Rev. 1.0

Chapter 8

Classes

Copyright © 2003 Object Innovations, Inc.
All Rights Reserved

8-1

Classes

Objectives

After completing this unit you will be able to:

State the important role of classes in object-oriented
programming.

Use classes in C# for representing structured data,
distinguish between objects and classes.

Explain how C# classes support encapsulation
through fields and methods in conjunction with the
public and private access specifiers.

Use the new operator to instantiate objects from
classes.

Describe the use of references in C# and explain the
role of garbage collection.

Use C# constructors to initialize objects.
Understand the use of static members.

Use const and readonly to specify constants in C#
programs.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc.

All Rights Reserved

Classes As Structured Data

e C# defines primitive data types that are built in to the
language, as discussed in Chapter 4.

— Data types such as int, decimal, and bool can be used to
represent simple data.

— C# provides the class mechanism to represent more complex
forms of data.

— Through a class, you can build up structured data out of
simpler elements, which are called data members, or fields.

— (See TestAccount\Stepl.)

/] Account.cs

public class Account

{
public int Id;
publ i ¢ deci mal Bal ance;
}
— Account is now a new data type. An account has an Id (e.g.,
1) and a Balance (e.g., 100.00).
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-3

All Rights Reserved

Classes and Objects

e A

Rev. 1.0

class represents a “kind of,” or type of, data.
It is analogous to the built-in types like int and decimal.

A class can be thought of as a template from which
individual instances can be created.

An instance of a class is called an object. Just as you can
have several individual integers that are instances of int, you
can have several accounts that are instances of Account.

The fields, such as Id and Balance in our example, are
sometimes also called instance variables.

Copyright © 2003 Object Innovations, Inc. 8-4
All Rights Reserved

References

e There is a fundamental distinction between the
primitive data types and the extended data types that
can be created using classes.

— When you declare a variable of a primitive data, you are
allocating memory and creating the instance.

I nt X; /'l 4 bytes of nmenory have been all ocated

* When you declare a variable of a class type (an object
reference), you are only obtaining memory for a
reference to an object of the class type.

— No memory is allocated for the object itself, which may be
quite large.

Account acc; /] acc is a reference to an
/'l Account object
/'l The object itself does not yet
/] exist

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-5
All Rights Reserved

Instantiating and Using an Object

* You instantiate an object by the new operator.

acc = new Account (); /'l Account object now
/] exists and acc is a
/] reference to it

* Once an object exists, you work with it, including
accessing its fields and methods.

— Our simple Account class at this point has no methods, only
two fields.

— You access fields and methods using a dot.

acc.ld = 1;
acc. Bal ance = 100; /'l Fields have now been
/'l assigned
Consol e. WiteLine("Account id {0} has bal ance {1}",
acc.ld, acc. Bal ance);

* Example program

— TestAccount\Step1

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-6
All Rights Reserved

Assigning Object References

e The figure shows the object reference acc and the
data it refers to after the assignment:

acc 1
100

acc.ld = 1;
acc. Bal ance = 100:; /!l Fields have now been
/| assigned

* Now consider a second object variable referencing a
second object, as illustrated in the figure, after the
assignment:

acc?2 2
200

Account acc2 = new Account();
acc2.ld = 2;
acc?2. Bal ance = 200;

 When you assign an object variable, you are only
assigning the reference; there is no copying of data.
The figure shows both object references and their
data after the assignment:

acc2 2
200

acc 1
100

acc2 = acc; [// acc2 nowrefers to sanme object acc
/'l does

e This is also known as “Shallow Copy”.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-7
All Rights Reserved

Garbage Collection

e Through the assignment of a reference, an object may
become orphaned.

— Such an orphan object (or “garbage”) takes up memory in the
computer, which can now never be referenced.

— In the preceding figure the account with Id of 2 is now
garbage.

— The Common Language Runtime automatically reclaims the
memory of unreferenced objects.

— This process 1s known as garbage collection.

— Garbage collection takes up some execution time, but it is a
great convenience for programmers, helping to avoid a
common program error known as a memory leak.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-8
All Rights Reserved

Sample Program

e An illustration of assigning object references is
provided in TestAccount\Step2.

— We print out the contents of acc and acc2 before and after
assigning acc2 to refer to the same object as acc.

— Once these two references refer to the same object, changing
the value of a field will affect them both.

* See TestAccount\Step2.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-9
All Rights Reserved

Methods

* Typically, a class will specify behavior as well as data.
A class encapsulates data and behavior in a single
entity. A method consists of

Rev. 1.0

An access specifier, typically public or private
A return type (can be void if the method does not return data)
A method name, which can be any legal C# identifier

A parameter list, enclosed by parentheses, which specifies
data that is passed to the method (can be empty if no data is
passed)

A method body, enclosed by curly braces, which contains the
C# code that the method will execute

Copyright © 2003 Object Innovations, Inc. 8-10
All Rights Reserved

Method Syntax Example

public void Deposit(deci mal anount)

{
}

bal ance += anount;

e In this example:
— The access of the member function is public,
— The return type is void (no data is passed back),
— The method name is Deposit,

— The parameter list consists of a single parameter of type
decimal, and

— The body contains one line of code that adds the value that is
passed in the parameter amount to the member variable
balance.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-11
All Rights Reserved

Public and Private

* Fields and methods of a C# class can be specified as
public or private.

— The access qualifier is placed before each declaration.
— Normally, you declare fields as private.

— A private field can only be accessed from within the class,
not from outside.

public class Account

private int id;
private deci nal bal ance;
[l ...other nmenbers
Rev. 1.0 Copyright © 2003 Object Innovations, Inc.

All Rights Reserved

8-12

Public and Private (Cont’d)

 Methods may be declared as either public or private.

— Public methods are called from outside the class and are used
to perform calculations and to manipulate the private data.

— You may also provide public “accessor’” methods to provide
access to private fields. (Later, we will see another way to do
this using properties.)

publ i c deci mal GetBal ance()

{

return bal ance;
}
public int Getld()
{

return id;
}

* With this approach, all instances of Account will start
out with the same initial values.

— We would like to find a way for the class to initialize its
instance data appropriately, in a way that can be specified
when the object is created.

— This capability is provided in C# by constructors.

* You may also have private methods, which can be
thought of as “helper functions” for use within the
class.

— Rather than duplicating code in several places, you may
create a private method, which will be called wherever it is
needed.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-13
All Rights Reserved

Abstraction

e An abstraction captures the essential features of an
entity, suppressing unnecessary details.

— There are many possible features of an account, but for our
purposes, the only essential things are its id, its balance, and
the operations of making a deposit and a withdrawal.

— All instances of an abstraction share these common features.

— Abstraction helps us deal with complexity.

e Abstraction motivation:

— Consider the modeling of several different automobiles, e.g.,
sedan, pickup, and SUV.

— All of the automobiles have elements of their interfaces in
common, such as steering and brakes (although some of
those elements may have different implementations).

— It would save considerable coding (and later, maintenance
effort) if the common elements could be gathered into one
place, and the resulting abstraction used in each
implementation.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-14
All Rights Reserved

Encapsulation

* The implementation of an abstraction should be
hidden from the rest of the system, or encapsulated.

— Objects have a public and a private side.

— The public side is what the rest of the system knows, while
the private side implements the public side.

— The figure illustrates the public method Deposit, which
operates on the private field balance.

Deposit

balance

A

e Data itself is private and can only be accessed
through methods with a public interface. Such
encapsulation provides two kinds of protection:

— Internal data is protected from corruption.

— Users of the object are protected from changes in the
representation.

* Done properly, encapsulation will reduce future
maintenance effort, because implementation details
may be changed without breaking existing client
code.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc.
All Rights Reserved

Initialization

* Another important issue for classes is initialization.

— When an object is created, what initial values are assigned to
the instance data?

— A classical problem in programming is uninitialized
variables.

— When you run the program, you may get unpredictable
results, depending on what happened to be in memory at the
time you ran the program.

— C# helps prevent such unpredictable behavior by performing
a default initialization. Variables of numerical data types are
initialized to 0.

e In general you will want to perform your own
initialization. There are two approaches.

* One is for the user of the class to perform the
initialization.

— That is the approach followed in Steps 1 and 2 of the
TestAccount program.

— That approach was feasible because we made the fields
public, and so the class user could initialize them.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-16
All Rights Reserved

Initialization with Constructors

e A second approach is to provide initialization code in
the class itself.

— You could assign instance data in the class definition, as
illustrated in InitialAccount\Step1.

e With this approach, all instances of Account will start
out with the same initial values.

— We would like to find a way for the class to initialize its
instance data appropriately, in a way that can be specified
when the object is created.

— This capability is provided in C# by constructors.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-17
All Rights Reserved

Constructors (Cont’d)

e Through a constructor, you can initialize individual
objects in any way you wish. Besides initializing
instance data, you can perform other appropriate
initializations (e.g., open a file).

* A constructor is like a special method that is
automatically called when an object is created via
new. A constructor

— Has no return type
— Has the same name as the class
— Should usually have public access

— May take parameters, which are passed when invoking new

public Account(int i, decinmal bal)

{
id =i;
bal ance = bal;

}

e In the calling program, you use new to instantiate
object instances, and you pass desired values as
parameters.

e This example is illustrated in InitialAccount\Step?2.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-18
All Rights Reserved

Default Constructor

e If you do not define a constructor in your class, C#
will implicitly create one for you, called the default
constructor, which takes no arguments.

— The default constructor will assign instance data, using any
assignments in the class definition.

e InitialAccount\SteplI provides an illustration.

— The default constructor is called when an object instance is
created with new and no parameters. Add the following code
to the Step2 test program shown previously:

Account acc3 = new Account();
Consol e. WiteLi ne("bal ance of {0} is {1}",
acc3. Getld(), acc3. GetBal ance());

* While this worked fine in Stepl when there was no
explicit constructor at all, we now get a compiler
error:

error CS1501: No overload for nethod 'Account'

takes '0' argunents

* In C# you may overload methods, including
constructors, in which you have several methods with
the same name but different argument lists.

— We can fix this problem by defining a second constructor
with no arguments.

— We may leave the body empty.

» InitialAccount\Step3 illustrates this.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-19
All Rights Reserved

this

* Sometimes it is necessary within code for a method to
be able to access the current object reference.

» C# defines a keyword this, which is a special variable
that always refers to the current object instance.

— With this you can then refer to instance variables.

— If you examine the code for the constructor above, you will
see that we made a point to use different names for the
parameters than for the instance variables.

— We can make use of the same names and avoid ambiguity by
using the this variable.

— Here 1s alternate code for the constructor:

public Account(int id, decinmal bal ance)

{
this.id = id;
t hi s. bal ance = bal ance,;
}
— A better way to avoid ambiguity, however, is to adopt a
naming convention that distinguishes between parameters

and member names.

A common naming convention in C# is the use of a
trailing underscore for private data member names.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-20
All Rights Reserved

TestAccount Sample Program

e The program TestAccount\Step3 illustrates all the

features we have discussed so far.

/'l Account.cs - Step3

public class Account

{

private int id;
private deci mal bal ance;
publ i c Account ()

{
}

public Account(int id, decinmal bal ance)

{
this.id = id;
t hi s. bal ance = bal ance;

}

public void Deposit(deci mal anount)

{

}
public void Wthdraw deci mal anount)

{

bal ance += anount;

bal ance -= anount;

publ i c deci mal Get Bal ance()

return bal ance;
public int Getld()
return id;
Rev. 1.0 Copyright © 2003 Object Innovations, Inc.

All Rights Reserved

8-21

TestAccount (Cont’d)

e Here is the driver program:

/| TestAccount.cs - Step3
usi ng System

public class Test Account

{
public static void Miin(string[] args)
{
Account acc;
acc = new Account (1, 100);
Consol e. WiteLi ne("bal ance of {0} is {1}",
acc. Getld(), acc. GetBal ance());
acc. Deposit (25);
acc. Wt hdraw(50) ;
Consol e. WiteLi ne("bal ance of {0} is {1}",
acc. Getld(), acc. GetBal ance());
acc = new Account ();
Consol e. Wi teLi ne("bal ance of {0} is {1}",
acc. Getld(), acc. GetBal ance());
}
}

e Here is the output:

bal ance of 1 is 100
bal ance of 1 is 75
bal ance of 0 is O

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-22
All Rights Reserved

Static Fields And Methods

e In C# a field normally is assigned on a per-instance
basis, with a unique value for each object instance of
the class.

— Sometimes it is useful to have a single value associated with
the entire class.

— Such a field 1s called a static field.

— Like instance data members, static data members can be
either public or private.

— To access a public static member, you use the dot notation,
but in place of an object reference before the dot, you use the
name of the class.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-23
All Rights Reserved

Static Methods

* A method may also be declared static.
— A static method can be called without instantiating the class.

— You use the dot notation, with the class name in front of the
dot.

— Because you can call a static method without an instance, a
static method can only use static data members and not
instance data members.

e Static methods may be declared public or private.

— A private static method, like other private methods, may be
used as a helper function within a class, but not called from
outside.

e Static methods have no this reference, because they
are not associated with a specific object instance.

— Trying to use the this keyword in a static method will result
in a compiler error.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-24
All Rights Reserved

Sample Program

e Our previous Account classes relied on the user of the
class to assign an id for the account.

— A better approach is to encapsulate assigning an id within the
class itself, so that a unique id will be automatically
generated every time an Account object is created.

— It is easy to implement such a scheme by using a static field
nextid, which is used to assign an id.

— Every time an id is assigned, nextid is incremented.

e The program StaticAccount demonstrates this
solution, and also illustrates use of private static
helper functions.

* Note that the static method GetNextld is accessed
through the class Account and not through an object
reference such as acc3.

— This program also illustrates the fact that Main is a static
method and is invoked by the runtime without an instance of
the StaticAccount class being created.

* Since there is no instance, any method called from
within Main must also be declared static, as
illustrated by the method WriteAccount().

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-25
All Rights Reserved

Static Constructor

e Besides having static fields and static methods, a class
may also have a static constructor.

— A static constructor is called only once, before any object
instances have been created.

— A static constructor is defined by prefixing the constructor
with static.

— A static constructor can take no parameters and has no access
modifier. However, it is always implicitly public.

— The static constructor may initialize only static data
members.

e The program StaticConstructor illustrates a static
constructor for the Account class.

— All of the constructors in this example program write a line
of text when they are called, so you can see when the various
constructors are called.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-26
All Rights Reserved

Constant And Readonly Fields

e If you want to make sure that a variable always has
the same value, you can assign the value via an
initializer and use the const modifier.

Such a constant is automatically static, and you will access it
from outside the class through the class name.

Another situation may call for a one-time initialization at
runtime, and after that the value cannot be changed.

You can achieve this effect through a readonly field.

Such a field may be either an instance member or a static
member.

In the case of an instance member, it will be assigned in an
ordinary constructor.

In the case of a static member, it will be assigned in a static
constructor.

e The program ConstantAccount illustrates the use of
both const and readonly.

Rev. 1.0

In both cases, you will get a compiler error if you try to
modify the value.

Copyright © 2003 Object Innovations, Inc. 8-27
All Rights Reserved

Summary

* A class can be thought of as a template from which
individual instances (called objects) can be created.

e Classes support encapsulation through fields and
methods.

— Typically, fields are private and methods are public.

* The new operator is used to instantiate objects from
classes.

— When you declare a variable of a primitive data, you are
allocating memory and creating the instance.

— When you declare a variable of a class type (an “object
reference”), you are only obtaining memory for a reference
to an object of the class type.

— No memory is allocated for the object itself until new is
invoked.

e The Common Language Runtime automatically
reclaims the memory of orphaned or unreferenced
objects in a process called garbage collection.

 Initialization of objects can be performed in
constructors.

e Static members apply to the entire class rather than
to a particular instance.

* const and readonly can be used to specify constants in
C# programs.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 8-28
All Rights Reserved

