6.

Listing 4-6. Web Service Consumer Code

// Create an instance of the Web service proxy
StockTraderProxy serviceProxy = new StockTraderProxy();

// Retrieve the Web Service URI from app.config
serviceProxy.Url = ConfigurationSettings.AppSettings["remoteHost"];

// Call the Web service to request a quote
Quote q = serviceProxy.RequestQuote("MSFT");

// Display the Quote results in the form
Console.WriteLn("\t:Company:\t " + q.Company);
Console.WriteLn("\t:Symbol:\t " + q.Symbol);
Console.WriteLn("\t:Last:\t " + q.Last.ToString());
Console.WriteLn("\t:Prev Close:\t " + q.Previous_Close.ToString());

For more information on building loosely coupled clients, please refer to Chapter 3.

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES 71

701xCH04.qxd 7/17/06 1:05 PM Page 71

Build a Tightly Coupled Web Service Client
Autogenerated proxy class files are completely self-contained and essentially provide the
client with a separate local copy of the interface and type definitions that the Web service sup-
ports. If the Web service interface changes, the client will not automatically pick up on these
changes unless they clear the existing Web reference and regenerate the proxy class. You can
manage this risk by modifying the autogenerated proxy class to conform to the standard inter-
face and type definitions that are contained in the StockTraderTypes assembly.

Add a new console application project named StockTraderConsole to the Visual Studio
2005 solution file and copy over the proxy class file from the previous chapter’s StockTrader
Web service. Alternatively, you can autogenerate the proxy class from within the StockTrader-
Console project as follows:

Step 1: Use the Add Web Reference Wizard to autogenerate the proxy class for the
StockTraderContracts Web service at http://localhost/StockTraderContracts/
StockTrader.asmx.

Step 2: The autogenerated proxy class file is called Reference.cs and is stored in the solu-
tion under the Web References\[Reference Name]\Reference.map subproject folder. (If
you do not see this file, you can use the Project ➤ Show All Files menu option to expand
all files.)

Step 3: Open the Reference.cs file and copy the entire code listing over to a new C# class
file called StockConsoleProxy.cs.

Rename the proxy class file to StockConsoleProxy, and then do the following:

Step 1: Add a reference from the StockTraderConsole project to the StockTraderTypes
assembly.

Step 2: In the StockConsoleProxy class, import the StockTraderTypes namespace and add
the IStockTrader interface to the StockConsoleProxy interface list immediately following
SoapHttpClientProtocol.

Step 3: Comment out all of the type definitions in the StockConsoleProxy class. These
include Quote, Trade, Trades, TradeType, and TradeStatus. They are now redundant
because the definition assembly contains the same type definitions.

The pseudocode for the proxy class now reads as shown in Listing 4-7 (modifications
from the previous, or autogenerated, proxy classes are shown in bold).

Listing 4-7. The Proxy Class for the StockTraderContracts Web Service, Modified to Reference the
Type Definition Assembly StockTraderTypes

using System.Web.Services;
using System.Web.Services.Protocols;

using StockTraderTypes;

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES72

701xCH04.qxd 7/17/06 1:05 PM Page 72

[System.Web.Services.WebServiceBindingAttribute(Name="StockTraderServiceSoap",
Namespace="http://www.bluestonepartners.com/schemas/StockTrader")]

public class StockConsoleProxy : SoapHttpClientProtocol, ➥

StockTraderTypes.IStockTrader
{

// Pseudo-code only: implementations and attributes are not shown
public Quote RequestQuote() {}
public System.IAsyncResult BeginRequestQuote() {}
public System.IAsyncResult EndRequestQuote() {}

// Additional operations are not shown
// These include PlaceTrade(), RequestTradeDetails(),
// and RequestAllTradesSummary()

// Type definitions are commented out of the proxy class
// because they are redundant to the type definition assembly
// These include Quote, Trade, Trades, TradeType, and TradeStatus

}

These are trivial modifications because the proxy class already implements all of the
IStockTrader interface members. The benefit of explicitly adding the IStockTrader interface is
to ensure that the proxy class remains constrained in the way it implements the StockTrader
operations. You could modify the proxy class in many other ways, but as long as the Stock-
Trader operations remain untouched (interfacewise at least), the client application will
compile successfully.

Once the proxy class has been modified, the client code can be implemented in the con-
sole application. The StockTraderTypes namespace must be imported into the client class
file so that the client can make sense of the type definitions. No additional steps are required
to use the definitions assembly. Listing 4-8 shows the client code listing for calling the
RequestQuote operation.

Listing 4-8. Client Code Listing for Calling the RequestQuote Operation

using StockTraderTypes;

namespace StockTraderConsole2
{
class StockTraderConsole2
{

[STAThread]
static void Main(string[] args)
{
StockTraderConsole2 client = new StockTraderConsole2();
client.Run();
}

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES 73

701xCH04.qxd 7/17/06 1:05 PM Page 73

public void Run()
{
// Create an instance of the Web service proxy
StockConsoleProxy serviceProxy = new StockConsoleProxy();

// Configure the proxy
serviceProxy.Url = ConfigurationSettings.AppSettings["remoteHost"];

// Submit the request to the service
Console.WriteLine("Calling {0}", serviceProxy.Url);
string Symbol = "MSFT";
Quote q = serviceProxy.RequestQuote(Symbol);

// Display the response
Console.WriteLine("Web Service Response:");
Console.WriteLine("");
Console.WriteLine("\tSymbol:\t\t" + q.Symbol);
Console.WriteLine("\tCompany:\t" + q.Company);
Console.WriteLine("\tLast Price:\t" + q.Last);
Console.WriteLine("\tPrevious Close:\t" + q.Previous_Close);
}

}
}

Figure 4-5 displays a client console application that interfaces to the StockTraderContracts
Web service using the modified proxy class. Please refer to the sample application (available
from the Source Code/Download section of the Apress web site at http://www.apress.com) for
full code listings.

Figure 4-5. Client console application for the StockTraderContracts Web service

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES74

701xCH04.qxd 7/17/06 1:05 PM Page 74

This concludes the overview of how to build a tightly coupled Web service client. Again,
we would like to emphasize that this approach is not consistent with a pure SOA environment
where the clients remain completely decoupled from the Web services they consume. How-
ever, it is always useful to consider alternative approaches and to realize new possibilities even
if they never make it into a production environment.

Next, we will discuss a type of component that is unique to the service-oriented environ-
ment: the service agent.

Design and Build a Service Agent
Service agent components are essentially translator components that act as the intermediary
between a business component and an external Web service. By external, we mean external to
the domain where the business object is located. Service agents were discussed in some detail
in Chapter 1 and are included in Figure 4-1 in this chapter. Briefly, the purpose of a service
agent is to eliminate complexity in a business component by managing all interactions with
an external service. If service agents did not exist, the business component would need to
implement proxy classes and all of the associated error handling logic for working with exter-
nal services. Clearly, this adds an undesirable layer of code and complexity to the business
component that is superfluous because the business client will never call this code directly.

For example, consider Company A, which has built a business component that processes
stock trades and provides stock quotes. In order to provide this functionality, the business
component uses an external Web service that is provided by a premier brokerage company,
Company B. Company A uses its own custom data types, which are encapsulated in the Stock-
TraderTypes assembly. Company B, however, defines its own data types that are equivalent but
not the same as Company A’s. For example, Company A uses a Quote data type that defines a
property called Open, for the day’s opening share price. Company B uses a Quote data type
that defines an equivalent property called Open_Ext. Company A uses strings for all of its cus-
tom data type properties, whereas Company B uses a mix of strings, floats, and dates.

Given these differences, Company A’s service agent will perform two important functions:

1. It will implement the infrastructure that is required to communicate with Company B’s
external service. It will be responsible for the maintenance work that will be required if
the external service updates its interface.

2. It will translate the responses from the external service and will relay them back to
Company A’s business component using a mutually understood interface.

The benefits of a service agent are clear: the service agent eliminates complexity for
Service A’s business component because it encapsulates all of the implementation details for
interacting with the Web service and relays the requests back in the format that the business
component wants. Figure 4-6 provides a schematic representation of this architecture.

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES 75

701xCH04.qxd 7/17/06 1:05 PM Page 75

Figure 4-6. SOA with a service agent

Now let’s look at how you implement this architecture in code.

Implement the StockTrader SOA Application Using a
Service Agent
The StockTrader Web service has evolved in this chapter to where it delegates all requests to
a business assembly (StockTraderBusiness). If a client contacts the Web service to request a
stock quote, the Web service delegates the request to the business object’s RequestQuote
method. The Web service does not know or care how this method returns a stock quote, but
it does expect to receive one every time it makes a request.

For the next evolution of the StockTrader Web service, your company signs a partnership
agreement with another company that is a premier provider of stock quotes. You decide that
going forward the StockTraderBusiness assembly will delegate all stock quote requests to this
external service. The StockTrader Web service will continue to delegate requests to the busi-
ness assembly, but the business assembly, in turn, will delegate the requests again, this time
to an external Web service. You decide to build a service agent to minimize any change to the
business assembly. Figure 4-7 shows the Solution Explorer for the solution that you are going
to build, with selective References nodes expanded so you can see the relationships between
the different components.

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES76

701xCH04.qxd 7/17/06 1:05 PM Page 76

Figure 4-7. Solution Explorer for the StockTrader SOA application, including a service agent

The five components in this application are as follows:

1. StockTraderConsole2: The client application, providing a user interface

2. StockTraderBusiness: The middle-tier business component that handles processing for
the client

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES 77

701xCH04.qxd 7/17/06 1:05 PM Page 77

3. StockTraderServiceAgent: The service agent used by the business component for com-
municating with external services

4. StockTraderTypes: The common type definition assembly, which is referenced by the
three preceding components

5. StockQuoteExternalService: The external Web service

If this gets confusing, you can consult either Figure 4-6 or Figure 4-7, which include all
five of these components. Let’s look at how to build each component in turn, going from
bottom to top, in the order of the service request workflow, starting with the external
StockQuoteExternalService Web service.

The External Web Service (StockQuoteExternalService)
StockQuoteExternalService is a simple Web service that provides a single Web method for
requesting stock quotes (RequestQuoteExt), and it returns its own equivalent to the Stock-
TraderTypes.Quote type, which is named QuoteExt. The Quote and QuoteExt types are
equivalent, but they differ from each other in three ways:

1. The QuoteExt type conforms to a different qualified namespace from the Quote type.
Each type conforms to its own XSD schema file.

2. The QuoteExt type does not contain equivalents to the Quote type’s Change and
Percent_Change properties.

3. The QuoteExt type provides a time stamp property named DateTime_Ext, which is of
type System.DateTime. The Quote type provides an equivalent time stamp property
named DateTime that is of type String.

These are admittedly minor differences, but they illustrate the point. When you call an
external service, it is unlikely that their type definitions will be equivalent to yours. You have
to be prepared for some manual work to translate the differences.

In real life, of course, you would not have to create the external service yourself, but for
the purposes of this demonstration you do.

The Service Agent (StockTraderServiceAgent)
The service agent implements the same interface and type definitions as the business assem-
bly by referencing the StockTraderTypes assembly (as shown in Figure 4-6). The service agent
also includes a proxy class for the StockQuoteExternalService external Web service.

Listing 4-9 shows the code listing for the service agent, including the complete listing for
its RequestQuote method.

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES78

701xCH04.qxd 7/17/06 1:05 PM Page 78

Listing 4-9. The StockTraderServiceAgent Code Listing

using System;
using StockTraderTypes;

namespace StockTraderServiceAgent
{

public class StockTraderServiceAgent : StockTraderTypes.IStockTrader
{
public StockTraderServiceAgent(){}

public Quote RequestQuote(string Symbol)
{

Quote q = null;

// Request a Quote from the external service
QuoteExt qe;
StockQuoteService serviceProxy = new StockQuoteService();
qe = serviceProxy.RequestQuoteExt("MSFT");

// Create a local Quote object (from the StockTraderTypes namespace)
q = new Quote();

// Map the external QuoteExt object to the local Quote object
// This requires some manual work because the types
// do not map exactly to each other
q.Symbol = Symbol;
q.Company = qe.Company_Ext;
q.DateTime = qe.DateTime_Ext.ToString("mm/dd/yyyy hh:mm:ss");
q.High = qe.High_Ext;
q.Low = qe.Low_Ext;
q.Open = qe.Open_Ext;
q.Last = qe.Last_Ext;
q.Previous_Close = qe.Previous_Close_Ext;
q.Change = (qe.Last_Ext - qe.Open_Ext);
q.PercentChange = q.Change/q.Last;
q.High_52_Week = qe.High_52_Week_Ext;
q.Low_52_Week = qe.Low_52_Week_Ext;

return q;
}

public Trade PlaceTrade(string Account, string Symbol, int Shares, ➥

Double Price, TradeType tradeType)
{

// Implementation not shown
}

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES 79

701xCH04.qxd 7/17/06 1:05 PM Page 79

public Trades RequestAllTradesSummary(string Account)
{

// Implementation not shown
}

public Trade RequestTradeDetails(string Account, string TradeID)
{

// Implementation not shown
}

}
}

The code listing is very straightforward and shows how the service agent delegates its
RequestQuote method to the external service’s RequestQuoteExt method. The service agent
performs some manual translations to map between its native Quote type and the external
QuoteExt type. Finally, the agent returns a native Quote object to the consuming application,
which in this case is the business assembly.

The Business Assembly (StockTraderBusiness)
The business component sets references to both the service agent assembly and the definition
assembly of custom types. Listing 4-10 shows how the business component calls the service
agent.

Listing 4-10. The StockTrader Business Component Calling the Service Agent

using System;
using StockTraderTypes;
using StockTraderServiceAgent;

namespace StockTraderBusiness
{

public class StockTraderBusiness : StockTraderTypes.IStockTrader
{

public StockTraderBusiness() {}

public Quote RequestQuote(string Symbol)
{

// Create a new Quote object
Quote q = new Quote();

// Call the service agent
StockTraderServiceAgent sa = new StockTraderServiceAgent();
q = sa.RequestQuote(Symbol);

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES80

701xCH04.qxd 7/17/06 1:05 PM Page 80

return q;
}

}
}

As you would expect, the listing is very simple because the business assembly no longer
has to provide its own implementation of the Quote request logic.

In summary, service agents are an elegant solution when you need to interface with one
or more external services and wish to isolate the code that handles the communication.
Service agents provide stability to a business assembly by bearing the responsibility of ensur-
ing successful calls to external services and returning results in a form that the business
assembly natively understands. Service agents can also act as intermediaries between two or
more Web services.

This concludes the discussion of how to build basic service-oriented Web services.

Summary
In this chapter, we expanded on the previous discussion of message-oriented Web services
and showed you a six-step process for designing and building a service-oriented Web service
from scratch:

Step 1: Create a dedicated type definition assembly.

Step 2: Create a dedicated business assembly.

Step 3: Create the Web service using the type definition assembly.

Step 4: Implement the business interface in the Web service.

Step 5: Delegate processing logic to the business assembly.

Step 6: Create a Web service client.

You saw how to build both tightly coupled clients and loosely coupled clients. In most
SOA applications you will want to build loosely coupled clients, but under some circum-
stances you may want a higher level of control over the type definitions. Tightly coupled
clients reference the same type definition as the assembly rather than generating their own
using a proxy class.

Finally, we discussed the service agent component, which is a special feature of service-
oriented applications. The service agent manages communication between a business
assembly and an external Web service. It can also act as the intermediary between two or
more Web services.

The goal of this chapter is to help you rethink your approach to Web services design so
that you can start thinking in terms of SOA.

CHAPTER 4 ■ DESIGN PATTERNS FOR BUILDING SERVICE-ORIENTED WEB SERVICES 81

701xCH04.qxd 7/17/06 1:05 PM Page 81

701xCH04.qxd 7/17/06 1:05 PM Page 82

Web Services
Enhancements 3.0

Web services technology has evolved rapidly since its debut a few years ago. Businesses
were initially reluctant to fully adopt the technology because of a lack of industry-standard
specifications to govern such important issues as message security and reliable delivery. Busi-
nesses will not send sensitive information across the wire if it is vulnerable to detection. And
they will not implement large-scale distributed systems with this technology if the reliability
of the messages cannot be guaranteed.

This chapter lays the groundwork for the second half of the book, where we will focus
intensively on how to implement WS- specifications using Microsoft’s Web Services Enhance-
ments 3.0 for .NET. This chapter includes the following:

• Overview of the WS- specifications

• Introduction to Web Services Enhancements (WSE) 3.0

• Installing and configuring WSE 3.0, including the test certificates

• Using the WSE 3.0 utilities

This chapter is a must-read in order to get the most out of the second half of the book. It
will help you to understand the WS- specifications and how WSE fits into the context of SOA.
It will also get you started with installing and configuring WSE 3.0, including the test certifi-
cates, which are required for many of the code samples.

Overview of the WS- Specifications
Web services technology was initially tailored toward point-to-point communication, based
on the familiar HTTP request/response model in which a client request generates a timely
server response. This model works well for Internet browsing, but it proves to be very limiting
for distributed service applications. Web services that are involved in business processing
cannot always generate a timely response. The business process may be long-running, or a
required back-end system may be offline.

In addition, the point-to-point communication model proves to be overly limiting for
executing complex distributed business processes. It is unlikely that one Web service has the
ability to execute a business process 100 percent of the time. More likely it needs to interact

83

C H A P T E R 5

701xCH05.qxd 7/14/06 5:15 PM Page 83

with other systems and perhaps even with other Web services. Clearly, it is a problem if a Web
service receives a request message but is then unable to forward it on to other services for
additional processing.

Industry leaders have been working together for several years to address the current limi-
tations with Web services technology. Standards committees have formed to bring a sense of
order to the wide variety of available technologies and versions. In Chapter 1, we discussed
the WS-I Basic Profile, which outlines a set of Web-related technologies by version number
and groups them together into a standard profile. You are considered to be in compliance
with this standard if you are implementing the exact technology versions in this profile. In
addition, nonprofit organizations such as OASIS are important forums where companies
are actively cooperating in the development and advancement of new standards and
specifications.

Companies, including Microsoft, IBM, BEA Systems, and VeriSign, are working on a set of
specifications called the Web service specifications (WS-*) that are based on XML, SOAP, and
WSDL extensibility models. Together these specifications define a set of composable features
to make Web services “secure, reliable, and transacted,” as the standard tag line often reads.
Composability refers to the fact that you can pick and choose the selected specifications that
apply to your particular business scenario. None of the specifications are ever required, even
the security specifications, though as they become more widely accepted, it is likely that a
subset of the specifications will be required in any robust, business-quality Web service.

Business Significance of the WS- Specifications
The WS- specifications are incredibly important to the future of Web services technology and
to SOA. Microsoft provides a set of tools for .NET called Web Services Enhancements (WSE).
WSE includes managed APIs for implementing selected WS- specifications in a composable
manner. We say selected because the WS- specifications continue to evolve, and it will take
time for all of the current standards to be submitted, accepted, and then incorporated into
WSE. New WS- specifications continue to be released, so the future promises to hold many
interesting and important developments in this evolving technology.

The purpose of the WS- specifications is to establish a set of standards for enterprise-
level, service-oriented Web services. The focus of the specifications is on Web services in
general, and on messages in particular, because messages are the essential aspects of an SOA.
Without messages, Web services cannot communicate. And without secure, reliable messages,
businesses will never trust that they can send sensitive information between Web services. The
integrity of the message is the key to gaining acceptance for Web services as a robust business
solution.

Each of the WS- specifications addresses a different business-critical issue. For example,
WS-Security addresses how to implement digital signing and encryption technology in Web
services. WS-Reliable Messaging addresses how to ensure that messages are always delivered,
even if one part of the system is temporarily unavailable. Each specification is recorded
directly in the header of the applicable SOAP message, using a dedicated XML schema. Some
specifications, such as WS-Security, also modify the body of the SOAP message for encryption.

Listing 5-1 shows one example of a SOAP message that implements multiple specifica-
tions, including WS-Addressing, WS-Security, and WS-Reliable Messaging. Notice that the
message header is divided into distinct parts and that the individual specification schemas

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.084

701xCH05.qxd 7/14/06 5:15 PM Page 84

do not overlap. This is known as composability because the individual specifications may be
added or removed from the message header as needed.

Listing 5-1. SOAP Message Illustrating Web Service Composability

<s:Envelope xmlns:S="http://www.w3.org/2002/12/soap-envelope"
xmlns:wsa=http://schemas.xmlsoap.org/ws/2003/03/addressing

xmlns:wsse=http://schemas.xmlsoap.org/ws/2003/03/security
xmlns:wrm="http://schemas.xmlsoap.org/ws/2003/03/reliablemessaging">

<s:Header>

<!--WS-Addressing -->
<wsa:From>

<wsa:Address>http://www.bluestonepartners.com/Buyer</wsa:Address>
</wsa:From>
<wsa:ReplyTo>

<wsa:Address>http://www.bluestonepartners.com/Broker</wsa:Address>
</wsa:ReplyTo>
<wsa:To>http://www.bluestonerealty.com/Seller</wsa:To>
<wsa:Action>http://www.bluestonerealty.com/MakeOffer</wsa:Action>

<!--WS-Security -->
<wsse:Security>

<wsse:BinarySecurityToken ValueType="wsse:X509v3"
EncodingType="wsse:Base64Binary">

JKH8dH7SJa8.......SKJa87DJsAK3
</wsse:BinarySecurityToken>

</wsse:Security>

<!--WS-ReliableMessaging -->
<wrm:Sequence>

<wsu:Identifier>http://www.bluestonerealty.com/mls123</wsu:Identifier>
<wrm:MessageNumber>32<wrm:MessageNumber>

</wrm:Sequence>

</s:Header>

<s:body xmlns:po=
"http://www.bluestonerealty.com/PurchaseHouse">
<po:PurchaseHouse>
...
</po:PurchaseHouse>

</s:body>

</s:Envelope>

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0 85

701xCH05.qxd 7/14/06 5:15 PM Page 85

As you can see, each of the specifications is encapsulated within the SOAP header and
each supports distinctive element tags so that no specification information can conflict. Web
service composability is essential for allowing developers to choose which specifications are
important for their Web services. In addition, this feature keeps message payloads smaller in
size by not including element tags for unused specifications.

Introducing the WS- Specifications
Instead of simply listing the various WS- specifications, it is more useful to present them in the
context of the framework’s goals. There are different perspectives on what the full set of goals
are because the specifications are always evolving and are being drawn together by diverse
coalitions of companies and organizations. But in our minds, there are six primary goals for
the WS- specifications.

Interoperability
Web services must be able to communicate even if they are built on and operated on different
platforms. Web service messages must use standard protocols and specifications that are
broadly accepted, such as the WS-I Basic Profile, which includes XML, SOAP, and WSDL. Inter-
operability is the key to widespread acceptance of Web services for handling critical business
processes.

Composability
This is a design principle that is fundamental to the WS- specifications. The term composability
alludes to the fact that many of the WS- specifications are independent of each other and that
a given Web service may not need to implement them all. For example, one Web service may
require security but not reliable messaging. Another Web service may require transactions, but
not policy. Composability allows a developer to implement only those specifications that are
required. The WS- specifications support this because they are implemented as discrete sec-
tions within the SOAP message header (see Listing 5-1 for an example).

Security
Protocol-level security mechanisms such as HTTPS are currently in wide use, but they are
designed for point-to-point security rather than message-oriented security, which is much
more dynamic. The WS-Security specification is a message-oriented security solution that
supports the dynamic nature of messages. With WS-Security, the security information is stored
directly in the message header, so it stays with the message, even if the message gets routed to
more than one endpoint. Messages must carry their security information with them so they
can remain dynamic. The WS-Trust and WS-Secure Conversation specifications enable you to
create a secure token service that procures security tokens for the duration of a specific con-
versation between a client and a Web service.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.086

701xCH05.qxd 7/14/06 5:15 PM Page 86

Description and Discovery
Web services may be accessed from different clients across different domains. Web services
must therefore be capable of publishing their metadata so that potential clients know how to
call them. The WSDL document publishes supported types, operations, and port information.
The WS-Policy specification documents and enforces usage requirements and preferences
for a Web service. For example, WS-Policy will enforce that incoming SOAP requests must be
signed and encrypted with digital certificates only, rather than any type of security token. The
UDDI specification aims to provide a mechanism for clients to look up Web service metadata
in a centralized directory.

Messaging and Delivery
The biggest vulnerability for a message besides security is the risk that it may never reach its
intended destination—or worse, that not only does the message fail to reach the destination,
but the sender is also unaware that it never arrived. You cannot correct a problem if you do
not know it occurred. The WS-Reliable Messaging specification establishes a framework that is
designed to keep all parties informed of where messages are and whether they arrived. This is
critical in an architecture where a message may get routed between multiple endpoints. Fail-
ure at one endpoint should not bring down the entire workflow that the message is a part of.

Transactions
Transaction processing is a way of orchestrating multiple related business operations so that
they succeed or fail together, and thereby preserve the integrity of the overall workflow. Trans-
action management is an extremely difficult challenge in an SOA. Web services are inherently
disconnected stateless components that do not by nature participate in broadly distributed
transactions. The WS-Coordination, WS-Atomic Transaction, and WS-Business Activity specifi-
cations are designed to address the challenge of implementing transactions across distributed
Web services.

The WS- Specifications Covered in This Book
The WS- specifications will allow developers to build Web services that are interoperable, reli-
able, secure, and transacted. Ultimately, the overarching goal is for Web services technology to
make it into the business mainstream and to be considered as good of a business solution as
more established technologies.

This book does not cover all of the available WS- specifications for two reasons: First, it is
impractical because some of the specifications are too new or too poorly established to be
useful to most people. Second, it is problematic because WSE implements only a few of the
available WS- specifications, albeit many of the most important ones.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0 87

701xCH05.qxd 7/14/06 5:15 PM Page 87

With these points in mind, here is a list of the WS- specifications we will be covering in
this book:

• WS-Security

• WS-Policy

• WS-Secure Conversation

• WS-Addressing

• WS-Reliable Messaging

Perhaps the most glaring omission from the current WSE 3.0 is the absence of the
transaction-related family of specifications, including WS-Coordination and WS-Atomic
Transaction. But many other important specifications are present, most notably WS-Security,
WS-Policy, and the WS-Addressing specifications. Omissions in WSE do not equate to insuffi-
ciency because it continues to evolve along with the WS- specifications themselves. WSE 3.0
will be subsumed in the future into the Windows Communication Foundation (WCF), for-
merly code-named Indigo, which will provide integrated support for message-oriented
technology directly in the operating system, including greatly expanded infrastructure sup-
port. Many of the tasks that we must write complex code for today will become simpler in
WCF. You can read more about WCF in Chapter 9.

Appendix A lists a number of useful references for learning more about the WS- specifica-
tions. Surprisingly, the original WS- specifications documents are highly readable and very
informative. They do not, of course, cover any vendor-specific developer toolkit, such as WSE.
But they provide clear definitions and explanations of the specifications, along with examples
and references on how specifications are encoded within a SOAP message.

■Tip You can find links to the original WS- specifications documents at http://www-106.ibm.com/
developerworks/webservices/standards/.

One last thing to keep in mind is that just because a specification is absent from WSE does
not mean that you cannot implement it yourself using custom code. The .NET Framework
gives you support classes for working with XML, SOAP, and Web services, namely most of the
core Web services technologies. In a sense, WSE provides you convenience, which you would
like to have but can also live without if you have to. Developers already have a natural instinct
to be self-motivated and to build custom solutions when nothing else is readily available.
We are not advocating that you find your own way to implement something that should be
standard. In the absence of a canned solution, you still have the tools to build a credible
alternative solution yourself. However, be prepared for considerable complexity!

In general, this book will remain focused on implementing solutions using the WSE
support classes. But at times, we will show you ways to make up for deficiencies in WSE so
that you can remain true to the spirit of the specification while using additional support

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.088

701xCH05.qxd 7/14/06 5:15 PM Page 88

technologies. As a .NET developer, you will find that the current version of WSE, along with
a measure of creative thinking, will bring a heightened maturity to your Web services
development efforts. WSE enables you to implement many of the features that a robust,
business-oriented solution should include.

Welcome to the dynamic, evolving world of SOA with WSE.

Introducing Web Services Enhancements 3.0
WSE generally refers to both a software development toolkit and an add-on processing infra-
structure for implementing the WS- specifications in .NET projects. From an infrastructure
perspective, WSE is basically a processing engine for applying the WS- specifications to
SOAP messages. As you have seen, WS- specifications are stamped across different parts of
a SOAP message. All of the WS- specifications append to the SOAP message header, while
some of them also modify the SOAP message body directly (such as the WS-Security specifica-
tions). WSE automatically modifies SOAP messages to implement the WS- specifications. It
also provides the infrastructure for processing these SOAP messages. In this sense it is similar
to the ASP.NET Web services infrastructure, which provides SOAP and communications infra-
structure support for the Web services you create using a friendlier API. Overall, the goal of
WSE is to save developers from having to write custom code to implement basic required
Web service infrastructure (such as security and policy).

WSE 3.0 is an SDK package for Microsoft .NET developers that includes the following:

The Microsoft.Web.Services3 assembly: This provides an API and includes several support
classes, such as SOAP extensions and custom handlers.

Documentation and help files: These show you how to use and configure the WSE API and
utilities.

QuickStart samples: These show you how to code with WSE.

Configuration Editor: This utility provides a GUI interface for configuring WSE in your
.NET projects.

X.509 Certificate Tool: This utility helps you work with X.509 digital certificates.

Policy Wizard: This utility provides a GUI for generating XML policy expression files
(located inside the Configuration Editor).

How the WSE Processing Infrastructure Works
WSE installs a set of filters that intercept and process inbound and outbound SOAP request
messages, as shown in Figure 5-1. The WSE filters work together inside a processing pipeline
that also integrates with the ASP.NET processing pipeline. When a client application generates
a SOAP request that includes WS enhancements, it specifies these in code using the API pro-
vided by WSE. When the message is sent out, it goes through a set of WSE filters that translate
the code into SOAP extensions that are then applied directly to the SOAP message.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0 89

701xCH05.qxd 7/14/06 5:15 PM Page 89

The WSE filters are dedicated to specific WS- specifications, or to groups of related specifi-
cations, including

• Security (including WS-Security)

• Policy (including WS-Policy and WS-Policy Attachments)

• Messaging (including WS-Addressing)

WSE is an extension to the existing ASP.NET framework and is dedicated to modifying
and processing SOAP messages. WSE must be configured to work with a project. Even if it is
installed on your machine, it will not automatically apply to your projects unless they are con-
figured to use it. When you use WSE in a project, you register one of its assembly types as a
SOAP extension class.

When you want to use WSE in a project, you must add a reference to the Microsoft.Web.
Services3 project. You must also register the Web services configuration class in the project’s
web.config file, as shown in Listing 5-2.

Listing 5-2. The WSE Configuration Class

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<configSections>
<section name="microsoft.web.services3"

type="Microsoft.Web.Services3.Configuration.WebServicesConfiguration,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />

</configSections>
</configuration>

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.090

Figure 5-1. WSE processing of SOAP messages

701xCH05.qxd 7/14/06 5:15 PM Page 90

If the project is an ASP.NET Web service or application, you must also register the WSE
SOAP extension classes in the web.config file, as shown in Listing 5-3.

Listing 5-3. The WSE SOAP Extension Type

<system.web>
<webServices>

< soapServerProtocolFactory ➥

type="Microsoft.Web.Services3.WseProtocolFactory,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"/>

</soapServerProtocolFactory>
<soapExtensionImporterTypes>

<add type="Microsoft.Web.Services3.Description.WseExtensionImporter,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"/>

</soapExtensionImporterTypes>
</webServices>

</system.web>

This step instructs WSE to process the project’s SOAP messages through its filters. By
default, WSE automatically applies all of its filters to SOAP messages. However, you can opti-
mize the process by turning off selected filters. For example, if you do not implement routing
and referral, you can turn off the related filters. This simply means that WSE will stop looking
for these related elements when it processes incoming and outbound SOAP messages.

■Note WSE 3.0 ships with a utility called the Configuration Editor, which will automatically generate for
you the configuration XML in Listing 5-2 and Listing 5-3. These listings are the same in every project, so you
should not have to manually enter them. The Configuration Editor is reviewed later in this chapter in the sec-
tion titled “Install and Configure WSE 3.0.”

How WSE Works with ASP.NET
WSE provides an API for applying WS- specifications to SOAP messages. The key player in
the WSE class framework is the SoapContext class, which directly records the Web specifica-
tion options and then later makes them available to the WSE filters for processing. The
SoapContext class is a member of the Microsoft.Web.Services3 namespace and applies to
both request and response messages and provides you with a programmatic window to exam-
ine the contents of a SOAP message, including its envelope, header, and body contents. The
SoapContext class is similar to the HTTPContext class, which encapsulates all HTTP-specific
information about an individual HTTP request. Listing 5-4 shows you one example of using
the SoapContext class to examine the security elements in a SOAP message.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0 91

701xCH05.qxd 7/14/06 5:15 PM Page 91

Listing 5-4. Examining Message Security Elements Using the SoapContext Class

using Microsoft.Web.Services3;
using Microsoft.Web.Services3.Security;
using Microsoft.Web.Services3.Security.Tokens;

SoapContext requestContext = RequestSoapContext.Current;

foreach (ISecurityElement objElem in requestContext.Security.Elements)
{
if (objElem is MessageSignature)
{
MessageSignature clientSignature = (MessageSignature)objElem;

if (clientSignature.SignatureToken is X509SecurityToken)
{
// Add code to process the X509SecurityToken
}
else if (clientSignature.SignatureToken is UsernameToken)
{
// Add code to process the UsernameToken
}
}
}

Table 5-1 provides a summary of important SoapContext class properties. Many of these
properties provide access to specialized classes with their own nested API. For example, the
Security property provides access to the SoapHeader class called Security, which provides sup-
port members for examining existing security information and for appending new security
information to the SOAP message header.

Table 5-1. The SoapContext Class Properties

Property Description

Addressing Provides access to the collection of WS-Addressing elements assigned to the
SOAP message via the AddressingHeaders class.

Envelope Provides direct access to the SOAP envelope via the SoapEnvelope class. This
class provides several additional classes and properties that are useful for
retrieving the contents of the SOAP envelope and body via classes and properties
or directly as XML.

IsInbound Indicates whether the SOAP message is incoming (true) or outbound (false).

Referrals Provides the collection of referral elements assigned to the SOAP message via the
ReferralsCollection class.

Security Provides the security headers for the ultimate recipient of the SOAP message via
the Security class.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.092

701xCH05.qxd 7/14/06 5:15 PM Page 92

As you look through the table, remember that the SoapContext class is always referenced
in context, meaning that when you reference it in code, it will always be holding the contents
of an active request or response message. By definition, there is no such thing as stand-alone
or disconnected SoapContext. So it is useful to explore this class by setting a breakpoint in
your code and examining the various member properties and their settings in the Immediate
debug window. Also, the WSE 3.0 documentation contains a detailed class reference for the
member classes. You can learn a lot about how WSE works by examining the various classes
and properties and learning how they interact with each other.

The Microsoft.Web.Services3 assembly provides a large number of namespaces that cover
several different WS- specifications. These are summarized in Table 5-2, along with a brief
description of which WS- specifications they apply to. As you begin coding with the various
WS- specifications, you will need to import one or more of these namespaces into your Web
services project.

Table 5-2. Namespaces in WSE 3.0 Microsoft.Web.Services3 Assembly

Namespace Description

(Root) Provides support classes for working with SOAP request and
response messages, including the important SoapContext class.

.Addressing Provides support for the WS-Addressing specification, which
enables the SOAP message to contain its own addressing,
destination, and routing information.

.Configuration Provides support for processing the WSE configuration settings.

.Configuration.Install Provides support functions to manage the installation of WSE.

.Diagnostics Provides tracing support to log diagnostic information on a SOAP
message before and after processing by the WSE filters.

.Messaging Provides support for WS-Messaging, which enables you to process
SOAP messages for transport with the HTTP or TCP protocols.
The classes support SOAP formatting and serialization.

.Messaging.Configuration Provides support for working with configuration elements that
relate to the WS-Messaging specification.

.Design Provides classes for processing policy expression files.

.Referral Provides support for WS-Referral, which enables the routing of
SOAP messages across multiple endpoints.

.Security Provides support for WS-Security, including attaching security
elements to SOAP messages and processing them.

.Security.Configuration Provides support for working with configuration elements that
relate to the WS-Security and WS-Secure Conversation
specifications.

.Security.Cryptography Provides support functions for processing cryptographic
operations.

.Security.Policy Provides support for the WS-Security Policy specification, which
supports security-specific policy assertions.

.Security.Tokens Indicates specialized classes for working with security tokens.

Continued

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0 93

701xCH05.qxd 7/14/06 5:15 PM Page 93

Table 5-2. Continued

Namespace Description

.Security.Tokens.Kerberos Indicates specialized classes for working with security tokens that
are associated with Kerberos tickets.

.Security.X509 Indicates specialized classes for working with X.509 digital
certificates. Note that this namespace provides utility
classes for working with the classes in namespace
.Security.Cryptography.X509Certificate.X509Certificate2.

.Security.Utility Specifies generic classes for working with security-oriented
properties, such as the creation and expiration time stamp
information for a SOAP message.

.Security.Xml Indicates specialized classes for working with XML signatures,
which are an important support technology for digital signatures.

.Xml Specifies general support classes for working with XML,
particularly as it relates to the XML that is generated by the
WS- specifications. These classes are used in conjunction
with other XML classes in the .NET Framework.

WSE provides programmatic hooks in the specifications that automatically generate the
required SOAP elements for you, so you do not have to construct them manually. The WSE
API is accessed differently by Web services vs. Web service clients. Let’s briefly look at the
differences.

■Note With Visual Studio 2005, Web services can now be hosted under console applications through
simple configuration entries in the application configuration file. This chapter focuses on Web services that
are hosted under IIS, because it is currently a more common implementation scenario for .NET developers.

Web Service Access to the WSE API
Web services can access the SoapContext for either request or response SOAP messages using
specialized classes called RequestSoapContext and ResponseSoapContext. These classes pro-
vide direct access to SOAP messages, and they support messages that are transported over
different protocols, including the HTTP and TCP protocols. Each of the classes provides a
static property called Current, which furnishes a reference to the SoapContext class.

For request messages, the SoapContext class is accessed using

SoapContext requestContext = RequestSoapContext.Current;

RequestSoapContext is a class provided by the WebServicesClientProtocol, and Current is
a static property that returns the SoapContext class.

For response messages, the SoapContext class is accessed using

SoapContext responseContext = ResponseSoapContext.Current;

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.094

701xCH05.qxd 7/14/06 5:15 PM Page 94

Once the client references the SoapContext for the request message, it can reference or
assign WS- specifications with the WSE API. For example, if the incoming request message
requires digital signing with a certificate, the Web service can inspect the attached digital sig-
natures using SoapContext (as shown previously in Listing 5-4). The Web service can also use
SoapContext to modify outgoing response messages.

Unlike the service proxy class (described in the next section), the Web service itself does
not need to derive from a specialized class in order to access the WSE functionality. However,
you need to make sure the WSE support assemblies are correctly registered in the service’s
web.config file.

■Note The SoapContext.Current static class creates a blocking risk because it interacts directly with the
Web service context. For this reason, a Web service wrapper class (that invokes the Web service proxy)
should never be created as a singleton; otherwise, multiple calls to the wrapper will result in blocked calls.
Here is an example of what not to do:

Public Class webservicewrapper (singleton)
{

Private webserviceproxy _myProxy;

Public void dosomething
{

_myProxy.DoSomething();
}

}

Web Service Client Access to the WSE API
A Web service client interacts with a Web service via a proxy class. WSE provides a new base
class for this proxy class to inherit from

Microsoft.Web.Services3.WebServicesClientProtocol

Without WSE installed, proxy class files inherit from

System.Web.Services.Protocols.SoapHttpClientProtocol

If WSE 3.0 is installed and a reference is set to Microsoft.Web.Services, two classes will
be generated. One class will be derived from SoapHttpClientProtocol and will be named
after the service (e.g., MyServiceClass). The second generated class will derive from
WebServicesClientProtocol and will be named after the service name, with “WSE” appended
to it (e.g., MyServiceClassWSE). The WebServicesClientProtocol class provides access to the
SoapContext class for both request and response messages via the proxy class. Listing 5-5
shows an example of a Web client that is digitally signing a SOAP request message before
sending it out to a service. The listing shows how you reference the SoapContext and then
use it to assign the digital signature to the SOAP request message.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0 95

701xCH05.qxd 7/14/06 5:15 PM Page 95

Listing 5-5. Digitally Signing a SOAP Request Message via the SoapContext

using Microsoft.Web.Services3;
using Microsoft.Web.Services3.Security;
using Microsoft.Web.Services3.Security.Tokens;

// Retrieve the SoapContext for the outgoing SOAP request message
StockTraderServiceWse serviceProxy = new StockTraderServiceWse();

// Retrieve the X509 certificate from the CurrentUserStore certificate store
X509SecurityToken token = GetSigningToken();

// Add signature element to a security section on the request to sign the request
serviceProxy.RequestSoapContext.Security.Tokens.Add(token);
serviceProxy.RequestSoapContext.Security.Elements.Add(➥

new MessageSignature(token));

This concludes the introduction to the WSE 3.0 API. The remainder of this chapter focuses
on installation and configuration options for WSE 3.0. The subsequent chapters in the book
are dedicated to showing you how to use the WSE API to implement the WS- specifications in
your own service-oriented applications.

Install and Configure WSE 3.0
WSE 3.0 is easy to install and to configure. You must install Visual Studio 2005 prior to
installing WSE 3.0, since WSE 3.0 will not install with earlier versions. You can install Visual
Studio 2005 side by side with Visual Studio .NET 2003 if required.

WSE 3.0 is a package of QuickStart sample applications and documentation that shows
you how to use the various classes in the WSE assembly. But the engine of WSE 3.0 is a single
assembly called Microsoft.Web.Services3.dll, which is installed by default under C:\Program
Files\Microsoft WSE\v3.0. In addition, this assembly gets automatically registered in the
Global Assembly Cache (GAC).

In order to use the new assembly in your Web services projects, you will need to register it
as a SOAP extension within either the machine.config or web.config files. If you update the
machine.config file, the assembly will automatically be registered for all future Web services
projects. Otherwise, you will need to update the web.config files for each new project
individually.

Listing 5-6 shows the two additional elements that you must update in the web.config file
in order for your project to use WSE. You may actually require additional entries, but these are
specific to individual WS- specifications such as WS-Security and are only required as needed.
Note that you must include each individual element on a single line. In Listing 5-6, elements
such as <section> are broken out on multiple lines for clarity only. They must, however, be
entered as single lines in the actual web.config file.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.096

701xCH05.qxd 7/14/06 5:15 PM Page 96

Listing 5-6. The web.config Updates for a WSE-Enabled Web Service Project

<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
<configSections>
<section name="microsoft.web.services3"

type="Microsoft.Web.Services3.Configuration.WebServicesConfiguration,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />

</configSections>
<system.web>

<webServices>
< soapServerProtocolFactory type="Microsoft.Web.Services3.WseProtocolFactory,

Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"/>

</soapServerProtocolFactory>
<soapExtensionImporterTypes>

<add type="Microsoft.Web.Services3.Description.WseExtensionImporter,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"/>

</soapExtensionImporterTypes>
</webServices>

</system.web>
</configuration>

Web service client projects do not need to register the SOAP extension, but they do need
to register the WebServicesConfiguration class. In addition, the client’s Web service proxy class
must inherit from

Microsoft.Web.Services3.WebServicesClientProtocol

Without WSE, the proxy class file inherits from

System.Web.Services.Protocols.SoapHttpClientProtocol

This change is required so that Web service requests get routed through the WSE filters
rather than through the standard HTTP-based SOAP filters.

■Note If you want to update the machine.config file, simply copy the <section> element from Listing 5-2
into the machine.config file, under the <configSections> node.

If you prefer to not type these entries manually (and we certainly do!), then you can use
the convenient Configuration Editor that ships with WSE 3.0. This tool provides a tabbed GUI
interface in which you specify configuration settings for a project and then automatically
apply the settings without having to write the code manually. The tool can be accessed directly
from within your Visual Studio .NET project, as shown in Figure 5-2.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0 97

701xCH05.qxd 7/14/06 5:15 PM Page 97

Figure 5-2. Menu access for the WSE 3.0 Configuration Editor

Figure 5-3 shows how you can use the editor to implement the basic settings we have cov-
ered so far. You can use the editor for all .NET project types. If you are using it for an ASP.NET
Web application or service project, it gives you an additional option to register the SOAP
extension class. Otherwise, the second check box in the GUI interface is disabled. The editor
settings shown in Figure 5-3 will generate the web.config settings that are shown in Listing 5-6.
This is not bad for two simple check box clicks!

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.098

701xCH05.qxd 7/14/06 5:15 PM Page 98

Figure 5-3. The WSE 3.0 Configuration Editor

When you create a new client application for your WSE-enabled Web service, you can
generate the proxy class in two ways. You can either generate it manually from the WSDL
document, or you can generate it using Visual Studio .NET’s Add Web Reference Wizard.
If you use the wizard, keep in mind that the generated proxy file will contain two separate
proxy classes. One inherits from the WebServicesClientProtocol class, which is provided
by the Microsoft.Web.Services3 assembly. The other class inherits from the traditional
SoapHttpClientProtocol class, which is provided by the System.Web.Services assembly.

■Note The Configuration Editor provides helpful configuration support for several of the WS- specifica-
tions, as you can tell from the additional tabs in Figure 5-3. We will discuss the additional support that the
Configuration Editor provides in the relevant chapters.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0 99

701xCH05.qxd 7/14/06 5:15 PM Page 99

X.509 Certificate Support
Several of the upcoming sample solutions in this book use X.509 digital certificates, which
can be used to digitally sign and encrypt SOAP messages (with the help of WSE). In addition,
WSE 3.0 uses X.509 digital certificates in its QuickStart sample applications. Certificate instal-
lation and configuration can be quite complex, so we felt it was important to provide a section
on how to install and configure the X.509 sample certificates.

X.509 Certificates Explained
X.509 digital certificates are widely used as a basis for securing communication between sepa-
rate endpoints. For example, they are used to support the HTTP Secure Sockets Layer (SSL)
protocol, otherwise known as HTTPS.

You will be working directly with the X.509 test certificates that ship with WSE 3.0. You
actually have several options for obtaining test certificates:

• Use the WSE 3.0 test certificates (the most convenient option).

• Use the makecert.exe command-line utility to generate test certificates.

• Obtain a test certificate from VeriSign.

Digital certificates are used for asymmetric encryption, also known as public-key encryp-
tion. The certificate is used to generate a public-private key pair, whereby the private key is
known only to one party, while the public key may be distributed to anyone.

In a service-oriented application that includes a client and a Web service, it is the client
that typically procures the certificate and the public-private key pair. This is the model that
the sample applications use, so it is important to understand how it works. In an SOA applica-
tion, certificates and keys are used as follows:

• The client uses the certificate to digitally sign an outgoing SOAP request message (to
the Web service).

• The Web service uses the public key to encrypt the outgoing SOAP response message
(to the client).

• The client uses the private key to decrypt the incoming SOAP response message (from
the Web service).

Chapter 6 provides detailed explanations of how encryption and digital signing work
under the hood; but for now this is all you need to know, because it helps you to understand
where the certificates and keys need to be registered.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0100

701xCH05.qxd 7/14/06 5:15 PM Page 100

Installing the X.509 Test Certificates
Web servers such as IIS provide good support tools for installing digital certificates that will be
used to support HTTPS. In addition, Windows operating systems provide a Microsoft Manage-
ment Console (MMC) snap-in called the Certificate Manager for working with certificates.

The sample applications in this book use the X.509 test certificate to support public-key
encryption and to support digital signing; therefore, not only do you need the certificate itself,
but you also need a public-private key pair that has been generated from the certificate. Luck-
ily, WSE 3.0 ships with these keys already generated, so you are saved one more manual step.

■Caution WSE 3.0 test certificates should not be used in production applications. Their keys are well-
known, so they will not provide any effective security in production applications.

The digital certificate and the keys need to be stored in a location called the certificate
store, which you can access using the Certificate Manager snap-in. For testing purposes, most
of us use the same machine to run the Web service and the client applications. This requires
you to update two certificate stores:

• The Local Computer certificate store: Used by the Web service, this location should store
the public key.

• The Current User certificate store: Used by the client, this location should store the cer-
tificate and the private key.

You can install the certificates manually, or you can run a preset batch script called
Setup.bat that ships with WSE 3.0 and is available in the folder C:\Program Files\Microsoft
WSE\v3.0\Samples. The batch script is the easiest way to install the test certificates; however,
you will need to know how to install them manually as well for your own development work
outside of the QuickStart samples or the code samples that accompany this book.

Here are the installation steps to manually install the certificates:

1. Open a new MMC console by typing mmc in the Run dialog window.

2. Select File ➤ Add/Remove Snap-In. Click the Add button and then select Certificates
from the available list. You will be prompted to select the type of account that will
manage the certificates. Select My User Account and click Finish.

3. Repeat step 2, but this time when you are prompted for an account, select Computer
Account and click Finish. Click OK to close out the dialog box for adding certificate
stores. You should now be looking at an MMC console view that displays the Current
User and the Local Computer certificate stores, as shown in Figure 5-4.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0 101

701xCH05.qxd 7/14/06 5:15 PM Page 101

4. Expand the Personal folder of the Current User certificate store and then right-click it
to select the All Tasks ➤ Import menu option. Import the sample personal information
exchange file titled Client Private.pfx. The sample certificates and private keys are
installed with WSE 3.0, and their default location is C:\Program Files\Microsoft
WSE\v3.0\Samples\Sample Test Certificates\. Client Private.pfx is the private key that
the Web service client will use to encrypt requests to the Web service. Note that you will
be prompted to enter a password for the private key during the import. For the WSE 3.0
test certificates, you can locate this password in a file called readme.htm, which is
located in the same folder as the test certificates.

5. Right-click again the Personal folder of the Current User certificate store and select
the All Tasks ➤ Import menu option. Import the sample test certificate titled Server
Public.cer. This is the public key that the client uses to digitally sign requests for the
Web service.

6. Expand the Personal folder of the Local Computer certificate store and import the
sample test certificate titled Server Public.cer. This is the public key that the Web
service uses to decrypt the client’s request.

This completes the installation of the certificates. But in order to use them from within
ASP.NET, you will need to adjust permission levels for the ASP.NET worker process.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0102

Figure 5-4. MMC console displaying the Current User and the Local Computer certificate stores

701xCH05.qxd 7/14/06 5:15 PM Page 102

Set ASP.NET Permissions to Use the X.509 Certificates
WSE 3.0 ships with a useful utility called the X.509 Certificate Tool. You can use this tool for
several purposes:

• Browse installed certificates in the Current User and Local Computer certificate stores.

• Set permissions on the keys in the MachineKeys folder, which provides access to Local
Computer certificates.

• Retrieve the base64 key identifier for installed certificate keys.

Figure 5-5 shows the X.509 Certificate Tool with a selected certificate, which in this case is
the private key certificate for the Local Computer user.

Figure 5-5. The WSE X.509 Certificate Tool

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0 103

701xCH05.qxd 7/14/06 5:15 PM Page 103

The ASP.NET worker process needs Full Control security-level access to the folder that
stores the Local Computer certificates. Click the lower button in the X.509 Certificate Tool
page that is labeled View Private Key File Properties to open property pages for the folder.
Switch to the Security tab to display the list of users who have access to the folder. Add the
account that is assigned to the ASP.NET worker process and give it Full Control permissions.
By default, on Windows XP/2000 under IIS 5.0, the worker process runs under a machine
account called ASP.NET. On Windows Server 2003 the worker process usually runs under the
NETWORK SERVICE account. Figure 5-6 shows what the Security tab looks like once you have
added the ASP.NET worker process account.

Figure 5-6. Security settings for the folder that stores the Local Computer certificates and keys

The X.509 Certificate Tool provides the base64-encoded key identifier for the certificate.
You will need this identifier in the code listings in order to retrieve the correct certificate. List-
ing 5-7 shows you how to retrieve a certificate from the certificate store using its key identifier.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0104

701xCH05.qxd 7/14/06 5:15 PM Page 104

Listing 5-7. Retrieving a Certificate from the Local Computer Certificate Store Using Its
Key Identifier

using Microsoft.Web.Services3.Security.X509;

private X509SecurityToken GetSigningToken()
{
// NOTE: If you use the WSE 3.0 sample certificates then
// you should not need to change these IDs
string ClientBase64KeyId = "Xt/WZcILstC8oJuMqQcxbokIGR4=";

X509SecurityToken token = null;

// Open the CurrentUser Certificate Store
X509CertificateStore store;
store = X509CertificateStore.CurrentUserStore(X509CertificateStore.MyStore);
if (store.OpenRead())
{
X509CertificateCollection certs = store.FindCertificateByKeyIdentifier(➥

Convert.FromBase64String(ClientBase64KeyId));

if (certs.Count > 0)
{
// Get the first certificate in the collection
token = new X509SecurityToken(((X509Certificate) certs[0]));
}
}
return token;
}

Certificates require some effort to install and to configure, but it is well worth it. Certificates
are easy to use once they are installed and you get a high level of security from asymmetric
encryption compared to other methods. Asymmetric encryption does have the drawback of
being more processor-intensive than other methods, so it can suffer in performance com-
pared to other methods. But there are workarounds to this. For example, you can implement
WS-Secure Conversation, which optimizes the performance of encrypted communication
between a Web service and client. WS-Secure Conversation is covered in Chapter 7. Finally,
you will learn a lot more about using certificates in your solutions by reading Chapter 6,
which focuses on the WS-Security specification.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0 105

701xCH05.qxd 7/14/06 5:15 PM Page 105

Final Thoughts on WSE
WSE is an evolving product that implements only a subset of the available ratified WS- specifi-
cations. Microsoft has done a good job of implementing the more popular WS- specifications,
including security and policy. But the WSE product cannot keep pace with the rapid change of
the WS- specifications. Existing specifications continue to change and new ones continue to
be released. Even within a given specification, WSE will probably only cover a subset of what is
available. This is in fact why Microsoft develops WSE on a separate release schedule from the
.NET Framework.

Summary
This chapter introduced you to the Web services specifications, or WS- specifications, which
provide a framework for building secure, reliable, service-oriented Web services. The WS-
specifications provide the following benefits when they are implemented in Web services:

• Interoperability

• Composability

• Security

• Description and discovery

• Messaging and delivery

• Transactions

Microsoft Web Services Enhancements 3.0 is a software developer kit for implementing
the WS- specifications in .NET applications. It includes the Microsoft.Web.Services3 assembly,
configuration tools, QuickStart application samples, and documentation. WSE is an excellent
productivity tool that implements many of the important WS- specifications. The current ver-
sion of WSE does have gaps, most notably in its support for transactions. Developers will need
to build some aspects of the WS- specifications manually for now.

This chapter lays the groundwork for the rest of the book, which explores several of the
WS- specifications in detail.

CHAPTER 5 ■ WEB SERVICES ENHANCEMENTS 3.0106

701xCH05.qxd 7/14/06 5:15 PM Page 106

Secure Web Services
with WS-Security

Companies have started the adoption of Web service technology and the WS-Security
specification as an approach to ensure the integrity of transmitted messages and data. The
WS-Security specification is a joint effort by Microsoft, IBM, and VeriSign to address this most
important issue. The WS-Security specification is designed to provide an extensible security
implementation that will evolve as Web services technology becomes more sophisticated.

The WS-Security Specification
What do we actually mean when we talk about security? In broad terms, we are talking about
authentication, authorization, data integrity, and confidentiality.

Authentication: This is the process of identifying a user based on credentials. In SOA, the
user is not necessarily a person; it can be an application that is making a remote call from
the intranet or Internet. This application must be able to identify itself by providing the
required credentials. These credentials can be in the form of a username and password,
also known as Username Token, or a digital certificate, such as an X.509 certificate or a
Kerberos token.

Authorization: This is the process of validating whether an already authenticated user
has access to a particular resource. For example, a Web service can perform multiple
operations and they might only be available to a limited group of users or roles. Together,
authentication and authorization provide a security model that allows you to identify
users and then give them selective access to resources.

Integrity: This means that the message was not tampered during transit. A digitally signed
message helps us ensure that the content of a message hasn’t been modified before
reaching its destination. Digital signatures work by generating a short string based on
the content of the message. This short string or hash is most likely unique, and a single
change made to the content of the message would generate a different hash value.

107

C H A P T E R 6

701xCH06.qxd 7/17/06 1:13 PM Page 107

Confidentiality: This is the process that guarantees that only authorized individuals have
access to a message. In order to protect a message, its contents must be encrypted. An
encrypted message would not be readable by intruders that do not possess the key to
decrypt the message. There are two types of encryption: symmetric and asymmetric.

• Symmetric encryption: In this scenario the client and the service use the same key
to encrypt and decrypt the message.

• Asymmetric encryption: In this scenario one party encrypts the message using
one key and the other party decrypts it using a different key. This is also known as
public key encryption. These two keys are also known as the public/private key pair.
The public key is available to anyone who wants to communicate with the service,
and the client uses this key to encrypt the messages. The private key is used by the
service to decrypt the messages encrypted with the public key.

The prime currency in SOA applications is SOAP messages, because they are the means
by which requests are made and responses are received from Web service methods. The
WS-Security specification provides a way for you to protect the integrity and confidentiality
of messages and to implement authentication and authorization models in your Web services.
The WS-Security specification enables you to implement the following protections in your
Web service calls:

Authentication: Security credentials, or tokens, may be exchanged between a client and
a Web service to validate the identity of the caller. The tokens are added directly to the
header of the SOAP message.

Digital signing: Digital signing creates a cryptographic signature attached to the message
that uniquely identifies the sender. The receiver can check this signature to verify the
identity of the sender and the integrity of the message. A SOAP exception is raised on the
receiving end if the contents of a SOAP message have been tampered with. Digital signing
is especially important in an SOA where a single SOAP message may be routed through
multiple SOAP endpoints and across multiple servers. Message integrity is essential in
any Web service–based architecture, but especially in an SOA.

Encryption: This encodes a SOAP message to ensure its confidentiality. A number of avail-
able encryption algorithms are available. In addition, you can encrypt a SOAP message
based on an X.509 certificate.

The goal of this specification is to provide mechanisms that will enable businesses to
exchange SOAP messages in a secure environment. The specification does not intend to
replace previous security specifications; on the contrary, it leverages existing security stan-
dards such as SSL, X.509, and Kerberos.

The WS-Security specification is platform-independent and transport-neutral, as are all
of the other WS- specifications. Security information is generated by the client and stored
within the envelope of the SOAP request message. The Web service in turn will deserialize this
information; verify its validity, and then process the requested operation. In the event that the
message security does not pass verification, the Web service will return a SOAP fault back to
the client.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY108

701xCH06.qxd 7/17/06 1:13 PM Page 108

Listings 6-1 and 6-2 compare two SOAP request messages for the same Web service
method. The Web service is StockTrader.asmx, and the requested method is RequestQuote,
which accepts a single stock ticker symbol as an input parameter. Listing 6-1 is an unsecured
Web method call, while Listing 6-2 is secured and implements digital signing and encryption
(based on an X.509 certificate). The listings are greatly simplified for clarity and for length and
were originally created using the trace files generated by WSE 3.0.

Listing 6-1. Unsecured SOAP Request Message (Simplified for Clarity)

<soap:Envelope>

<soap:Header>
<wsa:Action>

http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote
</wsa:Action>
<wsa:MessageID>Message ID</wsa:MessageID>
<wsa:ReplyTo>
<wsa:Address>

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous
</wsa:Address>
</wsa:ReplyTo>
<wsa:To>

http://localhost/StockTraderContracts/StockTrader.asmx
</wsa:To>
<wsse:Security>

<wsu:Timestamp>
Message Creation/Expiration TimeStamps

</wsu:Timestamp>
</wsse:Security>

</soap:Header>

<soap:Body>
<Symbol>

MSFT
</Symbol>

</soap:Body>

</soap:Envelope>

Listing 6-2. Digitally Signed and Encypted SOAP Message with Highlighted Differences from an
Unsigned SOAP Message (Simplified for Clarity)

<soap:Envelope>

<soap:Header>
<wsa:Action>

http://www.bluestonepartners.com/schemas/StockTrader /RequestQuote

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY 109

701xCH06.qxd 7/17/06 1:13 PM Page 109

</wsa:Action>
<wsa:MessageID>

Message ID
</wsa:MessageID>
<wsa:ReplyTo>

<wsa:Address>
http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

</wsa:Address>
</wsa:ReplyTo>
<wsa:To>

http://localhost/StockTraderContracts/StockTrader.asmx
</wsa:To>
<wsse:Security soap:mustUnderstand="1">

<wsu:Timestamp>
Contains Message Creation/Expiration TimeStamps

</wsu:Timestamp>
<wsse:BinarySecurityToken>

Represents an X.509 security token
</wsse:BinarySecurityToken>
<xenc:EncryptedKey>

<xenc:EncryptionMethod>
Specifies the algorithm that is used to encrypt a SOAP message

</xenc:EncryptionMethod>
<xenc:CipherData>

<xenc:CipherValue>Encrypted key</xenc:CipherValue>
</xenc:CipherData>

</xenc:EncryptedKey>
<wssc:DerivedKeyToken>

Represents a security token whose key is cryptographically derived
from the key of another security token

</wssc:DerivedKeyToken>
<Signature>

Represents the name of the element that defines a signature
</Signature>

</wsse:Security>
</soap:Header>

<soap:Body>
<xenc:EncryptedData >

<xenc:EncryptionMethod/>
<KeyInfo>

<wsse:SecurityTokenReference>
<wsse:Reference/>

</wsse:SecurityTokenReference>
</KeyInfo>
<xenc:CipherData>

<xenc:CipherValue>

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY110

701xCH06.qxd 7/17/06 1:13 PM Page 110

Encrypted message body
</xenc:CipherValue>

</xenc:CipherData>
</xenc:EncryptedData>

</soap:Body>

</soap:Envelope>

The main difference between Listing 6-1 and Listing 6-2 is the addition of WS-Security
tags in the request header and an encrypted message body. You can notice that the value of
the symbol parameter is not readable in Listing 6-2.

This is a clear example of Web service composability, where additional specifications may
be added or subtracted to a SOAP message as needed. WSE provides the API for implementing
WS-Security in .NET-based Web services and client applications. The API allows you to write
code to format secured SOAP request messages in the client and to process secured messages
within a Web service.

Secure Web Services in an SOA
Security in an SOA presents several challenges. Traditional security mechanisms do not pro-
vide a comprehensive solution because most of them depend on a well-defined boundary that
limits the enforcements of their rules. Plus, our industry has been shaped by companies that
have developed products that do not necessarily integrate well with each other or that do not
integrate at all. If we add the fact that hacker attacks occur on a daily basis, and that they
could even come from someone within your organization, we have a not-so-pleasant picture
that requires well-designed security strategies.

Before we look at some of these strategies, let’s review the most important challenges
involved in securing an SOA:

Interoperability and policies: There are several encryption and signing mechanisms and
there are several platforms with different security models. A service and their consumers
need to be able to implement the same standard in order to establish a successful
communication.

Message security: A SOAP message crosses domain boundaries, and it might go through
intermediaries. Traditional security models are designed to work within a controlled
environment, but in the case of SOA there are messages that will be transmitted across
multiple environments, and the integrity and confidentiality of the message still needs
to be guaranteed.

Identity and trust: Both the client and the server need to know that they can rely on the
other party. Each one of the systems that consume or expose a Web service might be
under a different security model, and users will still need to be authenticated and author-
ized to perform a particular task.

WSE 3.0 provides us with the tools required to address most of these concerns without
having to manually build the messages that will be compliant with the WS-Security specifica-
tion. You might be thinking that all you need to secure your services is to enable SSL on your

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY 111

701xCH06.qxd 7/17/06 1:13 PM Page 111

web application, but that is only the tip of the iceberg when it comes to a robust security
implementation. There are several disadvantages of securing communication at the transport
level and it will not always be the best option for your particular needs.

■Note Transport level security is the term used when data protection is provided by securing the commu-
nication channel itself. The most common example is the HTTPS channel that secures connections between
browsers and web servers. HTTPS is based on the SSL protocol.

Existing security technologies, such as SSL, have limitations. We will address this particu-
lar topic in this chapter because it will help you understand why the WSE toolkit plays such an
important role in the development of a secure Web service. These limitations are in the follow-
ing areas:

Point-to-point security: SSL does not allow your message to go through intermediaries
that might need to read the message or parts of the message and then forward it to a
third-party entity.

Wire protection: Messages are only protected while they are on the wire. If the message
reaches its destination and it gets stored it will be saved as plain text. This means that the
message could be accessible to unauthorized users if the application is not properly con-
figured to guarantee the message confidentiality.

Transport level encryption: You can’t encrypt only a fragment of a message when you use
transport level encryption. This is limiting because there are some cases where not all the
information in the message needs to be protected, and you could reduce some of the
encryption/decryption overhead by encrypting only the message elements that are
confidential.

The WSE toolkit provides a solution for each one of these restrictions. Let’s take a closer
look at WSE 3.0 to see how it can be used to build a secure Web service based on the needs of
your deployment scenario.

Implement WS-Security Using the WSE 3.0 Toolkit
One of the main design goals behind WSE 3.0 was to create a better product that allowed soft-
ware developers to easily build secure Web services. The feedback obtained after releasing
WSE 1.0 and 2.0 allowed the identification of common security scenarios.

You can find that your problem at hand is similar but not identical to one of these security
scenarios. If that is the case, you can still leverage the portion of the scenario that matches
your particular needs.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY112

701xCH06.qxd 7/17/06 1:13 PM Page 112

Public Web service: An application accesses a Web service provided by a third party. In
this scenario the users are authenticated by sending a username and a password to the
Web service. The Web service decrypts this data and validates it against a local identity
store. The information that is transmitted needs to be protected, so the client and the
server communicate using HTTPS. The service is accessed via the Internet, as shown in
Figure 6-1.

Figure 6-1. A public Web service

Intranet Web service: An organization exposes a Web service that provides business opera-
tions. In this scenario the messages are always within the boundaries of an organization
that uses Active Directory to manage the network security. Active Directory supports the
Kerberos protocol which provides the authentication, encryption, and message signing
mechanisms required to guarantee a secure communication. This Web service is accessed
by internal applications through the intranet, as shown in Figure 6-2.

Figure 6-2. An intranet Web service

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY 113

701xCH06.qxd 7/17/06 1:13 PM Page 113

Internet B2B: Messages flow within an organization and between businesses. This sce-
nario requires two different solutions: one for the client application that communicates
with the internal Web service, and another one to secure the communication between
two Web services that are hosted by different organizations. For the internal communi-
cation, the chosen solution is implemented using the Kerberos protocol. For the
communication between businesses, X.509 certificates are used to provide mutual
authentication, data protection, and data authenticity. Figure 6-3 shows a Web service
that uses one security protocol for messages that are sent within the organization, and
a different one for messages that are transferred between businesses.

Figure 6-3. A B2B Web service

Multiple Internet Web services: These services are exposed by organizations whose policies
require single sign-on capabilities (SSO). In this scenario the web application needs to
access several services provided by an organization that stores user credentials in a data-
base. The web application uses a secure channel to communicate with a Security Token
Service (STS) that generates a secure token. This secure token can be used to interact with
Web services A and B. This model provides a performance benefit because the authenti-
cation of the user is done only once: at the beginning of the session. The rest of the service
calls are done using the secure token provided by the STS. Figure 6-4 illustrates a highly
utilized web application that needs to access more than one external service.

These common security scenarios helped Microsoft define a set of core strategies that
allow software developers to easily secure a Web service. These strategies are called turnkey
security assertions and they are available in WSE 3.0 as a group of predefined policies that can
be configured using the WSE 3.0 Settings Tool, or manually via code or a configuration file.
Before we discuss these turnkey assertions, let’s review the policy framework provided by WSE.
This will help you understand the way that messages get processed when they are being sent
or received by a client or a service.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY114

701xCH06.qxd 7/17/06 1:13 PM Page 114

Figure 6-4. A multiple Internet Web service

WSE 3.0 Security Policies
WSE provides a set of classes that allow you to define your security requirements by declaring
a policy using an XML configuration file. This file can be edited manually or using the WSE
Settings Tool. Later in this chapter you will have the opportunity to use this tool to implement
security policies for a client and service project. Each policy file can contain multiple policies,
which gives you the flexibility to enforce different security restrictions within the same appli-
cation.

You can also define your policies directly in the code. This could be a good option if you
don’t want to have the flexibility to add the policy definition without having to recompile your
application. We recommend using policy files, since they will give system administrators the
ability to modify the policy depending on the characteristics of the deployment environment.
If you separate the security policy from the code you will increase the maintainability of your
system and it will make your application easier to secure.

A policy is a group of policy assertions that map directly to a class. These classes get
instantiated at runtime by the WSE framework and they are responsible for processing the
SOAP messages and applying digital signatures, encryption, or any other custom processing
that you might need, such as writing the content of the message to trace log.

■Note WSE 3.0 has greatly simplified the policy model, compared to the one provided by WSE 2.0. In this
new version of WSE, the declarative model and the imperative programming model have been aligned so
that you can use policy files to implement the same security restrictions that you could define via code.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY 115

701xCH06.qxd 7/17/06 1:13 PM Page 115

Listing 6-3 shows a simplified policy file that defines that SOAP messages should be
secured using Kerberos. The name of the class that implements the assertion is shown in bold.

Listing 6-3. Policy File Showing an Empty Kerberos Assertion

<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">
<extensions>

<extension name="kerberosSecurity"
type="Microsoft.Web.Services3.Design.KerberosAssertion,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />

</extensions>
<policy name="MyKerberosPolicy">

<kerberosSecurity />
</policy>

</policies>

You can assign a policy to a Web service by using the Policy attribute, as shown in the
following example:

[Policy("MyKerberosPolicy")]
public class Service : System.Web.Services.WebService
{

public Service () {}
[WebMethod]
public string HelloWorld() {

return "Hello World";
}

}

You can do the same at the client side by applying the Policy attribute to the proxy
class autogenerated by WSE 3.0. When you use WSE 3.0, your proxy file will contain a couple
of classes that you can use to communicate with the service. One of them inherits from
SoapHttpClientProtocol and it doesn’t provide the extended capabilities offered by WSE. The
second one inherits from WebServicesClientProtocol and this is the class that allows you to
benefit from the features of the WSE framework. You could apply the Policy attribute to the
second class, but this file is autogenerated and you would lose your changes if you update
the Web reference.

For this reason, the best way to apply a policy at the client side is using the SetPolicy
method of the WSE-enabled proxy class.

MyService.ServiceWse myService = new MyService.ServiceWse();
myService.SetPolicy("MyKerberosPolicy");

You can think of policies and their assertions as a pipeline where the assertions are exe-
cuted in the order in which they are listed. Each policy assertion generates SOAP filters that
are responsible for inspecting and modifying the SOAP messages. The methods that apply
these filters are defined as abstract methods in the PolicyAssertion class and they are overrid-
den by each policy assertion implementation.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY116

701xCH06.qxd 7/17/06 1:13 PM Page 116

public abstract SoapFilter CreateClientInputFilter(FilterCreationContext context);
public abstract SoapFilter CreateClientOutputFilter(FilterCreationContext context);
public abstract SoapFilter CreateServiceInputFilter(FilterCreationContext context);
public abstract SoapFilter CreateServiceOutputFilter(FilterCreationContext context);

Not all the assertions will implement all the methods; for example, a replay detection pol-
icy would need to process incoming messages only. These methods process the SOAP message
and then return a SoapFilterResult instance that determines if the execution must continue or
if it needs to be terminated.

Figure 6-5 represents how policy filters are applied to incoming and outgoing messages
that flow between a service and a client.

Figure 6-5. Policies applied in the order in which they are defined

This overview of the policy framework will now allow us to discuss the six turnkey security
assertions provided by WSE 3.0. These six assertions are nothing else but predefined policies
that cover the most frequent deployment scenarios that Microsoft has identified in existing
Web service implementations.

Turnkey Security Assertions
The turnkey security assertions are a set of core strategies that allow software developers to
easily secure a Web service. We present a brief definition of each one of them; most of them
will be covered in detail later in this chapter and also in Chapter 7.

UsernameOverTransportSecurity: This strategy can be used when there is an existing
secure channel, such as the one provided by SSL. The Web service client will send a User-
name Token to the server as a way to prove its identity. The server will be responsible for
the validation of the token information, which contains the username and password.
Upon successful validation of the credentials, the server might check whether the user is
authorized to access the requested resources. In this scenario the client and the server
trust each other enough to share a secret that will be used for authentication. This shared
secret is the user’s password that is received by the server and validated against a local
database, a legacy application, LDAP, or Active Directory.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY 117

701xCH06.qxd 7/17/06 1:13 PM Page 117

UsernameForCertificateSecurity: This assertion also uses a username and password to
identify the Web service consumer, but it encrypts the content of the message using an
X.509 certificate at the message level and not at the transport level. The main difference
between these first two assertions is that in the first one, there must be an existing secure
channel, such as HTTPS. In the second one, the client uses the public portion of the
server’s certificate to encrypt the message before sending it through the wire. In this case,
the message might be sent via HTTP, but it is still protected because a hacker who could
intercept the message won’t be able to read it because the message was previously
encrypted by the client.

AnonymousForCertificateSecurity: In this scenario, the server does not need to determine
the identity of the Web service consumer. Any client application that has access to the
certificate’s public key will be able to communicate with the server. If needed, the identity
of the caller could be determined by sending their credentials as part of the data con-
tained in the message (not as part of a secure token).

MutualCertificate10 and MutualCertificate11: In these two assertions, the client and the
server use certificates to prove their identity and to secure the messages. They provide
similar implementations, except that one of them adheres to the WS-Security 1.0 standard
and the other one follows the WS-Security 1.1 specification. There are other assertions
that also use X.509 certificates to encrypt messages, but in these assertions in particular,
the certificates are not only used for data encryption, they are also used to identify the
other party by accessing the signature portion of the message. This signature is encrypted
by the client using its private key, and decrypted by the server using the client key. The
same applies when the server provides its credentials back to the client. The server signs
the message using its private key and the client uses the server public key to decrypt it.
This is why these patterns are named mutual certificate, because both the client and the
server must prove its identity.

KerberosSecurity: This strategy is best suited for intranets where the messages flow
between one or more Windows domains that use Active Directory. One of the biggest
advantages of using this assertion is that it provides single sign-on features and better
performance than X.509 certificates. This assertion provides tight integration with
the Windows security model. This means that you will be able to use features such as
impersonation and delegation when making a remote service call. In this scenario the
management of user identities is greatly simplified because you can leverage the tools
provided by Windows security.

WSE 3.0 is not limited to these six security assertions. Developers can create custom
assertions that better meet their needs; however, in the majority of the cases, your deployment
configuration will fall within one of these predefined categories.

Securing the StockTrader Application Using WSE 3.0
The turnkey assertions described in the previous section should help as a guide to choosing
the best security mechanisms to protect your SOAP messages. We would like to emphasize
that these decisions should be made based on the characteristics of the environment where
your application will run, as opposed to the particular features provided by the service. This is

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY118

701xCH06.qxd 7/17/06 1:13 PM Page 118

what allows for great flexibility in your systems, where you can have a base set of features and
multiple policy files that get used depending on the deployment scenarios.

We will now take a look at the first sample implementation of the turnkey security
assertions.

Getting Started with the Sample Solution
The sample solution that is presented here shows you how to secure an application using the
UsernameForCertificate assertion.

Figure 6-6 shows the Solution Explorer window for the Visual Studio .NET solution that
we will use in this chapter. It is based on the StockTrader application presented in Chapters 3
and 4 and includes the following:

• A Web service called StockTraderSecure, which provides methods for requesting stock
quotes and executing trades.

• A client console application called StockTraderClient, which invokes the StockTrader
Web service via a proxy class.

• A reference assembly called StockTraderTypes, which provides code definitions for the
custom types that are used by the StockTrader Web service. (The source project is
included in this chapter’s solution for clarity. However, future chapter projects will sim-
ply reference the compiled StockTraderTypes assembly instead.) The type definitions
are contained in a separate assembly in order to be accessible to any application that
wants to interact with the StockTrader Web service. (Recall that these custom types are
based on the StockTrader XSD schema, which is presented in Chapter 3.)

Figure 6-6. The StockTraderSecure .NET solution, containing three projects

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY 119

701xCH06.qxd 7/17/06 1:13 PM Page 119

■Note There will be some cases where a client application and a service application will not be able to
share the assembly that contains the data type definitions. For example, you will not be able to reference the
StockTraderTypes assembly directly if you build your client application using Java. For these cases, you can
rely on the data types exposed by the autogenerated proxy class. As you will see later, we will be using the
Quote object exposed by the proxy class and not the one provided by the StockTraderTypes assembly. This
approach has an important benefit, which is that you do not need to redistribute the data types DLL to your
client applications. Keep in mind that using this approach does not mean that the developers building the
Web service are free to change the data type definitions at any time. If they do this, they will generate com-
patibility issues between the client and the service. Having this flexibility doesn’t exempt a developer from
carefully managing changes to the definition of a Web service.

The StockTraderSecure Web service is a copy of the StockTrader Web service presented in
Chapter 3 with additional code for processing SOAP request messages that have been digitally
signed and encrypted. To get started with building the solution, you need to perform the fol-
lowing steps:

1. Install and configure the WSE toolkit (refer to Chapter 5 for detailed instructions).

2. Install and configure the X.509 test certificates (refer to Chapter 5 for detailed
instructions).

3. Create a new ASP.NET Web service by clicking the File ➤ New ➤ Web Site menu option
in Visual Studio 2005. Choose the File System Location option to create the project in a
new folder named StockTraderSecure.

4. Delete the Service1.asmx and Service1.cs files from the project.

5. Copy the existing files StockTrader.asmx, StockTrader.cs, and StockTraderStub.cs from
the original StockTrader project over to the new StockTraderSecure project. Add these
files to the new project by right-clicking the App_Code folder and selecting the Add
Existing Item menu option. (You do not need to modify namespace information in the
newly added files.)

6. Add the StockTraderTypes reference assembly or project to the solution. Again, you
can obtain this reference project from the Chapter 3 sample files. Alternatively, you can
just copy the StockTraderTypes.dll compiled assembly over to the \bin directory of the
StockTraderSecure Web service project. Use the Project ➤ Add Reference menu option
to set a reference to the StockTraderTypes assembly or project from the StockTrader-
Secure Web service project.

Create the Web Service Client
So far the StockTraderSecure solution only contains a Web service; and you have not yet modi-
fied the Web service code to handle digitally signed SOAP messages. First you will write a Web
service client that generates SOAP request messages. The steps are as follows:

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY120

701xCH06.qxd 7/17/06 1:13 PM Page 120

1. Add a new Console Application project to the solution called StockTraderClient.csproj.

2. Rename the default C# class file to StockTraderSecureClient.cs.

3. Add a Web reference to the StockTraderSecure Web service from the console applica-
tion project using the Project ➤ Add Web Reference menu option. Give this reference
the name StockTraderProxy. This will autogenerate a proxy class file called Reference.cs
under the Web References\[Reference Name]\Reference.map subproject folder. (If you
do not see this file you can use the Project ➤ Show All Files menu option to expand
all files.)

■Note In Chapter 4 we showed you how to build the StockTraderConsole client by adding a reference to
the StockTraderTypes DLL. In many cases it won’t be possible to share the data type definition files between
the Web service and the Web service consumer. For example, there will be cases where the service is built
using .NET, and the consumer is built using Java. In this type of scenario, the Web service consumer would
need to rely on the information provided by the WSDL in order to create classes that would store the values
returned by the Web service calls.

4. Create a method in the default class that contains the code shown in Listing 6-4.

Listing 6-4. Basic Unsecured Code Listing for the Web Service Client

// Create an instance of the Web service proxy
StockTraderProxy.StockTrader serviceProxy = new StockTraderProxy.StockTrader();

// Call the service
Console.WriteLine("Calling {0}", serviceProxy.Url);
string Symbol = "MSFT";
StockTraderProxy.Quote q = serviceProxy.RequestQuote(Symbol);

// Show the results
Console.WriteLine("Web service Response:");
Console.WriteLine("");
Console.WriteLine("\tSymbol:\t\t" + q.Symbol);
Console.WriteLine("\tCompany:\t" + q.Company);
Console.WriteLine("\tLast Price:\t" + q.Last);
Console.WriteLine("\tPrevious Close:\t" + q.Previous_Close);

Compile and run the project to make sure that everything is working correctly. At this
point you are calling the Web service using a proxy that derives from the System.Web.Services.
Protocols.SoapHttpClientProtocol class.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY 121

701xCH06.qxd 7/17/06 1:13 PM Page 121

Secure the StockTrader Web Service
Enable the Web service project for WSE 3.0 by following the next steps:

1. Right-click the StockTraderSecure project and select the WSE Settings Tool. On the
General tab, check the Enable This Project for Web Services Enhancements box and
the Enable Microsoft Web Service Enhancements Soap Protocol Factory box.

■Note The Soap Protocol Factory is only needed when accessing ASP.NET Web services that run under IIS.

2. Click the Security tab and check the Allow Test Roots box. The certificates used in this
sample are not created by a certification authority and they will be rejected if you do
not check this box. You should be careful not to allow test roots in the configuration of
a production application.

3. Click the Diagnostics tab and check Enable Message Trace. This will allow you to exam-
ine SOAP messages like the ones in Listings 6-1 and 6-2.

4. Click OK to accept the changes and close the dialog. All the changes made by the WSE
Settings Tool are saved in the web.config file, as shown in Listing 6-5.

Listing 6-5. Changes Made by the WSE Configuration Tool

<configuration>
<configSections>

<section name="microsoft.web.services3"
type="Microsoft.Web.Services3.Configuration.WebServicesConfiguration,

Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />

</configSections>
<system.web>

<webServices>
<soapExtensionImporterTypes>

<add ➥

type="Microsoft.Web.Services3.Description.WseExtensionImporter,
Microsoft.Web.Services3, Version=3.0.0.0, ➥

Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />

</soapExtensionImporterTypes>
<soapServerProtocolFactory

type="Microsoft.Web.Services3.WseProtocolFactory,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY122

701xCH06.qxd 7/17/06 1:13 PM Page 122

</webServices>
<compilation debug="true">

<assemblies>
<add

assembly="Microsoft.Web.Services3,
Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35" />

</assemblies>
</compilation>

</system.web>
<microsoft.web.services3>

<diagnostics>
<trace

enabled="true"
input="InputTrace.webinfo"
output="OutputTrace.webinfo" />

</diagnostics>
<security>

<x509 allowTestRoot="true" />
</security>

</microsoft.web.services3>
</configuration>

Create a Security Policy
Now, implement the UsernameForCertificate assertion by making the following changes to
StockTraderSecure and StockTraderClient:

1. Enable the Web service project for WSE 3.0, either manually or with the WSE Settings
Tool.

2. On the WSE Settings Tool, click the Security tab and check the Allow Test Roots box.
This should only be done in a development or test environment. If you enable this fea-
ture you will be able to use test X.509 certificates as if they were valid certificates.

3. Click on the Diagnostics tab and check the Enable Message Trace box. This feature will
generate a couple of files where incoming and outgoing messages will be logged as
they get processed by the WSE 3.0 pipeline.

4. Go to the Policy tab, click Add, and provide a name for this new policy. Enter the name
UsernamePolicy and click OK. This will bring up the WSE Security Settings Wizard.
This wizard will guide you through the process of defining a security policy for your
service or client. The result of this wizard will be a configuration file that will be stored
in the root folder of your application. This XML-based policy file can be easily modi-
fied after the wizard has been completed.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY 123

701xCH06.qxd 7/17/06 1:13 PM Page 123

5. Click Next in the wizard’s welcome screen. The first decision is to choose whether you
want to secure a client or a service application. In this case, you are securing a service
application. The second question prompts you to choose a client authentication
method. In this example, you want to secure your service using a username and pass-
word. As you can see, there are other options available that resemble the different
security turnkey assertions described previously. For the current example, choose the
Username radio button and click Next.

6. Leave the Perform Authorization box unchecked and click Next. We will discuss
authorization in the “Authorization” section later in this chapter. In this first example
you will not perform authorization checks. This means that you will not make an addi-
tional security check to verify if a user is authorized to execute a particular task. You
will assume that once a user is authenticated they can access the operations provided
by the service.

7. The username and password will help the service authenticate the user, but we still
need to define a way to encrypt the information that will be sent in the message. The
current step in the wizard allows you to choose the level of protection by providing the
following options:

• None: This option relies on transport level protection; for example, this can be
used if the communication channel will be secured using SSL.

• Sign: This option signs the message. In other words, a hash is created that can be
used to determine whether the message was tampered with while in transit.

• Sign and Encrypt: This option signs the message and its contents are encrypted.
Even if a nonauthorized user has access to the message, they won’t be able to read
its contents.

• Sign, Encrypt, and Encrypt Signature: This option signs the message and both the
signature and the message itself are encrypted. This is the most secure option, but
it also incurs additional overhead.

For this sample, choose Sign and Encrypt. Also, uncheck the Secure Session box, a fea-
ture that is discussed in Chapter 7.

8. The wizard will now show a screen where you can choose the X.509 certificate for
encryption and signing. Select the WSE2QuickStartServer certificate and click Next.

9. The last step of the wizard shows you a summary of the decisions that you made. The
name of the assertion is located in the second row of the summary pane. The ques-
tions asked by this security wizard will vary significantly, depending on the approach
that you want to follow to secure your messages. However, at the end of the wizard you
will notice that your decisions can be summarized as one of the six turnkey scenarios
defined by Microsoft, as shown in Figure 6-7.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY124

701xCH06.qxd 7/17/06 1:13 PM Page 124

Figure 6-7. Summary of the policy defined using the WSE Security Settings Wizard

The wizard will generate a new file in the root directory of your project. The name of the
file is wse3policyCache.config and it contains the definition of the policy that you just created.
Listing 6-6 shows the policy file generated based on the options you chose in the WSE Security
Settings Wizard.

Listing 6-6. Policy File Generated by the WSE Security Settings Wizard

<policies xmlns="http://schemas.microsoft.com/wse/2005/06/policy">
<extensions>
<extension name="usernameForCertificateSecurity"

type="Microsoft.Web.Services3.Design.UsernameForCertificateAssertion,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />

<extension name="x509" type="Microsoft.Web.Services3.Design.X509TokenProvider,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />

<extension name="requireActionHeader"
type="Microsoft.Web.Services3.Design.RequireActionHeaderAssertion,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />

</extensions>

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY 125

701xCH06.qxd 7/17/06 1:13 PM Page 125

<policy name="UsernamePolicy">
<usernameForCertificateSecurity establishSecurityContext="false"

renewExpiredSecurityContext="true" requireSignatureConfirmation="false"
messageProtectionOrder="SignBeforeEncrypt" requireDerivedKeys="true"
ttlInSeconds="300">

<serviceToken>
<x509 storeLocation="LocalMachine" storeName="My"

findValue="CN=WSE2QuickStartServer"
findType="FindBySubjectDistinguishedName" />

</serviceToken>
<protection>
<request signatureOptions="IncludeAddressing, IncludeTimestamp,

IncludeSoapBody"
encryptBody="true" />

<response signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody"
encryptBody="true" />

<fault
signatureOptions="IncludeAddressing,
IncludeTimestamp, IncludeSoapBody"
encryptBody="false" />

</protection>
</usernameForCertificateSecurity>
<requireActionHeader />

</policy>
</policies>

The web.config file is also modified by the wizard by the addition of one line that refer-
ences the new policy file. That line is under the <Microsoft.web.services3> section:

<policy fileName="wse3policyCache.config" />

Reference the Security Policy from Code
Open the StockTrader.cs file and make the following changes:

1. Add a using directive for the Microsoft.Web.Services3 namespace.

2. Add the following reflection attribute to the definition of the StockTrader class:
[Policy("UsernamePolicy")].

Implement a Custom Username Token Manager
The default behavior of the UsernameTokenManager class is to authenticate the user against
an Active Directory or a local Windows account. In this example, we are going to override the
default behavior of this class by creating a custom username token manager. To accomplish
this, you will need to create a new class file named UsernameTokenManager.cs, and type in
the code shown in Listing 6-7.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY126

701xCH06.qxd 7/17/06 1:13 PM Page 126

Listing 6-7. A Custom Username Token Manager

using System;
using System.Xml;
using Microsoft.Web.Services3.Security;
using Microsoft.Web.Services3.Security.Tokens;

namespace StockTraderSecure
{

public class CustomUsernameTokenManager : UsernameTokenManager
{

public CustomUsernameTokenManager()
{
}

public CustomUsernameTokenManager(XmlNodeList nodes) : base(nodes)
{
}

protected override string AuthenticateToken(UsernameToken token)
{

// return the password, in this sample, the password is the same value
// as the user name, but in upper case

// In a production application, the password would be retrieved
// from an external storage, such as a SQL Server database or
// an LDAP directory.

return token.Username.ToUpper();

}

}
}

The previous code uses a straightforward algorithm to obtain the user’s password. It sim-
ply converts the username to uppercase. If you want the user to be authenticated successfully,
you will need to build a client application that passes the same value as a username and pass-
word, with the second one containing only uppercase characters.

The last step is to modify the web.config file to specify the name of the user-defined class
that will handle user authentication. The <securityTokenManager> section must be located
under the <security> tag of the <microsoft.web.services3> section. Listing 6-8 shows a frag-
ment of the web.config file that enables the service to use a custom security token manager.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY 127

701xCH06.qxd 7/17/06 1:13 PM Page 127

Listing 6-8. Fragment of the web.config File

<securityTokenManager>
<add

type="StockTraderSecure.CustomUsernameTokenManager"
namespace="http://docs.oasis-open.org/wss/2004/01/oasis- ➥

200401-wss-wssecurity-secext-1.0.xsd"
localName="UsernameToken" xmlns=""/>

</securityTokenManager>

Secure the Client Application
The client application will also be secured using the WSE Security Settings Wizard. The follow-
ing steps will help you define a client security policy that will comply with the rules defined by
the service policy.

1. Enable the StockTraderClient project for WSE 3.0 using the WSE Settings Tool. Enable
Message Tracing in the Diagnostics tab, just like you did for the StockTraderSecure
project.

2. In the WSE Settings Tool, choose the Policy tab, and select the Enable Policy check box.

3. Click Add and enter the name UsernamePolicy and click OK.

4. Click Next in the WSE Security Settings Wizard welcome screen.

5. Choose the option to secure a client application, select the Username radio button,
and click Next.

6. Choose to specify the username and password in code. It is not recommended to store
these credentials in a configuration file.

7. Choose the option to Sign and Encrypt the messages, just like you did when you
defined the policy for the service. If you choose a different encryption level, the client
will not be compliant with the policy defined by the service and you will get a SOAP
exception during the service call. Uncheck the Secure Session box and click Next.

8. The wizard will now show a screen where you can choose the X.509 certificate that will
be used for encryption and signing. Select the WSE2QuickStartServer certificate and
click Next.

9. The last step of the wizard, shown in Figure 6-8, displays the summary of the security
policy that you have created for the client application. Notice that these decisions can
be grouped under the same turnkey scenario as the service application.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY128

701xCH06.qxd 7/17/06 1:13 PM Page 128

Figure 6-8. Summary of the security policy

Use the Proxy Class Generated by WSE
The next step is to regenerate the StockTraderProxy Web reference. Right-click it in the Solu-
tion Explorer and select the Update Web Reference command.

Open the Reference.cs autogenerated file, which is located under the StockTradeProxy/
Reference.map folder. Find the definition of the StockTraderWse class and you will see that it
inherits from the Microsoft.Web.Services3.WebServicesClientProtocol class. The Microsoft.
Web.Services3 namespace contains the core classes that are used by the WSE toolkit.

Now open the StockTraderConsole.cs class and modify it as follows:

1. Add a using directive for the Microsoft.Web.Services3.Security.Tokens namespace.

2. Modify the line that creates an instance of the Web service proxy by replacing the
StockTrader class with the StockTraderWse class.

3. Create a Username Token. For sample purposes, the password value is the username in
uppercase letters. The password is included as plain text in the token, which is
encrypted using the X.509 certificate.

4. Append the token to the proxy.

5. Set the client policy.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY 129

701xCH06.qxd 7/17/06 1:13 PM Page 129

Listing 6-9 shows the code after the previously described changes have been made.

Listing 6-9. Secured Code Listing for the Web Service Client

// Create an instance of the Web service proxy
StockTraderProxy.StockTraderWse serviceProxy = new ➥

StockTraderProxy.StockTraderWse();

// Create user name token
UsernameToken token = new ➥

UsernameToken("admin", "ADMIN", PasswordOption.SendPlainText);

// Append token to the proxy
serviceProxy.SetClientCredential<UsernameToken>(token);

// Set the client policy
serviceProxy.SetPolicy("UsernamePolicy");

// Call the service
Console.WriteLine("Calling {0}", serviceProxy.Url);
string Symbol = "MSFT";
StockTraderProxy.Quote q = serviceProxy.RequestQuote(Symbol);

// Show the results
Console.WriteLine("Web service Response:");
Console.WriteLine("");
Console.WriteLine("\tSymbol:\t\t" + q.Symbol);
Console.WriteLine("\tCompany:\t" + q.Company);
Console.WriteLine("\tLast Price:\t" + q.Last);
Console.WriteLine("\tPrevious Close:\t" + q.Previous_Close);

You can now run the application and use the trace files generated by WSE to examine the
messages that are being sent and received by the service and the client applications. The trace
file shows the messages at different steps of the SOAP filtering pipeline.

You can create new policies or modify the existing one and use this trace utility to see the
effect that they have in the generated SOAP messages. For example, you can create a new pol-
icy where the content of the message is only signed but not encrypted. In this case you will be
able to read the values of messages sent by looking at the unprocessed messages in the trace
files. In the sample that you just created you won’t be able to see the values passed between
the client and the service due to the encryption mode that was set in the policy file.

Authorization
WSE 3.0 provides a framework to authorize users and roles. Similar to other security configu-
ration features in WSE 3.0, you can do this using either a policy file or code.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY130

701xCH06.qxd 7/17/06 1:13 PM Page 130

Declarative Authorization
The StockTrader.asmx Web service authenticates users through a custom username token
manager, but no further security checks are performed after the user is successfully identified.

You will now configure this Web service to validate whether the user is authorized to
access the services provided by the StockTrader service. The simplest way to do this is through
a policy file, as shown in the following steps:

1. In the wse3policyCache.config file, add the following elements under the <policy>
section:

<authorization>
<allow user="admin" />
<deny user="*" />

</authorization>

2. In the same file, under the <extensions> section, add the following line:

<extension name="authorization"
type="Microsoft.Web.Services3.Design.AuthorizationAssertion,
Microsoft.Web.Services3,
Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />

The <authorization> tag allows you to grant or deny access to the service based on the
user’s name or role. You can test this by modifying the code in the console application to use a
different username, such as “guest.” If you run the application, it will throw an exception that
displays the message “Microsoft.Web.Services3.Security.SecurityFault: User ‘guest’ is not
authorized to access the service.”

■Note In this sample we chose to implement a very simple custom username token manager. If we had
used the default username token manager or a Kerberos token, we could have used Windows roles to
allow or deny access to the service. In these two models, a successfully authenticated user is mapped to
a Windows account using the Principal property of the current token.

Code-Based Authorization
There might be some cases where policy-based authorization is not what you need because it
gets applied equally to all the methods available in the service. The following example shows
you how to authorize a user at the method level:

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY 131

701xCH06.qxd 7/17/06 1:13 PM Page 131

1. Add a using directive for the Systems.Xml namespace and one for the
Microsoft.Web.Services3.Security.Tokens namespace.

2. Add a private method in the StockTrader.cs file.

private void authorize()
{

string username = ➥

RequestSoapContext.Current.Credentials.UltimateReceiver. ➥

GetClientToken<UsernameToken>().Username;

if (username == "admin")
{

return;
}
else
{

throw new SoapException("Access denied.",
new XmlQualifiedName("Authorization"));

}
}

3. Add the following lines to the beginning of the RequestQuote method:

// Check if the user is authorized to access this method
authorize();

The previous changes reflect a scenario where only the “admin” user is authorized to
access the RequestQuote operation. The authorize method will throw an exception if the user
is not authorized, and the execution of the call will be aborted.

Summary
In this chapter we explained some important security concepts and we gave you an overview
about why WS-Security and WSE 3.0 play such an important role when building .NET-based
Web services or Web service consumers.

You learned about the common security scenarios that Microsoft has identified based on
feedback from developers who implemented Web services using WSE 1.0 and WSE 2.0. Then
you reviewed the six turnkey assertions that Microsoft built into the WSE Security Settings
Wizard.

The second part of this chapter guided you through a simple example that secures the
StockTrader application. We implemented the UsernameForCertificate assertion using the
WSE Security Settings Wizard and we showed you how to create a custom username token
manager. Finally, we showed you how to authorize a user using either code or a policy file.

You are now ready to jump into Chapter 7, where you will take a look at other turnkey
assertions and review topics such as stateful sessions and replay attacks.

CHAPTER 6 ■ SECURE WEB SERVICES WITH WS-SECURITY132

701xCH06.qxd 7/17/06 1:13 PM Page 132

Extended Web Services
Security with WS-Security and
WS-Secure Conversation

In Chapter 6 you learned about the UsernameForCertificateSecurity assertion. In this asser-
tion the client provides a username and a password as a means to prove its identity, and the
content of the messages is encrypted using an X.509 certificate. In this scenario, the client and
the service trust each other enough to establish direct communication without relying on a
third party that proves their identities. This model is known as direct authentication, and it is
the most basic authentication approach that can be used to establish a trust relationship. We
begin this chapter by reviewing this authentication model as well as delving into the concept
of brokered authentication.

Authentication Models
The characteristics of your deployment scenarios will give you the option to choose between
different types of authentication mechanisms. Your decision will depend upon several factors,
such as existing security infrastructure, interoperability requirements, and organizational
boundaries. Let’s review direct authentication and discuss brokered authentication, describ-
ing the main advantages and disadvantages of each.

Direct Authentication
In this model, the client provides its credentials and the service is responsible for the valida-
tion of the credentials against an identity store, such as LDAP or a SQL Server database. In the
majority of cases, these credentials will be passed as a username and password and both the
service and the client have the responsibility to maintain these credentials as confidential. If
the client and the service do not manage these credentials appropriately the security of the
information is compromised. For example, relying on a service to manage its own passwords
using a SQL Server database leaves the door open for possible mistakes. The developer imple-
menting the solution could choose to store the passwords in plain text format and someone
who gains access to the database could read those credentials.

133

C H A P T E R 7

701xCH07.qxd 7/17/06 1:23 PM Page 133

This model is most frequently used when there is no security infrastructure that can be
used by both parties during the authentication process. The diagram in Figure 7-1 shows how
the client, service, and identity store interact in order to validate a client request.

Figure 7-1. A graphical representation of the direct authentication model

Advantages and Disadvantages of Direct Authentication
The direct authentication model has several advantages and disadvantages. The advantages
are as follows:

Simplicity: You don’t need to rely on a public key infrastructure (PKI) or Active Directory
in order to implement a secure Web service.

Flexibility: You can use almost any identity store to provide the authentication mecha-
nism. For example, you can call a legacy system already used in the organization that can
validate user credentials on your behalf.

The disadvantages are as follows:

Management overhead: Giving each service the ability to manage its own identity store
could create a management nightmare when the number of Web services in the organiza-
tion grows to support more business scenarios.

Shared-secret-based: Sharing a secret, such as a username and password, and using it to
provide authentication is not the strongest form of security available in the industry.
There are stronger security mechanisms such as X.509 or Kerberos. The reason shared
secrets are not strong is because users tend to select passwords that are easy to guess. If a
user selects a strong password he might write it down in a note and leave it next to his
computer. This is a security risk not only for the system that is being attacked by a hacker
but also for any other applications where the user has used the same login name and
password.

Process-intensive: The client must authenticate itself every time it calls the service. This is
a process-intensive operation due to the encryption and decryption steps executed both
at the client and the service.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION134

701xCH07.qxd 7/17/06 1:23 PM Page 134

Implementation Options for Direct Authentication
If you wish to implement this security model you can rely upon two of the turnkey security
assertions provided by WSE 3.0.

UsernameForCertificateSecurity: In this assertion, the message confidentiality is provided
at the message level by encrypting the content of the message using an X.509 certificate.

UsernameOverTransportSecurity: This assertion relies on an existing secure channel that
will prevent the message from being accessed by an unauthorized entity.

Brokered Authentication
In this model, the client and the service do not attempt to authenticate each other directly.
They use an intermediary that validates the client’s identity and then provides a security token
as proof of successful authentication. The client attaches this token to the request and the
service uses this token to authenticate the client. In the real world this is equivalent to a pass-
port or a driver’s license, which is tamperproof and secure enough to be trusted. There are
government agencies responsible for the validation of the person’s identity and, in the case of
the driver’s license, validation of the person’s driving skills. These agencies require different
documentation to validate the person’s identity. Once the license or passport is issued, the
person can use it to identify himself at places such as banking institutions.

Similar to this analogy, authentication brokers, such as VeriSign or Windows Active Direc-
tory, require the entity to provide enough information to validate its identity. In the case of
VeriSign, it requires documentation to validate whether the organization is registered and
legitimate and still active.

Security tokens have a duration period; some of them, such as X.509 certificates, can last
years, and some others, such as Kerberos tickets, can last only minutes or hours.

The duration of an X.509 certificate depends on the criteria used by the certificate author-
ity when it extends the certificate. In the case of VeriSign, it extends for a limited number of
years, because with every renewal it wants to reverify whether your corporation is in good
standing. An Active Directory Kerberos ticket has a default duration of ten hours; this value
can be modified using the Group Policy Object Editor at the domain level.

The diagram in Figure 7-2 shows a client that requests a security token and then uses it to
communicate with two services. You can notice that the client only needs to request the token
once during this session, which helps reduce the transaction time. Another important aspect
of the diagram is that two services are using the same authentication broker. This is one of the
main advantages of this model, because it provides a centralized authentication authority and
it allows for easier management of the identity store.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 135

701xCH07.qxd 7/17/06 1:23 PM Page 135

Advantages and Disadvantages of Brokered Authentication
The main advantages of brokered authentication are as follows:

Centralized authentication: Having a single source for authentication simplifies the man-
agement of the identity information. The services won’t need to create and manage their
own set of users; they can rely upon the centralized identity broker to perform these tasks.

Single sign-on (SSO) capabilities: This model allows clients to authenticate once and then
use the same token for different services within the organization.

Stronger security: Brokered authentication relies on robust authentication mechanisms
such as X.509 certificates and Kerberos. The storage of passwords and the protection
mechanisms are more reliable than those that could be implemented by a developer
that follows a direct authentication pattern.

Direct trust: In this scenario the client and the service don’t need to trust each other
directly. This means that the services can rely on somebody else to add, remove, and
update the identity information from their client base.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION136

Figure 7-2. A brokered authentication model

701xCH07.qxd 7/17/06 1:23 PM Page 136

The main disadvantages of brokered authentication are as follows:

Single point of failure: If for any reason the authentication broker is not available or its
security is compromised there could be a negative effect on the clients and services that
rely upon it for identity management. This means that while the broker is not available,
all the services that depend on it for authentication will not be accessible to process
secure messages. This risk can be mitigated by having a backup server. If the security of
the broker is compromised, the client or the service could be tricked to believe that it is
communicating with an authorized entity.

Existing infrastructure: Using brokered authentication requires existing infrastructure
such as Active Directory or a PKI. If an organization does not have access to these
resources it will need to obtain it before the implementation of this security model.

Implementation Options for Brokered Authentication
WSE 3.0 provides three brokered authentication options:

Kerberos: This option is ideal for organizations that manage their network security using
Windows domains and Active Directory. This protocol allows you to take full advantage
of the security features provided by Windows, such as impersonation and delegation.

X.509 certificates: Certificates provide a robust solution for inter-organization communi-
cation and securing messages that go across multiple platforms.

Custom security token: This option requires the implementation of a Security Token
Service (STS). The STS authenticates a client and it then issues a custom token, such as
an XML-based Security Assertion Markup Language (SAML) token. This is a good pattern
for inter-organization communication where all parties can agree on a standard imple-
mentation of the STS.

Implementing Brokered Authentication
Let’s take a look at a couple of examples that implement the brokered authentication pattern.

Brokered Authentication Using Mutual Certificates
Here we are going to use the client’s X.509 certificate to provide the credentials needed by the
server to authenticate the caller. As we discussed previously, usernames and passwords are
not the strongest form of security, and X.509 certificates provide an alternate authentication
mechanism.

We are going to use the solution created in Chapter 6. This solution shows the implemen-
tation of the UsernameForCertificateSecurity assertion.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 137

701xCH07.qxd 7/17/06 1:23 PM Page 137

How Mutual Certificate Authentication Works
Let’s walk through the list of steps that need to take place in order to establish a secure com-
munication between a Web service and a client that follow the MutualCertificate10 or
MutualCertificate11 patterns.

Infrastructure Prerequisites

As we discussed earlier, the brokered authentication model requires infrastructure that might
or might not be in place in your organization, or in the organizations that you are doing busi-
ness with. In the case of the mutual certificate model, both the service and the client need
to have a valid X.509 certificate. These certificates can be generated by any of these three
approaches:

• Use the Makecert tool that is available as part of the WSE 3.0 toolkit. This is only a valid
option if you are in a development or test environment.

• Use Windows 2003 Certificate Services.

• Use a certificate authority, such as VeriSign and Digicert.

■Note Windows 2003 has the capability to act as a certificate authority. This gives you the ability to gener-
ate your own certificates and maintain your own PKI. New features, such as autoenrollment for users, give
you the ability to automatically deploy a certificate with no user intervention.

Here we are using the WSE2QuickStartClient and the WSE2QuickStartServer. You need to
make sure that these certificates are properly installed in your computer. In order to do this,
you can open the Certificates tool provided by the WSE 3.0 toolkit, or you can use the Certifi-
cates snap-in within the Microsoft Management Console.

Let’s use the Certificates tool in this exercise. As you already know, this tool is available
via the Programs menu, under the Microsoft WSE 3.0 group. After you open the tool you can
select the Current User location and Personal for the store name to find the WSE2QuickStart-
Client certificate. After you choose this certificate from your personal store, the tool will
display the screen shown in Figure 7-3.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION138

701xCH07.qxd 7/17/06 1:23 PM Page 138

Figure 7-3. The properties of the WSE2QuickStartClient certificate

Now choose the Local Computer certificate location and the Personal store to find the
WSE2QuickStartServer certificate. If both certificates are there it means that you either
installed them automatically through a setup file, or manually, following the instructions in
Chapter 5. The certificates must be installed correctly in order to run this sample. If you get
any exceptions during the execution of this sample, you should go back to Chapter 5 and
review the installation instructions to make sure you didn’t miss any important steps. Another
option is to run the setup.bat file that is located under the Sample directory of the %Program
Files%\Microsoft WSE\v3.0 directory.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 139

701xCH07.qxd 7/17/06 1:23 PM Page 139

Message Flow

Before the communication takes place, the client must have access to its own certificate, plus
the public portion of the server’s certificate. The server only needs to have access to its own
certificate, because the client will attach the public portion of the client certificate to the
request. The diagram in Figure 7-4 shows a simplified representation of the steps.

Figure 7-4. Mutual certificate assertion message flow

The following steps occur when the client makes a call to the service using the mutual
certificates pattern:

1. Attach X.509 certificate: The client assumes that the server does not have access to
its certificate in a local store. It attaches the certificate information to the outgoing
message.

2. Sign the message: The client uses its private key to sign the message. This signature will
allow the server to validate the message origin and its integrity.

3. Encrypt the message: The client uses the server public key to encrypt the message. This
will prevent nonauthorized users from accessing the content of the message while it is
in transit.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION140

701xCH07.qxd 7/17/06 1:23 PM Page 140

4. Validate client certificate: The server checks that the certificate has not expired, that
it has not been tampered with, and that it is issued by a certificate authority that is
trusted by the server. It also checks the certificate revocation list (CRL) to see if the cer-
tificate is included in the list. The check can be performed online or against a local
CRL. The default mode is to check online and this can be modified in the Security tab
of the WSE 3.0 Settings Tool.

5. Decrypt the message: After the certificate is validated, the server proceeds to decrypt
the message using its private key.

6. Validate the signature: The last step is to validate the client signature using the client
public key. This helps the service validate whether the message is coming from the
right client and has not been altered while in transit.

Secure the Web Service
The following steps show you how to secure a Web service using X.509 certificates:

1. In the StockTraderSecure project, open the WSE 3.0 Settings Tool.

2. In the Policy tab, click the Add button. You should see the UsernamePolicy in the list of
existing Application Policies.

3. Name this policy MutualCertificatePolicy and click OK.

4. Click Next in the welcome screen and choose to secure a service in the Authentication
Settings step. Select Certificate as the authentication method and click Next.

5. The Authorized Clients step allows you to choose one or many certificates that are
allowed to access the service. In this example we are going to uncheck this box, and we
will configure Authorization later, making changes directly to the configuration files.

6. This step prompts you to select the message protection level, just as you have already
seen in Chapter 6. Leave the WS-Security 1.1 Extensions box checked. You would
uncheck this box if you need to interact with clients that do not support WS-Security
1.1. Choose Sign and Encrypt, uncheck the Secure Session box, and click Next.

7. Click the Select Certificate button and choose the WSE2QuickStartServer from the list.
Click Next to continue.

■Note The client will also have access to the WSE2QuickStartServer certificate and it will use its public
key to encrypt the message. When the service receives the message, it will use this certificate’s private key
to decrypt it. If the service sends a response to the client, it will use the certificate’s private key to sign the
message.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 141

701xCH07.qxd 7/17/06 1:23 PM Page 141

8. Review the settings of the MutalCertificatePolicy to make sure that you selected the
right options during this process. The summary should look like the screen shown in
Figure 7-5.

Figure 7-5. A summary of the mutual certificate server policy

9. Click Finish to complete the process and open the wse3policyCache.config policy file
to see the new settings.

The wizard adds the following elements to the existing policy file. You can see that the
definition UsernamePolicy is still in there, which means that you can select to use it or the
MutualCertificatePolicy in your project. Listing 7-1 shows the changes to the policy file after
adding the MutualCertificatePolicy.

Listing 7-1. The Policy File After Adding the MutualCertificatePolicy

<policy name="MutualCertificatePolicy">
<mutualCertificate11Security

establishSecurityContext="false"
renewExpiredSecurityContext="true" requireSignatureConfirmation="true"
messageProtectionOrder="SignBeforeEncrypt" requireDerivedKeys="true"
ttlInSeconds="300">
<serviceToken>

<x509 storeLocation="LocalMachine" storeName="My"
findValue="CN=WSE2QuickStartServer"
findType="FindBySubjectDistinguishedName" />

</serviceToken>

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION142

701xCH07.qxd 7/17/06 1:23 PM Page 142

<protection>
<request signatureOptions="IncludeAddressing, IncludeTimestamp,

IncludeSoapBody" encryptBody="true" />
<response signatureOptions="IncludeAddressing, IncludeTimestamp,

IncludeSoapBody" encryptBody="true" />
<fault

signatureOptions="IncludeAddressing,
IncludeTimestamp, IncludeSoapBody"

encryptBody="false" />
</protection>

</mutualCertificate11Security>
<requireActionHeader />

</policy>

In this policy file you can see that the WSE 3.0 security wizard identifies our scenario as
falling within the MutualCertificate11Security assertion. If you look closer at these elements
you will see that each one of your decisions is reflected here and you can make changes man-
ually if required.

To demonstrate how easy it is to make changes, we are going to add an authorization
section to this policy. The authorization rules will only grant access to those clients that are
authenticated using the WSE2QuickStartClient certificate. Copy these lines of code under the
start of the Policy tag in the policy file:

<authorization>
<allow user="CN=WSE2QuickStartClient"/>
<deny user="*"/>

</authorization>

The last step before we move to the client project is to apply this policy to the service.
You can do this by finding the place in the StockTrader class where you applied the Username-
Policy and modify the policy name to say MutualCertificatePolicy. After this change, the class
definition should look like the following:

[Policy("MutualCertificatePolicy")]
public class StockTrader : StockTraderStub

Secure the Client Application
In order to secure the StockTraderClient application you will follow similar steps to the ones
you executed in Chapter 6. The fact that these steps are similar is one of the main benefits of
using WSE 3.0. It gives you the ability to concentrate more on decisions to secure your applica-
tion than on putting the security implementation in place.

We are going to abbreviate some of the instructions, given that you have been through
this wizard a couple of times already:

1. Open the WSE 3.0 Settings Tool, go to the Policy tab, and click the Add button.

2. Name this policy MutualCertificatePolicy and click OK.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 143

701xCH07.qxd 7/17/06 1:23 PM Page 143

3. In the Authentication Settings step, choose Secure a Client Application and choose
Certificate and click Next.

4. In the Client Certificate step, choose the X.509 certificate named WSE2QuickStart-
Client from the CurrentUser store and click Next. This is the certificate that will be used
to sign the message using the certificate private key. The service will use this certificate
public key to validate the integrity of the message.

5. The Message Protection screen gives you the options that you are already familiar with.
Since you selected to use WS-Security 1.1 in the service, you will need to do the same
in the client. The protection order for the message should also match the service pro-
tection order requisites, which are Sign and Encrypt. Remember to uncheck the Secure
Session box. We will talk about the benefits provided by this feature in the section
“Establish Trusted Communication with WS-Secure Conversation” later in this chapter.
Click Next once you have provided all the answers required in this step.

6. In this screen you are asked to select one more certificate. Select the LocalMachine
store, click Select Certificate, and choose the WSE2QuickStartServer certificate from
the list. This is the server certificate that will be used to encrypt the message. The client
application must have access to this certificate before you make this first call. In a pro-
duction scenario, you can achieve this by including the public portion of the certificate
as part of the installation package. Click Next and review the policy summary. It should
look like the one shown in Figure 7-6. Click Finish to complete the process.

Figure 7-6. A summary of the mutual certificate client policy

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION144

701xCH07.qxd 7/17/06 1:23 PM Page 144

Let’s take a look at Listing 7-2 to review the changes made to the wse3policyCache.config
file. The MutualCertificatePolicy has been added and you can see that it references both the
client token and the server token.

Listing 7-2. Changes to the Client Policy File After Adding the MutualCertificatePolicy

<policy name="MutualCertificatePolicy">
<mutualCertificate11Security establishSecurityContext="false"

renewExpiredSecurityContext="true" requireSignatureConfirmation="true"
messageProtectionOrder="SignBeforeEncrypt" requireDerivedKeys="true"
ttlInSeconds="300">
<clientToken>

<x509 storeLocation="CurrentUser" storeName="My"
findValue="CN=WSE2QuickStartClient"
findType="FindBySubjectDistinguishedName" />

</clientToken>
<serviceToken>

<x509 storeLocation="LocalMachine" storeName="My"
findValue="CN=WSE2QuickStartServer"
findType="FindBySubjectDistinguishedName" />

</serviceToken>
<protection>

<request signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />

<response signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />

<fault signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="false" />

</protection>
</mutualCertificate11Security>
<requireActionHeader />

</policy>

The final change to the sample solution is to modify the code in the StockTraderConsole.cs
class. You need to remove the lines that create the Username Token and append it to the proxy
class. You also need to change the name of the policy from UsernamePolicy to MutualCertifi-
catePolicy.

Running the Sample Solution
Now you can run the sample solution to test the implementation of the mutual certificate pat-
tern. Try to access the client certificate at the service by using the following property:

RequestSoapContext.Current.Credentials.UltimateReceiver. ➥

GetClientToken<X509SecurityToken>().Certificate

You can use this property to obtain the identity of the caller and log every incoming call
for audit purposes.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 145

701xCH07.qxd 7/17/06 1:23 PM Page 145

Brokered Authentication Using Kerberos
Now we are going to take a look at another form of brokered authentication. Kerberos is the
security protocol that Microsoft chose to implement distributed security in its Windows 2000
and 2003 domains. Prior to Windows 2000, Microsoft relied on NTLM, which stands for Win-
dows NT LAN Manager. NTLM is a proprietary security protocol, as opposed to Kerberos,
which is an open standard created by the Massachusetts Institute of Technology (MIT) and
published by the Internet Engineering Task Force (IETF) as RFC 1510 and later deprecated by
RFC 4120. NTLM is still supported in order to provide backward compatibility, and it is also
used to authenticate a user that logs into a computer using a local account.

Let’s review a few basic concepts of the Kerberos protocol. This is an extensive topic and
we are only going to cover the areas that will help you understand how WSE 3.0 and Kerberos
can help you secure your Web services.

The Kerberos Protocol
The fact that Kerberos is based on open standards and that Microsoft has chosen it to be its
default network authentication protocol makes it an essential topic of discussion in this book.
The benefits provided by this protocol make it an ideal candidate for Web service security in
scenarios where you want to take full advantage of the features provided by Windows imple-
mentation of the Kerberos protocol.

These are some of the terms that will help you understand the description of the Kerberos
protocol:

Security principal: This is an entity in a Windows domain that can be uniquely identified.
It can be a user, services, or a machine.

Active Directory: This is an LDAP implementation that is used to store information about
the security principals and their relationships.

Long-term keys: These are cryptographic keys that are persisted in the identity store.
Each key is associated with a security principal.

Authenticator: This contains information about the client, such as IP address, username,
message time stamp, and Kerberos protocol version.

Session keys: These are keys associated to security principals and they only last a few
minutes or hours. They are used to encrypt the authenticators.

Service principal names: These are unique identifiers that can be used to obtain a security
token without having to use the name of the account that is running the service.

KDC: This is the Kerberos Key Distribution Center. It is composed of the Authentication
Service and the Ticket Granting Service.

■Note Some of these terms are specific to the Microsoft implementation of the Kerberos protocol.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION146

701xCH07.qxd 7/17/06 1:23 PM Page 146

How Kerberos Works
Kerberos uses shared secrets as an authentication mechanism. A user defines a password
when his account is created in the identity store, which in this case is Active Directory. These
passwords can’t be stored or transmitted in clear text, because this would make them vulnera-
ble to attacks. For this reason, a symmetric key is used to encrypt these passwords. After they
have been encrypted they can be referred to as a long-term key. Not only users have associated
long-term keys; these are also created for services and computers that join a Windows
domain.

When a user logs in, the client encrypts the password using a symmetric key and sends
a request to the KDC for a Ticket Granting Ticket (TGT). If the key matches the value stored
in Active Directory the KDC returns the TGT and a session key. This session key is encrypted
by the KDC using the user’s long-term key; we will refer to it as session key #1. The TGT is
encrypted using the KDC secret key. The client computer stores this information in memory
and it is used to request service tickets. Figure 7-7 shows the process that takes place when
the user logs into the domain.

Figure 7-7. The TGT request process

The next step takes place when the client attempts to access a service. The client will send
a request to the KDC. The request is composed by the TGT and an authenticator. The authen-
ticator includes client information such as the username, a machine IP address, and a time
stamp. The authenticator is encrypted with session key #1.

The KDC receives this request, decrypts the TGT with its long-term key, and decrypts the
authenticator using the session key that it sent to the client at login. If all the information is
valid, the KDC creates another session key (session key #2) and a service ticket. The KDC will
encrypt the service ticket using the server’s long-term key. It will also encrypt the session key
using session key #1.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 147

701xCH07.qxd 7/17/06 1:23 PM Page 147

■Note The KDC doesn’t send the service ticket to the server because it is not guaranteed that the service
ticket will get to the server faster than the client request. There are also other implications, such as the need
to maintain a state for each service ticket in order to allow the server to be ready for the time when the
client request arrives.

When the client receives the service ticket and session key #2 from the KDC, it decrypts
session key #2 using session key #1. The client then creates a new authenticator with a time
stamp and information about the client, such as the IP address and username. This authenti-
cator is encrypted using session key #2 and it is sent to the server along with the service ticket.

The server receives the request that has the Kerberos security token attached to it. This
token contains the authenticator and the service ticket. The service uses its long-term key to
decrypt the service ticket. The service ticket has session key #2 in it. The server will use this
session key to decrypt the authenticator.

After the client is successfully validated, the service can provide mutual authentication by
encrypting the time stamp found in the authenticator and sending it back to the client. This
time stamp is encrypted using session key #2. Figure 7-8 shows the steps executed after the
client obtains the TGT from the KDC.

Figure 7-8. Steps for obtaining the TGT from the KDC

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION148

701xCH07.qxd 7/17/06 1:23 PM Page 148

Advantages and Disadvantages of Using Kerberos
Using the Kerberos protocol offers several advantages and disadvantages. The advantages
include the following:

Mutual authentication: Kerberos provides a simple mechanism for mutual authentica-
tion. As you saw in the previous pages, the server just needs to encrypt the time stamp
included in the client authenticator and send it back as a proof of its identity. When the
client receives the message and decrypts it with the session key, it can easily validate
whether the service is who it claims to be.

Improved performance: The identity of the client only needs to be verified once during the
duration of the session. After the TGT is generated, the client no longer needs to access
the authentication service.

Integration with Windows: If your organization already relies on Active Directory you can
benefit from this existing infrastructure and implement a protocol that benefits from the
impersonation, delegation, authorization, and audit capabilities provided by Windows.

Interoperability: Kerberos is a protocol that has been adopted by other important players
in the IT industry, so you don’t have to worry about being limited using it within a
Windows domain.

SSO: The fact that Kerberos is based on security tokens makes it an ideal candidate for
SSO scenarios. The user only needs to provide its credentials once at the beginning of a
session, and a TGT can be used to provide multiple session tickets to access different
network resources.

The main disadvantages of using the Kerberos protocol include the following:

Requires additional infrastructure: If your organization does not use Active Directory, you
will need to incur the additional expense of setting it up. You will also need to consider the
investment for maintaining an Active Directory implementation.

Requires online access: The client needs to have online access to the KDC; otherwise it
won’t be able to retrieve the service ticket and make a call to the server.

Limited to a domain or trusted domains: This authentication mechanism does not work
outside the boundaries of the domain or the trusted domains.

Now let’s modify our sample application to use Kerberos authentication. You can con-
tinue the same solution that you used to implement mutual certificates and the Username
Token assertions. You will see how easy it is to switch between one security model and another
when using WSE 3.0.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 149

701xCH07.qxd 7/17/06 1:23 PM Page 149

Set Up the Environment
Follow these steps to make sure that your computer is configured correctly in order to secure
the sample application using the Kerberos security turnkey assertion:

1. Log on to a Windows domain. You will need to log in to your computer using a domain
account.

2. Use IIS instead of the ASP.NET Development Server. If you are using Windows XP and
have been running your samples using the ASP.NET Development Server you will need
to create a virtual directory in IIS that points to the StockTraderSecure folder. You don’t
need to make any changes in Visual Studio 2005. You can continue to work using the
ASP.NET development server. You will access the Web service via IIS at runtime only.

3. Map a domain account. If you are using Windows XP, you will need to use a domain
account to run the ASP.NET process. In order to do this, you need to open the
machine.config file and modify the following line:

<processModel autoConfig="true" userName="domain\username"
password="userpassword" />

You will need to make sure that the username and password attributes match with
those of a domain account. By default, the ASP.NET process runs under the local
ASPNET account. A local computer account cannot be validated against Active Direc-
tory and this would not allow you to implement brokered authentication.

If you are using Windows 2003 you don’t need to make any changes to the
machine.config file. This is because the ASP.NET process runs under a service
account that can be validated against Active Directory.

4. Configure the SPN. SPNs can be used to uniquely identify a service. Each SPN is linked
to an Active Directory account. When a client requests a Kerberos token using an SPN,
Active Directory obtains the information about the associated Windows account,
which allows the authentication process to be executed.

SPNs can be managed using a utility named setspn.exe. This utility is available on
Windows 2003 servers and it can be downloaded from the Microsoft site if you are
using Windows 2000 or Windows XP.

In the following sample, we are going to create new SPNs and link them to the domain
account that you are using to run the ASP.NET process. The syntax to create the new
SPNs is the following:

Setspn.exe –a stocktrader/host1 domain\username
Setspn.exe –a stocktrader/host1.domain.com domain\username

Verify whether the SPNs were added successfully by running the following line:

Setspn.exe –l domain\username

The utility will return the names of the two SPNs that you just added. The result should
look like the following:

stocktrader/host1.domain.com
stocktrader/host1

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION150

701xCH07.qxd 7/17/06 1:23 PM Page 150

Secure the Web Service
Now that you have configured your environment, you are ready to modify the StockTrader
application. You are going to begin by securing the service, just like we did in the previous
samples.

1. In the StockTraderSecure project, open the WSE 3.0 Settings Tool.

2. In the Policy tab, click the Add button. Name this policy KerberosPolicy and click OK.

3. Click Next in the welcome screen.

4. In the Authentication Settings step, choose to secure a service application using
Windows as the authentication method. Click Next to continue.

5. Add the user or users that will be authorized to access this service. Make sure that you
add the domain account you used to log on to your computer. Click Next when you
finish adding the authorized accounts.

6. In the Message Protection step, choose to Sign and Encrypt the message and uncheck
the Establish Secure Session box. Click Next to continue.

7. Review the summary information of the new security policy, shown in Figure 7-9, and
click Finish.

Figure 7-9. A summary of the Kerberos server policy

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 151

701xCH07.qxd 7/17/06 1:23 PM Page 151

The new policy is added to the configuration file. As you can see in Listing 7-3, this
policy does not make any particular reference to the KDC or the Active Directory that will
be involved in the brokered authentication process. This information is obtained directly
from the machine environment. This simplifies the deployment of Kerberos-based policies,
because there aren’t parameters to specify in the policy and you don’t need to install a certifi-
cate as in the case of the MutualCertificatePolicy.

Listing 7-3. Changes to the Service Policy File

<policy name="KerberosPolicy">
<authorization>

<allow user="sieena\mauricio" />
<deny user="*" />

</authorization>
<kerberosSecurity

establishSecurityContext="false"
renewExpiredSecurityContext="true"
requireSignatureConfirmation="false"
messageProtectionOrder="SignBeforeEncrypt"
requireDerivedKeys="true" ttlInSeconds="300">
<protection>

<request signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />

<response signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="true" />

<fault signatureOptions="IncludeAddressing, IncludeTimestamp,
IncludeSoapBody" encryptBody="false" />

</protection>
</kerberosSecurity>
<requireActionHeader />

</policy>

The next step is to apply this policy to the service. You can do this by finding the place in
the StockTrader class where you applied the MutualCertificate Policy and modify the policy
name to KerberosPolicy. After this change, the class definition should look like the following:

[Policy("KerberosPolicy")]
public class StockTrader : StockTraderStub

Finally, before moving to the client project, you will need to add the following line in the
web.config file, right under the <system.web> tag. This line will allow you to use Integrated
Windows Authentication.

<authentication mode="Windows" />

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION152

701xCH07.qxd 7/17/06 1:23 PM Page 152

Secure the Client Application
The followings steps show you how to secure a client application using the Kerberos security
assertion:

1. Open the WSE 3.0 Settings Tool, go to the Policy tab, and click the Add button.

2. Name this policy KerberosPolicy and click OK.

3. Click Next in the welcome screen.

4. In the Authentication Settings step, choose to secure a client application using
Windows as the authentication method. Click Next to continue.

5. The Kerberos Token step prompts you to enter the Service Principal Name. Type in
wse/host1, where host1 is the name of your computer. Choose Impersonation in the
drop-down box and click Next.

6. In the Message Protection step, choose to Sign and Encrypt the message, and uncheck
the Establish Secure Session box. Click Next to continue.

7. Review the policy summary, shown in Figure 7-10, and click Finish.

Figure 7-10. A summary of the Kerberos client policy

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 153

701xCH07.qxd 7/17/06 1:23 PM Page 153

Listing 7-4 shows the configuration of the new policy. Pay special attention to the <token>
element, where the target principal and the impersonation level are defined.

Listing 7-4. Configuration of the KerberosPolicy

<policy name="KerberosPolicy">
<kerberosSecurity

establishSecurityContext="false"
renewExpiredSecurityContext="true"
requireSignatureConfirmation="false"
messageProtectionOrder="SignBeforeEncrypt"
requireDerivedKeys="true" ttlInSeconds="300">
<token>

<kerberos targetPrincipal="stocktrader/host1"
impersonationLevel="Impersonation" />

</token>
<protection>

<request
signatureOptions="IncludeAddressing,

IncludeTimestamp, IncludeSoapBody"
encryptBody="true" />

<response
signatureOptions="IncludeAddressing,

IncludeTimestamp, IncludeSoapBody"
encryptBody="true" />

<fault
signatureOptions="IncludeAddressing,

IncludeTimestamp, IncludeSoapBody"
encryptBody="false" />

</protection>
</kerberosSecurity>
<requireActionHeader />

</policy>

The last step is to modify the StockTraderConsole.cs class. The Run() method should look
like the following:

public void Run()
{

// Create an instance of the Web service proxy
StockTraderProxy.StockTraderWse serviceProxy = ➥

new StockTraderProxy.StockTraderWse();

// Use the logged in user identity as the identity of the current thread.
// You will need to add a using clause for the ➥

System.Security.Principal namespace
AppDomain.CurrentDomain.SetPrincipalPolicy(PrincipalPolicy.WindowsPrincipal);

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION154

701xCH07.qxd 7/17/06 1:23 PM Page 154

// Access the IIS based service
serviceProxy.Url = "http://host1/StockTraderSecure/StockTrader.asmx" ;

// Use the credentials of the current security context
serviceProxy.UseDefaultCredentials = true;

// Set the client policy
serviceProxy.SetPolicy("KerberosPolicy");

// Call the service
Console.WriteLine("Calling {0}", serviceProxy.Url);
string Symbol = "MSFT";
StockTraderProxy.Quote q = serviceProxy.RequestQuote(Symbol);

// Show the results
Console.WriteLine("Web Service Response:");
Console.WriteLine("");
Console.WriteLine("\tSymbol:\t\t" + q.Symbol);
Console.WriteLine("\tCompany:\t" + q.Company);
Console.WriteLine("\tLast Price:\t" + q.Last);
Console.WriteLine("\tPrevious Close:\t" + q.Previous_Close);

}
protected static void Error(Exception ex)
{

Console.WriteLine("EXCEPTION!" + ex.Message + "\n" + ex.StackTrace);
}

The SetPrincipalPolicy method will assign the identity of the logged-on user to the cur-
rent thread and the UseDefaultCredentials property will indicate the proxy to attach those
credentials to the outgoing message.

Replace the host1 name of the server for the name of your local computer and run the
application. If you get any security exceptions, review the instructions to set up the environ-
ment. It is important that you use a domain account and that you use the SPN name correctly.
Kerberos authentication is an effective mechanism but you need to carefully configure the
deployment environment in order to have a successful communication between the service
and the client.

Impersonation
Let’s take a look at how to impersonate the client user at the server by obtaining his identity
from the Kerberos token. We are going to create a file in the server hard drive that only the
client logged-in user has permission to access:

1. Create a new file under the C:\temp folder named Impersonation.txt.

2. Right-click the Impersonation.txt file and choose Properties.

3. Select the Security tab and click the Advanced button.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 155

701xCH07.qxd 7/17/06 1:23 PM Page 155

4. In the Advanced Security Settings dialog, uncheck the Inherit from Parent the Permis-
sion Entries box.

5. In the Security pop-up window, click the Remove button, shown in Figure 7-11.

Figure 7-11. The Advanced Security Settings dialog

6. Click OK on the Advanced Security Settings dialog. You will get a prompt asking you if
you want to remove all the users from the list. Click Yes. You are going to add a new
user with read permissions in the next step.

7. In the Security tab, click the Add button and enter the name of the client user that you
are going to authenticate at the server. Use the domain\username format.

8. Make sure the user has read access to the file and click OK.

This file will help you validate whether the impersonation is taking place. Remember that
this service is running under a domain account different from the one that you used to log on
to the client computer. So if impersonation doesn’t take place, the following code will not be
successful:

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION156

701xCH07.qxd 7/17/06 1:23 PM Page 156

private void impersonate(KerberosToken token)
{

if (token.Principal!=null && token.Principal.Identity is WindowsIdentity)
{

// Obtain user identity
WindowsIdentity callerIdentity = ➥

token.Principal.Identity as WindowsIdentity;

// Initialize context object
WindowsImpersonationContext context = null;

try {

// Impersonate the user
context = callerIdentity.Impersonate();

// Access a file that only this user has permissions to read
FileStream x = File.OpenRead("c:\\temp\\Impersonation.txt");
x.Close();

}
catch (Exception ex)
{

// rethrow the exception
throw ex;

}
finally
{

context.Undo();
}

}
}

Add a line at the beginning of the RequestQuote method that passes the Kerberos token
to the Impersonate method.

impersonate(RequestSoapContext.Current.Credentials.UltimateReceiver. ➥

GetClientToken<KerberosToken>());

This method starts by obtaining the user’s identity from the Kerberos token, and then it
impersonates the user by setting its identity in the current security context. After the user has
been impersonated, the code opens the Impersonate.txt file and it immediately closes it. If
the user is not impersonated successfully, this line will cause a SystemUnauthorizedAccess
exception.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 157

701xCH07.qxd 7/17/06 1:23 PM Page 157

The impersonation code has to be implemented within a try, catch, finally block. The goal
is to restore the original security context after the file has been read or after an unexpected
error.

Impersonation can also be achieved by adding the following line at the web.config file.
However, this applies to all the methods in the Web service and it doesn’t allow you to imper-
sonate a user only for a particular task:

<identity impersonate="true" />

Constrained Delegation
There is another feature provided by Kerberos that is named Constrained Delegation. This
feature allows the impersonated client user to access a resource on a different machine. The
service user that will be performing the delegation needs to be configured in Active Directory.
This configuration consists of choosing a list of services that the user is authorized to delegate
on. In Figure 7-12, the WSE user is authorized to delegate credentials to the HTTP server of the
MTYSVR01 computer.

Figure 7-12. Delegation properties tab in Active Directory

You have the option to trust the user for delegation to any service. This is known as
Unconstrained Delegation but it is not recommended because if the security of the service
is compromised it means that all the services in the network are also compromised.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION158

701xCH07.qxd 7/17/06 1:23 PM Page 158

Prevent Replay Attacks Using Time Stamps,
Digital Signatures, and Message Correlation
We will continue this chapter with a look at a different kind of security issue called replay
attacks. A replay attack occurs when a client makes multiple Web service calls to the same
service without waiting for a response from one or more previous requests. If enough of these
calls are made, it is possible to overwhelm the Web service’s hosting server, and to then cause
the service to become unresponsive or to go offline. Replay attacks are at best a nuisance and,
at worst, can cause critical system breakdowns.

The WS-Security specification mentions replay attacks and briefly describes a strategy for
dealing with them. The key to preventing a replay attack is for a Web service to monitor the
status of incoming messages and to verify their uniqueness. The Web service needs to verify
that an incoming SOAP request message is unique and has not already been sent before the
service starts processing the message.

■Note You can eliminate replay attacks by unauthorized clients by using an encrypted communication
channel such as Secure Sockets Layer (SSL). However, SSL provides no protection if the authorized client
decides to conduct a replay attack. Other protective measures are required. The strategies that are outlined
in this section assume that you want to prevent replay attacks by verifying request messages for uniqueness
and verifying that they have not been tampered with.

Standard Web service calls are stateless, and SOAP messages are inherently stateless one-
way communications. SOAP messages must therefore include extra information that tracks
their uniqueness and thereby helps the service to verify whether a request message has
already been received. There are three main ways to track this information and to enable
message verification and protection against replay attacks:

• Message time stamps (including Created and Expires)

• Username Token nonce values

• Message correlation (including sequence numbers)

In the next sections we will consider each of these and how they can be used to secure
SOAP messages, and Web services, against replay attacks.

Use Time Stamps for Message Verification
Message time stamps are added to an outgoing SOAP request message by the sender. They
help in detecting unauthorized SOAP message requests. The client may choose to set an
expiration date and time on the request message, which means that the message is only valid
for a specific number of seconds after it is issued. This ensures that if the SOAP message is
intercepted and re-sent by an unauthorized sender, it will only be useful to them for a limited
amount of time. And, of course, if the message expiration is set short enough, there will not be
time for an unauthorized party to intercept and reroute the message. Message time stamps

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 159

701xCH07.qxd 7/17/06 1:23 PM Page 159

and expiration are a useful first defense for preventing the unauthorized use of legitimate
SOAP messages. As added protection, the client may digitally sign both the message body and
the time stamp directly. This allows the receiving service to detect a scenario wherein the time
stamp itself was tampered with and altered by an unauthorized user.

■Note SOAP message interception and tampering is a serious security issue that will become more widely
understood (and worried about) once Web services become more commonly deployed and used by compa-
nies. If a thief steals your credit card or a document that contains your personal information, he has access
to a legitimate source of credit, even though he is not an unauthorized user. SOAP message interception
potentially creates the same security compromise scenario.

Once the service receives the request message, it can cache the SoapContext while it
processes the message. Subsequent incoming request messages can then be compared
against the cached SoapContext objects and rejected if the service detects that the request
has already been received. Recall that the SoapContext is a WSE-specific class representation
of a SOAP message and is a member of the Microsoft.Web.Services3 namespace. You can use
the SoapContext class to programmatically access the properties of a SOAP message, includ-
ing its headers and body.

There are no specific rules as to what kind of information you should use to correlate
SoapContext information between messages. Basically, any unique identifying information
makes for a good candidate, as long as it cannot be spoofed by an unauthorized third party.
So you will want to choose a piece of information that can be digitally signed in the request
message. Good candidates include addressing headers and security token IDs. In addition to
addressing headers, you can correlate messages using specific contents of the SOAP message
body, or any other header information that is uniquely set by the client. If the message uses a
security token, the token itself can be used to uniquely identify a message.

Use Username Token Nonce Values for Message Verification
If you find yourself struggling to extract a unique piece of information from a message (using
the SoapContext class), and the message includes a Username Token security token, you can
use a nonce-based token ID as a unique identifier. A nonce is simply a random cryptographic
string that can be assigned as the ID value for the Username Token security token. When the
service receives a request message, it can extract the nonce value from the security token and
cache the value for the duration of the request message. These ID values are part of the mes-
sage signature and cannot be spoofed. And because they are nonce values, it is highly unlikely
that two request messages will coincidentally share the same ID values. However, this could
happen if you choose to rely on the autogenerated ID value for the security token.

Again, the burden remains on the service to cache information on incoming request mes-
sages. But if you need to take this approach, a nonce value is the simplest way to do so.

Listing 7-5 shows how the client can assign a nonce value to a Username Token security
token.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION160

701xCH07.qxd 7/17/06 1:23 PM Page 160

Listing 7-5. Assigning a Nonce Value to a Username Token Security Token

using Microsoft.Web.Services3.Security;
using Microsoft.Web.Services3.Security.Tokens;

SecurityToken token = new UsernameToken(username, passwordEquivalent, ➥

PasswordOption.SendPlainText);

// Assign a random nonce value to the security token
Nonce objNonce = new Nonce(34);
token.Id = objNonce.Value;

You may be wondering why nonce values apply specifically to the Username Token secu-
rity token. This is because other security tokens are more sophisticated and do not require the
additional guarantee of uniqueness that a nonce value provides. A Username Token security
token is, after all, simply a hashed username-password combination, and there is nothing
inherently unique about this combination. Usernames and passwords can be duplicated
between users much more easily than cryptographic values can, especially if a malicious
client is intentionally using another client’s credentials.

If you use an alternate security token such as an X.509 certificate, you are automatically
afforded some protection because the client and the service are using credentials that are not
easily discovered. However, as we pointed out with SSL, this does not provide protection
against replay attacks. You cannot assume that authorized clients will by their nature avoid
carrying out a replay attack. For example, consider a client that autogenerates Web service
calls in batch mode. If this client were to experience a system error or breakdown in business
logic, it is conceivable that the client might generate duplicate request messages to the serv-
ice. This is why you must tackle replay attacks at the message and service level. You cannot
protect against replay attacks under the umbrella of a trusted relationship between client and
service.

Use Message Correlation and Sequence Numbers for
Message Verification
The key to preventing replay attacks is for the Web service to verify the uniqueness of incom-
ing request messages. The WS-Addressing specification describes a GUID-based message ID
that is one of several addressing headers that can be assigned to a SOAP message. WSE pro-
vides support for the WS-Addressing specification in general, and for addressing headers
specifically. Once again, the burden is on the Web service to store message correlation infor-
mation and to determine whether an incoming message has already been received. As with
other kinds of identifiers, the message ID does not in and of itself prevent replay attacks, but
it provides another simple, unique identifier for an incoming SOAP message.

Another type of message identifier is the sequence number, which stamps a message with
the sequential role that it plays in a business process. Sequence numbers are part of the WS-
Reliable Messaging specification and are designed to enable business orchestration, which
refers to a business process or workflow that spans multiple components. In SOAs, sequenced
messages are exchanged between multiple Web services, and the collective outcome repre-
sents the completion of the business workflow.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 161

701xCH07.qxd 7/17/06 1:23 PM Page 161

Sequence numbers provide an additional advantage for preventing replay attacks
because a message that contains a duplicate sequence number is automatically suspect.
Sequence numbers alone do not ensure uniqueness, but they will in conjunction with a
message ID.

Establish Trusted Communication with WS-Secure
Conversation
The WS-Secure Conversation specification allows Web services and clients to establish a
token-based secure conversation for the duration of a session. It is analogous to the SSL pro-
tocol that provides on-demand secure communications over the HTTP transport channel.
Secure conversations are essentially an efficiency mechanism to optimize the secure commu-
nication between a service and a client after the initial exchange of security credentials is over;
this is known as the handshake. Secure conversations reduce the need for frequent authenti-
cation between client and service.

In previous chapters, you saw how the WS-Security and WS-Policy family of specifications
combine to provide a comprehensive approach to securing Web services. Together these spec-
ifications provide an assortment of security options, including digital signatures, encryption
algorithms, and custom authorization schemes. We discussed these technologies in the con-
text of protective security, meaning that they protect messages in transit and keep unwanted
eyes from discovering sensitive information. This is certainly an important application of
these technologies and it needs no further explanation. But for the purpose of this chapter,
we need to expand the context within which to view these technologies. They are no longer
needed just for protective security; in a broader context, they are needed for establishing
trusted communications.

In the discussions so far, we have made the big assumption that the client and the Web
service automatically trust each other. By this, we mean the assumption that they both have
an equivalent confidence in the integrity of the security tokens they are using to sign, encrypt,
and otherwise secure their communications. For example, if a client and a Web service agree
to encrypt their messages using a digital X.509 certificate, they must both trust the source of
the certificate, and must be comfortable using the private and public keys that are generated
from the certificate. In a sense, both the client and the Web service have come to a mutual
agreement that they will offload the burden of proving trust to a (trusted!) third-party source,
which issues a digital certificate to act as the tangible record of that trust.

Of course, the issue is more complex than this. When it comes to certificates, for many of
us they are a necessary requirement for trusted communication. As clients, we may have all
the trust in the world in a service provider, but we still need to use a digital certificate for the
mechanics of signing and encrypting shared messages. We happen to be comfortable with
digital certificates for most communication requirements because they represent certified
trust. However, other client-service communications may be just as well off using a simpler
Username Token security token, which is based on a simple username-password combination
that gets hashed during transit. Luckily, the WSE implementation of the WS-Security specifica-
tion is flexible, and you have a choice of security token types to use for conducting trusted
communication.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION162

701xCH07.qxd 7/17/06 1:23 PM Page 162

The point is that your preferred security tokens and your preferred hashing and encryp-
tion algorithms are simply a means to a bigger goal of establishing trusted communication,
otherwise known in the Web services world as secure conversation. There is no single correct
choice of technologies that you should always use. Instead, you need to be using those
technologies that are appropriate for establishing a trusted, secure conversation between
a given client and a Web service. The rules can change depending on who is doing the
communicating.

This chapter focuses on how you establish session-oriented, trusted communications
using the WS-Secure Conversation specification. The great thing about the WS- specifications
is that many of the concepts complement each other and build on each other. The under-
standing that you now have about WS-Security and WS-Policy will translate directly into the
concepts behind WS-Secure Conversation. By the end of this chapter, you will have a good
understanding of what constitutes secure conversation, and a broader appreciation for the
usefulness of the WS-Security family of specifications.

Overview of Secure Conversation
The WS-Secure Conversation (and WS-Trust) specification provides the means for a client and
a service to establish an optimized secure communication channel for a session, that is, an
established duration of time. Secure conversation uses a security token that is procured by a
service token provider following the initial handshake, or exchange of original security tokens,
by the service and client. The security token is used to encrypt and sign all subsequent SOAP
messages that are exchanged between the service and client. This process involves an initial
amount of overhead, but once the channel is established, the client and service exchange a
lightweight, signed security context token, which optimizes message delivery times compared
with using regular security tokens. The security context token enables the same signing and
encryption features that you are used to with regular security tokens.

Secure conversation is analogous to communications over the HTTPS protocol. HTTPS
establishes a secure channel for the duration of a session and ceases to be in effect once that
session is over. The classic example is an e-commerce transaction, in which you browse a cat-
alog over an unsecured channel, but then you establish a secure channel for the purpose of
completing a sales transaction with the vendor. The communication needs to be secure
because sensitive payment and order information is being exchanged, so the client and the
vendor need to establish a secured channel for as long as it takes to complete the transaction.
For performance reasons, the client does not need or even want to establish a continuous
secure session for every interaction with the vendor. HTTPS is useful for providing on-
demand secure communication for exactly as long as it is needed.

■Note HTTPS and WS-Secure Conversation differ in one important way: HTTPS is not typically used for
client authentication, whereas secure conversation is.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 163

701xCH07.qxd 7/17/06 1:23 PM Page 163

A secure conversation has the following characteristics:

• It is based on established security tokens, including Username Tokens and X.509
certificates.

• It uses a dedicated service token provider to generate a signed service context token,
which is a lightweight security proxy.

• It provides a secure communication channel for the duration of the session.

• It provides optimized performance for session-oriented communications with multiple
round trips (by using the security context token).

The difference between secure conversation and standard secure message exchange (with
WS-Security and WS-Policy) is that a standard security policy framework establishes a fixed
security policy that all service clients must adhere to. However, secure conversation has a
more dynamic aspect. The client and service can initiate a secure channel as needed, rather
than one based on an established policy framework. Secure conversation uses security tokens
that are issued for the purpose of a specific communication. The service itself can act as the
provider of these security tokens. Alternatively, this responsibility can be offloaded to a third-
party service token provider, which is a dedicated resource that acts as a trusted intermediary
between clients and services, and the issuer of security tokens for their secure conversations.
Figure 7-13 provides an architecture diagram for typical secure conversation solutions.

Figure 7-13. Architecture diagram for a secure conversation solution

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION164

701xCH07.qxd 7/17/06 1:23 PM Page 164

In WSE 3.0 solutions the Web service will typically also act as the secure token service
provider. Figure 7-13 shows the secure token service provider as a separate third-party service
in order to distinguish this functionality from that of the Web service itself.

A secure conversation is initiated by a client that requires an on-demand secure communi-
cation session with a Web service. The session may be required for the duration of one request,
or for several back-and-forth requests and responses between the client and the Web service.

The workflow for establishing and conducting a secure conversation as presented in
Figure 7-13 typically follows four steps:

1. The client initiates the secure conversation by issuing a signed request to the STS
provider for a security context token. The client may sign the request with any stan-
dard security token, including Username Token and X.509 certificates.

2. The STS provider verifies the integrity of the signed request. It then generates a secu-
rity context token and delivers it to the client. The Web service itself can also act as
the STS, or you can deploy the STS as a separate service. The security context token is
actually returned from the STS as a so-called request security token (RST). The client
can then extract the security context token from the RST. WSE 3.0 provides all of the
support classes that you need to handle these tasks in code. Alternatively, you can
simply reconfigure an existing turnkey security scenario to implement secure conver-
sation with no code changes required. We will review how this is done in the next
section, “How to Implement Secure Conversation Using WSE 3.0.”

3. The client issues a secured Web service request using the security context token.

4. The Web service issues a secured response using the security context token. The secu-
rity context token can be used like any standard security token. It inherits from the
same base classes, and its usage is no different from the security tokens you learned
how to work with in Chapter 6. Security context tokens may be cached in a global
cache for future retrieval, for example, when the client will be issuing multiple
requests over a period of time.

Programmingwise, WSE 3.0 makes it very easy to implement a service token provider
because the WSE infrastructure will automatically issue security context tokens. This feature is
enabled by simply adding a configuration element to the service token provider’s configura-
tion file. The STS provider can be incorporated into the client’s target Web service, or the STS
provider can be implemented as a dedicated Web service. There is little difference in the code
between a hosted service token provider (that resides in the client’s target Web service) and a
dedicated service token provider (that resides on a separate domain). There are some signifi-
cant configuration and deployment differences between the two models, but codewise they
are very similar.

■Note The feature you know as Secure Conversation uses several WS- specifications, including WS-Trust,
WS-Secure Conversation, and WS-Security. In addition, you can reduce code listings (and potential errors) by
implementing policy frameworks for the participating services and clients. This chapter does not focus on
when particular WS- specifications come into play. Instead, the focus is on understanding the concepts and
discussing practical code samples.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 165

701xCH07.qxd 7/17/06 1:23 PM Page 165

How to Implement Secure Conversation Using WSE 3.0
A secure conversation is simply a session between a service and a client, where the exchanged
SOAP messages are encrypted and signed using tokens that are generated from an STS provider.
WSE 3.0 allows any Web service to act as an STS provider via simple policy configuration set-
tings. Consider a Web service that already implements the UsernameForCertificateSecurity
turnkey security profile. It can be reconfigured to issue security context tokens (SCTs) by set-
ting the attribute establishSecurityContext to true, as shown in Listing 7-6.

Listing 7-6. Configuring a Web Service to Issue Security Context Tokens for Secure Conversation

<UsernameForCertificateSecurity establishSecurityContext="true"
renewExpiredSecurityContext="true"
RequireSignatureConfirmation="false"
MessageProtectionOrder="SignBeforeEncrypting"
RequireDeriveKeys="true" ttlInSecconds="300">

The attribute renewExpiredSecurityContext causes the secure conversation to automati-
cally renew in the event that the session times out (due to the SCT token expiring). In the
event of a time-out the STS provider will issue a replacement SCT that has a different identifier
from the original, but this fact will be transparent to the secure conversation participants.

In the event of a communication interruption between the service and client, the SCT
token may be lost from memory (at the service) and the secure conversation will not renew
unless the client has implemented a stateful session, which is simply a method of holding the
SCT token outside of memory. A stateful session is maintained from the client perspective in
that the client will store the SCT token identifier in a cookie and will retrieve it if the SCT token
is lost from memory at the service. This behavior can also be leveraged to implement secure
conversation in a Web farm, so that the client may communicate with different instances of
the same Web service across multiple servers in a Web farm.

Finally, secure conversation sessions may be explicitly canceled by the Web service fol-
lowing the successful completion of the secure conversation. The purpose of canceling a
session is to allow the Web service to clean up its cache of SCT tokens and to thereby conserve
resources. A Web service can cancel a secure conversation session by retrieving an instance of
the SCT from the client’s Web service proxy and then calling a cancel method on the SCT
instance. For more information on secure conversation, including session management, con-
sult both the WSE 3.0 documentation as well as the selected references that are listed in the
appendix under the WS-Secure Conversation section.

Final Thoughts on Secure Conversation
The WS-Secure Conversation specification provides a token-based, session-oriented, on-
demand, secure channel for communication between a Web service and client. WS-Secure
Conversation is analogous to the SSL protocol that secures communication over HTTP.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION166

701xCH07.qxd 7/17/06 1:23 PM Page 166

WSE 3.0 provides support for implementing secure conversation in the following ways:

• It provides a prebuilt assembly for the STS provider.

• It provides a UsernameTokenManager class for processing a signed request from the
client to initiate the secure conversation.

• It provides a specialized proxy class for the client to request a security context token
from a provider.

• It provides a dedicated global cache for storing security context tokens.

Summary
In this chapter we discussed the concepts of direct and brokered authentication. You learned
about the advantages and disadvantages as well as the main implementation options pro-
vided by WSE 3.0. We provided an overview of how brokered authentication works when you
use X.509 certificates or the Kerberos protocol. The samples included in this chapter guide you
through the implementation of the mutual certificates and the Kerberos security assertions.

We also reviewed how to prevent replay attacks, which are a specific form of denial-of-
service attack that can be avoided by having the Web service analyze simple SOAP header
settings before responding to an incoming request.

Finally we reviewed how to implement secure conversation, which has been greatly sim-
plified in WSE 3.0 to basic configuration settings that can be easily applied to existing Web
services projects.

In Chapter 8, we will shift the focus to SOAP messaging and the collection of support
specifications that includes WS-Addressing and WS-Referral. The discussion on WSE 3.0 sup-
port for SOAP messaging will bring you back full circle to where the book began, with the
discussion on the importance of messages in service-oriented applications.

CHAPTER 7 ■ EXTENDED WEB SERVICES SECURITY WITH WS-SECURITY AND WS-SECURE CONVERSATION 167

701xCH07.qxd 7/17/06 1:23 PM Page 167

701xCH07.qxd 7/17/06 1:23 PM Page 168

SOAP Messages: Addressing,
Messaging, and Routing

Traditional Web services are built on the HTTP request/response model. This is fine for some
applications, but is limiting for others. The WSE 3.0 messaging framework is designed to give
you more control over the transport and processing of SOAP messages. There are three trans-
port channel protocols that are supported by the WSE 3.0 messaging framework out of the
box: HTTP, TCP, and an optimized mode called In-Process for Web services and clients that
reside within the same process. In addition, WSE 3.0 provides framework support for imple-
menting your own custom transport protocols. For example, a number of developers are
experimenting with integrating SOAP with Microsoft Message Queuing (MSMQ). Note that
when using non-HTTP protocols, interoperability with other platforms is contingent upon
their support for non-HTTP protocols. For example, Apache Axis 1.2 does not natively provide
support for the soap.tcp protocol that is currently supported by WSE 3.0.

Of course, WSE 3.0 does not force you to leverage any of its messaging capabilities. You
can continue to write traditional HTTP-based Web services if you prefer. But this design pat-
tern is only suitable if you need to implement a request/response communication design, and
if you want to host your service within a virtual directory.

This chapter will focus on working with the WSE 3.0 implementation of the WS-Addressing
specification and with messaging and routing. Together these specifications and features pro-
vide support for

• Several transport protocols—HTTP, TCP, and In-Process for clients and services that
reside on the same application domain

• True asynchronous communication using TCP

• SOAP messages that contain their own addressing headers and endpoint reference
information

• Automatic routing and referral for SOAP messages

• Custom SOAP routers

169

C H A P T E R 8

701xCH08.qxd 7/14/06 5:30 PM Page 169

Communication Models for Web Services
Before starting a discussion on WS-Addressing and messaging, we need to step back and
take the big-picture view, starting with a review of how Web services communicate with
clients. Traditional Web services communicate over the HTTP protocol and use a traditional
request/response communication pattern, in which a client request results in a synchronous,
direct service response. Unfortunately, this model is very limiting because it does not accom-
modate long-running service calls that may take minutes, hours, or days to complete. A
typical synchronous Web service call will time out long before the response is ever delivered.

There are five generally accepted communication design patterns, or models, that govern
the exchange of SOAP messages between a service and its client (or between two services):

1. Request/response (classic): The service endpoint receives a message and sends back a
correlated response message immediately, or within a very timely fashion.

2. Request/response with polling: The client sends a request message to a service endpoint
and immediately returns a correlation message ID to uniquely identify the request.
The service takes a “significant” amount of time to process the request, meaning more
than you would expect if you were receiving a timely response message. Knowing this,
the client must periodically poll the service using the correlation ID to ask if a response
is ready. The service treats this query as a standard request/response, and replies in
the negative or in the affirmative (with the actual response message). So this model
involves two pairs of correlated request/response messages.

3. Request/response with notification: The client sends a request message to a service, and
the service takes a “significant” amount of time to process the request, meaning more
than you would expect if you were receiving a timely response message. The service
does not reply back to the client until the processing of the request is complete. The
client is responsible for waiting for the response. This model describes classic asyn-
chronous communication.

4. One-way, or notification: The service endpoint receives a request message, but does
not generate a response message. This model is not widely used.

5. Solicit/response: The reverse of request/response, whereby the service endpoint sends
the client a solicitation request and receives a response. This model is not widely used.

Standard ASP.NET Web services, which you build by default in Visual Studio .NET, give you
the illusion that they support an asynchronous communication pattern. The Web service’s
WSDL document contains asynchronous versions for each operation, and the autogenerated
proxy class also dutifully provides asynchronous method calls. Listing 8-1 shows a comparison
between synchronous and asynchronous versions of the same Web method as they appear in
an autogenerated WSE 3.0 proxy class.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING170

701xCH08.qxd 7/14/06 5:30 PM Page 170

Listing 8-1. The WSE 3.0 Proxy Class for a Traditional XML Web Service

public partial class StockTraderServiceWse : ➥

Microsoft.Web.Services3.WebServicesClientProtocol
{

public Quote RequestQuote([System.Xml.Serialization.XmlElementAttribute(
Namespace="http://www.asptechnology.net/schemas/StockTrader/")]
string Symbol)

{
object[] results = this.Invoke("RequestQuote", new object[] {Symbol});
return ((Quote)(results[0]));

}

public void RequestQuoteAsync(string Symbol, object userState)
{

if ((this.StockQuoteRequestOperationCompleted == null)) { ➥

this.StockQuoteRequestOperationCompleted = new ➥

System.Threading.SendOrPostCallback(➥

this.OnStockQuoteRequestOperationCompleted);
}
this.InvokeAsync("StockQuoteRequest", new object[] {symbols}, ➥

this.StockQuoteRequestOperationCompleted, userState);
}

public Quote OnStockQuoteRequestOperationCompleted (➥

object arg)
{

if ((this.StockQuoteRequestCompleted != null)) { ➥

System.Web.Services.Protocols.InvokeCompletedEventArgs ➥

invokeArgs = ➥

((System.Web.Services.Protocols.InvokeCompletedEventArgs)(arg)); ➥

this.StockQuoteRequestCompleted(this, new ➥

StockQuoteRequestCompletedEventArgs(➥

invokeArgs.Results, invokeArgs.Error, ➥

invokeArgs.Cancelled, invokeArgs.UserState));
}

}
}

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 171

701xCH08.qxd 7/14/06 5:30 PM Page 171

The callback functions RequestQuoteAsync and OnStockQuoteRequestCompleted give
you the illusion of asynchronous communication, but you cannot truly disconnect the calling
thread once the request message has been sent out. The burden falls on the client to manage
the wait time for a response, but this is handled for you by the autogenerated proxy classes in
Visual Studio.

A true asynchronous method call completely releases the thread that is used for the
request, and then later creates a new thread to receive the response. The limitation here is not
with .NET per se, it is with the HTTP-based response/request model, since the HTTP response
is delivered over the same underlying connection that sent the request. Simply spacing out the
request and the response does not equate to an asynchronous call. One solution available to
you is to drop HTTP and to use a different protocol such as TCP. The consequence of this
approach is that the architecture of your solution will also need to change. How you do so is a
central focus of this chapter.

■Note If you implement hardware-based load balancing, you may experience issues using the TCP proto-
col, because the pooling of TCP connections by the load balancer may lead to an uneven availability of
connections between services, which could interrupt messages. You should consider software load balanc-
ing for your Web services solutions or, better yet, avoid load balancers and implement a routing-based
manager to direct service calls for you. Routing and referral is discussed in detail in this chapter in the
section titled “Overview of Routing and Referral.”

Overview of WS-Addressing
The WS-Addressing specification enables messages to store their own addressing information,
so that the source, destination, and reply URI locations are self-contained within the message.
This allows a message to hop across multiple endpoints without losing information about the
source of the original request. And it allows intermediate services to route and refer the mes-
sage across multiple endpoints until eventually a response is sent back to the specified reply
location.

If you are writing a very basic Web service that uses the HTTP transport protocol, you are
implementing a classic request/response model in which the client issues a request and the
service is expected to issue a direct response. In this scenario, it is unnecessary for the mes-
sage to contain its own addressing information. But the need changes in other scenarios, such
as a message that hops across multiple endpoints over the TCP transport protocol.

WS-Addressing is not interesting in and of itself. It is a support specification for other
important specifications such as WS-Reliable Messaging. Still, it is important to understand
the WS-Addressing constructs and how they are written to a SOAP message. Without WS-
Addressing, it would not be possible for messages to travel anywhere other than within the
well-established HTTP-based request/response model. Nor would it be impossible to write
truly asynchronous Web service calls.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING172

701xCH08.qxd 7/14/06 5:30 PM Page 172

Overview of the WS-Addressing Constructs
The WS-Addressing specification supports two types of constructs:

1. Message information headers

2. Endpoint references

These constructs are closely tied to elements that you find in a WSDL document, such
as operations, ports, and bindings. The WS-Addressing constructs are a complement to the
WSDL document, not a replacement; although it is likely that future versions of the WSDL
specification will evolve in conjunction with the WS-Addressing specification. Let’s consider
each of the constructs in turn.

Message Information Headers
These are the most intuitive addressing headers because they work in a similar fashion to
e-mail message addresses, which provide a set of headers including From, To, and ReplyTo. Of
course, SOAP message information headers include additional entries that are SOAP-specific
and have no relation to e-mail. For example, the Action header stores the XML qualified name
of the operation that the SOAP message is intended for.

Table 8-1 provides a summary of the available message headers, including their XML
representations.

Table 8-1. XML Elements for Message Information Headers

Header Type Description

To URI The destination URI for the message (required).

Action URI The SOAP action for the message (required). The action
identifies the specific endpoint operation that the message
is intended for.

From Endpoint Ref The source of the message (optional). At a minimum, the From
header must provide a URI, if it is specified. But you can also
add more complex endpoint reference information (optional).

ReplyTo Endpoint Ref The reply-to destination for the message response. This may be
different from the source address (optional).

Recipient Endpoint Ref The complete endpoint reference for the message recipient
(optional).

FaultTo Endpoint Ref The endpoint that will receive SOAP fault messages (optional).
If the FaultTo endpoint is absent, then the SOAP fault will
default to the ReplyTo endpoint.

MessageID Endpoint Ref The message ID property (optional). The ID may be a GUID
identifier, or it may be a qualified reference, for example, a
UDDI reference.

The only required message headers are To and Action; although, if you expect a response,
you will also need to set the From or ReplyTo headers. Table 8-1 shows you the type that the
header supports. Notice that the majority of the headers require endpoint references.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 173

701xCH08.qxd 7/14/06 5:30 PM Page 173

Listing 8-2 shows you how message information headers appear within a SOAP message.

Listing 8-2. A SOAP Message with Message Information Headers

<S:Envelope xmlns:S="http://www.w3.org/2002/12/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"
xmlns:st="http://www.bluestonepartners.com/schemas/StockTrader">

<S:Header>
<wsa:MessageID>uuid:7ae86g-95d...</wsa:MessageID>
<wsa:ReplyTo>

<wsa:Address>http://investor123.com/client</wsa:Address>
</wsa:ReplyTo>
<wsa:FaultTo>

<wsa:Address>http://investor123.com/faults</wsa:Address>
</wsa:FaultTo>
<wsa:To S:mustUnderstand="1">http://stocktrader.com/StockTrader</wsa:To>
<wsa:Action>http://stocktrader.com/StockTrader#RequestQuote</wsa:Action>

</S:Header>
<S:Body>

<st:RequestQuote>
<Symbol>MSFT</Symbol>

</st:RequestQuote>
</S:Body>

</S:Envelope>

Listing 8-2 is a SOAP message that is being sent from a client at investor123.com to a
stock trading service at stocktrader.com. The client is requesting a stock quote, using the
RequestQuote operation. This operation is described in the StockTrader schema, as referenced
in the envelope header. Note that the StockTrader schema is qualified using the XSD name-
space reference http://www.bluestonepartners.com/schemas/StockTrader.

This simple code listing displays the best aspect of SOAP messages: they are fully qualified
and self-describing. Every element in this SOAP message is qualified by a specific XML name-
space. And the addressing information for the message is self-contained. Nothing that is
included in a SOAP message is allowed to exist in a vacuum.

Endpoint References
Endpoint references are a little less intuitive than addressing headers, and they are more akin
to the WSDL <service> tag. Think of endpoint references as complex XML data types that
provide a collection of child elements to describe the various facets of the type. Endpoint ref-
erences provide both addressing and SOAP binding information.

Recall from Chapter 2 that the <service> element provides port information and binding
information combined. The <service> element describes the operations that are available at a
service endpoint, and also provides you with a message protocol–specific binding address.
The only message protocol we are really focused on here is SOAP. So, to be more specific, an
endpoint reference tells you what operations are supported at a given port and also how you
should address SOAP messages to that port.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING174

701xCH08.qxd 7/14/06 5:30 PM Page 174

Listing 8-3 shows an example of an endpoint reference as it is included within a SOAP
message. Compare this with Listing 8-2, which uses message information headers. Notice that
the endpoint reference stores the addressing destination information in a different tag, and
that it also contains dynamic reference information (such as AccountID) that is specific to the
endpoint reference.

Listing 8-3. Endpoint Reference XML

<wsa:EndpointReference>
<wsa:Address>soap.tcp://stocktrader.com/StockTrader</wsa:Address>
<wsa:ReferenceProperties>

<st:AccountID>123A</st:AccountID>
</wsa:ReferenceProperties>
<wsa:PortType>st:StockTraderSoap</wsa:PortType>
<wsp:Policy />

</wsa:EndpointReference>

Endpoint references do not replace message information headers because they are
focused on describing binding information for the endpoint, not specific operation informa-
tion. You do not get to choose between using message information headers vs. endpoint
references. Message information addressing headers may include endpoint references for the
destination elements in the message. But from a conceptual perspective, you can draw a dis-
tinction between the two constructs. Message information headers are a general construct for
storing addressing information, for both the sender and the receiver. Endpoint references are
more complex and dynamic and include SOAP binding information to the specific endpoint
that the SOAP message is intended for. Luckily, WSE 3.0 sets up the classes so that the con-
structs can be kept distinct from a programming perspective.

As with all the WS- specifications, you can drill down as far as you want to go and dive
into increasing complexity. Inevitably, if you drill down far enough, you will discover a rich
interaction between the specification elements, and the overall conceptual picture will begin
to blur. Our goal here is to keep the conceptual discussion clear and to provide you with a
solid grounding so that you can continue to explore on your own.

WSE 3.0 Implementation for WS-Addressing
WSE 3.0 implements the full WS-Addressing specification in a dedicated namespace
called Microsoft.Web.Services3.Addressing. Table 8-2 summarizes some of the important
WS-Addressing classes (each of which corresponds to an XML element in the WS-Addressing
specification).

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 175

701xCH08.qxd 7/14/06 5:30 PM Page 175

Table 8-2. Classes in the WSE 3.0 Addressing Namespace

Class Description

Action Specifies the XML qualified name of the operation that the SOAP
message is intended for.

Address Stores a binding-specific address and may be assigned to other classes,
including To, From, and ReplyTo. The properties of the Address class
correspond to classes that are based on endpoint references. For
example, the Address.To property corresponds to the WS-Addressing To
class, which is an endpoint reference.

AddressingHeaders Indicates the collection of properties that address a message, including
To, From, ReplyTo, and MessageID.

AddressingFault Occurs when there is an invalid header in the message or when an
exception occurs along the message path.

EndPointReference Stores endpoint reference information, which is binding information
for a service.

ReferenceProperties Indicates the collection of properties that add additional description
elements for an endpoint.

To Stores the source address as an endpoint reference.

From Stores the destination address as an endpoint reference.

ReplyTo Stores the reply-to address for the response as an endpoint reference.

There are three interesting things to note about the Addressing classes:

1. Most of the Addressing classes derive from XML and SOAP base classes, which reflect
their obvious close ties to these specifications. (In fact, the majority of WSE 3.0 specifi-
cation classes have similarly close ties to XML and SOAP base classes.)

2. You will not often need to instance these classes directly. Instead, it is more likely that
you will access them via properties on other classes. For example, the SoapEnvelope
class (in Microsoft.Web.Services3) provides a Context.Addressing property that
exposes the AddressingHeaders class. Here, you can directly set message addressing
information, such as From, To, ReplyTo, and Action properties.

3. The Addressing classes are independent of the underlying transport protocol. It does
not matter if the addressed SOAP message is transported over HTTP, TCP, or SMTP.
The addressing headers and references will apply, regardless of how the message is
transported.

The two more important classes in the Addressing namespace are the AddressingHeaders
class and the EndpointReference class. These correspond to the two main constructs in the
WS-Addressing specification: message information headers and endpoint references. Your
SOAP messages may use one or the other, depending on how you prefer to set addressing to
service endpoints. In the future it is likely that most addressing will be done in terms of end-
point references, particularly as the WSDL specification evolves and as the WS-Addressing
specification becomes more established and refined.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING176

701xCH08.qxd 7/14/06 5:30 PM Page 176

■Note Do not confuse the message protocol with the transport protocol. SOAP is a message protocol
(based on XML) that provides a specification for constructing messages. TCP is a transport protocol. HTTP
and SMTP are application protocols, which themselves utilize TCP, but which effectively function as transport
protocols in that they may be used to transport SOAP messages.

Security Considerations for WS-Addressing
Addressing information can be sensitive, especially when it contains port numbers and refer-
ences to qualified endpoints. We are used to thinking of this information as being public
because Web services are often publicly accessible. But with WS-Addressing, this information
is attached to the SOAP message header directly. You typically do not want the body of the
SOAP message to be tampered with or viewed by unauthorized parties. In the same way, you
should feel equally protective about the SOAP message headers.

Another sensitive case is when messages are routed between multiple endpoints, each of
which writes additional WS-Addressing information to the message header. The additional
endpoints may not be designed to handle direct service requests from outside clients. Their
addressing information needs to be kept protected.

There are three recommended options for securing the contents of a message that con-
tains addressing headers:

1. Digitally sign the message, including the body and header information.

2. Encrypt the message headers.

3. Add a message ID.

Digital signing allows you to detect whether a message has been tampered with or com-
promised. Digital signing alone will not encrypt or hide the contents of the message, but it will
ensure that a tampered message will be automatically rejected by the receiving Web service.

Encrypting the message headers will clearly protect its contents, but this approach works
best if the message is not being routed or referred to another Web service endpoint. Interme-
diary Web services will need access to the addressing header information, so there is an
additional burden on the developer to ensure that the intermediaries can encrypt the message
header contents. This leads to key management issues and also performance issues if each
endpoint is required to decrypt and encrypt message headers.

The message ID (<wsa:MessageID>) is important because it allows you to design against
replay attacks, whereby a client repeatedly resends the same message to a Web service end-
point in order to overwhelm the service and to bring down its host server. The receiving Web
service simply needs to cache this message ID and then ignore additional requests that come
in. Refer to Chapter 7 for a detailed discussion on replay attacks and how to prevent them.

There is no right way to implement security to protect addressing headers. Each of these
options are recommended rather than required. You need to make an individual determina-
tion as to whether security measures are required for your service-oriented application.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 177

701xCH08.qxd 7/14/06 5:30 PM Page 177

At this point, you should be more comfortable with the concepts behind WS-Addressing,
but you are probably still wondering exactly how to put these concepts, and the code, into
action. Remember that WS-Addressing is a support specification that is built for messaging.
The next section on messaging will provide you with the context for addressing by showing
you the important role that addressing plays for messaging.

Overview of Messaging
WSE 3.0 includes support for messaging, which provides developers with a new range of fea-
tures for transporting and processing SOAP messages. Traditional XML Web services support
the HTTP transport protocol only, which limits the client and server to communicating with a
synchronous request/response design pattern.

WSE 3.0 messaging continues to support the HTTP protocol, but it also supports two
additional transport protocols:

• TCP: This is a low-level protocol that communicates across processes and domain
boundaries. TCP is the underlying protocol in most Internet communications.

• In-Process: This protocol is designed for communication between components within
the same application domain. It is an optimized, low-level protocol that provides the
flexibility of TCP but is optimized for communication within the same application
domain.

In addition, WSE 3.0 provides classes that allow you to custom implement additional
transport protocols, such as SMTP and MSMQ.

Comparing Messaging with the HTTP and TCP Protocols
Services that communicate over HTTP must reside on a Web server in order for their end-
points to be accessible. However, services that communicate over TCP are accessible over a
direct port without requiring a virtual directory. Here is an example of an HTTP endpoint:

http://www.bluestonepartners.com/StockTrader.asmx

And here is an example of the equivalent TCP endpoint:

soap.tcp://216.70.214.118/StockTrader

The HTTP and TCP protocols have one thing in common: they both enable messaging
between remote components that are running on separate processes and on separate
domains. TCP is a lower-level protocol that operates on a port rather than a virtual directory,
which is a higher-level abstraction of a port.

HTTP is designed for request/response messaging patterns, meaning that a request gen-
erates a direct response. TCP is designed for decoupled messaging patterns, whereby a sender
and a receiver communicate but not necessarily as a two-way conversation. TCP enables

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING178

701xCH08.qxd 7/14/06 5:30 PM Page 178

asynchronous messaging, whereby the sender releases its calling thread as soon as the mes-
sage has been delivered to the receiver. By extension, TCP also enables one-way messaging,
because once a sender mails out a message its resources are released and the sender suffers
no resource or scalability problems waiting for a response that will never come. This is the
beauty of the decoupled TCP protocol: You can implement a request/response messaging
pattern if you want to but, unlike HTTP, you do not have to.

■Note Technically the HTTP protocol does support one-way messaging. The response will generate an
HTTP 202 status code (meaning “request accepted”), and no SOAP message will be returned.

Representing SOAP Messages in the WSE 3.0 Messaging
Framework
The Microsoft.Web.Services3 namespace provides a class called SoapEnvelope, which you
use for generating SOAP messages in code. The SoapEnvelope class derives from the
System.Xml.XmlDocument class, not surprisingly, and so it supports XML document loading
so that you can load preformatted SOAP messages into a SoapEnvelope object. Alternatively,
you can construct the SOAP message from scratch by setting properties on the SoapEnvelope
object.

Table 8-3 highlights important members of the SoapEnvelope class. Listing 8-4 shows you
how to construct a SOAP message in code for requesting a stock quote from the RequestQuote
operation.

Table 8-3. The SoapEnvelope Class

Property Type Description

Envelope XmlElement The envelope is the root element of the message XML. It contains
the message body and message header elements.

Body XmlElement The body element is required for all SOAP messages. It contains
qualified XML for the request and response messages.

Header XmlElement The header contains optional extended information for the SOAP
message. The WS- specification settings are stored in the header.

Fault Exception The SOAP fault information, if present, is retrieved from the
envelope and returned by the Fault property as an Exception
class.

Context SoapContext The Context property enables you to modify the SOAP message
contents within a custom WSE filter or to process the SOAP
message contents within a SoapReceiver processing class.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 179

701xCH08.qxd 7/14/06 5:30 PM Page 179

Listing 8-4. Constructing a SOAP Message in Code for the RequestQuote Operation

public SoapEnvelope CreateSoapMessage()
{

SoapEnvelope message = new SoapEnvelope();

RequestQuote q = new RequestQuote();
RequestQuote.Symbol = "MSFT";

message.SetBodyObject(q);

// Assign the addressing SOAP message headers
message.Context.Addressing.Action = new Action(➥

"http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote");
message.Context.Addressing.From = new From(fromUri);
message.Context.Addressing.ReplyTo = new ReplyTo(fromUri);

return message;
}

Listing 8-4 illustrates several important points:

• SOAP messages cannot be empty because their purpose is to communicate requests or
responses. Here the SOAP message is designed to transmit a stock quote request. It
uses the RequestQuote class to generate a correctly formatted request. Recall that
RequestQuote is defined in an IDC file that provides class representations for all of
the StockTrader custom data types.

• The SoapEnvelope’s SetBodyObject method automatically generates the SOAP message
body for the RequestQuote object.

• The SOAP message headers store addressing information directly, using the WSE 3.0
addressing classes. The Action property is required and must reflect the operation that
the sender is calling. If it calls a Web service that supports multiple operations, the
Action property enables the service to differentiate incoming requests and to process
them correctly.

■Note Refer back to Chapter 3 for a detailed discussion on the StockTrader XML schema. This chapter
shows you how to build the StockTrader XML schema from scratch, and also shows you how to generate an
IDC file of classes based on the schema.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING180

701xCH08.qxd 7/14/06 5:30 PM Page 180

SOAP Senders and SOAP Receivers
We are all familiar with two common messaging modes: peer-to-peer (e.g., chat applications)
and request/response (e.g., Internet browsing). With SOAP messaging, the concept of clients
and services does not really apply, because this implies a fixed communication pattern
(meaning that the client always initiates the request and then the service responds). With
SOAP messaging, it is more accurate to refer to senders and receivers, which implies roles
rather than functions. A given service may function as a message receiver in some cases and
as a message sender in others.

The WSE 3.0 messaging framework provides dedicated classes for the sender and receiver
roles. The SoapSender class sends a message out to a specified endpoint (URI). The class is
straightforward to use, as shown in Listing 8-5.

Listing 8-5. The SoapSender Class

SoapSender soapSender = new SoapSender(toUri);
soapSender.Send(message);

The SoapReceiver class is abstract and must be implemented in a custom class that is
assigned to receive the corresponding response for a message request. In a sense, this custom
SOAP receiver class acts like a callback function, in that it is called when a response is ready.
But unlike a traditional callback function, the custom SOAP receiver class is decoupled from
the request.

There are three steps to implementing a custom SOAP receiver class:

1. Create a custom class that implements the SoapReceiver abstract class.

2. Override the Receive method with a custom implementation for processing the
incoming response message.

3. Register the custom receiver class so that the messaging framework knows it is the
handler for the incoming response message.

Listing 8-6 shows you these three steps in code.

Listing 8-6. Implementing a SOAP Message Receiver

class StockTrader
{

public void SendSoapMessage(SoapEnvelope message)
{

// Register the response receiver
SoapReceivers.Add(fromUri, typeof(StockTraderResponseReceiver));

// Send the SOAP request message
SoapSender soapSender = new SoapSender(toUri);
soapSender.Send(message);

}
}

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 181

701xCH08.qxd 7/14/06 5:30 PM Page 181

public class StockTraderResponseReceiver : SoapReceiver
{

protected override void Receive(SoapEnvelope message)
{

// Process the incoming message...
}

}

The code in Listing 8-6 is implemented in the sender component to process incoming
response messages. It turns out that the receiver component implements very similar code but,
this time, to process incoming request messages. This is the important point: the SoapReceiver
class does not care whether it is implemented in a sender or a receiver component. It is
agnostic in this regard. Its purpose is to support the processing of incoming SOAP messages,
regardless of whether they originate from a sender or a receiver component.

Listing 8-7 shows you how to process an incoming message. This listing is taken from the
receiver component, which processes the RequestQuote SOAP request message. The receiver
needs to do the following:

1. Deserialize the SOAP message body.

2. Examine the SOAP message Action to determine how to process the incoming SOAP
message. The SoapReceiver must be able to correlate the incoming message body to a
qualified data type, in this case, the StockTrader Quote type.

3. Process the RequestQuote operation.

4. Generate a response message based on the Quote type, which is the output type from
the StockTrader’s RequestQuote operation. Inherent in this step is the fact that the
SoapReceiver must correlate this outgoing response message with the incoming SOAP
request message.

5. Send the response message back to the sender.

Listing 8-7. Generating a SOAP Message Response

public class StockTraderRequestReceiver : SoapReceiver
{

protected override void Receive(SoapEnvelope message)
{

if(message.Context.Addressing.Action.Value.EndsWith("RequestQuote"))
{

// Retrieve the body of the SOAP request message
// Since we have screened the Action, we know what class to look for
RequestQuote request = ➥

(RequestQuote)message.GetBodyObject(typeof(RequestQuote));
string symbol = request.Symbol;

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING182

701xCH08.qxd 7/14/06 5:30 PM Page 182

// Call the RequestQuote() method: delegate the call
// to a business assembly
Quote q = RequestQuote(symbol);

// Transform the result into a SOAP response message
SoapEnvelope response = new SoapEnvelope();
response.SetBodyObject(q);

// Create the URI address objects for send and receive
// Note, instead of hardcoding the URIs, we will pull them from
// the original request message
// Send response to the request message's ReplyTo address
Uri toUri = (Uri)message.Context.Addressing.ReplyTo;
// Return response from the request message's To address
Uri fromUri = (Uri)message.Context.Addressing.To;

// Assign the addressing SOAP message headers
response.Context.Addressing.Action = new Action(➥

"http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote#Quote");
response.Context.Addressing.From = new From(fromUri);
SoapSender soapSender = new SoapSender(toUri);

// Send the SOAP request message
soapSender.Send(response);

}
}

// Implementation for RequestQuote()
private Quote RequestQuote(string Symbol)
{

// Create a new Quote object
Quote q = new Quote();

// Retrieve the stock quote (code not shown)

// Return the Quote
return q;

}

}

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 183

701xCH08.qxd 7/14/06 5:30 PM Page 183

Listing 8-7 highlights the following important points:

• This code is contained in a separate component from the sender, running on a separate
process. However, both the sender and the receiver components must have the same
understanding of the StockTrader custom types, including RequestQuote and Quote.
They can accomplish this in two ways: they can generate an IDC file of classes directly
from the XSD schema, or they can each implement a reference assembly of types, simi-
lar to the StockTraderTypes assembly that is used throughout the sample solutions.

• The receiver component implements business processing logic for the RequestQuote
method. The sender component simply knows how to construct a qualified Request-
Quote message. However, the receiver component must know how to process the
operation. (Alternatively, the receiver component could call a dedicated business
assembly, which centralizes all of the StockTrader processing. This approach is pre-
sented in Chapter 4.)

• The receiver component constructs a new response message with its own addressing
headers in order to return the stock quote result to the sender. The receiver component
uses the same SoapSender class to actually send the message out to the specified
endpoint.

■Note The StockTraderTypes IDC file used here is based on the StockTraderWithOperations.xsd schema
file from Chapter 3, which includes complex elements to represent each of the four supported Web service
operations. Please refer to Chapter 3 if you require more information.

Implement a Windows Forms–Based Receiver
The receiver component must be up and running to respond to incoming request messages.
To illustrate this, the sample solutions include a stand-alone Windows Forms–based receiver
called StockTraderSoapReceiver. Figure 8-1 shows the Solution Explorer for this solution.

The receiver references the Microsoft.Web.Services3 and System.Web assemblies. The
startup code for the form registers the custom SoapReceiver class that will handle the incom-
ing request message, as shown in Listing 8-8.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING184

701xCH08.qxd 7/14/06 5:30 PM Page 184

Figure 8-1. Solution Explorer for the StockTraderSoapReceiver solution

Listing 8-8. Registering a Custom SoapReceiver Class

public class StockTrader : System.Windows.Forms.Form
{

class StockTrader()
{

// Use TCP
receiverUri = new Uri(String.Format(➥

"soap.tcp://{0}/StockTraderSoapReceiver", System.Net.Dns.GetHostName()));

// Register the SOAP receiver objects
StockTraderRequestReceiver request = new StockTraderRequestReceiver();
SoapReceivers.Add(receiverUri, request);

}
}

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 185

701xCH08.qxd 7/14/06 5:30 PM Page 185

Listing 8-7 provides the code for the custom SoapReceiver class called StockTrader-
RequestReceiver.

The StockTraderSoapReceiver project acts as a listener when it is compiled and run.
Figure 8-2 shows the form interface when the project is running.

Figure 8-2. The TCP-based receiver component

This approach is a good shortcut for ensuring that the receiver component stays up and
running. In a production setting you should implement the listening receiver component as a
Windows Service component.

The IDC File and WSDL
The StockTraderTypes.cs class file in the sample receiver project provides the IDC file that
provides class representations of the StockTrader custom data types. This type information
must be available to both the sender and the receiver, so it is best to compile a dedicated
StockTraderTypes assembly and to reference it from both the sender and the receiver solu-
tions. The IDC file is included as a class file in the sample so that you can more easily inspect
its contents. Listing 8-9 shows an excerpt from the StockTraderTypes.cs file.

Listing 8-9. The StockTraderTypes IDC File

using System;
using System.Xml.Serialization;

namespace StockTraderTypes
{

[System.Xml.Serialization.XmlTypeAttribute(Namespace=
"http://www.bluestonepartners.com/schemas/StockTrader/")]

public class RequestQuote
{

public String Symbol;
}

[System.Xml.Serialization.XmlTypeAttribute(Namespace=
"http://www.bluestonepartners.com/schemas/StockTrader/")]

public class Quote
{

public string Symbol;
public string Company;
public string DateTime;

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING186

701xCH08.qxd 7/14/06 5:30 PM Page 186

// Additional properties are not shown (e.g, Open, Last, etc.)
}

}

Since you are no longer working with the XML Web service project type, you have lost
your shortcut for generating a WSDL document directly from an .asmx service file. The
StockTraderTypes.cs file can in fact be generated directly from the StockTrader.xsd schema
file, which you are guaranteed to have; so technically you can do without a WSDL file when
building a decoupled, TCP-based sender-receiver solution. But a WSDL file contains essential
metadata information that is stored according to an established specification. You cannot
build a WS-I–compliant service without including a WSDL file.

So by no means are we advocating that you build services without WSDL files. You cannot,
because the service must be compliant with established specifications. If it is not compliant,
then it is effectively unusable, because the WSDL file stores essential metadata information on
the service that is required for widespread use by different clients. However, we are pointing
out that if you bypass building a traditional .asmx Web service, you will be forced to manually
generate the WSDL file. We expect that future releases of the .NET Framework will include
alternate utilities for generating WSDL files. These will have to be made available once non-
HTTP-based Web services become as common a service type as XML Web services are today.

Traditional XML Web Services vs. SOAP Messaging over HTTP
Traditional XML Web services are conveniently implemented using the HTTP protocol, and
as a developer you never need to interact with the SOAP messages directly. In fact, prior to
WSE 3.0, if you needed to interact with the SOAP message directly during processing, you had
to write a custom HTTP handler to intercept the messages. You also needed to manually
implement most of the plumbing for parsing, modifying, and generally interacting with the
SOAP message.

WSE 3.0 does not require you to use its messaging framework if you are transporting
SOAP messages over HTTP. But you will want to if you need to perform custom processing on
these SOAP messages. With WSE 3.0 you do not have to write an HTTP handler yourself,
because one is already provided for you. All you have to do is implement the processing code
for the message itself. All of the plumbing code has already been taken care of for you.

Let’s assume that the sender, or client, is a Windows Forms–based application and that
the receiver, or service, is enabled for HTTP. There are three steps for implementing the service
as an HTTP-enabled SOAP receiver:

1. Create a custom SoapReceiver class in the receiver component.

2. Register the custom SoapReceiver class as an HTTP handler in the web.config file (see
Listing 8-10).

3. Create a virtual directory to host the service (e.g., HttpMessagingService).

Listing 8-10 shows how you register a custom SoapReceiver class in the web.config file, so
that it is automatically enabled for the HTTP protocol. Listing 8-7 provides an example of a
custom SoapReceiver class. Although Listing 8-7 was developed for the TCP protocol, all you
need to do to enable it for HTTP is to modify the URI of the SoapReceiver response endpoint,
from soap.tcp://{endpoint} to http://{virtual directory}.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 187

701xCH08.qxd 7/14/06 5:30 PM Page 187

Listing 8-10. Registering a SoapReceiver Class Using the HTTP Protocol

<configuration>
<system.web>

<httpHandlers>
<add verb="*" path="receiver.ashx" type="MyNamespace.MyReceiver,

MyAssemblyName" />
</httpHandlers>

<system.web>
<configuration>

Based on the earlier Listing 8-7, the type name of the HTTP handler would be

type="StockTrader.StockTraderRequestReceiver, StockTraderSoapReceiver"

Note that the <add /> section must be formatted as a single line in the web.config file or it
will generate parsing errors at runtime.

The client application calls the HTTP-enabled service using a standard HTTP link, which
includes the name of the virtual directory that hosts the service and the name of the standard
HTTP handler. For this example, the link is

http://localhost/HttpMessagingService/receiver.ashx

The WSE 3.0 messaging framework makes it easy for you to continue working with the
HTTP protocol, while at the same time making it much easier for you to manually process
SOAP request and response messages.

Properties of Message-Enabled Web Services
Traditional XML Web services are very limiting compared to the new capabilities provided by
WSE 3.0 messaging. As you explore WSE 3.0 in general, and the new messaging capabilities in
particular, you should clearly notice that

Web services are about both SOAP and XML. SOAP messages are the key technology in an
SOA. XML is essential because the SOAP and WSDL specifications are XML-based, but
without SOAP there would be no messages, and therefore no purpose for Web services.

SOAP messages are advanced communication instruments. Previously, SOAP messages
were limited to relatively simple constructs and could not be secured. But the WS- specifi-
cations now enable SOAP messages to record their own addressing information and be
digitally signed and encrypted (both in the header and the body). SOAP messages have
become advanced instruments for communication.

SOAP messages are composable and have unlimited extensibility. Technically, a Web serv-
ice is what is composable, not a SOAP message. But it is the message itself that must store
and carry the required WS- specification elements (specifically, the SOAP header block).
When you apply a communications trace, you are doing so on the exchanged SOAP mes-
sages, not on the endpoints themselves. SOAP messages are tailored to reflect the policies
of their endpoints and must correctly incorporate the cumulative set of required custom
elements. SOAP messages are composable and have unlimited extensibility.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING188

701xCH08.qxd 7/14/06 5:30 PM Page 188

SOAP senders and receivers replace traditional clients and services. With SOAP messag-
ing, it is more accurate to refer to senders and receivers, which implies roles rather than
functions. A given service may function as a message receiver in some cases, and as a
message sender in others.

Overview of Routing and Referral
SOAP message routing is a topic that follows very naturally from the discussions presented so
far in this chapter. Routing allows you to set up a virtual network for processing incoming
SOAP messages by enabling the flexible redirection of SOAP messages to alternate servers that
are not directly accessible by the original sender. We use the term virtual network because the
routing may only take place on a subset of the actual physical network.

There are three main virtual network design models for routing:

Load balancing: This model routes SOAP messages from a logical endpoint on to one
server within a cluster of back-end servers that are running the same services. This rout-
ing pattern overlaps what is provided by established network load balancing (NLB)
solutions, including Cisco LocalDirector and Microsoft Network Load Balancing Services.

Chain: This model routes SOAP messages through a chain of so-called SOAP intermedi-
aries, which are intermediate services that process a SOAP message on the way to its
ultimate receiving endpoint.

Content-based: This model routes SOAP messages based on header-specific content.

Figure 8-3 provides schematic views of each of these patterns. Notice that each of them
defines a common entity called the SOAP router. This is the immediate destination endpoint
for an incoming SOAP request message. In the load balancing model, the SOAP router does no
direct message processing; its sole purpose is to redirect the message to alternate servers for
processing. However, in the other models the SOAP router may process the SOAP message in
addition to routing it.

WSE 3.0 provides an elegant implementation of routing and WS-Referral for the load bal-
ancing model that does not require you to write any code in the SOAP router. Everything is
driven by configuration file settings that reflect the routing model that you want to put in
place. WSE 3.0 is generally good about saving you from writing code. With routing, this is even
truer since you do not need to modify the core business logic in the receiving services. How-
ever, if you are implementing the chain routing model or the content-based routing model,
the intermediary services will need to update addressing headers on the message to reflect the
next destination in the chain.

WSE 3.0 provides out-of-the-box support for routing and WS-Referral using the HTTP
protocol only. In theory, the specifications can apply to other transport protocols as well, such
as TCP and SMTP. However, the WS-Addressing specification provides a more efficient routing
and referral implementation for these protocols. In addition, WS-Addressing may be more
efficient for implementing the chain routing model. For more on this, refer to the section
“Routing vs. WS-Addressing” later in this chapter.

Now let’s look at an example of how to build a SOAP router that implements a combina-
tion of the chain and load balancing routing models.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 189

701xCH08.qxd 7/14/06 5:30 PM Page 189

Figure 8-3. Network design patterns for SOAP message routing

Build a SOAP Router for the Load Balancing Routing Model
This example SOAP routing solution is included in the sample files as SOAPRouter.sln. It con-
sists of three projects, as shown in Figure 8-4.

The three projects are as follows:

1. SOAPSender: A console-based client application

2. SOAPService: A Web service application that processes stock quotes and trades

3. SOAPRouter: A Web service–based SOAP router application

These projects continue to use the StockTrader application that you have seen developed
throughout the book. We renamed the projects using clear names so that there is no ambiguity
about the purpose of each project. Technically, this solution is a combination of the chain and
load balancing routing models because it contains only one referral Web service.

Let’s discuss each of the solution projects in turn.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING190

701xCH08.qxd 7/14/06 5:30 PM Page 190

Figure 8-4. Solution Explorer for the SOAPRouter sample solution

Overview of the SOAPSender
The SOAPSender application requests stock quotes from the SOAP service using two possible
internal method calls:

• SendUnsignedRequest: Sends an unsigned stock quote request to the SOAPService
RequestQuote operation.

• SignRequestUsingX509Certificate: Sends a digitally signed stock quote request to the
SOAPService RequestQuote operation. The digital signature is based on an X.509
certificate.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 191

701xCH08.qxd 7/14/06 5:30 PM Page 191

Each of these method calls invokes the same proxy class. The difference between the two
methods is simply whether the request message will be sent out as signed or not.

The Web service proxy class provides two possible URIs for requesting a stock quote, as
shown in Listing 8-11. One URI requests the quote directly from the Web service, while the
other URI requests the quote via the SOAP router, which provides an .asmx file of the same
name, although the virtual directory name is different.

Listing 8-11. Service Endpoints for the SOAPSender Application

public StockTraderServiceWse()
{

// Note to user: toggle between each of these URLs
// 1. SOAPService goes directly to the service
//this.Url = "http://localhost/SOAPService/StockTrader.asmx";
// 2. SOAPRouter goes to the service via a router
this.Url = "http://localhost/SOAPRouter/StockTrader.asmx";

}

Of course, in a production setting, the SOAPService would not be directly accessible from
outside clients. Instead, they would be forced to route their request through the SOAPRouter.

Overview of the SOAPService
The implementation code for the SOAPService RequestQuote method is shown in Listing 8-12.
The most important aspect of this code listing is the SoapActor attribute, which decorates the
Web service class (shown in bold). This attribute designates the specific recipient of the mes-
sage response, in this case the SOAP router, which will in turn pass the response back to the
original sender. If the SoapActor attribute is not provided, the Web service request will gener-
ate an addressing error upon receipt, because the most recent sender of the request (the SOAP
router) will not match the first sender and ultimate recipient of the response (the SOAP
sender). The SoapActor attribute allows for messages to be accepted by services after passing
through intermediaries.

If you ever need to drop the SOAPRouter, and wish instead to call the StockTrader Web
service directly, make sure to change the SoapActor attribute value to the URL of the Web serv-
ice itself, in this case: http://localhost/SOAPService/StockTrader.asmx.

Listing 8-12. The SOAPService RequestQuote Method

using Microsoft.Web.Services3;
using Microsoft.Web.Services3.Messaging;

[SoapActor("http://localhost/SOAPRouter/StockTrader.asmx")]
public class StockTraderService : Microsoft.Web.Services3.WebService
{

public Quote RequestQuote(string Symbol)
{

// Step 1: Instance a new Quote object
Quote q = new Quote();

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING192

701xCH08.qxd 7/14/06 5:30 PM Page 192

// Step 2: Code to retrieve stock quote data
// Code goes here (not shown)

// Step 3: Return a populated Quote object
return q; // Return a populated Quote object

}
}

The rest of the SOAPService Web service is standard, as was presented in Chapter 3, with
the StockTrader Web service example. The only significant difference is this addition of the
SoapActor attribute to the Web service methods.

Overview of the SOAPRouter
The SOAPRouter implements a configuration file called the referral cache, which stores desti-
nation endpoints for the message to be routed to. Listing 8-13 provides an example of a
referral cache for a chain SOAP router that forwards incoming messages on to a single back-
end service.

Listing 8-13. The Referral Cache Configuration File

<?xml version="1.0" ?>
<r:referrals xmlns:r="http://schemas.xmlsoap.org/ws/2001/10/referral">

<r:ref>
<r:for>

<r:exact>http://localhost/SOAPRouter/StockTrader.asmx</r:exact>
</r:for>
<r:if />
<r:go>

<r:via>http://localhost/SOAPService/StockTrader.asmx</r:via>
</r:go>
<r:refId>uuid:fa469956-0057-4e77-962a-81c5e292f2ae</r:refId>

</r:ref>
</r:referrals>

This configuration file is stored as a separate configuration file within the SOAPRouter
project. In order to find it, you also need to update the project’s web.config or app.config files
to point to the location of the referral cache file. Listing 8-14 provides an example of how to
update the web.config file. You do not need to do most of this work manually. Instead you can
use the WSE 3.0 Settings Tool to implement most of these tags. Note that the Settings Tool has
a limitation when it comes to specifying the <httpHandler>, in that it does not allow you to
type a custom path, in this case StockTrader.asmx. So you will need to accept the default
path of *.ashx, and then update the actual path once you have applied the settings to the
web.config file.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 193

701xCH08.qxd 7/14/06 5:30 PM Page 193

Listing 8-14. The SOAPRouter web.config File, Including Location of Referral Cache File

<configuration>

<configSections>
<section name="microsoft.web.Services3"

type="Microsoft.Web.Services3.Configuration.WebServicesConfiguration,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />

</configSections>

<system.web>
<webServices>

<soapExtensionImporterTypes>
<add type= ➥

"Microsoft.Web.Services3.Description.WseExtensionImporter,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />

</soapExtensionImporterTypes>
</webServices>
<httpHandlers>

<add type="Microsoft.Web.Services3.Messaging.SoapHttpRouter,
Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral, ➥

PublicKeyToken=31bf3856ad364e35" ➥

verb="*" path="StockService.asmx" />
</httpHandlers>

</system.web>
<microsoft.web.Services3>

<referral>
<cache name="referralCache.config" />

</referral>
</microsoft.web.Services3>
</configuration>

Note that referral cache files are cached in memory, just as web.config files are. The refer-
ral cache file will refresh in the cache whenever it gets updated.

■Caution You must give the ASP.NET worker process read-write access permissions to the referral cache
configuration file. Browse to the file location using Windows Explorer, right-click the file properties, and
switch to the Security tab. In Windows XP and Windows 2000 add the ASP.NET worker process account (by
default, [MachineName]\ASPNET), and set read-write permissions. In Windows 2003 and/or IIS 6, add the
default Network Service account, or the user account that is currently running the application pool. If you do
not take this step, you will get an exceedingly ugly SOAP exception call stack.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING194

701xCH08.qxd 7/14/06 5:30 PM Page 194

Send a Stock Quote Request Using the SOAPSender
Now all that is left is to execute the project. First verify that the SOAP sender proxy class is
pointing to the SOAP router URI. Then start the SOAPSender project and test out each of the
two possible request calls:

• SendUnsignedRequest

• SignRequestUsingX509Certificate

Each method call returns a successful stock quote result. This result is so uneventful that
you would be forgiven for wondering whether the SOAP router actually does anything. You
can quickly put these doubts to rest by renaming the referral cache configuration file, so that it
cannot be loaded at runtime. This will generate a SOAP exception back to the client indicating
that the configuration file could not be loaded.

What is remarkable about this code example is that the destination Web service,
SOAPService, does not complain when it receives a digitally signed SOAP message from the
SOAPRouter, rather than from the SOAPSender, which originally signed and sent the request.
The routing and WS-Referral infrastructure automatically handles this contingency and pre-
vents you from receiving exceptions about an invalid digital signature.

In summary, chain SOAP routers give service providers flexibility to implement an opti-
mum service processing solution for incoming SOAP messages. Load balancing SOAP routers
help network administrators maintain service networks. As servers are taken offline for main-
tenance, the information in the referral cache can be updated to remove the server from the
list of available referral servers. Finally, content-based SOAP routers make strategic routing
decisions based on the contents of the SOAP message headers.

■Note The sample project SOAPSender.csproj (contained within the solution SOAPRouter.sln) allows you
to toggle between a direct Web service call and an indirect one via a SOAP router (see StockTraderProxy.cs,
Line 38). If you modify the URL for the Web service request, you must also modify the SoapActor attribute
on the target Web service method to reflect the same target URL (see StockTrader.asmx, Line 33, in the
SOAPService project). If you do not, you will receive addressing errors because the <to> header on the
request must match the Actor attribute on the receiver. The sample projects contain clear notes describing
how to toggle the SoapActor attribute in response to a different target URL from the sender.

Routing vs. WS-Referral
As we talk about routing, we are actually talking about both routing and referral. The term
routing refers to the infrastructure that enables SOAP messages to be forwarded on to other
destination endpoints. The term referral describes the physical act of forwarding a message
on. It is common practice to use the term routing to describe the combined process of routing
and referral.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 195

701xCH08.qxd 7/14/06 5:30 PM Page 195

Routing and Security
Remember that all Web service specifications are composable. Routing does not implement
any kind of security for referred messages. However, you can use WS-Security in conjunction
with routing to provide a security solution for the referred messages. For example, you can
digitally sign or encrypt incoming messages, as you saw in the SOAPSender solution. Note that
encrypted messages can pass through intermediary routers even if those routers do not know
how to decrypt the message. Routing configuration is separate from the message contents.
The intermediary only needs to decrypt the message if this is required in order to make a spe-
cialized routing decision. But in most cases this will not be necessary. If the routers do need to
decrypt the message and you use X.509 certificates for encryption, you must ensure that each
of the intermediary services has access to the necessary keys. In fact, this applies whenever
you use an X.509 certificate, whether for digital signatures or encryption.

In a chain routing model, it is likely that intermediary services will modify the contents of
an incoming SOAP request message. If the incoming SOAP message is digitally signed, the
intermediary service will need to re-sign the message before forwarding it on to the next serv-
ice. However, as the SOAPSender solution shows you, digital signature validation will not fail if
the SOAP router simply passes on the SOAP message to a destination endpoint without alter-
ing the message contents.

There is no question that routing solutions add an administrative and development bur-
den to implementing an SOA. And when you add security policies into the mix, the burden
will become even greater. It is likely that future releases of WSE will include provisions to
address this issue. To this date, subsequent releases of WSE have always managed to reduce
complexity compared to earlier releases of the same features.

Routing vs. WS-Addressing
Our first thought when we saw the WSE 3.0 WS-Addressing implementation was whether it
overlaps with the pre-WSE 3.0 releases for routing and WS-Referral. There is no definitive
answer to this question, but it seems very likely that the WS-Addressing specification does
indeed supersede the WS-Routing and WS-Referral specifications for all SOAP routing models
other than perhaps the load balancing model (which is not used often in Web services solu-
tions due to the complexities that load balancing introduces for these types of solutions).

The reason is that WSE 3.0 currently implements routing for the HTTP transport protocol
only. This model requires the service endpoints to be .asmx service files or custom SOAP han-
dlers. Either way, you need to configure a virtual directory to host the service. This can be a
significant administrative burden if your virtual network infrastructure includes multiple
chained services. By comparison, the WS-Addressing specification is implemented for non-
HTTP protocols, such as TCP, which do not require you to configure a virtual directory.

Perhaps the clearest indication for potential overlap between routing and WS-Addressing
is the fact that WSE 3.0 continues to implement routing only for the HTTP transport protocol.
We believe this was a purposeful decision to avoid implementing overlapping specifications
that accomplish the same thing. In this scenario, one specification will always be more effi-
cient than the other.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING196

701xCH08.qxd 7/14/06 5:30 PM Page 196

■Note WSE 3.0 supports routing only for HTTP due to a technical issue with the request/response model
and TCP. With the TCP protocol, the intermediary does not know whether to hold a thread open to wait for a
response. With HTTP, the intermediary either receives a response or receives an HTTP 202 error. TCP-
compliant intermediaries must be custom written.

You can further enhance your productivity with WS-Addressing by using classes
called SoapClient and SoapService, which are higher-level classes than their counterparts
SoapSender and SoapReceiver. The SoapClient and SoapService classes automatically handle
much of the plumbing code that SoapSender and SoapReceiver require you to write for pro-
cessing SOAP messages. We will not be discussing these higher-level classes here, because
they shield details that are important to understanding how SOAP messaging actually works.
In addition, these classes are very easy to understand once you are comfortable with the
lower-level SoapSender and SoapReceiver classes. But once you find yourself writing the same
kind of messaging code over again, by all means use these classes and avoid some manual
coding.

■Note WSE 3.0 provides support for routing but does not implement the WS-Routing specification. This is
because the WS-Addressing specification supersedes the WS-Routing specification. (The WS-Referral speci-
fication is orthogonal to the WS-Routing specification.)

Integrate Web Services and MSMQ
This chapter ends with a bonus section that shows you one possible approach for integrating
Web services and message queuing (with MSMQ). We should quickly point out that we are not
going to show you how to create an MSMQ custom transport channel. Instead, we are going to
discuss how to configure a message queue and then access it from a Web service using the
System.Messaging namespace.

WSE 3.0 does not implement reliable messaging, nor does it provide any kind of support
for managing message delivery. If you want to implement this capability today, you will need
to custom build the support infrastructure using MSMQ (or another middleware product such
as MQSeries).

Use MSMQ for Reliable Messaging
Consider the following application design for a StockTrader application for mutual fund
trades, which cannot be executed until after the stock exchange closes for the day. Clients can
send trade requests to their broker, but they will be stored and processed later, once the stock
exchange is closed. Here is the workflow between the client and service:

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 197

701xCH08.qxd 7/14/06 5:30 PM Page 197

1. A client decides that they want to place a mutual fund trade.

2. The client formats an XML message with the details of the trade and sends it to the
StockTrader Web service.

3. The StockTrader Web service receives the message but does not process the trade
immediately. Instead, the Web service drops the message into a queue for later
processing.

4. The StockTrader Web service formats an acknowledgment response message to the
client to let them know that the trade request has been received and that it will be
processed shortly.

5. The client receives the response message.

Let’s implement this workflow using a TCP-based StockTrader Web service that integrates
with a message queue on its host server.

Create a Message Queue Trigger
Our first step is to create the message queue using MSMQ and then create a message queue
trigger, which will respond to incoming messages. MSMQ is available with the Windows 2000
operating system and higher. If you do not have MSMQ installed you can add it using the
Control Panel ➤ Add or Remove Programs option (select Add/Remove Windows Components
from the selection screen).

MSMQ is included under the Computer Management MMC snap-in, as shown in
Figure 8-5.

Figure 8-5. The Computer Management MMC snap-in, including MSMQ

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING198

701xCH08.qxd 7/14/06 5:30 PM Page 198

To create a new private queue, expand the Message Queuing node and right-click the Pri-
vate Queues subfolder. Expand and select the New ➤ Private Queue menu option. Enter a
name for the queue (we used wsmessaging) and click OK. You will see the new queue listed
under the Private Queues subfolder.

Next, expand the wsmessaging node, right-click the Triggers node, and select the New ➤
Trigger menu option. You will see a property page, shown in Figure 8-6. Enter the configura-
tion information as shown, selecting the Retrieval processing type.

Figure 8-6. Creating a new MSMQ message trigger

Note that you are not creating a fully functional trigger that will fire off a process when a
message is received. Instead, you will allow the message to sit in the queue so that you can
examine its contents manually.

Create a Web Service That Uses MSMQ
The Web service is written as a TCP-enabled service and is included in a sample solution
called StockTraderMSMQReceiver.sln. The solution includes a reference to the System.
Messaging assembly, which is not included with WSE 3.0 but is instead a separate assembly
within the .NET Framework.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 199

701xCH08.qxd 7/14/06 5:30 PM Page 199

The Web service provides a Receive method that examines incoming SOAP request mes-
sages. All messages with an action value of PlaceTrader are dropped into the message queue.
Listing 8-15 provides the code listing for the Receive method and a helper method called
AddSoapMessageToQueue.

Listing 8-15. A Web Service That Uses MSMQ

// This class represents the Request Receiver (i.e., the service)
public class StockTraderRequestReceiver : SoapReceiver
{

protected override void Receive(SoapEnvelope message)
{

if(message.Context.Addressing.Action.Value.EndsWith("PlaceTrade"))
{

bool status = false;

// Drop the incoming SOAP message to a queue, for later processing
status = AddSoapMessageToQueue(message);

// Generate a return status message
AcknowledgeMessage a = new AcknowledgeMessage();
a.AcceptedToQueue = status;

// Transform the result into a SOAP response message
SoapEnvelope response = new SoapEnvelope();
response.SetBodyObject(a);

// Create the URI address objects for send and receive
// Do not hardcode the URIs, pull them from original request message

// Send response to the request message's ReplyTo address
Uri toUri = (Uri)message.Context.Addressing.ReplyTo;

// Return response from the request message's To address
Uri fromUri = (Uri)message.Context.Addressing.To;

// Assign the addressing SOAP message headers
response.Context.Addressing.Action = new Action(➥

"http://www.bluestonepartners.com/schemas/StockTrader/RequestQuote#PlaceTrade");
response.Context.Addressing.From = new From(fromUri);
SoapSender soapSender = new SoapSender(toUri);

// Send the SOAP request message
soapSender.Send(response);

}
}

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING200

701xCH08.qxd 7/14/06 5:30 PM Page 200

private bool AddSoapMessageToQueue(SoapEnvelope message)
{

bool status = true;
MessageQueue mq;

// Verify that the Queue exists
if (MessageQueue.Exists(@".\private$\wsmessaging"))
{

// Assign a reference to the queue
mq = new MessageQueue(@".\private$\wsmessaging");

// Drop the incoming message to the queue
mq.Send((SoapEnvelope)message, ➥

message.Context.Addressing.MessageID.Value.ToString());
}
else
{

// Error condition if queue does not exist
status = false;

}
return status;

}

}

Notice that the Receive method formats an acknowledgment message that corresponds to
a custom data type called AcknowledgeMessage, which is included in both the Web service
XML schema file and client proxy class file, and is also shown in Listing 8-16.

Listing 8-16. The AcknowledgeMessage Custom Data Type

[System.Xml.Serialization.XmlTypeAttribute(Namespace=
"http://www.bluestonepartners.com/schemas/StockTrader/")]

public class AcknowledgeMessage
{

public bool AcceptedToQueue;
}

The sample project does not include code for processing the message because this is
beyond what we are trying to show. If you open the message queue in the MMC console, you
will see a new message in the queue. Figure 8-7 shows an example of what the message body
looks like. The property page displays both the byte array and the readable message body.
Notice the SOAP contents on the right side of the figure.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 201

701xCH08.qxd 7/14/06 5:30 PM Page 201

Figure 8-7. The body contents for an MSMQ message

Implement the Web Service Client
The Web service client is written as a TCP-enabled console application and is included in a
sample solution called StockTraderMSMQClient.sln.

The Web service client sends out a trade request and provides a Receive method that
examines incoming SOAP response messages. All messages with an action value of Place-
Trader are dropped into the message queue. Listing 8-17 provides the code listing for the
Receive method, showing how the client processes the acknowledgment message.

Listing 8-17. A Web Service Client That Processes an Acknowledgment Message

// This class represents the Response Receiver (i.e., the client)
public class StockTraderResponseReceiver : SoapReceiver
{

protected override void Receive(SoapEnvelope message)
{

if (message.Fault != null)

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING202

701xCH08.qxd 7/14/06 5:30 PM Page 202

{
Console.WriteLine(message.Fault.ToString());

}
else
{

if (message.Context.Addressing.Action.Value.EndsWith(➥

"RequestQuote#PlaceTrade"))
{

// Deserialize the message body into an AcknowledgeMessage object
// Since we have screened the Action, we know
// what class to look for
AcknowledgeMessage a = ➥

(AcknowledgeMessage)message.GetBodyObject(➥

typeof(AcknowledgeMessage));
if (a.AcceptedToQueue)
{
Console.WriteLine("Your trade will be processed at 4PM EST today.");
}
else
{

Console.WriteLine("Your trade can't be processed at this time.");
}

}
}

}
}

This concludes the discussion on the WSE 3.0 messaging framework, and the discussion
of one approach for integrating MSMQ with Web services.

Summary
The most challenging aspect of understanding the WSE 3.0 messaging framework is in the
concepts, not in the code. The code is straightforward, but the concepts are difficult if you are
used to working with the familiar HTTP request/response model. The key to understanding
messaging is to stop thinking in terms of fixed clients and services and to instead think in
terms of flexible sender and receiver roles.

We began this chapter by reviewing several communication models for Web services
beyond classic request/response. We then discussed the WS-Addressing specification, which
provides important support functionality for Web services that communicate over alternate
transport channels, such as TCP.

Next we discussed the messaging and showed you how to implement truly asynchronous
client-service communication using SOAP over TCP and the WSE 3.0 messaging framework
classes. WSE 3.0 provides both lower-level and higher-level classes that provide a consistent
messaging framework independent of the transport channel. The framework classes shield
developers from the underlying complexities of the transport layer, which increases produc-
tivity and makes it relatively easy to implement a wider range of service-oriented solutions.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING 203

701xCH08.qxd 7/14/06 5:30 PM Page 203

Next, you saw the routing and WS-Referral specifications, which provide support for mes-
sages that are referred between multiple endpoints. We noted that there is some overlap
between the routing and addressing specifications.

Finally, we provided one example of how to integrate message queuing with Web services.
This approach does not implement MSMQ as an alternative transport channel, but it is a good
first step toward implementing reliable messaging.

The central focus of this book is to make you rethink what Web services are all about, and
nowhere is this more apparent than with the WSE 3.0 messaging framework. This chapter
marks the end of the discussion on WSE 3.0. SOA is constantly evolving, so in the next chapter
we will focus beyond WSE 3.0 and show you what specifications and technologies are in store
for the near future.

CHAPTER 8 ■ SOAP MESSAGES: ADDRESSING, MESSAGING, AND ROUTING204

701xCH08.qxd 7/14/06 5:30 PM Page 204

Beyond WSE 3.0: Looking Ahead
to Windows Communication
Foundation (WCF)

Today, WSE 3.0 is the easiest way to implement selected WS- specifications in your .NET
Web services and service-oriented applications. WSE 3.0 provides developer support for
building service-oriented applications and infrastructure support for running them. Web
services and service-oriented applications require a lot of support to build and run. Developers
require classes that make it easier to work with messages without having to interact with the
raw SOAP. In addition, they require infrastructure support to make it easier to run service-
oriented applications. WSE 3.0 provides all of these levels of support:

• A rich class framework for implementing important WS- specifications such as
WS-Security and WS-Addressing.

• Infrastructure support in the form of the WSE pipeline, which automatically intercepts
and processes incoming and outgoing SOAP messages.

• Infrastructure support for common service requirements, such as policy verification
(using WS-Policy). For example, WSE 3.0 automatically processes XML-based policy
framework files, which saves you from needing to write additional processing code in
both the service and the client.

WSE is very good at implementing discrete WS- specifications such as WS-Security and
WS-Policy, which can be boiled down to a set of specific operations. But where WSE falls short
is in being able to provide the infrastructure support for broad-based WS- specifications, such
as WS-Reliable Messaging, which provide service guarantees for message delivery.

This is where Windows Communication Foundation (WCF), formerly code-named Indigo,
and Microsoft Windows Vista (the next version of the Microsoft Windows operating system,
formerly code-named Longhorn) come into play. WCF refers to a new unified programming
and infrastructure support model for service-oriented applications. It provides built-in
support for message-oriented and service-oriented architectures, built of course on the
managed .NET Framework. WCF will greatly enhance developer productivity in these
application areas.

205

C H A P T E R 9

701xCH09.qxd 7/14/06 5:41 PM Page 205

Overview of WCF
There are many reasons why you should start learning about WCF today. The most important
reason in our opinion is that you need to know how relevant your existing service-oriented
applications will be with a new support infrastructure such as WCF. The questions you should
be asking yourself are

• How will I build service-oriented applications in the future using WCF?

• How do I preserve the existing investment that I have made in my XML Web services
and .NET Remoting development?

• What current technologies are going to be phased out in WCF?

• Should I be using WSE 3.0 today?

The purpose of this chapter is to give you a preview of WCF from the perspective of where
we are today with WSE 3.0. As you will see, every hour spent learning and working with WSE
is a worthwhile investment that is directly applicable to Web service development with WCF.
This should be of no surprise because WCF is still based on the standards and specifications
that we are comfortable with today. WCF does not reinvent the WS- specifications or use
exotic transport channels that we have never seen before. Instead, it provides a better support
infrastructure for building service-oriented applications that implement today’s important
standards and specifications, including the WS- specifications. And best of all, WCF is strongly
oriented toward services and messages.

■Note WCF will be in beta development through 2006 and the implementation and functionality may
change before the production release. You can read more about WCF at http://msdn.microsoft.com/
webservices/indigo/default.aspx. In addition, you can read about how to implement WCF in beta
with a Go-Live license at http://msdn.microsoft.com/winfx/downloads/products/golive/.

WCF is an exciting technology because it unifies all of the concepts that have been pre-
sented throughout this book. Developers today must contend with a variety of different
technology choices for building distributed applications, including

• XML Web services (.asmx)

• Web Services Enhancements (WSE)

• .NET Remoting

• MSMQ (provided by the .NET Framework System.Messaging namespace)

• Enterprise Services (the .NET Framework namespace for COM+)

These various technologies overlap and complement each other in different ways. In
many cases an application requirement can be fulfilled with two or more of these technologies.
Perhaps the clearest example of a potential overlap is with XML Web services and .NET
Remoting. Both technologies operate on the same principle, namely that they facilitate

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF)206

701xCH09.qxd 7/14/06 5:41 PM Page 206

remote service invocation over a defined transport channel. Furthermore, .NET Remoting
operates over both the TCP and the HTTP protocols, which means that the key difference with
XML Web services is its use of a binary message format rather than SOAP. .NET Remoting solu-
tions are generally more focused on object invocation using remote procedure calls (RPCs).
On the other hand, XML Web service solutions tend to be more focused on invoking services
by passing message-based requests, including between diverse platforms. But these differ-
ences are simply a function of what the technologies are best at today. With today’s technology
you do have flexibility and a choice on whether to deploy .NET Remoting vs. XML Web services
for the same application solution. And where you do not, it is fair to ask why the technologies
should have different capabilities. After all, they are based on the same concept: allowing
remote service calls over a defined transport channel.

See Figure 1 in the January 2004 MSDN Magazine article “A Guide to Developing and
Running Connected Systems with Indigo” at http://msdn.microsoft.com/msdnmag/issues/
04/01/Indigo/ for a diagram that illustrates the high-level architecture for WCF. (See the
Appendix of this book for detailed reference information.)

There are five major areas within the WCF architecture:

1. The WCF service model: Provides general support for services and messages. The serv-
ice model provides programming and infrastructure support for implementing and
managing code as a message-oriented service.

2. The WCF connector: Provides communications support for services and messages,
including multiple transport channels, ports, and built-in support for reliable message
delivery. The connector provides the infrastructure that allows your service to
exchange messages with the outside world in a secure, reliable fashion.

3. Hosting environments: Provides support for several different hosting environments for
message-oriented services, including traditional IIS-based ASP.NET hosting.

4. Messaging services: Provides support for managing messages, including message
queuing and routing. Messaging services provides the functionality that we currently
associate with MSMQ.

5. System services: Provides support for transactions and other low-level system support
infrastructure that is complex and that needs to be managed by the framework on
behalf of the service.

Let’s review each of these areas in more detail.

The WCF Service Model
The WCF service model provides a wide range of support for service-oriented Web services,
including

• Associating Web methods with incoming service messages

• Session management for Web services

• Transaction management for Web services

• Support for security and policy

• Support for reliable message exchange

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF) 207

701xCH09.qxd 7/14/06 5:41 PM Page 207

WCF contains built-in support for many of the tasks that are currently handled by WSE 3.0.
In a sense, WSE 3.0 is a prerelease of the WCF service model. Of course, WSE 3.0 is not com-
pletely built out, and certain tasks still require you to write manual code. WCF will integrate
the WSE 3.0 functionality in a much tighter way. But there is no better preparation for WCF
than to start working with WSE 3.0 and all of the subsequent releases leading up to the release
of WCF (as part of the Windows Vista operating system, and as an add-on to the Windows 2003
and XP operating systems).

WCF associates Web methods with incoming service messages using a set of declarative
attributes. The service model operates in a similar way to .asmx files, which allow you to
declaratively mark up methods and to associate them with incoming Web requests. Today,
.asmx files provide a [WebMethod] attribute for marking methods. Tomorrow, WCF will pro-
vide a [ServiceMethod] attribute for marking up methods.

The qualified data types that are used by Web services can be represented as typed objects
and manipulated directly in code without having to process the raw SOAP and XML directly.
Listings 9-1 and 9-2 illustrate this point with a custom data type called Trade. Listing 9-1 dis-
plays the qualified XML for the data type, while Listing 9-2 displays its object representation.

Listing 9-1. XML for the Trade Custom Data Type

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema id="StockTrader"

targetNamespace="http://www.bluestonepartners.com/Schemas/StockTrader/"
elementFormDefault="qualified"
xmlns="http://www.bluestonepartners.com/Schemas/StockTrader/"
xmlns:mstns="http://www.bluestonepartners.com/Schemas/StockTrader/"
xmlns:xs="http://www.w3.org/2001/XMLSchema" version="1.0">
<xs:complexType name="Trade">
<xs:sequence>

<xs:element name="TradeID" type="xs:string" />
<xs:element name="Symbol" type="xs:string" />
<xs:element name="Price" type="xs:double" />
<xs:element name="Shares" type="xs:int" />
<xs:element name="tradeType" type="TradeType" />
<xs:element name="tradeStatus" type="TradeStatus" />
<xs:element name="OrderDateTime" type="xs:string" />
<xs:element name="LastActivityDateTime" type="xs:string" />

</xs:sequence>
</xs:complexType>

</xs:schema>

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF)208

701xCH09.qxd 7/14/06 5:41 PM Page 208

Listing 9-2. Object Representation for the Trade Custom Data Type

[System.Xml.Serialization.XmlTypeAttribute(➥

Namespace="http://www.bluestonepartners.com/schemas/StockTrader/")]
public class Trade {

public string TradeID;
public string Symbol;
public System.Double Price;
public int Shares;
public TradeType tradeType;
public TradeStatus tradeStatus;
public string OrderDateTime;
public string LastActivityDateTime;

}

Today, ASP.NET gives you the flexibility to work with raw SOAP and XML directly, or to
interact with object representations instead. WCF will continue to support this approach,
allowing you to work with either. Not only are typed objects easier to work with, but they are
also managed custom .NET class framework types, which means that you get all the support
of the managed .NET runtime, including type safety and just-in-time compilation. If you
interact with the raw XML directly, you lose this automatic verification that you are using the
custom data type correctly.

In SOA, Web services provide WSDL-based interfaces, and all of the nonstandard data
types are represented by qualified XML schemas. Even the interface methods themselves can
be described using XML and can be included in a reference schema file for the Web service.
We focus on this in great detail in Chapters 3 and 4.

To use SOA terminology, service-oriented components support and conform to contracts.
The term contract implies a formal, established agreement between two or more parties. WCF
formalizes data constructs and message constructs as contracts and defines them as follows:

Data contracts: These are analogous to XML schema files and they document the data
types that a Web service supports and exchanges.

Service contracts: These are analogous to WSDL document definitions, specifically the
<portType> and <message> sections of the WSDL document. Service contracts document
the messages that a Web service supports, both for request and response messages.

Listing 9-3 illustrates a portion of the StockTrader Web service WSDL file, showing the
<portType> and <message> definitions related to the PlaceTrade Web method.

Listing 9-3. Excerpt from the StockTrader Web Service WSDL File Showing the <portType> and
<message> Definitions

<portType name="StockTraderServiceSoap">
<operation name="PlaceTrade">

<input message="tns:PlaceTradeSoapIn" />
<output message="tns:PlaceTradeSoapOut" />

</operation>
</portType>

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF) 209

701xCH09.qxd 7/14/06 5:41 PM Page 209

<message name="PlaceTradeSoapIn">
<part name="Account" element="s0:Account" />
<part name="Symbol" element="s0:Symbol" />
<part name="Shares" element="s0:Shares" />
<part name="Price" element="s0:Price" />
<part name="tradeType" element="s0:tradeType" />

</message>

<message name="PlaceTradeSoapOut">
<part name="PlaceTradeResult" element="s0:Trade" />

</message>

Listing 9-4 illustrates a sample of data contract attributes on an excerpt of the Trade type
code implementation.

Listing 9-4. Excerpt of the Trade Type Code Implementation Showing Data Contract Attributes

[DataContract]
public class Trade
{

[DataMember(IsOptional=true)]
public string TradeID;
[DataMember]
public string Symbol;

}

Listing 9-5 illustrates a sample of service contract attributes on an excerpt of the Stock-
TraderService code implementation.

Listing 9-5. Excerpt of the StockTraderService Code Implementation Showing Service Contract
Attributes

[ServiceContract]
public class StockTraderService
{

[OperationContract]
public PlaceTradeResult ➥

PlaceTrade(string account, int amount)
public string Symbol;

}

The purpose of Listings 9-1 through 9-5 is ultimately to show you that the service-oriented
concepts you have learned in this book apply to WCF, and that WCF implements very familiar
service-oriented concepts despite supporting a very different class framework than the cur-
rent ASP.NET class framework.

The WCF service model will end up being where you as a developer spend much of your
time working because it provides the programmatic classes and the declarative attributes for
your service-oriented applications.

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF)210

701xCH09.qxd 7/14/06 5:41 PM Page 210

The WCF Connector
The WCF connector provides transport-independent support for message-based, service-
oriented applications. In Chapter 2 we discuss WSDL elements such as ports and bindings.
These elements play an important role in the WCF connector because they govern how
services provide endpoints for message requests.

The three most important WCF connector elements are

• Ports: These provide URI-accessible endpoints for delivering messages to a service.

• Transport channels: These provide a way to deliver messages, and they are based on
established protocols, including HTTP, TCP, and IPC.

• Message channels: These channels operate in conjunction with the transport channels
and provide additional message delivery support, including reliable message delivery.

Security support for message-oriented communication is provided throughout the WCF
framework, including within the WCF connector, and will be fully integrated, as opposed to
WSE 3.0, where the security support is more limited. WCF provides three types of security
support for messages:

1. Session-based security: Session-based security support uses an on-demand session key
to provide encryption and digital signatures. This mode closely follows the approach
taken by the WS-Secure Conversation specification, which is discussed in detail in
Chapter 7.

2. Message-based security: This provides for reliable messaging scenarios where the
receiver may not be online at the time that the message is received. Message-based secu-
rity ensures that message integrity and security are provided during asynchronous
communication between a sender and a receiver.

3. Transport-level security: This uses a direct security protocol such as Secure Sockets Layer
(SSL) that automatically provides message encryption and signatures based on digital
certificates.

As with the WCF service model, WSE 3.0 and today’s ASP.NET Web services clearly prepare
you for working with the future WCF connector. Make sure that you understand the concepts
that are presented in Chapter 2 on the WSDL document. The WCF connector rolls up all of
these concepts and more, including transport and communication channels and message
security.

Hosting Environments
ASP.NET Web services must be hosted within a virtual directory managed by IIS, and they will
only communicate over HTTP. With WSE 3.0 you have additional messaging capabilities, so
you can build TCP-based services in addition to HTTP-enabled services. TCP-enabled services
do not have to be hosted by IIS, although they must be running at all times and listening on a
defined port. WSE 3.0 also provides the interprocess communication (IPC) transport protocol,
which is a good alternative to .NET Remoting in that it allows you to leverage the benefits of
SOA and SOAP-based messaging in an interprocess environment.

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF) 211

701xCH09.qxd 7/14/06 5:41 PM Page 211

WCF expands the number of available hosting options for services, and also introduces
on-demand services. These are activated by the WCF framework when it identifies a targeted
incoming service request message that is intended for a specific service. The other available
hosting options in WCF are not necessarily new, but the difference is that WCF provides a
good level of automated support for different hosting environments, which makes it easier
for you to deploy your services. Here are some examples of hosting environments that WCF
supports:

• ASP.NET: A traditional IIS-based, HTTP-enabled hosting environment

• Windows Service: A hosting environment for TCP-enabled services

• DLLHost: A hosting environment for IPC-enabled services

This list is not comprehensive; it represents just some of the available hosting environ-
ments and just some of the possibilities for using them.

It is important to note that the hosting environment is independent of a Web service’s
data and service contracts. As a developer, you can create your Web services and service com-
ponents independently of the intended hosting environment. WCF will relay messages to your
services equally well in all of the supported environments.

Messaging Services
Today, MSMQ-based applications support message queues for reliable message delivery, and
they also support a trigger-based event model that fires up the application code when an
incoming message is received. Today, messaging applications that are built around MSMQ are
almost considered to be a nonstandard type of application. If they were standard, then all of
us would be incorporating message queues into every application that we build. Of course this
is not the case, largely because it creates a level of overhead that is considered unnecessary for
many applications.

But in service-oriented applications, reliable message delivery is not an abstract concept;
instead, it represents a quality of service expectation on the part of your clients. Message
delivery and the potential for message loss are critically important to service-oriented appli-
cations. WCF provides built-in messaging support, including message queues and events, and
makes it easier for you to implement reliable messaging in your service applications. WCF will
provide a set of classes for interfacing with the messaging infrastructure.

Today’s WSE 3.0 does not natively integrate with MSMQ, which is essentially just an alter-
nate transport channel for messages. With some effort, you could custom integrate MSMQ
with WSE today as a transport channel, although this is an advanced programming task. Alter-
natively, you could take a simpler approach and have your service simply interact with an
MSMQ queue that you configure separately. The .NET Framework provides a namespace
called System.Messaging, which allows you to interact with an MSMQ queue.

System Services
This category represents a catch-all of features, many of which provide infrastructure-level
support that may be fully out of direct sight but is working on your behalf nonetheless. System
services include infrastructure-level support for transactions (via a distributed transaction
coordinator) and security. The security portion of the system services is expected to support

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF)212

701xCH09.qxd 7/14/06 5:41 PM Page 212

the WS-Federation specification, which allows you to set up and manage trusted communica-
tions across application and domain boundaries. This is not the same thing as the WS-Secure
Conversation specification, which we discuss in Chapter 7. However, there are shared con-
cepts between the two specifications.

Understanding WCF Web Services
One of our first thoughts when we heard about WCF was whether WCF Web services would
be different compared to ASP.NET Web services. And if so, how would they differ? The good
news is that while WCF Web services are different, they still retain the core characteristics of a
traditional ASP.NET Web service, but with even more functionality and flexibility. WCF Web
services support the standard WSDL and SOAP specifications, in addition to the extended
WS- specifications.

What Is a WCF Web Service?
Traditional .asmx pages can still be used within WCF, which will interoperate with them in
addition to supporting a newer form of Web service. ASP.NET-style Web services will continue
to be limited within WCF to simple HTTP-based request/response message patterns. However,
WCF Web services will provide all of the extended communication capabilities that WSE 3.0
provides (and more) including alternate transport protocols and true asynchronous and one-
way communications.

The characteristics of a WCF Web service are documented in the Windows Vista SDK as
follows:

• Provides secure communication across any number of intermediaries, including
firewalls

• Participates in widely distributed transactions

• Encapsulates two-way conversations that allow clients and servers to send messages in
both directions

• Provides guarantees about the reliability of message delivery

• Supports situations requiring scalability, such as Web service farms

• Supports advanced features even with participants that are not built on Microsoft
platforms

• Enables developers familiar with the .NET Framework to build messaging applications
without knowing anything about XML or SOAP

• Enables developers familiar with XML Web services to leverage their XML, WSDL, and
SOAP knowledge to work with XML messages described by XSD

• Supports smooth management of deployed applications

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF) 213

701xCH09.qxd 7/14/06 5:41 PM Page 213

Understanding WCF Applications
and Infrastructure
WCF applications decouple the messaging and transport layer from the service layer, which
allows you as the developer to focus on programming the service without having to worry
about implementing the lower-level communications infrastructure. The service layer is built
using the class framework that is provided by the WCF service model. It includes classes that
allow you to interact programmatically with the messaging layer.

In this section, we will review five important aspects of WCF that provide support for
managing and processing service-oriented applications:

• The WCF service layer

• Ports

• Typed channels

• Service managers

• Transports and formatters

The WCF Service Layer
Figure 9-1 illustrates the high-level schematic architecture for a typical message-based,
service-oriented application that you might build using WCF.

Figure 9-1. High-level schematic architecture for a WCF application

The application architecture uses arrows to describe the path that a message takes
between service endpoints. Although they are not shown in the diagram, the service end-
points are located where the arrow head contacts the client or service. Another interesting
aspect of this diagram is the chained path that the messages take. WCF supports this level of

CLIENT�

SERVICE�

SERVICE�

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF)214

701xCH09.qxd 7/14/06 5:41 PM Page 214

complex message pathways because of its infrastructure-level support for addressing and
routing specifications. Finally, the diagram makes no mention of a specific transport channel.
This implicitly emphasizes WCF’s most important advantage of not having to factor in the
transport and messaging infrastructure into the application design. In contrast, today’s
ASP.NET Web services that leverage WSE 3.0 still require the developer to write manual code
that is specific to alternate transport channels, such as TCP.

In WCF, the service is the basic component of an application, and it supports a special
kind of object called a typed channel that is equivalent to today’s proxy objects for Web service
clients. The typed channel provides an interface for sending and receiving messages between
service components. WCF provides a utility called WSDLgen.exe, which is similar to today’s
wsdl.exe utility, and allows you to generate proxy class files for clients to use for accessing your
service.

Typed channels are independent of the actual objects that process the service request.
WCF employs Service Manager objects that are responsible for mapping typed channels to
their associated business objects, including the DialogManager and ListenerManager objects.

The WCF service layer automatically handles the receiving, processing, and sending of
messages, including all of the serialization work that is required to build and process a mes-
sage. This is very similar to the way that the ASP.NET infrastructure processes messages that
are received and sent via an .asmx Web page. WCF provides the Service object for its services,
which is conceptually equivalent to the ASP.NET WebService object. The Service object
provides you with programmatic access to the underlying messaging and transport
infrastructure.

The WCF service layer also supports a special kind of service called RemoteObjects, which
is functionally equivalent to today’s .NET Remoting–enabled solutions in that it allows you to
invoke remote distributed objects while preserving object type fidelity during transport.
RemoteObjects uses RPC-style communications, and like .NET Remoting, it can be used for
both interprocess communications and Internet communications that operate across differ-
ent application domains.

Ports
Service-oriented applications send and receive messages to SOAP endpoints. In WCF, the Port
object defines two things:

1. Service layer information, including the operations that the service supports

2. The supported transport mechanisms and wire formats (e.g., SOAP 1.2 encoding over
HTTP)

We want to emphasize the tie-in between WCF technology and today’s technology. The
WCF Port object is equivalent to a WS-Addressing construct called the endpoint reference. In
Chapter 8 we discuss endpoint references, which are equivalent to the <service> element in
the WSDL document and provide both addressing and binding information for a Web service.
Listing 9-6 provides an excerpt from the StockTrader WSDL document showing how the
<service> and associated <binding> tags work together to document the location of a service,
and the operations that it provides.

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF) 215

701xCH09.qxd 7/14/06 5:41 PM Page 215

Listing 9-6. Excerpt from the StockTrader Web Service WSDL File Showing the <service> and
<binding> Definitions

<service name="StockTraderService">
<port name="StockTraderServiceSoap" binding="tns:StockTraderServiceSoap">

<soap:address location="http://localhost/StockTrader/StockTrader.asmx" />
</port>

</service>

<binding name="StockTraderServiceSoap" type="tns:StockTraderServiceSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />
<operation name="RequestAllTradesSummary">

<soap:operation
soapAction="http://www.bluestonepartners.com/schemas/StockTrader/
RequestAllTradesSummary" style="document" />
<input>

<soap:body use="literal" />
</input>
<output>

<soap:body use="literal" />
</output>

</operation>
<!- Additional operations are not shown ->

<operation />
</binding>

The WS-Addressing specification takes this concept one step further by encapsulating
addressing, binding, and security policy information within a single reference, as shown in
Listing 9-7.

Listing 9-7. Endpoint Reference XML

<wsa:EndpointReference>
<wsa:Address>soap.tcp://stocktrader.com/StockTrader</wsa:Address>
<wsa:ReferenceProperties>

<st:AccountID>123A</st:AccountID>
</wsa:ReferenceProperties>
<wsa:PortType>st:StockTraderSoap</wsa:PortType>
<wsp:Policy/>

</wsa:EndpointReference>

You can clearly see how the WCF Port object maps to familiar constructs such as endpoint
references and the WSDL <service> and <binding> definitions.

The WCF Port object is tied into an extended processing pipeline that supports common
message-processing features, including security, policy, routing, and transactions. When you
write a service method, you need to add attributes for each of the specifications that you want
to implement; for example, you can specify authorization access for a specific user or role.

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF)216

701xCH09.qxd 7/14/06 5:41 PM Page 216

Assuming that the incoming message includes the right specification information, it will be
routed through the Port object and into an extended processing pipeline. You can program-
matically control the processing further by modifying property settings on one or more
dedicated manager objects. For example, security processing is handled by the Security-
Manager object.

Listing 9-8 provides a very simple example of a WCF service method, showing the annota-
tions that you require for specifying basic authorization security processing.

Listing 9-8. A WCF Service Method Specifying Authorization Security Processing

[DatagramPortType(Name="PlaceTrader", ➥

Namespace="http://www.tempuri.org/quickstarts")]
public class Hello
{

[ServiceSecurity(Name = "Brokerage", Role = "Traders")]
[ServiceMethod]
public string PlaceTrade(string Account, string Symbol, int Shares, ➥

System.Double Price, TradeType tradeType)
{

// Code to execute trade not shown
return ("Your confirmation code is: " + TradeID);

}
}

This service must still implement a policy framework file to specify authentication secu-
rity, such as encryption and digital signature requirements.

Typed Channels
A typed channel is similar to a Web service proxy object, which provides a typed object repre-
sentation of the Web services WSDL interface. In a similar fashion, a WCF typed channel
provides a typed object reference to a messaging endpoint and its associated operations.

In order to create a typed channel, you need to first create the Web service and define its
methods. This in turn defines a WSDL interface, which you can then extract automatically
(for example, you can append ?WSDL to the Web service URI in order to review the WSDL
document). Finally, you can use a code-generation tool to generate a proxy class based on
the WSDL file. Today, we have a utility called wsdl.exe. WCF ships with an equivalent utility
called WSDLgen.exe.

The output of the code-generation utility is the typed channel, which provides a proxy
representation of the WSDL interface as a managed object.

Service Manager
The Service Manager objects do all of the heavy lifting in processing messages and providing
the support infrastructure for managing communications. Table 9-1 summarizes the impor-
tant Service Manager objects and their purpose.

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF) 217

701xCH09.qxd 7/14/06 5:41 PM Page 217

Table 9-1. The WCF Service Manager Objects

Service Manager Objects Description

ListenerManager Handles listener messages and performs the appropriate actions
on the router service environment. Used in a user-mode listener
implementation.

PolicyManager Provides support for consuming, applying, processing, and generating
policy on a specific port.

RemotingManager Manages the WCF remoting infrastructure.

RequestReplyManager Creates SendRequestChannel objects through which messages can be
sent and replies received.

RoutingPolicyManager Controls the consumption and application of routing and transport
policy.

RuleManager Represents the factory for rules, and through its namespace hierarchy,
the associated properties.

SecurityManager Controls application security requirements either programmatically or
by using application and machine configuration files.

ServiceManager Manages the associations between communication channels and
service instances; registers services; and produces typed channels to
make requests of other services.

TransactionManager Represents the base class for a transaction manager.

DialogManager Manages creation and deletion of the participants in a dialog.

The Service Manager objects work with the Port object as extensions into a processing
pipeline for incoming and outgoing messages. Service Managers automatically process mes-
sages as long as the associated service method has the appropriate annotations. Figure 9-2
shows the architecture of the port processing pipeline, including Service Managers.

Figure 9-2. The port processing pipeline architecture

Transports and Formatters
The transport and formatter layer is the low-level infrastructure that sits below the activity
that is occurring in the port processing pipeline. You will rarely need to interact with the trans-
port and formatter layer directly, beyond specifying what the service will support. You can also
specify directional message transport information, such as whether a service is receive-only or
is enabled for both send and receive operations.

RequestReplyManager� RuleManager�

The Port Processing Pipeline: Receive Channel�

Incoming Message�Processed Message�

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF)218

701xCH09.qxd 7/14/06 5:41 PM Page 218

The transport and formatter layer is what enables messages to be moved across the wire.
WCF supports a wide range of transport protocols, as shown in Table 9-2, which indicates the
associated WCF object that abstracts the transport protocol information.

Table 9-2. WCF-Supported Transport Protocols

Protocol WCF Object

HTTP HttpTransport

POP3 Pop3Transport

SMTP SmtpTransport

SOAP SoapTransport

TCP TcpTransport

InProc InProcessTransport (on the same machine)

CrossProc CrossProcessTransport (on the same machine)

The transport and formatter layer delegates message serialization (and deserialization)
to a dedicated object called the MessageFormatter, which is responsible for translating a byte
stream between a formatted message and an in-memory Message object representation of the
message.

How to Get Ready for WCF
Most developers are understandably ambivalent about a major upcoming release such as
WCF. On the one hand, we welcome advancements in technology and the improvements in
functionality and productivity that it will hopefully bring. On the other hand, we dread having
to learn a new way of doing things, and we wonder whether we will be able to migrate our
existing code to the new infrastructure.

These are valid concerns, especially with WCF. But the issue is less about WCF changing
things than it is about things needing to change. Developers today are faced with multiple
and often competing technologies for building distributed applications, including the classic
choice between XML Web services vs. .NET Remoting. Certainly, there are cases where there is
no overlap and no ambivalence and where one technology is clearly the better choice than
another. But these technologies share too much in common to be treated differently. They are
simply variations of the same technology. In the case of XML Web services and .NET Remot-
ing, they are both concerned with remote distributed object and service invocation over a
defined transport channel.

Microsoft is starting to address developer concerns by providing guidelines for how to get
ready for WCF. It is already making sure to bring this topic up at professional conferences, and
it will certainly continue to do so until the release of WCF. There has simply been too much
investment in existing technologies for it not to.

WCF is obviously not a replacement for the entire set of .NET Framework functionality.
Instead, it is focused on supporting distributed service-oriented applications with security,
transaction support, and reliable messaging. WCF primarily extends four core technologies
that are available today:

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF) 219

701xCH09.qxd 7/14/06 5:41 PM Page 219

• ASP.NET Web services (built with .asmx pages)

• Web Services Enhancements (WSE)

• System.Messaging

• System.EnterpriseServices

Microsoft has stated that it will make the migration to WCF from current technologies a
straightforward process. Here are some guidelines on how to get ready for WCF based on pro-
fessional conferences, published white papers, and conversations with members of product
development teams:

• Build services using .asmx pages.

• Use WSE 3.0 for additional, extended functionality, including security, policy, and
secure conversation.

• Build qualified XML schema files for all custom data types used by the service.

• Use managed framework classes for integrating your services with MSMQ message
queues and with COM+ components. Use the managed System.Messaging namespace
for MSMQ, and the System.EnterpriseServices namespace for COM+ components.

• Avoid using the HTTP Context object in your .asmx pages.

• Avoid using .NET Remoting sinks and channels.

Given that WSE 3.0 is such an important part of this book, let’s look in more detail at how
you can use the toolkit to prepare for WCF.

WSE 3.0 and WCF
WSE 3.0 allows developers to become early adopters of the next generation of service-oriented
application technology. Every hour that you spend working with WSE 3.0 is an hour that you
have contributed toward WCF. Applications that are built using WSE should migrate smoothly
to the WCF framework, with only minor modifications required. If you choose to implement
WSE today, then you should expect to accommodate changes to WSE between now and the
release of WCF. It is unclear how many revisions WSE is expected to undergo prior to the
release of WCF, but it is likely that we will only see service packs released, and they are not
expected to negatively impact compatibility between WSE 3.0 and WCF. If anything, they
should only make the compatibility tighter.

Table 9-3 compares the feature set of WSE 3.0 with WCF, based on current information
provided by Microsoft.

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF)220

701xCH09.qxd 7/14/06 5:41 PM Page 220

Table 9-3. Feature Comparison of WSE 3.0 and WCF

Feature WSE 3.0 WCF

Hosting IIS/ASP.NET (.asmx) IIS/ASP.NET (.svc)
SoapReceivers ServiceHost

Programming Model [WebService], [WebMethod], etc. [ServiceContract],
(supports interfaces, generics, [OperationContract], etc.
and the like) (supports interfaces, generics,

and so on)

Message Exchange One-way One-way
Patterns (MEP) Request-response Request-response

Custom (using WSE API) First/last-operation
Duplex
Custom

XML Serialization System.Xml.Serialization System.Runtime.Serialization
System.Xml.Serialization
(you can choose)

Encodings XML 1.0 MTOM
MTOM

Custom XML 1.0 Binary
MTOM

Transports HTTP HTTP
TCP TCP
Custom Named pipes

MSMQ
P2P
Custom

Protocols Security Security
Reliable messaging
Transactions

Behaviors (enabled Local DTC transactions Concurrency
via attributes or HTTP buffering Instancing
configuration) HTTP caching Throttling

HTTP sessions Thread-binding
Custom (via SoapExtensions, Exception handling and faults
WSE filters) Impersonation

Session management
Transaction behaviors
Custom (via behavior types)

The main feature that is lacking in WSE 3.0 (compared to WCF) is that it does not provide
wide system-level or infrastructure-level support for the enterprise aspect of service-oriented
applications. Specifically, it does not provide support for transactions or reliable messaging.
Certainly, WSE 3.0 provides many of the required parts, but it does not provide the whole. For
example, WSE 3.0 provides support for message addressing, and it also integrates with MSMQ
via the System.Messaging namespace classes. So WSE 3.0 gives you the ability today to custom
build a service-oriented application that implements “reliable” messaging (via MSMQ) and
which can process message addressing information and provide message correlation. But this
is not the same as a built-in support infrastructure that manages these tasks for you.

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF) 221

701xCH09.qxd 7/14/06 5:41 PM Page 221

These limitations are not a weakness of the WSE 3.0 technology. They simply underscore
two things:

1. Infrastructure support for message-based, service-oriented architecture is most effec-
tively handled at the operating system level.

2. WSE 3.0 allows early adopters to start designing and building their code for the future
WCF infrastructure. More importantly, it gets developers thinking about application
design in new ways. There is a large conceptual jump between traditional RPC-based
applications and message-based, service-oriented applications.

With this being said, let’s review the major feature areas of WSE 3.0 (which you should by
now feel very familiar with) and explain where they fit within the WCF framework:

Security and policy specifications: The WS-Security and WS-Policy specifications are sup-
ported by the WCF connector.

Messaging specifications: WCF provides Messaging services that subsume the functional-
ity currently provided by MSMQ. In addition, it provides support for reliable messaging.
WSE does not currently provide comprehensive support for the WS-Reliable Messaging
specification, but it does provide some of the component parts that you can cobble
together to approximate the specification. Specifically, WSE includes support for
WS-Addressing, and it integrates with MSMQ via the managed System.Messaging
namespace.

Routing and referral specifications: WCF includes these within its Messaging services
functionality.

Alternate transport channels: WCF provides support for several transport channels,
including HTTP, TCP, and IPC. WSE 3.0 currently provides support for the same three
channels, so you can begin coding with them today.

In closing, we hope that this book has ultimately convinced you of three important
things:

1. Message orientation and service orientation are the way to go.

2. WCF provides a welcome level of support for this technology, which will increase
developer productivity and minimize confusion by unifying today’s disparate
technologies.

3. WSE 3.0 is an excellent way for developers to become early adopters for WCF.

Good luck with your future adventures in service-oriented architecture!

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF)222

701xCH09.qxd 7/14/06 5:41 PM Page 222

Summary
WCF provides infrastructure and programming support for service-oriented applications. It is
focused on messages and provides support for creating messages, for delivering messages,
and for processing messages. With WCF, there is less ambiguity in your services: the infrastruc-
ture forces you to be message-oriented and to work with well-qualified XML-based data types.

WCF is built on five major areas:

The WCF service model: Provides support for processing incoming service request
messages

The WCF connector: Provides support for communicating with services reliably and
securely

Hosting environments: Provides several different hosting options for services

Messaging services: Provides reliable messaging support

System services: Provides a wide range of support infrastructure, including for transactions
and trusted communications

WSE 3.0 allows early adopters to start building service-oriented applications today, using
the next generation of service-oriented and message-oriented technologies. Working with
WSE 3.0 provides you with excellent preparation for WCF. In addition, you should be familiar
with Microsoft’s guidelines for how to tailor today’s development to be more compatible with
WCF-based applications in the future.

CHAPTER 9 ■ BEYOND WSE 3.0: LOOKING AHEAD TO WINDOWS COMMUNICATION FOUNDATION (WCF) 223

701xCH09.qxd 7/14/06 5:41 PM Page 223

701xCH09.qxd 7/14/06 5:41 PM Page 224

References

Here is a selection of references that you will find useful for learning more about SOA, the
WS-I Basic Profile, the WS- specifications, and Web Services Enhancements. The references
are broken out by topic. Note that Web services standards and specifications evolve quickly,
so some of the specification references that are listed here will be superseded in future
months by others.

Service-Oriented Architecture (General)
“Application Architecture for .NET: Designing Applications and Services”
MSDN white paper (December 2002)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/

distapp.asp

“Building Interoperable Web Services: WS-I Basic Profile 1.0”
MSDN white paper (August 2003)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsvcinter/html/

wsi-bp_msdn_landingpage.asp

“The Evolution of Web Services—Part 2”
Adnan Masood
White paper (September 2003)
http://www.15seconds.com/issue/030917.htm

“Java Modeling: A UML Workbook, Part 4”
Granville Miller
White paper (June 2002)
http://www-106.ibm.com/developerworks/java/library/j-jmod0604/

225

A P P E N D I X

701xAppx.qxd 7/14/06 5:41 PM Page 225

XML Schemas and SOAP
“Understanding SOAP”
Aaron Skonnard
MSDN white paper (March 2003)
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnsoap/html/

understandsoap.asp

“XML Schemas and the XML Designer”
MSDN article
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/

vboricreatingschemas.asp

“A Quick Guide to XML Schema”
Aaron Skonnard
MSDN Magazine (April 2002)
http://msdn.microsoft.com/msdnmag/issues/02/04/xml/default.aspx

“Place XML Message Design Ahead of Schema Planning to Improve Web Service
Interoperability”

Yasser Shohoud
MSDN Magazine (December 2002)
http://msdn.microsoft.com/msdnmag/issues/02/12/WebServicesDesign/

“RPC/Literal and Freedom of Choice”
Yasser Shohoud
MSDN white paper (April 2003)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/

rpc_literal.asp

“Web Services Encoding and More”
Aaron Skonnard
MSDN Magazine (May 2003)
http://msdn.microsoft.com/msdnmag/issues/03/05/XMLFiles/

“SOAP Is Not a Remote Procedure Call”
Ingo Rammer’s Architecture Briefings (October 2003)
http://www.thinktecture.com/Resources/ArchitectureBriefings/

SoapIsNotARemoteProcedureCall.pdf

“Increase Your App’s Reach Using WSDL to Combine Multiple Web Services”
Gerrard Lindsay
MSDN Magazine (March 2005)
http://msdn.microsoft.com/msdnmag/issues/05/03/WSDL/

APPENDIX ■ REFERENCES226

701xAppx.qxd 7/14/06 5:41 PM Page 226

WS- Specifications (General)
Resources for developers and links to original standards and specifications documents
IBM developerWorks
http://www-106.ibm.com/developerworks/views/webservices/standards.jsp

“Secure, Reliable, Transacted Web Services: Architecture and Composition”
Donald F. Ferguson (IBM), Tony Storey (IBM), Brad Lovering (Microsoft),

John Shewchuk (Microsoft)
MSDN white paper (September 2003)
http://msdn.microsoft.com/webservices/webservices/understanding/

advancedwebservices/default.aspx?pull=/library/en-us/dnwebsrv/
html/wsoverview.asp

“Compare Web Service Security Metrics”
Roger Jennings (OakLeaf Systems)
XML and Web Services Magazine (October 2002)
http://www.fawcette.com/xmlmag/2002_10/online/webservices_rjennings_10_16_02/

default.aspx

“Installing Certificates for WSDK X.509 Digital Signing and Encryption”
Roger Jennings (OakLeaf Systems)
XML and Web Services Magazine (October 2002)
http://www.fawcette.com/xmlmag/2002_10/online/webservices_rjennings_10_16_02/

sidebar1.aspx

Web Services Enhancements 2.0 and 3.0 (General)
“What’s New in Web Services Enhancements 3.0”
Mark Fussell
MSDN white paper (November 2005)
http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnwse/html/

newwse3.asp

“Programming with Web Services Enhancements 2.0”
Matt Powell
MSDN white paper (May 2004)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwse/html/

programwse2.asp

APPENDIX ■ REFERENCES 227

701xAppx.qxd 7/14/06 5:41 PM Page 227

WS-Security
“WSE Security: Protect Your Web Services Through the Extensible Policy Framework in

WSE 3.0”
Tomasz Janczuk
MSDN Magazine (February 2006)
http://msdn.microsoft.com/msdnmag/issues/06/02/WSE30/default.aspx

Web Services Security (WS-Security) standards documents
OASIS
http://www.oasis-open.org/committees/tc_cat.php?cat=security

“Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)”
OASIS Standard 200401, March 2004
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message- ➥

security-1.0.pdf

“Understanding WS-Security”
Scott Seely
MSDN white paper (October 2002)
http://msdn.microsoft.com/webservices/webservices/understanding/

advancedwebservices/default.aspx?pull=/library/en-us/dnwssecur/
html/understw.asp

“WS-Security Drilldown in Web Services Enhancements 2.0”
Don Smith
MSDN white paper (August 2004)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/

wssecdrill.asp
(Note: This reference is also listed in the “WS-Secure Conversation” section of this appendix.)

“WS-Security Authentication and Digital Signatures with Web Services Enhancements”
Matt Powell
MSDN white paper (December 2002)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwse/html/

wssecauthwse.asp

“Building Secure Web Services”
J.D. Meier, Alex Mackman, Michael Dunner, Srinath Vasireddy, Ray Escamilla, and

Anandha Murukan
MSDN Patterns and Practices white paper, Chapter 12 (June 2003, revised January 2006)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/

THCMCh12.asp

APPENDIX ■ REFERENCES228

701xAppx.qxd 7/14/06 5:41 PM Page 228

“Encrypting SOAP Messages Using Web Services Enhancements”
Jeannine Hall Gailey
MSDN white paper (December 2002)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwse/html/

wseencryption.asp

“Web Services Security: Moving Up the Stack”
Maryann Hondo, David Melgar, and Anthony Nadalin
IBM developerWorks white paper (December 2002)
http://www-106.ibm.com/developerworks/library/ws-secroad/

“Web Services Security Username Token Profile”
OASIS working draft (January 2003)
http://www.oasis-open.org/committees/wss/documents/WSS-Username-11.pdf

“Web Services Security Kerberos Binding”
Giovanni Della-Libera (Microsoft), Brendan Dixon (Microsoft), Praerit Garg (Microsoft),

Maryann Hondo (IBM), Chris Kaler (Microsoft), Hiroshi Maruyama (IBM),
Anthony Nadalin (IBM), and Nataraj Nagaratnam (IBM)

MSDN white paper (December 2003)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/

ws-security-kerberos.asp

“Security Features in WSE 3.0”
Keith Brown
MSDN Magazine (November 2005)
http://msdn.microsoft.com/msdnmag/issues/05/11/SecurityBriefs/default.aspx

“Web Service Security: Scenarios, Patterns, and Implementation Guidance for Web Services
Enhancements (WSE) 3.0”

Jason Hogg (Microsoft), Don Smith (Microsoft), Fred Chong (Microsoft), Dwayne Taylor
(RDA Corporation), Lonnie Wall (RDA Corporation), and Paul Slater (Wadeware LLC)

MSDN Patterns and Practices guide (December 2005)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/

wssp.asp

Web Service Security: Scenarios, Patterns, and Implementation Guidance home page
Microsoft Patterns and Practices community workspace
http://www.gotdotnet.com/codegallery/codegallery.aspx?id=

67f659f6-9457-4860-80ff-0535dffed5e6

APPENDIX ■ REFERENCES 229

701xAppx.qxd 7/14/06 5:41 PM Page 229

“Security for SOA and Web Services”
Dipak Chopra
SAP Developer Network
https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/com.sap.km.cm.docs/library/

webservices/Security%20for%20SOA%20and%20Web%20Services.article

“Windows 2000 Kerberos Authentication”
Microsoft TechNet
http://www.microsoft.com/technet/prodtechnol/windows2000serv/deploy/confeat/

kerberos.mspx

WS-Policy
“Web Services Policy Framework”
IBM developerWorks specification (May 2003)
http://www-106.ibm.com/developerworks/library/ws-polfram/

“Understanding WS-Policy”
Aaron Skonnard
MSDN white paper (August 2003)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/

understwspol.asp

“Web Services Policy Assertions Language (WS-Policy Assertions)”
Don Box (Microsoft), Maryann Hondo (IBM), Chris Kaler (Microsoft), Hiroshi Maruyama

(IBM), Anthony Nadalin (IBM), Nataraj Nagaratnam (IBM), Paul Patrick (BEA), Claus von
Riegen (SAP), and John Shewchuk (Microsoft)

MSDN white paper (May 2003)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/

ws-policyassertions.asp

“Using Role-Based Security with Web Services Enhancements 2.0”
Ingo Rammer
MSDN white paper (September 2003)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwssecur/html/

wserolebasedsec.asp

WS-Secure Conversation
“Web Services Secure Conversation Language”
IBM developerWorks specification (May 2004, updated February 2005)
http://www-128.ibm.com/developerworks/library/specification/ws-secon/

APPENDIX ■ REFERENCES230

701xAppx.qxd 7/14/06 5:41 PM Page 230

“Web Services Trust Language”
IBM developerWorks specification (May 2004, updated February 2005)
http://www-128.ibm.com/developerworks/library/specification/ws-trust/

“WS-Security Drilldown in Web Services Enhancements 2.0”
Don Smith
MSDN white paper (August 2004)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/

wssecdrill.asp
(Note: This reference is also listed in the “WS-Security” section of this appendix.)

“Managing Security Context Tokens in a Web Farm”
Chris Keyser
MSDN white paper (November 2004)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/

sctinfarm.asp

WS-Addressing
“Web Services Addressing”
IBM developerWorks specification (March 2004, updated August 2004)
http://www-106.ibm.com/developerworks/webservices/library/ws-add/

WS-Messaging
“Asynchronous Operations and Web Services, Part 1: A Primer on Asynchronous Transactions”
Holt Adams
IBM developerWorks white paper (April 2002)
http://www-128.ibm.com/developerworks/library/ws-asynch1.html
“Asynchronous Operations and Web Services, Part 2: Programming Patterns to Build

Asynchronous Web Services”
Holt Adams
IBM developerWorks white paper (June 2002)
http://www-106.ibm.com/developerworks/library/ws-asynch2/index.html

“Introducing the Web Services Enhancements 2.0 Messaging API”
Aaron Skonnard
MSDN Magazine (September 2003)
http://msdn.microsoft.com/msdnmag/issues/03/09/XMLFiles/

APPENDIX ■ REFERENCES 231

701xAppx.qxd 7/14/06 5:41 PM Page 231

WS-Routing and WS-Referral
“Routing SOAP Messages with Web Services Enhancements 1.0”
Aaron Skonnard
MSDN white paper (January 2003)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwse/html/

routsoapwse.asp

WS-Reliable Messaging
“Web Services Reliable Messaging”
IBM developerWorks specification (March 2004, updated February 2005)
http://www-106.ibm.com/developerworks/webservices/library/ws-rm/

“Reliable Message Delivery in a Web Services World: A Proposed Architecture and Roadmap”
IBM Corporation and Microsoft Corporation
MSDN white paper (March 2003)
http://msdn.microsoft.com/webservices/webservices/understanding/advancedwebservices/

default.aspx?pull=/library/en-us/dnglobspec/html/ws-rm-exec-summary.asp

Windows Communication Foundation (Indigo)
“Introduction to Building Windows Communication Foundation Services”
Clemens Vasters
MSDN white paper (September 2005)
http://msdn.microsoft.com/webservices/indigo/default.aspx?pull=/library/en-us/

dnlong/html/introtowcf.asp

Windows Communication Foundation articles and white papers
Resources page
http://wcf.netfx3.com/content/resources.aspx
“A Guide to Developing and Running Connected Systems with Indigo”
Don Box
MSDN Magazine (January 2004)
http://msdn.microsoft.com/msdnmag/issues/04/01/Indigo/

“Creating Indigo Applications with the PDC Release of Visual Studio .NET Whidbey”
Yasser Shohoud
MSDN white paper (January 2004)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnlingo/html/

indigolingo01062004.asp

APPENDIX ■ REFERENCES232

701xAppx.qxd 7/14/06 5:41 PM Page 232

Miscellaneous
MSDN Web Services Books
List of books on building Web services using .NET in particular
http://msdn.microsoft.com/webservices/understanding/books/default.aspx

Discussions in .NET Framework Web Services Enhancements
MSDN Newsgroups
http://msdn.microsoft.com/newsgroups/default.aspx?dg=microsoft.public.

dotnet.framework.webservices.enhancements

“Orchestrating XML Web Services and Using the Microsoft .NET Framework with Microsoft
BizTalk Server”

Ulrich Roxburgh
MSDN white paper (February 2002)
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbiz2k2/html/

bts_wp_net.asp

“Accessing Custom Attributes”
.NET Framework Developer’s Guide
MSDN articles
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/

cpconaccessingcustomattributes.asp

APPENDIX ■ REFERENCES 233

701xAppx.qxd 7/14/06 5:41 PM Page 233

701xAppx.qxd 7/14/06 5:41 PM Page 234

A
abstract description elements, 16
Action class, 176
Active Directory Kerberos ticket

security tokens, 135
Add Web Reference Wizard

autogenerating proxy class, 72, 99
Address class, 176
addressing WS- specifications, 13
addressing classes, 175–176
Addressing property

SoapContext class, 92
AddressingFault class, 176
AddressingHeaders class, 176
AnonymousForCertificateSecurity

assertion, 118
AppDomain class

SetPrincipalPolicy() method, 155
.asmx pages, preparing for WCF, 220
ASP.NET

and asynchronous communication
pattern, 170

communication models, 170
hosting environments supported by

WCF, 212
setting permissions with X.509

Certificate Tool, 103–105
Web service technology extended by

WCF, 220
working with WSE, 91–94

assemblies
business assembly, 61, 66–68, 80–81
type definition assembly, 61, 64–66

asymmetric encryption, 100, 108
asynchronous communication, 170, 172
authentication, 107

WS-Security specification, 108

authentication models, 133
brokered authentication, 135–137

implementation using Kerberos,
146–158

implementation using Mutual
Certificates, 137–145

direct authentication, 133–135
Authentication Service, 146–147
authenticator, 146
authorization, 107, 130

code-based authorization, 131–132
declarative authorization, 131

B
<binding> element, 21–22

concrete implementation elements,
17

Binding property
SoapDocumentMethod attribute, 43

Body property
SoapEnvelope class, 179

brokered authentication, 135
advantages and disadvantages,

136–137
implementation options, 137
implementation with Mutual

Certificates, 137–145
implementing with Kerberos, 146–158

business assembly
calling service agent, 80–81
creating, 61, 66–68
importing into Web service, 62

business layer, encapsulates service
interfaces, 7

business facade
Web services architecture, 9–10

Index

235

701xIndex.qxd 7/14/06 5:42 PM Page 235

C
centralized authentication, 136
Certificate Manager, 101
certificate revocation list (CRL), 141
chain routing, 189
code-based authorization, 131–132
communication, service interfaces, 7
communication models, 170, 172
composability, 84

WS- specifications, 86
concrete implementation elements, 17
confidentiality, 108
Configuration Editor, 89
Constrained Delegation, 158
content-based routing, 189
Context property

SoapEnvelope class, 179
CRL (certificate revocation list), 141
Current property

RequestSoapContext class, 94
Current User certificate store, 101
custom security token

implementation option for brokered
authentication, 137

CustomUsernameTokenManager class
implementing, 126–127

D
data contracts, 209
data integrity, 107
data types

building XSD schema files for, 32
creating class file of interface

definitions for, 32
designing, 31

declarative authorization, 131
decryption of messages, 141
dedicated service token provider, 165
<definitions> element, 16, 19
delivery, WS- specifications, 87
description, WS- specifications, 87
Description group

WS-I Basic Profile, 12
design patterns, introduction, 33
DialogManager object, 218
Digicert, generating X.509 certificates,

138

digital signing
WS-Security specification, 108

direct authentication, 133
advantages and disadvantages, 134
implementation options, 135

direct trust, brokered authentication,
136

discovery, WS- specifications, 87
distributed architectures, SOAs as

example of, 2
DLLHost supported by WCF, 212
documentation included as part of

WSE 3.0, 89
<documentation> element, 23

E
e-commerce applications as example of

SOAs, 1
encryption

of messages, 140
WS-Security specification, 108

endpoint references, 174–175
EndpointReference class, 176
Enterprise Services, COM+, 206
Envelope property

SoapContext class, 92
SoapEnvelope class, 179

establishSecurityContext attribute, 166
external Web service, 78

F
Fault property

SoapEnvelope class, 179
From class, 176

G
Group Policy Object Editor

modifying Active Directory Kerberos
ticket, 135

H
handshake, 162
Header property

SoapEnvelope class, 179
help files

included as part of WSE 3.0, 89
hosted service token provider, 165

■INDEX236

701xIndex.qxd 7/14/06 5:42 PM Page 236

hosting environments, 207
introduction, 211–212

HTTP protocol
compared with messaging, 178–179

HTTPContext class
avoid using in .asmx pages, 220
SoapContext class compared to, 91

I
IDC (Interface Definition Class) files

and WSDL, 186–187
generating, 44–45
implementing in Web service, 46–47
role of, 40–42
XML serialization attributes, 42–43

identity and trust
challenges in securing an SOA, 111

IETF (Internet Engineering Task Force),
146

impersonation, 155–158
<import> element, 18, 51
In-Process, 169

supported by WSE 3.0, 178
Indigo, now known as WCF, 88
Interface Definition Class. See IDC
interfaces, implementing in Web service

code-behind file, 32
Internet B2B, common security

scenario, 114
Internet Engineering Task Force. See

IETF
interoperability

advantages of using Kerebos, 149
challenges in securing an SOA, 111
WS- specifications, 86

interprocess communication. See IPC
Intranet Web service, common security

scenario, 113
IPC transport protocol, 211
IsInbound property

SoapContext class, 92

K
KDC (Kerberos Key Distribution Center),

146
encrypting session key, 147

Kerberos
implementing brokered

authentication, 137, 146
advantages and disadvantages of

Kerberos, 149
Constrained Delegation, 158
impersonation, 155–158
Kerberos protocol, 146
securing client application, 153–155
securing Web service, 151–152
setting up environment, 150
workings of Kerberos, 147–148

Kerberos Key Distribution Center. See
KDC

Kerberos protocol, 146
Kerberos tickets 135
KerberosSecurity strategy, 118

L
ListenerManager object, 218
load balancing, 189

building SOAP router for, 190
Local Computer certificate store, 101
long-term keys, 146
loosely coupled services, 4
loosely coupled Web services client, 71

M
Makecert tool

generating X.509 certificates, 138
Massachusetts Institute of Technology.

See MIT
message channels

WCF connector elements, 211
<message> element, 16, 18–19, 21

abstract description elements, 16
message information headers, 173

within SOAP message, 174
message queue trigger, 198–199
message security

challenges in securing an SOA, 111
message security in WCF, 211

message verification
message correlation and sequence

numbers, 161–162
username token nonce values,

160–161
using time stamps, 159–160

■INDEX 237

Find it faster at http://superindex.apress.com
/

701xIndex.qxd 7/14/06 5:42 PM Page 237

message-oriented Web services
designing and building, 34

building Web service consumer,
49–55

consuming Web service, 49
messages compared to types, 47–48
role of IDC files, 40–47
role of XML messages and XSD

schemas, 34–40
steps in building, 31–33

messages
See also message verification; message

security; messaging
capabilities in WSE 3.0, 211
compared to types, 47–48
creating class file of interface

definitions for, 32
designing, 31
role of XML messages in Web service,

34–37
security in WCF, 211
SOAP senders and SOAP receivers,

181–182, 184, 186
IDC file and WSDL, 186–187
implementing Windows Forms-

based receiver, 184
messaging

compared with HTTP and TCP
protocols, 178–179

overview, 178
properties of message-enabled Web

services, 188–189
representing SOAP messages in WSE

3.0 messaging framework,
179–180

SOAP messaging compared to XML
Web services, 187–188

WS- specifications, 13, 87
Messaging group

WS-I Basic Profile, 12
Messaging services, 207

introduction, 212
supported by WCF connector, 222

methods, WSDL
service interfaces supports, 7

Microsoft Message Queuing. See MSMQ
Microsoft Windows Vista, 205

Microsoft.Web.Services3 assembly
included as part of WSE 3.0, 89
must reference in projects, 90
namespaces, 93

Microsoft.Web.Services3 namespace
SoapContext class, 91
WebServicesClientProtocol class, 129

Microsoft.Web.Services3.Addressing
namespace, 93

Microsoft.Web.Services3.Configuration
namespace, 93

Microsoft.Web.Services3.Configuration.
Install namespace, 93

Microsoft.Web.Services3.Design
namespace, 93

Microsoft.Web.Services3.Diagnostics
namespace, 93

Microsoft.Web.Services3.Messaging.
Configuration namespace, 93

Microsoft.Web.Services3.Referral
namespace, 93

Microsoft.Web.Services3.Security
namespace, 93

Microsoft.Web.Services3.Security.
Configuration namespace, 93

Microsoft.Web.Services3.Security.
Cryptography namespace, 93

Microsoft.Web.Services3.Security.Policy
namespace, 93

Microsoft.Web.Services3.Security.Tokens
namespace, 93

Microsoft.Web.Services3.Security.
Tokens.Kerberos namespace, 94

Microsoft.Web.Services3.Security.Utility
namespace, 94

Microsoft.Web.Services3.Security.X509
namespace, 94

Microsoft.Web.Services3.Security.Xml
namespace, 94

Microsoft.Web.Services3.Xml
namespace, 94

MIT (Massachusetts Institute of
Technology), 146

MSMQ (Microsoft Message Queuing),
206

and WSE 3.0, 212
creating message queue trigger,

198–199

■INDEX238

701xIndex.qxd 7/14/06 5:42 PM Page 238

creating Web service that uses MSMQ,
199, 201

implementing Web service client,
202–203

integrating with SOAP, 169
integrating with Web services, 197
reliable messaging, 197

multiple Internet Web services
common security scenario, 114

mutual authentication
advantages of using Kerebos, 149

Mutual Certificates
implementing brokered

authentication, 137
infrastructure prerequisites,

138–139
message flow, 140–141
running sample solution, 145
securing Client application,

143–145
securing Web services, 141–143
workings of, 138

MutualCertificate10 assertion, 118
MutualCertificate11 assertion, 118

N
.NET Remoting, 206, 219–220
notification, 170
NTLM (Windows NT LAN Manager), 146

O
OneWay property

SoapDocumentMethod attribute, 43
operation element, 16, 19–21

abstract description elements, 17
modes, 19

P
ParameterStyle property

SoapDocumentMethod attribute, 43
<part> element, 19
point-to-point security, 112
policies

assigning to Web service, 116
defined by WSE Security Settings

Wizard, 125
definition of, 115
simplified policy file, 116

policy, WS- specifications, 13
Policy Wizard, 89
PolicyAssertion class, 116
PolicyManager object, 218
polling and request/response, 170
<port> element, 22–23

concrete implementation elements,
17

Port object, 216
ports

introduction, 215–217
WCF connector elements, 211

<portType> element, 21–22
abstract description elements, 17

proxy class file
building consumer, 49
generating client proxy class file,

50–51
generating for clients based on WSDL

documents, 32
generating Web service proxy class file

based on WSDL documents, 63
implementing Web service client, 33

public Web service
common security scenario, 113

public-key encryption, 100, 108

Q
QuickStart samples

included as part of WSE 3.0, 89

R
Receive method

SoapReceiver class, 181
ReferenceProperties class, 176
references, 225–233
referral

See also routing
WS-Referral, 196

Referrals property
SoapContext class, 92

reflection attributes, 43
reliability, SOA improves, 2
reliable messaging

WS- specifications, 13
RemotingManager object, 218
renewExpiredSecurityContext attribute,

166

■INDEX 239

Find it faster at http://superindex.apress.com
/

701xIndex.qxd 7/14/06 5:42 PM Page 239

replay attacks, 159
message correlation and sequence

numbers, 161–162
username token nonce values,

160–161
using time stamps, 159–160

ReplyTo class, 176
request/response, 170
RequestElementName property

SoapDocumentMethod attribute, 43
RequestNamespace property

SoapDocumentMethod attribute, 43
RequestReplyManager object, 218
RequestSoapContext class

Current property, 94
provided by the

WebServicesClientProtocol, 94
ResponseElementName property

SoapDocumentMethod attribute, 43
ResponseNamespace property

SoapDocumentMethod attribute, 43
ResponseSoapContext class, 94
routing and referral

overview, 189
routing and security, 196
routing compared to WS-Addressing,

196–197
routing compared to WS-Referral, 195
supported by WCF connector, 222

RoutingPolicyManager object, 218
RuleManager object, 218

S
SAML (Security Assertion Markup

Language), 137
scalability and SOAs address issues, 2
secure conversation, 163

characteristics, 164
compared to standard secure message

exchange, 164–165
implementing with WSE 3.0, 166
summary, 166–167
workflow for establishing and

conducting, 165
WS- specifications, 13

security
routing, 196
service interfaces, 7
WS- specifications, 13, 86

Security Assertion Markup Language
(SAML) 137

security principal, 146
Security property

SoapContext class, 92
Security Token Service (STS), 114, 137
security tokens

brokered authentication, 135
SecurityManager object, 218
service agent, 78, 80

designing and building, 75
implementing SOA application, 76, 78
in Web services architecture, 9

Service Assurances group
WS-I Basic Profile, 12

Service Composition group
WS-I Basic Profile, 13

service contracts, 209
<service> element, 23, 50, 174

concrete implementation elements,
17

service interfaces
in Web services architecture, 7

Service Manager, 217–218
service principal names, 146
Service-Oriented Architecture. See SOA
service-oriented Web services

designing and building, 63
creating business assembly, 66–68
creating definition assembly, 64–66
creating Web service, 68–69
creating Web service client, 70–75

designing and building service agent,
75–76

business assembly, 80–81
external Web service, 78
implementing SOA application

using service agent, 76, 78
service agent, 78, 80

introduction, 57
steps in building, 57–63

■INDEX240

701xIndex.qxd 7/14/06 5:42 PM Page 240

ServiceManager object, 218
session keys, 146
session-based security

message security in WCF, 211
SetBodyObject method

SoapEnvelope class, 180
SetPrincipalPolicy() method

AppDomain class, 155
shared-secrets and direct

authentication, 134
single point of failure

brokered authentication, 137
single sign-on (SSO) capabilities

brokered authentication, 136
SOA (Service-Oriented Architecture)

implementing SOA application using
service agent, 76, 78

importance of WS- specifications, 84
infrastructure support, 11

WS- specifications, 13
WS-I Basic Profile, 11–13
WSE (Web Services

Enhancements), 13–14
overview, 1–3
references, 225
secure web services, 111–112
SOAP messages are the key

technology, 188
Web services, 4–5

architecture, 6–10
description, 3–6

SOAP messages, 169
and WS-Security specification, 108,

111
and X.509 Certificates, 100
communication design patterns, 170
compared to XML Web services,

187–188
digitally signed compared to

unsigned, 109
endpoint references, 174–175
example utilizing multiple WS-

specifications, 84
important points, 180
instructing WSE to process through

filters, 91

integrating with MSMQ, 169
message correlation and sequence

numbers, 161–162
message information headers, 174
protecting with turnkey security

assertions, 118
references, 226
referencing WSE SOAP extension

classes, 91
routing and referral, 189
security considerations for WS-

Addressing, 177–178
unsecured request message, 109
username token nonce values for

message verification, 160–161
using time stamps for message

verification, 159–160
WSE processing of, 90

SOAP router, 189
building router for load balancing,

189–190
SOAP serialization attributes, 42
SoapBindingUse enumeration

System.Web.Services.Description
namespace, 43

SoapClient class
enhancing WS-Addressing, 197

SoapContext class, 94
accessing properties of SOAP

messages, 160
as window to examine SOAP

messages, 91
Microsoft.Web.Services3 namespace,

91
properties, 92

SoapDocumentMethod attribute
properties, 43

SoapEnvelope class
derives from XmlDocument class, 179
members, 179

SoapHttpClientProtocol class, 116
System.Web.Services assembly, 99
System.Web.Services.Protocols

namespace, 43, 49
using a proxy class that derives from,

121

■INDEX 241

Find it faster at http://superindex.apress.com
/

701xIndex.qxd 7/14/06 5:42 PM Page 241

SoapParameterStyle enumeration
System.Web.Services.Protocols

namespace, 43
SoapReceiver class, 187

implementing, 181–182
SOAPRouter application

overview, 193–194
SOAPSender application

overview, 191–192
sending stock quote request, 195

SoapSender class, 181
SOAPService application

overview, 192–193
SoapService class

enhancing WS-Addressing, 197
solicit/response, 170
specifications

implementing using custom code, 88
SSL (Secure Sockets Layer)

limitations of, 112
preventing replay attacks, 159

SSO (single sign-on) capabilities
advantages of using Kerebos, 149
brokered authentication, 136

standard secure message exchange
compared to secure conversation,

164–165
StockTrader application

creating a security policy, 123–126
creating Web service client, 120–121
implementing

CustomUsernameTokenManager
class, 126–127

referencing security policy from code,
126

securing client application, 128
securing StockTrader Web service, 122
securing with WSE 3.0, 118–120
using proxy class generated by WSE,

129–130
STS (Security Token Service), 114, 137
switches

wsdl.exe tool, 44
WseWsdl3.exe tool, 45
xsd.exe tool, 44

symmetric encryption, 108

system services, 207
introduction, 212

System.EnterpriseServices namespace
technology extended by WCF, 220
using for COM+, 220

System.Messaging namespace, 206
technology extended by WCF, 220
using for messaging, 220

System.Web.Services assembly
SoapHttpClientProtocol class, 99

System.Web.Services namespace
WebService class, 32
WebServiceBindingAttribute class, 43

System.Web.Services.Description
namespace

SoapBindingUse enumeration, 43
System.Web.Services.Protocols

namespace
SoapHttpClientProtocol class, 43, 49,

121
SoapParameterStyle enumeration, 43

System.Xml namespace
XmlDocument class, 179

SystemUnauthorizedAccess exception,
157

T
TCP

asynchronous communication, 169
compared with messaging, 178–179
supported by WSE 3.0, 178

Ticket Granting Service, 146–147
tightly coupled Web services client,

72–75
To class, 176
tokens, SAML, 137
TransactionManager object, 218
transactions, WS- specifications, 87
transport channels

supported by WCF connector, 222
WCF connector elements, 211

Transport group
WS-I Basic Profile, 12

transport level encryption
limitations of SSL, 112

transport protocols, 169

■INDEX242

701xIndex.qxd 7/14/06 5:42 PM Page 242

Transport-level security
message security in WCF, 211

transports and formatter layer (WCF)
introduction, 218–219

trust. See identity and trust
turnkey security assertions, 117–118

protecting SOAP messages, 118
type definition assembly

creating, 61, 64–66
creating Web service, 62

typed channels, 215–217
types compared to messages, 47–48
<types> element, 18, 21, 28

abstract description elements, 16

U
UDDI (Universal Discovery, Description,

and Integration)
role of, 87
using to discover service provider, 2

UML diagrams
definition assembly, 64
designing XML messages and XSD

schemas, 38–39
Unconstrained Delegation, 158
Universal Discovery, Description, and

Integration. See UDDI
Use property

SoapDocumentMethod attribute, 43
UseDefaultCredentials property

serviceProxy class, 155
UsernameForCertificateSecurity

assertion, 118, 166
implementation option for direct

authentication, 135
UsernameOverTransportSecurity

assertion, 117
implementation option for direct

authentication, 135

V
validation

of client certificates, 141
of signatures, 141

VeriSign, generating X.509 certificates,
138

Visual Studio
Add Web Reference menu option, 15
installing and configuring WSE, 96–99
XML Designer, 32

building XSD schema files, 39

W
WCF (Windows Communication

Foundation), 88, 205
and WSE 3.0, 220–222
five major areas within WCF

architecture, 207
hosting environments, 211–212
messaging services, 212
system services, 212
WCF connector, 211
WCF service model, 207–210

overview, 206–207
preparing for, 219–220
references, 232
support for service-oriented

applications, 205
technologies extended, 219
understanding applications and

infrastructure, 214
Ports, 215–217
Service Manager, 217–218
transports and formatter layer,

218–219
typed channels, 217
WCF service layer, 214–215

WCF application
high-level schematic architecture for,

214
WCF connector, 207, 211
WCF service layer, 214–215
WCF service model, 207

introduction, 207–210
WCF Web services

introduction, 213
Web service client

secured code listing, 130
Web service code-behind file

implementing interface in, 32

■INDEX 243

Find it faster at http://superindex.apress.com
/

701xIndex.qxd 7/14/06 5:42 PM Page 243

Web services
See also message-oriented Web

services
access to WSE API, 94–95
architecture, 6–8

business facade, 9–10
service agent, 9

based upon type definition assembly,
62

building consumer, 49
client access to WSE API, 95–96
communication models, 170, 172
consuming, 49
creating, 68–69
creating client, 63, 70–71

loosely coupled, 71
tightly coupled, 72–75

creating Web service that uses MSMQ,
199, 201

implementing Web service client,
202–203

extending security, 133
external Web service, 78
implementing consumer, 52–54
implementing IDC, 46–47
integrating with MSMQ, 197–199
introduction, 3–6
properties of message-enabled Web

services, 188–189
role of, 31
securing with Kerberos, 151–152
securing with X.509 certificates,

141–143
Web Services Description Language. See

WSDL
Web Services Enhancements. See WSE
Web Services Interoperability

Organization. See WS-I
WebService class

.asmx code-behind class derives from,
32

deriving from, 41
System.Web.Services namespace, 32

WebServiceBindingAttribute class
System.Web.Services namespace, 43

WebServicesClientProtocol class, 95, 99
benefits from features of WSE, 116
Microsoft.Web.Services3 namespace,

129
WebServicesConfiguration class

registering for Web service client
projects, 97

Windows 2003 Certificate Services
generating X.509 certificates, 138

Windows integration
advantages of using Kerebos, 149

Windows NT LAN Manager. See NTLM
Windows Service

hosting environments supported by
WCF, 212

Windows Vista SDK
WCF Web services, characteristics, 213

wire protection, 112
wrapped encoding, 42
WS- specifications

business significance, 84, 86
further information, 88
implementing solutions using the

WSE support classes, 88
introducing, 13, 86

composability, 86
description and discovery, 87
interoperability, 86
messaging and delivery, 87
security, 86
transactions, 87

overview, 83–84
references, 227
those covered, 87

WS-Addressing, 84, 205
encapsulating addressing, binding,

and security policy, 216
endpoint references, 173–175
features and support, 169
message information headers,

173–174
overview, 172
references, 231
routing compared to, 196–197
security considerations, 177–178
WSE 3.0 implementation, 175–176

■INDEX244

701xIndex.qxd 7/14/06 5:42 PM Page 244

WS-Atomic Transaction, 88
WS-Coordination, 88
WS-I Basic Profile

introducing, 11–13
outlined, 84

WS-Messaging
references, 231

WS-Policy, 205
references, 230
supported by WCF connector, 222

WS-Referral
compared to routing, 195
references, 232

WS-Reliable Messaging, 172
brief outline, 84
limitations of WSE support, 205
references, 232

WS-Routing
references, 232

WS-Secure Conversation
establishing trusted communication,

162–163
extending Web services security, 133
overview, 163, 165
references, 230–231

WS-Security, 205
brief outline, 84
extending Web services security, 133
implementing with WSE toolkit, 112,

114
turnkey security assertions, 117–118
WSE 3.0 security policies, 115–117

references, 228–230
replay attacks, 159
specification, 107–109, 111
supported by WCF connector, 222

WS-Trust, 163
WSDL (Web Services Description

Language), 15
1.1 specification, 23–26
and IDC files, 186–187
elements, 15–17

<binding> element, 21–22
<message> element, 18–19
<operation> element, 19–20
<port> element, 22

<portType> element, 21
<service> element, 23
<types> element, 18

generating proxy class file for clients
based on WSDL document, 32

generating Web service proxy class
file, 63

generating WSDL documents
manually, 27, 32

what to do with WSDL documents, 28
wsdl.exe tool

autogenerate proxy classes, 28
generating IDC files, 32, 44

WSE (Web Services Enhancements),
13–14

and MSMQ, 212
and WS- specifications, 84
authorization, 130–132
implementing secure conversation,

166
implementing WS- specifications, 83
installing and configuring, 96–99
introducing 3.0, 89
levels of support, 205
security policies, 115–117
technology extended by WCF, 220
version 2.0

references, 227
using role-based security with, 230

version 3.0
and WCF, 220–222
references, 227

Web service access to WSE API, 94–95
Web service client access to WSE API,

95–96
working with ASP.NET, 91–94
workings of processing infrastructure,

89–91
X.509 Certificate support, 100–105

WSE 3.0 Addressing namespace
classes, 175

WSE 3.0 messaging framework
representing SOAP messages, 179–180
routing and referral, 189
SOAP messages, 169
SoapReceiver class, 181

■INDEX 245

Find it faster at http://superindex.apress.com
/

701xIndex.qxd 7/14/06 5:42 PM Page 245

SoapSender class, 181
WS-Addressing specification, 169

implementation, 175–176
WSE 3.0 proxy class

and traditional XML Web services, 170
WSE class framework

SoapContext class, 91
WSE filters, workings of, 89
WSE pipeline, 205
WSE Security Settings Wizard, 123

options, 124
policy defined by, 125
policy file generated by, 125–126
securing client application, 128

WSE Settings Tool
implementing security policies, 115

WSE SOAP extension classes
must reference in ASP.NET Web

service or application, 91
WSE toolkit

See also StockTrader application
implementing WS-Security, 112,

114–118
solutions to limitations of SSL, 112

WSE2QuickStartClient certificate,
143–144

properties, 138
WSE2QuickStartServer certificate, 124,

128, 138
securing with Web service, 141

WseWsdl3.exe tool
generating IDC files, 45

X
X.509 Certificate Tool

included as part of WSE 3.0, 89
setting ASP.NET permissions, 103–105

X.509 Certificates
attaching, 140
implementation option for brokered

authentication, 137
installing test certificates, 101–102
introduction, 100
securing Web Services usingX.509

certificates, 141–143

security tokens, 135
setting ASP.NET permissions, 103–105
support in WSE, 100

XML Designer tool
building XSD schema files, 39
references, 226

XML messages
designing, 37–39
role of in Web services, 34–37
XSD schema files as building blocks,

39
XML Schemas

references, 226
XML serialization attributes, 42–43
XML Web services, 206

compared to .NET Remoting, 219
compared to SOAP messaging via

HTTP, 187–188
XmlDocument class

SoapEnvelope class derives from, 179
XSD schema file

building, 32, 39–40
XSD schemas

designing, 37–39
role of in Web service, 34–37

xsd.exe tool
generating IDC files, 32, 44

■INDEX246

701xIndex.qxd 7/14/06 5:42 PM Page 246

	Expert Service-Oriented Architecture in C# 2005, Second Edition
	Table of Content
	Chapter 1 Introducing Service-Oriented Architecture
	Chapter 2 The Web Services Description Language
	Chapter 3 Design Patterns for Building Message-Oriented Web Services
	Chapter 4 Design Patterns for Building Service-Oriented Web Services
	Chapter 5 Web Services Enhancements 3.0
	Chapter 6 Secure Web Services with WS-Security
	Chapter 7 Extended Web Services Security with WS-Security and WS-Secure Conversation
	Chapter 8 SOAP Messages: Addressing, Messaging, and Routing
	Chapter 9 Beyond WSE 3.0: Looking Ahead to Windows Communication Foundation (WCF)
	Appendix References
	Index

