
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-1
 All Rights Reserved

Chapter 16

Exceptions

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-2
 All Rights Reserved

Exceptions

Objectives

 After completing this unit you will be able to:

• Use the C# exception mechanism.

• Create and use your own exception classes.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-3
 All Rights Reserved

Introduction to Exceptions

• An inevitable part of programming is dealing with
error conditions of various sorts.

• This chapter introduces the exception handling
mechanism of C#, beginning with a discussion of the
fundamentals of error processing and various
alternatives that are available.

• The .NET class library provides an Exception class,
which you can use to pass information about an
exception that occurred.

• To further specify your exception and to pass
additional information, you can derive your own class
from Exception.

• When handling an exception you may want to throw
a new exception.

• In such a case you can use the “inner exception”
feature of the Exception class to pass the original
exception on with your new exception.

• We will illustrate these features with a simplified
version of our case study example, and then provide
an update to the case study itself, incorporating basic
exception handling.

• We also provide an example of handling arithmetic
exceptions.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-4
 All Rights Reserved

Exception Fundamentals

• The traditional way to deal with errors when
programming is to have the functions you call return
a status code.

− The status code may have a particular value for a good return
and other values to denote various error conditions.

− The calling function checks this status code, and if an error
was encountered, it performs appropriate error handling.

− This function in return may pass an error code to its calling
function, and so on up the call stack.

• Although straightforward, this mechanism has a
number of drawbacks, principally lack of robustness.

− The called function may have impeccable error checking
code and return appropriate error information, but all this
information is wasted if the calling function does not make
use of it.

− The program may continue operation as if nothing were
amiss, and sometime later, crash for some mysterious reason.

− Another disadvantage is that every function in the call stack
must participate in the process, or the chain of error
information will be broken.

− In languages such as C# that have constructors and
overloaded operators, there is not even a return value for
some operations.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-5
 All Rights Reserved

.NET Exception Handling

• C# provides an exception mechanism that can be used
for reporting and handling errors.

− An error is reported by “throwing” an exception.

− The error is handled by “catching” the exception.

− This mechanism is similar in concept to exceptions in C++
and Java.

− Exceptions are implemented in .NET by the Common
Language Runtime, so exceptions can be thrown in one .NET
language and caught in another.

• The exception mechanism involves the following
elements:

− Code that might encounter an exception should be enclosed
in a try block.

− Exceptions are caught in a catch block.

− An Exception object is passed as a parameter to catch. The
data type is System.Exception or a derived type.

− You may have multiple catch blocks. A match is made based
on the data type of the Exception object.

− An optional finally clause contains code that will be executed
whether or not an exception is encountered.

− In the called method, an exception is raised through a throw
statement.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-6
 All Rights Reserved

Exception Flow of Control

• The general structure of code which might encounter
an exception is shown below:

try
{
 // code that might throw an exception
}
catch (ExceptionClass1 e)
{
 // code to handle this type of exception
}
catch (ExceptionClass2 e)
{
 // code to handle this other type of exception
}
// possibly more catch handlers
// optional finally clause (discussed later)
// statements after try ... catch

• Each catch handler has a parameter specifying the
data type of exception that it can handle.

• The exception data type can be System.Exception or a
class ultimately derived from it.

− If an exception is thrown, the first catch handler that matches
the exception data type is executed, and then control passes
to the statement just after the catch block(s).

− If no handler is found, the exception is thrown to the next
higher “context” (e.g., the function that called the current
one). If no exception is thrown inside the try block, all the
catch handlers are skipped.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-7
 All Rights Reserved

Context and Stack Unwinding

• As the flow of control of a program passes into nested
blocks, local variables are pushed onto the stack and
a new “context” is entered.

− Likewise, a new context is entered on a method call, which
also pushes a return address onto the stack.

− If an exception is not handled in the current context, the
exception is passed to successively higher contexts until it is
finally handled (or else is “uncaught” and is handled by a
default system handler).

• When the higher context is entered, C# adjusts the
stack properly, a process known as stack unwinding.

− In C# exception handling, stack unwinding involves both
setting the program counter and cleaning up variables
(popping stack variables and marking heap variables as free,
so that the garbage collector can deallocate them).

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-8
 All Rights Reserved

Exception Example

• Now let’s look at some code that illustrates the
principles we have discussed so far.

• We will use a simplified version of our Account class,
which has only methods Deposit and Withdraw, and
the property Balance.

− Both methods will throw an exception if the amount passed
as a parameter is negative.

− In addition, the Withdraw method will throw an exception if
the new balance would be negative—overdrafts are not
allowed.

• Our example program is in the directory
AccountExceptionDemo\Step1.

• In the test program, we place the entire body of the
command processing loop inside a try block.

− The catch handler prints an error message that is passed
within the exception object.

− Then after either normal processing or displaying an error
message, a new command is read in.

− This simple scheme provides reasonable error processing, as
a bad command will not be acted upon, and the user will have
an opportunity to enter a new command.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-9
 All Rights Reserved

Exception Example (Cont’d)

// Account.cs

using System;

public class Account
{
 protected decimal balance;
 public Account(decimal balance)
 {
 this.balance = balance;
 }
 public void Deposit(decimal amount)
 {
 if (amount < 0.00m)
 throw new Exception(
"The transaction amount cannot be negative.");
 balance += amount;
 }
 public void Withdraw(decimal amount)
 {
 if (amount < 0.00m)
 throw new Exception(
"The transaction amount cannot be negative.");
 decimal newbal = balance - amount;
 if (newbal < 0.00m)
 throw new Exception(
"The balance cannot be negative.");
 balance = newbal;
 }
 public decimal Balance
 {
 get
 {
 return balance;
 }
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-10
 All Rights Reserved

Exception Example (Cont’d)

// AccountExceptionDemo.cs

while (! cmd.Equals("quit"))
{
 try
 {
 if (cmd.Equals("deposit"))
 {
 decimal amount = iw.getDecimal(
 "amount: ");
 acc.Deposit(amount);
 ShowBalance(acc);
 }
 else if (cmd.Equals("withdraw"))
 {
 decimal amount = iw.getDecimal(
 "amount: ");
 acc.Withdraw(amount);
 ShowBalance(acc);
 }
 else if (cmd.Equals("show"))
 ShowBalance(acc);
 else
 help();
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
 cmd = iw.getString("> ");
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-11
 All Rights Reserved

System.Exception

• The System.Exception class provides a number of
useful methods and properties for obtaining
information about an exception.

− Message returns a text string providing information about the
exception.

− This message is set when the exception object is constructed.

− If no message is specified, a generic message will be
provided, indicating the type of the exception.

− The Message property is read-only. (Hence, if you want to
specify your own message, you must construct a new
exception object, as done in the example above.)

− StackTrace returns a text string providing a stack trace at the
place where the exception arose.

− InnerException holds a reference to another exception.

− When you throw a new exception, it is desirable not to lose
the information about the original exception.

− The original exception can be passed as a parameter when
constructing the new exception.

− The original exception object is then available through the
InnerException property of the new exception. (We will
provide an example of using inner exceptions later in this
chapter.)

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-12
 All Rights Reserved

User-Defined Exception Classes

• You can do basic exception handling using only the
base Exception class, as illustrated previously.

− In order to obtain more fine-grained control over exceptions,
it is frequently useful to define your own exception class,
derived from Exception.

− You can then have a more specific catch handler that looks
specifically for your exception type.

− You can also define other members in your derived exception
class, so that you can pass additional information to the catch
handler.

• We will illustrate by enhancing the Withdraw method
of our Account class (AccountExceptionDemo\Step1).

− We want to distinguish between the two types of exceptions
we throw. The one type is essentially bad input data (a
negative value).

− We will continue to handle this exception in the same manner
as before (which is the same as bad input data that gives rise
to a format exception, thrown by .NET library code).

− We will define a new exception class BalanceException to
cover the case when the balance would become negative.

− In this case we want to allow the user an opportunity to
correct the situation (in this case simply by making a deposit
to cover the shortage).

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-13
 All Rights Reserved

User Exception Example

• Our example program is
AccountExceptionDemo\Step2.

• Note that we define a property Shortage that can be
used to store the information about how short the
balance is.

− The constructor of our exception class takes two parameters.

− The first parameter is an error message string, and the second
parameter is the amount of the shortage.

− We pass the message string to the constructor of the base
class.

− We must also modify the code of the Account class to throw
our new type of exception when an illegal negative balance
would be created.

• Finally we modify the code in our test program that
processes the “withdraw” command.

− We place the call to Withdraw inside another try block, and
we provide a catch handler for a BalanceException. In this
catch handler we allow the user an opportunity to make a
supplemental deposit.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-14
 All Rights Reserved

User Exception Example (Cont’d)

// BalanceException.cs

using System;

public class BalanceException : Exception
{
 private decimal shortage;
 public BalanceException(string message,
 decimal shortage) : base(message)
 {
 this.shortage = shortage;
 }
 public decimal Shortage
 {
 get
 {
 return shortage;
 }
 }
}

// Account.cs

...

public void Withdraw(decimal amount)
{
 if (amount < 0.00m)
 throw new Exception(
"The transaction amount cannot be negative.");
 decimal newbal = balance - amount;
 if (newbal < 0.00m)
 throw new BalanceException(
"The balance cannot be negative.", -newbal);
 balance = newbal;
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-15
 All Rights Reserved

User Exception Example (Cont’d)

// AccountExceptionDemo.cs

...

else if (cmd.Equals("withdraw"))
{
 decimal amount = iw.getDecimal("amount: ");
 try
 {
 acc.Withdraw(amount);
 }
 catch (BalanceException e)
 {
 Console.WriteLine("You are short {0:C}",
 e.Shortage);
 Console.WriteLine("Please make a deposit");
 decimal supplemental = iw.getDecimal(
 "amount: ");
 acc.Deposit(supplemental);
 acc.Withdraw(amount); // try again
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-16
 All Rights Reserved

Structured Exception Handling

• One of the principles of structured programming is
that a block of code should have a single entry point
and a single exit point.

− The goto statement is bad, because it facilitates breaking this
principle.

− But there are other ways to violate the principle of a single
exit point, such as multiple return statements from a method.

− Multiple return statements may not be too bad, because these
may be encountered during normal, anticipated flow of
control.

• Exceptions can cause a particular difficulty, since
they interrupt the normal flow of control.

• In a common scenario you can have at least three
ways of exiting a method:

− No exception is encountered, and any catch handlers are
skipped.

− An exception is caught, and control passes to the code after
the catch handlers.

− An exception is caught, and the catch handler itself throws
another exception. Then code after the catch handler will be
bypassed.

• The first two cases aren’t a problem, as in both cases
control passes to the code after the catch handlers,
but the third case is a source of difficulty.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-17
 All Rights Reserved

Finally Block

• The structured exception handling mechanism in C#
resolves this problem with a finally block.

− The finally block is optional, but if present must appear
immediately after the catch handlers.

− It is guaranteed that the code in the finally block will always
execute before the method is exited, in all three cases
described.

• We illustrate use of finally in the Withdraw command
of our Account example.

• See the directory AccountExceptionDemo\Step3.

− There are several ways to exit this block of code, and the user
might become confused about her balance upon exiting.

− We insert a finally block, which will display the balance.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-18
 All Rights Reserved

Finally Block (Cont’d)

// AccountExceptionDemo.cs

else if (cmd.Equals("withdraw"))
{
 decimal amount = iw.getDecimal("amount: ");
 try
 {
 acc.Withdraw(amount);
 }
 catch (BalanceException e)
 {
 Console.WriteLine(
 "You are short {0:C}", e.Shortage);
 Console.WriteLine("Please make a deposit");
 decimal supplemental = iw.getDecimal(
 "amount: ");
 acc.Deposit(supplemental);
 acc.Withdraw(amount); // try again
 }
 finally
 {
 ShowBalance(acc);
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-19
 All Rights Reserved

Inner Exceptions

• In general, it is most convenient to handle exceptions
near their source, because you have the most
information available about the context in which the
exception occurred.

− A common pattern is to create a new exception object that
captures more detailed information and throw this on to the
calling program.

• When you throw a new exception, you don’t want to
lose the information about the original exception.

• The original exception can be passed as a parameter
when constructing the new exception.

− The original exception is then available through the
InnerException property of the new exception.

− Notice that in the code above we pass the exception object e
as a parameter to the constructor of the new Exception object
that we throw.

• In the ArithmeticExceptionDemo program we review
checked integer arithmetic (you may wish to refer to
the last section of Chapter 5), and then we present the
entire example program.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-20
 All Rights Reserved

Checked Integer Arithmetic

• By default in C#, integer overflow does not raise an
exception; instead the result is truncated.

• The checked operator will cause the integer
calculation to check for overflow and throw an
exception if an overflow condition arises.

• You can cause all integer arithmetic to be checked via
the /checked compiler command line switch.

• You can turn off checking by the unchecked operator.

• Unchecked arithmetic is faster but less safe.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-21
 All Rights Reserved

Example Program

• The ArithmeticExceptionDemo program demonstrates
a number of scenarios of arithmetic exceptions.

− You can experiment by commenting and uncommenting
different sections of code.

− You can also try building with the /checked compiler option.

− Notice how in the main program we display the inner
exception, if any. (If there is no inner exception, the
InnerException property will be null.)

public static int Main(string[] args)
{
 int prod;
 long lprod;
 try
 {
 lprod = LongMultiply(56666L, 57777L);
 Console.WriteLine("product = {0}", lprod);
 prod = Multiply(56666, 57777);
 Console.WriteLine("product = {0}", prod);
 ...
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: {0}",
 e.Message);
 if (e.InnerException != null)
 Console.WriteLine("Inner Exception: {0}",
 e.InnerException.Message);
 }
 return 0;
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 16-22
 All Rights Reserved

Summary

• The traditional way to deal with errors in programs
is to check an error return code.

• This approach has a number of defects, the most
important of which is that the calling program may
simply ignore error returns.

• C# provides an exception mechanism, which includes
a try block, catch handlers, and a finally block.

• You can raise exceptions by means of a throw
statement.

• The .NET class library provides an Exception class,
which you can use to pass information about an
exception that occurred.

• To further specify your exception and to pass
additional information, you can derive your own class
from Exception.

• When handling an exception, you may want to throw
a new exception.

• In such a case you can use the “inner exception”
feature of the Exception class to pass the original
exception on with your new exception.

