
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-1
 All Rights Reserved

Chapter 8

Classes

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-2
 All Rights Reserved

Classes

Objectives

 After completing this unit you will be able to:

• State the important role of classes in object-oriented
programming.

• Use classes in C# for representing structured data,
distinguish between objects and classes.

• Explain how C# classes support encapsulation
through fields and methods in conjunction with the
public and private access specifiers.

• Use the new operator to instantiate objects from
classes.

• Describe the use of references in C# and explain the
role of garbage collection.

• Use C# constructors to initialize objects.

• Understand the use of static members.

• Use const and readonly to specify constants in C#
programs.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-3
 All Rights Reserved

Classes As Structured Data

• C# defines primitive data types that are built in to the
language, as discussed in Chapter 4.

− Data types such as int, decimal, and bool can be used to
represent simple data.

− C# provides the class mechanism to represent more complex
forms of data.

− Through a class, you can build up structured data out of
simpler elements, which are called data members, or fields.

− (See TestAccount\Step1.)

// Account.cs

public class Account
{
 public int Id;
 public decimal Balance;
}

− Account is now a new data type. An account has an Id (e.g.,
1) and a Balance (e.g., 100.00).

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-4
 All Rights Reserved

Classes and Objects

• A class represents a “kind of,” or type of, data.

− It is analogous to the built-in types like int and decimal.

− A class can be thought of as a template from which
individual instances can be created.

− An instance of a class is called an object. Just as you can
have several individual integers that are instances of int, you
can have several accounts that are instances of Account.

− The fields, such as Id and Balance in our example, are
sometimes also called instance variables.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-5
 All Rights Reserved

References

• There is a fundamental distinction between the
primitive data types and the extended data types that
can be created using classes.

− When you declare a variable of a primitive data, you are
allocating memory and creating the instance.

int x; // 4 bytes of memory have been allocated

• When you declare a variable of a class type (an object
reference), you are only obtaining memory for a
reference to an object of the class type.

− No memory is allocated for the object itself, which may be
quite large.

Account acc; // acc is a reference to an
 // Account object
 // The object itself does not yet
 // exist

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-6
 All Rights Reserved

Instantiating and Using an Object

• You instantiate an object by the new operator.
acc = new Account(); // Account object now

// exists and acc is a
// reference to it

• Once an object exists, you work with it, including
accessing its fields and methods.

− Our simple Account class at this point has no methods, only
two fields.

− You access fields and methods using a dot.

acc.Id = 1;
acc.Balance = 100; // Fields have now been
 // assigned
Console.WriteLine("Account id {0} has balance {1}",
acc.Id, acc.Balance);

• Example program

− TestAccount\Step1

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-7
 All Rights Reserved

Assigning Object References

• The figure shows the object reference acc and the
data it refers to after the assignment:

acc 1
100

acc.Id = 1;
acc.Balance = 100; // Fields have now been

 // assigned

• Now consider a second object variable referencing a
second object, as illustrated in the figure, after the
assignment:

acc2 2
200

Account acc2 = new Account();
acc2.Id = 2;
acc2.Balance = 200;

• When you assign an object variable, you are only
assigning the reference; there is no copying of data.
The figure shows both object references and their
data after the assignment:

acc2 2
200

acc 1
100

acc2 = acc; // acc2 now refers to same object acc
 // does

• This is also known as “Shallow Copy”.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-8
 All Rights Reserved

Garbage Collection

• Through the assignment of a reference, an object may
become orphaned.

− Such an orphan object (or “garbage”) takes up memory in the
computer, which can now never be referenced.

− In the preceding figure the account with Id of 2 is now
garbage.

− The Common Language Runtime automatically reclaims the
memory of unreferenced objects.

− This process is known as garbage collection.

− Garbage collection takes up some execution time, but it is a
great convenience for programmers, helping to avoid a
common program error known as a memory leak.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-9
 All Rights Reserved

Sample Program

• An illustration of assigning object references is
provided in TestAccount\Step2.

− We print out the contents of acc and acc2 before and after
assigning acc2 to refer to the same object as acc.

− Once these two references refer to the same object, changing
the value of a field will affect them both.

• See TestAccount\Step2.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-10
 All Rights Reserved

Methods

• Typically, a class will specify behavior as well as data.
A class encapsulates data and behavior in a single
entity. A method consists of

− An access specifier, typically public or private

− A return type (can be void if the method does not return data)

− A method name, which can be any legal C# identifier

− A parameter list, enclosed by parentheses, which specifies
data that is passed to the method (can be empty if no data is
passed)

− A method body, enclosed by curly braces, which contains the
C# code that the method will execute

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-11
 All Rights Reserved

Method Syntax Example

 public void Deposit(decimal amount)
 {
 balance += amount;
 }

• In this example:

− The access of the member function is public,

− The return type is void (no data is passed back),

− The method name is Deposit,

− The parameter list consists of a single parameter of type
decimal, and

− The body contains one line of code that adds the value that is
passed in the parameter amount to the member variable
balance.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-12
 All Rights Reserved

Public and Private

• Fields and methods of a C# class can be specified as
public or private.

− The access qualifier is placed before each declaration.

− Normally, you declare fields as private.

− A private field can only be accessed from within the class,
not from outside.

public class Account
{
 private int id;
 private decimal balance;
 // ...other members
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-13
 All Rights Reserved

Public and Private (Cont’d)

• Methods may be declared as either public or private.

− Public methods are called from outside the class and are used
to perform calculations and to manipulate the private data.

− You may also provide public “accessor” methods to provide
access to private fields. (Later, we will see another way to do
this using properties.)

 public decimal GetBalance()
 {
 return balance;
 }
 public int GetId()
 {
 return id;
 }

• With this approach, all instances of Account will start
out with the same initial values.

− We would like to find a way for the class to initialize its
instance data appropriately, in a way that can be specified
when the object is created.

− This capability is provided in C# by constructors.

• You may also have private methods, which can be
thought of as “helper functions” for use within the
class.

− Rather than duplicating code in several places, you may
create a private method, which will be called wherever it is
needed.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-14
 All Rights Reserved

Abstraction

• An abstraction captures the essential features of an
entity, suppressing unnecessary details.

− There are many possible features of an account, but for our
purposes, the only essential things are its id, its balance, and
the operations of making a deposit and a withdrawal.

− All instances of an abstraction share these common features.

− Abstraction helps us deal with complexity.

• Abstraction motivation:

− Consider the modeling of several different automobiles, e.g.,
sedan, pickup, and SUV.

− All of the automobiles have elements of their interfaces in
common, such as steering and brakes (although some of
those elements may have different implementations).

− It would save considerable coding (and later, maintenance
effort) if the common elements could be gathered into one
place, and the resulting abstraction used in each
implementation.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-15
 All Rights Reserved

Encapsulation

• The implementation of an abstraction should be
hidden from the rest of the system, or encapsulated.

− Objects have a public and a private side.

− The public side is what the rest of the system knows, while
the private side implements the public side.

− The figure illustrates the public method Deposit, which
operates on the private field balance.

balance
Deposit

• Data itself is private and can only be accessed
through methods with a public interface. Such
encapsulation provides two kinds of protection:

− Internal data is protected from corruption.

− Users of the object are protected from changes in the
representation.

• Done properly, encapsulation will reduce future
maintenance effort, because implementation details
may be changed without breaking existing client
code.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-16
 All Rights Reserved

Initialization

• Another important issue for classes is initialization.

− When an object is created, what initial values are assigned to
the instance data?

− A classical problem in programming is uninitialized
variables.

− When you run the program, you may get unpredictable
results, depending on what happened to be in memory at the
time you ran the program.

− C# helps prevent such unpredictable behavior by performing
a default initialization. Variables of numerical data types are
initialized to 0.

• In general you will want to perform your own
initialization. There are two approaches.

• One is for the user of the class to perform the
initialization.

− That is the approach followed in Steps 1 and 2 of the
TestAccount program.

− That approach was feasible because we made the fields
public, and so the class user could initialize them.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-17
 All Rights Reserved

Initialization with Constructors

• A second approach is to provide initialization code in
the class itself.

− You could assign instance data in the class definition, as
illustrated in InitialAccount\Step1.

• With this approach, all instances of Account will start
out with the same initial values.

− We would like to find a way for the class to initialize its
instance data appropriately, in a way that can be specified
when the object is created.

− This capability is provided in C# by constructors.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-18
 All Rights Reserved

Constructors (Cont’d)

• Through a constructor, you can initialize individual
objects in any way you wish. Besides initializing
instance data, you can perform other appropriate
initializations (e.g., open a file).

• A constructor is like a special method that is
automatically called when an object is created via
new. A constructor

− Has no return type

− Has the same name as the class

− Should usually have public access

− May take parameters, which are passed when invoking new

 public Account(int i, decimal bal)
 {
 id = i;
 balance = bal;
 }

• In the calling program, you use new to instantiate
object instances, and you pass desired values as
parameters.

• This example is illustrated in InitialAccount\Step2.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-19
 All Rights Reserved

Default Constructor

• If you do not define a constructor in your class, C#
will implicitly create one for you, called the default
constructor, which takes no arguments.

− The default constructor will assign instance data, using any
assignments in the class definition.

• InitialAccount\Step1 provides an illustration.

− The default constructor is called when an object instance is
created with new and no parameters. Add the following code
to the Step2 test program shown previously:

Account acc3 = new Account();
Console.WriteLine("balance of {0} is {1}",
acc3.GetId(), acc3.GetBalance());

• While this worked fine in Step1 when there was no
explicit constructor at all, we now get a compiler
error:

error CS1501: No overload for method 'Account'
takes '0' arguments

• In C# you may overload methods, including
constructors, in which you have several methods with
the same name but different argument lists.

− We can fix this problem by defining a second constructor
with no arguments.

− We may leave the body empty.

• InitialAccount\Step3 illustrates this.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-20
 All Rights Reserved

this

• Sometimes it is necessary within code for a method to
be able to access the current object reference.

• C# defines a keyword this, which is a special variable
that always refers to the current object instance.

− With this you can then refer to instance variables.

− If you examine the code for the constructor above, you will
see that we made a point to use different names for the
parameters than for the instance variables.

− We can make use of the same names and avoid ambiguity by
using the this variable.

− Here is alternate code for the constructor:

public Account(int id, decimal balance)
 {
 this.id = id;
 this.balance = balance;
 }

− A better way to avoid ambiguity, however, is to adopt a
naming convention that distinguishes between parameters
and member names.

 A common naming convention in C# is the use of a
trailing underscore for private data member names.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-21
 All Rights Reserved

TestAccount Sample Program

• The program TestAccount\Step3 illustrates all the
features we have discussed so far.

// Account.cs - Step3

public class Account
{
 private int id;
 private decimal balance;
 public Account()
 {
 }
 public Account(int id, decimal balance)
 {
 this.id = id;
 this.balance = balance;
 }
 public void Deposit(decimal amount)
 {
 balance += amount;
 }
 public void Withdraw(decimal amount)
 {
 balance -= amount;
 }
 public decimal GetBalance()
 {
 return balance;
 }
 public int GetId()
 {
 return id;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-22
 All Rights Reserved

TestAccount (Cont’d)

• Here is the driver program:
// TestAccount.cs - Step3

using System;

public class TestAccount
{
 public static void Main(string[] args)
 {
 Account acc;
 acc = new Account(1, 100);
 Console.WriteLine("balance of {0} is {1}",
 acc.GetId(), acc.GetBalance());
 acc.Deposit(25);
 acc.Withdraw(50);
 Console.WriteLine("balance of {0} is {1}",
 acc.GetId(), acc.GetBalance());
 acc = new Account();
 Console.WriteLine("balance of {0} is {1}",
 acc.GetId(), acc.GetBalance());
 }
}

• Here is the output:
balance of 1 is 100
balance of 1 is 75
balance of 0 is 0

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-23
 All Rights Reserved

Static Fields And Methods

• In C# a field normally is assigned on a per-instance
basis, with a unique value for each object instance of
the class.

− Sometimes it is useful to have a single value associated with
the entire class.

− Such a field is called a static field.

− Like instance data members, static data members can be
either public or private.

− To access a public static member, you use the dot notation,
but in place of an object reference before the dot, you use the
name of the class.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-24
 All Rights Reserved

Static Methods

• A method may also be declared static.

− A static method can be called without instantiating the class.

− You use the dot notation, with the class name in front of the
dot.

− Because you can call a static method without an instance, a
static method can only use static data members and not
instance data members.

• Static methods may be declared public or private.

− A private static method, like other private methods, may be
used as a helper function within a class, but not called from
outside.

• Static methods have no this reference, because they
are not associated with a specific object instance.

− Trying to use the this keyword in a static method will result
in a compiler error.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-25
 All Rights Reserved

Sample Program

• Our previous Account classes relied on the user of the
class to assign an id for the account.

− A better approach is to encapsulate assigning an id within the
class itself, so that a unique id will be automatically
generated every time an Account object is created.

− It is easy to implement such a scheme by using a static field
nextid, which is used to assign an id.

− Every time an id is assigned, nextid is incremented.

• The program StaticAccount demonstrates this
solution, and also illustrates use of private static
helper functions.

• Note that the static method GetNextId is accessed
through the class Account and not through an object
reference such as acc3.

− This program also illustrates the fact that Main is a static
method and is invoked by the runtime without an instance of
the StaticAccount class being created.

• Since there is no instance, any method called from
within Main must also be declared static, as
illustrated by the method WriteAccount().

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-26
 All Rights Reserved

Static Constructor

• Besides having static fields and static methods, a class
may also have a static constructor.

− A static constructor is called only once, before any object
instances have been created.

− A static constructor is defined by prefixing the constructor
with static.

− A static constructor can take no parameters and has no access
modifier. However, it is always implicitly public.

− The static constructor may initialize only static data
members.

• The program StaticConstructor illustrates a static
constructor for the Account class.

− All of the constructors in this example program write a line
of text when they are called, so you can see when the various
constructors are called.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-27
 All Rights Reserved

Constant And Readonly Fields

• If you want to make sure that a variable always has
the same value, you can assign the value via an
initializer and use the const modifier.

− Such a constant is automatically static, and you will access it
from outside the class through the class name.

− Another situation may call for a one-time initialization at
runtime, and after that the value cannot be changed.

− You can achieve this effect through a readonly field.

− Such a field may be either an instance member or a static
member.

− In the case of an instance member, it will be assigned in an
ordinary constructor.

− In the case of a static member, it will be assigned in a static
constructor.

• The program ConstantAccount illustrates the use of
both const and readonly.

− In both cases, you will get a compiler error if you try to
modify the value.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-28
 All Rights Reserved

Summary

• A class can be thought of as a template from which
individual instances (called objects) can be created.

• Classes support encapsulation through fields and
methods.

− Typically, fields are private and methods are public.

• The new operator is used to instantiate objects from
classes.

− When you declare a variable of a primitive data, you are
allocating memory and creating the instance.

− When you declare a variable of a class type (an “object
reference”), you are only obtaining memory for a reference
to an object of the class type.

− No memory is allocated for the object itself until new is
invoked.

• The Common Language Runtime automatically
reclaims the memory of orphaned or unreferenced
objects in a process called garbage collection.

• Initialization of objects can be performed in
constructors.

• Static members apply to the entire class rather than
to a particular instance.

• const and readonly can be used to specify constants in
C# programs.

