

C# - Console Applications

Study Notes

Owner: Satish Talim

File: C# - Console Applications

Last saved: 13th Sept. 2001

Email Id. medunet@vsnl.com

Version ß4

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

Notice:

This documentation is an early release of the final Study Notes, which may change
substantially prior to final release.

This document is provided for informational purposes only and Satish Talim makes
no warranties, either express or implied, in this document. Information in this
document is subject to change without notice.

The entire risk of the use or the results of the use of this document remains with the
user. Complying with all applicable international copyright laws is the responsibility
of the user.

Microsoft, Windows, Visual Basic, and Visual C++ are either registered trademarks
or trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their
respective owners.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Table of Contents

Table of Contents

1. Introduction..7

1.1 A New Platform?.. 7
1.2 System Requirements .. 7
1.3 Purpose of these Study Notes.. 7
1.4 Who can use these Study Notes? ... 7
1.5 Updates to this document ... 7
1.6 Recommended Sites on C# ... 7
1.7 My Workshops on C# ... 8
1.8 Satish Talim? .. 8
1.9 Acknowledgements .. 8

2. C# Program Elements ...10
2.1 Overview of the .NET ..10
2.2 C# and Java ..11
2.3 Our first C# Program – Hello, world...11
2.4 Compiler Options ..15
2.5 Response files ..16
2.6 Compiler Errors ..16
2.7 Managed Module...16
2.8 ILDASM...17
2.9 Naming Guidelines ..18

2.9.1 Namespaces .. 18
2.9.2 Classes ... 18
2.9.3 Methods.. 18
2.9.4 Method Arguments ... 18
2.9.5 Interfaces ... 18
2.9.6 Class members .. 18

2.10 Automatic memory management...18
2.11 Comments ...19
2.12 Blocks ...22
2.13 Separation ...22
2.14 Whitespace ..22
2.15 Keywords (76)..22
2.16 Constants – const / readonly ..23
2.17 Variables ...23
2.18 Naming constants and variables ..24
2.19 Escape sequences ...24
2.20 Statements and Expressions...25

2.20.1 Empty statement.. 25
2.21 Types..25
2.22 Predefined types ...28
2.23 Operators ..34

2.23.1 checked and unchecked operators... 35
2.24 Operator overloading...36
2.25 Program Control ...38

2.25.1 The if statement... 38
2.25.2 The switch statement.. 38
2.25.3 The while statement ... 39
2.25.4 The do statement ... 40
2.25.5 The for statement... 40
2.25.6 The foreach statement ... 40

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. iii

C# - CONSOLE APPLICATIONS

2.26 Console I/O..40
2.26.1 Console Input .. 40
2.26.2 Console Output .. 41

2.27 Array types ..41
2.28 Calling methods – ref / out...45

2.28.1 Method Overloading.. 47
2.28.2 Variable Method Parameters - params ... 47

2.29 Handling Exceptions ..48
2.30 Namespaces...50
2.31 Namespaces and Assemblies ..53
2.32 Summary of Key Concepts ...55

3. Object Oriented Concepts..59

3.1 What is an Object?..59
3.2 The Benefit of Encapsulation ..60
3.3 What are Messages? ...60
3.4 What are Classes? ..61
3.5 What is Inheritance? ...62

4. Class and Object..64

4.1 Class Declaration ..64
4.1.1 Class modifiers .. 65

4.1.1.1 Abstract classes .. 66
4.1.1.2 Sealed classes... 66
4.1.1.3 Inner Classes ... 67
4.1.1.4 Base classes.. 68
4.1.1.5 Internal class.. 69
4.1.1.6 Interface implementations ... 69

4.1.2 Class body .. 69
4.1.2.1 Class members... 69
4.1.2.2 Signature .. 71
4.1.2.3 Constructors .. 71
4.1.2.4 Calling Base Class Constructors .. 74
4.1.2.5 Static Constructors ... 74
4.1.2.6 Destructors.. 76
4.1.2.7 Inheritance - Single .. 77
4.1.2.8 Accessing Base Class Members ... 77
4.1.2.9 The this Reference .. 77
4.1.2.10 The new modifier .. 77
4.1.2.11 Casting between Types .. 79
4.1.2.12 Access modifiers ... 80
4.1.2.13 Restrictions on Using Accessibility Levels .. 81
4.1.2.14 Accessibility Domain.. 81
4.1.2.15 Virtual methods .. 82
4.1.2.16 Override methods ... 83

4.2 Interfaces..84
4.3 Structs..85
4.4 Enums ..86
4.5 Properties..87
4.6 Delegates ..88

4.6.1 Delegate ... 88
4.6.2 Multicast Delegates: ... 89

4.7 Events ..90

iv Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Table of Contents

4.8 Reflection ..93
4.9 Assetions...94
4.10 MultiThreading – An Introduction ..95
4.11 Assignment..97
4.12 Summary of Key Concepts ...99

5. Using .NET Base Classes..102
5.1 The WinCV Tool ..102
5.2 StringBuilder class ..102
5.3 File and Folder operations ..103

5.3.1 Finding out information about a File ...103
5.3.2 Listing Files in a Folder...103
5.3.3 Copying and Deleting Files..104
5.3.4 Reading Text Files ...104
5.3.5 Writing Text Files ..105
5.3.6 Reading Binary Files ..105
5.3.7 Writing Binary Files ...105
5.3.8 Reading/Writing to log files...106

5.4 Networking ..108
5.4.1 HTTP ...108
5.4.2 Generic Request/Response Architecture..109

6. Miscellaneous..112

6.1 Comparision of C# and Java...112
6.1.1 Common features are: ...112
6.1.2 Differences...113
6.1.3 C# improvements over Java ...113

6.2 Web Service...113
6.2.1 What is a Web Service?..113
6.2.2 Programming Web Services using ASP.NET and C#..113

6.2.2.1 Declare the Web Service: ...114
6.2.2.2 Define the Web Service methods:...116

6.2.3 Building ASP.NET Web Services:..116
6.2.4 Deploying a Web Service:...117

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. v

 Chapter 1 Introduction

1. Introduction

1.1 A New Platform?
The crash of the dotcoms and the downturn in the prospects of Java notwithstanding, Microsoft’s
.NET and C# opens a whole New World of possibilities. There are many people in the industry,
which see a great future to the .NET. We now have .NET, a new and exciting technology that
finally addresses issues we’ve been grappling with for years (for example, multi-language
development environments, the deployment and versioning problems of large, complex systems,
and so on).

1.2 System Requirements
To build and run your C# programs, you will need Windows 2000, IE 5.5, Microsoft .NET SDK
(Beta 2), an optional Visual Studio .NET (available for MSDN Universal Subscribers) and a text
editor.

The .NET SDK can be downloaded from:

http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/msdn-
files/027/000/976/msdncompositedoc.xml&frame=true

It’s a 127 MB download. The C# compiler (csc.exe) currently ships with the .NET beta.

The use of Visual Studio.NET has been intentionally avoided, to focus on the language and
runtime environment and not place any restrictions on your particular development environment.
Therefore, all the sample codes in these notes will compile and run from the command line.

1.3 Purpose of these Study Notes
To learn the C# language, I had to refer to all available material – books, articles on the net,
discussion groups. As I studied the C# language, I kept making notes. I felt the need of a single
repository where individuals could go to and know everything about a particular topic in C# – this
repository became the Study Notes. I have tried to explain every point of C#, with the help of an
example. Please do appreciate that, this is not a book on C#.

1.4 Who can use these Study Notes?
These Study Notes supplement my C# lectures and assume a basic knowledge of Java. However,
I am confident that it would prove useful to all those interested in learning the C# language.

1.5 Updates to this document
The latest version of this document in .pdf format is always available at the URL:

http://www.pune-csharp.com/downloads/index.htm

All feedback / suggestions about this document can be sent to medunet@vsnl.com

1.6 Recommended Sites on C#
Amit Karmakar (based in Sydney, Australia) and I have launched a site

http://www.pune-csharp.com

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 7

http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/msdn-files/027/000/976/msdncompositedoc.xml&frame=true
http://msdn.microsoft.com/downloads/default.asp?url=/downloads/sample.asp?url=/msdn-files/027/000/976/msdncompositedoc.xml&frame=true
http://www.pune-csharp.com/downloads/index.htm
mailto:satish@pune-csharp.com

C# - CONSOLE APPLICATIONS

which will cater to all the technical needs of the C# professionals. Two activities on the site which
would benefit all C# beginners are:

• C# Study Group – where the C# language can be learnt step-by-step with the help of
experts, and

• C# Projects – where everyone can take part and contribute in building a project.

Here are some other sites related to C# -

http://msdn.microsoft.com/net/

http://www.thecodechannel.com/

http://www.c-sharpcorner.com/

http://www.csharpindex.com/

http://www.csharp-station.com/

http://www.c-point.com

http://www.devx.com/dotnet/resources/

http://www.csharphelp.com/

http://www.aspwire.com

http://www.asptoday.com

1.7 My Workshops on C#
Some of my workshops on the C# language, being conducted at Pune are -

• Console Applications

• Database Applications with ADO.NET

• WinForms and WebForms

• Web Services

1.8 Satish Talim?
Is a software professional with over 23 years of software consulting experience. He has been
working on Java-based software-export projects and corporate training in Java since 1995. His
clients include Satyam Ltd., KPIT, IBM ACE, Focus Inc., Kanbay Software Ltd., Global Electronic
Commerce Services amongst many others. He is also a certified instructor at the Sun Authorized
Java Training center in Pune. He was the founder Director of Infonox Software Pvt. Ltd. (ISPL)
based in California, USA and Pune, India. His current area of interest is C#.

1.9 Acknowledgements
These Study Notes would not have been possible without the contribution, support and generous
help of many individuals.

I would like to acknowledge the help, right from my Java days, to my student and friend Amit
Karmakar, who always believes in me and inspires me to go on to greater heights. Amit is based
in Sydney, Australia and is a Web Developer for the Department of Education and Training, in
New South Wales, Australia.

Sunil Kelkar, who has always stood by me and helped me in going through these notes and
suggest changes. Sunil, is an independent consultant and works in Java and C#, in Pune.

8 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

http://www.thecodechannel.com/
http://www.thecodechannel.com/
http://www.c-sharpcorner.com/
http://www.csharpindex.com/
http://www.csharp-station.com/
http://www.c-point.com/
http://www.c-point.com/
http://www.csharphelp.com/
http://www.aspwire.com/
mailto:amit@pune-csharp.com?subject=C Sharp notes
mailto:amit@pune-csharp.com?subject=C Sharp notes
mailto:sunnykelkar@usa.net?subject=C Sharp notes

 Chapter 1 Introduction

I want to thank Rahul Waghmare, who made me look at and explore C# ! Rahul, is a graphics
artist by profession; works in Pune and likes to experiment with various computer languages –
Java, VC++, C#.

To all my students and people on the Internet who provided me with information/feedback, a big
thank-you.

I acknowledge all the authors, whose works I have referred. Here is a partial list.

The C# Programming book from Wrox Press was the first book I read on C#. I have been highly
influenced by this book and it probably reflects in these Study Notes.

Tom Archer, author of Inside C# for his valuable tips and help in clarifying many of my doubts in
C#. His book helped me understand the internal architecture of C#.

Ben Albahari, author of C# Essentials for clarifying my doubt on byte array. The book gives a
very precise and to the point description of every element in the language.

Jesse Liberty, author of Programming C# for his excellent book.

Anders Hejlsberg and Scott Wiltamuth for their excellent work, C# Language Reference.

Ashish Banerjee, Anant Charturvedi, Willy Denoyette, Sunil Gudipati, Shafeen Sarangi,
Chris Maunder, Mahesh Chand, Sudhakar Jalli, Pramod Singh, Ashok Kumar P. Joe
Mayo, Brad Wilson, Mark Johnson, Richard Grimes, Mitch Denny, Marc and Saurabh
Nandu for their excellent articles on various aspects of C# and / or their sites on C#, which I
have extensively used.

Finally to Microsoft Corporation for giving us this C# language.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 9

mailto:rahulw7@vsnl.com?subject=C Sharp notes
mailto:tarcher@mindspring.com
mailto:ben@genamics.com
mailto:jliberty@libertyassociates.com
mailto:ashish@ospreyindia.com
mailto:anant_dot_net@yahoo.com
mailto:willy.denoyette@pandora.be
mailto:gudipatis@hotmail.com
mailto:shafeen@outlookonline.com
mailto:cmaunder@mail.com
mailto:mchand@kruseinc.com
mailto:sudhakar@i-cst.com
mailto:pramodkumarsingh@hotmail.com
mailto:ashoksamy@usa.net
mailto:mayoj@qwest.net
mailto:mayoj@qwest.net
mailto:bradw@POBOX.COM
mailto:mark.johnson@javaworld.com
mailto:richard@grimes.demon.co.uk
mailto:mitch.denny@warbyte.com
mailto:me133@columbia.edu
mailto:saurabhn@webveda.com
mailto:saurabhn@webveda.com

C# - CONSOLE APPLICATIONS

2. C# Program Elements
C# (pronounced "C sharp") is a simple, modern, object oriented, and type-safe programming
language derived from C and C++. C# aims to combine the high productivity of Visual Basic, the
elegance of Java and the raw power of C++. We will study the C# language and its use as a tool
for programming on the .NET platform.

2.1 Overview of the .NET
.NET shifts the focus in computing from a world in which individual devices and Web sites are
simply connected through the Internet to one in which devices, services, and computers work
together to provide richer solutions for users.

The .NET platform consists of four separate product groups:

• A set of languages (C#, VB.NET...); a set of development tools (Microsoft Visual Studio
.NET...); a comprehensive class library for building web services and web and Window
applications; as well as the Common Language Runtime (CLR) to execute objects built within
this framework.

• A set of .NET Enterprise Servers (SQL Server 2000, BizTalk 2000) that provide specialised
functionality for relational data storage, email, B2B commerce etc.

• Commercial web services, like Project Hailstorm; for a fee.

• New .NET-enabled non-PC devices, from cell phones to PDAs etc.

The .NET Framework sits on top of the operating system and consists of the:

• Common Language Runtime (CLR). You can think of the CLR as an agent that manages code
at execution time, providing core services such as memory management, thread
management, and remoting, while also enforcing strict safety and accuracy of the code. In
fact, the concept of code management is a fundamental principle of the runtime. Code that
targets the runtime is known as managed code; code that does not target the runtime is
known as unmanaged code. The code that runs within the CLR runs in an encapsulated and
managed environment, separate from other processes on the machine.

• .NET Framework class libraries sometimes called the Base Class Library (BCL). All .NET
languages have the .NET Framework class libraries at their disposal. The .NET Framework
class libraries include support for everything from file I/O and database I/O to XML and SOAP.
The .NET Framework class libraries are very vast. The BCLs functionality is available to all
languages that use the CLR.

• An universal type system called the .NET Common Type System (CTS). In addition to defining
all types, the (CTS) also stipulates the rules that the CLR follows with regard to applications
declaring and using these types. In the world of .NET and C# everything in the CTS is an
object. In fact, not only is everything an object but, even more importantly, all objects
implicitly derive from a single base class defined as part of the CTS. This base class called
System.Object.

• Common Language Subset (CLS), that ensures seamless interoperability between CLS-
compliant languages and class libraries. For C# developers, this means that even though C#
is a new language, it has complete access to the same rich class libraries that are used by
seasoned tools such as Visual Basic and Visual C++. C# itself does not include a class library.
Because the same .NET base class library is shared between all programming languages, a

10 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

developer can take his knowledge of this library with him as he migrates from language to
language.

C# is a programming language for developing applications for the Microsoft’s .NET development
platform. C# is provided as a part of Microsoft .NET. In addition to C#, .NET supports Visual
Basic, Visual C++, and the scripting languages VBScript and Jscript (infact 21 languages so far).
A developer picks the .NET language that he/she likes most, writes components in it, and shares
the compiled binary versions of his/her components with developers using other .NET languages.
This makes the .NET platform language-neutral – i.e. modules written in C# would also be
compatible with those written in VC++ and VB. When executed, the components use the .NET
runtime component for security and memory management.

The basic premise is quite simple: all .NET programs are compiled to an intermediate language
Microsoft Intermediate Language (MSIL) files, rather than to native code which can be understood
by the computer's processor. This MSIL code is then compiled again using the Just In Time (JIT)
compiler to native code either when the application is installed, or when the application is run,
which is then executed by the machine’s processor.

Microsoft has submitted a C# standard for ratification by ECMA (the European Computer
Manufacturers' Association). Once this standard is in place, vendors worldwide will be able to use
it to develop C# compilers that target their own platforms. C# applications cannot run without the
.NET runtime. At present the .NET platform has been released for Win NT/2000/XP. Until the time
a separate runtime environment is released for .NET, you will have to install the full .NET
Software Development Kit (SDK) on every machine you can to run your programs.

MS plans to release the .NET runtime for other platforms soon. Now if a .NET runtime has been
released for your platform then all the .NET programs will run on your platform. A .NET Platform
for Linux is expected soon. As of today, Windows is the only platform for which an IL runtime has
been developed so far, but this situation is expected to change. Even if Microsoft Corporation
doesn't produce the Macintosh, UNIX, and IBM runtimes, someone else probably will in order to
enjoy the reduced development costs associated with platform independence. A threat to Java?

2.2 C# and Java
There’s no doubt that C# resembles Java. Both languages, for example, promote the grouping of
classes, interfaces and implementation together in one file so that developers can edit the code
more easily. Both handle objects in much the same way: via references. There are parallels
between Java’s JVM and C#’s CLR – both are in charge of interpreting bytecode. Both have
garbage collectors. Both are in charge of authenticating code before it’s executed. Additionally,
some of the classes and namespaces inside the .NET class library are very similar to classes and
namespaces in the Java class library.

Some differences though: C# uses operator overloading, type-safe enumeration. The C# compiler
has an option to automatically produce XML-formatted code documentation using a special
comment syntax.

The one edge that Java has over C# is platform independence. However, as mentioned earlier,
it’s speculated that Microsoft would release the CLR for platforms other than Windows.

2.3 Our first C# Program – Hello, world
Before you write your first C# application, you need to choose an editor. Notepad will also do.
We'll now write the "Hello, world" example application to get to know the basic syntax and
structure of writing C# applications.

Let's make a directory where we will save all our work. In order to do so, click on Start,
Programs, then go to Accessories and select Command Prompt (Windows 2000). Once you are at

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 11

C# - CONSOLE APPLICATIONS

the command prompt create a directory called csharp (md csharp) and change to this directory
(cd csharp). Load your favourite editor and type-in your first C# program.

Program Hello.cs

using System;
class Hello {
 public static void Main(string[] args) {
 Console.WriteLine("Hello, world");
 }
}
The default file extension for C# programs is .cs, as in Hello.cs. The name of the program can
be hello.cs or any name you want. In fact, you can name your program as Hello.txt too! (Java
programmers should note this).

An important note by Tom Archer, Author Inside C#:

“Most people would recommend that you use the .cs extension for three reasons:

1. The extension makes it obvious to anyone browsing a particular folder that the file is C#
source code.

2. The Visual Studio File Open filter for C# files is set to look for (and therefore, display) files
with a .cs extension. Having source code files with any other extension would require you to
always change that filter (or update the Registry setting for Visual Studio).

3. When you install Visual Studio.NET, an automatic file association is created for the .cs files
such that they appear in the Windows Explorer as "C# Source files" and when you open them,
they are automatically opened with Visual Studio. Once again, using a different extension
would require you to manually create the association and in the case of a .txt file, that might
not be what you want.

With regards to the C# compiler allowing the use of files that don't have the .cs extension, this is
simply the compiler team allowing you the freedom to use whatever extension you wish.”

We would be using the C# command-line compiler (csc.exe) throughout these notes. This
provides two benefits. First, it means that no matter what environment you're using, the steps for
building the programs will always work. Second, learning the different compiler options will help
you in the long run in situations where your editor doesn't provide you complete control over this
step.

Such a program can be compiled with the command line directive

csc Hello.cs

which produces an executable program named Hello.exe.

If you haven't made any typos. Something like:

Microsoft (R) Visual C# Compiler Version 7.00.9254 [CLR version v1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights reserved.

will appear in your command prompt window. The C# compiler produces an executable program
named hello.exe. C# compiles straight from source code to executable (.exe), with no object
files. By simply typing hello you will see the output of the program as:

Hello, world

Close examination of this program is illuminating:

• C# programs (Note: program code only) are case-sensitive and in free format.

12 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

• Console (character only and graphics free) applications are normally used for creating
driver programs for components that you are testing and a great way to start learning C#.
It also means that we are not doing anything specific to Windows development.

• When you define a class in C#, you must define all methods inline—header files do not
exist. Why is this a good thing? It enables the writers of classes to create highly mobile
code, which is one of the key concepts of the .NET environment. This way when you write
a C# class, you end up with a fully encapsulated bundle of functionality that you can easily
drop into any other development environment without worrying how that language
processes include files or if it has a mechanism for including files within files. Using this
"one-stop programming" approach, you can, for instance, take an entire class and drop it
into an Active Server Pages (ASP) page and it will function just as it would if it were being
compiled into a desktop Windows application!

• The using System; directive references a namespace (similar to a package in Java) called
System that is provided by the .NET runtime. System is the root of the .NET base class
namespace. using is very similar in concept to Java's import keyword. All it does is to tell
the compiler where to look if it comes across any types which are not in the current
namespace. A “using” directive enables unqualified use of the members of a namespace.
This namespace contains the Console class referred to in the Main method. Namespaces
provide a hierarchical means of organizing the elements of a class library. Unlike Java, in
C# you cannot import a single class, but the whole package. However, the components of
a namespace name do not have to map onto directories (remember in Java, a package has
to physically map to a directory). The “Hello, world” program uses Console.WriteLine as
a shorthand for System.Console.WriteLine. What do these identifiers denote? System is
a namespace, Console is a class defined in that namespace, and WriteLine is a static
method (a static method can access any static member within the class, but it cannot
access an instance member) defined in that class.

• In Main() the first character is a capital M.

• The Main function is a static member of the class Hello. Functions and variables are not
supported at the global level; such elements are always contained within type declarations
(e.g., class and strict declarations). The Main function can have any access modifier and
can be written as static void Main() too. Every method (Main method here) must have
a return type. In this case, it is "void", which means that "Main" does not return a value.
Every method also has a parameter list following its name with zero or more parameters
between parenthesis. The Main method is a static member of the class Hello. The static
qualifier makes the Main() method a class method, so that it can be invoked on its own,
without the creation of an instance of the class.

• Every C# application must have a method named Main defined in one of its classes. It
doesn't matter which class contains the method—you can have as many classes as you
want in a given application—as long as one class has a method named Main. It is the entry
point of your program, where the program control starts and ends. Every C# executable
(such as console applications, Windows applications and Windows services) must have an
entry point. It is declared inside a class or struct. It must be static. It can either be void or
return an int. The Main method is the place where you create objects and execute other
methods. The Main method can be written without parameters or with parameters.

• There are three ways to declare the Main method: (a) It can return void as in public
static void Main() { ... } (b) It can also return an int as in public static int
Main() { ...; return 0; } (c) It can also take arguments as in public static
int Main(string[] args) { ...; return 0; }

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 13

C# - CONSOLE APPLICATIONS

• The parameter of the Main method is a string array that represents the command-line
arguments used to invoke the program. Notice that, unlike C, C++, this array does not
include the name of the executable (exe) file.

• If you have zero or more than one Main() in a program, you can expect compiler errors.
This is shown in the example ManyMain.cs below:

using System;
class GF {
 public GF() {
 Console.WriteLine("In GF class");
 }
 public static void Main(string[] args) {
 }
}
class F : GF {
 public F() {
 Console.WriteLine("In F class");
 }
 public static void Main(string[] args) {
 }
}
class S : F {
 public S() {
 Console.WriteLine("In S class");
 }
 public static void Main(string[] args) {
 S son = new S();
 }
}
This program when compiled gives the error:

Microsoft (R) Visual C# Compiler Version 7.00.9254 [CLR version v1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights reserved.

ManyMain.cs(13,22): warning CS0108: The keyword new is required on

 'F.Main(string[])' because it hides inherited member 'GF.Main(string[])'

ManyMain.cs(6,22): (Location of symbol related to previous warning)

ManyMain.cs(6,22): error CS0017: Program 'ManyMain.exe' has more than one entry

 point defined: 'GF.Main(string[])'

ManyMain.cs(13,22): error CS0017: Program 'ManyMain.exe' has more than one entry

 point defined: 'F.Main(string[])'

ManyMain.cs(20,22): warning CS0108: The keyword new is required on

 'S.Main(string[])' because it hides inherited member 'F.Main(string[])'

ManyMain.cs(13,22): (Location of symbol related to previous warning)

ManyMain.cs(20,22): error CS0017: Program 'ManyMain.exe' has more than one entry

 point defined: 'S.Main(string[])'

The designers of C# included a mechanism by which you can define more than one class with a
Main method. Why would you want to do that? One reason is to place test code in your classes.
You can then use the

/main:< className >

14 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

switch with the C# compiler to specify which class's Main method is to be used.

To compile this application such that the S.Main method is used as the application's entry point,
you'd use this switch:

csc ManyMain.cs /main:S
Changing the switch to /main:F would then use the F.Main method.

The /main compiler option specified a class in which to look for a Main method.

The error CS0108 indicates to us that a variable or method was declared with the same name as
a variable or method in a base class. However, the new keyword was not used. This warning
informs you that you should use new; the variable or method is declared as if new had been
used in the declaration. The Main() methods in class S and F have to be declared as follows:

public static new void Main(string[] args) { }
• The “Hello, world” output is produced using a class library. C# does not itself provide a

class library. Instead, C# uses a common class library that is also used by other languages
such as Visual Basic and Visual C++.

• The program does not contain forward declarations. Forward declarations are never
needed in C# programs, as declaration order is not significant.

• C# programs use “.” as a separator in compound names such as Console.WriteLine.

• The program does not use #include to import program text. Dependencies between
programs are handled symbolically rather than with program text. This system eliminates
barriers between programs written in different languages. For example, the Console class
could be written in C# or in some other language.

Note: Observe the following -

a. Save the above Hello, world program as Hello.cs and compile as csc Hello.cs and run the
program as Hello

b. Compile the above program as csc hello.cs and run the program as hello or Hello

c. Save the above file as hello.cs and compile as csc Hello.cs or csc hello.cs and run the program
as Hello or hello

d. Save the above file as rubbish.cs and compile as csc rubbish.cs and run the program as
rubbish

e. Make the class as public and try a, b and c as above

For a to e above we get the same output i.e. Hello, world

f. We can have more than one public class in a source file.

2.4 Compiler Options
You can compile your program as follows:

csc SourceFile.cs /out:TargetFile.exe
Some of the other options are:

/t:exe – produces a console application
/t:winexe – produces a Windows Form application
/t:library – produces a stand-alone assembly containing a manifest
/t:module – produces a stand-alone assembly without a manifest

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 15

C# - CONSOLE APPLICATIONS

2.5 Response files
To make automating builds easier, the C# compiler supports response files. A response file
contains a listing of command line options and can be linked in by a reference to the file when the
compiler is invoked.

csc SourceFile.cs /out:TargetFile.exe @<responsefilename>
The /noconfig option tells the compiler not to compile with the global or local versions of csc.rsp.

By default, the C# compiler looks in the C:\WINDOWS\Microsoft.NET\Framework\v1.0.2914
directory and in the directory from which the compiler was invoked for files called csc.rsp.

The csc.rsp file that is supplied in C:\WINDOWS\Microsoft.NET\Framework\v1.0.2914 references
the .NET Framework assemblies that would be included in a C# project. You can modify this
global csc.rsp file to contain any other compiler options that you want to include in a compilation
from the command line with csc.exe.

The compiler will then look for a csc.rsp file in the directory from which the compiler was invoked.
The commands in the local csc.rsp file will be combined with the global csc.rsp file for the
compilation. Since the global csc.rsp is processed first, any command that is also in the local
csc.rsp file will override the setting of the same command in the global csc.rsp file.

Finally, the compiler will read the options passed to the csc command. Since these are processed
last, any option on the command line will override a setting of the same option in either of the
csc.rsp files.

2.6 Compiler Errors
Here is what to expect when the compiler encounters syntax errors in your code. First, you'll see
the name of the current file being compiled, followed by the line number and column position of
the error. Next, you'll see the error code as defined by the compiler—for example, CS0234.
Finally, after the error code, you'll see a short description of the error. Many times, this
description will give you enough to make the error clear. You can also search for the error code in
the .NET Framework SDK Documentation (which is installed with the .NET Framework SDK) for a
more detailed description.

2.7 Managed Module
The C# compiler creates a Managed Module (MM). A MM is a standard Windows's portable
executable (PE) file, that requires the CLR to execute and is therefore being managed by the CLR.

A MM is composed of the following things:

• Windows PE file header

• .NET Framework file header - some of the many information it carries is: version of the CLR
required, the MM entry point method (Main), location/size of the MM meta data, resources etc.

• Metadata - simply it's a set of data tables that describe what is defined in the module, such as
types and members. The Metadata is always embedded in the same EXE/DLL as the code.

• Microsoft Intermediate Language (MSIL) also known as Managed Code - MSIL is a complete
language (it's a CPU-independent machine language) that you can write applications in. The
MSIL is further compiled into native CPU instructions when the application is executed for the
first time by the CLR.

End-users must have the CLR installed on their machine in order to execute any MMs. The CLR
does not actually work with MMs; it works with assemblies. An assembly is a logical grouping of
zero or more MMs and resource or data files. By default, compilers actually do the work of turning

16 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

the emitted MM into an assembly. Deployment can be as simple as copying the necessary
assemblies to a target location. There is no need to register components in the Windows registry.

The System.Reflection namespace contains types that allow the inspection of metadata. Hence all
components in the .NET are self-describing. This enables any application - not just the CLR - to
query another application's metadata. Tools such as Visual Studio.NET use these reflection
methods to implement features such as IntelliSense. With IntelliSense, as you type in a method
name, that method's arguments pop up in a list box on the screen. The .NET tool called Microsoft
.NET Framework IL Disassembler (ILDASM) also makes use of reflection. This tools parses the
target application's metadata and then displays information about the application in a treelike
hierarchy.

2.8 ILDASM
Type the following program - Hello.cs

using System;
class Hello {
 static void Main() {
 Console.WriteLine("Hello");
 }
}
Compiling it gives us a file Hello.exe

In the Start menu's Run dialog box, type ildasm and click Ok. You will see an application with a
few menu options. At this point, from the File menu, click Open. When the File Open dialog box
appears, browse to the folder containing the Hello.exe application and select it. The ILDASM gives
us a tree view of the contents of a managed binary. The Hello.exe consists of a manifest, one
class (Hello), two methods (a class constructor and a static method Main), and a bit of class
information.

Double-click the Main method in the tree view, and ILDASM will present a window displaying the
MSIL for the Main method, as shown below.

.method private hidebysig static void Main() cil managed
{
 .entrypoint
 // Code size 11 (0xb)
 .maxstack 8
 IL_0000: ldstr "Hello"
 IL_0005: call void [mscorlib]System.Console::WriteLine(class
System.String)
 IL_000a: ret
} // end of method Hello::Main

The first line defines the Main method by using the .method MSIL keyword. Note that the method
is defined as being public and static, which are the default modifiers for the Main method. Alos
note that this method is defined as managed.

The next line of code uses the MSIL .entrypoint keyword to designate this particular method as
the entry point to the application. When the .NET runtime executes this application, this is where
control will be passed to the program.

Next, look at the MSIL opcodes on lines IL_0000 and IL_0005. The first uses the the ldstr (Load
String) opcode to load a hard-coded literal ("Hello") onto the stack. The next line of code calls the
System.Console.WriteLine method. Notice that the MSIL prefixes the method name with the name
of the assembly that defines the method. This line also tells us the number of arguments (and

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 17

C# - CONSOLE APPLICATIONS

their types) that are expected by the method. Here, the method will expect a System.String
object to be on the stack when it's called. Finally, line IL_000a is a simple ret MSIL opcode to
return from the method.

2.9 Naming Guidelines
Choosing a stable and easily understood naming convention will enable you to write code that's
easier to read and, therefore, to maintain. A standard is still evolving. It might end up slightly
different from what is presented here, but this will at least give you a place to start.

For all i.e. 2.6.1 to 2.6.6 below, the start of the second word is always a capital letter.

2.9.1 Namespaces
Use your company or product name, and employ mixed casing with an initial capital letter - for
example, JavaTech. If your company is called Javatech, and you have two products - training and
software development - name your namespaces JavaTech.Training and
JavaTech.SoftwareDevelopment.

2.9.2 Classes
Name your classes by using nouns that describe the class's problem domain. Employ mixed
casing with an initial capital letter - for example, MyButtonClass

2.9.3 Methods
Employ mixed casing with an initial capital letter - on all methods. Methods are meant to act—
they carry out work. Therefore, let the names of your methods depict what they do. Examples of
this are PrintBill and OpenFile.

2.9.4 Method Arguments
Employ mixed casing with an initial capital letter on all arguments. Give meaningful names to
arguments.

2.9.5 Interfaces
Employ mixed casing with an initial capital letter on all interfaces. It's common to prefix interface
names with a capital "I"—for example, IMyInterface. A common technique is naming interfaces
with adjectives.

2.9.6 Class members
Use camel casing, in which the first letter is not capitalized. That way if you have a method that
takes as an argument something called Foo, you can differentiate it from the internal
representation of that variable by creating the internal member named foo.

2.10 Automatic memory management
Manual memory management requires developers to manage the allocation and de-allocation of
blocks of memory. Manual memory management is both time consuming and difficult. C#
provides automatic memory management so that developers are freed from this burdensome
task. In the vast majority of cases, this automatic memory management increases code quality
and enhances developer productivity without negatively impacting either expressiveness or
performance.

Once a variable is assigned null, it become eligible for garbage collection. The .NET Garbage
Collector (GC) is permitted to clean up immediately, but is not required to do so.

18 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

Hence, once you finish with an object, that object no longer has any live references to it (i.e. it
won't be assigned to any variables or stored in any arrays). C# has a garbage collector that looks
for unused objects and reclaims the memory that those objects are using. You don't have to do
any explicit freeing of memory; you just have to make sure that you are not holding onto an
object you want to get rid of.

Note:

The Finalize (inherited from Object) method allows an Object to attempt to free resources and
perform other cleanup operations before the Object is reclaimed by the Garbage Collector (GC).
This method may be ignored by the Common Language Runtime; therefore, necessary cleanup
operations should be done elsewhere.

2.11 Comments
The first line contains a comment:

// A "Hello World!" program in C#

Text following a comment // up to the end of the line is ignored by the compiler.

// Comments can appear on an independent line or as part of a statement too.

You can also comment a block of text by placing it between the characters /* and */, for
example:

/* A "Hello World!" program in C#.

This program displays the string "Hello World!" on the screen. */

The C-style comment can occur within a line and can span more than one line.

// This line is commented out // is extra.

The extra // above, have no effect.

Block comments can't be nested.

Comments are not considered when your program is compiled. They are there to document what
your program does in plain English.

In C# you can document the code you write using XML. C# is the only programming language in
.NET framework with this feature. In source code files, lines that begin with /// and that precede
a user-defined type such as a class, delegate, or interface; member such as a field, event,
property, or method; or a namespace declaration can be processed as comments and placed in a
file. These will be treated as normal comments by the compiler, unless you use the
/doc:filename compiler option to tell it to generate the XML. The compiler also supports a set of
documentation tags that you can use within XML comments. The source code file that contains
Main is output first into the XML.

The following sample XMLsample.cs program provides a basic overview of a type that has been
documented.

// XMLsample.cs
// compile with: /doc:XMLsample.xml
using System;
/// <summary>
/// Class level summary documentation goes here.</summary>
/// <remarks>
/// Longer comments can be associated with a type or member
/// through the remarks tag</remarks>
public class SomeClass

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 19

C# - CONSOLE APPLICATIONS

{
 /// <summary>
 /// Store for the name property</summary>
 private string myName = null;

 /// <summary>
 /// The class constructor. </summary>
 public SomeClass()
 {
 // TODO: Add Constructor Logic here
 }

 /// <summary>
 /// Name property </summary>
 /// <value>
 /// A value tag is used to describe the property value</value>
 public string Name
 {
 get
 {
 if (myName == null)
 {
 throw new Exception("Name is null");
 }

 return myName;
 }
 }

 /// <summary>
 /// Description for SomeMethod.</summary>
 /// <param name="s"> Parameter description for s goes here</param>
 /// <seealso cref="String">
 /// You can use the cref attribute on any tag to reference a type or member
 /// and the compiler will check that the reference exists. </seealso>
 public void SomeMethod(string s)
 {
 }

 /// <summary>
 /// Some other method. </summary>
 /// <returns>
 /// Return results are described through the returns tag.</returns>
 /// <seealso cref="SomeMethod(string)">
 /// Notice the use of the cref attribute to reference a specific method
</seealso>
 public int SomeOtherMethod()
 {
 return 0;
 }

 /// <summary>
 /// The entry point for the application.
 /// </summary>
 /// <param name="args"> A list of command line arguments</param>
 public static int Main(String[] args)
 {

20 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

 // TODO: Add code to start application here

 return 0;
 }
}

To compile the sample code, type the following command line:

csc XMLsample.cs /doc:XMLsample.xml

The /doc option allows you to place documentation comments in an XML file.

This will create the XML file XMLsample.xml. as shown below:

<?xml version="1.0"?>
<doc>
 <assembly>
 <name>xmlsample</name>
 </assembly>
 <members>
 <member name="T:SomeClass">
 <summary>
 Class level summary documentation goes here.</summary>
 <remarks>
 Longer comments can be associated with a type or member
 through the remarks tag</remarks>
 </member>
 <member name="F:SomeClass.myName">
 <summary>
 Store for the name property</summary>
 </member>
 <member name="M:SomeClass.#ctor">
 <summary>The class constructor.</summary>
 </member>
 <member name="M:SomeClass.SomeMethod(System.String)">
 <summary>
 Description for SomeMethod.</summary>
 <param name="s"> Parameter description for s goes here</param>
 <seealso cref="T:System.String">
 You can use the cref attribute on any tag to reference a type or
member
 and the compiler will check that the reference exists. </seealso>
 </member>
 <member name="M:SomeClass.SomeOtherMethod">
 <summary>
 Some other method. </summary>
 <returns>
 Return results are described through the returns tag.</returns>
 <seealso cref="M:SomeClass.SomeMethod(System.String)">
 Notice the use of the cref attribute to reference a specific method
</seealso>
 </member>
 <member name="M:SomeClass.Main(System.String[])">
 <summary>
 The entry point for the application.
 </summary>
 <param name="args"> A list of command line arguments</param>
 </member>

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 21

C# - CONSOLE APPLICATIONS

 <member name="P:SomeClass.Name">
 <summary>
 Name property </summary>
 <value>
 A value tag is used to describe the property value</value>
 </member>
 </members>
</doc>

All the members of the assembly are denoted by <member> tags, and you can see how the
compiler has added the full name of the member as a name attribute. The T, F and M prefixes
denote types, fields and members respectively.

2.12 Blocks
C# code is organised into blocks (or sections). You specify the beginning and end of a block using
curly braces.

{ // C# block of code }

Every executable statement in C# will be within one or more blocks. It is a standard C#
programming style to identify different blocks with indentation. Every time you enter a new block,
you should indent your source code by preferably two spaces. When you leave a block, you
should de-indent by two spaces. Blocks define scope (or lifetime and visibility) of program
elements.

2.13 Separation
As in C, C# uses the semicolon to indicate the end of a statement.

2.14 Whitespace
C# is a freeform language. You don't have to indent anything to get it to work properly.
Whitespace characters are space, tab or newline. Appropriate use of white space makes your
programs easier to read and understand.

2.15 Keywords (76)
Because keywords have specific meaning in C#, you can't use them as identifiers for something
else, such as variables, constants, class names, and so on. However, they can be used as part of
a longer token, for example: public int abstract_int;

Also, because C# is case sensitive, if a programmer is bent on using one of these words as an
identifier of some sort, you can use an initial uppercase letter. While this is possible, it is a very
bad idea in terms of human readability.

There are numerous Classes defined in the standard packages. While their names are not
keywords, the overuse of these names may make your meaning unclear to future people working
on your programs.

The keywords are:

abstract base bool break byte
case catch char checked class
const continue decimal default delegate
do double else enum event
explicit extern false finally fixed
float for foreach goto if
implicit in int interface internal

22 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

is lock long namespace new
null object operator out override
params private protected public readonly
ref return sbyte sealed short
sizeof static string struct switch
this throw true try typeof
uint ulong unchecked unsafe ushort
using virtual void while as

stackalloc

The break and continue keywords:

These can be used to control iteration. The break statement will exit from the immediately
enclosing for, do, while, foreach or switch statement. The continue statement will terminate the
current iteration, causing a jump to the end of the block forming the body of the loop. C# does
not support labeled break as in Java.

2.16 Constants – const / readonly
A constant is nothing more than a value, in a program, that stays the same throughout the
program's execution. Such values as the numeral 2 and the string constant "C#" are sometimes
called hard-coded values or literals. Symbolic constants are simply words that represent values in
a program, for example:

const float SALESTAX = 0.06;

const tells C# that this data object is going to be a constant.

const int x = 100;

const int y = x*5; // OK – compiler knows value of x

By default, const members are static. A const variable cannot take as its value a variable that is
not const. Therefore, this is not allowed:

int x = 100;
const int y = x*5; // Error, x is not const
One problem you may encounter is that values of const members are calculated at compile-time,
so you can’t use const to define a member whose value can’t be set in this way. What does a
programmer do when the need arises for a field with a value that won't be known until run time
and should not be changed once it's been initialized? To get around this, C# has provided a
readonly modifier, which specifies that the member can have its value set once only, and
afterwards is read-only. The readonly fields that we define are instance fields, meaning that the
user would have to instantiate the class to use the fields. Hence, when you define a field with the
readonly keyword, you have the ability to set that field's value in one place: the constructor.
After that point, the field cannot be changed by either the class itself or the class's clients.

In the example below, we are setting the sortcode to the string value passed into the constructor.

public class Account {
 public readonly string sortcode;
 public Account(string code) {
 sortcode = code;
 }
}

2.17 Variables
Variables are values that can change as much as needed during the execution of a program. One
reason you need variables in a program is to hold the results of a calculation. Hence, variables

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 23

C# - CONSOLE APPLICATIONS

are locations in memory in which values can be stored. They have a name, a type, and a value.
C# allows simple and compound variable declarations.

2.18 Naming constants and variables
The rules for choosing constant and variable names (identifiers) are that every C# identifier must
begin with one of the characters: A-Z, a-z. Following the first character, the rest of the identifier
can use any of these characters: A-Z, a-z, 0-9 An identifier must not clash with a keyword. As a
special case, the @ prefix can be used to avoid such a conflict, but the character is not considered
part of the identifier that it precedes. For instance, the following two identifiers are equivalent:

int

@int

The example SI.cs below clarifies this point:

using System;
class SI {
 static void Main(){
 int @int = 20;
 Console.WriteLine("Value is: {0} ", @int);
 }
}
A class name or other identifier can be no longer than 512 characters.

C# language uses the Unicode character set. Unicode is a character set definition that not only
offers characters in the standard ASCII character set, but also a wide range of other characters
for representing most international characters.

Variable definitions can go anywhere in a method definition, although typically variable
declarations for a given block are placed immediately after the opening curly brace ({). C#
actually have three kinds of variables: instance, class and local variables. C# does not have
global variables, as in 'C'.

Instance variables are defined outside the confines of any method declaration. In general,
instance variables are available to all methods within the class and are automatically initialised
when an object is created. Their initial value depends on the type of variable: null for objects of
classes, 0 for numeric variables, '\0' for characters, and false for bool.

Local variables are local to some method, are not automatically initialised and are lost once a
method terminates. Your C# program will not compile if you try to use an unassigned local
variable. The scope extends to the end of the current block. You can’t declare another variable
with the same name in the current or any nested blocks.

A static variable belongs to the class itself (not any individual object). No object really owns this
variable but any can read or write it. This is useful to provide a means of communication between
objects or for storing data that all objects need to reference. No matter how many times a class
gets instantiated, only one copy of this variable will exist. In C#, static members must be
accessed through a class name. You can’t access them via an object, as you can in Java. Also,
static variables cannot be declared inside a method.

2.19 Escape sequences
The \" in a string literal is an example of an escape sequence. The \ character indicates the
beginning of an escape sequence and the character or characters that follow are interpreted in a
special way. In this example, the escape sequence means that the " mark should be printed and it
does not indicate the end of the string literal. Another example is \n indicating newline character.

24 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

2.20 Statements and Expressions
A C# program is structured into classes, which contain methods, and these in turn are made up
of statements. Statements are free format; can run over more than one line without any need for
continuation characters; and are terminated with a semicolon. A statement forms a single C#
operation. Statements sometimes return values - for example, when you add two numbers
together or test to see whether one value is equal to another. Expressions are built by combining
variables and operators together into statements. C# statements end with a semicolon. A
statement may have a label associated with it. Normally labeled statements are used in switch
statements, but in C# they can also be used as the destination for a goto operation.

An expression statement evaluates a given expression. The value computed by the expression,
if any, is discarded. Not all expressions are permitted as statements. In particular, expressions
such as x + y and x == 1 that have no side effects, but merely compute a value (which will be
discarded), are not permitted as statements.

The example

using System;
class SMT {
 static int F() {
 Console.WriteLine("Test.F");
 return 0;
 }
 static void Main() {
 F();
 }
}
shows an expression statement. The call to the function F made from Main, constitutes an
expression statement. The value that F returns is simply discarded.

2.20.1 Empty statement
An empty-statement does nothing.

empty-statement:
;

An empty statement is used when there are no operations to perform in a context where a
statement is required. Execution of an empty statement simply transfers control to the end point
of the statement. Thus, the end point of an empty statement is reachable if the empty statement
is reachable. An empty statement can be used when writing a while statement with a null body:

bool ProcessMessage() {...}
void ProcessMessages() {
 while (ProcessMessage());
}
Also, an empty statement can be used to declare a label just before the closing “}” of a block:

void F() {
 ...
if (done) goto exit;
 ...
exit: ;
}

2.21 Types
A C# program is written by building new types (typically classes) and leveraging existing
types, either those defined in the C# language itself or imported from other libraries. Each type

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 25

C# - CONSOLE APPLICATIONS

contains a set of data (typically fields) and function members (typically methods), which combine
to form the modular units that are the key building blocks of a C# program.

Generally, you must create instances of a type to use that type. Those data members and
function members that require a type to be instantiated are called instance members. Data
members and function members that can be used on the type itself are called static members.

C# supports two major kinds of types (including both predefined types and user-defined types):
value types and reference types. Value types include simple types such as char, int, float etc.
are structs (simple type actually alias structs found in the System namespace). You can expand
the set of simple types by defining your own structs and enums. Reference types include class
types, interface types, delegate types, and array types.

Value types are allocated on the stack and Reference types are allocated on the heap.

Value types differ from reference types in that variables of the value types directly contain their
data, whereas variables of the reference types store references to objects. With reference types,
it is possible for two variables to reference the same object, and thus possible for operations on
one variable to affect the object referenced by the other variable. With value types, the variables
each have their own copy of the data, and it is not possible for operations on one to affect the
other. An example SRMEM.cs clarifies this point:

// SRMEM.cs
// Reference-type declaration
using System;
class PointR {
 public int x, y;
}
// Value-type declaration
struct PointV {
 public int x, y;
}
class SMT {
 static void Main() {
 PointR a; // Local reference-type variable, uses 4 bytes of
 // memory on the stack to hold address
 PointV b; // Local value-type variable, uses 8 bytes of
 // memory on the stack for x and y
 a = new PointR(); // Assigns the reference to address of new
 // instance of PointR allocated on the
 // heap. The object on the heap uses 8
 // bytes of memory for x and y, and an
 // additional 8 bytes for core object
 // requirements, such as storing the
 // object's type & synchronization state
 b = new PointV(); // Calls the value-type's default
 // constructor. The default constructor
 // for both PointR and PointV will set
 // each field to its default value, which
 // will be 0 for both x and y.
 a.x = 7;
 b.x = 7;
/*
 }
}
At the end of the method the local variables a and b go out of
scope, but the new instance of a PointR remains in memory until
the garbage collector determines it is no longer referenced

26 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

*/

 // Assignment to a reference type copies an object reference;
 // assignment to a value type copies an object value...
 PointR c = a;
 PointV d = b;
 c.x = 9;
 d.x = 9;
 Console.WriteLine(a.x); // Prints 9
 Console.WriteLine(b.x); // Prints 7
 }
}
The process of turning a value type into a reference type is known as boxing. Each value type has
a corresponding hidden reference type, which is automatically created when it’s cast to a
reference type.

The process of turning a reference type back into a value type is called unboxing.

C# provides a “unified type system”, whereby the object class is the ultimate base type for both
reference and value types. All types – including value types – can be treated like objects. It is
possible to call Object methods on any value, even values of “primitive” types such as int. The
example

using System;
class SMT {
 static void Main() {
 Console.WriteLine(3.ToString());
 }
}
calls the Object-defined ToString method on a constant value of type int.

The example BUB.cs

class BUB {
 static void Main() {
 int i = 123;
 object o = i; // boxing
 int j = (int) o; // unboxing
 }
}
is more interesting. An int value can be converted to object and back again to int. This example
shows both boxing and unboxing. When a variable of a value type needs to be converted to a
reference type, an object box is allocated to hold the value, and the value is copied into the box.
Unboxing is just the opposite. When an object box is cast back to its original value type, the value
is copied out of the box and into the appropriate storage location. When unboxing—converting
from a reference type to a value type—the cast is needed. This is because in the case of
unboxing, an object could be cast to any type. Therefore, the cast is necessary so that the
compiler can verify that the cast is valid per the specified variable type.

This type system unification provides value types with the benefits of object-ness, and does so
without introducing unnecessary overhead. For programs that don’t need int values to act like
object, int values are simply 32 bit values. For programs that need int’s to behave like objects,
this functionality is available on-demand. This ability to treat value types as objects bridges the
gap between value types and reference types that exists in most languages.

All types in C# - value and reference – inherit from the Object superclass. The object type is
based on System.Object in the .NET Framework. You can assign values of any type to variables

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 27

C# - CONSOLE APPLICATIONS

of type object. All data types, predefined and user-defined, inherit from the System.Object
class. The object data type is the type to and from which objects are boxed.

Developers can define new value types through enum and struct declarations, and can define new
reference types via class, interface, and delegate declarations.

2.22 Predefined types
C# provides a set of predefined types, most of which will be familiar to C and C++ developers.

The table below lists each of the predefined types, and provides examples of each.

Type Description Examples

Object The ultimate base type of all other types Object o = new Stack();

String String type; a string is a sequence of Unicode
characters

String s = "Hello";

Sbyte 8-bit signed integral type Sbyte val = 12;

Short 16-bit signed integral type Short val = 12;

Int 32-bit signed integral type int val = 12;

Long 64-bit signed integral type long val1 = 12;
long val2 = 34L;

Byte 8-bit unsigned integral type byte val1 = 12;
byte val2 = 34U;

Ushort 16-bit unsigned integral type Ushort val1 = 12;
ushort val2 = 34U;

Uint 32-bit unsigned integral type uint val1 = 12;
uint val2 = 34U;

Ulong 64-bit unsigned integral type ulong val1 = 12;
ulong val2 = 34U;
ulong val3 = 56L;
ulong val4 = 78UL;

Float Single-precision floating point type float value = 1.23F;

Double Double-precision floating point type Double val1 = 1.23
double val2 = 4.56D;

Bool Boolean type; a bool value is either true or
false

bool value = true;

Char Character type; a char value is a Unicode
character

char value = 'h';

Decimal Precise decimal type with 28 significant digits Decimal value = 1.23M;

C# is ‘type-safe’ - a reference (when not null) is always guaranteed to point to an object that is of
the type specified and that has already been allocated on the heap. Also take note of the fact that
a reference can be null.

C# is a strongly "Typed" language. Thus, all operations on variables are performed with
consideration of what the variable's "Type" is. There are rules that define what operations are
legal in order to maintain the integrity of the data you put in a variable. This is enforced at
compile time. Therefore, you cannot initialize a variable of type int to a variable of type bool.

28 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

The conversions between types may be implicit or explicit. Implicit numeric conversions can be
performed automatically and are guaranteed to succeed and not lose information. The implicit
numeric conversions are:

• From sbyte to short, int, long, float, double, or decimal.

• From byte to short, ushort, int, uint, long, ulong, float, double, or decimal.

• From short to int, long, float, double, or decimal.

• From ushort to int, uint, long, ulong, float, double, or decimal.

• From int to long, float, double, or decimal.

• From uint to long, ulong, float, double, or decimal.

• From long to float, double, or decimal.

• From ulong to float, double, or decimal.

• From char to ushort, int, uint, long, ulong, float, double, or decimal.

• From float to double.

Conversions from int, uint, or long to float and from long to double may cause a loss of
precision, but will never cause a loss of magnitude. The other implicit numeric conversions never
lose any information.

There are no implicit conversions to the char type. This in particular means that values of the
other integral types do not automatically convert to the char type.

Explicit numeric conversions require a cast and runtime circumstances determine whether the
conversion succeeds or information is lost during the conversion. An example of this:

int x = 123456; // 4bytes

short s = (short)x; //convert to 2 bytes

All the types have fixed sizes, and will be the same size on any system. All data types, predefined
and user-defined, inherit from the System.Object class.

While the CTS is responsible for defining the types that can be used across .NET languages, most
languages choose to implement aliases to those types. There is no advantage to using one
technique over the other.

In C#, each of the predefined types is a shorthand (alias) for a system-provided type. For
example, the keyword int is shorthand for a struct named System.Int32 by the CTS. The two
names can be used interchangeably, though it is considered good style to use the keyword rather
than the complete system type name.

The C# type keywords and their aliases are interchangeable. For example, you can declare an
integer variable by using either of the following declarations:

int x = 123;

System.Int32 x = 123;

All the types in the table, except object and string, are referred to as simple types. The
predefined value types include signed and unsigned integral types, floating point types, and the
types bool, char, and decimal. The signed integral types are sbyte, short, int, and long; the
unsigned integral types are byte, ushort, uint, and ulong; and the floating point types are
float and double.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 29

C# - CONSOLE APPLICATIONS

The predefined reference types are object and string. The object type is based on
System.Object in the .NET Framework. You can assign values of any type to variables of type
object. This is in contrast to Java, where the basic types have no object-like behaviour at all, and
need to be explicitly converted to and from object wrapper types. In the .NET runtime, a
reference-type instance has an eight-byte overhead, which stores the object’s type and
temporary information such as synchronisation lock state or whether it has been fixed from
movement by the garbage collector. Each reference to a reference type instance uses four bytes
of storage.

The following sample shows how variables of type object can accept values of any data type and
how variables of type object can use methods on System.Object from the .NET Framework.

Example ObjClass.cs

using System;
public class MyClass1 {
 public int i = 10;
}
public class MyClass2 {
 public static void Main() {
 object a;
 a = 1; // an example of boxing
 Console.WriteLine(a);
 Console.WriteLine(a.GetType());
 Console.WriteLine(a.ToString());
 Console.WriteLine();
 a = new MyClass1 ();
 MyClass1 ref_MyClass1;
 ref_MyClass1 = (MyClass1)a;
 Console.WriteLine(ref_MyClass1.i);
 }
}
Equals() is a very important method in Object class. The default implementation of Equals
supports reference equality only, but subclasses can override this method to support value
equality instead. In the case of value types, this method returns true if the two types are identical
and have the same value. The example ObjEquals.cs clarifies this point.

using System;
public class ObjEquals {
 static void Main() {
 Object o = new Object();
 Object o1 = new Object();
 String s1 = "Hello";
 String s2 = "Hello";
 String s3 = "World";
 String s4 = s3;
 int i1 = 1;
 int i2 = 1;
 int i3 = 2;
 if (o == o1) // false
 Console.WriteLine("Same Object Reference (o and o1)");
 if (o.Equals(o1)) // false
 Console.WriteLine("Same Object Content (o and o1)");
 if (s1 == s2) // true
 Console.WriteLine("Same Object Reference (s1 and s2)");
 if (s1.Equals(s2)) // true
 Console.WriteLine("Same Object Content (s1 and s2)");
 if (s1 == s3) // false

30 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

 Console.WriteLine("Same Object Reference (s1 and s3)");
 if (s1.Equals(s3)) // false
 Console.WriteLine("Same Object Content (s1 and s3)");
 if (s3 == s4) // true
 Console.WriteLine("Same Object Reference (s3 and s4)");
 if (s3.Equals(s4)) // true
 Console.WriteLine("Same Object Content (s3 and s4)");
 if (i1.Equals(i2)) // true
 Console.WriteLine("Same Object Content (i1 and i2)");
 if (i1.Equals(i3)) // false
 Console.WriteLine("Same Object Content (i1 and i3)");
 }
}
 The string type represents a string of Unicode characters. string is an alias for System.String
in the NGWS Framework. The string reference type requires a minimum of 20 bytes of memory.
Although string is a reference type, the equality operators (== and !=) are overloaded to
compare the values of string objects, not references. This makes testing for string equality more
intuitive.

string a = "hello";

string b = "hello";

Console.WriteLine(a == b); // output: True -- same value

Console.WriteLine((object)a == b); // False -- different objects

The + operator concatenates strings:

string a = "good " + "morning";

The [] operator accesses individual characters of a string:

char x = "test"[2]; // x = 's';

String literals are of type string and can be written in two forms, quoted and @-quoted. Quoted
string literals are enclosed in double quotation marks ("):

"good morning" // a string literal

and can contain any character literal, including escape sequences:

string a = "\\\u0066\n"; // backslash, letter f, new line

@-quoted string literals start with @ and are enclosed in double quotation marks. For example:

@"good morning" // a string literal

The advantage of @-quoting is that escape sequences are not processed, which makes it easy to
write, for example, a fully qualified file name:

@"c:\Docs\Source\a.txt" // rather than "c:\\Docs\\Source\\a.txt"

To include a double quotation mark in an @-quoted string, double it:

@"""Ahoy!" cried the captain." // "Ahoy!" cried the captain.

The C# object class is very similar to Java's Object.

int n = 5;

string s = n.ToString(); // call object.ToString()

One can declare a string as follows:

string str = "Hello";

If you declare as follows:

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 31

C# - CONSOLE APPLICATIONS

string str = new string("Hello");

you will get a compiler warning.

The bool type is used to represent boolean values: values that are either true or false. The bool
keyword is an alias of System.Boolean. Although Boolean values require only 1 bit (0 or 1), they
occupy 1 byte of storage since this is the minimum chunk addressing on most processor
architectures can work with. The inclusion of bool makes it easier for developers to write self-
documenting code, and helps eliminate the all-too-common C++ coding error in which a
developer mistakenly uses “=” when “==” should have been used. In C#, the example

int i = ...;
F(i);
if (i = 0) // Bug: the test should be (i == 0)
 G();
is invalid because the expression i = 0 is of type int, and if statements require an expression of
type bool. No standard conversions exist between bool and other types. In particular, the bool
type is distinct and separate from the integral types, and a bool value cannot be used in place of
an integral value, or vice versa.

The byte type is an Unsigned 8-bit integer. The byte keyword is an alias of System.Byte.

The sbyte type is an Signed 8-bit integer. The sbyte keyword is an alias of System.SByte.

The char type is used to represent Unicode characters. A variable of type char represents a
single 16-bit Unicode character. The char keyword is an alias of System.Char. Constants of the
char type can be written as character literals, hexadecimal escape sequence, or Unicode
representation. You can also cast the integral character codes. All of the following statements
declare a char variable and initialize it with the character X:

char MyChar = 'X'; // Character literal

char MyChar = '\x0058'; // Hexadecimal

char MyChar = (char)88; // Cast from integral type

char MyChar = '\u0058'; // Unicode

The decimal type is appropriate for calculations in which rounding errors are unacceptable.
Common examples include financial calculations such as tax computations and currency
conversions. The decimal type provides 28 significant digits. The decimal keyword is an alias of
System.Decimal. It occupies 16 bytes of memory. If you want a numeric real literal to be treated
as decimal, use the suffix m or M, for example:

decimal myMoney = 300.5m;

Without the suffix m, the number is treated as a double, thus generating a compiler error.

The double keyword denotes a simple type that stores 64-bit floating-point values. Precision is
15-16 digits. The double keyword is an alias of System.Double. By default, a real numeric literal
on the right-hand side of the assignment operator is treated as double. However, if you want an
integer number to be treated as double, use the suffix d or D, for example:

double x = 3D;

You can use F to denote single precision (i.e. 12.7F). U can be used to denote unsigned literals,
and L longs. The precise decimal type is denoted by an M suffix, as in 12.77M.

The float keyword denotes a simple type that stores 32-bit floating-point values. Precision is 7
digits. The float keyword is an alias of System.Single. By default, a real numeric literal on the
right-hand side of the assignment operator is treated as double. Therefore, to initialize a float
variable use the suffix f or F, for example:

float x = 3.5F;

32 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

If you don't use the suffix in the previous declaration, you will get a compilation error because
you are attempting to store a double value into a float variable.

The int keyword denotes an integral type. It's a Signed 32-bit integer. The int keyword is an
alias of System.Int32.

The uint keyword denotes an integral type. It's an unsigned 32-bit integer. The int keyword is an
alias of System.UInt32. You can declare and initialize a variable of the type uint like this
example:

uint myUint = 4294967290;

When an integer literal has no suffix, its type is the first of these types in which its value can be
represented: int, uint, long, ulong. In this example, it is uint. You can also use the suffix u or U,
like this:

uint myUint = 123U;

When you use the suffix U or u, the literal type is determined to be either uint or ulong according
to its size. In this example, it is uint.

The long keyword denotes an integral type. It's a signed 64-bit integer. The long keyword is an
alias of System.Int64. You can declare and initialize a long variable like this example:

long myLong = 4294967296;

When an integer literal has no suffix, its type is the first of these types in which its value can be
represented: int, uint, long, ulong. In the preceding example, it is of the type long because it
exceeds the range of uint (see Integral Types Table for the storage sizes of integral types). You
can also use the suffix L or l with the long type like this:

long myLong = 4294967296L;

When you use the suffix L or l, the type of the literal integer is determined to be either long or
ulong according to its size. In the case it is long because it less than the range of ulong.

A common use of the suffix is with calling overloaded methods. Consider, for example, the
following overloaded methods that use long and int parameters:

public static void MyMethod(int i) {}

public static void MyMethod(long l) {}

Using the suffix L or l guarantees that the correct type is called, for example:

MyMethod(5); // Calling the method with the int parameter

MyMethod(5L); // Calling the method with the long parameter

You can use the long type with other numeric integral types in the same expression, in which case
the expression is evaluated as long (or bool in the case of relational or Boolean expressions). For
example, the following expression evaluates as long:

898L + 88

The ulong keyword denotes an integral type. It's an unsigned 64-bit integer. The ulong keyword
is an alias of System.UInt64.

The short keyword denotes an integral type. It's a signed 16-bit integer. The short keyword is
an alias of System.Int16.

The ushort keyword denotes an integral type. It's an unsigned 16-bit integer. The ushort
keyword is an alias of System.UInt16.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 33

C# - CONSOLE APPLICATIONS

2.23 Operators
Operators are special symbols that are commonly used in expressions. C# has 50 built-in
operators. There are four basic kinds of operators: arithmetic, bitwise, relational and logical. In
addition, many operators can be overloaded by the user, thus changing their meaning when
applied to a user-defined type.

Anyone familiar with the operators of C will have no problem using C#'s. C# does add a few
operators of its own. The order of evaluation of operators in an expression is determined by the
precedence and associativity of the operators. In general, operators with the same precedence
level will be evaluated from left to right in the given expression. A student has suggested a
mnemonic: "Ulcer Addicts Really Like C A lot" where U is Unary, A is Arithmetic, R is Relational, L
is logical, C is Conditional, A lot is Assignment. The Associativity for Assignment, ==, != and ?: is
from Right to Left, for all others it's Left to Right.

Expressions are constructed from operands and operators. The operators of an expression
indicate which operations to apply to the operands. Examples of operators include +, -, *, /, and
new. Examples of operands include literals, fields, local variables, and expressions.

These can be categorised into three types:

• Unary operators. The unary operators take one operand and use either prefix notation (such
as –x) or postfix notation (such as x++).

• Binary operators. The binary operators take two operands and all use infix notation (such as x
+ y).

• Ternary operator. Only one ternary operator, ?:, exists. The ternary operator takes three
operands and uses infix notation (c? x: y).

The following table summarizes all operators in order of precedence from highest to lowest:

Category Operators

Primary (x) x.y f(x) a[x] x++ x-- new

typeof sizeof checked unchecked

Unary + - ! ~ ++x --x (T)x

Multiplicative * / %

Additive + -

Shift << >>

Relational < > <= >= is

Equality == !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

Conditional ?:

Assignment = *= /= %= += -= <<= >>= &= ^= |=

34 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

When an operand occurs between two operators with the same precedence, the associativity of
the operators controls the order in which the operations are performed:

• Except for the assignment operators, all binary operators are left associative, meaning that
operations are performed from left to right. For example, x + y + z is evaluated as (x + y) + z.

• The assignment operators and the conditional operator (?:) are right associative, meaning
that operations are performed from right to left. For example, x = y = z is evaluated as x = (y
= z).

Precedence and associativity can be controlled using parentheses. For example, x + y * z first
multiplies y by z and then adds the result to x, but (x + y) * z first adds x and y and then
multiplies the result by z.

An example using % operator – P3.cs

// P3.cs
using System;
class P3 {
 public static void Main(String[] args) {
 int number = 548;
 int sum = 0;
 while (true) {
 sum = sum + number % 10;
 number = number / 10;
 if (number == 0) break;
 }
 Console.WriteLine("Sum = " + sum);
 }
}

2.23.1 checked and unchecked operators
The arithmetic operators (+, -, *, /) can produce results that are outside the range of possible
values for the numeric type involved. In general:

Integer arithmetic overflow either throws an OverflowException or discards the most significant
bits of the result (see below). Integer division by zero always throws a DivideByZeroException.

Floating-point arithmetic overflow or division by zero never throws an exception, because
floating-point types are based on IEEE 754 and so have provisions for representing infinity and
NaN (Not a Number).

Decimal arithmetic overflow always throws an OverflowException. Decimal division by zero always
throws a DivideByZeroException.

When integer overflow occurs, what happens depends on the execution context, which can be
checked or unchecked. The checked operator tells the runtime to generate an
OverflowException if an integral expression exceeds the arithmetic limits of that type. The
unchecked operator disables arithmetic checking at compile time, the most significant bits of the
result are discarded and execution continues. It is seldom useful. Thus, C# gives you the choice
of handling or ignoring overflow.

// OverFlowTest.cs - Using checked expressions
// The overflow of non-constant expressions is checked at run time
using System;
class OverFlowTest {
 static short x = 32767; // Max short value
 static short y = 32767;
 // Using a checked expression

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 35

C# - CONSOLE APPLICATIONS

 public static int MyMethodCh() {
 int z = checked((short)(x + y));
 return z; // Throws the exception OverflowException
 }
 public static void Main() {
 Console.WriteLine("Checked output value is: {0}", MyMethodCh());
 }
}
Output:

When you run the program, it throws the exception OverflowException. You can debug the
program or abort execution.

// UCS.cs - Using the unchecked statement with constant expressions
// Overflow is checked at compile time
using System;
class UCS {
 const int x = 2147483647; // Max int
 const int y = 2;
 public int MethodUnCh() {
 // Unchecked statement:
 unchecked {
 int z = x * y;
 return z;
 } // Returns -2
 }
 public static void Main() {
 UCS myObject = new UCS();
 Console.WriteLine("Unchecked output value: {0}",
 myObject.MethodUnCh());
 }
}
Output:

Unchecked output value: -2

In addition to the arithmetic operators, integral-type to integral-type casts can cause overflow
(for example, casting a long to an int) and are subject to checked or unchecked execution.

2.24 Operator overloading
All unary and binary operators have predefined implementations that are automatically available
in any expression. In addition to the predefined implementations, user-defined implementations
can be introduced by including operator declarations in classes and structs. User-defined
operator implementations always take precedence over predefined operator implementations:
Only when no applicable user-defined operator implementations exist will the predefined operator
implementations be considered.

The overloadable unary operators are:

+ - ! ~ ++ -- true false

The overloadable binary operators are:

+ - * / % & | ^ << >> == != > < >= <=

Only the operators listed above can be overloaded. In particular, it is not possible to overload
member access, method invocation, or the =, &&, ||, ?:, new, typeof, sizeof, and is operators.

36 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

When a binary operator is overloaded, the corresponding assignment operator is also implicitly
overloaded. For example, an overload of operator * is also an overload of operator *=. Note that
the assignment operator itself (=) cannot be overloaded. An assignment always performs a simple
bit-wise copy of a value into a variable.

Cast operations, such as (T)x, are overloaded by providing user-defined conversions.

Element access, such as a[x], is not considered an overloadable operator. Instead, user-defined
indexing is supported through indexers.

User-defined operator declarations always require at least one of the parameters to be of the
class or struct type that contains the operator declaration. Thus, it is not possible for a user-
defined operator to have the same signature as a predefined operator.

User-defined operator declarations cannot modify the syntax, precedence, or associativity of an
operator. For example, the * operator is always a binary operator, always has the predefined
precedence level and is always left associative.

While it is possible for a user-defined operator to perform any computation it pleases,
implementations that produce results other than those that are intuitively expected are strongly
discouraged. For example, an implementation of operator == should compare the two operands
for equality and return an appropriate result.

This example shows how you can use operator overloading to create a complex number class
Complex that defines complex addition. The program displays the imaginary and the real parts of
the addition result.

Example: Complex.cs – Refer Anant’s email here

// Complex.cs
using System;
public class Complex {
 public int real = 0;
 public int imaginary = 0;
 public Complex(int real, int imaginary) {
 this.real = real;
 this.imaginary = imaginary;
 }
 public static Complex operator +(Complex c1, Complex c2) { //Line 10
 return new Complex(c1.real + c2.real, c1.imaginary + c2.imaginary);
 }
 public static void Main() {
 Complex num1 = new Complex(2,3);
 Complex num2 = new Complex(3,4);
 Complex sum = num1 + num2; // Line 16
 Console.WriteLine("Real: {0}", sum.real); // Line 17
 Console.WriteLine("Imaginary: {0}", sum.imaginary); // Line 18
 }
}
Code Discussion:

• Line 010 declares which operator to overload (+), the types that can be added (two
Complex objects), and the return type (Complex).

• Line 016 adds two Complex objects (num1 and num2) through the overloaded plus
operator declared on line 010.

• Lines 017 and 018 show on execution that the real and imaginary parts of objects num1
and num2 have been added to produce the sum values.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 37

C# - CONSOLE APPLICATIONS

2.25 Program Control
C# borrows most of its statements directly from C and C++, though there are some noteworthy
additions and modifications.

2.25.1 The if statement
An if statement selects a statement for execution based on the value of a boolean expression.
An if statement may optionally include an else clause that executes if the boolean expression is
false.

The example

using System;
class SMT {
 static void Main(string[] args) {
 if (args.Length == 0)
 Console.WriteLine("No arguments were provided");
 else
 Console.WriteLine("Arguments were provided");
 }
}
shows a program that uses an if statement to write out two different messages depending on
whether command-line arguments were provided or not.

2.25.2 The switch statement
A switch statement executes the statements that are associated with the value of a given
expression, or default of statements if no match exists.

The example

using System;
class SMT {
 static void Main(string[] args) {
 switch (args.Length) {
 case 0:
 Console.WriteLine("No arguments were provided");
 break;
 case 1:
 Console.WriteLine("One arguments was provided");
 break;
 default:
 Console.WriteLine("{0} arguments were provided");
 break;
 }
 }
}
switches on the number of arguments provided.

The switch expression must be an integer type (including char) or a string. The case labels have
to be constants. Unlike Java, you no longer fall through from case to case if you omit the break
and there’s code in the case. You will get a compiler error instead, and have to use a goto to
jump to the next (or previous) case. The end of a case statement must explicitly state where to
go next. If you have adjacent case labels, (i.e. No code in the case) then you can fall through.

Example: SwitchSelection.cs

using System;
class SwitchSelect {

38 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

 public static void Main() {
 string myInput;
 int myInt;
 begin:
 Console.Write("Please enter a number between 1 and 3: ");
 myInput = Console.ReadLine();
 myInt = Int32.Parse(myInput);
 // switch with integer type
 switch (myInt) {
 case 1:
 Console.WriteLine("Your number is {0}.", myInt);
 break;
 case 2:
 Console.WriteLine("Your number is {0}.", myInt);
 break;
 case 3:
 Console.WriteLine("Your number is {0}.", myInt);
 break;
 default:
 Console.WriteLine("Your number {0} is not between 1 and 3.", myInt);
 }
 decide:
 Console.Write("Type \"continue\" to go on or \"quit\" to stop: ");
 myInput = Console.ReadLine();
 // switch with string type
 switch (myInput) {
 case "continue":
 goto begin;
 case "quit":
 Console.WriteLine("Bye.");
 break;
 default:
 Console.WriteLine("Your input {0} is incorrect.", myInput);
 goto decide;
 }
 }
}

2.25.3 The while statement
A while statement conditionally executes a statement zero or more times – as long as a boolean
test is true.

using System;
class SMT {
 static int Find(int value, int[] arr) {
 int i = 0;
 while (arr[i] != value) {
 if (++i > arr.Length)
 throw new ArgumentException();
 }
 return i;
 }
 static void Main() {
 Console.WriteLine(Find(3, new int[] {5, 4, 3, 2, 1}));
 }
}
uses a while statement to find the first occurrence of a value in an array.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 39

C# - CONSOLE APPLICATIONS

2.25.4 The do statement
A do statement conditionally executes a statement one or more times.

The example

using System;
class SMT {
 static void Main() {
 string s;
 do {
 s = Console.ReadLine();
 } while (s != "Exit");
 }
}
reads from the console until the user types “Exit” and presses the enter key.

2.25.5 The for statement
A for statement evaluates a sequence of initialization expressions and then, while a condition is
true, repeatedly executes a statement and evaluates a sequence of iteration expressions.

The example

using System;
class SMT {
 static void Main() {
 for (int i = 0; i < 10; i++)
 Console.WriteLine(i);
 }
}
uses a for statement to write out the integer values 1 through 10.

2.25.6 The foreach statement
A foreach statement lets you iterate over the elements in arrays and collections.

 The example FE.cs:

using System;
class FE {
 static void Main() {
 int[] arr1 = new int[] {1,2,3,4,5};
 foreach (int i in arr1)
 Console.WriteLine(“Value is {0}”, i);
 }
}
uses a foreach statement to iterate over the elements of an array.

2.26 Console I/O
Console I/O is provided by the System.Console class, which gives you access to the standard
input (Console.In), standard output (Console.Out) and standard error (Console.Error)
streams.

2.26.1 Console Input
Console.In has two methods for obtaining input. Read() returns a single character as an int, or
–1 if no more characters are available. ReadLine() returns a string containing the next line of
input, or null if no more lines are available.

40 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

Note that Console.In.ReadLine() and Console.ReadLine() are equivalent.

2.26.2 Console Output
Console.Out has two methods for writing output. Write() outputs one or more values without a
newline character. WriteLine() does the same but appends a newline.

Write() and WriteLine() have numerous overloads, so that you can easily output many
different types of data.

If you want to produce formatted output, you use a version of WriteLine() which takes a string
containing a format and a variable number of objects. Formats contain both static text, plus
markers that show where items from the argument list are to be substituted, and how they are to
be formatted. In its simplest form, a marker is a number in curly brackets, the number showing
which argument is to be substituted:

“The value is {0}” // use the first argument

“{0} plus {1} = {2}” // use the first three arguments

Note that Console.Out.WriteLine() and Console.WriteLine() are equivalent.

2.27 Array types
Arrays in C# are objects, accessed through a reference variable. Arrays in C# may be single-
dimensional or multi-dimensional.

Single-dimensional arrays are the most common type, so this is a good starting point. The
example MyArray.cs

using System;
class MyArray {
 static void Main() {
 int[] arr = new int[5]; // size fixed to 5, can’t be changed
 for (int i = 0; i < arr.Length; i++) // index 0 for arrays
 arr[i] = i * i;
 // we can also do something like this
 // int[] arr = new int[] {1,2,3,4,5};
 // or
 // int[] arr = {1,2,3,4,5};
 // any attempt to access an array outside the bounds
 // will result in a runtime error
 for (int i = 0; i < arr.Length; i++)
 Console.WriteLine("arr[{0}] = {1}", i, arr[i]);
 }
}
creates a single-dimensional array of int values, initializes the array elements, and then prints
each of them out. The program output is:

arr[0] = 0
arr[1] = 1
arr[2] = 4
arr[3] = 9
arr[4] = 16
The type int[] used in the previous example is an array type. Array types are written using a
non-array-type followed by one or more rank specifiers.

C# supports two types of multidimensional arrays – rectangular and jagged. In rectangular
arrays, every row is the same length. A jagged array is simply an array of one-dimensional
arrays, each of which can be of different length if desired.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 41

C# - CONSOLE APPLICATIONS

The example:

class SMT {
 static void Main() {
 int[] a1; // single-dimensional array of int
 int[,] a2; // 2-dimensional array of int
 int[,,] a3; // 3-dimensional array of int
 int[][] j2; // "jagged" array: array of (array of int)
 int[][][] j3; // array of (array of (array of int))
 }
}
shows a variety of local variable declarations that use array types with int as the element type.

Arrays are reference types, and so the declaration of an array variable merely sets aside space for
the reference to the array. Array instances are actually created via array initializers and array
creation expressions. The example

class SMT {
 static void Main() {
 int[] a1 = new int[] {1, 2, 3};
 int[,] a2 = new int[,] {{1, 2, 3}, {4, 5, 6}};
 int[,,] a3 = new int[10, 20, 30];
 int[][] j2 = new int[3][];
 j2[0] = new int[] {1, 2, 3};
 j2[1] = new int[] {1, 2, 3, 4, 5, 6};
 j2[2] = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9};
 }
}
shows a variety of array creation expressions. The variables a1, a2 and a3 denote rectangular
arrays, and the variable j2 denotes a jagged array. It should be no surprise that these terms are
based on the shapes of the arrays. Rectangular arrays always have a rectangular shape. Given
the length of each dimension of the array, its rectangular shape is clear. For example, the length
of a3’s three dimensions are 10, 20, and 30 respectively, and it is easy to see that this array
contains 10*20*30 elements.

In contrast, the variable j2 denotes a “jagged” array, or an “array of arrays”. Specifically, j2
denotes an array of an array of int, or a single-dimensional array of type int[]. Each of these
int[] variables can be initialized individually, and this allows the array to take on a jagged
shape. The example gives each of the int[] arrays a different length. Specifically, the length of
j2[0] is 3, the length of j2[1] is 6, and the length of j2[2] is 9.

It is important to note that the element type and number of dimensions are part of an array’s
type, but that the length of each dimension is not part of the array’s type. This split is made clear
in the language syntax, as the length of each dimension is specified in the array creation
expression rather than in the array type. For instance the declaration

int[,,] a3 = new int[10, 20, 30];

has an array type of int[,,] and an array creation expression of new int[10, 20, 30].

For local variable and field declarations, a shorthand form is permitted so that it is not necessary
to re-state the array type. For instance, the example

int[] a1 = new int[] {1, 2, 3};

can be shortened to

int[] a1 = {1, 2, 3};

without any change in program semantics.

42 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

It is important to note that the context in which an array initializer such as {1, 2, 3} is used
determines the type of the array being initialized. The example

class SMT {
 static void Main() {
 short[] a = {1, 2, 3};
 int[] b = {1, 2, 3};
 long[] c = {1, 2, 3};
 }
}
shows that the same array initializer can be used for several different array types. Because
context is required to determine the type of an array initializer, it is not possible to use an array
initializer in an expression context. The example

class SMT {
 static void F(int[] arr) {}
 static void Main() {
 F({1, 2, 3});
 }
}
is not valid because the array initializer {1, 2, 3} is not a valid expression. The example can be
rewritten to explicitly specify the type of array being created, as in

class SMT {
 static void F(int[] arr) {}
 static void Main() {
 F(new int[] {1, 2, 3});
 }
}
Example RA.cs

// RA.cs
using System;
class RA {
 public static int Main() {
 int[,] arr2; // 2D rectangular array of ints
 arr2 = new int[5,5]; // create 5 by 5 array
 for (int i=0; i<5; i++)
 for (int j=0; j<5; j++)
 arr2[i,j] = i*j;
 // create a 2D array with implied size of 3 by 2
 int[,] arr3 = new int[,] {
 {1,2}, // first row
 {4,5}, // second row
 {7,8} // third row
 };
 // write out some elements
 Console.WriteLine("{0}", arr2[2,2]);
 Console.WriteLine("{0}", arr3[1,1]);
 return 0;
 }
}

Example JA.cs

//JA.cs
using System;
class JA {

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 43

C# - CONSOLE APPLICATIONS

 public static void Main() {
 int[][] arr4; // 2D jagged array of ints
 arr4 = new int[4][]; // four rows in this array
 arr4[0] = new int[5]; // first row has 5 elements
 arr4[1] = new int[3]; // second row has 3 elements
 arr4[2] = new int[4]; // third row has 4 elements
 arr4[3] = new int[10]; // last row has 10 elements
 arr4[1][1] = 3; // assign an element
 }
}
In C#, arrays are actually objects. System.Array is the base type of all array types. You can use
the properties, and other class members that System.Array has. An example of this would be
using the Length property to get the length of an array. The following code assigns the length of
the numbers array, which is 5, to a variable called LengthOfNumbers:

int[] numbers = {1, 2, 3, 4, 5};
int LengthOfNumbers = numbers.Length;
The System.Array class provides many other useful methods/properties, such as methods for
sorting, searching, and copying arrays.

Getting Command-Line Input:

Example: NamedWelcome.cs

// Namespace Declaration
using System;
// Program start class
class NamedWelcome {
 // Main begins program execution.
 public static void Main(string[] args) {
 // Write to console
 Console.WriteLine("Hello, {0}!", args[0]);
 Console.WriteLine("Welcome to the CSharp Seminar!");
 }
}
Remember to add your name to the command-line, i.e. "NamedWelcome Satish". If you don't,
your program will crash. You'll notice an entry in the "Main" method's parameter list. The
parameter name is "args". It's what you use to refer to the parameter later in your program. The
"string[]" expression defines the Type of parameter that "args" is. The "string" Type holds
characters. These characters could form a single word, or multiple words. The "[]", square
brackets denote an Array, which is like a list. Therefore, the Type of the "args" parameter, is a list
of words from the command-line.

You'll also notice an additional "Console.WriteLine(...)" statement within the "Main" method. The
argument list within this statement is different from before. It has a formatted string with a "{0}"
parameter embedded in it. The first parameter in a formatted string begins at number 0, the
second is 1, and so on. The "{0}" parameter means that the next argument following the end
quote will determine what goes in that position.

The next argument following the end quote is the "args[0]" argument, which refers to the first
string in the "args" array. The first element of an Array is number 0, the second is number 1, and
so on. For example, if we write "NamedWelcome Satish" on the command-line, the value of
"args[0]" would be "Satish".

Now we'll get back to the embedded "{0}" parameter in the formatted string. Since "args[0]" is
the first argument, after the formatted string, of the "Console.WriteLine()" statement, it's value
will be placed into the first embedded parameter of the formatted string. When this command is

44 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

executed, the value of "args[0]", which is "Satish" will replace "{0}" in the formatted string. Upon
execution of the command-line with "NamedWelcome Satish", the output will be as follows:

Hello, Satish!

Welcome to the CSharp Seminar!

Another way to provide input to a program (InteractiveWelcome.cs) is via the console. The next
program shows how to obtain interactive input from the user.

//InteractiveWelcome.cs
// Namespace Declaration
using System;
// Program start class
class InteractiveWelcome {
 // Main begins program execution.
 public static void Main() {
 // Write to console/get input
 Console.Write("What is your name?: ");
 Console.Write("Hello, {0}! ", Console.ReadLine());
 Console.WriteLine("Welcome to the CSharp Seminar!");
 }
}
This time, the "Main" method doesn't have any parameters. However, there are now three
statements and the first two are different from the third. They are "Console.Write(...)" instead of
"Console.WriteLine(...)". The difference is that the "Console.Write(...)" statement writes to the
console and stops on the same line, but the "Console.WriteLine(...)" goes to the next line after
writing to the console.

The first statement simply writes "What is your name?: " to the console.

The second statement doesn't write anything until its arguments are properly evaluated. The first
argument after the formatted string is "Console.ReadLine()". This causes the program to wait for
user input at the console, followed by a Return or Enter. The return value from this method
replaces the "{0}" parameter of the formatted string and is written to the console.

The last statement writes to the console as described earlier. Upon execution of the command-
line with "InteractiveWelcome", the output will be as follows:

What is your Name? <type your name here>

Hello, <your name here>! Welcome to the CSharp Seminar!

2.28 Calling methods – ref / out
Methods are extremely useful because they allow you to separate your logic into different units.
Defining and calling methods in C# closely follows the Java model.

The structure of a method is as follows:

attributes modifiers return-type method-name (parameters) { statements }

We defer discussion of attributes and modifiers. The return-type can be any C# type, if the
method does not return a value, its return type is void. It can be assigned to a variable for use
later in the program or the return value can be ignored. The method name is a unique identifier
for what you wish to call a method. To promote understanding of your code, a method name
should be meaningful and associated with the task the method performs. Parameters allow you to
pass information to and from a method. If there are no parameters, the method name is followed
by empty parentheses. They are surrounded by parenthesis. Statements within the curly braces
carry out the functionality of the method. As in Java, you are free to ignore the return value of a
method call.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 45

C# - CONSOLE APPLICATIONS

What if you want to pass a value type into a method and modify it? C# provides two ways of
doing this using the ref and out keywords.

The ref keyword tells the C# compiler that the arguments being passed point to the same
memory as the variables in the calling code. That way, if the called method modifies these values
and then returns, the calling code's variables will have been modified. When you use the ref
keyword, you must initialize the passed arguments before calling the method. See the example
RefTest.cs below.

using System;
public class RefTest {
 int p = 3;
 public RefTest() {
 refMethod(ref p);
 }
 public static void Main(string[] args) {
 RefTest t = new RefTest();
 Console.WriteLine(t.p);
 }
 void refMethod(ref int n) {
 n += 3;
 }
}
The only difference between the ref keyword and the out keyword is that the out keyword
doesn't require the calling code to initialize the passed arguments first. See the example
OutTest.cs below.

using System;
public class OutTest {
 int p;
 public OutTest() {
 outMethod(out p);
 }
 public static void Main(string[] args) {
 OutTest t = new OutTest();
 Console.WriteLine(t.p);
 }
 void outMethod(out int n) {
 n = 3;
 }
}
We will now use the ref keyword on a string variable and modify the previous RefTest.cs
program and call it RefTest2.cs

using System;
public class RefTest2 {
 string s = "Satish";
 public RefTest2() {
 refMethod(ref s);
 }
 public static void Main(String[] args) {
 RefTest2 t = new RefTest2();
 Console.WriteLine(t.s);
 }
 void refMethod(ref string s) {
 s = "Talim";
 }
}

46 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

The output is Talim, a expected. If we now remove the ref keyword in the above program and
call the new program RefTest3.cs

using System;
public class RefTest3 {
 string s = "Satish";
 public RefTest3() {
 refMethod(s);
 }
 public static void Main(String[] args) {
 RefTest3 t = new RefTest3();
 Console.WriteLine(t.s);
 }
 void refMethod(string s) {
 s = "Talim";
 }
}
The output is Satish. Therefore, if a parameter is declared for a method without ref or out, the
parameter can have a value associated with it. That value can be changed in the method, but the
changed value will not be retained when control passes back to the calling procedure. By using a
method parameter keyword (ref, out), you can change this behavior.

2.28.1 Method Overloading
C# allows you to declare more than one method with the same name. This is called overloading.
Overloaded methods must differ in the number and/or type of arguments they take. The return
type does not play any part in the overload resolution, since it's always possible to call a method
without using the return value.

using System;
class Log {
 public Log(string fileName) {
 // Open fileName and seek to end.
 }
 public void WriteEntry(string entry) {
 Console.WriteLine(entry);
 }
 public void WriteEntry(int resourceId) {
 Console.WriteLine
 ("Retrieve string using resource id and write to log");
 }
}

2.28.2 Variable Method Parameters - params
You can specify a variable number of method parameters by using the params keyword and by
specifying an array in the method's argument list.

// VarArgsApp.cs
using System;
class MyPoint {
 public int x;
 public int y;
 public MyPoint(int x, int y) {
 this.x = x;
 this.y = y;
 }
}
class Chart {

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 47

C# - CONSOLE APPLICATIONS

 public void DrawLine(params MyPoint[] p) {
 Console.WriteLine("\nThis method would print a line " +
 "along the following points:");
 for (int i = 0; i < p.GetLength(0); i++) {
 Console.WriteLine("{0}, {1}", p[i].x, p[i].y);
 }
 }
}
class VarArgsApp {
 public static void Main() {
 MyPoint p1 = new MyPoint(5,10);
 MyPoint p2 = new MyPoint(5, 15);
 MyPoint p3 = new MyPoint(5, 20);
 Chart chart = new Chart();
 chart.DrawLine(p1, p2, p3);
 }
}
GetLength(0) returns the number of elements in the first dimension of the Array. The DrawLine
method tells the C# compiler that it can take a variable number of Point objects. At run time, the
method then uses a simple for loop to iterate through the Point objects that are passed, printing
each one.

2.29 Handling Exceptions
C# supports exceptions in very much the same way as Java. In C#, what you throw has to be a
System.Exception object, or something derived from System.Exception. Code that may give
rise to exceptions is enclosed in a try block, which is followed by one or more catch blocks.

Beta 2 of the .NET framework includes built-in exception handlers for common exception types
such as divide-by-zero exception. Try this code, in the source file DBZ.cs

using System;
public class DBZ {
 public static void Main(string[] args) {
 double a = 15.0;
 double b = 0.0;
 double result = a/b;
 Console.WriteLine("Result is {0}", result);
 }
}
You will get the output:

Result is Infinity

Modifying the program to DBZ2.cs as shown below, makes no difference to the output:

using System;
public class DBZ2 {
 public static void Main(string[] args) {
 double a = 15.0;
 double b = 0.0;
 try {
 double result = a/b;
 Console.WriteLine("Result is {0}", result);
 } catch (Exception e) {
 Console.WriteLine("Exception occured: " + e);
 }
 }
}

48 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

A catch block which will catch any exception is called a general catch clause. These blocks don’t
specify an exception variable, and can be written like this:

try {
 // code which may fail
} catch {
 // handle error
}
A try block can also have a finally block associated with it. If a finally block exists, it will be
executed before the try block is completed, and after any possible exceptions are caught in the
catch clause. This will happen no matter how control leaves the try, whether it is due to normal
termination, to an exception occurring, a break or continue (or goto) statement, or a return. A
finally block can occur with or without catch blocks. It is an error to transfer control out of a
finally block using break, continue, return or goto.

The point to note for Java programmers is: Not only is the argument to catch optional, but the
entire catch clause itself is optional. Also, C# has no throws keyword. By not requiring explicit
exception declarations in method signatures, C# values short-term programmer convenience over
program safety and correctness.

public void ReadFile() {
 try {
 // code which may fail
 } finally {
 // close the file
 }
}
CoreException is C#’s equivalent of Error in Java and you are not expected to handle it. You
can make up your own exception classes by deriving from one of the various exception classes
existing. See MyException.cs below:

using System;
class VowelException : Exception {}
class BlankException : Exception {}
class ExitException : Exception {}

class MyException {
 public static void Main(String[] args) {
 bool finished = false;

 do {
 try {
 processUserInput();
 } catch (VowelException x) {
 Console.WriteLine("VowelException occured: " + x);
 } catch (BlankException y) {
 Console.WriteLine("BlankException occured: " + y);
 } catch (ExitException z) {
 Console.WriteLine("ExitException occured: " + z);
 // Using StackTrace property of Exception class
 Console.WriteLine("Trace: " + z.StackTrace);
 finished = true;
 } finally {
 Console.WriteLine("This is the finally clause.");
 }
 } while(!finished);
 }

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 49

C# - CONSOLE APPLICATIONS

 // Note unlike Java, we do not declare that the method
 // processUserInput() throws … exceptions
 static void processUserInput() {
 Console.Write("Enter a character: ");
 String s;
 s = Console.ReadLine();
 char c = s[0];
 switch (c) {
 case 'A':
 case 'a':
 case 'E':
 case 'e':
 case 'I':
 case 'i':
 case 'O':
 case 'o':
 case 'U':
 case 'u':
 throw (new VowelException());
 case ' ':
 throw (new BlankException());
 case 'X':
 throw (new ExitException());
 }
 }
}

2.30 Namespaces
Namespaces are a great way of categorizing your types and classes to avoid name collisions.

When a language develops, many third party components are available. All these parties try to
give meaningful names to their classes like the Math class, or InterestCalculator etc. We as
developers end up in misery due to this. Just consider an example, I am developer who is writing
up a shopping cart class. I am using third party components. I purchase two such components,
one calculates discount rates for retail customers and other calculates discount rates for
wholesale customers. The problem arises when both these components have a class called
Discount. Now in my shopping cart class how do I use both these classes unambiguously?
eg.

Discount d1 = new Discount();

//Which component does the compiler here refer to? Reseller discount or Wholesaler Discount?

int discount = d1.Cal(45.78) ;

Some compilers will complain others might compile and use any of the components as they wish!

This problem has been identified and solved by Microsoft on the .NET Platform with the use of
Namespaces. The relationship between Namespaces and classes can directly be compared to the
relationship between Files and Folders. Files actually contain data, while Folders are used to just
manage and logically arrange Files. Folders can also contain many files and sub folders within
them.
In the same way, Classes actually contain data and Namespaces are used to logically arrange
classes. Namespaces can also contain many other Namespaces and classes. This concept may
seem similar to the Package - Class relationship used in Java. However, one point of caution, you
DO NOT need to create folders to store classes into a Namespace. Just defining the Namespace
keyword above the class definition is enough.

50 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

Again you might say that there are two companies whose abbreviated names might be XYZ and if
both companies develop the Discount class then, even if they used namespaces their full names
would be XYZ.Discount class? Which will lead to the problem that we faced earlier! This is very
true since Namespaces only help to extend the name of a class to make it unique. Hence,
Microsoft is encouraging companies to use their full names to develop components and not
abbreviations, also if possible, the department names as well as the team names should be used .
Therefore, a company like American Business Company should use its full name.
AmericanBusinessCompany.It.DotNet.Discount instead of using ABC.Discount. This will help to
solve the naming conflict.

C# programs are organized using namespaces. Namespaces provide a way to group classes, by
providing an extra level of naming beyond the class name. To use namespaces all you have to do
is place the namespace definition above your class definition. The Dot '.' is used to denote and
access classes within the namespace.

Earlier, we presented a “Hello, world” program. We’ll now rewrite this program (as HelloMsg.cs) in
two pieces: a HelloMessage component that provides messages and a console application that
displays messages.

First, we’ll provide a HelloMessage class in a namespace. What should we call this namespace?
By convention, developers put all of their classes in a namespace that represents their company
or organization. We’ll put our class in a namespace named JavaTech.CSharp.Introduction.

namespace JavaTech.CSharp.Introduction {
 public class HelloMessage {
 public string GetMessage() {
 return "Hello, world";
 }
 }
}
Namespaces are hierarchical, and the name JavaTech.CSharp.Introduction is actually
shorthand for defining a namespace named JavaTech that contains a namespace named CSharp
that itself contains a namespace named Introduction, as in:

namespace JavaTech {
 namespace Csharp {
 namespace Introduction
 {....}
 }
}
Next, we’ll write a console application that uses the HelloMessage class. We could just use the
fully qualified name for the class – JavaTech.CSharp.Introduction.HelloMessage – but this
name is quite long and unwieldy. An easier way is to use a “using” directive, which makes it
possible to use all of the types in a namespace without qualification.

using JavaTech.CSharp.Introduction;
class Hello {
 static void Main() {
 HelloMessage m = new HelloMessage();
 System.Console.WriteLine(m.GetMessage());
 }
}
Note that the two occurrences of HelloMessage are shorthand for
JavaTech.CSharp.Introduction.HelloMessage.

C# also enables the definition and use of aliases. Such aliases can be useful in situation in which
name collisions occur between two libraries, or when a small number of types from a much larger
namespace are being used. Our example can be rewritten using aliases as:

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 51

C# - CONSOLE APPLICATIONS

using MessageSource = JavaTech.CSharp.Introduction.HelloMessage;
class Hello {
 static void Main() {
 MessageSource m = new MessageSource();
 System.Console.WriteLine(m.GetMessage());
 }
}
Namespaces are often related to assemblies (which we will cover later).

Namespace elements cannot be explicitly declared as private or protected. Only public
members are allowed in a namespace. Internal is the default. The public keyword must
be explicitly specified.

The following sample generates error CS1527:

namespace bad {
 private class foo1 {} // CS1527
 protected class foo2 {} // CS1527
 class foo3 { // allowed. This is internal
 static void Main() {}
 }
}
Inside a namespace, the compiler only accepts classes, structs, unions, enums, interfaces, and
delegates.

The following sample generates error CS0116:

namespace x {
 int xx; // CS0116
}

Even if you do not explicitly declare a namespace, a default namespace is created. This unnamed
namespace, sometimes called the global namespace ' ', is present in every file. Any identifier in
the global namespace is available for use in a named namespace. Namespaces implicitly have
public access and this is not modifiable. An example of this will make it clear. Create a program,
NSP.cs, compile and run:

// NSP.cs
using System;
namespace Test {
 public class Tst {
 public static void Main(string[] args) {
 GTst t = new GTst();
 }
 }
}
class GTst { // this is in the global namespace
 public GTst() {
 Console.WriteLine("GTst called...");
 }
}
The using keyword has two uses:

• Create an alias for a namespace (a using alias).

• Permit the use of types in a namespace, such that, you do not have to qualify the use of a
type in that namespace (a using directive).

Java programmers should note that, we could use namespace first, followed by using or vice-
versa.

52 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

The only purpose of the using command in this context is to save you typing and make your code
simpler. It does not, for example, cause any other code or libraries to be added to your project. If
your code uses base classes, you need to ensure separately that the compiler knows which
assemblies to look in for the classes (/r switch in the compiler).

Although you can't specify a class in a using directive, the following variant of the using directive
does enable you to create aliases for classes:

using alias = class

Using this form of the using directive, you can write code like the following:

using output = System.Console;
class HelloWorld {
 public static void Main() {
 output.WriteLine("Hello, World");
 }
}
This gives you the flexibility to apply meaningful aliases to classes that are nested several layers
deep in the .NET hierarchy, thus making your code a little easier to both write and maintain.

The using keyword cannot be declared inside a class.

2.31 Namespaces and Assemblies
The basic element of packaging in .NET is the assembly. An assembly consists of Intermediate
Language code, metadata that describes what is in the assembly, and any other files that the
application needs to run, such as graphics and sound files (assemblies are similar to jar files in
Java). On Windows systems, assemblies can be an executable (.exe) file, a DLL, or some
combination of these. It may also contain resource files. One assembly can be split across more
than one physical file.

There is often a correspondence between namespaces and assemblies, so that the classes in the
say Finance.Bank namespace would be built into an assembly called Finance.Banl.dll. This is not
mandatory.

In order to create an assembly with a particular name, compile as follows:

csc Bankstuff.cs /t:library /out:Finance.Bank.dll

During compilation how can the compiler come to know which assemblies you have used and how
can the compiler map the functions and class names?

To enable the compiler to know where it can find the assembly which contains all the Namespaces
and classes you have used, you have to reference those assemblies during compilation with the
/Reference or /r compiler switch. If you fail to reference all the assemblies you have used, the
compiler cannot map the classes and Namespaces and a CS0234 Error "The type or Namespace
"XXX" does not exist in the class or Namespace "XXX" is raised.

So how do you know which assemblies should you reference? A simple way would be to look at
the using keyword, check all the Namespaces you have aliased and in which assembly (library dll)
does it exist. To find this out start the Reference documentation from "Start -> Program Files ->
Microsoft.NET -> Reference Documentation". Go to the ".NET Framework Reference" section, then
check out which Namespaces you have used. The reference documentation contains information
about the assemblies/ libraries that contain the Namespace. Once you have figured out the list of
assemblies that you have to reference, use the CSC C# compiler and while compiling add the
reference to all the assemblies.

Example: For a simple Win Form application the compilation string is :

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 53

C# - CONSOLE APPLICATIONS

csc
/r:System.dll;System.WinForms.dll;Microsoft.Win32.Interop.dll;System.Drawing.dll
yourcodefile.cs

The library file mscorlib.dll is automatically referenced by the C# compiler. Mitch Denny adds that
“the namespace that you reference in your source files may not actually match an assembly that
you reference. The contents of a namespace can be physically split over multiple assemblies, or
multiple namespaces can be present in one assembly. In the case of the root of the System.*
namespace, the implementation is split across multiple files. This was done to make a useable
subset of the .NET Framework for other embedded Windows and non-Windows platforms.
Therefore, some of the stuff in the System.* namespace is housed in the mscorlib.dll assembly
file. The other stuff is in System.DLL and other files.”

If you're packaging several classes in a given namespace, you can define each of these classes in
its own source code file. A programmer employing your classes can get access to all the classes
within a namespace through the using keyword. Let’s see this in more detail:

// NA.cs
using System;
namespace A {
 public class NA {
 static void Main(String[] args) {
 }
 public NA() {
 Console.WriteLine("Using A.NA");
 }
 }
}

// NB.cs
using System;
namespace A {
 public class NB {
 public NB() {
 Console.WriteLine("Using A.NB class");
 }
 static void Main() {
 }
 }
}

// Test.cs
using System;
using A;
public class Test {
 public static void Main(string[] args) {
 NA o1 = new NA();
 NB o2 = new NB();
 }
}
Both NA.cs and NB.cs compile. However, when Test.cs is compiled, an error occurs:

Test.cs(3,7): error CS0234: The type or namespace name 'A' does not exist in the
class or namespace ''
To overcome this error use the .NET BETA 1 instructions for DLLs -

csc /t:library na.cs
csc /t:library nb.cs

54 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

csc test.cs /r:na.dll /r:nb.dll

The program Test.exe will now run.

2.32 Summary of Key Concepts
• To build and run your C# programs, you will need Windows 2000, IE 5.5, Microsoft .NET SDK

(Beta 1), an optional Visual Studio .NET and an optional free C# IDE – Sharp Develop.

• The .NET Framework consists of the:

1. Common Language Runtime (CLR): The code that runs within the CLR runs in an
encapsulated and managed environment, separate from other processes on the machine.

2. Base Class Library (BCL): C# itself does not include a class library. The BCL is shared
between all programming languages on the .NET.

3. Common Type System (CTS): In the world of .NET and C# everything in the CTS is an
object.

4. All .NET programs are compiled to an intermediate language (IL), rather than to native
code which can be understood by the computer's processor. This IL code is then compiled
to native code either when the application is installed, or when the application is run.

• The name of the Csharp program can be anything you want.

• C# compiles straight from source code to executable (.exe), with no object files.

• C# program code is case sensitive and in free format.

• A namespace in C# is somewhat similar to a package statement in Java. However, the
namespace name does not have to map onto phyical directories, as is the case with the
package statement in Java.

• using is very similar in concept to Java's import keyword. Unlike Java, in C# you cannot
import a single class, but the whole package.

• In Main() the first character is a capital M.

• Main() is declared inside a class or struct.

• Every C# application must have a method named Main defined in one of its classes. It doesn't
matter which class contains the method—you can have as many classes as you want in a
given application—as long as one class has a method named Main. If you have zero or more
than one Main() in a program, you can expect compiler errors.

• You can compile a program containing multiple Main() by using the /main:< className >
switch with the C# compiler to specify which class's Main method is to be used. The /main
compiler option specifies a class in which to look for a Main method. However, the Main
method has to be defined as follows: public static void Main(){ }

• The Main() method can be written as follows:

1. static void Main()

2. public static void Main()

3. static int Main() – it can return an int only.

4. static void Main(string[] args) – can take command line arguments.

• For Compiler Errors - You can search for the error code in the .NET Framework SDK
Documentation (which is installed with the .NET Framework SDK) for a more detailed
description.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 55

C# - CONSOLE APPLICATIONS

• Naming Guidelines: First alphabet of each word (eg. MyCounter) for namespaces, classes,
methods, method arguments and interfaces (interfaces should start with I). Class members
(variables), the first alphabet is lower-case and the start of each word is upper-case.

• C# supports three types of comments: //, /* and ///. The later will be treated as normal
comments by the compiler, unless you use the /doc:filename compiler option to tell it to
generate the XML. Observe the generated .xml file - All the members of the assembly are
denoted by <member> tags, the compiler adds the full name of the member as a name
attribute. The T, F and M prefixes denote types, fields and members respectively.

• const members are calculated at compile-time. By default, const members are static.

• A readonly modifier, specifies that the member can have its value set once only, and
afterwards is read-only. The readonly fields that we define are instance fields, meaning that
the user would have to instantiate the class to use the fields.

• In C#, static members must be accessed through a class name. You can’t access them via an
object, as you can in Java.

• C# supports two kinds of types: value types and reference types. Value types are allocated on
the stack and Reference types are allocated on the heap.

• The process of turning a value type into a reference type is known as boxing. The process of
turning a reference type back into a value type is called unboxing. In the case of unboxing,
an object could be cast to any type. Therefore, the cast is necessary so that the compiler can
verify that the cast is valid per the specified variable type.

• All types – including value types – can be treated like objects and derive from Object. It’s
possible to call Object methods on any value, even values of “primitive” types such as int.

• All the types have fixed sizes, and will be the same size on any system.

• In C#, each of the predefined types is a shorthand (alias) for a system-provided type.

• The decimal type is appropriate for calculations in which rounding errors are unacceptable.
Common examples include financial calculations such as tax computations and currency
conversions. The decimal type provides 28 significant digits.

• Equals() is a very important method in Object class. The default implementation of Equals
supports reference equality only, but subclasses can override this method to support value
equality instead. In the case of value types, this method returns true if the two types are
identical and have the same value.

• string is a reference type; the equality operators (== and !=) are overloaded to compare the
values of string objects, not references.

• The + operator concatenates strings. The [] operator accesses individual characters of a string

• String literals are of type string and can be written in two forms, quoted and @-quoted.

• If you declare a string as string str = new string("Hello"); you will get a compiler
warning.

• In C#, many operators can be overloaded by the user.

• Integer arithmetic overflow either throws an OverflowException or discards the most
significant bits of the result. Integer division by zero always throws a DivideByZeroException.

• Floating-point arithmetic overflow or division by zero never throws an exception, because
floating-point types are based on IEEE 754 and so have provisions for representing infinity
and NaN (Not a Number).

56 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 2 C# Program Elements

• Decimal arithmetic overflow always throws an OverflowException. Decimal division by zero
always throws a DivideByZeroException.

• When integer overflow occurs, what happens depends on the execution context, which can be
checked or unchecked. In a checked context, an OverflowException is thrown. In an
unchecked context, the most significant bits of the result are discarded and execution
continues.

• The switch expression must be an integer type (including char) or a string. The case labels
have to be constants. Unlike Java, you no longer fall through from case to case if you omit the
break and there’s code in the case. You will get a compiler error instead, and have to use a
goto to jump to the next (or previous) case. If you have adjacent case labels, (i.e. No code in
the case) then you can fall through.

• A foreach statement lets you iterate over the elements in arrays and collections.

• C# supports two types of multidimensional arrays – rectangular and jagged. In rectangular
arrays, every row is the same length. A jagged array is simply an array of one-dimensional
arrays, each of which can be of different length if desired.

• C# provides two ways of passing a value type into a method and modify it using the ref and
out keywords. The ref keyword tells the C# compiler that the arguments being passed point
to the same memory as the variables in the calling code. That way, if the called method
modifies these values and then returns, the calling code's variables will have been modified.
When you use the ref keyword, you must initialize the passed arguments before calling the
method.

• The only difference between the ref keyword and the out keyword is that the out keyword
doesn't require the calling code to initialize the passed arguments first.

• You can specify a variable number of method parameters by using the params keyword and by
specifying an array in the method's argument list.

• In C#, what you throw has to be a System.Exception object, or something derived from
System.Exception. Beta 1 of the .NET framework includes built-in exception handlers for
common exception types such as divide-by-zero exception.

• A catch block which will catch any exception is called a general catch clause. These blocks
don’t specify an exception variable.

• If a finally block exists, it will be executed before the try block is completed, and after any
possible exceptions are caught in the catch clause. A finally block can occur with or without
catch blocks.

• The argument to catch is optional, but the entire catch clause itself is optional. Also, C# has
no throws keyword.

• Namespace elements cannot be explicitly declared as private or protected. Only public
members are allowed in a namespace (even internal and default are allowed).

• Even if you do not explicitly declare a namespace, a default namespace is created. This
unnamed namespace, sometimes called the global namespace, is present in every file. Any
identifier in the global namespace is available for use in a named namespace. Namespaces
implicitly have public access and this is not modifiable.

• Java programmers should note that, we could use namespace first, followed by using or vice-
versa.

• The using keyword has two uses - Create an alias for a namespace or permit the use of types
in a namespace, such that, you do not have to qualify the use of a type in that namespace.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 57

C# - CONSOLE APPLICATIONS

• We are not allowed to use the same using directive more than once in our program ie. we
cannot say:

 using System;
 using System;
• You can think of assemblies are something similar to jar files in Java.

58 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 3 Object Oriented Concepts

3. Object Oriented Concepts
Object-oriented technologies provide many benefits to software developers and their products.
Object-oriented concepts can be difficult to grasp and one's understanding of the concepts often
slowly evolve over time.

If there's a downside, it is the expense of the learning curve. Thinking in objects is a dramatic
departure from thinking procedurally, and the process of designing objects is much more
challenging than procedural design, especially if you're trying to create reusable objects.

The significance of object-oriented technology is that it enables programmers to design software
in much the same way that they perceive the real world.

Here's an example. You can walk into a computer store, and with a little background and often
some help, assemble an entire PC computer system from various components: a motherboard, a
CPU chip, a video card, a hard-disk, a keyboard, and so on. Ideally, when you finish assembling
all the various self-contained units, you have a system in which all the units work together to
create a larger system with which you can solve the problems you bought the computer in the
first place.

Internally, each of those components may be vastly complicated and engineered by different
companies with different methods of design. However, you don't need to know how the
component works, what every chip on the board does, or how, when you press the A key, an "A"
is sent to your computer. As the assembler of the overall system, each component you use is a
self-contained unit, and all you are interested in is how the unit interacts with each other. Will this
video card fit into the slots on the motherboard and will this monitor work with this video card?
Will each particular component speak the right commands to the other components it interacts
with so that each part of the computer is understood by every other part? Once you know what
the interactions are between the components and can match the interactions, putting together
the overall system is easy.

Object-Oriented Programming works in exactly the same way. Using object-oriented
programming, your overall program is made up of lots of different self-contained components
(objects), each of which has a specific role in the program and all of which can talk to each other
in predefined ways.

3.1 What is an Object?
Objects are software bundles of data and related procedures that act on that data. The
procedures are also known as methods (function in C). Software objects are often used to model
real-world objects you find in everyday life.

As the name implies, objects are the key concept to understanding object-oriented technology.
You can look around you now and see many examples of real-world objects: your dog, your desk,
your television set, and your bicycle.

These real-world objects share two characteristics: they all have attributes and they all have
behaviour. For example, Bicycles have attributes (current gear, current pedal cadence, two
wheels, number of gears) and behaviour (braking, accelerating, slowing down, changing gears).

Attributes are the individual things that differentiate one object from another and determine the
appearance, state or other qualities of that object. Attributes of an object can also include
information about its state; for example, you could have features for engine condition (off or on).
Attributes are defined by variables.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 59

C# - CONSOLE APPLICATIONS

Software objects are modeled after real world objects in that, they too, have attributes and
behaviour. A software object maintains its attributes in variables and implements its behaviour
with methods.

Definition: An object is a software bundle of variables and related methods.

You can represent real-world objects in programs using software objects. You might want to
represent a real-world bicycle as a software object within an electronic exercise bike. However,
you can also use software objects to "objectify" abstract concepts. For example, "event" is a
common object used in GUI window systems to represent the event when a user presses a mouse
button or types a key on the keyboard.

Everything that the software object knows (attribute) and can do (behaviour) is expressed by the
variables and methods within that object. A software object that modeled your real-world bicycle
would have variables that indicated the bicycle's current state: its speed is 10 mph, its pedal
cadence is 90 rpm, and its current gear is the 5th gear. These variables and methods are formally
known as instance variables and instance methods to distinguish them from class variables and
class methods. The software bicycle would also have methods to brake, change the pedal cadence
and change gears. (The bike would not have a method for changing the speed of the bicycle as
the bike's speed is really just a side-effect of what gear it's in, how fast the rider is pedaling and
how steep the hill is).

Anything that an object does not know or cannot do is excluded from the object. For example,
your bicycle (probably) doesn't have a name, and it can't run, bark or fetch. Thus, there are no
variables or methods for those states and behaviours.

As you can visualise, the object's variables make up the center or nucleus of the object and the
methods surround and hide the object's nucleus from other objects in the program. Packaging an
object's variables within the protective custody of its methods is called encapsulation. Typically,
encapsulation is used to hide unimportant implementation details from other objects. When you
want to change gears on your bicycle, you don't need to know how the gear mechanism works;
you just need to know which lever to move. Thus, the implementation can change at any time
without changing other parts of the program.

3.2 The Benefit of Encapsulation
Encapsulating related variables and methods into a neat software bundle is a simple yet powerful
idea that provides two primary benefits to software developers:

• Modularity - the source code for an object can be written and maintained independently of the
source code for other objects. In addition, an object can be easily passed around in the
system. You can give your bicycle to someone else and it will still work.

• Information hiding - an object has a public interface which other objects can use to
communicate with it. However, the object can maintain private information and methods that
can be changed at any time without affecting the other objects that depend on it. You don't
need to understand the gear mechanism on your bike in order to use it.

3.3 What are Messages?
Software objects interact and communicate with each other via messages.

A single object alone is generally not very useful and usually appears as a single component of a
larger program or application that contains many other objects. It is through the interaction of
these objects that programmers achieve higher order functionality and more complex behaviour.
Your bicycle hanging from a hook in the garage is just a bunch of titanium alloy and rubber; by
itself, the bicycle is incapable of any activity. The bicycle is useful only when another object (you)
interact with it (start pedaling).

60 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 3 Object Oriented Concepts

Software objects interact and communicate with each other by sending messages to each other.
When object A wants object B to perform one of its methods, object A sends a message to object
B.

Sometimes the receiving object needs more information so that it knows exactly what to do - for
example, when you want to change gears on your bicycle, you have to indicate which gear you
want. This information is passed along with the message as parameters. The message parameters
are actually the parameters to a method. The method's return type is the object's response to the
message.

Three components comprise a message:

• the object to whom the message is addressed (bicycle)

• the name of the method to perform (change gears)

• any parameters needed by the method (to a higher gear)

These three components are enough information for the receiving object to perform the desired
method. No other information or context is required.

The Benefit of Messages:

Everything an object can do is expressed through its methods, so message passing supports all
possible interactions between objects.

Objects don't need to be in the same process or even on the same machine to send and receive
messages back and forth to each other.

3.4 What are Classes?
A class is a blueprint, prototype or description that defines the variables and the methods
common to all objects of a certain kind.

In the real world, you often have many objects of the same kind. For example, your bicycle is just
one of many bicycles in the world. Using object-oriented terminology, we say that your bicycle
object is an instance of the class of objects known as bicycles. All bicycles have some attributes
(current gear, current cadence, two wheels) and behaviour (change gears, brake) in common.
However, each bicycle's attribute is independent of and can be different from other bicycles.

When building bicycles, manufacturers take advantage of the fact that bicycles share
characteristics and they build many bicycles from the same blueprint - it would be very inefficient
to produce a new blueprint for every individual bicycle they manufactured.

In object-oriented software, it's also possible to have many objects of the same kind that share
characteristics: rectangles, employee records, video clips and so on. Like the bicycle
manufacturers, you can take advantage of the fact that objects of the same kind are similar and
you can create a blueprint for those objects. Software "blueprints" for objects are called classes.

Hence, a class is a data structure that contains data members (constants, fields, and events),
function members (methods, properties, indexers, operators, constructors, and destructors), and
nested types. Class types support inheritance, a mechanism whereby derived classes can extend
and specialize base classes.

Definition: A class is a blueprint or prototype that defines a group of data items called fields or
variables and the associated functions or methods that perform operations on this data. Hence,
classes are software blueprints for objects.

The Benefit of Classes:

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 61

C# - CONSOLE APPLICATIONS

Objects provide the benefit of modularity and information hiding. Classes provide the benefit of
reusability. Bicycle manufacturers reuse the same blueprint repeatedly to build many bicycles.
Software programmers use the same class repeatedly to create many objects.

When you write a C# program, you design and construct a set of classes. Then, when your
program runs, instances of those classes are created and discarded as needed. Your task, as a C#
programmer, is to create the right set of classes to accomplish what your program needs to
accomplish.

The C# environment comes with a library of classes that implement a lot of the basic behaviour
you need - not only for basic programming tasks (classes to provide basic math functions, arrays,
strings, and so on), but also for graphics and networking behaviour. A class library is a set of
classes.

Because each instance of a class can have different values for its variables, each variable is called
an instance variable.

Class declarations are used to define new reference types. C# supports single inheritance only,
but a class may implement multiple interfaces.

Class members can include constants, fields, methods, properties, indexers, events, operators,
constructors, destructors, and nested type declaration.

The differentiation between classes and objects is often the source of some confusion. In the real
world, it's obvious that classes are not themselves the objects that they describe - a blueprint of a
bicycle is not a bicycle. However, it's a little more difficult to differentiate classes and objects in
software. This is partially because software objects are electronic models of real-world objects or
abstract concepts in the first place. People use the term "object" inconsistently and use it to refer
to both classes and instances.

So far, a class's methods and variables don't exist yet. You must create an instance from the
class before you can call the methods and before the variables can have any values. In
comparison, an object's methods and variables actually exist and you can use it. You can send
the object a message and it will respond by performing the method and perhaps modifying the
values of the variables.

An instance of a class is another word for an actual object. If the class is the general
representation of an object, an instance is its concrete representation.

3.5 What is Inheritance?
Classes inherit variables and methods from their superclass. Inheritance provides a powerful and
natural mechanism for organising and structuring software programs.

Generally speaking, objects are defined in terms of classes. You know a lot about an object by
knowing its class. Even if you don't know what a penny-farthing is, if I told you it was a bicycle,
you would know that it had two wheels, handle bars and pedals.

Object-oriented systems take this a step further and allow classes to be defined in terms of other
classes. For example, mountain bikes, racing bikes and tandems are all different kinds of bicycles.
In object-oriented terminology, mountain bikes, racing bikes and tandems are all subclasses of
the bicycle class. Similarly, the bicycle class is the superclass of mountain bikes, racing bikes and
tandems.

Each subclass inherits attribute (in the form of variable declarations) from the superclass.
Mountain bikes, racing bikes and tandems share some attributes: cadence, speed and the like. In
addition, each subclass inherits methods from the superclass. Mountain bikes, racing bikes and
tandems share some methods: braking and changing pedaling speed.

62 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 3 Object Oriented Concepts

However, subclasses are not limited to the state and behaviours provided to them by their
superclass. Subclasses can add variables and methods to the ones they inherited from the
superclass. Tandem bicycles have two seats and two sets of handle bars; some mountain bikes
have an extra set of gears with a lower gear ratio.

Subclasses can also override inherited methods and provide specialised implementations for those
methods. For example, if you had a mountain bike with an extra set of gears, you would override
the "change gears" method so that the rider could actually use those new gears.

You are not limited to just one layer of inheritance - the inheritance tree, or class hierarchy, can
be as deep as needed. Methods and variables are inherited down through the levels. The further
down in the hierarchy a class appears, the more specialised its behaviour.

At the top of the C# class hierarchy is the class Object; all classes inherit from this one
superclass. Object is the most general class in the hierarchy; it defines methods inherited by all
the classes in the C# class hierarchy.

You can think of a class hierarchy as defining very abstract concepts at the top of the hierarchy
and those ideas becoming more concrete the farther down the chain of superclasses you go.

What if your class defines entirely new behaviour, and isn't really a subclass of another class?
Your class can also inherit directly from Object, which still allows it to fit neatly into the C# class
hierarchy. In fact, if you create a class definition that doesn't indicate its superclass in the first
line, C# automatically assumes that you are inheriting from Object. The MotorCycle class you
created, inherited from Object.

Each C# class can have only one superclass i.e. single inheritance.

The Benefit of Inheritance:

• Subclasses provide specialised behaviours from the basis of common elements provided by
the superclass. With inheritance, programmers can reuse the code in the superclass many
times.

• Programmers can implement superclasses that define "generic" behaviours (called abstract
classes). The essence of the superclass is defined and may be partially implemented but
much of the class is left undefined and non- implemented. Other programmers fill in the
details with specialised subclasses.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 63

C# - CONSOLE APPLICATIONS

4. Class and Object

4.1 Class Declaration
The use of a class tells the compiler that it's a reference type. All declarations of data members
and methods take place between the opening and closing curly brackets. As in Java, the classes
are defined and implemented in the same place. Class methods are invoked by using the dot
notation. The data members in C# classes are set to certain default values, 0 for numeric types,
false for Boolean, ‘\0’ for chars and null for references.

A class-declaration is a type-declaration that declares a new class.

class-declaration:
attributesopt class-modifiersopt class identifier class-baseopt class-body ;opt

A class-declaration consists of an optional set of attributes, followed by an optional set of class-
modifiers, followed by the keyword class and an identifier that names the class, followed by an
optional class-base specification, followed by a class-body, optionally followed by a semicolon.

Some example classes:

// MotorCycle.cs
using System;
public class MotorCycle {
 string colour, make;
 bool engineState;
 public MotorCycle() {
 Console.WriteLine("Constructor called");
 }
 public void startEngine() {
 if (engineState)
 Console.WriteLine("Engine is Already ON");
 else {
 engineState = true;
 Console.WriteLine("Engine is now ON");
 }
 }
 public void showAttr() {
 Console.WriteLine("Make is = " + make);
 Console.WriteLine("Colour is = " + colour);
 if (engineState)
 Console.WriteLine("Engine is Running");
 else
 Console.WriteLine("Engine is Idle");
 }
 public static void Main(String[] args) {
 MotorCycle m = new MotorCycle();
 m.make = "Yamaha";
 m.colour = "black";
 m.startEngine();
 m.showAttr();
 m.startEngine();
 }
}

//Account.cs
using System;

64 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

class Account {
 private double balance; // data member
 public Account(){
 balance = 0.0;
 }
 public Account(double amt){
 balance = amt;
 }
 public bool Deposit(double amt){
 //deposit cash
 if (amt <= 0.0)
 return false;
 else {
 balance += amt;
 return true;
 }
 }
 public bool Withdraw(double amt){
 //withdraw cash
 if ((balance-amt) < 0.0)
 return false;
 else
 balance -=amt;
 return true;
 }
 public double QueryBalance(){
 return balance;
 }
}
public class SMT {
 public static void Main(String[] args){
 Account a1 = new Account();
 Account a2 = new Account(3000.00);
 }
}

4.1.1 Class modifiers
A class-declaration may optionally include a sequence of class modifiers:

class-modifier:
new
public
protected

internal
private
abstract
sealed

It is an error for the same modifier to appear multiple times in a class declaration.

The new modifier is only permitted on nested classes. It specifies that the class hides an inherited
member by the same name.

The public, protected, internal, and private modifiers control the accessibility of the class.
Depending on the context in which the class declaration occurs, some of these modifiers may not
be permitted.

The abstract and sealed modifiers are discussed in the following sections.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 65

C# - CONSOLE APPLICATIONS

4.1.1.1 Abstract classes
The abstract modifier is used to indicate that a class is incomplete and intended only to be a
base class of other classes. An abstract class differs from a non-abstract class in the following
ways:

• An abstract class cannot be instantiated, and it is an error to use the new operator on an
abstract class. While it is possible to have variables and values whose compile-time types are
abstract, such variables and values will necessarily either be null or contain references to
instances of non-abstract classes derived from the abstract types.

• An abstract class is permitted (but not required) to contain abstract methods and accessors.

• An abstract class cannot be sealed.

When a non-abstract class is derived from an abstract class, the non-abstract class must include
actual implementations of all inherited abstract methods and accessors. Such implementations
are provided by overriding the abstract methods and accessors. In the example

abstract class A {
 public abstract void F();
}
abstract class B: A {
 public void G() {}
}
class C: B {
 public override void F() {
 // actual implementation of F
 }
}
the abstract class A introduces an abstract method F. Class B introduces an additional method G,
but doesn’t provide an implementation of F. B must therefore also be declared abstract. Class C
overrides F and provides an actual implementation. Since there are no outstanding abstract
methods or accessors in C, C is permitted (but not required) to be non-abstract. You should note
that the presence of an abstract method in a class doesn’t implicitly make the class abstract. You
have to use the abstract modifier on the class as well. The following example illustrates this:

public class Account {
 public abstract bool withdraw(double amt);
}
When we compile this we get an error:

Test.cs(2,24): error CS0513: 'Account.withdraw(double)' is abstract but it is
cntained in nonabstract class 'Account'

The correct way to write is as follows:

public abstract class Account {

 public abstract bool withdraw(double amt);

}

Implementing classes could be SavingsAccount, CurrentAccount.

4.1.1.2 Sealed classes
The sealed modifier (similar to final in Java) is used to prevent derivation from a class. An error
occurs if a sealed class is specified as the base class of another class.

A sealed class cannot also be an abstract class.

66 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

The sealed modifier is primarily used to prevent unintended derivation, but it also enables certain
run-time optimizations.

The sealed modifier cannot be used on methods.

Example:

using System;
sealed class MyPoint {
 public MyPoint(int x,int y) {
 this.x =x;
 this.y =y;
 }
 private int X;
 public int x {
 get {
 return this.X;
 }
 set {
 this.X =value;
 }
 }
 private int Y;
 public int y {
 get {
 return this.Y;
 }
 set {
 this.Y = value;
 }
 }
}
class SealedApp {
 public static void Main() {
 MyPoint pt = new MyPoint(6,16);
 Console.WriteLine("x = {0}, y = {1}", pt.x, pt.y);
 }
}
Note that we used the private access modifier on the internal class members X and Y. Using the
protected modifier would result in a warning from the compiler because of the fact that protected
members are visible to derived classes and, as you now know, sealed classes don't have any
derived classes.

4.1.1.3 Inner Classes
We can have inner classes as shown in the program IC.cs

using System;
public class A {
 public class B {
 public class C {
 public C() {
 Console.WriteLine("In C");
 }
 }
 }
 static void Main() {
 A.B.C c = new A.B.C();

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 67

C# - CONSOLE APPLICATIONS

 }
}

4.1.1.4 Base classes
When a class-type is included in the class-base, it specifies the direct base class of the class being
declared. If a class declaration has no class-base, or if the class-base lists only interface types,
the direct base class is assumed to be object. A class inherits members from its direct base
class.

In the example:

class A {}

class B: A {}

class A is said to be the direct base class of B, and B is said to be derived from A. Since A does not
explicitly specify a direct base class, its direct base class is implicitly object.

The direct base class of a class type must be at least as accessible as the class type itself. For
example, it is an error for a public class to derive from a private or internal class (see
example Assembly2.cs later on).

The base classes of a class are the direct base class and its base classes. In other words, the set
of base classes is the transitive closure of the direct base class relationship. Referring to the
example above, the base classes of B are A and object.

Except for class object, every class has exactly one direct base class. The object class has no
direct base class and is the ultimate base class of all other classes.

When a class B derives from a class A, it is an error for A to depend on B. A class directly depends
on its direct base class (if any) and directly depends on the class within which it is immediately
nested (if any). Given this definition, the complete set of classes upon which a class depends is
the transitive closure of the directly depends on relationship.

The example:

class A: B {}
class B: C {}
class C: A {}
is in error because the classes circularly depend on themselves. Likewise, the example

class A: B.C {}
class B: A {
 public class C {}
}
is in error because A depends on B.C (its direct base class), which depends on B (its immediately
enclosing class), which circularly depends on A.

Note that a class does not depend on the classes that are nested within it. In the example

class A {
 class B: A {}
}
B depends on A (because A is both its direct base class and its immediately enclosing class), but A
does not depend on B (since B is neither a base class nor an enclosing class of A). Thus, the
example is valid.

It is not possible to derive from a sealed class. In the example

sealed class A {}
class B: A {} // Error, cannot derive from a sealed class
class B is in error because it attempts to derive from the sealed class A.

68 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

4.1.1.5 Internal class
Internal members are accessible only within files in the same assembly. A common use of internal
access is in component-based development because it enables a group of components to
cooperate in a private manner without being exposed to the rest of the application code. For
example, a framework for building graphical user interfaces could provide Control and Form
classes that cooperate using members with internal access. Since these members are internal,
they are not exposed to code that is using the framework.

It is an error to reference a member with internal access outside the assembly within which it
was defined.

This example contains two files, Assembly1.cs and Assembly2.cs. The first file contains an internal
base class, BaseClass. In the second file, an attempt to access the member of the base class will
produce an error.

File Assembly1.cs:

// compile with /target:library
internal class BaseClass {
 public static int IntM = 0;
}

File Assembly2.cs:

// compile with /target:exe /reference:Assembly1.dll
public class TestAccess {
 public static void Main() {
 // error, BaseClass not visible outside assembly
 BaseClass myBase = new BaseClass();
 }
}

4.1.1.6 Interface implementations
A class-base specification may include a list of interface types, in which case the class is said to
implement the given interface types.

4.1.2 Class body
The class-body of a class defines the members of the class.

class-body:
{ class-member-declarationsopt }

4.1.2.1 Class members
The members of a class consist of the members introduced by its class-member-declarations and
the members inherited from the direct base class.

class-member-declarations:
class-member-declaration
class-member-declarations class-member-declaration

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 69

C# - CONSOLE APPLICATIONS

class-member-declaration:
constant-declaration
field-declaration
method-declaration
property-declaration
event-declaration
indexer-declaration
operator-declaration
constructor-declaration
destructor-declaration
static-constructor-declaration
type-declaration

The members of a class are divided into the following categories:

• Constants, which represent constant values associated with the class.

• Fields, which are the variables of the class.

• Methods, which implement the computations and actions that, can be performed by the class.

• Properties, which define named attributes and the actions associated with reading and writing
those attributes.

• Events, which define notifications that, are generated by the class.

• Indexers, which permit instances of the class to be indexed in the same way as arrays.

• Operators, which define the expression operators that, can be applied to instances of the
class.

• Instance constructors, which implement the actions, required to initialize instances of the
class.

• Destructors, which implement the actions to perform before instances of the class, are
permanently discarded.

• Static constructors, which implement the actions, required to initialize the class itself.

• Types, which represent the types that, are local to the class.

Members that contain executable code are collectively known as the function members of the
class. The function members of a class are the methods, properties, indexers, operators,
constructors, and destructors of the class.

A class-declaration creates a new declaration space, and the class-member-declarations
immediately contained by the class-declaration introduce new members into this declaration
space. The following rules apply to class-member-declarations:

• Constructors and destructors must have the same name as the immediately enclosing class.
All other members must have names that differ from the name of the immediately enclosing
class.

• The name of a constant, field, property, event, or type must differ from the names of all other
members declared in the same class.

• The name of a method must differ from the names of all other non-methods declared in the
same class. In addition, the signature of a method must differ from the signatures of all other
methods declared in the same class.

• The signature of an indexer must differ from the signatures of all other indexers declared in
the same class.

70 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

• The signature of an operator must differ from the signatures of all other operators declared in
the same class.

The inherited members of a class are specifically not part of the declaration space of a class.
Thus, a derived class is allowed to declare a member with the same name or signature as an
inherited member (which in effect hides the inherited member).

4.1.2.2 Signature
Methods, constructors, indexers, and operators are characterized by their signatures:

The signature of a method consists of the name of the method and the number, modifiers, and
types of its formal parameters. The signature of a method specifically does not include the return
type.

The signature of a constructor consists of the number, modifiers, and types of its formal
parameters.

The signature of an indexer consists of the number and types of its formal parameters. The
signature of an indexer specifically does not include the element type.

The signature of an operator consists of the name of the operator and the number and types of its
formal parameters. The signature of an operator specifically does not include the result type.

4.1.2.3 Constructors
A constructor is a method, which is called when an object of a class type is constructed, and is
usually used for initialisation. A constructor method has several characteristics:

• It has the same name as the class name

• It has no return type

• It does not return any value.

Java Programmers should note that: If you attempt to prefix a constructor with a type, the
compiler will emit an error stating that you cannot define members with the same names as the
enclosing type.

In the example VarTest.cs:

class VarTest {
 public VarTest() {

 }
 static void Main() {
 VarTest t;
 }
}
If you compile the above program, the C# compiler will warn you that the variable t has been
declared but is never used in the application.

Constructor Initializers:

All C# object constructors—with the exception of the System.Object constructors—include an
invocation of the base class's constructor immediately before the execution of the first line of the
constructor. These constructor initializers enable you to specify which class and which constructor
you want called. This takes two forms:

• An initializer of the form base(.) enables the current class's base class constructor—that is,
the specific constructor implied by the form of the constructor called—to be called.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 71

C# - CONSOLE APPLICATIONS

• An initializer taking the form this(.) enables the current class to call another constructor
defined within itself. This is useful when you have overloaded multiple constructors and want
to make sure that a default constructor is always called.

using System;
class A {
 public A() {
 Console.WriteLine("A");
 }
}
class B : A {
 public B() : base() {
 Console.WriteLine("B");
 }
}
class BaseDefaultInitializerApp {
 public static void Main() {
 B b = new B();
 }
}

Another example, is when there are two classes: A and B. This time, class A has two constructors,
one that takes no arguments and one that takes an int. Class B has one constructor that takes an
int. The problem arises in the construction of class B. How do we ensure that the desired class A
constructor will be called? By explicitly telling the compiler which constructor we want called in
the initalizer list, as below:

using System;
class A {
 public A() {
 Console.WriteLine("A");
 }
 public A(int foo) {
 Console.WriteLine("A = {0}", foo);
 }
}
class B : A {
 public B(int foo) : base(foo) {
 Console.WriteLine("B = {0}", foo);
 }
}
class DerivedInitializer2App {
 public static void Main() {
 B b = new B(42);
 }
}

An example of this(.) is now provided through the example ThisEx.cs

// ThisEx.cs
using System;
class Tmp {
 public Tmp() {
 Console.WriteLine("In Tmp()");
 }
 public Tmp(int i) : this() {
 Console.WriteLine("In Tmp with int");

72 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

 }
 static void Main() {
 Tmp t = new Tmp(10);
 }
}

You can use overloading to create several constructors for a class; which one will get called
depends on the arguments you give to new.

It's to be noted that:

• Constructors are not inherited. Thus, a class has no other constructors than those that are
actually declared in the class. If a class contains no constructor declarations, a default
constructor is automatically provided. The default constructor simply invokes the
parameterless constructor of the direct base class. If the direct base class does not have an
accessible parameterless constructor, an error occurs.

• If you write a class with only one constructor with parameters and use it while creating an
object, then a default constructor need not be given.

• If you write a class with only one constructor with parameters and try to create an object
using a default constructor (not given by you) then the program does not compile. As in Java,
it's advisable to write a default constructor for every class you write.

• Constructors are usually public, but can also be private or protected. When a class declares
only private constructors, it is not possible for other classes to derive from the class or create
instances of the class (an exception being classes nested within the class). Private
constructors are commonly used in classes that contain only static members. For example:

public class Trig {
 private Trig() {} // Prevent instantiation
 public const double PI = 3.14159265358979323846;
 public static double Sin(double x) {...}
 public static double Cos(double x) {...}
 public static double Tan(double x) {...}
}
The Trig class provides a grouping of related methods and constants, but is not intended to be
instantiated. It therefore declares a single private constructor. Note that at least one private
constructor must be declared to suppress the automatic generation of a default constructor
(which always has public access).

In the Tree.cs program below – Java programmers should note that the name of the program can
be anything you want (in any case too). All classes can be public or otherwise. Also note that in
the program there can be only one and only one Main() method.

using System;
public class GF {
 public GF() {
 Console.WriteLine("In GF");
 }
}
public class F : GF { // : is similar to extends in Java
 public F() {
 Console.WriteLine("In F");
 }
}
public class S : F {
 public S() {
 Console.WriteLine("In S");
 }

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 73

C# - CONSOLE APPLICATIONS

 public static void Main(String[] args){
 S son = new S();
 }
}

4.1.2.4 Calling Base Class Constructors
public class CheckAccount : Account {
 public CheckAccount(double amt) : base(amt) {
 }
}
Here, if a CheckAccount is created with a double being passed in to the constructor, that double is
passed on to the base class constructor. The compiler sees base(amt) as meaning, Pass amt
through to the base class constructor which takes one double as an argument. In this case,
Account has a suitable constructor, so the compiler can find and use it.

4.1.2.5 Static Constructors
Static constructors implement the actions required to initialize a class i.e the constructor is called
when the class is loaded. Static constructors are declared using static-constructor-declarations:

static-constructor-declaration:
attributesopt static identifier () block

A static-constructor-declaration may include set of attributes.

The identifier of a static-constructor-declarator must name the class in which the static
constructor is declared. If any other name is specified, an error occurs.

The block of a static constructor declaration specifies the statements to execute in order to
initialize the class. This corresponds exactly to the block of a static method with a void return
type.

Static constructors are not inherited.

Static constructors are invoked automatically, and cannot be invoked explicitly. The exact timing
and ordering of static constructor execution is not defined, though several guarantees are
provided:

• The static constructor for a class is executed before any instance of the class is created.

• The static constructor for a class is executed before any static member of the class is
referenced.

• The static constructor for a class is executed before the static constructor of any of its
derived classes are executed.

• The static constructor for a class never executes more than once.

• The static constructor cannot have parameters.

• There’s no such thing as a static destructor.

The example SC1.sc

using System;
class SC1 {
 static void Main() {
 A.F();
 B.F();
 }
}
class A {
 static A() {

74 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

 Console.WriteLine("Init A");
 }
 public static void F() {
 Console.WriteLine("A.F");
 }
}
class B {
 static B() {
 Console.WriteLine("Init B");
 }
 public static void F() {
 Console.WriteLine("B.F");
 }
}
could produce either the output:

Init A
A.F
Init B
B.F
or the output:

Init B
Init A
A.F
B.F
because the exact ordering of static constructor execution is not defined.

The example SC2.cs

using System;
class SC2 {
 static void Main() {
 Console.WriteLine("1");
 B.G();
 Console.WriteLine("2");
 }
}
class A {
 static A() {
 Console.WriteLine("Init A");
 }
}
class B: A {
 static B() {
 Console.WriteLine("Init B");
 }
 public static void G() {
 Console.WriteLine("B.G");
 }
}
is guaranteed to produce the output:

1
Init A
Init B
B.G
2

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 75

C# - CONSOLE APPLICATIONS

because the static constructor for the class A must execute before the static constructor of the
class B, which derives from it.

In the example SRO.cs below, the screen resolution fields are static and read-only, and there’s a
static constructor.

using System;

class GraphicsPackage {
 public static readonly int ScreenWidth;
 public static readonly int ScreenHeight;
 static GraphicsPackage() (
 // Code would be here to
 // calculate resolution.
 ScreenWidth = 1024;
 ScreenHeight = 768;
 }
}
class ReadOnlyApp {
 public static void Main() {
 Console.WriteLine("Width = {0}, Height = {1}",
 GraphicsPackage.ScreenWidth,
 GraphicsPackage.ScreenHeight);
 }
}

4.1.2.6 Destructors
Destructors are also called a finalizer. C# destructors are very similar to Java’s finalize() method,
and have all the same disadvantages.

Destructors implement the actions required to destruct instances of a class. Destructors are
declared using destructor-declarations:

destructor-declaration:
attributesopt ~ identifier () block

A destructor-declaration may include set of attributes.

The identifier of a destructor-declarator must name the class in which the destructor is declared.
If any other name is specified, an error occurs.

The block of a destructor declaration specifies the statements to execute in order to initialize a
new instance of the class. This corresponds exactly to the block of an instance method with a
void return type.

Destructors are not inherited. Thus, a class has no other destructors than those that are actually
declared in the class.

Destructors are invoked automatically, and cannot be invoked explicitly. An instance becomes
eligible for destruction when it is no longer possible for any code to use the instance. Execution of
the destructor or destructors for the instance may occur at any time after the instance becomes
eligible for destruction. When an instance is destructed, the destructors in an inheritance chain
are called in order, from most derived to least derived.

The name of a class destructor is the class name preceded by a tilde (~). They are always public
and have no return value. They do not take any arguments, so there can only ever be one for a
class.

An example:

public class SMT {

76 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

 private int xyz;
 public SMT() {
 xyz = 25;
 }
 ~SMT() {
 // tidy up
 }
}

4.1.2.7 Inheritance - Single
A class inherits (use: instead of extends as in Java) the members of its direct base class.
Inheritance means that a class implicitly contains all members of its direct base class, except for
the constructors and destructors of the base class. Some important aspects of inheritance are:

• Inheritance is transitive. If C is derived from B, and B is derived from A, then C inherits the
members declared in B as well as the members declared in A.

• A derived class extends its direct base class. A derived class can add new members to those it
inherits, but it cannot remove the definition of an inherited member.

• Constructors and destructors are not inherited, but all other members are, regardless of their
declared accessibility. However, depending on their declared accessibility, inherited members
may not be accessible in a derived class.

• A derived class can hide inherited members by declaring new members with the same name
or signature. Note however that hiding an inherited member does not remove the member—it
merely makes the member inaccessible in the derived class.

• An instance of a class contains a copy of all instance fields declared in the class and its base
classes, and an implicit conversion exists from a derived class type to any of its base class
types. Thus, a reference to a derived class instance can be treated as a reference to a base
class instance.

• A class can declare virtual methods, properties, and indexers, and derived classes can
override the implementation of these function members. This enables classes to exhibit
polymorphic behavior wherein the actions performed by a function member invocation vary
depending on the run-time type of the instance through which the function member is
invoked.

4.1.2.8 Accessing Base Class Members
You may want to call a method in a class’ base class from time to time. You can do this using the
base keyword. base is in many ways the equivalent of Java’s super keyword.

4.1.2.9 The this Reference
A class method is always called in the context of some object. Suppose you wanted to know
which object has called a method – you can get at this via the keyword this, which is a reference
to the object that called the method.

4.1.2.10 The new modifier
A class-member-declaration is permitted to declare a member with the same name or signature
as an inherited member. When this occurs, the derived class member is said to hide the base
class member. Hiding an inherited member is not considered an error, but it does cause the
compiler to issue a warning. To suppress the warning, the declaration of the derived class
member can include a new modifier to indicate that the derived member is intended to hide the
base member.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 77

C# - CONSOLE APPLICATIONS

If a new modifier is included in a declaration that doesn’t hide an inherited member, a warning is
issued to that effect. This warning is suppressed by removing the new modifier.

It is an error to use the new and override modifiers in the same declaration.

Use the new modifier to explicitly hide a member inherited from a base class. To hide an
inherited member, declare it in the derived class using the same name, and modify it with the
new modifier.

Consider the following class:

public class MyBaseC {
 public int x;
 public void Invoke();
}
Declaring a member with the name M in a derived class, for example:

public class MyDerivedC : MyBaseC {
 new public void Invoke();
}
will hide the method Invoke() in the base class. However, the field x will not be affected because
it is not hidden by a similar name.

In the example below (MyDerivedC.cs) a base class, MyBaseC, and a derived class, MyDerivedC,
use the same field name x, thus hiding the value of the inherited field. The example demonstrates
the use of the new modifier. It also demonstrates how to access the hidden members of the base
class by using the fully qualified names.

// The new modifier
using System;
public class MyBaseC {
 public static int x = 55;
 public static int y = 22;
}
public class MyDerivedC : MyBaseC {
 new public static int x = 100; // Name hiding
 public static void Main() {
 // Display the overlapping value of x:
 Console.WriteLine(x);
 // Access the hidden value of x:
 Console.WriteLine(MyBaseC.x);
 // Display the unhidden member y:
 Console.WriteLine(y);
 }
}

Output
100
55
22
If you remove the new modifier, the program will still compile and run, but you will get the
warning:

SC0108: The keyword new is required on 'MyDerivedC.x' because it hides inherited
member 'MyBaseC.x'.

78 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

4.1.2.11 Casting between Types
Assuming a base class named Employee and a derived class named ContractEmployee, the
following code works because there's always an implied upcast from a derived class to its base
class:

class Employee { }
class ContractEmployee : Employee { }
class CastExample1 {
 public static void Main () {
 Employee e = new ContractEmployee();
 }
}
However, the following is illegal, because the compiler cannot provide an implicit downcast:

class Employee { }
class ContractEmployee : Employee { }
class CastExample2 {
 public static void Main () {
 ContractEmployee ce = new Employee(); // Won't compile.
 }
}
Remember: a derived class can be used in place of its base class.

In the next example, the program compiles but throws a throws a
System.InvalidCastException at run-time.

class Employee { }
class ContractEmployee : Employee { }
class CastExample3 {
 public static void Main () {
 //Downcast will fail.
 ContractEmployee ce = (ContractEmployee)new Employee();
 }
}
There is one other way of casting objects: using the as keyword. The advantage to using this
keyword instead of a cast is that if the cast is invalid, you don't have to worry about an exception
being thrown. What will happen instead is that the result will be null. Here's an example:

using System;
class Employee { }
class ContractEmployee : Employee { }
class CastExample5 {
 public static void Main () {
 Employee e = new Employee();
 Console.WriteLine("e = {0}",
 e == null ? "null" : e.ToString());
 ContractEmployee c = e as ContractEmployee;
 Console.WriteLine("c = {0}",
 c == null ? "null" : c.ToString());
 }
}
If you run this example, you'll see the following result:

c:>CastExample5

e = Employee

c = null

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 79

C# - CONSOLE APPLICATIONS

4.1.2.12 Access modifiers
A class-member-declaration can have any one of the five possible types of declared
accessibility: public, protected internal, protected, internal, or private. Except for the
protected internal combination, it is an error to specify more than one access modifier. When a
class-member-declaration does not include any access modifiers, the declaration defaults to
private declared accessibility.

Each member of a class has a form of accessibility, as under:

• public members are available to all code;

• protected members are accessible only from derived classes;

• internal members are accessible only from within the same assembly;

• protected internal members are accessible only from derived classes within the same
assembly;

• private members are accessible only from the class itself.

The point to remember is that the access modifiers are associated with members or
types (classes etc.) and are not allowed on namespaces.

The examples below should illustrate the above:

// Am.cs
using System;
public class Dad {
 public bool diamond;
 protected bool gold;
 protected internal bool silver;
 internal bool car;
 bool house;
}
class Son : Dad {
 public static void Main(String[] args) {
 Son s = new Son();
 s.diamond = true;
 s.gold = true;
 s.silver = true;
 s.car = true;
 s.house = true; // Here private is inaccessible
 Console.WriteLine("diamond = {0}, gold = {1}", s.diamond, s.gold);
 Console.WriteLine("silver = {0}, car = {1}", s.silver, s.car);
 Console.WriteLine("house = {0}", s.house);
 }
}

// AM2.cs
using System;
public class Dad {
 public bool diamond;
 protected bool gold;
 protected internal bool silver;
 internal bool car;
 bool house;
}
class Friend {
 public static void Main(String[] args) {

80 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

 Dad d = new Dad();
 d.diamond = true;
 d.gold = true; // protected inaccessible
 d.silver = true;
 d.car = true;
 d.house = true; // private inaccessible
 Console.WriteLine("diamond = {0}, gold = {1}", d.diamond, d.gold);
 Console.WriteLine("silver = {0}, car = {1}", d.silver, d.car);
 Console.WriteLine("house = {0}", d.house);
 }
}

4.1.2.13 Restrictions on Using Accessibility Levels
When you declare a type, it is essential to see if that type has to be at least as accessible as
another member or type. For example, the direct base class must be at least as accessible as the
derived class.

The following declarations will result in a compiler error, because the base class BaseClass is less
accessible than MyClass:

class BaseClass {...}
public class MyClass: BaseClass {...} // Error

4.1.2.14 Accessibility Domain
The example AM3.cs contains a top-level type, T1, and two nested classes, M1 and M2. The
classes contain fields with different declared accessibilities. In the Main method, a comment
follows each statement to indicate the accessibility domain of each member. Notice that the
statements that attempt to reference the inaccessible members are commented out. If you want
to see the compiler errors caused by referencing an inaccessible member, remove the comments
one at a time.

using System;
namespace MyNameSpace {
 public class T1 {
 public static int myPublicInt;
 internal static int myInternalInt;
 private static int myPrivateInt = 0;
 public class M1 {
 public static int myPublicInt;
 internal static int myInternalInt;
 private static int myPrivateInt = 0;
 }
 private class M2 {
 public static int myPublicInt = 0;
 internal static int myInternalInt = 0;
 private static int myPrivateInt = 0;
 }
 }
 public class MainClass {
 public static int Main() {
 // Access to T1 fields:
 T1.myPublicInt = 1; // Access is unlimited
 T1.myInternalInt = 2; // Accessible only in current project
 // T1.myPrivateInt = 3; // Error: inaccessible outside T1

 // Access to the M1 fields:
 T1.M1.myPublicInt = 1; // Access is unlimited

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 81

C# - CONSOLE APPLICATIONS

 T1.M1.myInternalInt = 2; // Accessible only in current project
 // T1.M1.myPrivateInt = 3; // Error: inaccessible outside M1

 // Access to the M2 fields:
 // T1.M2.myPublicInt = 1; // Error: inaccessible outside T1
 // T1.M2.myInternalInt = 2; // Error: inaccessible outside T1
 // T1.M2.myPrivateInt = 3; // Error: inaccessible outside M2
 return 0;
 }
 }
}

4.1.2.15 Virtual methods
One of the properties of inheritance is that we can use a derived class object through a base class
reference, like this:

// Create a savings account

Account s1 = new CheckAccount(); //CheckAccount : Account

// Deposit and Withdraw

s1.Deposit(15000.00);

s1. Withdraw(2000.00);

As already mentioned, this works because a CheckAccount is an Account, so we can do
everything to a CheckAccount that we can to the base class. In this case, we are simply calling
the Deposit() and Withdraw() methods that CheckAccount inherits from Account.

Suppose that we want to provide CheckAccount with its own version of Withdraw(), because
CheckAccounts can have an overdraft limit. We can code one up quite easily:

public class CheckAccount : Account {
 private double overdraftLimit = 500.00;
 public bool Withdraw(double amt) {
 if (balanceamt >= overdraftLimit) {
 base.Withdraw(amt);
 return true;
 }
 else
 return false;
 }
}
There’s a problem with this, if we try to use our new version through an Account reference, as
the compiler will insist on calling the one from Account, rather than from CheckAccount. This
problem arises because the compiler has to decide which method to call, so it looks at the
reference s1, sees that it is of type Account, and so calls the Account.Withdraw() method.

A virtual method is one where the decision on exactly which method to call is delayed until run-
time, allowing the dynamic type of the reference to be used. You declare a method as virtual by
using the virtual modifier in the base class:

public class Account {

 Virtual public bool Withdraw(double amt) {

 }

}

82 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

4.1.2.16 Override methods
When you override a virtual method in a derived class, you can use the override keyword to
signal that you are overriding a virtual method.

public class CheckAcount : Account {
 private double overdraftLimit = 500.00;
 public override bool Withdraw(double amt) {
 if (balanceamt >= overdraftLimit) {
 base.Withdraw(amt);
 return true;
 }
 else
 return false;
 }
}
Let us wrap up this discussion with a consolidated example – VO.cs

// VO.cs
using System;
public class Account {
 public void Withdraw(double amt) {
 Console.WriteLine("Account.Withdraw method called...");
 }
}
public class CheckAccount : Account {
 public void Withdraw(double amt) {
 Console.WriteLine("CheckAccount.Withdraw method called...");
 }
 public static void Main(string[] args) {
 Account s1 = new CheckAccount();
 s1.Withdraw(5000.00);
 }
}
The output of the above is:

Account.Withdraw method called...

As mentioned earlier, the compiler has to decide which method to call, so it looks at the reference
s1, sees that it is of type Account, and so calls the Account.Withdraw() method.

In the example VO1.cs, we use the virtual and override keywords to give a different ouput.

// VO1.cs
using System;
public class Account {
 virtual public void Withdraw(double amt) {
 Console.WriteLine("Account.Withdraw method called...");
 }
}
public class CheckAccount : Account {
 public override void Withdraw(double amt) {
 Console.WriteLine("CheckAccount.Withdraw method called...");
 }
 public static void Main(string[] args) {
 Account s1 = new CheckAccount();
 s1.Withdraw(5000.00);
 }
}
The output is:

CheckAccount.Withdraw method called...

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 83

C# - CONSOLE APPLICATIONS

Remember that the virtual keyword must be used on the base class's method, and the override
keyword is used on the derived class's implementation of the method.

This example VO2.cs has the same method overridden multiple times.

using System;
class A {
 public virtual void MtdA() {
 Console.WriteLine("In A");
 }
}
class B : A {
 public override void MtdA() {
 Console.WriteLine("In B");
 }
}
class C : B {
 public override void MtdA() {
 Console.WriteLine("In C");
 }
}
class Tmp {
 static void Main() {
 A c = new C();
 c.MtdA();
 }
}

4.2 Interfaces
The interface keyword declares a reference type that has abstract members.

Interfaces are used to define a contract; a class or struct that implements the interface must
adhere to this contract.

Interfaces can contain methods, properties, indexers, and events as members. They can’t contain
constants, fields (private data members), constructors and destructors or any type of static
member.

All the members of an interface are public by definition, and the compiler will give you an error if
you try to specify any other modifiers on interface members. The static and public modifiers are
not permitted on interface methods.

C# interfaces are very much similar to Java interfaces. In C# we say : instead of implements, as
in Java.

The example

interface Iexample {
 string this[int index] { get; set; }
 event EventHandler E;
 void F(int value);
 string P { get; set; }
}
public delegate void EventHandler(object sender, Event e);
shows an interface that contains an indexer, an event E, a method F, and a property P.

Interfaces may employ multiple inheritance. In the example below, the interface IComboBox
inherits from both ITextBox and IListBox.

84 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

interface Icontrol {
 void Paint();
}
interface ITextBox: Icontrol {
 void SetText(string text);
}
interface IListBox: Icontrol {
 void SetItems(string[] items);
}
interface IComboBox: ITextBox, IListBox {}
Classes and structs can implement multiple interfaces. In the example below, the class EditBox
derives from the class Control and implements both IControl and IDataBound.

interface IdataBound {
 void Bind(Binder b);
}
public class EditBox: Control, IControl, IdataBound {
 public void Paint();
 public void Bind(Binder b) {...}
}
In the example above, the Paint method from the IControl interface and the Bind method from
IDataBound interface are implemented using public members on the EditBox class. C# provides
an alternative way of implementing these methods that allows the implementing class to avoid
having these members be public. Interface members can be implemented by using a qualified
name. For example, the EditBox class could instead be implemented by providing
IControl.Paint and IDataBound.Bind methods.

public class EditBox: IControl, IdataBound {
 void IControl.Paint();
 void IDataBound.Bind(Binder b) {...}
}
Interface members implemented in this way are called “explicit interface member
implementations” because each method explicitly designates the interface method being
implemented.

Explicit interface methods can only be called via the interface. For example, the EditBox’s
implementation of the Paint method can be called only by casting to the IControl interface.

class SMT {
 static void Main() {
 EditBox editbox = new EditBox();
 editbox.Paint(); // error: EditBox does not have a Paint method
 IControl control = editbox;
 control.Paint(); // calls EditBox’s implementation of Paint
 }
}

4.3 Structs
A struct in C# is simply a composite data type, consisting of a number of elements (or
members) of other types. The variables which make up a struct are called its members (fields in
C#), and can be accessed using a simple dot notation. It’s quite possible to nest references to
structs, and you can use the dot notation to access all levels within the nested structure. You can
also declare structs nested inside other structs. The list of similarities between classes and structs
is long – structs can implement interfaces, and can have the same kinds of members as classes.
Structs differ from classes in several important ways, however: structs are value types rather
than reference types, and inheritance is not supported for structs. Struct values either are stored

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 85

C# - CONSOLE APPLICATIONS

“on the stack” or “in-line”. Careful programmers can enhance performance through judicious use
of structs.

For example, the use of a struct rather than a class for a Point can make a large difference in the
number of allocations. The program below creates and initializes an array of 100 points. With
Point implemented as a class, the program instantiates 101 separate objects – one for the array
and one each for the 100 elements.

class Point {
 public int x, y;
 public Point() {
 x = 0;
 y = 0;
 }
 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}
class SMT {
 static void Main() {
 Point[] points = new Point[100];
 for (int i = 0; i < 100; i++)
 points[i] = new Point(i, i*i);
 }
}
If Point is instead implemented as a struct, as in

struct Point {
 public int x, y;
 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
}
then the test program instantiates just one object, for the array. The Point instances are
allocated in-line within the array. Of course, this optimization can be mis-used. Using structs
instead of classes can also make your programs fatter and slower, as the overhead of passing a
struct instance by value is slower than passing an object instance by reference. There is no
substitute for careful data structure and algorithm design.

If you pass a struct to a function, by default, the entire structure is copied onto the stack.

4.4 Enums
An enum type declaration defines a type name for a related group of symbolic constants (named
integer constants). Enums are typically used when for “multiple choice” scenarios, in which a
runtime decision is made from a number of options that are known at compile-time. Each of the
named constants has a value, which by default starts at zero and increases by one for each
succeeding member. You can give explicit values to any or all of the constants; any that you don’t
specify get a value one more than the proceeding constant. The default type of the constants is
int; you can declare enum which use other integral types like – byte, sbyte, ushort, short,
uint, long, ulong.

enum Weekday : short (Mon, Tue, Wed);

The other example

86 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

enum Color {
 Red,
 Blue,
 Green
}
class Shape {
 public void Fill(Color color) {
 switch(color) {
 case Color.Red:
 ...
 break;
 case Color.Blue:
 ...
 break;
 case Color.Green:
 ...
 break;
 default:
 break;
 }
 }
}
shows a Color enum and a method that uses this enum. The signature of the Fill method
makes it clear that the shape can be filled with one of the given colors.

The use of enums is superior to the use of integer constants – as is common in languages without
enums – because the use of enums makes the code more readable and self-documenting. The
self-documenting nature of the code also makes it possible for the development tool to assist with
code writing and other “designer” activities. For example, the use of Color rather than int for a
parameter type enables smart code editors to suggest Color values.

4.5 Properties
In OO languages, the data members are normally private and access to them is through get and
set (or accessor) methods. The drawback here is that one has to code the accessor methods for
each data member and users have to remember to use them to access these data members.

C# has this idea of accessing data members through get and set code built into the language, in
the form of properties. The difference between using get/set methods and properties is that to a
user, using a property looks like they are getting direct access to the data, whereas in fact the
compiler is mapping the call onto the get/set methods.

The success of rapid application development tools like Visual Basic can, to some extent, be
attributed to the inclusion of properties as a first-class element. VB developers can think of a
property as being field-like, and this allows them to focus on their own application logic rather
than on the details of a component they happen to be using. On the face of it, this difference
might not seem like a big deal, but modern component-oriented programs tend to be chockfull of
property reads and writes. Languages with method-like usage of properties (e.g.,
o.SetValue(o.GetValue() + 1);) are clearly at a disadvantage compared to languages that
feature field-like usage of properties (e.g., o.Value++;).

Properties are defined in C# using property declaration syntax. The first part of the syntax looks
quite similar to a field declaration. The second part includes a get accessor and/or a set accessor.
In the example below, the Button class defines a Caption property.

public class Button: Control {
 private string caption;

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 87

C# - CONSOLE APPLICATIONS

 public string Caption {
 get {
 return caption;
 }
 set {
 caption = value;
 Repaint();
 }
 }
}
Properties that can be both read and written, like the Caption property, include both get and set
accessors. The get accessor is called when the property’s value is read; the set accessor is called
when the property’s value is written. In a set accessor, the new value for the property is given in
an implicit value parameter (the value represents the value passed in from the user).

Declaration of properties is relatively straightforward, but the true value of properties shows itself
is in their usage rather than in their declaration. The Caption property can be read and written in
the same way that fields can be read and written:

Button b = new Button();

b.Caption = "ABC"; // set

string s = b.Caption; // get

b.Caption += "DEF”; // get & set

You can omit either the set or get clause. You don’t have to return the value of a variable in a get
clause, but can use any code you like to calculate or obtain the value of the property. This means
that properties don’t have to be tied to a data member but can represent dynamic data.
Properties can be inherited and you can use the abstract and virtual modifiers with them, so
that derived classes can be required to implement their own versions of property methods. In
addition, the static modifier can be used to create properties that belong to classes as opposed
to individual objects.

4.6 Delegates
Let's go over this definition of a delegate very slowly.

4.6.1 Delegate
! is a reference type (abstract class extending Object)

! declaration consists of a name and a method signature

! instance encapsulates static or an instance method

! instances can hold and invoke a method or list of methods that match its signature

! method signature includes its return type

! method signature also allows the use of a params modifier in its parameter list

! are roughly similar to function pointers in C++; however, delegates are object-oriented, type-
safe and secure

! There are basically two types of delegates. Single Cast delegate and Multi Cast delegate. A
single cast delegate can call only one function. A multi cast delegate can call more than one
function

The delegate object can call the referenced method, without having to know at compile time
which method will be invoked.

88 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

Let us look at a declaration:

 delegate int MyDelegate();

This declaration lets you create delegate instances that can hold and invoke methods that return
int and have no parameters.

Let us follow this up with an example, where one delegate is mapped to both static and instance
methods and returns specific information from each.

// Calling both static and instance methods from delegates
using System;
// delegate declaration
delegate int MyDelegate();
public class MyClass {
 public int InstanceMethod() {
 Console.WriteLine("A message from the instance method.");
 return 0;
 }
 static public int StaticMethod() {
 Console.WriteLine("A message from the static method.");
 return 0;
 }
}
public class MainClass {
 static public void Main() {
 MyClass p = new MyClass();
 // Map the delegate to the instance method:
 MyDelegate d = new MyDelegate(p.InstanceMethod);
 // Call the instance method:
 d();
 // Map to the static method:
 d = new MyDelegate(MyClass.StaticMethod);
 // Call the static method:
 d();
 }
}
Output from the program:

A message from the instance method.

A message from the static method.

4.6.2 Multicast Delegates:
If a delegate has a void return type, it is a multicast delegate that can hold and invoke multiple
methods.

In the example below, we declare a simple delegate called SimpleDelegate, which can hold and
then invoke MtdA and MtdB methods sequentially. The += method creates a new delegate by
adding the right delegate operand to the left delegate operand.

using System;
delegate void SimpleDelegate();
class Test {
 static void Main() {
 new Test(); // prints "MtdA", "MtdB"

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 89

C# - CONSOLE APPLICATIONS

 }
 Test() {
 SimpleDelegate sd = null;
 sd += new SimpleDelegate(MtdA);
 sd += new SimpleDelegate(MtdB);
 sd();
 }
 void MtdA() {
 Console.WriteLine("MtdA");
 }
 void MtdB() {
 Console.WriteLine("MtdB");
 }
}

A delegate can also be removed from another delegate using the -= operator:

Test() {
 SimpleDelegate sd = null;
 sd += new SimpleDelegate(MtdA);
 sd -= new SimpleDelegate(MtdA);
 // sd is now null
}
Delegates are invoked in the order they are added.

Please note that in the .NET runtime, C# compiles += and -= operations made on a delegate to
the static Combine and Remove methods of the System.Delegate class. Delegates with a void
return type alias System.MulticastDelegate.

Delegates are ideally suited for use as events - notifications from one component to "listeners"
about changes in that component.

4.7 Events
! An event is a message sent by an object to signal the occurrence of an "action". The action

could be caused by user interaction, such as a mouse click, or it could be triggered by some
other program logic. The object that raises (triggers) the event is called the event sender. The
object that captures the event and responds to it is called the event receiver.

! The problem in event communication is that the sender class does not know which
object/method will receive (handle) the events it raises. What is needed is an intermediary (or
pointer-like mechanism) between the source and the receiver. The communication channel
between an event source and an event receiver is the delegate. Just think about delegates in
the real world. Who are delegates? Delegates are people who represent a particular country in
another country. In C#, delegates act as an intermediary between an event source and an
event destination. Hence, a delegate acts as an event dispatcher for the class that raises the
event by maintaining a list of registered event handlers for the event.

! Event handling is a process by which one object can notify other objects that an event has
occured. A delegate class used as an intermediary between an event source and event
receiver is called an event handler.

! In the .NET Framework, a delegate is a class that can hold a reference to a method. Unlike
other classes, a delegate class has a signature, and it can hold references only to methods
that match its signature. A delegate is thus equivalent to a type-safe function pointer or a
callback. A delegate declaration is sufficient to define a delegate class. The declaration

90 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

provides the signature of the delegate, and the implementation is provided by the Common
Language Runtime.

! Events in C# follow the publish-subscribe design pattern in which a class publishes an event
that it can "raise" and any number of classes can then subscribe to that event. Once the event
is raised, the runtime takes care of notifying each subscriber that the event has occurred. The
method called as a result of an event being raised is defined by a delegate.

! All event delegates are multicast, which means that they can hold references to more than
one event handling method.

The following steps must be taken in order to create and use C# events:

1. Create or identify a delegate. If you are defining your own event, you must also ensure that
there is a delegate to use with the event keyword. If the event is predefined, in the .NET
Framework, for example, then consumers of the event need only know the name of the
delegate.

2. Create a class that contains: An event created from the delegate. An event is declared like a
field of delegate type, except that the keyword event precedes the event declaration, following
the modifiers. Events usually are declared public, but any accessibility modifier is allowed.

3. Invoking an event: Once a class has declared an event, it can treat that event just like a field
of the indicated delegate type. The field will either be null, if no client has hooked up a
delegate to the event, or else it refers to a delegate that should be called when the event is
invoked. Thus, invoking an event is generally done by first checking for null and then calling
the event. Invoking an event can only be done from within the class that declared the event.
The event keyword promotes encapsulation by ensuring that only the += and -= operations
can be performed on the delegate. Note that in the example below, only the Event class can
invoke the delegate (fire the event) or clear the delegate's invocation list.

4. Hooking up to an event / Use the event: From outside the class that declared it, an event
looks like a field, but access to that field is very restricted. The only things that can be done
are:

! Compose a new delegate onto that field.

! Remove a delegate from a (possibly composite) field.

This is done with the += and -= operators. To begin receiving event invocations, client code
first creates a delegate of the event type that refers to the method that should be invoked
from the event. Then, it composes that delegate onto any other delegates that the event
might be connected to, using +=. When the client code is done receiving event invocations, it
removes its delegate from the event by using operator -=.

The following problem should clarify this further -

Problem discussion:

Data: Amit is appearing for the C# Certification exam

Event: Amit gets a grade (A-C) - A is > 69%, B is 61-69%, C < 60%

Who are affected by this?: Teacher, Friend.

How are they affected?: Teacher is happy when the grade is good (A or B) and upset otherwise.

Amit's friend did not clear the certification examination and he has an opposite reaction to their
teacher's.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 91

C# - CONSOLE APPLICATIONS

Below is a simple program which illustrates Amit's teacher/friend reaction to his grades. Class
Test is listening to all events of type grade. Every time a new grade is received, class Test
triggers an event. Class Event sends a message to a class that is subscribed to the event. If no
class is subscribed, the event is not handled by the program.

using System;
// Step 1
// The Delegate declaration which defines the signature of methods which can be
invoked
public delegate void GradeEvent(string s);

// class which makes the event
class Event {
 // Step 2
 // Note the use of the event keyword
 public event GradeEvent grade; //delegate grade is a member of Event

 // Step 3
 // Invoking the event
 public void TriggerEvent(string s) {
 if (grade != null) // if invocation list is not empty
 grade(s); // fire event
 else
 Console.WriteLine("Event is not registered");
 }
}

class Test {
 public static void CatchEvent(string s) {
 Console.WriteLine("Grade event " + s + " is caught");
 if(s.Equals("A") || s.Equals("B")) {
 Console.WriteLine("The Teacher is happy with " + s);
 Console.WriteLine("The Friend is upset with " + s);
 }
 else
 if(s.Equals("C")) {
 Console.WriteLine("The Teacher is upset with " + s);
 Console.WriteLine("The Friend is happy with " + s);
 }
 else
 Console.WriteLine("Some problem with the result...");
 }

 public static void Main() {
 // Use the event
 Event myEvent = new Event();
 myEvent.grade += new GradeEvent(CatchEvent); //register grade with CatchEvent
 myEvent.TriggerEvent("A");
 myEvent.TriggerEvent("B");
 myEvent.TriggerEvent("D");
 myEvent.grade -= new GradeEvent(CatchEvent); //quit registration
 }
}

92 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

.NET Framework Guidelines

Although the C# language allows events to use any delegate type, the .NET Frameworks has
some stricter guidelines on the delegate types that should be used for events. If you intend for
your component to be used with the .NET Frameworks, you probably will want to follow these
guidelines.

The .NET Frameworks guidelines indicate that the delegate type used for an event should take
two parameters, an "object source" parameter indicating the source of the event, and an "e"
parameter that encapsulates any additional information (data) about the event. The type of the
"e" parameter should derive from the EventArgs class. For events that do not use any additional
information, the .NET Frameworks has already defined an appropriate delegate type:
EventHandler. EventHandler which is a subclass of MulticastDelegate has a constructor and an
Invoke method. When you create an EventHandler delegate, you identify the method that will
response to the specified event. To associate the event with your event-handling method, add an
instance of the delegate to the event. The event-handling method is called whenever the event
occurs, unless you remove the delegate priorly.

4.8 Reflection
One very powerful feature of .NET is that it allows you to write code to access an application's
metadata through a process known as reflection. Thus, reflection is the ability to discover type
information at run time.

The System.Reflection namespace contains about 36 classes. Some of the important ones are:
Assembly, Module, MethodInfo, FieldInfo, PropertyInfo, EventInfo.

In our first example, we will use the System.Type abstract class. This class provides methods for
obtaining information about a type declaration, such as the constructors, methods, fields,
properties, and events of a class, as well as the module and the assembly in which the class is
deployed.

The program when executed, displays Int32 - the object Type. We use the GetType() method
which returns a Type object that represents the type of an instance. The Name property gets the
name of this member.

using System;
class Example1 {
 static void Main() {
 int i = 6;
 Type t = i.GetType();
 Console.WriteLine(t.Name); // output is Int32
 }
}

The System.Type class is the primary means by which to access metadata, and it acts as a
gateway to the Reflection API.

In the next example, we create a Type object from a type name. The GetType(string) method
gets the Type with the specified name, performing a case-sensitive search. This method searches
in the calling object's assembly, then in the System assembly.

using System;
class Example2 {
 static void Main() {
 Type t = Type.GetType("System.Int32");
 Console.WriteLine(t.Name); // Output is Int32
 }

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 93

C# - CONSOLE APPLICATIONS

}

The System.Type class has about 47 properties, which help us in querying a Type regarding
almost any of its attributes. The example below, uses some of these properties.

using System;
public class SomeClass {
}
class Query {
 public static void QueryType(string typeName) {
 try {
 Type type = Type.GetType(typeName);
 Console.WriteLine("Type name: {0}", type.FullName);
 Console.WriteLine("\tHasElementType = {0}", type.HasElementType);
 Console.WriteLine("\tIsAbstract = {0}", type.IsAbstract);
 Console.WriteLine("\tIsArray = {0}", type.IsArray);
 Console.WriteLine("\tIsByRef = {0}", type.IsByRef);
 Console.WriteLine("\tIsClass = {0}", type.IsClass);
 Console.WriteLine("\tIsCOMObject = {0}", type.IsCOMObject);
 Console.WriteLine("\tIsEnum = {0}", type.IsEnum);
 Console.WriteLine("\tIsImport = {0}", type.IsImport);
 Console.WriteLine("\tIsInterface = {0}", type.IsInterface);
 Console.WriteLine("\tIsLayoutSequential = {0}", type.IsLayoutSequential);
 Console.WriteLine("\tIsMarshalByRef = {0}", type.IsMarshalByRef);
 Console.WriteLine("\tIsNestedAssembly = {0}", type.IsNestedAssembly);
 Console.WriteLine("\tIsNestedFamANDAssem = {0}", type.IsNestedFamANDAssem);
 Console.WriteLine("\tIsNestedFamily = {0}", type.IsNestedFamily);
 Console.WriteLine("\tIsNestedFamORAssem = {0}", type.IsNestedFamORAssem);
 Console.WriteLine("\tIsNestedPrivate = {0}", type.IsNestedPrivate);
 Console.WriteLine("\tIsNestedPublic = {0}", type.IsNestedPublic);
 Console.WriteLine("\tIsNotPublic = {0}", type.IsNotPublic);
 Console.WriteLine("\tIsPointer = {0}", type.IsPointer);
 Console.WriteLine("\tIsPrimitive = {0}", type.IsPrimitive);
 Console.WriteLine("\tIsPublic = {0}", type.IsPublic);
 Console.WriteLine("\tIsSealed = {0}", type.IsSealed);
 Console.WriteLine("\tIsSerializable = {0}", type.IsSerializable);
 Console.WriteLine("\tIsServicedComponent = {0}", type.IsServicedComponent);
 Console.WriteLine("\tIsUnicodeClass = {0}", type.IsUnicodeClass);
 Console.WriteLine("\tIsValueType = {0}", type.IsValueType);
 } catch(System.NullReferenceException) {
 Console.WriteLine("{0} is not a valid type", typeName);
 }
 }
 static void Main() {
 QueryType("SomeClass");
 }
}

4.9 Assetions
Assertions often catch bugs introduced by faulty design/logic, incorrect assumptions, integration,
and code maintenance.

Assertions are not supported in Java.

The System.Diagnostics namespace (assembly system.dll) provides classes that allow you to
debug your application and to trace the execution of your code.

94 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

System.Diagnostics also provides classes that allow you to start system processes, read and write
to event logs, and monitor system performance using performance counters.

The Debug class (subclass of Object) provides a set of methods and properties that help you
debug your code.

To enable debugging in C#, add the /d:DEBUG flag to the compiler command line when you
compile your code.

By using methods in the Debug class to print debugging information and check your logic with
assertions, you can make your code more robust without impacting your shipping product's
performance and code size.

The Assert() method checks for a condition, and displays a message if the condition is false.

The Debug.Assert Method (Boolean, String1, String2)

checks for a condition, and displays both the specified messages if the condition is false; where
Boolean is a condition which, if false, causes the messages to be displayed, String1 is a message
to display and String2 is a detailed message to display.

Typically, Assert is used to identify logic errors during program development.

The default behavior is to display a message box when the application is running in a user
interface mode, and to output the message to the default trace output.

The Debug.Assert Method (Boolean)

checks for a condition, and outputs the callstack if the condition is false, where a condition which,
if false, causes a message to be displayed.

Assert outputs the callstack with file and line numbers for each line in the callstack.

Program ConfigFile.cs

// csc /r:System.dll /d:DEBUG ConfigFile.cs
using System.Diagnostics;
class ConfigFile {
 bool isFileOpen;
 public void Open(string strFile) {
 // Pre-conditions
 Debug.Assert(!isFileOpen, "Config file already open.",
 "You can only call Open() once.");
 Debug.Assert(strFile.Length > 0);
 isFileOpen = true;
 // ...
 }
 public static void Main(string[] args) {
 ConfigFile file = new ConfigFile();
 file.Open("PuneCsharp.xml");
 file.Open("PuneCsharp.xml"); // Cause an assertion!
 }
}

4.10 MultiThreading – An Introduction
(An extract from the book 'Inside C#' by Tom Archer)

Multithreading allows an application to divide tasks such that they work independently of each
other to make the most efficient use of the processor and the user's time.

A thread is a unit of processing, and multitasking is the simultaneous execution of multiple
threads. Multitasking comes in two flavors: cooperative and preemptive. However, Microsoft

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 95

C# - CONSOLE APPLICATIONS

Windows NT and, later, Windows 95, Windows 98, and Windows 2000 support preemptive
multitasking. With preemptive multitasking, the processor is responsible for giving each thread a
certain amount of time in which to execute - a timeslice. The processor then switches among the
different threads, giving each its timeslice, and the programmer doesn't have to worry about how
and when to relinquish control so that other threads can run. .NET will only work on preemptive
multitasking operating systems.

By the way, even with preemptive multitasking, if you're running on a single processor machine,
you don't really have multiple threads executing at the same time. Because the processor is
switching between processes at intervals that number in the milliseconds, it just "feels" that way.
If you want to run true multiple threads concurrently, you'll need to develop and run your code on
a machine with multiple processors.

Context Switching:

Context switching is integral to threading. The processor uses a hardware timer to determine
when a timeslice has ended for a given thread. When the hardware timer signals the interrupt,
the processor saves all registers for the current thread onto the stack. Then the processor moves
those same registers from the stack into a data structure called a CONTEXT structure. When the
processor wants to switch back to a previously executing thread, it reverses this procedure and
restores the registers from the CONTEXT structure associated with the thread. This entire
procedure is called context switching.

A Multithreaded Application in C#:

// SimpleThreadApp.cs
using System;
using System.Threading;
class SimpleThreadApp {
 public static void WorkerThreadMethod() {
 Console.WriteLine("Worker thread started");
 }
 public static void Main() {
 ThreadStart worker = new ThreadStart(WorkerThreadMethod);
 Console.WriteLine("Main - Creating worker thread");
 Thread t = new Thread(worker);
 t.Start();
 Console.WriteLine("Main - Have requested the start of worker thread");
 }
}

The ouput of the program is:

Main - Creating worker thread

Main - Have requested the start of worker thread

Worker thread started

If you compile and execute this application, you'll see that the message from the Main method
prints before the message from the worker thread, proving that the worker thread is indeed
working asynchronously. Let's dissect what's going on here.

The System.Threading namespace contains the different classes necessary for threading in the
.NET environment.

96 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

Now take a look at the first line of the Main method:

 ThreadStart WorkerThreadMethod = new ThreadStart(WorkerThreadMethod);

Any time you see the following form, you can be sure that x is a delegate or a definition of a
method signature:

 x varName = new x (methodName);

Delegates, basically serve the same purpose as function pointers in C++. However, delegates are
type-safe, secure managed objects. This means that the runtime guarantees that a delegate
points to a valid method, which further means that you get all the benefits of function pointers
without any of the associated dangers, such as an invalid address or a delegate corrupting the
memory of other objects.

So, we know that ThreadStart is a delegate. But it's not just any delegate. Specifically, it's the
delegate that must be used when creating a new thread, and it's used to specify the method that
you want called as your thread method. From there, I instantiate a Thread object where the
constructor takes as its only argument a ThreadStart delegate, like:

 Thread t = new Thread(worker);

After that, I call my Thread object's Start method, which results in a call to the
WorkerThreadMethod. That's it!

4.11 Assignment
Use a generic, higher level IAccount interface and an abstract class BankAccount to collect all
features common to all bank accounts. The BankAccount class has account number and balance
as instance variables. It has the methods for deposit and withdrawal. The SavingsAccount and
BonusSaverAccount are both savings accounts through which you can make deposits and
withdrawals. However, the BonusSaverAccount is designed with incentives to encourage faster
savings accumulation. Both types of accounts earn interest, but the BonusSaverAccount earns
more. Furthermore, there is a financial penalty every time a withdrawal is made from a
BonusSaverAccount.

The SavingsAccount and CurrentAccount classes are derived from BankAccount and
BonusSaverAccount is derived from SavingsAccount.

The CurrentAccount has an overridden withdrawal method that makes use of overdraft protection.

// Assignment.cs
namespace BankSystem {
using System;
public interface IAccount {
 // Two abstract methods:
 void deposit(double amount);
 bool withdrawal(double amount);
}
public abstract class BankAccount : IAccount {
 // Fields:
 private int account;
 private double balance;
 // Constructor:
 public BankAccount(int accountNum, double initialBal) {
 account = accountNum;
 balance = initialBal;
 }
 // Property implementation:
 public int Account {

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 97

C# - CONSOLE APPLICATIONS

 get {
 return account;
 }
 set {
 account = value;
 }
 }
 public double Balance {
 get {
 return balance;
 }
 set {
 balance = value;
 }
 }
 public void deposit(double amount) {
 balance += amount;
 Console.WriteLine("Deposit into account " + account);
 Console.WriteLine("Amount: " + amount);
 Console.WriteLine("New Balance: " + balance);
 }
 public virtual bool withdrawal(double amount) {
 bool result = false;
 Console.WriteLine("Withdrawal from Account " + account);
 Console.WriteLine("Amount: " + amount);
 if (amount > balance)
 Console.WriteLine("Insufficient funds");
 else {
 balance -= amount;
 Console.WriteLine("New Balance: " + balance);
 result = true;
 }
 return result;
 }
}
class SavingsAccount : BankAccount {
 protected double rate;
 public SavingsAccount (int accountNum, double initialBal,
 double interestRate) : base(accountNum, initialBal) {
 rate = interestRate;
 }
 public virtual void addInterest() {
 // using the Property names: Account and Balance
 Balance += Balance * rate;
 Console.WriteLine("Interest added to account: " + Account);
 Console.WriteLine("New balance: " + Balance);
 }
}
class BonusSaverAccount : SavingsAccount {
 private const int PENALTY = 25;
 private const double BONUSRATE = 0.02;
 public BonusSaverAccount (int accountNum, double initialBal,
 double interestRate)
 : base(accountNum, initialBal, interestRate){
 }
 public override bool withdrawal(double amount) {
 Console.WriteLine("Penalty incurred: " + PENALTY);

98 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

 return base.withdrawal(amount+PENALTY);
 }
 public override void addInterest() {
 Balance += Balance * (rate + BONUSRATE);
 Console.WriteLine("Interest added to account: " + Account);
 Console.WriteLine("New balance: " + Balance);
 }
}
class CurrentAccount : BankAccount {
 private SavingsAccount overdraft;
 public CurrentAccount(int accountNum, double initialBal,

 SavingsAccount protection) : base(accountNum, initialBal){
overdraft = protection;

 }
 public override bool withdrawal(double amount) {
 bool result = false;
 if (! base.withdrawal(amount)) {
 Console.WriteLine("Using overdraft...");
 if (! overdraft.withdrawal(amount - Balance))
 Console.WriteLine("Overdraft source insufficient...");
 else {
 Balance = 0;
 Console.WriteLine("New Balance on account " + Account + ": " + Balance);
 result = true;
 }
 }
 return result;
 }
}
class Assignment {
 public static void Main(String[] args) {
 SavingsAccount savings =
 new SavingsAccount(101, 10000.00, 0.04);
 BonusSaverAccount bigSavings =
 new BonusSaverAccount(201, 10000.00, 0.02);
 CurrentAccount checking =
 new CurrentAccount(301, 500.00, savings);

 savings.deposit(1000.00);
 bigSavings.deposit(1000.00);
 savings.withdrawal(500.00);
 bigSavings.withdrawal(500.00);
 checking.withdrawal(501.00);
 }
}
}

4.12 Summary of Key Concepts
• An abstract class indicates that the class is incomplete and intended only to be a base class

of other classes. An abstract class cannot be instantiated and cannot be sealed.

• The sealed modifier (similar to final in Java) is used to prevent derivation from a class. The
sealed modifier cannot be used on methods.

• The direct base class of a class type must be at least as accessible as the class type itself.

• Internal members are accessible only within files in the same assembly.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 99

C# - CONSOLE APPLICATIONS

• Constructors and destructors must have the same name as the immediately enclosing class.
All other members must have names that differ from the name of the immediately enclosing
class.

• If you attempt to prefix a constructor with a type, the compiler will emit an error stating that
you cannot define members with the same names as the enclosing type.

• A constructor initializer of the form base(.) enables the current class's base class constructor—
that is, the specific constructor implied by the form of the constructor called—to be called.

• An initializer taking the form this(.) enables the current class to call another constructor
defined within itself. This is useful when you have overloaded multiple constructors and want
to make sure that a default constructor is always called.

• Constructors are not inherited.

• It's advisable to write a default constructor for every class you write.

• Constructors are usually public, but can also be private or protected.

• Static constructors implement the actions required to initialize a class i.e. the constructor is
called when the class is loaded.

• Static constructors are not inherited.

• Static constructors are invoked automatically, and cannot be invoked explicitly. The exact
timing and ordering of static constructor execution is not defined, though several guarantees
are provided:

1. The static constructor for a class is executed before any instance of the class is created.

2. The static constructor for a class is executed before any static member of the class is
referenced.

3. The static constructor for a class is executed before the static constructor of any of its
derived classes are executed.

4. The static constructor for a class never executes more than once.

5. The static constructor cannot have parameters.

6. There’s no such thing as a static destructor.

• Destructors are invoked automatically, and cannot be invoked explicitly. The name of a class
destructor is the class name preceded by a tilde (~). They are always public and have no
return value. They do not take any arguments, so there can only ever be one for a class.

• A derived class can hide inherited members by declaring new members with the same name
or signature. Note however that hiding an inherited member does not remove the member—it
merely makes the member inaccessible in the derived class.

• The base keyword is in many ways the equivalent of Java’s super keyword.

• Use the new modifier to explicitly hide a member inherited from a base class.

• A derived class can be used in place of its base class.

• The as keyword can be used instead of a cast. The advantage over a cast is that if the cast is
invalid, you don't have to worry about an exception being thrown. What will happen instead is
that the result will be null.

• When a class-member-declaration does not include any access modifiers, the declaration
defaults to private declared accessibility.

100 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 4 Class and Object

• The access modifiers are associated with members or types (classes etc.) and are not allowed
on namespaces.

• A virtual method is one where the decision on exactly which method to call is delayed until
run-time, allowing the dynamic type of the reference to be used. You declare a method as
virtual by using the virtual modifier in the base class.

• When you override a virtual method in a derived class, you can use the override keyword to
signal that you are overriding a virtual method.

• Remember that the virtual keyword must be used on the base class's method, and the
override keyword is used on the derived class's implementation of the method.

• The interface keyword declares a reference type that has abstract members. Interfaces can
contain methods, properties, indexers, and events as members. They can’t contain constants,
fields (private data members), constructors and destructors or any type of static member. All
the members of an interface are public by definition, and the compiler will give you an error if
you try to specify any other modifiers on interface members. The static and public modifiers
are not permitted on interface methods.

• Structs are value types rather than reference types, and inheritance is not supported for
structs.

• An enum type declaration defines a type name for a related group of symbolic constants
(named integer constants). Each of the named constants has a value, which by default starts
at zero and increases by one for each succeeding member. You can give explicit values to any
or all of the constants; any that you don’t specify get a value one more than the proceeding
constant. The default type of the constants is int.

• The difference between using get/set methods and properties is that to a user, using a
property looks like they are getting direct access to the data, whereas in fact the compiler is
mapping the call onto the get/set methods.

• In a property set accessor, the new value for the property is given in an implicit value
parameter (the value represents the value passed in from the user).

• You can omit either the set or get clause in case of a property.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 101

C# - CONSOLE APPLICATIONS

5. Using .NET Base Classes
Microsoft has supplied a large number of base classes as part of the .NET framework. The base
classes are accessible from C#, VB, C++ or any other .NET compliant language.

5.1 The WinCV Tool
WinCV is a class viewer tool, which can be used to examine the classes available in shared
assemblies – including all the base classes. For each class, it lists the methods, properties, events
and fields using a C# like syntax.

At the command prompt type wincv. You then type in a search string that is contained in the
class you are looking for in the Searching For box. WinCv will then display a list of classes that
contain the string in question in their names. Scan through the names to find the one that looks
most suitable. The definition of the selected class is then displayed in the right hand pane. The
left hand pane also indicates the namespace the class is contained in – you’ll need this in order to
be able to use that class in your C# code. The right hand pane of WinCV tells us which assembly
the class is defined in. This information is useful to indicate if we need to link in any assemblies
when we compile, in order to have access to that class.

5.2 StringBuilder class
This class is used to represent mutable strings. It is convenient for situations in which it is
desirable to modify a string, perhaps by removing, replacing, or inserting characters, without
creating a new string subsequent to each modification. It is used in conjunction with the String
class to carry out modifications upon strings. The methods contained within this class do not
return a new StringBuilder object unless specified otherwise. This class is defined in the
namespace System.Text. It starts at a predefined size (16 characters by default) and grows
dynamically as more string data is added.

using System;
using System.Text;
public class SBTest {
 public string SqrtIntFaster(int i) {
 StringBuilder buf = new StringBuilder(50);
 buf.Append("sqrt(").Append(i).Append(')');
 buf.Append(" = ").Append(Math.Sqrt(i));
 return buf.ToString();
 }
 static void Main() {
 SBTest sb = new SBTest();
 Console.WriteLine(sb.SqrtIntFaster(25));
 }
}
In the above program SBTest.cs, the StringBuilder constructor has the suggested starting size of
50. This size can increase as more characters are added. The Append() method appends a typed
object to the end of the current StringBuilder. The ToString() method is overloaded and it
converts a StringBuilder to a String. We have also used Sqrt() method of the Math class.

102 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 5 Using .NET Base Classes

5.3 File and Folder operations
The .NET base classes include a number of classes that provide a rich set of functionality to
access the file system, to read and write to files, to move or copy files around, or to explore
folders to check what files are there. These classes are contained in the System.IO namespace.

5.3.1 Finding out information about a File
The program IBF.cs will demonstrate how to get information about a file, using some of the
properties of the File class.

using System;
using System.IO;
public class IBF {
 public static void Main(String[] args) {
 File f = new File(@"C:\WINDOWS\BOOTLOG.TXT");
 Console.WriteLine("Connected to file..." + f.Name);
 Console.WriteLine("In Folder..........." + f.Directory);
 Console.WriteLine("Full Path..........." + f.FullName);
 Console.WriteLine("Is Directory........" + f.IsDirectory.ToString());
 Console.WriteLine("Is File............." + f.IsFile.ToString());
 Console.WriteLine("Last Write Time....." + f.LastWriteTime.ToString());
 Console.WriteLine("Size in bytes......." + f.Length);
 }
}
In general you can use a File object to connect to either a file or a folder, although if you
connect to a folder then attempting to access those properties that don’t make sense for a folder
(such as Length or LastWriteTime) will raise an exception.

5.3.2 Listing Files in a Folder
To explore the contents of a folder, we need another base class – the Directory class, also in the
System.IO namespace. Note that the .NET base classes generally refer to folders as directories in
class and method names.

The example FIF.cs connects to the folder H:\pune-csharp and separately lists the files and
folders in it.

using System;
using System.IO;
public class FIF {
 public static void Main(String[] args) {
 Directory d1 = new Directory(@"H:\pune-csharp");
 Console.WriteLine("Connected to folder..." + d1.Name);
 Console.WriteLine("Full Path............." + d1.FullName);
 Console.WriteLine("Is Directory.........." + d1.IsDirectory.ToString());
 Console.WriteLine("Is File..............." + d1.IsFile.ToString());
 Console.WriteLine("Files contained in this folder:");
 File[] childfiles = d1.GetFiles();
 foreach (File childfile in childfiles)
 Console.WriteLine(childfile.Name);
 Console.WriteLine("Subfolders contained in this folder:");
 Directory[] childfolders = d1.GetDirectories();
 foreach (Directory childfolder in childfolders)
 Console.WriteLine(childfolder.Name);
 }
}

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 103

C# - CONSOLE APPLICATIONS

5.3.3 Copying and Deleting Files
We start off by binding to the H:\pune-csharp folder, and we create both a new empty file and a
new empty subfolder there, as in example CFF.cs:

using System;
using System.IO;
public class CFF {
 public static void Main(String[] args) {
 Directory d1 = new Directory(@"H:\pune-csharp");
 d1.CreateSubdirectory("Talim");
 d1.CreateFile("Satish");
 }
}

Next, we bind to one of the files in the H:\pune-csharp folder, rename it and copy it, as in
example RC.cs:

using System;
using System.IO;
public class RC {
 public static void Main(String[] args) {
 File f1 = new File(@"H:\pune-csharp\Satish");
 f1.CopyTo(@"H:\pune-csharp\Talim\NewSatish");
 }
}

Next we delete the file NewSatish and the folder Talim, as in the example DFF.cs:

using System;
using System.IO;
public class DFF {
 public static void Main(String[] args) {
 File f1 = new File(@"H:\pune-csharp\Satish");
 f1.Delete();
 Directory d1 = new Directory(@"H:\pune-csharp\Talim");
 d1.Delete(true);
 }
}
Here Delete(true) is used to remove directories, subdirectories, and contents; otherwise false.

5.3.4 Reading Text Files
The available classes are all derived from the class System.IO.Stream, which can represent any
stream. To read text files we use the class StreamReader. The example RTF.cs demonstrates this.

using System;
using System.IO;
public class RTF {
 public static void Main(String[] args) {
 File f1 = new File(@"H:\CSHARPTEMP\Hello.cs");
 StreamReader sr = f1.OpenText();
 // continue reading until end of file
 string sLine;
 while ((sLine = sr.ReadLine()) != null)
 Console.WriteLine(sLine);
 sr.Close();
 }

104 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 5 Using .NET Base Classes

}

5.3.5 Writing Text Files
For writing text files we use the StreamWriter class. The example WTF.cs explains this:

using System;
using System.IO;
public class WTF {
 public static void Main(String[] args) {
 StreamWriter sw = new StreamWriter(@"H:\CSHARPTEMP\TEMP.cs", false);
 sw.WriteLine("How do you find the C# Workshop?");
 sw.WriteLine("We now write some numbers and bool...");
 sw.WriteLine(6);
 sw.WriteLine(65.34);
 sw.WriteLine(true);
 sw.Close();
 }
}
The StreamWriter constructor takes two parameters: the full name of the file and a boolean that
indicates whether data should be appended to the file. If this is false then the contents of the file
will be overwritten by the StreamWriter. In either case, the file will be opened if it already exists
or created if it does not.

5.3.6 Reading Binary Files
Here we use either the Stream or FileStream class. The program RBFS.cs demonstrates how to
use the Stream class to read data. It opens a file and reads it, a byte at a time, each time
displaying the numeric value of the byte read.

using System;
using System.IO;
public class RBFS {
 public static void Main(String[] args) {
 File f1 = new File(@"H:\CSHARPTEMP\Hello.cs");
 Stream s = f1.OpenRead();
 int iNext;
 while ((iNext = s.ReadByte()) != -1)
 Console.WriteLine(iNext.ToString());
 s.Close();
 }
}

5.3.7 Writing Binary Files
The program WBFFS.cs writes out a short text file that contains the letters FGHIJK followed by a
carriage return-line feed combination.

using System;
using System.IO;
public class WBFFS {
 public static void Main(String[] args) {
 byte[] bytes = {70, 71, 72, 73, 74, 75, 13, 10};
 FileStream fs = new FileStream(@"H:\CSHARPTEMP\WBFFS.txt",
 FileMode.OpenOrCreate, FileAccess.Write);
 foreach (byte bNext in bytes)
 fs.WriteByte(bNext);
 fs.Close();
 }
}

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 105

C# - CONSOLE APPLICATIONS

The constructor we use takes three parameters: the full pathname of the file, the mode we are
using to open it and the access required. The mode and access are enumerated values
respectively taken from two further classes in the System.IO namespace: FileMode and
FileAccess. The possible values for mode is Append, Create, CreateNew, Open,
OpenOrCreate and Truncate. For the access, they are Read, ReadWrite and Write.

5.3.8 Reading/Writing to log files
The abstract base class Stream supports reading and writing bytes. All classes that represent
streams inherit from the Stream class. The Stream class and its derived classes provide a generic
view of data sources and repositories, isolating the programmer from the specific details of the
operating system and underlying devices.

Streams involve these fundamental operations:

• Streams can be read from. Reading is the transfer of data from a stream into a data structure,
such as an array of bytes.

• Streams can be written to. Writing is the transfer of data from a data structure into a stream.

• Streams can support seeking. Seeking is the querying and modifying of the current position
within a stream.

Depending on the underlying data source or repository, streams might support only some of
these capabilities.

I/O Classes Derived from System.Object - File provides static methods for the creation, copying,
deletion, moving, and opening of files, and aids in the creation of FileStream objects. File are
sealed classes. You can create new instances of these classes, but they can have no derived
classes.

System.IO.TextReader and Its Derived Classes - TextReader is the abstract base class for
StreamReader objects. While the implementations of the abstract Stream class are designed for
byte input and output, the implementations of TextReader are designed for Unicode character
output. StreamReader reads characters from Streams, using Encoding to convert characters to
and from bytes. StreamReader has a constructor that attempts to ascertain what the correct
Encoding for a given Stream is, based on the presence of an Encoding-specific preamble, such as
a byte order mark.

System.IO.TextWriter and Its Derived Classes - TextWriter is the abstract base class for
StreamWriter objects. While the implementations of the abstract Stream class are designed for
byte input and output, the implementations of TextWriter are designed for Unicode character
input. StreamWriter writes characters to Streams, using Encoding to convert characters to bytes.

Namespace: System.IO and Assembly: Mscorlib (in Mscorlib.dll)

The following code example opens the log.txt file for input, or creates a file if it does not already
exist, and appends information to the end of the file. The contents of the file are then written to
standard output for display.

The static AppendText() method of File class creates a StreamWriter that appends text to a file on
the specified path, or creates the file if it does not already exist. The Write() method of
StreamWriter is overloaded, overridden and here writes a string to the stream. The WriteLine()
method inherited from TextWriter is overloaded and writes some data as specified by the
overloaded parameters, followed by a line terminator. The Flush() method is overridden and
clears all buffers for the current writer and causes any buffered data to be written to the
underlying stream. The Close() method is overridden and closes the current StreamWriter and the
underlying stream.

106 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 5 Using .NET Base Classes

The static OpenText() method of File class creates a StreamReader that reads from an existing
text file having the specified path. The ReadLine() method reads a line of characters from the
current stream and returns the data as a string. The return value is the next line from the input
stream, or a null reference if the end of the input stream is reached. The Close() method of
StreamReader class closes the StreamReader and releases any system resources associated with
the reader.

The DateTime structure represents an instant in time, typically expressed as a date and time of
day. The DateTime value type represents dates and times with values ranging from 12:00:00 AM,
1/1/0001 CE (Common Era) to 11:59:59 PM, 12/31/9999 CE. Time values are measured in 100-
nanosecond units called "ticks", and a particular date is the number of ticks since 12:00 AM
January 1, 1 CE in the GregorianCalendar calendar. For example, a ticks value of
31241376000000000L represents the date, Friday, January 01, 0100 12:00:00 AM. A DateTime
value is always expressed in the context of an explicit or default calendar. The DateTime and
TimeSpan value types differ in that a DateTime represents and instant in time whereas a
TimeSpan represents a time interval. This means, for example, that you can subtract one
instance of DateTime from another to obtain the time interval between them. Or you could add a
positive TimeSpan to the current DateTime to calculate a future date. Time values can be added
to, or subtracted from, an instance of DateTime. Time values can be negative or positive, and
expressed in units such as ticks, seconds, or instances of TimeSpan. Methods and properties in
this value type take into account details such as leap years and the number of days in a month.

Descriptions of time values in this type are often expressed using the coordinated universal time
(UTC) standard, which was previously known as Greenwich Mean Time (GMT). Calculations and
comparisons of DateTime instances are only meaningful when the instances are created in the
same time zone. For that reason, it is assumed that the developer has some external mechanism,
such as an explicit variable or policy, to know in which time zone a DateTime instance was
created. Methods and properties in this class always use the local time zone when making
calculations or comparisons. A calculation on an instance of DateTime, such as Add or Subtract,
does not modify the value of the instance. Instead, the calculation returns a new instance of
DateTime whose value is the result of the calculation. The DateTime.Now property gets a
DateTime that is the current local time on this computer. The DateTime.ToLongTimeString()
method converts the time denoted by this instance to its equivalent long time String
representation. The return value is a String containing the name of the day of the week, the
name of the month, the numeric day of the hours, minutes, and seconds equivalent to the time
value of this instance.

using System;
using System.IO;
class LogFileCreate {
 public static void Main(String[] args) {
 StreamWriter w = File.AppendText("log.txt");
 Log ("Test1", w);
 Log ("Test2", w);
 // Close the writer and underlying file.
 w.Close();
 // Open and read the file.
 StreamReader r = File.OpenText("log.txt");
 DumpLog (r);
 }

 public static void Log (String logMessage, TextWriter w) {
 w.Write("\r\nLog Entry : ");
 w.WriteLine("{0} {1}", DateTime.Now.ToLongTimeString(),

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 107

C# - CONSOLE APPLICATIONS

 DateTime.Now.ToLongDateString());
 w.WriteLine(" :");
 w.WriteLine(" :{0}", logMessage);
 w.WriteLine ("-------------------------------");
 // Update the underlying file.
 w.Flush();
 }

 public static void DumpLog (StreamReader r) {
 // While not at the end of the file, read and write lines.
 String line;
 while ((line=r.ReadLine())!=null) {
 Console.WriteLine(line);
 }
 r.Close();
 }
}

5.4 Networking
High level access is performed using a set of types that implement a generic request/response
architecture that is extensible to support new protocols. The implementation of this architecture
in the BCL also includes HTTP-specific extensions to make interacting with web servers easy.

Should the application require lower-level access to the network, types exist to support TCP and
UDP. Finally, in situations where direct transport-level access is required, there are types that
provide raw socket access.

5.4.1 HTTP
The HTTP protocol accounts for a large share of all traffic on the Internet; and the .NET
frameworks provide robust support for the HTTP protocol with the HttpWebRequest and
HttpWebResponse classes. These classes are the WebRequest and WebResponse derived
classes returned whenever a URI beginning with "http" or "https" is presented to the Create
method on the WebRequestFactory. In most cases, the WebRequest and WebResponse
classes will provide all that is necessary to make the request, but when access to HTTP-specific
features is required, the request or response can be typecast to HttpWebRequest or
HttpWebResponse.

The HttpWebRequest and HttpWebResponse classes encapsulate a standard HTTP request
and response transaction, and provide access to common HTTP headers through properties.
These classes also support most of the HTTP 1.1 protocol features, including pipelining, chunking,
authentication, pre-authentication, encryption, proxy support, server certificate validation,
connection management, and HTTP extensions. Custom headers and headers not provided
through properties can be accessed by storing them in the Headers property.

The following sample shows how to access HTTP specific properties, in this case turning off the
HTTP Keep-alive behavior and getting the protocol version number from the Web server:

HttpWebRequest HttpWReq =
(HttpWebRequest)WebRequestFactory.Create("http://www.pune-csharp.com");
// Turn off connection keep-alives
HttpWReq.KeepAlive = false;

HttpWebResponse HttpWResp = (HttpWebResponse)HttpWReq.GetResponse();

// Look at the HTTP protocol version number returned by the server
String ver = HttpWResp.Version.ToString();

108 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 5 Using .NET Base Classes

HttpWebRequest is the default class used by WebRequestFactory and does not need to be
registered before passing an HTTP Uniform Resource Identifier (URI) to the
WebRequestFactory.Create method.

Your application can automatically follow HTTP redirects by setting the AllowAutoRedirect
property true. When the request is redirected, the ResponseURI property of the
HttpWebResponse will contain the actual Web resource that responded to the request. When
AllowAutoRedirect is false, your application must be prepared to handle redirects as an HTTP
protocol error.

Applications receive HTTP protocol errors by catching a WebException with the Status set to
WebStatus.ProtocolError. The Response property contains the WebResponse sent by the
server and it can be examined to find the actual HTTP error encountered.

5.4.2 Generic Request/Response Architecture
This is based on Uniform Resource Indicator (URI) and stream I/O, follows the factory design
pattern, and makes good use of abstract types and interfaces.

A uniform resource locator is a compact representation of a resource available to your application
via the Internet. The URI class defines the properties and methods for handling URIs, including
parsing, comparing, and combining.

The URI class stores only absolute URIs, relative URIs must be expanded with respect to a base
URI so that they are absolute.

The URI is stored as a canonical URI in "escaped" format, with all characters with an ASCII value
greater than 127 replaced with a hexidecimal representation. To put the URI in canonical form,
the URI constructor:

• Converts the URI scheme to lower case.

• Converts the host name to lower case.

• Removes default and empty port numbers.

• Simplyfies the URI by removing superfluous segments such as "/" and "/test" segments.

The URI class can be transformed from an escaped URI reference to a readable URI reference
with the ToString method.

The following example creates an instance of the URI class (derived from Object), which can
further be used to create a WebRequest:

URI siteURI = new URI("http://www.pune-csharp.com/");

The WebRequestFactory class (derived from Object) is a static class that returns an instance of
an object derived from WebRequest. The specific class of object returned is based on the URI
scheme passed to the Create method.

The following example creates a WebRequest instance for an HTTP request. Since the URI
indicates an HTTP request, the actual instance returned is an instance of HttpWebRequest

WebRequest wr = WebRequestFactory.Create(siteURI);

The WebRequest is an abstract class derived from Object. Applications should never create
WebRequest objects directly. The GetResponse method in this class, when overridden in a derived
class, returns the response to an Internet request.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 109

C# - CONSOLE APPLICATIONS

The WebResponse class is an abstract base class (derived from Object) from which protocol-
specific classes are derived. The WebResponse class can be used to access any resource on the
network that is addressable with a URI. Client applications should never create WebResponse
objects directly. The GetResponseStream method in this class, when overridden in a derived
class, returns the Stream object used for reading data from the resource referenced in the
WebRequest object.

The Stream class provides a way to write and read bytes to and from a backing store. This class is
abstract. The StreamReader class implements a TextReader (represents a reader that can read a
sequential stream of characters. This class is abstract) that reads characters from a byte stream
in a particular encoding. The character encoding is set by Encoding class and the default buffer
size is used. The ReadToEnd method of the StreamReader class reads the stream from the current
position to the end of the stream. The Close method closes the StreamReader and releases any
system resources associated with the reader.

The example Snarf.cs below uses the WebRequest and WebResponse classes to retrieve the
contents of a URI and display them to the console.

// Snarf.cs
// Compile with /r:System.Net.dll
// Run Snarf.exe <http-url> to retrieve a web page
using System;
using System.IO;
using System.Net;
using System.Text;
class Snarf {
 public static void Main(string[] args) {
 URI siteURI = new URI(args[0]);
 WebRequest req = WebRequestFactory.Create(siteURI);
 WebResponse res = req.GetResponse();
 Stream s = res.GetResponseStream();
 StreamReader sr = new StreamReader(s, Encoding.ASCII);
 string doc = sr.ReadToEnd();
 Console.WriteLine(doc);
 sr.Close();
 }
}

110 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 5 Using .NET Base Classes

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 111

C# - CONSOLE APPLICATIONS

6. Miscellaneous

6.1 Comparision of C# and Java

6.1.1 Common features are:
! Automatic garbage collection

! Reflection for type information discovery

! Source code is compiled to an intermdeiate bytecode

! Just-in-Time (JIT) compilation compiles bytecode into native code

! Everything must be in a class – no global functions or data

! No multiple inheritance, although you can implement multiple interfaces

! All classes derive from Object

! Security for restricting access to resources

! Exceptions for error handling. There is no throws clause in C#, so effectively, all exceptions
are unchecked. You are not forced to handle any exceptions. This is an unfortunate decision
because the throws clause makes it obvious which exceptions can be thrown by a method and
are part of the method’s contract. Otherwise, you are forced to read the called method’s
source code to know which exceptions can be thrown

! Packages / namespaces for preventing type collision

! Code comments as documentation

! Arrays are bound checked

! GUI, networking and threading support

! No uninitialised variables

! No pointers

! No header files

! Most of the keywords in Java have their C# counterpart. Some keywords are identical, for
example, new, bool, this... Many keywords in Java such as super, import, package have
different names in C# (base, using, namespace)

! The System.Object class in C# has exactly the same methods as the java.lang.Object class in
Java except they are spelled differently. The clone method in Java is called MemberwiseClone
in C#, Java equals is Equals in C#, finalize is Finalize, getClass is GetType, hashCode is
GetHashCode and toString is ToString

! C# specifies access modifiers inline as part of the member definition just like Java does. The
modifiers public and private have the exact same meanings as in Java. However, protected
access in Java is called protected internal in C#, and package access in Java is called internal
in C#. C#’s protected modifier gives access to any subclass, even if it’s not in the same
program. Another difference is that package access is the default for Java while private is the
default for C#

112 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 6 Miscellaneous

6.1.2 Differences

6.1.3 C# improvements over Java
! C# has a simplified syntax for things such as iteration, events, and treating primitive types

like objects, which reduces the amount of code you need to write.

! Reflection, Metadata and Custom Attributes Java and C# compilers both emit metadata with
the class bytecodes to support reflection. Reflection provides the ability to obtain type
information dynamically and makes it possible for the run-time system to automatically
provide implementations for run-time type identification, dynamic method invocation,
serialization, marshaling, and scripting support. Microsoft has extended the notion of
metadata with Custom Attributes, which let ypu markup a class, method, method parameter,
and just about anything else, with extra information that can be accessed at run-time. When
compiled, the attributes are combined with the EXE/DLL itself, so it is not possible for them to
be out of sync with the code. Attributes eliminate the need to maintain separate IDL files and
type libraries.

! Versioning – This feature is much needed and Java developers are fimilar with the problems of
deprecated APIs and incompatible versions of serialized objects. .NET promises to fix these
problems by letting you specify version dependencies between components and by supporting
side-by-side execution of multiple versions of a component.

! Assertions – These are not supported in Java and are used to catch bugs introduced by faulty
design / logic, incorrect assumptions, integration and code maintenance.

! ref and out parameters –

6.2 Web Service

6.2.1 What is a Web Service?
Today, users are confined to doing what a particular page has been structured to do, and viewing
data with whatever user interface was written on the server for that page. If say, a web page was
designed to show a list of students ordered by name, but you from your browser wanted to see
them ordered by marks then you were stuck - unless you had access to the web server to rewrite
the pages served up.

Web Services are a way of overcoming that limitation and allowing software to be written and run
on the client machine, which can use the data provided by the server in whatever way it wishes -
provided of course that appropriate permissions have been set up. The idea is this: instead of
supplying information via HTML, the page makes available a series of function calls. These
function calls might look up information in a database or they might be used to supply
information to the server. The point is that these functions work exactly the same as method calls
in any .NET component - they take parameters and may return a value, except that they are
callable over the internet. The data concerning which function is to be called, the values of any
parameters, and any return value of the function are transmitted across the net via standard
HTTP-based protocols.

6.2.2 Programming Web Services using ASP.NET and C#
You do not need to know anything about the underlying protocols in a web service, in order to
write the web services themselves or the software on the client machine that calls them. ASP.NET
takes care of converting data to and from the protocols for you on both the client and server side.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 113

C# - CONSOLE APPLICATIONS

.NET Web Services expand on the concept of distributed processing to build components whose
methods can be invoked across the internet. These components can be built in any .NET
language, and they communicate using open protocols that are platform-independent. The
application developer can concentrate on adding value to the existing web services, rather than
duplicating the same service for hi/her own application. A single application might draw on and
stitch together the services of hundreds of small web services distributed all over the world.

The plumbing necessary to discover and invoke web services is integrated into the .NET
Framework and provided by classes within the System.Web.Services.WebService namespace.
Creating a web service requires no special programming on your part; you need only write the
implementing code, add the [WebMethod] attribute and let the server do the rest. The
WebMethod attribute informs the compiler that this method is intended to be callable over the
web, not just internally within the program.

Since ASP.NET provides the infrastructure for the inner workings of a Web Service, developers
can focus on implementing the functionality of their specific Web Service. Developing an ASP.NET
Web Service starts with these two steps:

1. Declare the Web Service.

2. Define the Web Service methods that compose the functionality of the Web Service.

6.2.2.1 Declare the Web Service:
When you declare a Web Service in ASP.NET, you place the required WebService directive at the
top of a text file with an .asmx file name extension. Optionally, you can apply a WebService
attribute and/or derive from the WebService class. The class implementing the Web Service,
which does not have to reside in the same file, can optionally derive from the WebService class.
The .asmx is noticed by the ASP.NET runtime, which tell it that this is a web service. It will
therefore compile the file into a .NET class that can respond as a web service, and then call up
this class. As with ASP.NET pages, it will cache the compiled executable so it does not need to be
recompiled for future requests.

a. To declare a Web Service whose implementation resides in the same file:

Add a WebService directive to the top of a file with an .asmx extension, specifying the class
implementing the Web Service and the programming language used in the implementation.

The Class attribute can be set to a class residing in the same file as the WebService directive or
within a separate file. If the class resides in a separate file, it must be placed in the \Bin directory
underneath the Web application where the Web Service resides. The Language attribute can be
set to C#, VB, and JS, which refer to C#, Visual Basic.NET, and JScript.NET, respectively.

The following code example (MyMath.asmx) sets the Language attribute of the WebService
directive to C# and the Class attribute to MyMath, which resides in the same file. Copy the file
MyMath.asmx to the PuneCSServices directory under the home directory of the default web site -
for the default IIS settings, ie. C:\Inetpub\wwwroot\PuneCSServices

The <%WebService... %> tag at the top of the file is needed to inform the ASP.NET runtime that
this page is to be processed as a web service.

<%@ WebService Language="C#" Class="MyMath" %>
using System.Web.Services;
public class MyMath {
 [WebMethod]
 public int Add(int num1, int num2) {
 return num1+num2;
 }
}

114 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 6 Miscellaneous

Invoke this webservice by typing in IE 5.5, http://127.0.0.1/PuneCSServices/MyMath.asmx

b. To declare a Web Service whose implementation resides in an assembly:

Add a WebService directive to the top of a file with an .asmx extension, specifying the class
implementing the Web Service, the assembly containing the implementation, and the
programming language used in the implementation.

The following WebService directive is the only line in a file with an .asmx extension (example
SubtractService.asmx), specifying that the SubtractService class resides in the SubtractService
assembly within the \bin directory of the Web application hosting the Web Service.

<%@ WebService Language="C#" Class="SubtractService,SubtractService" %>

Note: If you do not specify an assembly within the WebService directive, then ASP.NET searches
through the list of assemblies in the \bin directory of the Web application hosting the Web Service
the first time the Web Service is accessed. Therefore, you will get better performance on the first
access by providing the assembly name.

Copy the file SubtractService.asmx to the directory C:\Inetpub\wwwroot\PuneCSServices

Copy the file SubtractService.cs to the directory C:\Inetpub\wwwroot\Bin compile by typing at the
DOS prompt csc /t:library SubtractService.cs to create the file SubtractService.dll

Invoke this webservice by typing in IE 5.5:

http://127.0.0.1/PuneCSServices/SubtractService.asmx

c. Deriving from the WebService Class:

Classes implementing a Web Service can optionally derive from the WebService Class to gain
access to the common ASP.NET objects such as Application, Session, User, and Context. The
Application and Session properties provide access to storing and receiving state across the
lifetime of the Web application or a particular session. The User property contains the identity of
the caller, if authentication is turned on for the Web Service. With the identity, a Web Service can
determine whether the user is authorized to call the Web Service. The Context property provides
access to all HTTP-specific information about the Web Service client's request.

The following code example (MyUtil.asmx) looks up the authenticated user name and returns that
name.

<%@ WebService Language="C#" Class="MyUtil" %>
using System.Web.Services;
public class MyUtil: WebService {
 [WebMethod(Description="Obtains the User Name")]
 public string GetUserName() {
 return User.Identity.Name;
 }
}
Copy this file in the directory C:\Inetpub\wwwroot\PuneCSServices

Invoke this webservice by typing in IE 5.5, http://127.0.0.1/PuneCSServices/MyUtil.asmx

Applying the WebService Attribute:

Applying the optional WebService attribute to a class implementing a Web Service allows the Web
Service developer to set the XML namespace the Web Service is a member of, along with setting
a string to describe the Web Service.

A Web Service uses an XML document in the Web Services Description Language (WSDL), to
describe Web-callable endpoints. Within the WSDL an XML namespace is used to uniquely identify
these endpoints. The default value of this namespace is <http://tempuri.org/>.

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 115

C# - CONSOLE APPLICATIONS

It is highly recommended that this default namespace be modified before the Web Service is
made publicly consumable. This is important because the Web Service needs to be distinguished
from other Web Services that might be using <http://tempuri.org/> (the default namespace).
You can change this as shown in the example MyUtil.asmx below. The line to be added is:

[WebService(Namespace="http://127.0.0.1/PuneCSServices/")]

6.2.2.2 Define the Web Service methods:
Methods of a class implementing a Web Service do not automatically have the ability to be
invoked over the Web, but with ASP.NET it is very simple to add that capability. To add this
capability, apply a WebMethod attribute to public methods of a class implementing a Web Service.
Methods of a Web Service that can be invoked over the Web are called Web Service methods.

To declare a Web Service method:

a. Declare a Web Service, adding the WebService directive. See 1. above.

b. Add public methods to the class implementing the Web Service.

c. Apply the WebMethod attribute to the public methods you want to be callable across the
Internet.

The following code example has two public methods, both of which are Web Service methods.

<%@ WebService Language="C#" Class="MyUtil" %>
using System;
using System.Web.Services;
[WebService(Namespace="http://127.0.0.1/PuneCSServices/")]
public class MyUtil: WebService {
 public string GetUserName() {
 [WebMethod(Description="Obtains the User Name")]
 return User.Identity.Name;
 }
 [WebMethod(Description="return the name of the Web Server hosting the Web
Service")]
 public string GetMachineName() {
 return Server.MachineName;
 }
}

6.2.3 Building ASP.NET Web Services:
Building a simple ASP.NET Web Service is relatively easy and is covered above. However, the true
power of ASP.NET Web Services is realized when you look at the Web Services infrastructure for
ASP.NET Web Services. ASP.NET Web Services are built on top of ASP.NET, which is built on top
of the .NET Framework and the common language runtime, which an ASP.NET Web Service can
take advantage of. For instance, the performance, state management, and authentication
supported by ASP.NET can all be taken advantage of by building Web Services using ASP.NET.

The infrastructure for ASP.NET Web Services is built using industry standards such as SOAP, XML,
and WSDL, and allows clients from other platforms to interoperate with ASP.NET Web Services.
As long as a client can format the SOAP in a format that ASP.NET can handle and send across the
Internet, that client can call an ASP.NET Web Service, regardless of the platform on which the
client resides.

When you build an ASP.NET Web Service, it automatically supports clients using the SOAP, HTTP-
GET, and HTTP-POST protocols to invoke Web Service methods. Since HTTP-GET and HTTP-POST
support passing parameters in named value pairs, the data type support for these two protocols

116 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 6 Miscellaneous

are not as rich as that supported for SOAP. In SOAP, which passes data to and from the Web
Service using XML, you can define complex data types using XSD schemas, supporting a richer
set of data types. Developers building an ASP.NET Web Service do not have to explicitly define
complex data types they expect as parameters or return types as an XSD schema, but rather they
can just build a managed class. ASP.NET Web Services handles converting the class into an XSD
schema to pass it back and forth across the Internet.

6.2.4 Deploying a Web Service:
Deploying a Web Service involves copying the .asmx file and any assemblies used by the Web
Service not a part of the Microsoft .NET Framework to the Web server on which it will reside.

For example, suppose you have a Web Service named PuneCSServices, to deploy the Web
Service you would create a virtual directory on your Web Server and then place the Web Service
.asmx in that directory. The virtual directory should also be an Internet Information Services (IIS)
application, although it is not required. A typical deployment would have the following directory
structure:

\inetpub
 \wwwroot
 \PuneCSServices
 PuneCSServices.disco (optional)
 PuneCSServices.asmx
 \Bin
 Assemblies utilized by your Web Service
 that are not in the Microsoft .NET Framework.

/*

Microsoft SMTP Service uses the Internet-standard Simple Mail Transfer Protocol (SMTP) to
transport and deliver messages based on specifications in Request for Comments (RFC) 821 and
RFC 822. It also includes enhancements that build upon the basic delivery functions of the
protocol. There are options available that give you control over the routing and delivery of
messages, and that provide secure communications.

/*

// Assembly: System.Web (in System.Web.dll)

using System;

using System.Web.Mail;

public class MailClient {

 public static void Main() {

 // Provides properties and methods to construct an email message.

 // The default constructor initializes all fields to their default values.

 MailMessage mail = new MailMessage();

 // From property gets or sets the email address of the sender.

 mail.From = "medunet@vsnl.com";

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 117

C# - CONSOLE APPLICATIONS

 // From property gets or sets the email address of the recipient

 mail.To = "mitalit@vsnl.net";

 // Subject property gets or sets the subject line of the email message.

 mail.Subject = "Test Message";

 // Body property gets or sets the body of the email message.

 mail.Body = "This is the actual message";

 // BodyFormat property gets or sets the content type of the email body.

 // This is one of the MailFormat enumerated values - Html or Text

 mail.BodyFormat = MailFormat.Text;

 // SmtpMail class provides properties and methods to send an email

 // attachment using the SMTP mail service built into Microsoft Windows 2000.

 // Mail is by default queued on a Windows 2000 system, ensuring that

 // the calling program does not block network traffic.

 // Static method Send(MailMessage) sends a mail message using arguments supplied

 // in the MailMessage properties.

 SmtpMail.Send(mail);

 }

}

/*

The MessageBox class displays a message box that can contain text, buttons, and symbols that
inform and instruct the user. The example below shows how you can pop-up a MessageBox. The
overloaded static Show() method is used below. The MessageBoxButtons Enumeration specifies
constants defining which buttons to display on a MessageBox. The MessageBoxIcon Enumeration
specifies constants defining which information to display. This enumeration is used by the
MessageBox class. The description of each member of this enumeration contains a typical
representation of the symbol. The actual graphic displayed is a function of the operating system
constants. In current implementations there are four unique symbols with multiple values
assigned to them.

Assembly: System.Windows.Forms (in System.Windows.Forms.dll)

*/

using System;

118 Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved.

 Chapter 6 Miscellaneous

using System.Windows.Forms;

public class ShowMsgBox {

 static void Main() {

 MessageBox.Show("You must enter a name.", "Name Entry Error",

 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

 }

}

Copyright Satish Talim 2001-2002, Study Notes. All Rights Reserved. 119

	Introduction
	A New Platform?
	System Requirements
	Purpose of these Study Notes
	Who can use these Study Notes?
	Updates to this document
	Recommended Sites on C#
	My Workshops on C#
	Satish Talim?
	Acknowledgements

	C# Program Elements
	Overview of the .NET

	A set of .NET Enterprise Servers (SQL Server 2000, BizTalk 2000) that provide specialised functionality for relational data storage, email, B2B commerce etc.
	C# and Java
	Our first C# Program – Hello, world

	Save the above Hello, world program as Hello.cs and compile as csc Hello.cs and run the program as Hello
	Compiler Options
	Response files
	Compiler Errors
	Managed Module
	ILDASM
	Naming Guidelines
	Namespaces
	Classes
	Methods
	Method Arguments
	Interfaces
	Class members

	Automatic memory management
	Comments
	Blocks
	Separation
	Whitespace
	Keywords (76)
	Constants – const / readonly
	Variables
	Naming constants and variables
	Escape sequences
	Statements and Expressions
	Empty statement

	Types
	Predefined types

	Example ObjClass.cs
	Operators
	checked and unchecked operators

	Operator overloading
	Program Control
	The if statement
	The switch statement
	The while statement
	The do statement
	The for statement
	The foreach statement

	Console I/O
	Console Input
	Console Output

	Array types
	Calling methods – ref / out
	Method Overloading
	Variable Method Parameters - params

	Handling Exceptions
	Namespaces
	Namespaces and Assemblies
	Summary of Key Concepts

	Object Oriented Concepts
	What is an Object?
	The Benefit of Encapsulation
	What are Messages?
	What are Classes?
	What is Inheritance?

	Class and Object
	Class Declaration
	Class modifiers
	Abstract classes
	Sealed classes
	Inner Classes
	Base classes
	Internal class
	Interface implementations

	Class body
	Class members
	Signature
	Constructors
	Calling Base Class Constructors
	Static Constructors
	Destructors
	Inheritance - Single
	Accessing Base Class Members
	The this Reference
	The new modifier
	Casting between Types
	Access modifiers
	Restrictions on Using Accessibility Levels
	Accessibility Domain
	Virtual methods
	Override methods

	Interfaces
	Structs
	Enums
	Properties
	Delegates
	Delegate
	Multicast Delegates:

	Events
	Reflection
	Assetions
	MultiThreading – An Introduction
	Assignment
	Summary of Key Concepts

	Using .NET Base Classes
	The WinCV Tool
	StringBuilder class
	File and Folder operations
	Finding out information about a File
	Listing Files in a Folder
	Copying and Deleting Files
	Reading Text Files
	Writing Text Files
	Reading Binary Files
	Writing Binary Files
	Reading/Writing to log files

	Networking
	HTTP
	Generic Request/Response Architecture

	Miscellaneous
	Comparision of C# and Java
	Common features are:
	Differences
	C# improvements over Java

	Web Service
	What is a Web Service?
	Programming Web Services using ASP.NET and C#
	Declare the Web Service:
	Define the Web Service methods:

	Building ASP.NET Web Services:
	Deploying a Web Service:

