Chapter 19

Delegates and Events

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-1
All Rights Reserved

Delegates and Events

Objectives

After completing this unit you will be able to:
* Use delegate objects to implement callbacks.
e Use aggregations of delegate objects.

e Use delegate objects to implement and handle event
notifications.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-2
All Rights Reserved

Overview of Delegates and Events

e In the previous two chapters we examined interfaces
in some detail.

* One feature of interfaces is that they facilitate writing
code in such a way that your program is called into by
some other code.

e This style of programming has been available for a
long time, under the guise of “callback” functions.

* In this chapter we examine delegates in C#, which can
be thought of as type-safe and object-oriented
callback functions.

* Delegates are the foundation for a more elaborate
callback protocol, known as events.

* Events are a cornerstone of COM, the predecessor of
NET, and are widely used in Windows
programming.

* We will study events and look at several example
programs that illustrate delegates and events.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-3
All Rights Reserved

Callbacks and Delegates

* A callback function is one that your program
specifies and “registers” in some way, and then gets
called by another program.

— In C and C++ callback functions are implemented using
function pointers.

e In C# you can encapsulate a reference to a method
inside a delegate object.

* While a function pointer can reference only a static
function, a delegate can refer to either a static method
or an instance method.

* When a delegate refers to an instance method, it
stores both an object instance and an entry point to
the instance method.

— The instance method can then be called through this object
instance.

— When a delegate object refers to a static method, it stores just
the entry point of this static method.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-4
All Rights Reserved

Usage of Delegates

* You can then pass this delegate object to other code,
which can then call your method.

— The code that calls your delegate method does not have to
know at compile time which method is being called; it only
has to know the exact signature.

* In C# a delegate is considered a reference type that is
similar to a class type.

— A new delegate instance is created just like any other class
instance, using the new operator.

— C# delegates are implemented by the .NET Framework class
library as a class, derived ultimately from System.Delegate.

* Delegates are object-oriented and type-safe, and they
enjoy the safety of the managed code execution
environment.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-5
All Rights Reserved

Declaring a Delegate

* You declare a delegate in C# using a special notation
with the keyword delegate and the signature of the
encapsulated method.

— A suggested naming convention is to end your name with
“Callback.” Here is an example of a delegate declaration:

public del egate void NotifyCall back(decinal bal);
— The NotifyCallback delegate in this example can contain a

reference to any function with the return type void, and one
parameter of type decimal.

— A delegate reference is not restricted to any one class as long
as the signature of the function matches.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-6
All Rights Reserved

Defining a Method

 When you instantiate a delegate, you will need to
specify a method, which must match the signature in
the delegate declaration.

* The method may be either a static method or an
instance method.

* Here are some examples of methods that can be
hooked to the NotifyCallback delegate:

private static void NotifyCustoner(deci mal bal ance)
{
Consol e. Wi teLi ne("Dear custoner,");
Consol e. Wi teLi ne(
Account overdrawn, bal ance = {0}",
bal ance) ;

}

private static void NotifyBank(deci mal bal ance)
{
Consol e. WitelLi ne("Dear bank,");
Consol e. Wi teLi ne(
Account overdrawn, bal ance = {0}",
bal ance) ;

}

private void Notifylnstance(deci mal bal ance)
{
Consol e. Wi teLi ne("Dear instance,");
Consol e. Wi t eLi ne(
Account overdrawn, bal ance = {0}",
bal ance) ;

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-7
All Rights Reserved

Creating a Delegate Object

* You instantiate a delegate object with the new
operator, just as you would with any other class.

— The following code illustrates creating two delegate objects.

— The first one is hooked to a static method, and the second to
an instance method.

— The second delegate object internally will store both a
method entry point and an object instance that 1s used for
invoking the method.

NotifyCall back custDig = new
Not i fyCal | back(Noti fyCustoner);

DeI egat eAccount da = new Del egat eAccount () ;
NotifyCal |l back instDi g =
new Noti fyCal | back(da. Notifylnstance);

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-8
All Rights Reserved

Calling a Delegate

* You “call” a delegate just as you would a method.

— The delegate object is not a method, but it has an
encapsulated method.

— The delegate object “delegates™ the call to this encapsulated
method, hence the name “delegate.”

e In the following code the delegate object notifyDIg is
called whenever a negative balance occurs on a
withdrawal.

— In this example the notifyDIg delegate object is initialized in
the method SetDelegate.

private NotifyCall back notifyDl g;

oubli ¢ void Set Del egat e(Noti fyCal | back dI g)

{
notifyD g = dl g;

}
public void Wthdrawdeci mal anount)
{
bal ance -= anount;
I f (bal ance < 0)
noti fyD g(bal ance);
}
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-9

All Rights Reserved

Combining Delegate Objects

* A powerful feature of delegates is that you can
combine them, implementing an invocation list of
methods.

— When such a delegate is called, all the methods on the
invocation list will be called in turn.

— The + operator can be used to combine the invocation
methods of two delegate objects, and the — operator can be
used to remove methods.

NotifyCall back custDi g = new

Noti fyCal | back(NotifyCustoner);

NotifyCal | back bankDi g = new

Noti fyCal | back(Noti f yBank) ;

NotifyCall back currDig = custD g + bankD g;
/1 or NotifyCallback currD g += bankD g;

* In this example we construct two delegate objects,
each with an associated method.

* We then create a new delegate object whose
invocation list will consist of both the methods
NotifyCustomer and NotifyBank.

— When currDIg is called, these two methods will be invoked.
Later on in the code we may remove a method.

currD g -= bankD g;
* Now NotifyBank has been removed from the delegate,

and the next time currDIg is called, only
NotifyCustomer will be invoked.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-10
All Rights Reserved

Complete Example

* The program DelegateAccount illustrates using
delegates in our bank account scenario.

* The file DelegateAccount.cs declares the delegate
NotifyCallback.

— The class DelegateAccount contains methods matching the
signature of the delegate.

— The Main method instantiates delegate objects and combines
them in various ways.

— The delegate objects are passed to the Account class, which
uses its encapsulated delegate object to invoke suitable
notifications when the account is overdrawn.

— Observe how dynamic and loosely coupled is this structure.

e The Account class does not know or care which
notification methods will be invoked in the case of an
overdraft.

e It simply calls the delegate, which in turn calls all the
methods on its invocation list.

— These methods can be adjusted at runtime.

* Please examine the code online.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-11
All Rights Reserved

Stock Market Simulation

* As a further illustration of the use of delegates,
consider the simple stock market simulation,
implemented in the directory StockMarket.

e The simulation consists of two modules:

— The Admin module provides a user interface for configuring

and running the simulation. It also implements operations

called by the simulation engine.

— The Engine module is the simulation engine. It maintains an
internal clock and invokes randomly generated operations,

based on the configuration parameters passed to it.

e The figure shows the high level architecture of the

Engine

simulation.
Run
Admin
Operations
Rev. 1.0

Copyright © 2003 Object Innovations, Inc.

All Rights Reserved

19-12

Stock Market Simulation (Cont’d)

e The following operations are available:
— PrintTick: shows each clock tick.

— PrintTrade: shows each trade.

e The following configuration parameters can be
specified:

— Ticks on/off
— Trades on/off

— Count of how many ticks to run the simulation

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-13
All Rights Reserved

Running the Simulation

e Build and run the example program in StockMarket.

e Start with the default configuration: Ticks are OFF,
Trades are ON, Run count is 100. (Note that the
results are random and will be different each time
you run the program.)

e The available commands are listed when you type
“help” at the colon prompt. The commands are:

count set run count
ticks toggle ticks
trades toggl e trades
config show confi guration
run run the sinmulation
qui t exit the program

* The output shows clock tick, stock, price, volume.

run

6 |BM 112 400
24 MSFT 60 600
38 MSFT 66 800
43 MNMSFT 60 500
58 MSFT 66 600
59 [INTC 91 800
60 | BM 107 600
64 NMSFT 72 900
76 | BM 102 800
83 | BM 97 900
86 MSFT 79 500
94 MSFT 86 100
97 |INIC 81 500
99 MSFT 94 900
100 WMSFT 85 800

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-14
All Rights Reserved

Delegate Code

 Two delegates are declared in the Admin.cs file.

publ i c del egate void TickCall back(int ticks);
publ i c del egate void TradeCal | back(int ticks,
string stock, int price, int volune);

e As we saw in the previous section, a delegate is
similar to a class, and a delegate object is instantiated
by new.

Ti ckCal I back tickD g = new TickCal | back(PrintTick);
TradeCal | back tradeD g = new
TradeCal | back(PrintTrade);

* A method is passed as the parameter to the delegate
constructor. The method signature must match that
of the delegate.

public static void PrintTick(int ticks)
{

Console. Wite("{0} ", ticks);

i f (++printcount == LI NECOUNT)

Consol e. WitelLine();
printcount = O,
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-15

All Rights Reserved

Passing the Delegates to the Engine

 The Admin class passes the delegates to the Engine
class in the constructor of the Engine class.

Engi ne engi ne = new Engi ne(tickDl g, tradeD g);

e The heart of the simulation is the Run method of the
Engine class.

— At the core of the Run method is assigning simulated data
based on random numbers.

* We use the System.Random class, which we discussed
in Chapter 12.

doubl e r = rangen. Next Doubl e() ;
If (r < tradeProb[i])

{
int delta = (int) (price[i] * volatility[i]);
i f (rangen. Next Doubl e() < .5)
{
delta = -delta;
}
price[i] += delta;
I nt vol unme=r angen. Next (m nVol une, maxVol une) *100;
tradeOp(tick, stocks[i], price[i], volune);
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-16

All Rights Reserved

Using the Delegates

* In the Engine class, delegate references are declared:

Ti ckCal | back tickOp;
TradeCal | back tradeQp;

* The delegate references are initialized in the Engine
constructor:

publ i c Engi ne(TickCal | back tickQp,
TradeCal | back tradeQp)
{

this.tickOp = tickOp;
this.tradeQp = tradeOp;
}

 The method that is wrapped by the delegate object
can then be called through the delegate reference:

I f (showTi cks)
tickOp(tick);

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-17
All Rights Reserved

Events

* Delegates are the foundation for a more elaborate
callback protocol known as events.

e Conceptually, servers implement incoming interfaces,
which are called by clients.

— In a diagram, such an interface may be shown with a small
bubble (a notation used in COM).

* Sometimes a client may wish to receive notifications
from a server when certain “events” occur.

* In such a case the server will specify an outgoing
interface.

— The server defines the interface and the client implements it.

— In a diagram, such an interface may be shown with an arrow
(again, a notation used in COM).

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-18
All Rights Reserved

Events (Cont’d)

— The figure illustrates a server with one incoming interface
and one outgoing interface.

Client
Server

— In the case of the outgoing interface, the client will
implement an incoming interface, which the server will call.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-19
All Rights Reserved

Events in C# and .NET

e The .NET Framework provides an easy-to-use
implementation of the event paradigm built on
delegates.

e C# simplifies working with .NET events by providing
the keyword event and operators to hook up event
handlers to events and to remove them.

* We will examine this event architecture through
salient code from the example program EventDemo,
which illustrates a chat room.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-20
All Rights Reserved

Server-Side Event Code

* We begin with server-side code, in ChatServer.cs.

— The .NET event architecture uses a specific signature:

publ i c del egate void Joi nHandl er (obj ect sender,
Chat Event Arg e);

— The first parameter specifies the object that sent the event
notification, the second parameter is used to pass data along
with the notification.

* Typically, you will derive a class from EventArg to
hold your specific data.

public class Chat EventArg : Event Args

public Chat Event Arg(string nanme){...}
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-21

All Rights Reserved

Delegate Objects

* A delegate object reference is declared using the
keyword event.

public event Joi nHandl er Joi n;

* A helper method is typically provided to facilitate
calling the delegate object(s) that have been hooked
up to the event.

protected void OnJoi n(Chat Event Arg e)
{

I f (Join !'= null)

{
Join(this, e);

}
}

* A test for null is made in case no delegate objects
have been hooked up to the event.

» Typically, access is specified as protected so that a
derived class has access to this helper method.

— You can then “fire” the event by calling the helper method.

public void Joi nChat (string nane)

nmenber s. Add(nane) ;
OnJoi n(new Chat Event Arg(nane)) ;
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-22

All Rights Reserved

Client-Side Event Code

* The client provides event handler functions.

public static void OnJoi nChat (obj ect sender,
Chat Event Arg e)

{
Consol e. Wi teLi ne(
"sender = {0}, {1} has joined the chat",
sender, e. Nane);
}

e The client hooks the handler to the event, using the
+= operator.

Chat Server chat = new Chat Server ("O Chat Roont);
// Register to get event notifications from server
chat.Join += new Joi nHandl er (OnJoi nChat) ;

* The event starts out as null, and event handlers get
added through +=.

— All of the registered handlers will get invoked when the event
delegate is called.

— You may unregister a handler through - =.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-23
All Rights Reserved

Chat Room Example

e The chat room example in EventDemo illustrates the
complete architecture on both the server and client
side.

* The server provides the following methods:
— JoinChat
— QuitChat

— ShowMembers

* Whenever a new member joins or quits, the server
sends a notification to the client.

— The event handlers print out an appropriate message.

e Here is the output from running the program:

sender = O Chat Room M chael has joined the chat
sender = O Chat Room Bob has joined the chat
sender = O Chat Room Sam has joi ned the chat
--- After 3 have joi ned---

M chael

Bob

Sam

sender = O Chat Room Bob has quit the chat
--- After 1 has quit---

M chael

Sam

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-24
All Rights Reserved

Client Code

e The client program provides event handlers.

— It instantiates a server object and then hooks up its event
handlers to the events.

— The client then calls methods on the server.

— These calls will trigger the server firing events back to the
client, which get handled by the event handlers.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-25
All Rights Reserved

Server Code

* The server provides code to store in a collection the
names of people who have joined the chat.

* When a person quits the chat, the name is removed
from the collection.

— Joining and quitting the chat triggers firing an event back to
the client.

— The server also contains the “plumbing” code for setting up
the events, including declaration of the delegates, the events,
and the event arguments.

— There are also helper methods for firing the events.

e It may appear that there is a fair amount of such
“plumbing” code, but it is much simpler than the
previous connection point mechanism used by COM
for events.

— Also, in practice various wizards and other tools will
generate the infrastructure for you automatically.

* Events are used extensively in Windows
programming.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-26
All Rights Reserved

Summary

* Delegates can be thought of as type-safe and object-
oriented callback functions.

e In C# you can encapsulate a reference to a method
inside a delegate object.

* You can then pass this delegate object to other code,
which can then call your method.

e The code that calls your delegate method does not
have to know at compile time which method is being
called.

* Delegates are the foundation for a more elaborate
callback protocol, known as events.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-27
All Rights Reserved

