2/ c#20

Practical Guide
for Programmers

_—
'Mflchelde Champi; n

Brian G. Patrick j

-

Rong Zeng
Placed Image

Praise for C# 2.0: Practical Guide for Programmers!

Great book for any C# developer! It describes the basic programming language with EBNF
notation and provides a number of practical programming tips and best practices on
program design that enable you to utilize the C# language features effectively.

— Adarsh Khare, Software Design Engineer, Microsoft

C# 2.0: A Practical Guide provides an amazing breadth of information in a compact and
efficient format, with clear and concise writing and useful code examples. It cuts right to the
core of what you need to know, covering every aspect of the C# language, an introduction
to the .NET API, and an overview of pertinent object-oriented concepts. This book tops my
recommendation list for any developer learning C#.

- David Makofske, Principal Consultant/Architect, Akamai Technologies

This book is essential for programmers who are considering system development using C#.
The two authors have masterfully created a programming guide that is current, complete,
and useful immediately. The writing style is crisp, concise, and engaging. This book is a
valuable addition to a C# programmer’s library.

- Edward L. Lamie, PhD, Director of Educational Services, Express Logic, Inc.

At last, a programming language book that provides complete coverage with a top-down
approach and clear, simple examples! Another welcome feature of this book is that it
is concise, in the tradition of classics such as Kernighan and Ritchie. The new book by
De Champlain and Patrick is the best introduction to C# that I've seen so far.

- Peter Grogono, Professor and Associate Chair of Computer Science, Concordia
University

The book covers the basic and the advanced features of a relatively new and well established
programming language, C#. A truly Object Oriented style is used throughout the book in
a consistent manner. C# and Object Oriented concepts are well illustrated through simple
and concise examples to hold the reader’s attention. A very well-written book.

- Ferhat Khendek, PhD, Research Chair in Telecommunications Software Engineering,
Concordia University

C# 2.0: Practical Guide
for Programmers

The Morgan Kaufmann Practical Guides Series
Series Editor: Michael J. Donahoo

TCP/IP Sockets in C#: Practical Guide for Programmers
David Makofske, Michael J. Donahoo, and Kenneth L. Calvert

Java Cryptography Extensions: Practical Guide for Programmers
Jason Weiss

JSP: Practical Guide for Java Programmers
Robert J. Brunner

JSTL: Practical Guide for JSP Programmers
Sue Spielman

Java: Practical Guide for Programmers
Zbigniew M. Sikora

The Struts Framework: Practical Guide for Java Programmers
Sue Spielman

Multicast Sockets: Practical Guide for Programmers
David Makofske and Kevin Almeroth

TCP/IP Sockets in Java: Practical Guide for Programmers
Kenneth L. Calvert and Michael J. Donahoo

TCP/IP Sockets in C: Practical Guide for Programmers
Michael J. Donahoo and Kenneth L. Calvert

JDBC: Practical Guide for Java Programmers

Gregory D. Speegle

For further information on these books and for a list of forthcoming titles,
please visit our website at http.//www.mkp.com/practical

C# 2.0: Practical Guide
for Programmers

Michel de Champlain

DeepObjectKnowledge

Brian G. Patrick

Trent University

ELSEVI

AMSTERDAM e BOSTON e HEIDELBERG
LONDON e NEW YORK e OXFORD
PARIS e SAN DIEGO e SAN FRANCISCO
SINGAPORE e SYDNEY e TOKYO

Morgan Kaufmann is an imprint of Elsevier

M I<(

MORGAN KAUFMANN PUBLISHERS

Senior Editor Rick Adams

Associate Editor Karyn Johnson
Publishing Services Manager ~ Simon Crump

Project Manager Brandy Lilly

Cover Design Yvo Riezebos Design
Cover Image Photo by Steve Cole, Photodisc Green, Getty Images
Composition Cepha Imaging Pvt. Ltd.
Copyeditor Kolam Inc.

Proofreader Kolam Inc.

Indexer Kolam Inc.

Interior printer Maple Press

Cover printer Phoenix Color

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.
©2005 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim,
the product names appear in initial capital or all capital letters. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior
written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk.
You may also complete your request on-line via the Elsevier homepage (http://elsevier.com) by
selecting “Customer Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted.

ISBN: 0-12-167451-7
For information on all Morgan Kaufmann publications, visit our Web site at www.mkp.com

Printed in the United States of America
0807060504 54321

To Héléne, the air that | breathe
— Michel

With love to my parents, Lionel and Chrissie
— Brian

Contents

Preface xv

1 Introducing C# and .NET 1

1.1
1.2

1.3
1.4

What Is C#? 1

What Is the .NET Framework? 2

1.2.1 The .NET Virtual Machine: Common Language
Runtime 4

1.2.2 The .NET Virtual Code: Intermediate Language

1.2.3 The .NET Assemblies: Applications and/or
Components 4

Project Exercise 5

Syntax Notation 6

2 Classes, Objects, and Namespaces 9

2.1

2.2

2.3

Classes and Objects 10

2.1.1 Declaring Classes 10

2.1.2 Creating Objects 11

Access Modifiers 12

2.2.1 Controlling Access to Classes 12
2.2.2 Controlling Access to Class Members 12
Namespaces 14

2.3.1 Declaring Namespaces 14

2.3.2 Importing Namespaces 16

2.3.3 Controlling the Global Namespace 17
2.3.4 Resolving Namespace Conflicts 18

Contents =

2.4 Compilation Units 19
2.4.1 Presenting a Complete C# Program 19
2.4.2 Declaring Partial Classes 21
2.5 Compilation and Execution 22
2.5.1 Using Assemblies for Separate Compilation 23
2.5.2 Revisiting Access Modifiers 24
2.5.3 Adding XML Documentation 26

3 Class Members and Class Reuse 29

3.1 Fields and Methods 29
3.1.1 Invoking Methods 30
3.1.2 Accessing Fields 32
3.1.3 Declaring Constructors 32
3.1.4 Declaring Destructors 36

3.2 Parameter Passing 37
3.2.1 Passing Arguments by Value 37
3.2.2 Passing Arguments by Reference 38
3.2.3 Passing a Variable Number of Arguments 41
3.2.4 Using the this Reference 42
3.2.5 Overloading Methods 45

3.3 Class Reuse 45
3.3.1 Using Aggregation 46
3.3.2 Using Inheritance 46
3.3.3 Comparing Aggregation and Inheritance 50
3.3.4 Using Protected Methods 51

4 Unified Type System 55
4.1 Reference Types 56
4.2 Value Types 56
4.2.1 Simple Value Types 57
4.2.2 Nullable Types 58
4.2.3 Structure Types 60
4.2.4 Enumeration Types 61
4.3 Literals 63
4.4 Conversions 64
4.5 Boxing and Unboxing 66
4.6 The Object Root Class 67
4.6.1 Calling Virtual Methods 67
4.6.2 Invoking the Object Constructor 69
4.6.3 Using Object Instance Methods 69
4.6.4 Using Object Static Methods 75
4.7 Arrays 76
4.7.1 Creating and Initializing Arrays 77

= Contents X1

4.7.2 Accessing Arrays 78
4.7.3 Using Rectangular and Jagged Arrays 78
4.8 Strings 79
4.8.1 Invoking String Methods 80
4.8.2 Concat, Index0f, and Substring Methods 80
4.8.3 The StringBuilder Class 81

Operators, Assignments, and Expressions 83
5.1 Operator Precedence and Associativity 83
5.2 Assignment Operators 84
5.2.1 Simple Assignment 84
5.2.2 Multiple Assignments 86
5.3 Conditional Operator 86
5.4 Null Coalescing Operator 87
5.5 Conditional Logical Operators 88
5.6 Logical Operators 89
5.6.1 Logical Operators as Conditional Logical Operators 90
5.6.2 Compound Logical Assignment Operators 91
5.7 Equality Operators 92
5.7.1 Simple Value Type Equality 92
5.7.2 Object Reference and Value Equality 93
5.8 Relational Operators 94
5.8.1 Type Testing 95
5.9 Shift Operators 96
5.9.1 Compound Shift Assignment Operators 97
5.10 Arithmetic Operators 97
5.10.1 Multiplicative Operators 97
5.10.2 Additive Operators 98
5.10.3 checked/unchecked Operators 99
5.10.4 Compound Arithmetic Assignment Operators 100
5.11 Unary Operators 101
5.11.1 Prefix and Postfix Operators 102
5.11.2 Explicit Casts 103
5.12 Other Primary Operators 103
5.13 Overloadable Operators 104

Statements and Exceptions 107

6.1 Block Statement 107

6.2 Declaration Statements 108

6.3 Embedded Statements 109
6.3.1 Expression and Empty Statements 109
6.3.2 Selection Statements 110

xii

Contents

6.4

6.3.3 Iteration Statements 112

6.3.4 Jump Statements 114

6.3.5 checked/unchecked Statements 116
6.3.6 lock and using Statements 116
Exceptions and Exception Handling 117
6.4.1 What Is an Exception? 117

6.4.2 Raising and Handling Exceptions 118
6.4.3 Using the throw Statement 119

6.4.4 Using the try-catch Statement 121
6.4.5 An Extended Example 124

7 Advanced Types, Polymorphism, and Accessors 129

7.1

7.2

7.3

7.4

7.5

7.6
7.7
7.8

Delegates and Events 130

7.1.1 Using Delegates for Callbacks 130

7.1.2 Using Delegates for Events 133

7.1.3 Using Delegates for Anonymous Methods 135
7.1.4 Using Delegate Inferences 136

Abstract Classes 136

7.2.1 Declaring Abstract Classes 136

7.2.2 Implementing Abstract Classes 137

7.2.3 Using Abstract Classes 138

Interfaces 138

7.3.1 Declaring Interfaces 139

7.3.2 Implementing Interfaces 140

7.3.3 Using Interface Methods 141

Polymorphism and Virtual Methods 143

7.4.1 Using the Modifiers override and virtual 143
7.4.2 Adding and Removing Polymorphism 145
7.4.3 Using Dynamic Binding 146

Properties 150

7.5.1 Declaring get and set Accessors 150

7.5.2 Declaring Virtual and Abstract Properties 151
7.5.3 Declaring Static Properties 153

7.5.4 Declaring Properties with Accessor Modifiers 154
Indexers 155

Nested Types 157

Other Modifiers 159

8 Collections and Generics 163

8.1

Collections 163
8.1.1 Cloning Collections 165
8.1.2 Using List-Type Collections 165

® Contents

8.1.3 Using Dictionary-Type Collections 173

8.1.4 Using Iterator Blocks and yield Statements 178
8.2 Generics 180

8.2.1 Defining Generics 181

8.2.2 Declaring Generic Objects 183

9 Resource Disposal, Input/Output, and Threads 185

9.1 Resource Disposal 185

9.2 Input/Output 188
9.2.1 Using Binary Streams 188
9.2.2 Using Byte Streams 190
9.2.3 Using Character Streams 191
9.2.4 Reading XML Documents from Streams 192

9.3 Threads 193
9.3.1 Examining the Thread Class and Thread States 193
9.3.2 Creating and Starting Threads 194
9.3.3 Rescheduling and Pausing Threads 195
9.3.4 Suspending, Resuming, and Stopping Threads 196
9.3.5 Joining and Determining Alive Threads 198
9.3.6 Synchronizing Threads 200

10 Reflection and Attributes 211

10.1 Reflection 211
10.1.1 Examining the Reflection Hierarchy 212
10.1.2 Accessing Assemblies 212

10.2 Attributes 215
10.2.1 Using Attributes for Exception Serialization 216
10.2.2 Using Attributes for Conditional Compilation 217
10.2.3 Using Attributes for Obsolete Code 218
10.2.4 Defining User-Defined Attributes 218
10.2.5 Using User-Defined Attributes 220
10.2.6 Extracting Attributes Using Reflection 221

10.3 Where to Go from Here 223

A C# 2.0 Grammar 227

A.1 Lexical Grammar 227
A.1.1 Line Terminators 228
A.1.2 White Space 228
A.1.3 Comments 228
A.1.4 Tokens 228
A.1.5 Unicode Character Escape Sequences 228
A.1.6 Identifiers 228

Xiv Contents =

A.1.7 Keywords 229

A.1.8 Literals 229

A.1.9 Operators and Punctuators 230

A.1.10 Preprocessing Directives 230
A.2 Syntactic Grammar 231

A.2.1 Namespace, Type, and Simple Names 231

A.2.2 Types 231

A.2.3 Variables 232

A.2.4 Expressions 232

A.2.5 Statements 233

A.2.6 Namespaces 235

A.2.7 Classes 235

A.2.8 Structs 237

A.2.9 Arrays 237

A.2.10 Interfaces 237

A.2.11 Enums 238

A.2.12 Delegates 238

A.2.13 Attributes 238
A.3 Generics 238

B Predefined XML Tags for Documentation Comments 241
References 243

Index 245

Preface

Writing a short book on a comprehensive programming language was most definitely a
challenge. But such was our mandate and such is C#.

The C# programming language was first released in 2000 and has quickly established
itself as the language de rigueur for application development at Microsoft Corpora-
tion and other software houses. It is a powerful language based on the paradigm of
object-orientation and fully integrated with the Microsoft .NET Framework. Hence, C# is
architecturally neutral and supported by a vast library of reusable software.

To describe all minutiae of the C# language or to indulge in all facets of the .NET
Framework would require a tome or two. Yet the authors realize that experienced soft-
ware programmers are not looking to plough through extraneous detail but are focused
on extracting the essentials of a language, which allow them to commence development
quickly and confidently. That is our primary objective.

To realize this objective, we followed the ABCs of writing: accuracy, brevity, and
completeness. First and foremost, care has been taken to ensure that the terminology and
the discussion on the syntax and semantics of C# are consistent with the latest language
specifications, namely C# 2.0. For easy reference, those features that are new to C# 2.0 are
identified in the margins.

Second, for the sake of brevity, we strike at the heart of most features of C# with
little digression, historical reflection, or comparative analysis. Although the book is not
intended as a tutorial on object-oriented design, a few tips on good programming practice
are scattered throughout the text and identified in the margins as well.

Finally, all principal features of the C# programming language are covered, from basic
classes to attributes. The numerous examples throughout the text, however, focus on the
most natural and most common applications of these features. It is simply not possible
within the confines of two hundred pages to examine all permutations of C#.

XV

XVi Preface =

This practical guide emerged from the experiences of the first author in teaching,
training, and mentoring professional developers in industry and graduate students at
university on the use of the C# language. Its organization is therefore rooted in several
C# jump-start courses and one-day tutorials with an intended audience of experienced
programmers. Although some background in object-oriented technology is ideal, all
object-oriented features are reviewed in the broader context before they are described
with respect to their implementation in C#.

In short, C# 2.0: Practical Guide for Programmers rests its hat on three hooks:

m Provide a concise yet comprehensive explanation of the basic, advanced, and latest
features of the C# language. Each feature is illustrated with short, uncluttered exam-
ples. To ensure that code is error-free, the large majority of examples have been
automatically and directly extracted from source code that has been verified and
successfully compiled.

m Cover the essentials of the .NET Framework. Modern programming languages like
Java and C# are supported by huge application programming interfaces (APIs) or
frameworks in order to tackle the flexibility and complexity of today’s applications.
Although the focus of this book is on the C# language and not on the .NET Framework,
we would be remiss to omit a basic discussion on the core functionalities of the .NET
libraries. Any greater depth, however, would far exceed our mandate.

m Include a refresher on object-oriented concepts. The C# language is fully object-
oriented, replete with a unified type system that encapsulates the full spectrum of
types, from integers to interfaces. In addition to classes, the concepts of inheritance
and polymorphism are given their share of proportional representation as two of the
three tenets of object-oriented technology.

Organization of the Book

The book is organized into ten concise chapters and two appendices. Chapter 1 introduces
the C# programming language and the .NET Framework. It also outlines a small project that
is used as the basis for the exercises at the end of most chapters. This project is designed
to gradually meld the features of the C# language into a comprehensive solution for a
practical problem.

Unlike in books that present a programming language from the bottom up, Chap-
ters 2, 3, and 4 immediately delve into what we consider the most fundamental, though
higher-level, concepts of C#. Chapter 2 begins our discussion with classes and objects,
the first of the three tenets of object-oriented technology. We demonstrate how classes
are defined as an amalgam of behavior and state, how objects are created, and how access
to classes and to class members is controlled. Namespaces are also described as an impor-
tant aspect of “programming in the large” and how they are used to organize classes into
logical groups, to control name conflicts, and to ease the integration and reuse of other
classes within applications.

m Preface Xvii

A fuller exposé on the basic class members of C# follows in Chapter 3: methods
that define behavior and data members that define state. Constructors, destructors, and
parameter passing by value and by reference are also covered. Chapter 3 concludes with
an important discussion on class reuse and how classes derive, refine, and redefine their
behavior and state via inheritance, the second tenet of object-oriented programming. We
compare inheritance with aggregation (composition) and offer a few guidelines on their
appropriate use.

The unified type system of C# is presented in Chapter 4, showing how value and ref-
erence types are derived from the same root class called Object. All value types, including
nullable types, are fully described, along with a brief introduction to the basic notion of
a reference type. The Object class itself provides an excellent vehicle to introduce poly-
morphism (the third tenet of object-oriented programming), virtual methods, and cloning
using deep and shallow copying. The chapter ends with a presentation of two predefined
but common classes for arrays and strings.

In Chapters 5 and 6, the rudiments of C# expressions and statements are reviewed
with numerous short examples to illustrate their behavior. Expressions are built from arith-
metic, logical, relational, and assignment operators and are largely inspired by the lexicon
of C/C++. Because selection and iterative statements, too, are drawn from C/C++, our pre-
sentation is terse but comprehensive. However, whenever warranted, more time is devoted
to those features, such as exceptions and the exception-handling mechanism of C#, that
bolster its reliability and robustness.

Chapter 7 extends our discussion on the reference types that were first introduced
in Chapter 4. These advanced reference types include delegates, events, abstract classes,
and interfaces. New features such as delegate inferences and anonymous methods are
also covered. In this chapter, we carefully distinguish between the single inheritance of
classes and the multiple implementation of interfaces. Polymorphism, first mentioned with
respect to the Object root class, is illustrated once again with a comprehensive example
based on a hierarchy of counter-classes and interfaces. The two accessors in C#, namely
properties and indexers, are also presented, noting the latest specifications for property
access modifiers.

The last three chapters (8, 9, and 10) shift their focus away from the program-
ming language concepts of C# and examine some of the basic but indispensable fea-
tures of the .NET Framework. Chapter 8 extends the notion of class reuse with a look
at the different types of predefined collections and their constructors and iterators.
Although not associated with the .NET Framework itself, one of the newest features
of C# is generic classes (or templates) and is presented as a natural counterpart to
collections.

Our discussion on resource disposal begun in Chapter 3 is rounded out in
Chapter 9 along with input/output and threads. Input/output is a broad topic and is limited
here to representative I/0O for binary, bytes, and character streams. Threads, on the other
hand, is a challenging topic, and the synchronization mechanisms required to support con-
current programming are carefully explained with several supporting examples. Finally,
Chapter 10 examines the use and collection of metadata using reflection and attributes,
both pre- and user-defined.

XViii Preface =

The first of the two appendices summarizes the grammatical rules of the C# language
using EBNF notation. The second appendix provides an abridged list of the common XML
tags used for the automatic generation of web documentation.

Source Code Availability

The code for most examples and all exercises of each chapter is available and maintained
at the website www.DeepObjectKnowledge.com.

Acknowledgments

Any book goes through a number of incarnations, but none is more important than that
based on the constructive and objective feedback of its reviewers. Much improvement
on the organization and technical content of the book is due to their invaluable input,
and our sincere thanks are extended to Gerald Baugartner (Ohio State University), Eric
Gunnerson (Microsoft Corporation), Keith Hill (Agilent Technologies), Adarsh Khare
(Microsoft Corporation), David Makofske (Akamai Technologies), and Mauro Ottaviani
(Microsoft Corporation). Over the past year, we have also received timely advice and
ongoing encouragement from the kind staff at Morgan Kaufmann and Kolam. We acknowl-
edge their support with a special “tip of the cap” to Rick Adams, Mona Buehler, Karyn
Johnson, and Cara Salvatore.

Finally, we warn all potential authors that writing a book is a wonderful way to
while away the weeks and weekends. Unfortunately, these precious hours are spent apart
from our families, and it is to them that we extend our deepest appreciation for their
understanding, patience, and unconditional love.

We hope in the end that you enjoy the book. We hope that it reads well and provides
a solid introduction to the C# language. Of course, full responsibility for its organization
and content rests with the authors. And with that in mind, we defer to you, our reader, as
our ultimate source for both improvement and encouragement.

Michel de Champlain
mdec@DeepObjectKknowledge.com

Brian G. Patrick
bpatrick@trentu.ca

m Preface Xix

About the Authors

Michel de Champlain is the President and Principal Architect of DeepObjectKnowledge
Inc., a firm that provides industry with mentoring and training support in object tech-
nologies. Michel holds a Ph.D. in Software Engineering from the Ecole Polytechnique de
Montréal and has held university appointments at the Collége Militaire Royal de Saint-
Jean, the University of Canterbury in New Zealand, and Concordia University in Montréal.
He has also been a regular invited speaker at the Embedded Systems Conference for the last
fourteen years. Working in close collaboration with industry as well as academia, Michel
has trained thousands of people throughout Canada, the United States, Europe, and down
under in object-oriented analysis, design, and implementation. His current research inter-
ests include object-oriented languages, frameworks, design patterns, compilers, virtual
machines, and real-time microkernels.

Brian G. Patrick is an Associate Professor of Computer Science/Studies at Trent University
in Peterborough, Ontario. He first met Michel as a colleague at the Collége Militaire Royal
de Saint-Jean and has developed a close working relationship with Michel over the years.
Brian earned his Ph.D. in Computer Science from McGill University in Montréal, where he
later completed an M.B.A. in Finance and International Business. His research interests
have included heuristic search, parallel algorithms, and software reuse. He is currently
investigating job scheduling schemes for parallel applications.

chapter]

Introducing C# and .NET

In the late 1990s, Microsoft created Visual J++ in an attempt to use Java in a Windows
context and to improve the interface of its Component Object Model (COM). Unable to
extend Java due to proprietary rights held by Sun, Microsoft embarked on a project to
replace and improve Visual J++, its compiler, and its virtual machine with a general-
purpose, object-oriented language. To head up this project, Microsoft engaged the talents
of Anders Hejlsberg, formerly of Borland and the principal author of Windows Foundation
Classes (WFC), Turbo Pascal, and Delphi. As a result of this effort, C# was first introduced
in July 2000 as a thoroughly modern object-oriented language that would ultimately serve
as the main development language of the Microsoft .NET platform.

In this short introductory chapter, we lay out the fundamental features of the
C# programming language and the .NET Framework. We also outline the requirements of a
small project that will serve as an ongoing exercise throughout the text. The chapter ends
with a few words on syntactic notation.

1.1 What Is C#?

As part of the lineage of C-based languages, C# has incorporated and exploited program-
ming language features with a proven record of success and familiarity. To that end,
most syntactic features of C# are borrowed from C/C++, and most of its object-oriented
concepts, such as garbage collection, reflection, the root class, and the multiple inheri-
tance of interfaces, are inspired by Java. Improvements in C# over Java, often with syntax
simplification, have been applied to iteration, properties, events, metadata, versioning,
and the conversion between simple types and objects.

Rong Zeng
Highlight

2 Chapter 1: Introducing C# and .NET =

In addition to being syntactically familiar, C# is strongly typed, architecturally
neutral, portable, safe, and multi-threaded. Type security in C# is supported in a number
of ways, including initializing variables before their use, eliminating dangerous explicit
type conversions, controlling the limits in arrays, and checking the overflow of type limits
during arithmetic operations. Its architecturally neutral intermediate format, implemented
as the Common Intermediate Language (CIL) and executed on a virtual machine, makes
C# portable and independent of its running environment.

C# is also safe. It controls access to hardware and memory resources, checks
classes at runtime, and does not allow the implicit usage and manipulation of pointers
(as C/C++ do). The explicit use of pointers, on the other hand, is restricted to sections
of code that have been designated as unsafe. With the support of a garbage collector,
frustrating memory leaks and dangling pointers are a non-issue. The C# language also
supports multi-threading in order to promote efficient interactive applications such as
graphics, input/output, and so on. Other modern features in C# include Just-in-Time (JIT)
compilation from bytecode to native code, exceptions for error handling, namespaces for
preventing type collisions, and documentation comments.

In order to promote the widespread use and acceptance of C#, Microsoft relin-
quished its proprietary rights. With the support of Hewlett-Packard and Intel, Microsoft
quickly pushed for a standardized version of C#. In December 2001, the first standard
was accepted by the European Computer Manufacturer Association (ECMA). The following
December, a second standard was adopted by the ECMA, and it was accepted 3 months
later by the International Organization for Standardization (ISO). The standardization of
C# has three principal benefits:

1. To support the portability of C# applications across different hardware architectures,
2. To foster the development of C# compilers among different manufacturers, and

3. To encourage the emergence of high-quality software tools to support the develop-
ment of C# applications.

In this text, C# 2.0 is used as the final arbiter of the language.

1.2 What Is the .NET Framework?

The .NET Framework provides a new platform for building applications that are easily
deployed and executed across multiple architectures and operating systems. This porta-
bility is achievable only because of ongoing standardization through the ECMA and ISO
organizations. In this way, the framework offers independence to languages by supplying
an international standard called the Common Language Infrastructure (CLI).

The framework was designed to be installed on top of an operating system and
is divided into two main layers, as shown in Figure 1.1: a runtime environment called
the Common Language Runtime (CLR), similar to the Java Virtual Machine, and a large
library of classes called the Framework Class Library (FCL), which provides the required
services for modern applications.

® 1.2 WhatIs the .NET Framework? 3

Applications | Development Tools for C#, J#, C++, VB, ...

Framework Class Library

Common Language Runtime

Operating System

Figure 1.1: Overview of the .NET Framework.

The bottom layer of the .NET Framework contains the CLR. The CLR provides the
runtime services to execute C# programs that have been translated into the CIL. The top
layer encapsulates all services in the FCL for user interface, control, security, data access,
Extensible Markup Language (XML), input/output, threading, and so on. User interface
(UI) services—both Window and Web Forms—support graphic interfaces and server-side
controls, respectively. ASP.NET provides control, security, sessioning, and configuration
for dynamic web pages. Data access by ADO.NET adds XML as an intermediate format for
data and supports connections to datasets using XML caches. The FCL also contains system
classes to manage I/0, execution threads, serialization, reflection, networking, collections,
diagnostics, debugging, and so on.

Applications and development tools are typically layered on top of the .NET Frame-
work. Visual Studio .NET, in particular, is a good example. It provides an integrated devel-
opment environment (IDE) that standardizes support for many programming languages,
including C#, J#, C++, and Visual Basic.

After the standardization of the C# and CLI specifications in December 2001,
Microsoft released the CLR as both a commercial implementation of the CLI runtime
virtual machine and a subset of the FCL. Since then, C# has become the programming
language of choice for developing applications in the .NET Framework. CLR, FCL, and the
C# compiler are all released as part of the .NET Framework Software Development Kit
(SDK), which is freely available from Microsoft at http://msdn.microsoft.com. At the time
of this writing, there are other .NET implementations in progress, such as the open-source
Mono and DotGNU projects. All these implementations include a C# compiler that extends
language availability to platforms other than Windows.

The C# code executed on this framework follows object-oriented development prac-
tices defined by the Common Language Specification (CLS). The CLS defines a collaboration
standard between languages and object development practices. Obviously, some older
traditional programming languages, such as COBOL and Fortran, cannot exploit the full
characteristics offered by the CLS. The Common Type System (CTS) of the .NET Framework
represents a standardized set of basic data types that permit language interoperability.
In other words, the CTS defines the rules implemented in the CLR. The CLS supports
a (common) subset of the CTS in order to allow cross-language integration. Therefore,
a CLS-compliant component can be used by applications written in other languages.

The following subsections highlight the relationships between a number of important
features of the .NET Framework and the C# programming language, including the .NET
virtual machine, .NET virtual code, and .NET assemblies.

4 Chapter 1: Introducing C# and .NET =

1.2.1 The .NET Virtual Machine: Common Language Runtime

The CLR is the .NET virtual machine. It handles the compiling, loading, and execution of a
C# application. The compiling process employs a JIT approach that translates the CIL into
machine code as required. In addition to a traditional runtime system, it also provides
debugging and profiling functionalities. The CLR implements the CTS, which defines types
and data. Moreover, C# applications contain a complete description of their types, called
metadata, providing code visibility to other applications or tools. With this metadata, the
CLR uses reflection in order to resolve library references, link components, and resolve
types at runtime. The garbage collector is a subsystem of the CLR that cleans up memory
that is no longer needed. It frees developers of the tedious and error-prone responsibility
of recovering (deleting or deallocating) memory space allocated during object creation.

1.2.2 The .NET Virtual Code: Intermediate Language

The applications written in C# are not traditional Windows programs compiled into
machine code. Rather, the C# compiler generates CIL code, often referred to as managed
code. This code is dedicated to run safely within the .NET environment. In fact, the CLR
takes care of the back-end part of the compilation before execution, allowing the possibility
of JIT translation from CIL code into native machine code without compromising security.
On the other hand, unmanaged code, such as that generated by C/C++ compilers in the
Windows environment, uses native and potentially dangerous instructions (for example,
pointers). Like Java bytecode, CIL is also virtual machine code and is therefore completely
independent of any underlying processor architecture. It is fully cross-language compat-
ible on the .NET platform, offering at the time of this writing support for many different
programming languages. Therefore, all programs implemented in any of these languages
and compiled into CIL may share components without any extra effort.

1.2.3 The .NET Assemblies: Applications and/or Components

An assembly is the logical unit of deployment in .NET and encompasses two kinds of
implementation units: applications (.exe) and components (.d111). Whereas applications
represent fully executable C# programs, components represent core reusable objects that
provide basic services to build up applications. Indeed, Microsoft prefers to call C# a
component-oriented rather than an object-oriented programming language.

Each assembly is either private or public and contains a manifest (a set of meta-
data) that provides information about its implementation units, such as name, owner,
version, security permissions, culture, processor, operating system, public key signa-
ture, and all other needed resources (such as bitmaps). Private assemblies are used only
by the application that installed them, but public (shared) assemblies are stored in a
repository maintained by the .NET Framework called the Global Assembly Cache (GAC).

IDLL stands for Dynamic-Link Library and refers to a class library in Visual Studio .NET.

® 1.3 Project Exercise 5

Finally, because every assembly contains version information, the CLR is able to handle
multiple versions of the same component on the same platform.

1.3 Project Exercise

Throughout this text, the exercises at the end of most chapters are based on a small project.
The project was chosen to offer a nice continuity among the exercises and to provide the
reader with a practical application that can be used, reused, and modified. All the source
code for the exercises is available and maintained on the web site of DeepObjectKnowledge
(http://www.DeepObjectKnowledge.com).

The project consists of two distinct applications, each of which will be presented
incrementally throughout the text. The first application allows a user to enter, modify, or
delete an organization, its domain, and its e-mail format. Using the keywords First(F)
and Last (L), e-mail formats can be represented in any number of ways, as shown below
for the contact name John Smith.

Email Format Resulting Name
First.Last John.Smith
Last.First Smith.John
F.Last J.Smith
First+Last JohnSmith
Last+First SmithJohn

The second application allows a user to enter, modify, or delete a contact’s name, organiza-
tion, and e-mail address. However, using a property file generated by the first application,
the e-mail address of the contact may also be deduced from the corresponding e-mail
format of an existing organization. The latter approach generates contact information
(in this case, the e-mail address) quickly and accurately.

Using a three-tier design approach, the application is divided into three distinct
subsystems (Figure 1.2). Each subsystem is a layer that has been decoupled as much as
possible to promote the reusability of classes. These subsystems are as follows:

m Presentation, which isolates user inputs and outputs,

m Business, which represents domain objects that perform specific processing tasks,
and

m Data, which loads information from files or databases to domain objects, and also
saves information from domain objects to files or databases.

Later on, each subsystem is represented by a namespace.

In order to remain focused on the features of the C# language and on the principles
of good design, the project is built on the simplicity of a text user interface (TUI) for a
console application. But as shown in Figure 1.2, the three-tier design easily allows one

6 Chapter 1: Introducing C# and .NET =

Presentation TUI | GUI
Business Domain Objects
Data Files | Database

Figure 1.2: Three-tier design of our project exercise.

to reuse the business and data layers with a different presentation subsystem, such as a
graphical user interface (GUI). Although files are used in this text as the internal persistent
medium to save and store information, one can also reuse the presentation and business
layers with a database instead of files in the data layer. Whether we are dealing with TUIs or
GUIs, or databases or files, we are reusing the same domain objects in the business layer.
The three-tier design therefore provides a flexible structure for this application that can be
customized for other projects. It avoids a monolithic application where the replacement
of one layer has a domino effect on all other classes in the project.

1.4 Syntax Notation

In this text, the Extended Backus—Naur Form (EBNF) notation, which is summarized in
Table 1.1, is used to define the syntax rules (or productions) of the C# programming lan-
guage. The EBNF notation was chosen for its conciseness and readability. On rare occasion,
an EBNF definition in the text may be simplified and noted as such for expository purposes.
However, the full EBNF definition of C# given in Appendix A is well over half the length of
the equivalent BNF definition provided by the language specification itself.

Each production describes a valid sequence of tokens called lexical elements. Non-
terminals represent a production and begin with an uppercase letter. Terminals are either
keywords or quoted operators. Each production is terminated by a period, and parentheses
are used for grouping.

Notation Meaning
A* Repetition—zero or more occurrences of A
A+ Repetition—one or more occurrences of A
A? Option—zero or one occurrence of A
A B Sequence—A followed by B
A| B Alternative—A or B
"0".."9" Alternative—one character between 0 and 9, inclusive
(AB) Grouping—of an A B sequence

Table 1.1: Notation for Extended Backus-Naur Form.

Rong Zeng
Highlight

® 1.4 Syntax Notation 7

For example, identifiers and numbers are defined in most programming languages by the
following four productions:

TIdentifier = Letter (Letter | Digit)* .

Number = ("-" | "+")? Digit+ .
Letter - ||a|ll .IIZII | IIAII. anu
Dlglt — ||0||l -II9II

According to these rules, an Identifier must begin with a Letter and is followed by zero
or more Letter(s) or Digit(s). Hence, the following identifiers are valid:

Pentium SuperH x86

A Number, on the other hand, is preceded by an optional plus or minus sign followed by at
least one digit.
The EBNF notation can also be used to express command-line syntax. For example,

CsharpCompilerCommand = "csc" Option* File+ .
Option = "/help" | "/target:<file>" | "/nowarn:<level>" | "/doc".

Here, the C# compilation command csc may have an empty sequence of options followed
by at least one source file.
In order to simplify the EBNF rules in such a large grammar as C#, we assume that:

<non-terminal>s = <non-terminal>+
is equivalent to:

<non-terminal>s
and that:

<non-terminal>List = <non-terminal> ("," <non-terminal>)*
is equivalent to:

<non-terminal>List

Based on the preceding simplifications, the following productions:

Block = "{" Statements? "}"
Statements = Statement+ .
Statement = ExprList ";"
ExprList = Expr ("," Expr)* .

can be reduced to:

Block "{" Statements? "}"

Statement = ExprList ";

chapter 2

Classes, Objects, and Namespaces

SOftware development is a non-trivial activity; even simple software systems have
inherent complexity. To tackle this complexity, two paradigms have dominated the soft-
ware development landscape. The first and older paradigm is based on the notion of
procedural abstraction and divides developmental work into two distinct parts. First,
real-world entities are identified and mapped as structures or records (data) and second,
subprograms are written to act upon this data (behavior). The primary drawback of the
procedural approach is the separation of data and behavior. Because data may be shared
among several subprograms using global variables or parameters, responsibility for its
behavior is scattered and open ended. For this reason, applications using the procedural
approach can be difficult to test, debug, and maintain.

The second paradigm, otherwise known as the object-oriented approach, is based
on the notion of data abstraction and divides developmental work into two very differ-
ent tasks. First, the data and behavior of each real-world entity of the problem domain
are identified and encapsulated into a single structure called a class. Second, objects
created from the different classes work together to provide a solution to the given problem.
Importantly, each object is ideally responsible for the behavior of its own data.

The C# programming language is based on the object-oriented paradigm. This chap-
ter, therefore, begins with a discussion on classes and objects. It describes how objects
are created based on classes and how access to data and methods is controlled. It also
covers how classes are logically grouped into namespaces. The last two sections describe
the composition of a compilation unit and how a C# program is implemented, compiled,
and executed as a collection of compilation units.

10 Chapter 2: Classes, Objects, and Namespaces =

2.1 Classes and Objects

A class is an abstraction that represents the common data and behavior of a real-world
entity or domain object. Software objects that are created or instantiated from a class,
therefore, mimic their real-world counterparts. Each object of a given class evolves with
its own version of the common data but shares the same behavior among all objects of the
same class. In this respect, a class can be thought of as the cookie cutter and the objects
of that class as the cookies.

Classes are synonymous with types and are the fundamental building blocks of
object-oriented applications, much as subprograms are the fundamental building blocks
of procedural programming. As a modern abstraction, classes reduce complexity by:

m Hiding away details (implementation),
m Highlighting essential behavior (interface), and
m Separating interface from implementation.

Because the class encapsulates both data and behavior, each object is responsible for the
manipulation and protection of its own data. At its core, object-oriented (OO) technol-
ogy is not concerned primarily with programming, but rather with program organization
and responsibilities. Based on the concept of an object where each object has a clear and
well-defined responsibility, program organization is achieved by finding the right objects
for a given task.

Designing a class itself is also a skill that shifts the focus of the designer to the
user’s point of view in order to satisfy the functional requirements of the domain expert.
The domain expert is not necessarily a software developer but one who is familiar with the
entities of the real-world domain. Of course, a software developer who gains experience
in a particular domain can become a domain expert as well.

2.1.1 Declaring Classes

As mentioned previously, a class declaration encapsulates two kinds of class members:
m Data, otherwise known as a field, attribute, or variable, and
= Behavior, otherwise known as a method, operation, or service.

In this text, fields and methods, respectively, are used to represent the data and behavior
members of a class. By way of example, consider the Id class given below. This class
defines an abstraction that represents a personal identification and is composed of two
fields and four methods. The two fields, firstName and 1lastName, are both of type string;
the four methods simply retrieve and set the values of the two data fields.

class Id {
// Methods (behavior)
string GetFirstName() { return firstName; }
string GetLastName() { return lastName; }

B 2.1 Classes and Objects 11

void SetFirstName(string value) { firstName = value; }
void SetLastName(string value) { lastName = value; }

// Fields (data)
string firstName "<first name>";
string lastName = "<last name>";

}

Experienced C++ and Java programmers will notice the absence of constructors. Without
an explicit declaration of a constructor, a default constructor is automatically generated
by the C# compiler. A complete discussion on constructors, however, is deferred until
Chapter 3.

2.1.2 Creating Objects

An instantiation is the creation or construction of an object based on a class declaration.
This process involves two steps. First, a variable is declared in order to hold a reference to
an object of a particular class. In the following example, a reference called id is declared
for the class Id:

Id id;

Once a variable is declared, an instance of the class is explicitly created using the new
operator. This operator returns a reference to an object whereupon it is assigned to the
reference variable. As shown here, an object of the Id class is created and a reference to
that object is assigned to id:

id = new Id();

The previous two steps, declaring a variable and creating an object, can also be coalesced
into a single line of code:

Id id = new Id();

In any case, once an instance of the class Id is created, the fields firstName and lastName
are assigned to the literal strings "<first name>" and "<last name>", respectively.

The variable id provides a reference to the accessible fields and methods of the Id
object. Although an object can only be manipulated via references, it can have more than
one reference. For example, id and idAlias handle (and refer to) the same object:

Id id = new Id();
Id idAlias id;

A constant is declared by adding the const keyword as a prefix to a field class member.
The constant value is obtained from a constant expression that must be evaluated at
compile-time. For example, the constants K and BufferSize are defined by 1024 and 4 * K,

12 Chapter 2: Classes, Objects, and Namespaces =

respectively, as shown:

const int K = 1024;
const int BufferSize = 4 * K;

Itis worth noting that only built-in types, such as int, are allowed in a constant declaration.

2.2 Access Modifiers

To uphold the principle of information hiding, access to classes and class members may be
controlled using modifiers that prefix the class name, method, or data field. In this section,
we first examine those modifiers that control access to classes, followed by a discussion
on the modifiers that control access to methods and data fields.

2.2.1 Controlling Access to Classes

In C#, each class has one of two access modifiers: public or internal. If a class is public
as it is for the Id class here, then it is also visible from all other classes.

public class Id {

}

On the other hand, if a class is internal then it is only visible among classes that are part
of the same compiled unit. It is important to point out that one or more compilation units
may be compiled together to generate a single compiled unit.!

internal class Id {

}

Classes are, by default, internal; therefore, the internal modifier is optional.

2.2.2 Controlling Access to Class Members

The C# language is equipped with five access modifiers for methods and data fields:
public, private, protected, internal, and protected internal. The semantics of these
modifiers depends on their context, that is, whether or not the class itself is public or
internal.

If a class is public, its public methods and data fields are visible and, hence, acces-
sible both inside and outside the class. Private methods and data fields, however, are only

1 A full discussion on compilation units and compilation is found in Sections 2.4 and 2.5.

m 2.2 Access Modifiers 13

visible within the class itself. The visibility of its protected methods and data fields is
restricted to the class itself and to its subclasses. Internal methods and data fields are
only visible among classes that are part of the same compiled unit. And finally, methods
or data fields that are protected internal have the combined visibility of internal and
protected members. By default, if no modifier is specified for a method or data field then
accessibility is private.

On the other hand, if a class is internal, the semantics of the access modifiers is
identical to those of a public class except for one key restriction: Access is limited to those
classes within the same compiled unit. Otherwise, no method or data field of an internal
class is directly accessible among classes that are compiled separately.

When used in conjunction with the data fields and methods of a class, access mod-
ifiers dually support the notions of information hiding and encapsulation. By making
data fields private, data contained in an object is hidden from other objects in the system.
Hence, data integrity is preserved. Furthermore, by making methods public, access and
modification to data is controlled via the methods of the class. Hence, no direct external
access by other objects ensures that data behavior is also preserved.

As a rule of thumb, good class design declares data fields as private and methods
as public. It is also suggested that methods to retrieve data members (called getters) and
methods to change data members (called setters) be public and protected, respectively.
Making a setter method public has the same effect as making the data field public, which
violates the notion of information hiding. This violation, however, is unavoidable for com-
ponents, which, by definition, are objects that must be capable of updating their data fields
at runtime. For example, a user may need to update the 1astName of an Id object to reflect
a change in marital status.

Sometimes, developers believe that going through a method to update a data field is
inefficient. In other words, why not make the data field protected instead of the method?
The main justification in defining a protected method is twofold:

m A protected method, unlike a data field, can be overridden. This is very important if
a change of behavior is required in subclasses.

m Aprotected method is normally generated inline as a macro and therefore eliminates
the overhead of the call/return.

It is also important to remember that, in software development, it is always possible to add
public methods, but impossible to remove them or make them private once they have been
used by the client. Assuming that the class Id instantiates components, we add public
modifiers for all methods and private modifiers for all data fields, as shown:

public class Id {
// Methods (behavior)
public string GetFirstName() { return firstName; }
public string GetLastName() { return lastName; }
public void SetFirstName(string value) { firstName = value; }
public void SetLastName(string value) { lastName = value; }

Tip

14 Chapter 2: Classes, Objects, and Namespaces =

// Fields (data)
private string firstName = "<first name>";
private string lastName "<last name>";

2.3 Namespaces

A namespace is a mechanism used to organize classes (even namespaces) into groups
and to control the proliferation of names. This control is absolutely necessary to avoid any
future name conflicts with the integration (or reuse) of other classes that may be included
in an application.

If a class is not explicitly included in a namespace, then it is placed into the default
namespace, otherwise known as the global namespace. Using the default namespace,
however, is not a good software engineering strategy. It demonstrates a lack of program
design and makes code reuse more difficult. Therefore, when developing large applica-
tions, the use of namespaces is indispensable for the complete definition of classes.

2.3.1 Declaring Namespaces

The following example presents a namespace declaration for the Presentation subsys-
tem in Figure 1.2 that includes two public classes, which define the TUI and the GUI,
respectively.

namespace Presentation {
public class TUI { ... }
public class GUI { ... }
}

This Presentation namespace can also be nested into a Project namespace containing all
three distinct subsystems as shown here:

namespace Project {
namespace Presentation {
public class TUI { ... }
public class GUI { ... }
}
namespace Business {
// Domain classes ...

}
namespace Data {
public class Files { ... }
public class Database { ... }
}

® 2.3 Namespaces 15

Access to classes and nested namespaces is made via a qualified identifier. For example,
Project.Presentation provides an access path to the classes TUI and GUI. This mechanism
allows two or more namespaces to contain classes of the same name without any conflict.
For example, two front-end namespaces shown below, one for C (Compilers.C) and another
for C# (Compilers.Csharp), can own (and access) different classes with the same name.
Therefore, Lexer and Parser for the C compiler are accessed without ambiguity using the
qualified identifier Compiler.C.

namespace Compilers {
namespace C {

class Lexer { ... }
class Parser { ... }
}
namespace Csharp {
class Lexer { ... }
class Parser { ... }
}

}

Furthermore, the classes Lexer and Parser can be included together in separate files
as long as they are associated with the namespaces Compilers.C and Compilers.Csharp,
respectively:

namespace Compilers.C {

class Lexer { ... }
class Parser { ... }

}

namespace Compilers.Csharp {
class Lexer { ... }
class Parser { ... }

}

A graphical representation of these qualifications is shown in Figure 2.1.

Compilers |
a Csharp

Lexer Lexer

Parser Parser

Figure 2.1: Namespaces for compilers.

Tip

16 Chapter 2: Classes, Objects, and Namespaces =

The formal EBNF definition of a namespace declaration is given here:

NamespaceDecl "namespace" QualifiedIdentifier NamespaceBody ";"? .
QualifiedIdentifier = Identifier ("." Identifier)* .

The namespace body may contain using directives as described in the next section and
namespace member declarations:

NamespaceBody = "{" UsingDirectives? NamespaceMemberDecls? "}"

A namespace member declaration is either a (nested) namespace declaration or a type
declaration where the latter is a class, a structure, an interface, an enumeration, or a
delegate.

NamespaceMemberDecl = NamespaceDecl | TypeDecl .
TypeDecl ClassDecl | StructDecl | InterfaceDecl | EnumDecl |
DelegateDecl .

So far, only class declarations have been presented. Other type declarations, however, will
follow throughout the text.

A Digression on Namespace Organization

A common industry practice is to use an organization’s internet domain name (reversed)
to package classes and other subnamespaces. For example, the source files for the project
were developed under the namespace Project:

namespace com.DeepObjectKnowledge.PracticalGuideForCsharp {
namespace Project {

}
}

This again is equivalent to:

namespace com.DeepObjectKnowledge.PracticalGuideForCsharp.Project {

}

2.3.2 Importing Namespaces

The using directive allows one namespace to access the types (classes) of another without
specifying their full qualification.

UsingDirective = "using" (UsingAliasDirective | NamespaceName) ";

For example, the WriteLine method may be invoked using its full qualification,
System.Console.WriteLine. With the using directive, we can specify the use of the

® 2.3 Namespaces 17

System namespace to access the WriteLine method via its class Console:

using System;

public class Welcome {
public static void Main() {
Console.WriteLine("Welcome to the practical guide for C#!");
}
¥

If the qualification is particularly long then an alias can be used instead:
UsingAliasDirective = Identifier "=" NamespaceOrTypeName .

For example, PGCS on line 1 below is defined as an alias for the lengthy namespace qual-
ification on the right-hand side. Suppose that PGCS also encapsulates a class called Id. In
order for the User class within namespace N to create an instance of the Id class of PGCS,
class Id is qualified with the alias PGCS as was done on line 10. Otherwise, if the User
class refers to Id without qualification as shown on line 11, it refers instead to the Id class
within its own namespace N.

1 using PGCS = com.DeepObjectKnowledge.PracticalGuideForCsharp;
2

3 namespace N {

4 public class Id {

5 // ..

6 }

7

8 public class User {

9 public static void Main() {

10 PGCS.Id a = new PGCS.Id(); // use PGCS.Id

11 Id b = new Id(); // use N.Id or Id by default
12 /] ...

13 }

14 }

15 }

2.3.3 Controlling the Global Namespace

C# takes special care to avoid namespace conflicts and to promote the absence of global
variables or methods. In other words, more control over the global namespace is available
for the following reasons:

m Every variable and method is declared within a class;
m Every class is (eventually) part of a namespace; and

m Every variable or method may be referred to by its fully qualified name.

18 Chapter 2: Classes, Objects, and Namespaces =

Tip| Resolving name conflicts is certainly advantageous, but not referring to global entities
directly decreases the coupling factor between software components. This is an impor-
tant software engineering requirement that supports reuse code, improves readability,
and facilitates maintainability. We will discuss decoupling components more when we
introduce abstract classes and interfaces in Chapter 7.

2.3.4 Resolving Namespace Conflicts

A nested namespace may have an identifier name that conflicts with the global name-
space. For example, a company, Co, has developed several in-house classes, such
as OurList, that are logically grouped under its own System.Collections name-
space. An application App (lines 11-15) would like to use the ArrayList class from
the .NET System.Collections namespace and the OurList class from the nested
Systems.Collections namespace. Unfortunately, the Co.System.Collections namespace
hides access to the .NET System.Collections and generates a compilation error at line 13
as shown here:

1 using SC = System.Collections; // To access ArraylList class.
2

3 namespace Co {

4 namespace System {

5 namespace Collections {

6 public class OurList { /* ¥/}

7 /] ..

8 }

9 }

10 namespace Project {

11 public class App {

12 /] ...

13 private System.Collections.ArrayList a; // Compilation error.
14 private System.Collections.OurList o;

15 b

16 }

17 }

The error in this example can be removed if the global namespace qualifier :: is used
instead. This qualifier tells the compiler to begin its search at the global namespace.
Since the .NET System is rooted at the global namespace, replacing System.Collections
at line 13 by its alias SC:: enables access to the ArrayList class in the .NET namespace
System.Collections:

private SC::Arraylist a;

® 2.4 Compilation Units 19

2.4 Compilation Units

A C# program is composed of one or more compilation units where each compilation
unit is a source file that may contain using directives for importing public classes, global
attributes for reflection (see Chapter 10), and namespace member declarations:

CompilationUnit = UsingDirectives? GlobalAttributes? NamespaceMemberDecls?.

For the most part, each compilation unit is a plain text file with a .cs extension that
contains the source code of one or more classes and/or namespaces. In this section, we
first present a relatively simple but complete C# program that is made up of two compila-
tion units. Second, we show how a single class can be divided across several compilation
units.

2.4.1 Presenting a Complete C# Program

Although a compilation unit in C# may contain more than one class, it remains a good pro-
gramming practice to include only one class (or interface) per compilation unit. By editing
a file that contains several classes, one of two problems can arise. First, other classes
may be unintentionally modified and second, massive recompilation may be triggered on
dependents of the file.

Our program, therefore, contains two compilation units called Id.cs and TestId.cs.
Each compilation unit contains a single class, namely the Id class in Id.cs (already imple-
mented on p. 13) and the TestId class in TestId.cs given here. Together, these classes
define a complete program in C#.

1 using System;

2 using com.DeepObjectKnowledge.PracticalGuideForCsharp;

3

4 public class TestId {

5 public static void Main() {

6 const int NumberOfEntries = 5;

7 const char NameSeparator = ‘/’;

8

9 Id id = new Id();

10

11 for (int n = 0; n < NumberOfEntries; n++) {

12 Console.Write("First: ");

13 string firstName = System.Console.ReadLine();
14 id.SetFirstName(firstName);

15

16 Console.Write("Last: ");

17 string lastName = System.Console.ReadLine();
18 id.SetLastName(lastName);

Tip

Tip

Tip

20 Chapter 2: Classes, Objects, and Namespaces =

20 Console.WritelLine(id.GetLastName()+

21 NameSeparator+id.GetFirstName());
22 }

23 }

24 }

To produce an executable program in C#, one of the classes, in this case TestId, must
define a static method called Main from where the program starts to run and to where
we focus our attention. On lines 6 and 7, two constant values, NumberOfEntries and
NameSeparator, are initialized, respectively, to the integer literal 5 and the character
literal */’. An instance of the class Id is created on line 9 and assigned to an object ref-
erence called id where its fields, firstName and lastName, are assigned to literal strings
"<first name>" and "<last name>". The for loop, which begins on line 11 and encom-
passes statements from line 12 to line 21, is then executed five times. For each iteration,
the string variables firstName and lastName are assigned values that are read from the
console (keyboard) and then passed as parameters to the methods SetFirstName and
SetLastName of the object id. Finally, the last and first names of the object id are retrieved
using the methods GetLastName and GetFirstName, concatenated with a forward slash
using the ‘+’ operator and written back to the console (monitor).

A Digression on Naming Conventions

At this point, we pause to discuss the naming conventions of identifiers used for class
names, method names, field names, and other constructs in C#. An identifier is a case-
sensitive sequence of Unicode characters that begins with a letter or an underscore and
excludes keywords, such as for and static, unless preceded by an @. Using keywords as
identifiers is typically restricted to facilitate the interface between a program in C# and a
program in another language where a C# keyword appears as an identifier. The following
identifiers, therefore, are all legal:

123 Café @this

In C#, many identifiers such as get, set, partial, yield, and so on have contextual mean-
ings but are not keywords. Although these identifiers can be used for class names, method
names, and other constructs, it is not recommended.

Today, modern programming languages are augmented with huge class libraries that
have been developed with consistent naming guidelines. As developers, it is very impor-
tant to adhere to these guidelines in order to promote homogeneity and to facilitate the
maintenance of applications. The C# standard proposes two main capitalization styles for
identifiers:

m Pascal casing, which capitalizes the first character of each word, such as Analyzer
and LexicalAnalyzer.

® 2.4 Compilation Units 21

m Camel casing, which capitalizes the first character of each word except the first
word, such as total and subTotal.

The standard, which is closely followed throughout the text, strongly suggests the use
of Pascal casing for classes, attribute classes, exception classes, constants, enumeration
types, enumeration values, events, interfaces, methods, namespaces, properties, and
public instance fields. Camel casing, on the other hand, is encouraged for local vari-
ables, protected instance fields, private instance fields, and parameters. Finally, nouns
are associated with class identifiers and verbs are associated with method identifiers.

2.4.2 Declaring Partial Classes

Although declaring one class per source file is the best-practice policy in the software
industry, a class declaration may grow so large that it becomes unwieldy to store it in
a single file. In that case, the class is better divided among more than one file to ease
development, testing, and maintenance. Using the prefix partial before the class name,
different parts of a class can be distributed across different files. Two key restrictions,
however, must be satisfied. First, all parts of a partial type must be compiled together in
order to be merged at compile-time and second, already compiled types are not allowed
to be extended to include other partial types. As an example, the partial class Parser is
implemented in three separate files (parts) as shown here:

ParserCompilationUnit.cs file (Part 1):

public partial class Parser {
private ILexer lexer;
private IReportable errorReporter;
private ISymbolTable symbolTable;
/] ..

// Compilation Unit productions

void ParseCompilationUnit() { ... }
void ParseNamespace() { ...}
// ...

}

ParserClass.cs file (Part 2):

public partial class Parser {
// Class productions
void ParseClassDecl() { ...}
void ParseClassMemberDecl() { ... }

/] ...

Tip

22 Chapter 2: Classes, Objects, and Namespaces =

ParserExpr.cs file (Part 3):

public partial class Parser {
// Expression productions
void ParseExpr() { ... }
void ParseExprList() { ... }
/]

h

When the preceding files are compiled together, the resulting code is the same as if the
class had been written as a single source file Parser.cs:

public class Parser {
private ILexer lexer;
private IReportable errorReporter;
private ISymbolTable symbolTable;
/] ..

// Compilation Unit productions
void ParseCompilationUnit() { ... }
void ParseNamespace() { ...}

/]

// Class productions

void ParseClassDecl() { ...}
void ParseClassMemberDecl() { ... }
// ...

// Expression productions
void ParseExpr() { ... }
void ParseExprList() { ... }
/] ...

}

The notion of partial classes also applies to other types, such as structures and interfaces.

2.5 Compilation and Execution

Compiling and running C# programs is easily done with a Microsoft development tool such
as Visual Studio .NET. However, it is still important to know how to compile programs at the
command line. These compilation commands can be integrated and completely automated
by the rule-based, dependency-management utility called nmake.2 This utility as well as
compilers, assemblers, linkers, and so on are part of the .NET Framework SDK.

2The equivalent of the make utility on Unix boxes.

® 2.5 Compilation and Execution 23

Suppose now that our classes Id and TestId are part of the same compilation unit
called IdWithTest.cs. The command:

csc IdWithTest.cs

invokes the C# compiler csc and generates an executable binary file called IdWithTest.exe.
If our classes remain separate in compilation units Id.cs and TestId.cs, respectively, the
command:

csc TestId.cs Id.cs

compiles both files together and generates a single executable file called TestId.exe. To
execute an .exe file, only the name of the file is entered. For example:

TestId

Within the .NET Framework, the C# source code is first compiled into CIL code to produce
the assembly file. The CLR then loads the assembly that contains the main method entry
point. From there, each method to be executed is translated “just-in-time” into machine
code. In order to improve performance, this translation takes place only once for each
method that is invoked. During execution, the CLR also monitors the application’s memory
use and may (in the background) ask the garbage collector to free up unused memory.

2.5.1 Using Assemblies for Separate Compilation

Individual files, such as Id.cs and TestId.cs, can also be compiled into separate .NET
object modules using the option /target:module3 as shown here:

csc /target:module Id.cs

In this case, the file Id.cs is compiled into a .NET object module called Id.netmodule. To
generate the same TestId.exe file as before, the object file Id.netmodule is then linked
using the option /addmodule:Id.netmodule when TestId.cs is compiled:

csc TestId.cs /addmodule:Id.netmodule

An executable (or .exe) file represents one kind of assembly. As mentioned in Chapter 1,
the second kind of assembly is a component (or class library), which is stored in a dynamic
library (or .dll). Using this command, the component class Id is added to the library
Business.dll:

csc /target:library /out:Business.dll /addmodule:Id.netmodule

In our project, the Business.dll library contains all business (domain) classes.

3The default option for a target is /target:exe.

24 Chapter 2: Classes, Objects, and Namespaces =

2.5.2 Revisiting Access Modifiers

In this section, we present an example with two compilation units to clarify the behavior of
access modifiers for both classes and class members, casting a particular eye on internal
access. The first compilation unit called NA. cs contains three classes, one each for public,
internal, and internal default. Each of the three classes in turn contains six methods, one
each for public, private, protected, internal, internal protected, and private default.
Each method is also designated as static and is, therefore, associated with the class itself
and not with a particular instance of the class as described in Chapter 3.

1 namespace NA {

2 public class PublicClass {

3 public static void pubM() {}

4 protected static void proM() {}

5 protected internal static void proIntM() {}
6 internal static void intM() {}

7 private static void priM() {3}

8 /* private */ static void defM() {}

9 }

10

11 internal class InternalClass {

12 public static void pubM() {3}

13 protected static void proM() {}

14 protected internal static void proIntM() {}
15 internal static void intM() {}

16 private static void priM() {}

17 /* private */ static void defM() {}

18 }

19

20 /* internal */ class InternalClassByDefault {
21 public static void pubM() {}

22 protected static void proM() {}

23 protected internal static void proIntM() {}
24 internal static void intM() {}

25 private static void priM() {}

26 /* private */ static void defM() {}

27 }

28 }

The second compilation unit is called NB.cs. It contains a single class called Usage with
only a single method called Main. Within Main, all methods for each class in NA.cs are
invoked.

1 namespace NB {
2 using NA;

16
17
18
19
20
21
22
23
24
25
26
27
28 }

class Usage {
public void Main() {
PublicClass.pubM();
PublicClass.proM();
PublicClass.proIntM();
PublicClass.intM();
PublicClass.priM();
PublicClass.defM();

InternalClass.pubM();
InternalClass.proM();

® 2.5 Compilation and Execution

InternalClass.proIntM();

InternalClass.intM();
InternalClass.priM();
InternalClass.defM();

InternalClassByDefault
InternalClassByDefault
InternalClassByDefault

InternalClassByDefault.
priM(Q);
.defM(Q);

InternalClassByDefault
InternalClassByDefault

.pubM();

.proM();
.proIntM();

intM(Q);

// Error:

// Error:
// Error:

// Error:

// Error:
// Error:

// Error:

// Error:
// Error:

If both files—NA.cs and NB.cs—are compiled together using:

csc /target:exe NA.cs NB.cs

Inaccessible

Inaccessible
Inaccessible

Inaccessible

Inaccessible
Inaccessible

Inaccessible

Inaccessible
Inaccessible

25

then all classes share access to their internal members; that is, no error is generated with
the usage of the internal access modifier. Other errors on lines 7, 10, 11, 14, 17, 18,
21, 24, and 25 are generated due to the protection level of the methods, either private,
protected, or internal protected. Of course, public methods are available to all classes
within the same compiled unit. It is important to point out that internal access is enabled
not because classes share a namespace but because the classes are compiled together. In
other words, if two classes that share a namespace are compiled separately, they no longer
have access to the internal methods and data fields of the other class. By first compiling
NA.cs to generate a dynamic library (NA.d11) and then compiling and linking NB.cs as

follows:

csc /target:library NA.cs
csc /target:exe NB.cs /reference:NA.dll

Tip

26 Chapter 2: Classes, Objects, and Namespaces =

additional errors are generated on lines 8, 9, 13, 15, 16, 20, 22, and 23. In fact, all lines
from 7 to 25, inclusively, no longer have access to the internal methods of NA.cs and
NB.cs.

2.5.3 Adding XML Documentation

In an industry where there is always pressure to get software products out the door,
it is sometimes tempting to regard source code documentation as a pesky afterthought.
Fortunately, the C# compiler automatically generates well-formatted documentation in
XML using doc comments (///) and XML tags (<. ..>) that have been entered by the develop-
ers at their proper places in the source code. Although there are many predefined XML tags
(see Appendix B), only the minimum have been introduced in the Id.cs file here to produce
reasonable documentation. Such minimal documentation provides a concise declaration
of the class and its public methods, including their parameters and return values.

/// <summary>
/// The Id class represents the first and the last name of a contact person.
/// </summary>
public class Id {
/// <summary>Gets the first name.</summary>
/// <returns>The first name.</returns>
public string GetFirstName() { return first; }

/// <summary>Gets the last name.</summary>
/// <returns>The last name.</returns>
public string GetLastName() { return last; 1}

/// <summary>Sets the first name to <c>value</c>.</summary>
public void SetFirstName(string value) { first = value; }

/// <summary>Sets the last name to <c>value</c>.</summary>
public void SetLastName(string value) { last = value; }

private string first;
private string last;

}
By adding the doc option, the compilation command:
csc /target:module /doc:Id.xml Id.cs
generates the following XML file Id.xml:

<?xml version="1.0"7?>

B Exercises 27

<doc>
<members>

<member name="T:Id">

<summary>
The Id class represents the first and the last name of a
contact person.

</summary>

</member>

<member name="M:Id.GetFirstName">
<summary>Gets the first name.</summary>
<returns>The first name.</returns>

</member>

<member name="M:Id.GetLastName">
<summary>Gets the last name.</summary>
<returns>The last name.</returns>

</member>

<member name="M:Id.SetFirstName(System.String)">
<summary>Sets the first name to <c>value</c>.</summary>

</member>

<member name="M:Id.SetLastName(System.String)">
<summary>Sets the last name to <c>value</c>.</summary>

</member>

</members>
</doc>

Apart from the doc comments, the source code should use // for short one-line comments
and /* ... */ for longer multi-line comments. Because of the size of this book and its
mandate to be as concise as possible, XML documentation comments are not applied to
our examples.

Exercises

Exercise 2-1. Write a class Id in the namespace Project.Business and compile it to gen-
erate an object file Id.netmodule. This Id class encapsulates both first and last names of
type string. Instantiate this class by another class TestId containing a Main method in a
different namespace, such as Project.Tests.

Exercise 2-2. Write a class Email in the namespace Project.Business and compile it to
generate an object file Email.netmodule. This Email class encapsulates an address of type
string. Instantiate this class by another class TestEmail containing a Main method in a
different namespace, such as Project.Tests.

chapter 3

Class' Members and Class Reuse

How a class limits access to its members (fields and methods) defines, in a sense,
its private and public persona. On one hand, data fields that define the state of a class or
object are typically hidden away. Allowing outside classes or objects to unwittingly change
the state of another class or object undermines the notion of responsibility. On the other
hand, the behavior of a class or object is generally defined by its public methods. All other
classes, therefore, are only able to invoke behavior that is well-defined and consistent. In
this chapter, we distinguish between static and instance members and describe how to
access fields and invoke methods of both C# classes and objects. Particular attention is
paid to two special methods, constructors and destructors, as well as passing parameters
by value and by reference.

We also present the mechanisms of inheritance and aggregation that are used to
build new classes from those that already exist. Reuse of classes in these ways is one
of the hallmarks of object-oriented technology, and one of its most powerful features.
Because each class encapsulates both data and behavior, it is relatively easy and eco-
nomical to define new classes in terms of others. Issues related to inheritance, such as
constructor/destructor chaining and protected data members, are also discussed.

3.1 Fields and Methods

The fields and methods of a C# class may be associated with either the class itself or
with particular objects of the class. In the former case, these members are called static
fields and static methods and are not part of any object instantiated from the class. Mem-
bers that are associated with a particular object or instance of a class are called instance
fields or instance methods. From a syntactic point of view, static members are declared

29

30 Chapter 3: Class Members and Class Reuse =

and preceded by the keyword static as shown here in the class Id. This class is responsible
for generating a unique identification number, idNumber, for each object that is created.

class Id {
public Id() { number++; idNumber = number; }
static Id0) { number = 0; }
public int GetIdNumber() { return idNumber; }

public static int GetNumberOfIdsCreated() { return number; }

private int idNumber;
private static int number;

© oo N O Ul W

}

The field number and the method GetNumberOfIdsCreated are static members, and the field
idNumber and the method GetIdNumber are instance members. The two Id methods are
special methods called constructors and are discussed later in Section 3.1.3. Static fields
are initialized when the class is loaded into memory. Hence, number is initialized to O
before any instance of Id is created. Instance fields, on the other hand, are initialized
when an object is created. If a static or instance field is not explicitly initialized, it is
assigned a default value generated by the compiler. A class that is also prefixed by the
static modifier is called a static class and must satisfy the following constraint: All class
members including the constructor are static. The ubiquitous System.Console is a typical
example of a static class.

3.1.1 Invoking Methods

Methods in C# define the behavior of a class and are analogous to functions in proce-
dural languages such as C. The complete method declaration within a class, otherwise
referred to as its signature or prototype, is composed of optional modifiers, a return
type, a specification of its formal parameter(s), and a method body as defined by its EBNF
definition:

MethodDecl = Modifiers? ReturnType MethodName "(" Parameters? ")" MethodBody.

Modifiers that can be used include the access modifiers described in Chapter 2. The return
(or result) type of a method defines the value or reference type that must be returned to
the calling method. A full description of value and reference types is given in Chapter 4
but for the moment, it suffices to think of a value type as a simple numeric value and a
reference type as a class. If no value is returned then void is used as the return type. If an
array is returned then square brackets ([]s) are used. For example:

int value() { ... } // Returns an integer value (like a C function).
void print() { ... } // Returns no value (like a procedure).
int[] vec() { ... } // Returns the reference of an array of integers.

In the preceding Id class, the method GetIdNumber has a return type of int and no
parameters.

® 3.1 Fields and Methods 31

To invoke a method from within a given class, the MethodName is followed by its
appropriate number of arguments:

MethodInvocation = MethodName "(" Arguments? ")"

However, methods are far more likely to be invoked from outside the class itself and
therefore, must be preceded by a class or object reference:

(ClassReference | ObjectReference) "." MethodInvocation

Once a method is invoked, the execution of the caller is suspended until the method is
processed by the class or object. Naturally, the sender of the method must ensure that the
arguments of the invocation are compatible with the parameters of the method.

Invoking Instance Methods
To invoke an instance method, such as GetIdNumber, an instance of Id must first be created:

Id id = new Id();
Once created, the method is invoked using the reference variable to the object, as follows:
id.GetIdNumber()

An instance method cannot be invoked with its class name, in this case Id. As an instance
method, GetIdNumber, therefore, is only accessible through its reference variable id.
Hence,

Id.GetIdNumber()

would generate a compilation error.

Invoking Static Method's

The number of Ids created so far is obtained by calling the static method
GetNumberOfIdsCreated using the class name as a prefix:

Id.GetNumberOfIdsCreated()

Unlike Java, no reference variable can invoke a static method. Therefore, the static method
GetNumberOfIdsCreated is only accessible through its class name Id. Hence,

id.GetNumberOfIdsCreated()

generates a compilation error as well. It is worthwhile to note that a static method is always
accessible and callable without necessarily having any instance of that class available.
Therefore, a client can invoke the GetNumberOfIdsCreated method without first creating
an instance of the class Id. By way of example, all methods in the Math class within the
System namespace of C# are defined as static methods. Therefore, if a call is made to
Math.Sqrt, it appears as a “global method" similar to a C function and must be referred to
by the class name Math.

32 Chapter 3: Class Members and Class Reuse ®

3.1.2 Accessing Fields

For a field to be accessed from outside the class itself, it must be preceded by a class or
object reference:

(ClassReference | ObjectReference) "." FieldName

Because both fields are private, neither the static field number nor the instance field
idNumber in the example is accessible from outside the class itself.

Accessing Instance Fields

If an instance field, such as idNumber in the class Id, is public rather than private then
access is made via the reference variable to the object:

id.idNumber

Like instance methods, instance fields can only be accessed via objects of the class.

Accessing Static Fields

If a static field, in this case number, is also public rather than private then access is made
via the class name:

Id.number; // Returns 24 (if 24 objects exist)

Like static methods, static fields can only be accessed via the class name.

3.1.3 Declaring Constructors

A constructor in C# is a special method that shares the same name of its class and is
responsible for the initialization of the class itself or any object that is instantiated from
the class. A constructor that is responsible for the initialization of an object is called an
instance constructor, and a constructor that is responsible for the initialization of the
class itself is called a static constructor. Our example on page 30 illustrates an instance
constructor Id (line 2) and a static constructor Id (line 3).

A static constructor is invoked automatically when a class is loaded into memory.
Therefore, a static constructor initializes static, and only static data fields before any
instance of that class is instantiated. For example, the static Id constructor initializes the
static field number to O on line 3. A static constructor is also unique, cannot have access
modifiers or parameters, and cannot be invoked directly.

An instance constructor on the other hand creates and initializes an instance of a
class (or object) at runtime. Unlike a static constructor, it must be invoked explicitly as
shown previously in Chapter 2 and here:

Id id = new Id();

® 3.1 Fields and Methods 33

A class may have more than one instance constructor as long as the signature of each
constructor is unique as shown here:

class Id {
public Id() { ... } // Constructor with no parameters.
public Id(int number) { ... } // Constructor with a single parameter.

}

A constructor with no parameters is called a parameterless constructor. If no construc-
tor is provided with a public or internal class then a default constructor with public
access is automatically generated by the compiler. This implicitly defined constructor is
parameterless and initializes all instance data members to their default values as shown
by the equivalent Id classes here:

class Id {
private int number;

}

class Id {
public Id () { number = 0; }
private int number;

}

Whether a class is public or internal, any explicitly defined constructor without an access
modifier is private as shown by the equivalent Id classes:

class Id {
Id () { number = 0; }
private int number;

}

class Id {
private Id () { number = 0; }
private int number;

}

In one important application, the well-known design pattern called the singleton uses
the notion of a private constructor to ensure that only one instance of a class is created.
This is achieved by giving the responsibility of instantiation to the class itself via a static
method often called GetInstance. The first user to invoke the GetInstance method receives
the object reference. All subsequent users receive the same reference. The following is a
complete implementation of an Id singleton and its test harness:

public class Id {
public static Id GetInstance() {
if (instance == null) { instance = new Id(); }

Tip

34 Chapter 3: Class Members and Class Reuse =

return instance;
}
public int GetIdNumber() {
int number = idNumber;
idNumber++;
return number;
}
private Id() { idNumber 1; }
static Id() { instance = null; }

private int idNumber;
private static Id dinstance;

}

public class TestIdSingleton {
public static void Main() {

Id idl = Id.GetInstance();

Id id2 Id.GetInstance();

Id id3 Id.GetInstance();

System.Console.WriteLine(idl.GetIdNumber());
System.Console.WriteLine(id2.GetIdNumber());
System.Console.WriteLine(id3.GetIdNumber());

}
The following output is generated:

1
2
3

In the preceding example, programmers that are familiar with the side effects of C-like
operators will notice that the body of the GetIdNumber method can be replaced by a
single statement { return idNumber++; }, which returns the idNumber value and then
(post-)increments the idNumber field. A full description of all C# operators is provided in
Chapter 5.

Although the initialization of data fields can be done at declaration, for example,
private int idNumber = 1;

it is not a good programming practice. Instead, every instance field should be initialized
in the same place, grouped either in a method or directly in the constructor. That being
said, all instance fields that are initialized when declared are automatically inserted in any

® 3.1 Fields and Methods 35

case at the beginning of the constructor body. Therefore, the following code:

class Id {
public Id () { }
private int number = 1;

}

is converted by the C# compiler to:

class Id {
public Id () { number = 1; }
private int number;

}

A Digression on Formatting

Similar to the print functions of C, the .NET string formatting methods, including
Console.WriteLine, take a formatting string as its first argument followed by zero or more
arguments. Each of the arguments is formatted according to its corresponding specifier
in the formatting string. Therefore, the formatting string contains one specifier for each
argument. Each specifier is defined as:

“{" n (""" "-"?wW? (M)7 "

where n is the zero-based index of the argument(s) following the format string, where
minus (-) specifies left justification, where w is the field width, and where f is the type of
format. Both left justification and type of format are optional. The sharp (#) and 0 are digit
and zero placeholders, respectively. For example, the simple formatting string with four
parameters given here:

Console.WriteLine("{0}, {1}, {2}, and {3}!", 1, 2, 3, "go");
outputs the following string:
1, 2, 3, go!

Table 3.1 summarizes the types of numeric formats, and the following program illustrates
their use. The character bar (|) in the formatting strings is used to highlight the resultant
string and any possible alignment.

using System;

class Format {
static void Main() {
Console.WriteLine("|{0:C}|{1:C}|", 1.23, -1.23);
Console.WriteLine("|{0:D}|{1:D4}|", 123, -123);
Console.WriteLine("|{0:F}|{1:F4}|", 1.23, 1.23);
Console.WriteLine("|{0:E}|{1:G}|", 1.23, 1.23);

36 Chapter 3: Class Members and Class Reuse =

Console.WriteLine("|{0:P}|{1:N}|", 1.23, 1.23);
Console.WriteLine(" |{0:X}|{1:X5}|{2,5:X}|{3,-5:X}|", 255, 255, 255, 255);
Console.WriteLine("|{0:#.00}|{1:0.00}|{2,5:0.00}|{3,-5:0.00}|",

.23, .23, .23, .23);

}

Output:

1$1.23]($1.23) |
|123]-0123]
|1.23]1.2300]
|1.230000E+000|1.23|
|123.00 %|1.23]
|FF|000FF| FF|FF
|.23]0.23] 0.23]0.23 |

3.1.4 Declaring Destructors

The garbage collector in C# is an automatic memory management scheme that scans for
objects that are no longer referenced and are therefore eligible for destruction. Hence,
memory allocated to an object is recouped automatically by a garbage collector when
the object is no longer accessible (or reachable). Although the garbage collector may be
invoked directly using the GC.Collect method, this practice sidesteps the heuristics and
complex algorithms that are used to optimize system performance. Unless there are com-
pelling reasons to do otherwise, garbage collection is best left to the system rather than
the programmer. It is safer, easier, and more efficient.

However, an object may acquire resources that are unknown to the garbage collector,
such as peripheral devices and database connections. These resources are the respon-
sibility of the object itself and, therefore, the logic to release these resources must be

Type of Format Meaning

corC Currency

dorD Decimal

eorE Scientific with “e" or “E" (6 digits)

forF Fixed-point (12 digits)

gorG General (the most compact between E and F)
norN Number

p or P Percent

x or X Hexadecimal

Table 3.1: Numeric format types.

® 3.2 Parameter Passing 37

implemented in a special method called a destructor. Although an object may be instan-
tiated in any number of ways, at most one destructor is declared per class. A destructor,
as shown here for the class Id, where Id is preceded by a tilde (7), cannot be inherited,
overloaded, or explicitly invoked.

public class Id {
“Id () { /* release of resources */ }

}

Instead, each destructor is invoked automatically but non-deterministically at the end
of a program or by the garbage collector itself. To ensure that a destructor is invoked
immediately once an object is no longer referenced, the IDisposable .NET design pattern
should be used as described in Section 9.1. Such a destructor is also called a finalizer in
the .NET context.

3.2 Parameter Passing

As described earlier in the chapter, each method in C# has an optional sequence of formal
parameters. Each formal parameter, in turn, represents a special kind of local variable
that specifies the type of argument that must be passed to the given method. Like other
local variables, formal parameters are allocated on the stack when a method is invoked
and are deallocated when the method completes its execution. Therefore, the lifetime of a
parameter and the lifetime of its method are synonymous. Finally, arguments are passed
to formal parameters in one of two ways: by value or by reference. These ways are
explored in greater detail in the following two sections.

3.2.1 Passing Arguments by Value

When an argument is passed by value, the formal parameter is initialized to a copy of the
actual argument. Therefore, the actual argument itself cannot be modified by the invoked
method. In the following example, an integer variable p is passed by value to a formal
parameter of the same name. Although the formal parameter may change its local copy
of p, the value of p in the main program retains its original value after the invocation of
ParambyValue.

using System;

class ParambyValue {
static void Fct(int p) {

Console.WriteLine("In Fct: p = {0}", ++p);
}
static void Main() {

int p = 1;

Console.WriteLine("Before: p = {0}", p);

Fet(p);

Tip

38 Chapter 3: Class Members and Class Reuse =

Console.WriteLine("After: p = {0}", p);

}
b
Output:
Before: p =1
In Fct: p =2
After: p=1

3.2.2 Passing Arguments by Reference

When an argument is passed by reference, any changes to the formal parameter are
reflected by the actual argument. In C#, however, there are two types of reference param-
eters: ref and out. If the formal parameter is preceded by the modifier ref then the actual
argument must be explicitly initialized before invocation and be preceded by the modifier
ref as well. In the following example, the variables a and b in the Main method are explic-
itly initialized to 1 and 2, respectively, before the invocation of Swap. Explicit initialization
precludes implicit initialization by default and therefore, without the assignment of 1 and
2 to a and b, respectively, the default values of 0 would raise a compilation error.

using System;

class ParamByRef {
static void Swap(ref int a, ref int b) {

int t = a;
a = b;
b = t;
}
static void Main() {
int a = 1;
int b = 2;
Console.WriteLine("Before: a = {0}, b = {1}", a, b);
Swap(ref a, ref b);
Console.WriteLine("After: a = {0}, b = {1}", a, b);
}
h;
Output:
Before: a=1, b =2
After: a=2,b =1

If the formal parameter and actual argument are preceded by the modifier out then the
actual argument does not need to be initialized before invocation. In other words, the
return value is independent of the initial value (if any) of the actual argument. The modifier

® 3.2 Parameter Passing 39

out is used to indicate that the formal parameter will be assigned a value to be returned
to its corresponding argument. Since the use of an unassigned variable is not allowed in
C#, this modifier can be used to initialize (or reset) local variables to default values as
shown:

using System;

class ParamByRefWithOut {
static void SetRange(out int min, out int max) { min = 0; max = 255; }

static void Main() {
int min, max;

SetRange(out min, out max);
Console.WriteLine("Begin: min = {0}, max = {1}", min, max);
min++; max--;
Console.WriteLine("Change: min
SetRange(out min, out max);
Console.WritelLine("End: min

{0}, max = {1}", min, max);

{0}, max

{1}", min, max);

}
Output:

Begin: min = 0, max = 255
Change: min = 1, max = 254
End: min = 0, max = 255

In the preceding examples, all arguments were of the integer type int. Reference types,
however, can also be passed by value or by reference. Because a reference-type argument
points to an object stored on the heap and does not represent the object itself, modifi-
cations to the object can be made using both parameter-passing mechanisms. Passing a
reference-type argument by value simply copies the memory address of the object to the
formal parameter. Passing a reference-type argument by reference implies that the pointer
itself can be modified and reflected by the actual argument. By changing the reference-type
parameter, the pointer is modified to reference an entirely different object of the same
class. If that is not the intent, then passing a reference-type argument by value ensures
that only the object itself and not the reference to the object can be modified. The following
example illustrates this behavior.

using System;

class Counter {
public void Inc() { count++; }
public int GetCount() { return count; }
private int count;

40 Chapter 3: Class Members and Class Reuse =

}

class ParamByValByRefWithObjects {
static void SayBye(ref string msg) { msg
static void SayGoodBye(string msg) { msg

"Bye!"; }
"Goodbye!"; }

static void IncR(ref Counter c) {

¢ = new Counter();

c.Inc();

Console.Write("cR = {0} ", c.GetCount());
}
static void IncV(Counter c) {

¢ = new Counter();

c.Inc();

Console.Write("cV = {0} ", c.GetCount());
}
static void Main() {

string msg = "Hello!";

Console.Write("{0} ", msg);

// (1)
SayGoodBye(msg) ;
Console.Write("{0} ", msg);
// (2)
SayBye(ref msg);
Console.WriteLine("{0} ", msg);
// (3)
Counter cm = new Counter();
Console.WritelLine("cm = {0}", cm.GetCount());
// (4)
IncV(cm);
Console.WritelLine("cm = {0}", cm.GetCount());
// (5)
IncR(ref cm);
Console.WriteLine("cm = {0}", cm.GetCount());
} // (6)
}
Output:

Hello! Hello! Bye!
cm =0
cV=1cm=20
cCR=1cm=1

In Figure 3.1, steps 1 to 6 correspond to the comments in the listing above. At (1), the
reference variable msg points to the literal string object "Hello!". Between (1) and (2),

® 3.2 Parameter Passing 41

(1) main’s msg =i “Hello!”
(2) SayGoodBye’s msg—X—»

main’s msg =I “Hello!”
(3) SayBye’s msg7’m

main’s msg “Hello'”
(4) cm =I count=0

(5) cm =I count=0
IncV’s ¢ X =I count =1

(6) cm \I count=0
IncR’s I count=1

Figure 3.1: Parameter passing by value and by reference with objects.

the formal parameter msg of SayGoodBye is assigned a copy of the actual argument msg in
Main. The parameter msg is then assigned a reference to the literal string "Goodbye!". Once
the method completes its execution, the reference to "Goodbye!" is lost as indicated by
the X, and there is no impact on msg in Main. Between (2) and (3), the actual argument
msg of Main is passed by reference to msg of SayBye. The parameter msg is then assigned
a reference to the literal "Bye!", which is also reflected by msg in Main. The literal string
object "Hello!", then, is no longer reachable and is marked for garbage collection.

At (4), the object cm is created and initialized to zero by default. Between (4) and
(5), the argument cm of Main is passed by value to ¢ of IncV. Hence, c is a copy of the
reference cm. The parameter c is then assigned a reference to a new object of Counter.
The count field of c is incremented by 1 and displayed. However, once the IncV method
completes its execution, the reference to c is lost, and there is no impact on cm in Main.
On the other hand, when cm is passed by reference, the creation of a new Counter in the
IncR method is assigned directly to cm in Main. Therefore, the reference cm to the original
object is lost and replaced by a reference to the object created within IncR. Output at (6)
confirms that ¢ and cm refer to the same object.

3.2.3 Passing a Variable Number of Arguments

In C/C++, trying to pass a variable number of arguments via the varargs structure com-
promises the type-checking capabilities of the compiler. To enforce type safety, the C#
language is equipped with a third parameter modifier called params. The modifier params

42 Chapter 3: Class Members and Class Reuse ®

is followed by an open array of a specific type. Because the array is expecting values
of a given type, type checking is enforced at compile time. In the following example, the
method Fct is expecting to receive zero or more integer arguments, each of which is stored
consecutively in the open array called args. Because the number of arguments is variable,
the params modifier can only be applied to the last parameter.

using System;

class ParamByRefWithParms {
static void Fct(params int[] args) {
Console.Write ("{0} argument(s):
for (int n = 0; n < args.Length; n++)
Console.Write("{0} ", args[n]);
Console.WritelLine();

, args.Length);

3
static void Main() {
Console.WriteLine(" args[n]: 01 2 3");
Fct();
Fct(1);
Fet(1l, 2);
Fet(1l, 2, 3);
Fct(new int[] {1, 2, 3, 4});
3
}
Output:
args[n]: 01 2 3
0 argument(s):
1 argument(s): 1
2 argument(s): 1 2
3 argument(s): 1 2 3
4 argument(s): 1 2 3 4

The last invocation of Fct in the main program passes an anonymous array.

3.2.4 Using the this Reference

The keyword this is an argument that is implicitly passed to each instance method and
serves as a self-reference to the current object. Using the this reference, one can differ-
entiate between a method argument and a data field that share the same name, as shown:

public class Counter {
public Counter(int count) { this.count = count; }

private int count;

® 3.2 Parameter Passing 43

Overuse of the this reference, however, may impair readability. Alternatively, a common
style convention used in C++, Java, and C# adds an underscore as a prefix or suffix to the
local data member:

public class Counter {
public Counter(int count) { _count = count; }

private int _count;

A current method may also be accessed via the this reference. For instance, suppose
that the Counter class included an additional method called Init to set or reset count to
a specific value. In the following example, the method Init is called from the Counter
constructor:

public class Counter {
public Counter(int count) {
this.Init(count); // Same as Init(count)
3
public void Init(int count) {
this.count = count;

}

private int count;

Because the this prefix is implicitly understood, it is generally not included in the
invocation of a current method.

Finally, the this reference can be used as part of a callback. A callback is a way
for one object, A for example, to retain a reference to another object B so that A may “call
back” a method in B at any time. The purpose of a callback is to anonymously invoke a
method by referencing only the object, in our case A, that retains the other reference to B.
Hence, the reference to Bis hidden within A. In the next example, an amount of money is cal-
culated both with and without a discount. An instance of the Amount class is first created on
line 26 and its reference is passed to two static methods on lines 31 and 35, respectively.
The first method called TotalWithNoDiscount gives no discount and simply retrieves the
value of a using its Get method. The second method called TotalWithDiscount calculates
a 20% discount. This method first creates an instance of Discount via the CreateDiscount
method of Amount. In CreateDiscount on line 6, the constructor of Discount is invoked and
the current reference of Amount is passed and assigned to amount within the newly created
instance of Discount on line 11. Once the instance of Discount is created and retains the
reference to Amount, its Apply method is invoked on line 20. Within Apply, the amount

Tip

44 Chapter 3: Class Members and Class Reuse =

reference is used to call back the Get method of Amount, retrieve its value, and return the
discounted value (line 13).

1 using System;

2

3 public class Amount {

4 public Amount(double buy) { this.buy = buy; }
5 public double Get() { return buy; }
6 public Discount CreateDiscount() { return new Discount(this); }
7 private double buy;

8 3

9

10 public class Discount {

11 public Discount(Amount amount) { this.amount = amount; }

12 public double Apply() {

13 return amount.Get() * 0.80; // Callback amount to apply
14 } // 20% discount.

15 private Amount amount;

16 }

17

18 public class TestCallback {

19 public static double TotalWithDiscount(Amount a) {

20 return a.CreateDiscount().Apply(); // Create a discount
21 } // then apply.

22 public static double TotalWithNoDiscount(Amount a) {

23 return a.Get();

24 }

25 public static void Main() {

26 Amount a = new Amount(60.00);

27

28 // Use amount without applying a discount (no call back).
29

30 Console.WriteLine("Please pay {0:C} (no discount)",

31 TotalWithNoDiscount(a));

32 // Use amount and apply a discount (call back).

33

34 Console.WriteLine("Please pay {0:C} (20% discount)",

35 TotalWithDiscount(a));

36 }

37 }

Output:

Please pay $60.00 (no discount)
Please pay $48.00 (20% discount)

® 3.3 Class Reuse 45

3.2.5 Overloading Methods

Overloading a method means to declare several methods of the same name. But in order
to distinguish among methods, each one must have a distinct parameter list, bearing in
mind that the return type and the parameter modifier params are not part of a method
signature.

1 class MethodOverloading {

2 void Fct(int i) { }

3 int Fct(int i) { ... } // error: same signature as line 2
4 void Fct(char c) { ...}

5 void Fct(int[] args) { }

6 void Fct(params int[] args) { } // error: same signature as line 5
7

3.3 Class Reuse

One of the principal benefits of object-oriented technology is the ability to reuse and
extend classes. The growing libraries of reusable code in Java and C# reflect the impor-
tance and economy of building code from existing components. Reusing code that has
weathered extensive testing gives rise to software products that are more robust, main-
tainable, and reliable. In this section, we examine two fundamental ways, inheritance
and aggregation, that create classes from ones that already exist. To draw a comparison
between the two ways, a simple class called Counter is first defined.

public class Counter {

public Counter() { SetCount(0); }
public Counter(int count) { SetCount(count); }
public int GetCount() { return count; }

public void SetCount(int count) { this.count = count; }

private int count;

}

The class Counter has two constructors, a parameterless constructor that initializes count
to 0 and an overloaded constructor that initializes count to its single parameter. Both
constructors invoke SetCount. The class also includes the method GetCount that returns
the current value of count.

We will now extend the Counter class, first via aggregation and second via inheritance,
to create another class called BoundedCounter. Objects of the BoundedCounter class behave
essentially the same as those objects of Counter, but with one key difference: The private
data member count is only valid between two user-defined values, min and max. Although
the class BoundedCounter places the onus on the client to check that count falls between
min and max, provisions are made to return these bounds for testing.

46 Chapter 3: Class Members and Class Reuse =

3.3.1 Using Aggregation

Aggregation, otherwise known as a “has-a” or “part-of” relationship, gathers one or more
objects from various classes and places them inside another class. Aggregation, therefore,
reuses classes by assembling objects of existing classes to define, at least in part, the data
members and methods of a new class. In order to define the class BoundedCounter, a single
object of the Counter class is placed inside BoundedCounter along with two additional data
members, min and max. Also included are methods to return the minimum and maximum
values, GetMax and GetMin, as well as a method InitRange to set the bounds. By default,
the count for an object of BoundedCounter is initialized to min upon creation.

public class BoundedCounter {
public BoundedCounter (int min, int max) {
this.c = new Counter(min); // Creates a private Counter c
InitRange(min, max);

h
private void InitRange(int min, int max) {
this.min = min;
this.max = max;
}
public int GetCount() { return c.GetCount(); }// Reuses object c
public void SetCount(int count) { c.SetCount(count); } // Reuses object c
public int GetMin() { return min; }
public int GetMax() { return max; }
private Counter c; // Reuses object Counter c by aggregation
private int min;
private int max;

}

Although aggregation does work to define BoundedCounter, it is not a particularly elegant
solution. The methods GetCount and SetCount of BoundedCounter are reimplemented using
the existing methods of Counter. In this case, where behavior is common, inheritance pro-
vides a better mechanism than aggregation for class reuse. In Section 3.3.3, the opposite
is demonstrated.

3.3.2 Using Inheritance

“=

Inheritance, otherwise known as an “is-a” or “kind-of” relationship, allows a class of objects
to reuse, redefine, and possibly extend the functionality of an existing class. Therefore,
one class, called the derived or subclass, “inherits” all data members and methods of its
base or superclass with the exception of instance constructors. Also, it should be noted
with respect to the encapsulation principle that private data members of the base class
are not directly accessible from their derived classes except through protected or public
methods.

® 3.3 Class Reuse 47

Rather than being inherited, instance constructors of the superclass are called either
implicitly or explicitly upon creation of an object from the derived class. This exception is
best motivated by noting that an object from an inherited class is a “specialized” instance
of the base class. Without first creating an instance of the base class, it is simply not
possible to create an instance of the derived class. If the base class has no constructor
and a default constructor is generated automatically by the compiler, then the compiler
can also generate a default constructor for the derived class. Otherwise, the derived class
must have at least one constructor.

Like Java, C# only supports single inheritance; that is, a class can only inherit from
one other class at a time. Although multiple inheritance is more flexible, reuse is also more
difficult. However, as will be seen in Chapter 7, C# does offer a sound software engineering
alternative by allowing the implementation of multiple interfaces rather than classes.

Syntactically, one class inherits from another by placing a colon (:) between the
name of the derived class and the name of the base class. In our next example, class
BoundedCounter : Counter could be read as “class BoundedCounter inherits from class
Counter”. In this case, BoundedCounter is the derived class and Counter is the base class.

1 public class BoundedCounter : Counter {

2 public BoundedCounter() : base() {

3 InitRange(0, Int32.MaxValue);

4 }

5 public BoundedCounter(int min, int max) : base(min) {
6 InitRange(min, max);

7 3

8 private void InitRange(int min, int max) {
9 this.min = min;

10 this.max = max;

11 }

12 public int GetMin() { return min; }

13 public int GetMax() { return max; }

14

15 private int min;

16 private int max;

17 }

The Keyword base

The base keyword is used to access members of the base class from within a derived
class. In the previous example, several BoundedCounter constructors can be implemented
by reusing the Counter class constructors. Each of the two BoundedCounter constructors
explicitly creates an instance of Counter by calling the appropriate constructor of Counter
using the keyword base and the proper number of parameters (lines 2-7). In the context
of a constructor, the keyword base may only be used within the initialization list that
precedes the body of the constructor (lines 2 and 5). Only once an instance of Counter
has been created are the data fields min and max initialized to complete the creation of an

48 Chapter 3: Class Members and Class Reuse =

object from BoundedCounter. Since constructors cannot be inherited, the keyword base is
indispensable. Another use of the keyword base within derived classes is presented in the
next section.

The Keyword new

In C#, a warning message is generated by the compiler when a method is hidden by inher-
itance in an unintentional manner. For example, the method M in the derived class D hides
the one defined in the base class B:

class B { public void M() {} }
class D : B { public void M() {} } // Warning: M() in class D hides M()
// in class B.

In order to express this intention explicitly, the new modifier must be used. This modifier,
when placed before a member of the derived class, explicitly hides the inherited member
with the same signature. Hence, the following code removes the warning:

class B { public void M() {} }
class D : B { new public void M() {} } // No warning.
// Hiding is now explicit.

Using both keywords, new and base, a method can be reused when behavior of a base
class is invoked by the corresponding method of the derived class. In the following short
example, the class ExtendedCounter inherits from the class Counter. The derived method
Tick reuses the same method (and implementation) of its base class by invoking the Tick
method of its parent. It is worth noting again that the keyword new is required to remove
the warning and to state clearly that the derived Tick method hides the one in the base
class. To avoid a recursive call, however, the invocation of Tick is prefixed by the keyword
base. The return type of the derived class must match or be a subclass of the return type
of the base method as well.

class Counter {
public bool Tick() { ... }

}

class ExtendedCounter : Counter {
public new bool Tick() {
// Optional computation before
base.Tick(); // Reuse the Tick method from Counter
// Optional computation after

® 3.3 Class Reuse 49

The Extension of Functionality

The class BoundedCounter extends the functionality of Counter with the methods GetMin,
GetMax, and InitRange. Unlike aggregation, the methods GetCount and SetCount are inher-
ited and not reimplemented. Even the Counter data field c disappears. In Chapter 7, we
show how behavior can be overridden or redefined using abstract classes. But for now, the
common behavior of Counter and its subclass BoundedCounter is exactly the same.

To create an instance of BoundedCounter with minimum and maximum boundaries
of 0 and 9 respectively, we are able to invoke all public (and protected) methods available
from Counter even if these methods are not visible by looking at the class definition of
BoundedCounter alone.

BoundedCounter bc = new BoundedCounter(0,9);

int countValue = bc.GetCount(); // From Counter
int minValue bc.GetMin(); // From BoundedCounter
int maxValue bc.GetMax(); // From BoundedCounter

If bc is an instance of BoundedCounter which is derived from Counter, then bc can also
be assigned to a Counter object ¢ as shown below. The extra functionality of bc, that is,
GetMin, GetMax, and InitRange, is simply not available to c.

Counter c = bc;

int countValue = c.GetCount(); // OK.

int minValue = c.GetMin(); // Error: No GetMin method in the
// Counter class.
countValue = c.count; // Error: No access to private members.

An inherited class like BoundedCounter has access to all public and protected data fields
and methods of its base class. Private members are the only exceptions. Also by inheri-
tance, a hierarchy of classes is established. In the preceding example, BoundedCounter is a
subclass of Counter, and Counter is a superclass of BoundedCounter. By default, all classes
are derived from the root class object and therefore, all methods defined in object can
be called by any C# object. Consequently, every class other than object has a superclass.
If the superclass is not specified then the superclass defaults to the object class.

A Digression on Constructor/Destructor Chaining

Objects are built from the top down. A constructor of a derived class calls a constructor
of its base class, which in turn calls a constructor of its superclass, and so on, until the
constructor of the object class is invoked at the root of the class hierarchy. The body
of the object constructor then runs first, followed by the body of its subclass and so on
down the class hierarchy. This action is called constructor chaining. However, if the first
statement in a constructor is not an explicit call to a constructor of the superclass using the
keyword base then an implicit call to base() with no arguments is generated. Of course,
if the superclass does not have a parameterless constructor then a compilation error is

50 Chapter 3: Class Members and Class Reuse =

generated. It is however possible that a constructor calls another constructor within the
same class using the keyword this:

public class Counter {
public Counter() : this(0) { }
public Counter(int count) { this.count = count; }

}

The first constructor calls the second with zero as its parameter. At this point, the second
constructor implicitly calls the parameterless constructor of its superclass with base()
before assigning 0 to its local data member count.

Whereas objects are created from the top down, objects are destroyed in the reverse
fashion from the bottom up. For example, when an object of BoundedCounter is created, the
constructor of Counter is executed before the constructor of BoundedCounter as expected.
However, when an object of BoundedCounter is destroyed upon completion of the method
Main, the destructor of BoundedCounter is completed before the destructor of Counter.

class Counter {
public Counter () { System.Console.WriteLine(" Counter"); }
“Counter () { System.Console.WriteLine(" Counter"); }

class BoundedCounter : Counter {
public BoundedCounter () { System.Console.WriteLine(" BoundedCounter"); }
“BoundedCounter () { System.Console.WriteLine(" BoundedCounter"); }

class TestDestructor {
public static void Main() {
BoundedCounter bc = new BoundedCounter();
b
}

Output:

Counter

BoundedCounter
“BoundedCounter
“Counter

3.3.3 Comparing Aggregation and Inheritance

Although the BoundedCounter class was best implemented using inheritance, aggregation
proves equally adept in other situations. For example, consider the following class Stream,

® 3.3 Class Reuse 51

which offers a behavior consisting of two methods, Read and Write:

class Stream {
public int Read() { ...}
public void Write(int i) { ... }

}

If a new class called StreamReader is interested only in the Read behavior of the Stream
class then inheritance is not a good choice. With inheritance, the entire behavior of the
Stream class, including its Write method, is exposed and is accessible.

class StreamReader : Stream {
// By inheritance, both Read and Write methods are available

}

StreamReader s = new StreamReader();
s.Write(0); // Write is called by mistake

Aggregation proves to be a more appropriate choice in this case. Exact behavior is realized
by selecting only those methods of Stream that define the behavior of StreamReader, no
more and no less. Unwanted behavior, such as Write, is not exposed. Consider now the
following C# code using aggregation:

class StreamReader {
public int Read() { // Read is now the only method available.
return s.Read();
}
private Stream s;

}

StreamReader s = new StreamReader();
s.Write(0); // Compilation error

In this case, only the Read method is reimplemented. Any attempt to access the Write
method of Streamresults in a compilation error, an excellent reminder of the added restric-
tion. However, if one class does include and extend the entire behavior of another class,
then inheritance is preferred. Otherwise, if only partial behavior is required or dispersed
among several classes then aggregation is more appropriate.

3.3.4 Using Protected Methods

In Chapter 2, the protected modifier was applied to a data field or method to restrict access
to its own class and subclasses. To illustrate the use of the protected modifier with respect
to methods, suppose that a parameterless constructor is added to the Stream class given

52 Chapter 3: Class Members and Class Reuse ®

previously. This constructor invokes a protected method called Init:

class Stream {

public Stream() { Init(0); }

protected void Init(long position) { this.position = position; }
public int Read() { ...}

public void Write(int i) { ...}

public long GetLength() { return length; }

private long length; // The length of the stream in bytes.
private long position; // The current position within the stream.

}

The purpose of the Init method is to localize in a single place the common initialization
procedure for a Stream object, albeit in this case for a single data member. Therefore, all
constructors of Stream and its derived classes may invoke Init before or after perform-
ing any specialized initializations. Furthermore, once a Stream object has been created,
the Init method also allows the class and its derived classes to reset the object to its
initial configuration. Finally, the protected modifier preserves a private view for the
clients of Stream and its derived classes. The following example presents a subclass called
MyStream that reuses the base Init method in its own local Init before performing other
initializations:

class MyStream : Stream {
public MyStream() : base() {
Init();
}
protected void Init() {
base.Init(base.GetLength()); // To read stream in reverse order.
// Other local initializations (mode, size, ...)

}

The full impact of protected access when combined with the virtual and override
modifiers is described in Chapter 4.

Exercises

Exercise 3-1. Write two methods that receive an Id object—one by reference MR and
the other by value MV. Each of them changes the first name of an Id object and prints the
change. Add print statements before and after the invocation of each method to see the
results.

B Exercises 53

Exercise 3-2. A person can be defined as an identification having a first name, a last
name, and an e-mail address. Use inheritance to define the class Person by reusing the
class Id, and write a Main method that creates a few people.

Exercise 3-3. A contact can be defined as a person that has an e-mail address. Use aggre-
gation to define the class Contact by reusing both Id and Email classes, and write a Main
method that creates a few contacts.

chapter 4

Unified Type System

Introduced in 1980, Smalltalk prided itself as a pure object-oriented language. All
values, either simple or user-defined, were treated as objects and all classes, either directly
or indirectly, were derived from an object root class. The language was simple and concep-
tually sound. Unfortunately, Smalltalk was also inefficient at that time and therefore, found
little support for commercial software development. In an effort to incorporate classes in
C and without compromising efficiency, the C++ programming language restricted the type
hierarchy to those classes and their subclasses that were user-defined. Simple data types
were treated as they were in C.

In the early 1990s, Java reintroduced the notion of the object root class but continued
to exclude simple types from the hierarchy. Wrapper classes were used instead to convert
simple values into objects. Language design to this point was concerned (as it should be)
with efficiency. If the Java virtual machine was to find a receptive audience among software
developers, performance would be key.

As processor speeds have continued to rapidly increase, it has become feasible to
revisit the elegance of the Smalltalk language and the concepts introduced in the late
1970s. To that end, the C# language completes, in a sense, a full circle where all types
are organized (unified) into a hierarchy of classes that derive from the object root class.
Unlike C/C++, there are no default types in C# and, therefore, all declared data elements
are explicitly associated with a type. Hence, C# is also strongly typed, in keeping with its
criteria of reliability and security.

This chapter presents the C# unified type system, including reference and value
types, literals, conversions, boxing/unboxing, and the root object class as well as two
important predefined classes for arrays and strings.

55

56 Chapter 4: Unified Type System =

4.1 Reference Types

Whether a class is predefined or user-defined, the term class is synonymous with type.
Therefore, a class is a type and a type is a class. In C#, types fall into one of two main
categories: reference and value. A third category called type parameter is exclusively
used with generics (a type enclosed within angle brackets <Type>) and is covered later in
Section 8.2:

Type = ValueType | ReferenceType | TypeParameter .

Reference types represent hidden pointers to objects that have been created and allocated
on the heap. As shown in previous chapters, objects are created and allocated using the
new operator. However, whenever the variable of a reference type is used as part of an
expression, it is implicitly dereferenced and can therefore be thought of as the object
itself. If a reference variable is not associated with a particular object then it is assigned
to null by default.

The C# language is equipped with a variety of reference types, as shown in this EBNF
definition:

ReferenceType = ClassType | InterfaceType | ArrayType | DelegateType .
ClassType = TypeName | "object" | "string"

Although the definition is complete, each reference type merits a full description in its
own right. The ClassType includes user-defined classes as introduced in Chapter 2 as
well as two predefined reference types called object and string. Both predefined types
correspond to equivalent CLR .NET types as shown in Table 4.1.

The object class represents the root of the type hierarchy in the C# programming
language. Therefore, all other types derive from object. Because of its importance, the
object root class is described fully in Section 4.6, including a preview of the object-
oriented tenet of polymorphism. Arrays and strings are described in the two sections
that follow, and the more advanced reference types, namely interfaces and delegates, are
presented in Chapter 7.

4.2 Value Types

The value types in C# are most closely related to the basic data types of most programming
languages. However, unlike C++ and Java, all value types of C# derive from the object

C# Type Corresponding CLR .NET Type
string System.String
object System.Object

Table 4.1: Reference types and their corresponding .NET types.

B 4.2 Value Types 57

class. Hence, instances of these types can be used in much the same fashion as instances
of reference types. In the next four subsections, simple (or primitive) value types, nullable
types, structures, and enumerations are presented and provide a complete picture of the
value types in C#.

4.2.1 Simple Value Types

Simple or primitive value types fall into one of four categories: Integral types, floating-
point types, the character type, and the boolean type. Each simple value type, such as char
or int, is an alias for a CLR .NET class type as summarized in Table 4.2. For example, bool
is represented by the System.Boolean class, which inherits in turn from System.Object.
A variable of boolean type bool is either true or false. Although a boolean value
can be represented as only one bit, it is stored as a byte, the minimum storage entity on
many processor architectures. On the other hand, two bytes are taken for each element of
a boolean array. The character type or char represents a 16-bit unsigned integer (Unicode
character set) and behaves like an integral type. Values of type char do not have a sign. If
a char with value 0xFFFF is cast to a byte or a short, the result is negative. The eight inte-
ger types are either signed or unsigned. Note that the length of each integer type reflects
current processor technology. The two floating-point types of C#, float and double, are
defined by the IEEE 754 standard. In addition to zero, a float type can represent non-zero
values ranging from approximately 1.5 x 104> to £3.4 x 1038 with a precision of 7 digits.
A double type on the other hand can represent non-zero values ranging from approxi-
mately £5.0 x 107324 to £1.7 x 10398 with a precision of 15-16 digits. Finally, the decimal
type can represent non-zero values from £1.0 x 1028 to approximately £7.9 x 1028 with

C# Type Corresponding CLR .NET Type
bool System.Boolean
char System.Char
sbyte System.SByte
byte System.Byte
short System.Intl6
ushort System.UInt16
int System.Int32
uint System.UInt32
long System.Int64
ulong System.UInt64
float System.Single
double System.Double
decimal System.Decimal

Table 4.2: Simple value types and their corresponding .NET classes.

58

Chapter 4: Unified Type System

Type Contains Default Range

bool true or false false n.a.

char Unicode character \u0000 \u0000 .. \uFFFF
shyte 8-bit signed 0 -128 .. 127

byte 8-bit unsigned 0 0..255

short 16-bit signed 0 -32768 .. 32767
ushort 16-bit unsigned 0 0..65535

int 32-bit signed 0 -2147483648 .. 2147483647
uint 32-bit unsigned 0 0..4294967295

long 64-bit signed 0 -9223372036854775808 .. 9223372036854775807
ulong 64-bit unsigned 0 0..18446744073709551615
float 32-bit floating-point 0.0 see text

double 64-bit floating-point 0.0 see text

decimal high precision 0.0 see text

Table 4.3: Default and range for value types.

28-29 significant digits. Unlike C/C++, all variables declared as simple types have guaran-
teed default values. These default values along with ranges for the remaining types (when
applicable) are shown in Table 4.3.

4.2.2 Nullable Types

A nullable type is any value type that also includes the null reference value. Not
surprisingly, a nullable type is only applicable to value and not reference types. To
represent a nullable type, the underlying value type, such as int or float, is suffixed
by the question mark (?). For example, a variable b of the nullable boolean type is
declared as:

bool? b;

Like reference and simple types, the nullable ValueType? corresponds to an equivalent
CLR .NET type called System.Nullable<ValueType>.

An instance of a nullable type can be created and initialized in one of two ways. In
the first way, a nullable boolean instance is created and initialized to null using the new

operator:
b = new bool? ();

In the second way, a nullable boolean instance is created and initialized to any member of
the underlying ValueType as well as null using a simple assignment expression:

b = null;

B 4.2 Value Types 59

Once created in either way, the variable b can take on one of three values (true, false or
null). Each instance of a nullable type is defined by two read-only properties:

1. HasValue of type bool, and
2. Value of type ValueType.

Although properties are discussed in greater detail in Chapter 7, they can be thought of in
this context as read-only fields that are attached to every instance of a nullable type. If an
instance of a nullable type is initialized to null then its HasValue property returns false
and its Value property raises an InvalidOperationException whenever an attempt is made
to access its value.l On the other hand, if an instance of a nullable type is initialized to
a particular member of the underlying ValueType then its HasValue property returns true
and its Value property returns the member itself. In the following examples, the variables
nb and ni are declared as nullable byte and int, respectively:

1 class NullableTypes {

2 static void Main(string[] args) {

3 byte? nb = new byte?(); // Initialized to null

4 // (parameterless constructor).
5 nb = null; // The same.

6 // nb.HasValue returns false.
7 // nb.Value throws an

8 // InvalidOperationException.
9

10 nb = 3; // Initialized to 3.

11 // nb.HasValue returns true.
12 // nb.Value returns 3.

13 byte b = 5;

14 nb = b; // Convert byte into byte?
15 int? ni = (int?)nb; // Convert byte? into int?

16 b = (byte)ni; // Convert int? dinto byte.
17 b = (byte)nb; // Convert byte? into byte.
18 b = nb; // Compilation error:

19 // Cannot convert byte? into byte.
20 }

21 }

Any variable of a nullable type can be assigned a variable of the underlying ValueType,
in this case byte, as shown above on line 14. However, the converse is not valid
and requires explicit casting (lines 15-17). Otherwise, a compilation error is generated
(line 18).

lExceptions are fully discussed in Chapter 6.

60 Chapter 4: Unified Type System =

4.2.3 Structure Types

The structure type (struct) is a value type that encapsulates other members, such as
constructors, constants, fields, methods, and operators, as well as properties, indexers,
and nested types as described in Chapter 7. For efficiency, structures are generally used
for small objects that contain few data members with a fixed size of 16 bytes or less.
They are also allocated on the stack without any involvement of the garbage collector. A
simplified EBNF declaration for a structure type is given here:

StructDecl = "struct" Id (":" Interfaces)? "{" Members "3}" ";"

For each structure, an implicitly defined default (parameterless) constructor is always gen-
erated to initialize structure members to their default values. Therefore, unlike classes,
explicit default constructors are not allowed. In C#, there is also no inheritance of classes
for structures. Structures inherit only from the class System.ValueType, which in turn
inherits from the root class object. Therefore, all members of a struct can only be public,
internal, or private (by default). Furthermore, structures cannot be used as the base for
any other type but can be used to implement interfaces.

The structure Node encapsulates one reference and one value field, name and age,
respectively. Neither name nor age can be initialized outside a constructor using an
initializer.

struct Node {
public Node(string name, int age) {
this.name = name;

this.age = age;
}
internal string name;
internal int age;

}

An instance of a structure like Node is created in one of two ways. As with classes, a
structure can use the new operator by invoking the appropriate constructor. For example,

Node nodel = new Node();

creates a structure using the default constructor, which initializes name and age to null
and 0, respectively. On the other hand,

Node node2 = new Node ("Michel", 18);

creates a structure using the explicit constructor, which initializes name to Michel and age
to 18. A structure may also be created without new by simply assigning one instance of a
structure to another upon declaration:

Node node3 = node2;

B 4.2 Value Types 61

However, the name field of node3 refers to the same string object as the name field of node?2.
In other words, only a shallow copy of each field is made upon assignment of one struc-
ture to another. To assign not only the reference but the entire object itself, a deep copy
is required, as discussed in Section 4.6.3.

Because a struct is a value rather than a reference type, self-reference is illegal.
Therefore, the following definition, which appears to define a linked list, generates a
compilation error.

struct Node {
internal string name;
internal Node next;

4.2.4 Enumeration Types

An enumeration type (enum) is a value type that defines a list of named constants. Each of
the constants in the list corresponds to an underlying integral type: int by default or an
explicit base type (byte, sbyte, short, ushort, int, uint, long, or ulong). Because a variable
of type enum can be assigned any one of the named constants, it essentially behaves as an
integral type. Hence, many of the operators that apply to integral types apply equally to
enum types, including the following:

= l= < > <= >= + - & | ++ -- sizeof

as described in Chapter 5. A simplified EBNF declaration for an enumeration type is as
follows:

EnumDecl = Modifiers? "enum" Identifier (":" BaseType)? "{" EnumeratorList "}

Unless otherwise indicated, the first constant of the enumerator list is assigned the value
0. The values of successive constants are increased by 1. For example:

enum DeliveryAddress { Domestic, International, Home, Work };
is equivalent to:

const int Domestic = 0;
const int International = 1;
const int Home = 2;

const int Work = 3;

It is possible to break the list by forcing one or more constants to a specific value, such as
the following:

enum DeliveryAddress { Domestic, International=2, Home, Work };

62 Chapter 4: Unified Type System =

In this enumeration, Domestic is 0, International is 2, Home is 3, and Work is 4. In the
following example, all constants are specified:

enum DeliveryAddress {Domestic=1, International=2, Home=4, Work=8};

The underlying integral type can be specified as well. Instead of the default int, the byte
type can be used explicitly for the sake of space efficiency:

enum DeliveryAddress : byte {Domestic=1, International=2, Home=4, Work=8};

Unlike its predecessors in C++ and Java, enumerations in C# inherit from the System.Enum
class providing the ability to access names and values as well as to find and convert existing
ones. A few of these methods are as follows:

m Accessing the name or value of an enumeration constant:
string GetName (Type enumType, object value)
string[] GetNames (Type enumType)

Array GetValues(Type enumType)

m Determining if a value exists in an enumeration:
bool IsDefined(Type enumType, object value)

m Converting a value into an enumeration type (overloaded for every integer type):
object ToObject(Type enumType, object value)
object ToObject(Type enumType, intType value)

Historically, enumerations have been used as a convenient procedural construct to
improve software readability. They simply mapped names to integral values. Conse-
quently, enumerations in C/C++ were not extensible and hence not object oriented.
Enumerations in C#, however, are extensible and provide the ability to add new con-
stants without modifying existing enumerations, thereby avoiding massive recompilations
of code.

At the highest level, value types are subdivided into three categories: StructType,
EnumType, and NullableType, the former including the simple types, such as char and int.
The complete EBNF of all value types in C# is summarized below, where TypeName is a
user-defined type identifier for structures and enumerations:

ValueType = StructType | EnumType | NullableType .

StructType = TypeName | SimpleType .

SimpleType = NumericType | "bool"

NumericType = IntegralType | RealType | "decimal" | "char"

IntegralType = "sbyte" | "short" | "int" | "long" | "byte" | "ushort" |
"uint" | "ulong"

RealType = "float" | "double"

EnumType = TypeName .

NullableType = ValueType "?"

® 4.3 Literals 63

4.3 Literals

The C# language has six literal types: integer, real, boolean, character, string, and null.
Integer literals represent integral-valued numbers. For example:

123 (is an integer by default)

0123 (is an octal integer, using the prefix 0)

123U (is an unsigned integer, using the suffix U)

123L (is a long integer, using the suffix L)

123UL (is an unsigned long integer, using the suffix UL)
0xDecaf (is a hexadecimal integer, using the prefix 0x)

Real literals represent floating-point numbers. For example:

3.14 .1el12 (are double precision by default)

3.1E12 3E12 (are double precision by default)

3.14F (is a single precision real, using the suffix F)
3.14D (is a double precision real, using the suffix D)
3.14M (is a decimal real, using the suffix M)

Suffixes may be lowercase but are generally less readable, especially when making the
distinction between the number 1 and the letter 1. The two boolean literals in C# are
represented by the keywords:

true false

The character literals are the same as those in C but also include the Unicode characters
(\udddd):

\ (Continuation) n\ny s\t’ l\b! ‘\I‘, ‘\f’ l\\l n\)! s\ll;
0ddd or \ddd

0xdd or \xdd
0xdddd or \udddd

Therefore, the following character literals are all equivalent:
‘\n’ 10 012 0xA \u000A \x000A
String literals represent a sequence of zero or more characters—for example:

"A string"

(an empty string)
T\ (a double quote)

Finally, the null literal is a C# keyword that represents a null reference.

Tip

64 Chapter 4: Unified Type System =

4.4 Conversions

In developing C# applications, it may be necessary to convert or cast an expression of
one type into that of another. For example, in order to add a value of type float to a
value of type int, the integer value must first be converted to a floating-point number
before addition is performed. In C#, there are two kinds of conversion or casting: implicit
and explicit. Implicit conversions are ruled by the language and applied automatically
without user intervention. On the other hand, explicit conversions are specified by the
developer in order to support runtime operations or decisions that cannot be deduced by
the compiler. The following example illustrates these conversions:

// ‘a’ is a 16-bit unsigned integer.
a’; // Implicit conversion to 32-bit signed integer.
(char)i; // Explicit conversion to 16-bit unsigned integer.

int 1
char c

{0}", 1); // Output 97
{0}", (char)i); // Output a

Console.WritelLine("i as int
Console.WriteLine("i as char

S Ul R W N

The compiler is allowed to perform an implicit conversion on line 2 because no information
is lost. This process is also called a widening conversion, in this case from 16-bit to 32-bit.
The compiler, however, is not allowed to perform a narrowing conversion from 32-bit to
16-bit on line 3. Attempting to do char c¢ = i; will result in a compilation error, which
states that it cannot implicitly convert type int to type char. If the integer i must be
printed as a character, an explicit cast is needed (line 6). Otherwise, integer i is printed
as an integer (line 5). In this case, we are not losing data but printing it as a character,
a user decision that cannot be second-guessed by the compiler. The full list of implicit
conversions supported by C# is given in Table 4.4.

From To Wider Type

byte decimal, double, float, long, int, short, ulong, uint, ushort
shyte decimal, double, float, long, int, short

char decimal, double, float, long, int, ulong, uint, ushort
ushort decimal, double, float, long, int, ulong, uint

short decimal, double, float, long, int

uint decimal, double, float, long, ulong

int decimal, double, float, long

ulong decimal, double, float

long decimal, double, float

float double

Table 4.4: Implicit conversions supported by C#.

B 4.4 Conversions 65

Conversions from int, uint, long, or ulong to float and from long or ulong to double
may cause a loss of precision but will never cause a loss of magnitude. All other implicit
numeric conversions never lose any information.

In order to prevent improper mapping from ushort to the Unicode character set, the
former cannot be implicitly converted into a char, although both types are unsigned 16-bit
integers. Also, because boolean values are not integers, the bool type cannot be implicitly
or explicitly converted into any other type, or vice versa. Finally, even though the decimal
type has more precision (it holds 28 digits), neither float nor double can be implicitly
converted to decimal because the range of decimal values is smaller (see Table 4.3).

To store enumeration constants in a variable, it is important to declare the variable as
the type of the enum. Otherwise, explicit casting is required to convert an enumerated value
to an integral value, and vice versa. In either case, implicit casting is not done and gener-
ates a compilation error. Although explicit casting is valid, it is not a good programming
practice and should be avoided.

DeliveryAddress dal;

int da2;
dal = DeliveryAddress.Home; // OK.
da2 = dal; // Compilation error.
da2 = (int)dal; // OK, but not a good practice.
dal = da2; // Compilation error.
dal = (DeliveryAddress)da2; // OK, but not a good practice.

Implicit or explicit conversions can be applied to reference types as well. In C#, where
classes are organized in a hierarchy, these conversions can be made either up or down
the hierarchy, and are known as upcasts or downcasts, respectively. Upcasts are clearly
implicit because of the type compatibility that comes with any derived class within the
same hierarchy. Implicit downcasts, on the other hand, generate a compilation error since
any class with more generalized behavior cannot be cast to one that is more specific and
includes additional methods. However, an explicit downcast can be applied to any ref-
erence but is logically correct only if the attempted type conversion corresponds to the
actual object type in the reference. The following example illustrates both upcasts and
downcasts:

1 public class TestCast {

2 public static void Main() {

3 object o;

4 string s = "Michel";

5 double d;

6

7 0 =S8; // Implicit upcast.

8 o = (object)s; // Explicit upcast (not necessary).

9 s = (string)o; // Explicit downcast (necessary).

10 d = (double)o; // Explicit downcast (syntactically correct) but ...

Tip

66 Chapter 4: Unified Type System =

11 d *= 2.0; // ...throws an InvalidCastException at runtime.
12 }
13 1}

An object reference o is first assigned a string reference s using either an implicit or
an explicit upcast, as shown on lines 7 and 8. An explicit downcast on line 9 is logically
correct since o contains a reference to a string. Hence, s may safely invoke any method
of the string class. Although syntactically correct, the explicit downcast on line 10 leads
to an InvalidCastException on the following line. At that point, the floating-point value
d, which actually contains a reference to a string, attempts to invoke the multiplication
method and thereby raises the exception.

4.5 Boxing and Unboxing

Since value types and reference types are subclasses of the object class, they are also
compatible with object. This means that a value-type variable or literal can (1) invoke an
object method and (2) be passed as an object argument without explicit casting.

int i=2;
i.ToString(); // (1) equivalent to 2.ToString();
// which is 2.System.Int32::ToString()

i.Equals(2); // (2) where Equals has an object type argument
// avoiding an explicit cast such as i.Equals((object)2);

Boxing is the process of implicitly casting a value-type variable or literal into a reference
type. In other words, it allows value types to be treated as objects. This is done by creating
an optimized temporary reference type that refers to the value type. Boxing a value via
explicit casting is legal but unnecessary.

int i=2;
object o = 1i; // Implicit casting (or boxing).
object p = (object)i; // Explicit casting (unnecessary).

On the other hand, it is not possible to unbox a reference type into a value type without
an explicit cast. The intent must be clear from the compiler’s point of view.

object o;
short s = (short)o;

The ability to treat value types as objects bridges the gap that exists in most programming
languages. For example, a Stack class can provide push and pop methods that take and

B 4.6 The Object Root Class 67

return value and reference objects:

class Stack {
public object pop() { ...}
public void push(object o) { ... }

4.6 The Object Root Class

Before tackling the object root class, we introduce two additional method modifiers:
virtual and override. Although these method modifiers are defined in detail in
Chapter 7, they are omnipresent in every class that uses the .NET Framework. Therefore,
a few introductory words are in order.

A method is polymorphic when declared with the keyword virtual. Polymorphism
allows a developer to invoke the same method that behaves and is implemented differently
on various classes within the same hierarchy. Such a method is very useful when we wish
to provide common services within a hierarchy of classes. Therefore, polymorphism is
directly tied to the concept of inheritance and is one of the three hallmarks of object-
oriented technology.

4.6.1 Calling Virtual Methods

Any decision in calling a virtual method is done at runtime. In other words, during a vir-
tual method invocation, it is the runtime system that examines the object’s reference. An
object’s reference is not simply a physical memory pointer as in C, but rather a virtual
logical pointer containing the information of its own object type. Based on this informa-
tion, the runtime system determines which actual method implementation to call. Such a
runtime decision, also known as a polymorphic call, dynamically binds an invocation with
the appropriate method via a virtual table that is generated for each object.

When classes already contain declared virtual methods, a derived class may wish to
refine or reimplement the behavior of a virtual method to suit its particular specifications.
To do so, the signature must be identical to the virtual method except that it is preceded
by the modifier override in the derived class. In the following example, class D overrides
method V, which is inherited from class B. When an object of class D is assigned to the
parameter b at line 13, the runtime system dynamically binds the overridden method of
class D to b.

1 class B {

2 public virtual void V() { System.Console.WriteLine("B.V()"); }
3}

4 class D : B {
5 public override void V() { System.Console.WriteLine("D.V()"); }
6

68 Chapter 4: Unified Type System =

7 class TestVirtualOverride {

8 public static void Bind(B b) {
9 b.VQO);

10 }

11 public static void Main() {
12 Bind(new B());

13 Bind(new D());

14

15 new D().V(Q);

16 }

17 3}

Output:

B.VO)
D.VO)
D.VO)

With this brief overview of the virtual and override modifiers, let us now take a
comprehensive look at the object root class.

The System.Object class is the root of all other classes in the .NET Framework. Defin-
ing a class like Id (page 30) means that it inherits implicitly from System.Object. The
following declarations are therefore equivalent:

class Id { ... }
class Id : object { ... }
class Id : System.Object { ... }

As we have seen earlier, the object keyword is an alias for System.0Object.

The System.Object class, shown below, offers a few common basic services to all
derived classes, either value or reference. Of course, any virtual methods of System.0Object
can be redefined (overridden) to suit the needs of a derived class. In the sections that
follow, the methods of System.0Object are grouped and explained by category: parameter-
less constructor, instance methods, and static methods.

namespace System {
public Object {
// Parameterless Constructor
public Object();

// Instance Methods

public virtual string ToString();
public Type GetType();

public virtual bool Equals(Object o);
public virtual int GetHashCode();
protected virtual void Finalize();

B 4.6 The Object Root Class 69

protected object MemberwiseClone();

// Static Methods
public static bool Equals(Object a, Object b);
public static bool ReferenceEquals(Object a, Object b);

4.6.2 Invoking the Object Constructor

The Object () constructor is both public and parameterless and is invoked by default by all
derived classes either implicitly or explicitly. The following two equivalent declarations
illustrate both invocations of the base constructor from System.0Object:

class Id {
Id() { ... } // Invoking Object() implicitly.

}

class Id {
Id() : base() { ... } // Invoking Object() explicitly.

4.6.3 Using Object Instance Methods

Often used for debugging purposes, the ToString virtual method returns a string that
provides information about an object. It allows the client to determine where and how
information is displayed—for example, on a standard output stream, in a GUI, through a
serial link, and so on. If this method is not overridden, the default string returns the fully
qualified type name (namespace.className) of the current object.

The GetType method returns the object description (also called the metadata) of a
Type object. The Type class is also well known as a meta-class in other object-oriented
languages, such as Smalltalk and Java. This feature is covered in detail in Chapter 10.

The following example presents a class Counter that inherits the ToString method
from the System.Object class, and a class NamedCounter that overrides it (line 11). The Main
method in the test class instantiates three objects (lines 19-21) and prints the results of
their ToString invocations (lines 23-25). In the case of the object o (line 23), System.Object
corresponds to its Object class within the System namespace. For the objects ¢ and nc
(lines 24 and 25), Counter and NamedCounter correspond, respectively, to their classes
within the default namespace. The last three statements (lines 27-29) print the names
representing the meta-class Type of each object.

70 Chapter 4: Unified Type System =

1 using System;

2

3 public class Counter {

4 public void Inc() { count++; }

5 private int count;

6 3}

7 public class NamedCounter {

8 public NamedCounter(string aName) {

9 name = aName; count = 0;

10 }

11 public override string ToString() {

12 return "Counter ‘"+name+"’ = "+count;

13 }

14 private string name;

15 private int count;

16}

17 public class TestToStringGetType {

18 public static void Main() {

19 Object 0 = new Object();

20 Counter ¢ = new Counter();

21 NamedCounter nc = new NamedCounter('nc");

22

23 Console.WriteLine(" o.ToString() = {0}", o.ToString());
24 Console.WriteLine(" c.ToString() = {0}", c.ToString());
25 Console.WriteLine("nc.ToString() = {0}", nc.ToString());
26

27 Console.WriteLine("Type of o = {0}", o0.GetType());
28 Console.WriteLine("Type of ¢ = {0}", c.GetType());
29 Console.WriteLine("Type of nc = {0}", nc.GetType());
30 }

31 }

Output:

0.ToString() = System.Object

c.ToString() = Counter
nc.ToString() = Counter ‘nc’ = 0
Type of o = System.Object
Type of c = Counter
Type of nc = NamedCounter

The virtual implementation of Object.Equals simply checks for identity-based equality
between the parameter object o and the object itself. To provide value-based equal-
ity for derived classes, the Equals method must be overridden to check that the two
objects are instantiated from the same class and are identical member by member. A good

Tip

B 4.6 The Object Root Class 71

implementation tests to see first if the parameter o is null, second if it is an alias (this),
and third if it is not of the same type using the operator is. In C#, this method is not
equivalent to the operation == unless the operator is overloaded.

The GetHashCode virtual method computes and returns a first-estimate integer
hash code for each object that is used as a key in the many hash tables available in
System.Collections. The hash code, however, is only a necessary condition for equality
and therefore obeys the following properties:

1. If two objects are equal then both objects must have the same hash code.

2. If the hash code of two objects is equal then both objects are not necessarily equal.

A simple and efficient algorithm for generating the hash code for an object applies
the exclusive OR operation to its numeric member variables. To ensure that identical
hash codes are generated for objects of equal value, the GetHashCode method must be
overridden for derived classes.

The following example presents a class Counter that inherits the Equals and
GetHashCode methods from the System.Object class, and a class NamedCounter that over-
rides them (lines 14 and 25). The Main method in the test class instantiates six objects
(lines 33-38) and prints their hash codes (lines 40-45). Notice that all hash codes are
unique except for the two identical objects ncl and nc3. All the other lines (47-56) compare
objects with themselves, null, and an instance of the class Object.

using System;

1
2
3 public class Counter {

4 public void Inc() { count++; }
5 private int count;

6

7

8

}
public class NamedCounter {
public NamedCounter(string aName) { name = aName; }

9 public void Inc() { count++; }
10 public int GetCount() { return count; }
11 public override string ToString() {
12 return "Counter ‘"+name+"’ = "+count;
13 }
14 public override bool Equals(object o) {
15 if (o == null) return false;
16 if (GetHashCode() != o.GetHashCode()) return false;
17 // Is same hash code?
18 if (o == this) return true;
19 // Compare with itself?
20 if (!(o is NamedCounter)) return false;
21 // Is same type as itself?
22 NamedCounter nc = (NamedCounter)o;

23 return name.Equals(nc.name) && count == nc.count;

72 Chapter 4: Unified Type System

// Exclusive or.

NamedCounter("ncl");
NamedCounter("nc2");
NamedCounter("ncl");

{0}", o.GetHashCode());
{0}", ncl.GetHashCode());
{0}", nc2.GetHashCode());
{0}", nc3.GetHashCode());
{0}", cl.GetHashCode());
{0}", c2.GetHashCode());

{0}", ncl.Equals(null)?"yes":"no");
{0}", ncl.Equals(ncl) ?"yes":"no");
{0}", ncl.Equals(o) ?"yes":"no");
{0}", ncl.Equals(nc2) ?"yes":"no");
{0}", ncl.Equals(nc3) ?"yes":"no");

{0}", cl.Equals(null) ?"yes":"no");
{0}", cl.Equals(cl) ?"yes":"no");
{0}", cl.Equals(o) ?"yes":"no");
{0}", cl.Equals(c2) ?"yes":"no");

24 }

25 public override int GetHashCode() {
26 return name.GetHashCode() " count;
27 }

28 private string name;

29 private int count;

30 }

31 public class TestHashCodeEquals {

32 public static void Main() {

33 Object o = new Object();
34 NamedCounter ncl = new

35 NamedCounter nc2 = new

36 NamedCounter nc3 = new

37 Counter cl = new Counter();
38 Counter c2 = new Counter();
39

40 Console.WriteLine("HashCode 0
41 Console.WriteLine("HashCode ncl
42 Console.WritelLine("HashCode nc?2
43 Console.WriteLine("HashCode nc3
44 Console.WriteLine("HashCode cl1
45 Console.WriteLine("HashCode «c2
46

47 Console.WritelLine("ncl == null?
48 Console.WriteLine("ncl == ncl?
49 Console.WriteLine("ncl == o?

50 Console.WritelLine("ncl == nc2?
51 Console.WritelLine("ncl == nc3?
52

53 Console.WriteLine(" ¢l == null?
54 Console.WriteLine(" cl == c1?
55 Console.WritelLine(" cl == o?

56 Console.WriteLine(" cl == c2?
57 }

58 %

Output:

HashCode o = 54267293

HashCode ncl = 1511508983

HashCode nc2 = -54574958

HashCode nc3 = 1511508983

HashCode c¢1 = 18643596

HashCode c2 = 33574638

ncl == null? no

B 4.6 The Object Root Class 73

ncl == ncl? yes
ncl == o? no
ncl == nc2? no
ncl == nc3? yes
cl == null? no
cl == cl? yes
cl == 0? no
cl == ¢c2? no

The last two methods of the Object class are protected to be securely available only to
derived classes. The Finalize method when overridden is used by the garbage collector
to free any allocated resources before destroying the object. Section 9.1 illustrates how
the C# compiler generates a Finalize method to replace an explicit destructor.

The MemberwiseClone method returns a member-by-member copy of the current
object. Although values and references are duplicated, subobjects are not. This type of
cloning is called a shallow copy. To achieve a shallow (or bitwise) copy, the method
Object.MemberwiseClone is simply invoked for the current object. In this way, all the non-
static value and reference fields are copied. Although a shallow copy of a value field is
non-problematic, the shallow copy of a reference-type field does not create a duplicate
of the object to which it refers. Hence, several objects may refer to the same subobjects.
The latter situation is often undesirable and therefore, a deep copy is performed instead.
To achieve a deep copy, the method Object.Memberwiseclone is invoked for the current
object and its subobject(s).

The following example shows three classes that clearly express the impact of each
kind of cloning. The Value class contains a value-type field called v. After creating an
object vl and incrementing its value (lines 31-32), v2 is initialized as a clone of v1 and
then incremented (lines 33-34). The first two lines of output show that the v2 object is
independent of v1, though v2 had the same value as v1 at the time of the cloning. In this
case, a shallow copy is sufficient.

The ShallowCopy class contains a reference-type field called r (line 17) that is cloned
in the same way as the Value class (compare lines 7 and 15). The object scl is then cre-
ated on line 39 with a reference to the object v2. In cloning scl into sc2 (line 40), both
objects are now pointing to the same object v2. Increasing the value of v2 and printing
objects scl and sc2 clearly shows that the subobject v2 is not duplicated using a shallow
copy.

Finally, the DeepCopy class also contains a reference-type field r (line 27) but with
a different implementation of the method Clone. As before, the object dcl is created on
line 46 with a reference to object v2. In cloning dcl into dc2 (line 47), a temporary object
reference clone of type DeepCopy is first initialized to a shallow copy of the current object
dcl (line 23). On line 24, the subobject v2 is cloned as well. The object clone is then
returned from the method Clone and assigned to dc2. Increasing the value of v2 and print-
ing objects dcl1 and dc2 shows that the reference field r of each object points to a distinct
instance of the Value class. On one hand, the object dc1 refers to v2, and on the other hand,
the object dc2 refers to a distinct instance of Value, which was created as an identical copy

74 Chapter 4: Unified Type System =

of v2. The output illustrates the impact of creating two distinct subobjects owned by two
different objects dcl and dc2.

using System;

1
2
3 public class Value {

4 public void Inc() { v++; }

5 public override string ToString() { return "Value("+v+")"; }
6 public object Clone() { // Shallow copy of v

7 return this.MemberwiseClone();

8

}
9 private int v;
10 1}
11 public class ShallowCopy {
12 public ShallowCopy(Value v) { r = v; }
13 public override string ToString() { return r.ToString(); }
14 public object Clone() { // Shallow copy of r
15 return this.MemberwiseClone();
16 }
17 private Value r;
18 }
19 public class DeepCopy {
20 public DeepCopy(Value v) { r = v; }
21 public override string ToString() { return r.ToString(); }
22 public object Clone() { // Deep copy of r
23 DeepCopy clone = (DeepCopy)this.MemberwiseClone();
24 clone.r = (Value)r.Clone();
25 return clone;
26 }
27 private Value r;
28}
29 public class TestClone {
30 public static void Main() {
31 Value vl = new Value();
32 vl.Inc();
33 Value v2 = (Value)vl.Clone();
34 v2.Inc();
35
36 Console.WriteLine("vl.ToString = {0}", v1.ToString());
37 Console.WriteLine("v2.ToString = {0}", v2.ToString());
38
39 ShallowCopy scl = new ShallowCopy(v2);
40 ShallowCopy sc2 = (ShallowCopy)scl.Clone();

41 v2.Inc();

B 4.6 The Object Root Class 75

42

43 Console.WritelLine("scl.ToString = {0}", scl.ToString());
44 Console.WritelLine("sc2.ToString = {0}", sc2.ToString());
45

46 DeepCopy dcl = new DeepCopy(v2);

47 DeepCopy dc2 = (DeepCopy)dcl.Clone();

48 v2.Inc();

49

50 Console.WriteLine("dcl.ToString = {0}", dcl.ToString());
51 Console.WriteLine("dc2.ToString = {0}", dc2.ToString());
52 }

53 }

Output:

v1.ToString = Value(1)
v2.ToString = Value(2)

scl.ToString = Value(3)
sc2.ToString = Value(3)
dcl.ToString = Value(4)
dc2.ToString = Value(3)

Some important best practices can be noted from the preceding examples. It is strongly
recommended to always override the ToString method. The HashCode and Equals methods
must always be overridden? when you wish to compare the objects of that type in your
application. When comparing objects, first invoke the HashCode method to avoid unneces-
sary comparisons among instance members. If the hash codes are not equal then objects
are not identical. On the other hand, if hash codes are equal then objects may be identical.
In that case, a full comparison using the Equals method is applied. Note that GetType and
MemberwiseClone methods cannot be overridden since they are not virtual.

4.6.4 Using Object Static Methods

The static method Equals tests for a value-based equality between two Object parameters.
On line 11 in the following example, a value-based comparison is made between two int
(or System.Int32) objects. Because the values of x and y are both 1, equality is True. When
making the same value-based comparison between two reference types, such as a and b
on line 13, the hash codes of each object are used instead.

The static method ReferenceEquals on the other hand tests for a reference-based
identity between the two Object parameters. The method returns True if the two objects
are not distinct, that is, if they have the same reference value. Because objects x and y as
well as objects a and b are all distinct, the comparison for reference-based identity returns

21f you forget to implement HashCode, the compiler will give you a friendly warning.

Tip

Tip

76 Chapter 4: Unified Type System =

False onlines 12 and 14. If both methods, Equals and ReferenceEquals, refer to the same
object including null then True is returned as shown on lines 17 through 20.

1 using System;

2

3 public class TestObjectEquals {

4 public static void Main() {

5 int x = 1;

6 int y = 1;

7 Object a = new Object();

8 Object b = new Object();

9

10 Console.WriteLine("{0} {1} {2} {3}",

11 Object.Equals(x, V),

12 Object.ReferenceEquals(x, y),
13 Object.Equals(a, b),

14 Object.ReferenceEquals(a, b));
15 a=b;

16 Console.WriteLine("{0} {1} {2} {3}",

17 Object.Equals(a, b),

18 Object.ReferenceEquals(a, b),
19 Object.Equals(null, null),

20 Object.ReferenceEquals(null, null));
21 }

22}

Output:

True False False False
True True True True

4.7 Arrays

Arrays in C# are objects and derive from System.Array. They are the simplest collection
or data structure in C# and may contain any value or reference type. In fact, an array is the
only collection that is part of the System namespace. All other collections that we cover
later, such as hash tables, linked lists, and so on are part of System.Collections. In C#,
arrays differ from other collections in two respects:

1. They are declared with a specific type. All other collections are of object type.

2. They cannot change their size once declared.

These differences make arrays more efficient vis-a-vis collections, but such improvements
may not be significant in light of today’s processor speeds. Nonetheless, it is always

® 4.7 Arrays 77

recommended to use profilers to carefully verify where a processor spends its time and to
isolate those sections of code that need to be optimized.

4.7.1 Creating and Initializing Arrays

Arrays are zero-indexed collections that can be one- or multi-dimensional and are defined
in two steps. First, the type of array is declared and a reference variable is created. Second,
space is allocated using the new operator for the given number of elements. For example,
a one-dimensional array is defined as follows:

int[] myArray; // (1)
myArray = new int[3]; // (2)

At step (1), a reference variable called myArray is created for an int array. At step (2),
space is allocated to store three int values. The square brackets [] must be placed after
the type in both steps (1) and (2). Only at step (2), however, are the actual number of ele-
ments placed within the brackets. Here, array size is specified by any well-defined integral
expression. Hence,

myArray = new int[a + b];

defines an array of size a+b as long as the result of the expression is integral. As in Java
but contrary to C/C++, C# is not allowed to define a fixed-size array without the use of the
new operator. Therefore, attempting to specify the size within the square brackets at step
(1) generates a compilation error.

int[3] myArray; // Compilation error.

Finally, like C/C++ and Java, the previous two steps may be coalesced into one line of
code:

int[] myArray = new int[3];

So far, the myArray array has been declared, but each array element has not been explicitly
initialized. Therefore, each array element is initialized implicitly to its default value, in
this case, 0. It is important to note that if the array type was our Id class instead of int—in
other words, a reference type instead of a value type—then myArray would be an array of
references initialized by default to null.

Elements in the array, however, can be initialized explicitly in a number of ways. The
use of an initializer, as in C/C++ and Java, is often preferred to declare and initialize an
array at the same time:

int[] myArray = { 1, 3, 5 };

In this case, the compiler determines the number of integers within the initializer and
implicitly creates an array of size 3. In fact, the preceding example is equivalent to this

78 Chapter 4: Unified Type System =

more explicit one:
int[] myArray = new int[3] { 1, 3, 5 };

For an array of objects, each element is a reference type and, therefore, each object is
either instantiated during the array declaration as shown here:

Id[] ids = {
new Id("Michel", "de Champlain"),
new Id("Brian", "Patrick")

s
or instantiated after the array declaration:

Id[] ids = new Id[2];

ids[0]
ids[1]

new Id("Michel", "de Champlain");
new Id("Brian", "Patrick");

4.7.2 Accessing Arrays

Elements of an array are accessed by following the array name with an index in square
brackets. Bearing in mind that indices begin at 0, myArray[2] accesses the third element
of myArray. In the following example, the first and last elements of myArray are initialized
to 1, and the second element is initialized to 3.

myArray[0] = 1;
myArray[1l] = 3;
myArray[2] = myArray[0];

When attempting to access an array outside of its declared bounds, that is, outside 0. .n-1
for an array of size n, the runtime system of C# throws an IndexOutOfRangeException.
Therefore, unlike C/C++, C# provides a greater level of security and reliability.

4.7.3 Using Rectangular and Jagged Arrays

C# supports two kinds of multi-dimensional arrays: rectangular and jagged. Rectangular
arrays like matrices have more than one index and have a fixed size for each dimension.
The comma (,) separates each dimension in the array declaration as illustrated here:

int[,] matrix = new int[2,3]; // 2x3 matrix (6 elements).
int[,,] cube new int[2,3,4]; // 2x3x4 cube (24 elements).

Accessing the element at the first row and second column of the matrix is done as follows:

matrix[0,1]; // matrix [<row> , <column>]

® 4.8 Strings 79

Jagged arrays are “arrays of arrays” where each element is a reference pointing to another
array. Unlike rectangular arrays, jagged arrays may have a different size for each dimen-
sion. In the following example, jaggedMatrix allocates space for eight integer elements,
three in the first row and five in the second:

int[][] jaggedMatrix = new int[2][]; // An array with 2 arrays (rows).
jaggedMatrix[0] = new int[3]; // A row of 3 integers.
jaggedMatrix[1] = new int[5]; // A row of 5 integers.

Accessing the element at the first row and second column of the jaggedMatrix is done as
follows:

jaggedMatrix[0][1]; // jaggedMatrix [<row>] [