
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-1
 All Rights Reserved

Chapter 20

Advanced Features

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-2
 All Rights Reserved

Advanced Features

Objectives

 After completing this unit you will be able to:

• Use C# to access directories and files.

• Write multithreaded programs in C#.

• Build C# classes that can serialize themselves to and
from files.

• Extend the .NET framework to define your own
attributes.

• Use reflection to discover information in C# class
metadata.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-3
 All Rights Reserved

Overview

• In this chapter we discuss a number of advanced
features of C# programming using the .NET
Framework.

− Directories and files

− Multithreaded programming

− Serialization

− Custom attributes

− Reflection

− “Unsafe” code

• These topics are important in their own right, and
they provide further examples of important C#
concepts that we have been studying.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-4
 All Rights Reserved

Directories And Files

• In this section we will first examine the
System.IO.Directory class in the .NET Framework
that allows us to work with directories.

• We will then look at file input and output, which
makes use of an intermediary called a stream.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-5
 All Rights Reserved

Directories

• The classes supporting input and output are in the
namespace System.IO.

• The classes Directory and DirectoryInfo contain
routines for working with directories.

− All the methods of Directory are static, and so you can call
them without having a directory instance.

− The DirectoryInfo class contains instance methods.

− In many cases you can accomplish the same objective using
methods of either class.

− The methods of Directory always perform a security check.

− If you are going to reuse a method several times, it may be
better to obtain an instance of DirectoryInfo and use its
instance methods, because a security check may not always
be necessary.

− A complete discussion of security is beyond the scope of this
course.

 For a discussion of security in .NET you may wish to refer
to the book Application Development Using C# and .NET,
in the Prentice Hall/Object Innovations series on .NET
technology.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-6
 All Rights Reserved

Directories (Cont’d)

• We illustrate both classes with a simple program
DirectoryDemo, which contains DOS-like commands
to show the contents of the current directory (“dir”)
and to change the current directory (“cd”).

− A directory can contain both files and other directories. The
method GetFiles returns an array of FileInfo objects, and the
method GetDirectories returns an array of DirectoryInfo
objects. In this program we only use the Name property of
FileInfo. In the following section we will see how to read
and write files using streams.

− In a sample run of the program notice that the current
directory starts out as the directory containing the program’s
executable.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-7
 All Rights Reserved

Files and Streams

• Programming languages have undergone an
evolution in how they deal with the important topic of
input/output (I/O).

− Early languages, such as FORTRAN, COBOL, and the
original BASIC, had I/O statements built into the language.

− Later languages have tended not to have I/O built into the
language, but instead rely on a standard library for
performing I/O, such as the <stdio.h> library in C.

− The library in languages like C works directly with files.

• Still later languages, such as C++ and Java,
introduced a further abstraction called a stream.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-8
 All Rights Reserved

Stream

• A stream serves as an intermediary between the
program and the file.

− Read and write operations are done to the stream, which is
tied to a file.

− This architecture is very flexible, because the same kind of
read and write operations can apply not only to a file, but to
other kinds of I/O, such as network sockets.

− This added flexibility introduces a slight additional
complexity in writing programs, because you have to deal not
only with files but also with streams, and there exists a
considerable variety of stream classes.

− But the added complexity is well worth the effort, and C#
strikes a nice balance, with classes that make performing
common operations quite simple.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-9
 All Rights Reserved

File

• As with directories, the System.IO namespace
contains two classes for working with files.

• The File class has all static methods, and the FileInfo
class has instance methods.

− The program FileDemo extends the DirectoryDemo
example program to illustrate reading and writing text files.

− We will illustrate binary file I/O later in this chapter, when
we discuss serialization.

− The directory commands are retained so that you can easily
exercise the program on different directories.

− The two new commands are “read” and “write.” The “read”
command illustrates using the File class.

− The “dir” command, already present in the DirectoryDemo
program, illustrates using the FileInfo class.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-10
 All Rights Reserved

Read

• Here is the code for the “read” command. The user is
prompted for a file name.

− The static OpenText method returns a StreamReader
object, which is used for the actual reading.

− There is a ReadLine method for reading a line of text,
similar to the ReadLine method of the Console class.

− A null reference is returned by ReadLine when at end of file.
Our program simply displays the contents of the file at the
console.

− When done, we close the StreamReader.

...
else if (cmd.Equals("read"))
{
 string fileName = iw.getString("file name: ");
 StreamReader reader = File.OpenText(fileName);
 string str;
 str = reader.ReadLine();
 while (str != null)
 {
 Console.WriteLine(str);
 str = reader.ReadLine();
 }
 reader.Close();
}
...

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-11
 All Rights Reserved

Write

• Here is the code for the “write” command.
...
else if (cmd.Equals("write"))
{
 fileName = iw.getString("file name: ");
 string strAppend = iw.getString("append
(yes/no): ");
 bool append = (strAppend == "yes" ? true :
false);
 StreamWriter writer =

new StreamWriter(fileName, append);
 Console.WriteLine("Enter text, blank line to
terminate");
 string str = iw.getString(">>");
 while (str != "")
 {
 writer.WriteLine(str);
 str = iw.getString(">>");
 }
 writer.Close();
}
...

• This time we also prompt for whether or not to
append to the file.

− There is a special constructor for the StreamWriter class
that will directly return a StreamWriter without first getting
a file object.

− The first parameter is the name of the file, and the second a
bool flag specifying the append mode.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-12
 All Rights Reserved

Sample Run

• We first obtain a listing of existing files in the current
directory.

• We then create a new text file, one.txt, and enter a
couple of lines of text data.

• We again do “dir”, and our new file shows up.

• We try out the “read” command.

• You could also open up the file in a text editor to
verify that it has been created and has the desired
data.

• Next we write out another line of text to this same file,
this time saying “yes” for append mode.

• We conclude by reading the contents of the file.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-13
 All Rights Reserved

Sample Run Output

path = C:\OI\CSharp\Chap20\FileDemo\bin\Debug
Enter command, quit to exit
> dir
Files:
 FileDemo.exe
 FileDemo.pdb
Directories:
> write
file name: one.txt
append (yes/no): no
Enter text, blank line to terminate
>>hello, world
>>this is second line
>>
> dir
Files:
 FileDemo.exe
 FileDemo.pdb
 one.txt
Directories:
> read
file name: one.txt
hello, world
this is second line
> write
file name: one.txt
append (yes/no): yes
Enter text, blank line to terminate
>>and a third line
>>
> read
file name: one.txt
hello, world
this is second line
and a third line

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-14
 All Rights Reserved

Multiple Thread Programming

• Modern programming environments allow you to
program with multiple threads.

• Threads run inside of processes and allow multiple
concurrent execution paths.

− If there are multiple CPUs, you can achieve parallel
processing through the use of threads.

− On a single processor machine, you can often achieve greater
efficiency by using multiple threads, because when one
thread is blocked, for example, waiting on an I/O completion,
another thread can continue execution.

− Also, the use of multiple threads can make a program more
responsive to shorter tasks, such as tasks requiring user
responses.

• Along with the potential benefit of programming with
multiple threads, there is greater program
complexity, because you have to manage the issues of
starting up threads, controlling their lifetimes, and
synchronizing among threads.

− Since threads are within a common process and share an
address space, it is possible for two threads to concurrently
access the same data.

− Such concurrent access, known as a “race condition,” can
lead to erroneous results when non-atomic operations are
performed, a topic we will discuss in detail later in this
section.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-15
 All Rights Reserved

.NET Threading Model

• The .NET Framework provides extensive support for
multiple thread programming in the
System.Threading namespace.

• The core class is Thread, which encapsulates a thread
of execution.

− This class provides methods to start and suspend threads, to
sleep, and to perform other thread management functions.

− The method that will execute for a thread is encapsulated
inside a delegate of type ThreadStart.

− As we saw in Chapter 19, a delegate can wrap either a static
or an instance method.

• When starting a thread, it is frequently useful to
define an associated class, which will contain instance
data for the thread, including initialization
information.

− A designated method of this class can be used as the
ThreadStart delegate method.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-16
 All Rights Reserved

Console Log Demonstration

• The ThreadDemo program provides an illustration of
this architecture.

• The ConsoleLog class encapsulates a thread ID and
parameters specifying a sleep interval and a count of
how many lines of output will be written to the
console.

− It provides the method ConsoleLog that writes out logging
information to the console, showing the thread ID and
number of elapsed (millisecond) ticks.

• The program is configured with a “slow” thread and
a “fast” thread.

− The slow thread will sleep for 1 second between outputs, and
the fast thread will sleep for only 400 milliseconds.

− A ConsoleLog object is created for each of these threads,
initialized with appropriate parameters. Both will do five
lines of output.

• Next, appropriate delegates are created of type
ThreadStart.

• Notice that we use an instance method,
ConsoleThread, as the delegate method.

− Use of an instance method rather than a static method is
appropriate in this case, because we want to associate
parameter values (sleep interval and output count) with each
delegate instance.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-17
 All Rights Reserved

Console Log Demonstration (Cont’d)

• We then create and start the threads. We write a
message to the console just before and just after
starting the threads.

− When do you think the message “Threads have started” will
be displayed, relative to the output from the threads
themselves? Here is the output from running the program.
You will notice a slight delay as the program executes,
reflecting the sleep periods.

Starting threads ...
Threads have started
Thread 1: ticks = 0
Thread 2: ticks = 0
Thread 2: ticks = 400
Thread 2: ticks = 800
Thread 1: ticks = 1000
Thread 2: ticks = 1200
Thread 2: ticks = 1600
Thread 1: ticks = 2000
Thread 2 is terminating
Thread 1: ticks = 3000
Thread 1: ticks = 4000
Thread 1 is terminating

• The “Threads have started” message is displayed
immediately, reflecting the asynchronous nature of
the two additional threads.

− The Start calls return immediately, and the second message
prints.

− Meanwhile, the other threads get started by the system, which
takes a little bit of time, and then they each start producing
output.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-18
 All Rights Reserved

Race Conditions

• A major issue in concurrency is shared data.

• If two computations access the same data, different
results can be obtained depending on the timing of
the different accesses, a situation known as a race
condition.

− Race conditions present a programming challenge because
they can occur unpredictably.

− Careful programming is required to ensure they do not occur.

• Race conditions can easily arise in multithreaded
applications, because threads belonging to the same
process share the same address space and thus can
share data.

• Consider two threads making deposits to a bank
account, where the deposit operation is not atomic:

− Get balance.

− Add amount to balance.

− Store balance.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-19
 All Rights Reserved

Race Conditions (Cont’d)

• The following sequence of actions will then produce a
race condition, with invalid results.

− Balance starts at $100.

− Thread 1 makes deposit of $25 and is interrupted after getting
balance and adding amount to balance, but before storing
balance.

− Thread 2 makes deposit of $5000 and goes to completion,
storing $5100.

− Thread 1 now finishes, storing $125, overwriting the result of
thread 2. The $5000 deposit has been lost!

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-20
 All Rights Reserved

Race Condition Illustration

• The program ThreadAccount\Race illustrates this
race condition.

− The Account class has a method DelayDeposit, which
updates the balance non-atomically.

− The thread sleeps for 5 seconds in the middle of the update
operation, leaving open a window of vulnerability for another
thread to come in.

• The call t2.Join blocks the current thread until thread
t2 finishes.

− This technique enables us to show the balance after a thread
has definitely completed.

− Here is the output.

− As you can see, we have exactly replicated the race condition
scenario outlined at the beginning of this section.

balance = $100.00
delay deposit of $25.00 on thread 1
deposit of $5,000.00 on thread 2
balance = $5,100.00 (thread 2 done)
balance = $125.00 (thread 1 done)

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-21
 All Rights Reserved

Thread Synchronization
Programming

• Such race conditions can be avoided by serializing
access to the shared data.

− Suppose only one thread at a time is allowed to access the
bank account.

− Then the first thread that starts to access the balance will
complete the operation before another thread begins to access
the balance (the second thread will be blocked).

− In this case threads synchronize based on accessing data.

• Another way threads can synchronize is for one
thread to block until another thread has completed.

• The Join method is a means for accomplishing this
kind of thread synchronization, as illustrated above.

• The System.Threading namespace provides a number
of thread synchronization facilities.

• In this section we will illustrate use of the Monitor
class.

• We will also look at use of the C# keyword lock,
which uses monitors under the hood.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-22
 All Rights Reserved

Monitor

• You can serialize access to shared data using the
Enter and Exit methods of the Monitor class.

• Monitor.Enter obtains the monitor lock for an object.

− An object is passed as a parameter.

− This call will block if another thread has entered the monitor
of the same object.

− It will not block if the current thread has previously entered
the monitor.

• Monitor.Exit releases the monitor lock.

− If one or more threads are waiting to acquire the lock, and the
current thread has executed Exit as many times as it has
executed Enter, one of the threads will be unblocked and
allowed to proceed.

− An object reference is passed as the parameter to
Monitor.Enter and Monitor.Exit.

− This is the object on which the monitor lock is acquired or
released. To acquire a lock on the current object, pass this.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-23
 All Rights Reserved

Monitor (Cont’d)

• The program ThreadAccount\Monitor illustrates the
use of monitors to protect the critical section where
the balance is updated.

− In this program we also place the calls to ShowBalance just
before exiting the monitor. This technique will ensure that we
see the balance as soon as it has been updated.

• The test program is the same as in the previous
example, except we are now doing the display of the
new balance immediately after the thread has
updated the balance.

− Here is the output. Notice that the synchronization is
successful—we did not have the $5000 deposit wiped out!

balance = $100.00
delay deposit of $25.00 on thread 1
deposit of $5,000.00 on thread 2
balance = $125.00 (Thread 1)
balance = $5,125.00 (Thread 2)

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-24
 All Rights Reserved

lock

• C# provides the lock statement as a convenient way to
obtain a mutual exclusion lock implemented by the
Monitor class.

• The program ThreadAccount\Lock illustrates use of
the lock statement.

− Besides using lock, this example in the relevant code for the
modified Account class introduces a property Owner. The
owner is completely independent of the balance, and so we
do not need any lock around the code to get the owner.

• The test program is similar to the program for testing
monitors, but it adds code at the end of Main to get
the owner name, after sleeping briefly to make sure
the threads have started and have hit the locks.

• Here is the output. It is the same as for the previous
example, with an additional line of output showing
the owner.

− This extra line of output is displayed almost immediately,
with very little pause.

− The output from the threads comes afterwards.

balance = $100.00
delay deposit of $25.00 on thread 1
deposit of $5,000.00 on thread 2
owner = Tom Thread
balance = $125.00 (Thread 1)
balance = $5,125.00 (Thread 2)

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-25
 All Rights Reserved

Attributes

• We have seen various ways to program proper
synchronization so that we avoid a race condition.

− Although the code in our example was quite straightforward,
in more elaborate situations code involving multiple threads
may become quite complex, especially when exceptional
conditions are taken into account.

• A whole different approach to implementing complex
code is to let the system do it for you.

− There must be a way for the programmer to inform the
system of what is desired.

− In the .NET Framework such cues can be given to the system
by means of attributes.

• Microsoft introduced attribute-based programming
in Microsoft Transaction Server.

• The concept was that MTS, not the programmer,
would implement complex tasks such as distributed
transactions.

− The programmer would “declare” the transaction
requirements for a COM class, and MTS would implement it.

− This use of attributes was greatly extended in the next
generation of MTS, known as COM+.

− In MTS and COM+ attributes are stored in a separate
repository, distinct from the program itself.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-26
 All Rights Reserved

Attributes (Cont’d)

• Attributes are also used in Interface Definition
Language (IDL), which gives a precise specification of
COM interfaces, including the methods and
signatures.

• Part of the function of IDL is to make it possible for a
tool to generate proxies and stubs for remoting a
method call across a process boundary or even across
a network.

− When parameters are passed remotely, it is necessary to give
more information than when they are passed with the same
process.

− For example, within a process, you can simply pass a
reference to an array.

− But in passing an array across a process boundary, you must
inform the tool of the size of the array.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-27
 All Rights Reserved

Attributes (Cont’d)

• This information is communicated in IDL by means
of attributes, which are specified using a square
bracket notation.

− Again, attribute information is stored in a location separate
from program code.

• A problem with attributes in both MTS/COM+ and
IDL is that they are separate from the program
source code.

− When the source code is modified, the attribute information
may become out of synch with the code.

• In .NET, attributes are declared with square
brackets, as in IDL.

• But unlike IDL, the attributes are part of the
program source code.

− When compiled into intermediate language, the attributes
become part of the metadata.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-28
 All Rights Reserved

Synchronization Attribute

• What does all this have to do with synchronization?

• The .NET Framework provides many different kinds
of attributes, which your source code may use in
order to obtain automatic use of services of the
Framework.

• An example is the Synchronization attribute, which is
applied to a class and automatically synchronizes
method calls, allowing only one thread to call into the
class at a time.

• The program ThreadAccount\Attribute illustrates
synchronization of the Account class by means of an
attribute. The code is shown below, and only three
lines of code are involved:

− A new namespace, System.Runtime.Remoting.Contexts.

− The attribute [Synchronization(SynchronizationAttribute.

REQUIRED)].

− The class derives from ContextBoundObject.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-29
 All Rights Reserved

Synchronization Attribute (Cont’d)

• The base class ContextBoundObject extracts the
attribute information from the metadata, using a
mechanism known as reflection.

− It then provides the appropriate code to ensure serial
invocation of methods.

− You do not need to understand how the base class carries out
its work; it is abstracted for you.

• Later in this chapter we will show how you can
implement your own custom attributes, and we will
also introduce reflection.

• We will illustrate how you can define a base class,
which enables use of the custom attribute in any
derived class.

balance = $100.00
delay deposit of $25.00 on thread 1
deposit of $5,000.00 on thread 2
balance = $125.00 (Thread 1)
balance = $5,125.00 (Thread 2)
owner = Tom Thread

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-30
 All Rights Reserved

Synchronization Attribute (Cont’d)

• As you can see, the race condition has been avoided in
the output, and there is no explicit thread
synchronization code using monitors, the lock
statement, or a similar construct.

• However, the behavior is somewhat different from
our previous program, ThreadAccount\Lock.

− Now all method calls into Account are serialized, including
calling the property to obtain the owner.

− When you ran the program, you should have noticed a
pronounced delay before the owner was displayed, whereas
this happened almost immediately in the Lock example.

− This automatic synchronization is coarse grained, so we
obtained greater concurrency, in this example, by
implementing the synchronization ourselves.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-31
 All Rights Reserved

Serializable Attribute

• A second example of a useful attribute provided by
the .NET Framework is Serializable.

• When this attribute is applied to a class, the
Framework provides code to serialize object instances
of the class.

• “Serialize” means convert a graph of objects into a
linear sequence of bytes.

− This sequence of bytes can then be written to a stream or
otherwise used to transmit all the data associated with the
object instance.

− Objects can be serialized without writing special code,
because the metadata knows the object’s memory layout.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-32
 All Rights Reserved

SerializeAccount

• The program SerializeAccount illustrates serialization
of the Account class by means of an attribute.

− The code for the Account class is shown below, and only one
line of code is involved: The attribute [System.Serializable]
is placed before the class.

− In this case, all the data members of the class will be
serialized.

− If you want to exclude a data member from being serialized,
for example, because it contained some kind of temporary
cache of data, you can place the attribute
[System.NonSerialized] in front of the member you want
excluded.

// Account.cs

using System;

[System.Serializable]
public class Account
{
 private decimal balance;
 private string owner;
 private int id;
 ...

• The SerializeAccount class illustrates serializing and
deserializing a collection of Account objects.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-33
 All Rights Reserved

Serializing a Class

• What is powerful about the serialization mechanism
is that you can serialize complex graphs of objects
simply by making each object serializable, which in
turn can be done in the .NET Framework by using an
attribute.

− A composite object is serialized by serializing each of its
constituent objects.

− The .NET Framework collection classes, such as ArrayList,
have serialization support built in.

• While making a class serializable is simply a matter
of using an attribute, you must write a little code to
cause an object graph to serialize itself.

• If you are using serialization to implement
persistence, you need to perform the following four
basic steps to save the data.

− Instantiate a FileInfo object where the data will be saved.

− Open up a Stream object for writing to the file.

− Instantiate a formatter object for laying out the objects in a
suitable format.

− Apply the formatter’s Serialize method to the root object and
the stream.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-34
 All Rights Reserved

De-Serializing

• There is similar code for deserializing. There are two
built-in formatters provided by the .NET
Framework:

− BinaryFormatter lays out object data in a binary format.

− SOAPFormatter lays out object data in an XML format.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-35
 All Rights Reserved

Serialization Namespaces

• If you use a binary formatter, you will need the
following two namespaces in order to perform the
serialization:

− System.Runtime.Serialization

− System.Runtime.Serialization.Formatters.Binary

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-36
 All Rights Reserved

Serialization Sample Run

• Here are two consecutive sample runs of the
program.

− In the first run, we add two accounts, remove one, then save.

− In the second run, we load and verify that we have gotten
back the modified collection of accounts.

1 Bob $100.00
2 Mary $200.00
3 Charlie $300.00
Enter command, quit to exit
> add
balance: 400
owner: David
id: 4
> add
balance: 500
owner: Ellen
id: 5
> remove
id: 3
> save
> quit
---- Second run ----
1 Bob $100.00
2 Mary $200.00
3 Charlie $300.00
Enter command, quit to exit
> load
> show
1 Bob $100.00
2 Mary $200.00
4 David $400.00
5 Ellen $500.00

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-37
 All Rights Reserved

Custom Attributes

• We have seen two examples, synchronization and
serialization, of useful attributes provided by the
system.

• The .NET Framework makes the attribute
mechanism entirely extensible, allowing you to define
custom attributes, which will cause information to be
written to the metadata.

• Using reflection, you can then extract this information
from the metadata at run-time, and modify the
behavior of your program appropriately.

− In order to simplify the use of the custom attribute, you may
declare a base class to do the work of invoking the reflection
API to obtain the attribute information stored in the metadata.

− We will illustrate getting custom attribute information using
reflection in this section, and in the following discussion we
will discuss reflection in more generality.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-38
 All Rights Reserved

Custom Attributes (Cont’d)

• We illustrate this whole process of defining and using
custom attributes with a simple example,
AttributeDemo, which uses the custom attribute
InitialDirectory to control the initial current directory
when the program is run.

− As we saw in the first section of this chapter, by default the
current directory is the directory containing the program’s
executable.

− In the case of a Visual Studio C# project, built in Debug
mode, this directory is bin\Debug, relative to the project
source code directory.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-39
 All Rights Reserved

Using a Custom Attribute

• First, let’s see an example of using the InitialDirectory
custom attribute.

− We will then see how to define and implement it.

• To be able to control the initial directory for a class,
we derive the class from the base class
DirectoryContext.

• We may then apply to the class the attribute
InitialDirectory, which takes a string parameter giving
a path to what the initial directory should be.

− The property DirectoryPath extracts the path from the
metadata.

− If our class does not have the attribute applied, this path will
be the default.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-40
 All Rights Reserved

Defining an Attribute Class

• To create a custom attribute, you must define an
attribute class, derived from the base class Attribute.

− The convention is to give your class a name ending in
“Attribute.”

− The name of your class without the “Attribute” suffix will
then be the name of the custom attribute.

− In our example, the name of our class is
InitialDirectoryAttribute, and the name of the
corresponding attribute is InitialDirectory.

• You may provide one or more constructors for your
attribute class.

• The constructors define how to pass positional
parameters to the attribute (provide a parameter list,
separated by commas).

− It is also possible to provide “named parameters” for a
custom attribute, where the parameter information will be
passed using syntax name = value.

− You may also provide properties to read the parameter
information.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-41
 All Rights Reserved

Defining an Attribute Class

• In our example, we have a property Path, which is
initialized in the constructor.

// DirectoryAttribute.cs

using System;

public class InitialDirectoryAttribute : Attribute
{
 private string path;
 public InitialDirectoryAttribute(string path)
 {
 this.path = path;
 }
 public string Path
 {
 get
 {
 return path;
 }
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-42
 All Rights Reserved

Defining a Base Class

• The last step in working with custom attributes is to
provide a means to extract the custom attribute
information from the metadata.

• As we shall see in the next section, the .NET
Framework provides an elaborate API, the Reflection
API, for precisely this purpose.

− The root class for metadata information is Type, and you can
obtain the Type of any object by calling the method
GetType, which is provided in the root class object.

− To read custom attribute information, you need only one
method, Type.GetCustomAttributes.

• Although it would be quite feasible for the program
using the custom attribute to perform this operation
directly, normally you will want to make the coding
of the client program as simple as possible.

− Hence it is useful to provide a base class to do the work of
reading the custom attribute information from the metadata.

− In the previous section we saw an example of such a base
class, ContextBoundObject, which was used when we
wanted a class to be able to use the Synchronization
attribute.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-43
 All Rights Reserved

Defining a Base Class (Cont’d)

• In our case, we provide a base class DirectoryContext,
which is used by a class wishing to take advantage of
the InitialDirectory attribute.

• This base class provides the property DirectoryPath to
return the path information stored in the metadata.
Here is the code for the base class:

// DirectoryContext.cs

using System;
using System.Reflection;
using System.IO;

public class DirectoryContext
{
 virtual public string DirectoryPath
 {
 get
 {
 Type t = this.GetType();
 foreach (Attribute a
 in t.GetCustomAttributes(true))
 {
 InitialDirectoryAttribute da =
 a as InitialDirectoryAttribute;
 if (da != null)
 {
 return da.Path;
 }
 }
 return Directory.GetCurrentDirectory();
 }
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-44
 All Rights Reserved

Defining a Base Class (Cont’d)

• We require the System.Reflection namespace. GetType
returns the current Type object, and we can then use
the GetCustomAttributes method to obtain a collection
of Attribute objects from the metadata.

− This collection is heterogeneous, consisting of different
types.

− We can use the C# as operator to test if a given element in
the collection is of type InitialDirectoryAttribute.

− If we find such an element, we return the Path property.

− Otherwise, we return the default current directory, obtained
from GetCurrentDirectory.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-45
 All Rights Reserved

Reflection

• At the heart of .NET is metadata, which stores very
complete type information.

• The Reflection API permits you to query this
information at runtime.

• You can also dynamically invoke methods, and
through the System.Reflection.Emit namespace, you
can even dynamically create and execute MSIL code.

− In the previous section we saw an illustration of using
reflection to obtain custom attribute information.

− In this section we will provide a further example of
dynamically obtaining a listing of all types defined in an
assembly. (A program’s EXE file is an example of an
assembly.

− We will discuss assemblies in the next chapter, and see some
further examples, such as dynamic link libraries, or DLLs.)

− We are only scratching the surface of a very large subject,
but our example should help you get started.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-46
 All Rights Reserved

Reflection Demo

• As befits the name “reflection”, our demo program
ReflectionDemo shows information about itself.

− The program contains two classes, Dog and
ReflectionDemo.

− The program calls the Bark method of Dog.

− It then calls Assembly.GetExecutingAssembly to obtain its
assembly. It shows all the types in the assembly, and all the
methods of each type.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-47
 All Rights Reserved

Using ILDASM

• You can examine information about any assembly by
using the ILDASM utility.

− To run ILDASM, simply enter ildasm at a command prompt
or use Start | Run.

− To examine a particular assembly, use the File | Open
command.

− The figure shows the types for ReflectionDemo.exe, which
compares with the output from our ReflectionDemo program.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-48
 All Rights Reserved

Unsafe Code

• The mainstream use of C# is to write managed code,
which runs on the Common Language Runtime.

• As we shall see in the next chapter, it is quite possible
for a C# program to call unmanaged code, such as a
legacy COM component, which runs directly on the
operating system.

− This facility is important, because a tremendous amount of
legacy code exists, which is all unmanaged.

− There is overhead in transitioning from a managed
environment to an unmanaged one and back again.

• C# provides another facility, called unsafe code,
which allows you to bypass the .NET memory
management and get at memory directly, while still
running on the CLR.

− In particular, in unsafe code you can work with pointers,
which we will discuss later in this section.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-49
 All Rights Reserved

Unsafe Blocks

• The most circumspect use of unsafe code is within a
block, which is specified using the C# keyword
unsafe.

• The program UnsafeBlock illustrates using the sizeof
operator to determine the size in bytes of various data
types.

− You will get a compiler error if you try to use the sizeof
operator outside of unsafe code.

// UnsafeBlock.cs
using System;
struct Account
{
 private int id;
 private decimal balance;
}

public class UnsafeBlock
{
 public static void Main()
 {
 unsafe
 {
 Console.WriteLine("size of int = {0}",
 sizeof(int));
 Console.WriteLine("size of decimal = {0}",
 sizeof(decimal));
 Console.WriteLine("size of Account = {0}",
 sizeof(Account));
 }
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-50
 All Rights Reserved

Unsafe Blocks (Cont’d)

• To compile this program at the command line, open
up a DOS window and navigate to the directory
c:\OI\CSharp\Chap20\UnsafeBlock.

• You can then enter the following command to
compile using the /unsafe compiler option:

csc /unsafe UnsafeBlock.cs

− (You may ignore the warning messages, as our program does
not attempt to use fields of Account. It only applies the
sizeof operator.)

− To run the program, type unsafeblock at the command line,
obtaining the output shown below:

C:\OI\CSharp\Chap20\UnsafeBlock>unsafeblock
size of int = 4
size of decimal = 16
size of Account = 20

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-51
 All Rights Reserved

Unsafe Option in Visual Studio

• To set the unsafe option in Visual Studio, perform the
following steps:

− Right-click over the project in the Solution Explorer, and
choose Properties.

− In the Property Pages window that comes up, click on
Configuration Proper-ties and then on Build.

− In the dropdown for Allow unsafe code blocks, choose True.
See Figure 20–2.

− Click OK. You can now compile your project in unsafe
mode.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-52
 All Rights Reserved

Pointers

• In Chapter 9 we saw that C# has three kinds of data
types:

− Value types, which directly contain their data

− Reference types, which refer to data contained somewhere
else

− Pointer types

• Pointer types can only be used in unsafe code.

− A pointer is an address of an actual memory location.

− A pointer variable is declared using an asterisk after the data
type.

− To refer to the data a pointer is pointing to, use the
dereferencing operator, which is an asterisk before the
variable.

− To obtain a pointer from a memory location, apply the
address of operator, which is an ampersand in front of the
variable.

• Here are some examples.
int* p; // p is a pointer to an int
int a = 5; // a is an int, with 5 stored
p = &a; // p now points to a
*p = 12; // 12 is now stored in location
pointed
 // to by p. So a now has 12 stored

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-53
 All Rights Reserved

Pointers (Cont’d)

• Pointers were widely used in the C programming
language, because functions in C only pass data by
value.

• Thus if you want a function to return data, you must
pass a pointer rather than the data itself.

• The program UnsafePointer illustrates a Swap
method, which is used to interchange two integer
variables.

− Since the program is written in C#, we can pass data by
reference.

− We illustrate with two overloaded versions of the Swap
method, one using ref parameters and the other using
pointers.

− Rather than using an unsafe block, this program uses unsafe
methods, which are defined by including unsafe among the
modifiers of the method.

− Both the Main method and the one Swap method are unsafe.

• Again you should compile the program using the
unsafe option, either at the command line or in the
Visual Studio project.

− The first swap interchanges the values. The second swap
brings the values back to their original state.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-54
 All Rights Reserved

Fixed Memory

• When working with pointers, there is a pitfall.

− Suppose you have obtained a pointer to a region of memory
that contains data you are working on.

− Since you have a pointer, you are accessing memory directly.

− But suppose the garbage collector collects garbage and
moves data about in memory.

• Then your object may now reside at a different
location, and your pointer may no longer be valid.

• To deal with such a situation, C# provides the
keyword fixed, which declares that the memory in
question is “pinned” and cannot be moved by the
garbage collector.

− Note that you should use fixed only for temporary, local
variables, and you should keep the scope as circumscribed as
possible.

− If too much memory is pinned, the CLR memory
management system cannot manage memory efficiently.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-55
 All Rights Reserved

Fixed Memory Illustration

• The program UnsafeAccount illustrates working with
fixed memory.

− This program declares an array of five Account objects, and
then assigns them all the same value.

− The attempt to determine the size of this array is commented
out, because you cannot apply the sizeof operator to a
managed type such as Account[].

• It also illustrates the arrow operator for
dereferencing a field in a struct, when you have a
pointer to the struct.

− For example, if p is a pointer to an instance of the struct
Account shown below, the following code will assign values
to the account object pointed to by p.

p->id = 101; // assign the id field
p->balance = 50.00m; // assign the balance
field

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 20-56
 All Rights Reserved

Summary

• We first looked at directories and files, which were
used for examples later in the chapter.

• The .NET threading model is built on delegates.

• Synchronization can be accomplished through .NET
Framework classes such as Monitor and through the
C# lock statement.

• Attributes are a very powerful concept in .NET,
making it possible to accomplish much without
writing code.

• We looked at the built-in attributes Synchronized and
Serializable, and we saw how to create a custom
attribute.

• Custom attribute information can be read from
metadata using the Reflection API.

• Unsafe code allows C# programs to access legacy code
and use pointers.

