
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-1
 All Rights Reserved

Chapter 18

Interfaces and the .NET
Framework

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-2
 All Rights Reserved

Interfaces and the .NET Framework

Objectives

 After completing this unit you will be able to:

• Create and use interfaces in your C# programs.

• Use predefined interfaces in the .NET framework.

• Use C# collections to eliminate the need for custom
coding of most common data structures.

• Explain the differences between reference copy,
shallow memberwise copy, and deep copy.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-3
 All Rights Reserved

Overview

• In the previous chapter we saw how useful interfaces
can be in specifying contracts for our own classes.

• Interfaces can help us program at a higher level of
abstraction, enabling us to see the essential features
of our system without being bogged down in
implementation details.

• Interfaces are a ubiquitous and important part of the
.NET framework.

• Many of the standard classes implement specific
interfaces, and we can call into the methods of these
interfaces to obtain useful services.

• Collections are an example of classes in the .NET
Framework that support a well-defined set of
interfaces that provide useful functionality.

• In order to work with collections effectively, you need
to override certain methods of the object base class.

• Besides calling into interfaces that are implemented
by library classes, many .NET classes call standard
interfaces.

• If we provide our own implementation of such
interfaces, we can have .NET library code call our
own code in appropriate ways, customizing the
behavior of library code.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-4
 All Rights Reserved

Collections

• The .NET Framework class library provides an
extensive set of classes for working with collections of
objects.

• These classes are all in the System.Collections
namespace and implement a number of different
kinds of collections, including lists, queues, stacks,
arrays, and hashtables.

− The collections contain object instances.

− Since all types derive ultimately from object, any built-in or
user-defined type may be stored in a collection.

• In this section we will look at a representative class in
this namespace, ArrayList.

− We will examine the interfaces implemented by this class and
see how to use array lists in our programs.

− Part of our task in using arrays lists and similar collections is
to properly implement our class whose instances are to be
stored in the collection.

− In particular, our class must generally override certain
methods of object.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-5
 All Rights Reserved

ArrayList Example

• To get our bearings, let’s begin with a simple example
of using the ArrayList class.

• An array list, as the name suggests, is a list of items
stored like an array.

− An array list can be dynamically sized and will grow as
necessary to accommodate new elements being added.

• As mentioned, collection classes are made up of
instances of type object.

− We will illustrate creating and manipulating a collection of
string.

− We could also just as easily create a collection of any other
built-in or user-defined type.

− If our type were a value type, such as int, the instance would
be boxed before being stored in the collection. When the
object is extracted from the collection, it will be unboxed
back to int.

• Our example program is StringList.

− It initializes a list of strings, and then lets the user display the
list, add strings, and remove strings.

− A simple “help” method displays the commands that are
available.

• Please examine and run this program online.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-6
 All Rights Reserved

Count and Capacity

• An array list has properties Count and Capacity.

• The Count is the current number of elements in the
list, and Capacity is the number of available “slots.”

− If you add a new element when the capacity has been
reached, the Capacity will be automatically increased.

− The default starting capacity is 16, but it can be adjusted by
passing a starting size to the constructor.

− The Capacity will double when it is necessary to increase it.
The “count” command in the sample program displays the
current values of Count and Capacity, and you can observe
how these change by adding new elements.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-7
 All Rights Reserved

foreach Loop

• The System.Collections.ArrayList class implements the
IEnumerable interface, as we will discuss later in the
chapter, which means that you can use a foreach loop
to iterate through it.

 private static void ShowList(ArrayList array)
 {
 foreach (string str in array)
 {
 Console.WriteLine(str);
 }
 }

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-8
 All Rights Reserved

Array Notation

• ArrayList implements the IList interface, which has
the property Item.

− In C# this property is an indexer, so you can use array
notation to access elements of an array list.

− The “array” command demonstrates accessing the elements
of the list using an index.

 private static void ShowArray(ArrayList array)
 {
 for (int i = 0; i < array.Count; i++)
 {
 Console.WriteLine("array[{0}] = {1}",
 i, array[i]);
 }
 }

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-9
 All Rights Reserved

Adding to the List

• The Add method allows you to append an item to an
array list.

− If you want to make sure you do not add a duplicate item,
you can make use of the Contains method to check whether
the proposed new item is already contained in the list.

 private static void AddString(string str)
 {
 if (list.Contains(str))
 throw new Exception("list contains "
 + str);
 list.Add(str);
 }

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-10
 All Rights Reserved

Remove Method

• The Remove method allows you to remove an item
from an array list.

− You can make use of the Contains method to check whether
the item to be deleted is on the list.

private static void RemoveString(string str)
{
 if (list.Contains(str))
 list.Remove(str);
 else
 throw new Exception(str + " not on list");
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-11
 All Rights Reserved

RemoveAt Method

• The RemoveAt method allows you to remove an item
at a specified integer index.

− If the index is out of range, an exception of type
ArgumentOutOfRangeException will be thrown. (In our
program we just let our normal test program exception
handling pick up the exception.)

 private static void RemoveAt(int index)
 {
 list.RemoveAt(index);
 }

− The index is zero-based.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-12
 All Rights Reserved

Collection Interfaces

• The classes ArrayList, Array, and many other
collection classes implement a set of four fundamental
interfaces.

public class ArrayList : IList, ICollection,
 IEnumerable, ICloneable

− In this section we will examine the first three interfaces. We
will look at ICloneable later in the chapter.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-13
 All Rights Reserved

IEnumerable and IEnumerator

• The most basic interface is IEnumerable, which has a
single method, GetEnumerator.

interface IEnumerable
{
 IEnumerator GetEnumerator();
}

− GetEnumerator returns an interface reference to
IEnumerator, which is the interface used for iterating
through a collection.

− This interface has the property Current and the methods
MoveNext and Reset.

interface IEnumerator
{
 object Current {get;}
 bool MoveNext();
 void Reset();
}

− The enumerator is initially positioned before the first element
in the collection and it must be advanced before it is used.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-14
 All Rights Reserved

IEnumerable and IEnumerator Demo:
AccountList

• The program AccountList\Step0, which we will
discuss in detail later, illustrates using an enumerator
to iterate through a list.

private static void ShowEnum(ArrayList array)
{
 IEnumerator iter = array.GetEnumerator();
 bool more = iter.MoveNext();
 while (more)
 {
 Account acc = (Account) iter.Current;
 Console.WriteLine(acc.Info);
 more = iter.MoveNext();
 }
}

• This pattern of using an enumerator to iterate
through a list is so common that C# provides a special
kind of loop, foreach, that can be used for iterating
through the elements of any collection.

• Here is the comparable code using foreach.
private static void ShowAccounts(ArrayList array)
 {
 foreach (Account acc in array)
 {
 Console.WriteLine(acc.Info);
 }
 }

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-15
 All Rights Reserved

ICollection

• The ICollection interface is derived from
IEnumerable and adds a Count property and a
CopyTo method.

interface ICollection : IEnumerable
{
 int Count {get;}
 bool IsSynchronized {get;}
 object SyncRoot {get;}
 void CopyTo(Array array, int index);
}

• There are also synchronization properties that can
help you deal with thread safety issues.

− Threading is beyond the scope of this course. It is touched
upon in the books Introduction to C# Using .NET and
Application Development Using C# and .NET. It is also
covered in Object Innovations course 412, .NET Framework
Using C#.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-16
 All Rights Reserved

IList

• The IList interface is derived from ICollection and
provides methods for adding an item to a list,
removing an item, and so on.

− There is an indexer provided that enables array notation to be
used.

interface IList : ICollection
{
 bool IsReadOnly {get;}
 bool IsReadOnly {get;}
 object this[int index] {get; set;}
 int Add(object value);
 void Clear();
 bool Contains(object value);
 int IndexOf(object value);
 void Insert(int index, object value);
 void Remove(object value);
 void RemoveAt(int index);
}

− Our sample code illustrated using the indexer and the Add,
Contains, Remove, and RemoveAt methods.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-17
 All Rights Reserved

A Collection of User-Defined Objects

• We will now look at an example of a collection of
user-defined objects.

− The mechanics of calling the various collection properties
and methods is very straightforward and is essentially
identical to the usage for collections of built-in types.

− What is different is that in your class you must override at
least the Equals method (of the class Object) of the class you
wish to use in a collection in order to obtain proper behavior
in your collection.

− For built-in types, you did not have to worry about this issue,
because Equals is provided by the class library for you.

• Our example program is AccountList, which comes in
two steps. Step 0 illustrates a very simple Account
class, with no methods of object overridden.

• The test program AccountList.cs contains code to
initialize an array list of Account objects, show the
initial accounts, and then perform a command loop.

− A simple help method gives a brief summary of the available
commands:

The following commands are available:
 show -- show all accounts
 enum -- enumerate all accounts
 add -- add an account (specify id)

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-18
 All Rights Reserved

A Correction to AccountList (Step 1)

• You can examine the code online.

• The salient point is that the “add” command is not
protected against adding a duplicate element (“Bob”).

− Our code is similar to what we used before in the StringList
program, but now the Contains method does not work
properly. The default implementation of Equals in the object
root class is to check for reference equality, and the two
“Bob” elements have the same data but different references.

• AccountList\Step1 contains corrected code for the
Account class.

− In the test program we have code for both “add” and
“remove,” and everything behaves properly.

− Our test for equality involves just the account ID.

− For example, two people with the same name could have an
account at the same bank, but their account IDs should be
different.

− Notice how easy it is to remove an element from an array list.
Just construct an element that will test out “equal” to the
element to be removed, and call the Remove method.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-19
 All Rights Reserved

Bank Case Study: Step 7

• It is now very easy to implement Step 7 of the bank
case study, where we use an array list in place of an
array to store the accounts.

− The basic idea is illustrated previously, only now we have the
full blown account class hierarchy. We will briefly examine
the three classes where there is change to our code.

− Bank. We change accounts to be a reference to ArrayList in
place of an array. We also define an interface IBank, and we
implement a new method, GetStatements, which returns a
report (in the form of a list of strings) showing monthly
statements for all accounts in the bank. The DeleteAccount
method now has a simpler implementation.

− Account. We need to provide an override of the Equals
method.

− TestBank. A new command “month” exercises the
GetStatements method of the Bank class.

• As usual, the code can be found in the CaseStudy
directory for the chapter.

• Please examine this code online.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-20
 All Rights Reserved

Copy Semantics And ICloneable

• Many times in programming you have occasion to
make a copy of a variable.

− When you program in C#, it is very important that you have a
firm understanding of exactly what happens when you copy
various kinds of data.

• In this section we will look carefully at the copy
semantics of C#.

• We will compare reference copy, shallow
memberwise copy, and deep copy.

− The ICloneable interface enables deep copy.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-21
 All Rights Reserved

Copy Semantics in C#

• Recall that C# has value types and reference types. A
value type contains all its own data, while a reference
type refers to data stored somewhere else.

− If a reference variable gets copied to another reference
variable, both will refer to the same object.

− If the object referenced by the second variable is changed, the
first variable will also reflect the new value.

• As an example, consider what happens when you
copy an array, which is a reference type. Consider the
program ArrayCopy.

− When we make the assignment arr2 = arr1, we wind up not
with two independent arrays, but rather two references to the
same array.

− When we make a change to an element of the first array, both
arrays will wind up changed.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-22
 All Rights Reserved

Shallow Copy and Deep Copy

• A struct in C# automatically implements a
“memberwise” copy, sometimes known as a “shallow
copy.”

• The object root class has a protected method,
MemberwiseClone, which will perform a memberwise
copy of members of a class.

− If one or more members of a class are of a reference type,
this memberwise copy may not be good enough.

− The result will be two references to the same data, not two
independent copies of the data.

• To actually copy the data itself and not merely the
references, you will need to perform a “deep copy.”

− Deep copy can be provided at either the language level or the
library level.

− In C++ deep copy is provided at the language level through a
copy constructor.

• In C# deep copy is provided by the .NET Framework
through a special interface, ICloneable, which you
can implement in your classes in order to enable them
to perform deep copy.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-23
 All Rights Reserved

Example Program

• We will illustrate all these ideas in the program
CopyDemo.

• This program makes a copy of a Course.

− The Course class consists of a title and a collection of
students.

− The test program constructs a Course instance c1 and then
makes a copy c2 by various methods.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-24
 All Rights Reserved

Reference Copy

• The first way the copy is performed is by the straight
assignment c2= c1.

− Now we get two references to the same object, and if we
make any change through the first reference, we will see the
same change through the second reference.

− The first part of the test program illustrates such an
assignment.

− We initialize with the title “Intro to C#” and two students.

− We make the assignment c2 = c1, and then change the title
and add another student for c2. We then show both c1 and c2,
and we see that both reflect both of these changes.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-25
 All Rights Reserved

Memberwise Clone

• The next way we will illustrate doing a copy is a
memberwise copy, which can be accomplished using
the MemberwiseClone method of object.

− Since this method is protected, we cannot call it directly from
outside our Course class.

− Instead, in Course we define a method, ShallowCopy, which
is implemented using MemberwiseClone.

− In the second part of the test program the ShallowCopy
method is called. Again we change the title and a student in
the second copy.

− In the output of this second part of the program, the Title
field has its own independent copy, but the Roster collection
is just copied by reference, so each copy refers to the same
collection of students.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-26
 All Rights Reserved

Using ICloneable

• The final version of copy relies on the fact that our
Course class supports the ICloneable interface and
implements the Clone method.

− To clone the Roster collection we use the fact that
ArrayList implements the ICloneable interface, as discussed
earlier in the chapter.

− Note that the Clone method returns an object, so we must
cast to ArrayList before assigning to the Roster field.

− The third part of the test program calls the Clone method.
Again we change the title and a student in the second copy.

− In the output from the third part of the program we have
completely independent instances of Course. Each has its
own title and set of students.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-27
 All Rights Reserved

Comparing Objects

• We have quite exhaustively studied issues involved in
copying objects.

• We will now examine the issues involved in
comparing objects.

• In order to compare objects, the .NET Framework
uses the interface IComparable.

− In this section we will examine the use of the interface
IComparable through an example of sorting an array.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-28
 All Rights Reserved

Sorting an Array

• The System.Array class provides a static method, Sort,
that can be used for sorting an array.

• The program ArrayName\Step0 illustrates an attempt
to apply this Sort method to an array of Name
objects, where the Name class simply encapsulates a
string through a read-only property Text.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-29
 All Rights Reserved

Anatomy of Array.Sort

• What do you suppose will happen when you run this
program? Here is the result:

Exception occurred: System.ArgumentException: At
least one
object must implement IComparable.

• The static method Sort of the Array class relies on
some functionality of the objects in the array. The
array objects must implement IComparable.

• Suppose we don’t know whether the objects in our
array support IComparable. Is there a way we can
find out programmatically at runtime?

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-30
 All Rights Reserved

Using the is Operator

• There are in fact three ways we have seen so far to
dynamically check if an interface is supported:

− Use exceptions.

− Use the as operator.

− Use the is operator.

• In this case the most direct solution is to use the is
operator (which is applied to an object, not to a class).
See ArrayName\Step1.

− Here is the output from running the program. We’re still not
sorting the array, but at least we fail more gracefully.

Name does not implement IComparable

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-31
 All Rights Reserved

The Use of Dynamic Type Checking

• We can use dynamic type checking of object
references to make our programs more robust.

− We can degrade gracefully rather than fail completely.

• For example, in our array program the desired
outcome is to print the array elements in sorted
order.

− We could check whether the objects in the array support
IComparable, and if not, we could go ahead and print out
the array elements in unsorted order, obtaining at least some
functionality.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-32
 All Rights Reserved

Implementing IComparable

• Consulting the documentation for System, we find the
following specification for IComparable:

public interface IComparable
{
 int CompareTo(object object);
}

• We will implement IComparable in the class Name.
See ArrayName\Step2. We also add a simple loop in
Main to display the array elements after sorting.

• If we run the above program, we do not exactly get
the desired output:

Name
Name
Name
Name
Name

− The first five lines of output are blank, and in place of the
string in Name, we get the class name Name displayed.

− The unassigned elements of the array are null, and they com-
pare successfully with real elements, always being less than a
real element.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-33
 All Rights Reserved

Complete Solution

• We should test for null before displaying.

• The most straightforward way to correct the issue of
the strings in Name not displaying is to use the Text
property.

• A more interesting solution is to override the ToString
method in our Name class.

• The complete solution is in the directory
ArrayName\Step3.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-34
 All Rights Reserved

Understanding Frameworks

• Our example offers some insight into the workings of
frameworks.

− A framework is more than a library.

− In a typical library, you are concerned with your code calling
library functions.

• In a framework, you call into the framework and the
framework calls you.

• Your program can be viewed as the middle layer of a
sandwich.

− Your code calls the bottom layer.

− The top layer calls your code.

• The .NET Framework is an excellent example of such
an architecture.

− There is rich functionality that you can call directly.

− There are many interfaces, which you can optionally
implement to make your program behave appropriately when
called by the framework.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 18-35
 All Rights Reserved

Summary

• Collections are an example of classes in the .NET
Framework that support a well-defined set of
interfaces that provide useful functionality.

• Collections support the interfaces IEnumerable,
ICollection, IList, and ICloneable.

• In order to work with collections effectively, you need
to override certain methods of the object base class,
such as Equals.

• Comparison of objects are implemented through the
IComparable interface.

• The .NET Framework class library is an excellent
example of a rich framework, in which your code can
be viewed as the middle layer of a sandwich.

