Chapter 7

Object-Oriented Programming

Rev. 1.0 Copyright © 2003 Object Innovations, Inc.
All Rights Reserved

7-1



Object-Oriented Programming

Objectives

After completing this unit you will be able to:

* Describe the role of objects in modeling the real
world.

— Explain how objects facilitate the development of reusable
software components.

— Explain the fundamental concepts of abstraction and
encapsulation.

* Describe the concept of a class and its relationship to
an object.

— Explain the concept of inheritance, and describe other
important relationships among classes.

* Define the term polymorphism and explain how it can
be used to make object oriented programs more
flexible and easy to maintain.

* Discuss the process of object-oriented analysis and
design.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-2
All Rights Reserved



Objects

* Objects have both a real-world and a software
meaning

* An object model can describe a relationship between
the two.

e This section summarizes the key terminology of
objects.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-3
All Rights Reserved



Objects in the Real World

e The term object has an intuitive real world meaning.

— There are concrete, tangible objects such as a ball, an
automobile and an airplane.

— There are more abstract objects that have a definite
intellectual meaning, such as a committee, a patent or an
insurance contract.

* Objects have both attributes or characteristics, and
operations that can be performed upon them.

— A ball has a size, a weight, a color, etc.

— Operations may be performed on the ball such as throw,
catch, drop, etc.

* There can be various relationships among classes of
objects.

— A specialization relationship, such as an automobile is a
special kind of vehicle.

— A whole/part relationship, such as an automobile consists of
an engine, a chassis, wheels, etc.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-4
All Rights Reserved



Object Models

* Objects can also be used in programs.

— We’ve already seen a little about classes and objects in C#
programs.

* Objects are useful in programming because you can
set up a software model of a real world system.

— Objects in software correspond to objects in the real world.

— Explicitly describing the real world system in terms of
objects helps you to understand the system more explicitly
and precisely.

— The model can then be implemented as actual software using
a programming language.

— A software system implemented in this way tends to be more
faithful to the real system, and it can be changed more readily
when the real system 1s changed.

* There are formal languages for describing object
models.

— The most popular language is UML (Unified Modeling
Language, which 1s a synthesis of several earlier modeling
languages).

— Formal modeling languages are beyond the scope of this
course, but we will find that informal models are useful.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-5
All Rights Reserved



Reusable Software Components

* Another advantage of objects in software is that they
can facilitate reusable software components.

 Hardware has long enjoyed significant benefits from
reusable hardware components.

— For example, computers can be created from power supplies,
printed circuit boards, etc.

— Printed circuit boards in turn can be created from chips.

— The same chip can be reused in many different computers,
and new hardware designs do not have to be done from
scratch.

* With appropriate software technology similar reuse is
feasible in software systems.

* Objects provide the foundation for software reuse.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-6
All Rights Reserved



Objects in Software

* An object is a software entity containing data and
related functions as a self contained module.

Bank Account Object

Owner

Deposit
Balance

ChangeOwner

* Objects hold state and specify behavior.

e Objects provide the means for abstraction,
encapsulation, and instantiation.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-7
All Rights Reserved



State and Behavior

* An object has data, i.e. a set of properties or
attributes, which are its essential characteristics.

— The state of an object is the value of these attributes at any
point in time.

* The behavior of an object is the set of operations or
responsibilities it must fulfill for itself and for other
objects.

* The data and operations are packaged together.

4 N\
Data
and
Operations
- J

— As part of software design, this packaging aids
conceptualization and abstraction.

— Disparate items are turned into a conceptual unit.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-8
All Rights Reserved



Abstraction

e An abstraction captures the essential features of an
entity, suppressing unnecessary details.

* All instances of an abstraction share these common
features.

* Abstraction helps us deal with complexity.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc.
All Rights Reserved

7-9



Encapsulation

The implementation of an abstraction should be
hidden from the rest of the system, or encapsulated.

Objects have a public and a private side.

Public side is what the rest of the system knows, while
private side implements the public side.

a N

Public Interface

Private

- /

Data itself is private, walled off from the rest of the
program.

Data can only be accessed through functions with a
public interface.

There are two kinds of protection:
— Internal data is protected from corruption.

— Users of the object are protected from changes in the
representation.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-10

All Rights Reserved



Classes

* A class groups all objects with common behavior and
common structure.

* A class allows production of new objects of the same
type. An object is an instance of some class.

Class CAR

Instances (objects

* We refer to the process of creating an individual
object as instantiation.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-11
All Rights Reserved



Inheritance Concept

e Inheritance is a key feature of the object oriented
programming paradigm.

— You abstract out common features of your classes and put
them in a high level base class.

— You can add or change features in more specialized derived
classes, which "inherit" the standard behavior from the base
class.

— Inheritance facilitates code reuse and extensibility.

e Consider Account as a base class, with derived classes
CheckingAccount and SavingsAccount

— All accounts share some characteristics, such as balance.

— Different kinds of accounts differ in other respects. For
example, a checking account has a monthly fee, while a
savings account pays interest at a certain rate.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-12
All Rights Reserved



Inheritance Example

Account

CheckingAccount SavingsAccount
Balance Account
Balance CheckingAccount

Fee
Balance SavingsAccount

Rate

Rev. 1.0 Copyright © 2003 Object Innovations, Inc.

All Rights Reserved



Relationships Among Classes

e Classes may be related to each other in various ways

e The inheritance (IS-A) relationship specifies how one
class is a special case of another class

— A CheckingAccount (subclass or derived class) is a special
kind of Account (superclass or base class)

 The composition (HAS-A) relationship specifies how
one class (the whole) is made up of other classes (the
parts)

— A Bank (whole) has a list of Account objects.

* A weaker kind of relationship (USES-A) can be
identified when one class merely makes use of some
other class when carrying out its responsibilities.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-14
All Rights Reserved



Polymorphism

e Consider the problem of generating monthly
statements for different Kinds of accounts.

Checking and savings accounts differ, with one possibly
resulting in a fee and the other in a posting of interest.

* A traditional approach is to maintain a type field in
an account structure and to perform processing in a
switch statement, with cases for each type.

Such use of switch statements is error prone and requires
much maintenance when adding a new account type.

e An alternative is to localize the intelligence to
generate a statement in each account class, which will
support its own GetStatement method.

Rev. 1.0

Generic monthly statement code can then be written that will
handle different types of accounts and will not have to be
modified to support an additional account type.

Provide a GetStatement method in the base class and an
override of this method in each derived class.

Call GetStatement through an object reference to a general
Account object.

Depending on the actual account class referred to, the
appropriate GetStatement method will be called.

Copyright © 2003 Object Innovations, Inc. 7-15
All Rights Reserved



Polymorphism (Cont’d)

e The ability for the same method call to result in
different behavior depending on the object through
which the method is invoked is referred to as
polymorphism.

e Although somewhat advanced, polymorphism can
greatly simplify complex systems and is an important
part of the object-oriented paradigm.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-16
All Rights Reserved



Object Oriented Analysis and Design

e The process of creating an object model of a system
that can be used as the foundation of implementing a
corresponding software system is referred to as object
oriented analysis and design (OOAD)

Analysis refers to the first part of the process in which the
essential features of the system to be created are captured,
without regard to details of implementation

Design refers to a refinement in which more details are
provided, in preparation for actually coding the software

In practice the dividing line between the two 1s fuzzy, and in
modern terminology the two are often grouped together
under the phrase “object oriented analysis and design”

* Key parts of OOAD include

Rev. 1.0

Identify “use cases” capturing the different ways in which the
system will be used

Identify the most important classes in the system
Identify responsibilities of the classes

Identify classes that “collaborate” in carrying out the
responsibilities of each class

Identify relationships among the classes in the system

Copyright © 2003 Object Innovations, Inc. 7-17
All Rights Reserved



Use Cases

e The use cases describe how the system we are trying

to model will be used

* A use case represents an interaction of a person or
another element with the system

— The persons or entities doing the interactions are called
actors

» Use cases are used early in the analysis process to
ensure that your system will do all the different
things it is supposed to do

e Use cases can be used late in the implementation to
help specify zests of the completed software

Rev. 1.0 Copyright © 2003 Object Innovations, Inc.
All Rights Reserved

7-18



CRC Cards and UML

* A very popular “low tech” approach to the early
stage of object oriented analysis and design is the use
of CRC Cards

— CRC stands for class — responsibilities — collaborations

* A CRC card is typically 4” x 6* and has the following
information

— Class name written at top (and possibly superclass)

— Two columns, with responsibilities written in the first column
and collaborating classes written in the second column

Class

Responsibilities Collaborations

e A more full-blown notation for object oriented
analysis and design is Unified Modeling Language or
UML.

e Details of OOAD are beyond the scope of this course.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-19
All Rights Reserved



Summary

* Objects can model entities in the real world.

e A software system based on objects tends to be more
faithful to the real system, and it can be changed
more readily.

* Objects also facilitate the development of reusable
software components.

* An object is an instance of a class.

 Fundamental concepts of object-oriented
programming include abstraction, encapsulation and
inheritance.

e The process of object oriented analysis and design
helps you find useful objects.

e Use cases describe how the system we are trying to
model will be used.

* CRC cards document classes, responsibilities and
collaborations.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-20
All Rights Reserved



