
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-1
 All Rights Reserved

Chapter 5

Operators and Expressions

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-2
 All Rights Reserved

Operators and Expressions

Objectives

 After completing this unit you will be able to:

• Use operators correctly in C# programs

• Use precedence to write cleaner code

• Use the checked keyword to control how various
arithmetic errors are handled

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-3
 All Rights Reserved

Operator Cardinality

• Unary operators

− Example: unary minus.

• Binary operators

− The most common

− Examples: + - * /

• C# has one ternary operator.

− ?:

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-4
 All Rights Reserved

Arithmetic Operators

• The arithmetic operators include the four basic
operations of addition, subtraction, multiplication,
and division.

• We will examine each of these:

1. in the case where operands are of the same type, and

2. in the case where one operand requires a conversion.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-5
 All Rights Reserved

Multiplication

• The three multiplicative operators in C# are:

− multiplication (*)

− division (/)

− remainder (%)

• The only difficulty in multiplication comes from
overflow, which is handled differently by the three
data types.

− Integer multiplication overflow just silently drops bits.

− Floating-point multiplication overflow results in Infinity.

− Decimal multiplication overflow throws an exception.

• See the example program Multiply.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-6
 All Rights Reserved

Division

• Integer division always returns an integer result.

− The result may be silently truncated.

− Integer and decimal division by zero throw exceptions.

− Dividing the largest negative integer by negative one will
throw an exception.

• Floating-point division follows the IEEE 754 rules

− Division by zero returns Infinity.

− Division of zero by anything (including zero) returns NaN.

• The remainder is an integer result calculated by
multiplying the quotient by the divisor and
subtracting that from the original number.

• Remainder uses integer arithmetic.
X % Y is X - ((X/Y) * Y)

• See the example program IntegerDivision.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-7
 All Rights Reserved

Additive Operators

• There are six additive operators.

− Binary + and -

− Unary + and -

− Auto-increment (++) and auto-decrement (--)

• Integer addition and subtraction may be checked or
unchecked.

− In a checked context, overflow will generate an exception.

− In an unchecked context, overflow bits are just silently lost.

• Floating-point addition and subtraction may result in
a floating-point number, positive Infinity, negative
Infinity, or NaN.

• Decimal overflow generates an exception.

• Unary minus is equivalent to subtraction from zero.

• Unary plus is a no-op.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-8
 All Rights Reserved

Increment and Decrement

• The increment and decrement operators come in two
versions, prefix and postfix.

• Prefix:
Y = ++X;

Equivalent to:

X = X + 1;
Y = X;

• Postfix:
Y = X++;

Equivalent to:

Y = X;
X = X + 1;

• The increment and decrement operators work on
integer, floating point, and decimal types.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-9
 All Rights Reserved

Example: A Small Calculator

// Ira.cs
//
// Interactive program to compute the total
// accumulation in an Individual Retirement
// Account under compound interest.
// Assume that a deposit is made at the end of
// each year and that interest is compounded
// annually.

using System;

public class Ira
{
 public static int Main(string[] args)
 {
 InputWrapper iw = new InputWrapper();
 double amount; // annual deposit amount
 double rate; // interest rate
 int years; // number of years
 double total; // total accumulation
 amount = iw.getDouble("amount: ");
 rate = iw.getDouble("rate: ");
 years = iw.getInt("years: ");
 total = amount *
 (Math.Pow(1 + rate, years) - 1) / rate;
 long total_in_cents =
 (long) Math.Round(total * 100);
 total = total_in_cents /100.0;
 Console.WriteLine("total = {0}", total);
 return 0;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-10
 All Rights Reserved

Relational Operators

• C# has the usual operators for testing equality, less
than, etc.

• The result of a relational operation is bool.

• Note: The double-equal (==) is used for equality.

− Unlike C/C++, using the assignment operator where a
relational operator is expected will generate a compile-time
error.

− This completely eliminates one of the old 'gotchas' that was
in C/C++.

Operation Returns true if...
x == y x equals y

x != y x is not equal to y

x < y x is less than y

x <= y x is less than or equal to y

x > y x is greater than y

x >= y x is greater than or equal to y

− See the sample program Relational.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-11
 All Rights Reserved

Conditional Logical Operators

• The conditional logical operators provide the Boolean
AND (&&), inclusive OR (||), and NOT (!) operations.

− Truth table for AND:

x y x && y
false false false
false true false
true false false
true true true

− Truth table for OR:

x y x || y
false false false
false true true
true false true
true true true

− Truth table for NOT:

x ! x
false true
true false

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-12
 All Rights Reserved

Short-Circuit Evaluation

• An important feature of the logical operators is that
they are evaluated from left to right.

• Evaluation terminates as soon as the answer is
known.

• This may have some puzzling results if the terms of
the expression have side effects.

// ShortCircuit.cs

using System;

public class ShortCircuit
{
 public static int Main(string[] args)
 {
 int x = 4;
 int y = 5;
 Console.WriteLine("x = {0}, y = {1}", x, y);
 bool result = true || (++x == y);
 Console.WriteLine("result = {0}", result);
 Console.WriteLine("x = {0}, y = {1}", x, y);
 result = true && (++x == y);
 Console.WriteLine("result = {0}", result);
 Console.WriteLine("x = {0}, y = {1}", x, y);

 y = ~ x;
 bool a = true;
 bool b = false;
 result = a ^ b;

 return 0;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-13
 All Rights Reserved

Ternary Conditional Operator

• The ternary operator (?:) is similar to an if
statement, except that it returns a value.

• Ternary form:
expr1 ? expr2 : expr3;

− The first term (expr1) must be bool.

− If expr1 is true, the value of the expression is expr2;
otherwise, the value of the expression is expr3.

− The 2nd and 3rd terms (expr2 and expr3 above) must evaluate
to the same type.

// AbsoluteValue.cs

using System;

public class AbsoluteValue
{
 public static int Main(string[] args)
 {
 int x = 5;
 int abs = (x < 0) ? -x : x;
 Console.WriteLine("x = {0}, abs = {1}",
 x, abs);
 x = -x;
 abs = (x < 0) ? -x : x;
 Console.WriteLine("x = {0}, abs = {1}",
 x, abs);
 return 0;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-14
 All Rights Reserved

Bitwise Operators

• Bitwise logical operators are similar to the Boolean
operators, except that they are applied to the bits of
an integer.

Operator Description
~ Bitwise NOT
& Bitwise AND
| Bitwise OR
^ Bitwise XOR

• Bitwise shift operators shift an integer value right or
left.

Operator Description
<< Left Shift
>> Right Shift

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-15
 All Rights Reserved

Bitwise Logical Operators

• The truth tables for the bitwise logical operators are
similar to the truth tables for the Boolean operators,
with a zero being treated as false, and a one treated as
true.

• The bitwise logical operators do not use short-circuit
evaluation.

• The exclusive OR, or XOR, (^) is available only in
bitwise form.

x y x ^ y
0 0 0
0 1 1
1 0 1
1 1 0

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-16
 All Rights Reserved

Bitwise Shift Operators

• The bitwise shift Operators take two operands.

− The first in the value to be shifted.

− The second is the number of bit positions to shift by.

a = b << n; // shift n positions left,
 // equivalent to multiplying by 2 n times

a = b >> n; // shift n positions right and extend
 // sign, equivalent to dividing by 2
 // n times

− See Shift

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-17
 All Rights Reserved

Assignment Operators

• Normal assignment (=) is the most commonly used
operator.

− Note that assignment is an expression that returns a value.
Evaluating an expression can change a variable as a side
effect.

int x = 30;
int y = 5;
int z = 1;
x = (y = z++) + 60;

− See the program Assign.

• Compound assignment combines assignment with
binary arithmetic operator.

Description Operators
Arithmetic *=, /=, %=, +=, -=
Shift <<=, >>=
Bitwise &=, ^=, |=

− Example:

X += 5;

Equivalent to:

X = X + 5;

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-18
 All Rights Reserved

Expressions

• Expressions are built using constants and variables
with operators.

• The result of one operation can then be used in
another.

• Operations are performed in precedence order.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-19
 All Rights Reserved

Precedence

• Precedence rules pre-date programming languages,
and were developed to simplify the writing of
algebraic expressions.

• Judicious use of precedence will result in cleaner
code. But use parens if you need to!

• Precedence order in C# is given in the following table.

Category Operators
Primary (x) x.y f(x) a[x] x++

x-- new typeof sizeof
checked unchecked

Unary + - ! ~ ++x --x (T)x
Multiplicative * / %
Additive + -
Shift << >>
Relational < > <= >= is as
Equality == !=
Logical AND &
Logical XOR ^
Logical OR |
Conditional AND &&
Conditional OR ||
Conditional ?:
Assignment = *= /= %= += -= <<=

>>= &= ^= |=

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-20
 All Rights Reserved

Associativity

• When an operand occurs between two operators at
the same precedence level, the associativity of the
operator controls the order of evaluation.

• Most operators associate left-to-right.

• The assignment operator (=) and the ternary
operator (?:) associated right-to-left.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-21
 All Rights Reserved

Checking

• C# allows you to control compile and runtime
checking of various arithmetic operations (to detect
conditions such as multiplication overflow).

• The default is to do compile time checking but not
runtime checking.

− See Unchecked.

• Checking may be applied to an entire module using
the command line switch /checked+

• A block of code or a specific expression may be
checked.
checked // check a block
{

z = x + 1;
z = x * y;

 }

 z = checked (x * y); // check this multiplication

− See Checked

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-22
 All Rights Reserved

Summary

• We covered the many simple operators in C#.

• Some of the operators behave differently with respect
to the different data types.

• Expressions are built from operators, constants, and
variables, and may be used in other expressions.

• The programmer may specific the level of checking
(how exceptional conditions, such as overflow, are
handled).

− The default for checking is to perform compile-time
checking, but not run-time checking.

• Use precedence rules to simplify how you write
expressions.

