Rev. 1.0

Chapter 5

Operators and Expressions

Copyright © 2003 Object Innovations, Inc.
All Rights Reserved

5-1

Operators and Expressions

Objectives

After completing this unit you will be able to:
» Use operators correctly in C# programs
e Use precedence to write cleaner code

e Use the checked keyword to control how various
arithmetic errors are handled

Rev. 1.0 Copyright © 2003 Object Innovations, Inc.
All Rights Reserved

5-2

Operator Cardinality

* Unary operators

— Example: unary minus.
* Binary operators

— The most common

— Examples: +- */

e C# has one ternary operator.

- 7

Rev. 1.0 Copyright © 2003 Object Innovations, Inc.
All Rights Reserved

5-3

Arithmetic Operators

e The arithmetic operators include the four basic
operations of addition, subtraction, multiplication,
and division.

* We will examine each of these:
1. in the case where operands are of the same type, and

2. in the case where one operand requires a conversion.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc.
All Rights Reserved

5-4

Multiplication

e The three multiplicative operators in C# are:
— multiplication (*)
— division (/)
— remainder (%)

e The only difficulty in multiplication comes from
overflow, which is handled differently by the three
data types.

— Integer multiplication overflow just silently drops bits.
— Floating-point multiplication overflow results in Infinity.

— Decimal multiplication overflow throws an exception.

e See the example program Multiply.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-5
All Rights Reserved

Division

* Integer division always returns an integer result.
— The result may be silently truncated.
— Integer and decimal division by zero throw exceptions.

— Dividing the largest negative integer by negative one will
throw an exception.

* Floating-point division follows the IEEE 754 rules
— Diuvision by zero returns Infinity.
— Division of zero by anything (including zero) returns NaN.

* The remainder is an integer result calculated by
multiplying the quotient by the divisor and
subtracting that from the original number.

* Remainder uses integer arithmetic.

X %Y is X- ((XY) *Y)

* See the example program IntegerDivision.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-6
All Rights Reserved

Additive Operators

There are six additive operators.

— Binary + and -

— Unary + and -

— Auto-increment (++) and auto-decrement (--)

Integer addition and subtraction may be checked or
unchecked.

— In a checked context, overflow will generate an exception.

— In an unchecked context, overflow bits are just silently lost.

Floating-point addition and subtraction may result in
a floating-point number, positive Infinity, negative
Infinity, or NaN.

Decimal overflow generates an exception.
Unary minus is equivalent to subtraction from zero.

Unary plus is a no-op.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-7

All Rights Reserved

Increment and Decrement

 The increment and decrement operators come in two
versions, prefix and postfix.
e Prefix:

Y = ++X;

Equivalent to:

X

X + 1;
Y .

X,

* Postfix:
Y = X++;
Equivalent to:

Y
X

X
X + 1;

 The increment and decrement operators work on
integer, floating point, and decimal types.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-8
All Rights Reserved

Example: A Small Calculator

/1
I
/1
/1
/1
/1
/1
/1

lra.cs

I nteractive programto conpute the total
accunmulation in an Individual Retirenent
Account under conpound interest.

Assune that a deposit is nmade at the end of
each year and that interest is conpounded
annual | y.

usi ng System

public class Ira

{

public static int Main(string[] args)
{
| nput W apper iw = new | nput Wapper ();
doubl e amount; // annual deposit anount
doubl e rate; /'l interest rate
I nt years; /'l nunber of years
doubl e total; /1l total accumnul ation
anount = iw. get Doubl e("anmount: ");
rate = iw. getDouble("rate: ");
years = iw. getlnt("years: ");
total = anount *
(Math. Powm(1 + rate, years) - 1) / rate;
|l ong total _in_cents =
(long) Math. Round(total * 100);
total = total _in_cents /100.0;
Console. WiteLine("total = {0}", total);
return O;

Rev. 1.0 Copyright © 2003 Object Innovations, Inc.

All Rights Reserved

5-9

Relational Operators

e C# has the usual operators for testing equality, less
than, etc.

e The result of a relational operation is bool.

* Note: The double-equal (==) is used for equality.

— Unlike C/C++, using the assignment operator where a
relational operator is expected will generate a compile-time
error.

— This completely eliminates one of the old 'gotchas' that was

in C/C++.

Operation Returns true if...

X ==y X equals vy

X =y X I's not equal to vy

X <y X is less than vy

X <=y X is less than or equal to vy

X >y X I's greater than vy

X >=y X Is greater than or equal to vy

— See the sample program Relational.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-10
All Rights Reserved

Conditional Logical Operators

* The conditional logical operators provide the Boolean
AND (& &), inclusive OR (||), and NOT (!) operations.

— Truth table for AND:

X y X && 'y

false |false |false

false | true false

true false | false

true true true

— Truth table for OR:

X y x|y
false |false |false

false |true true

true false |true

true true true

— Truth table for NOT:
X I X
false true
true false
Rev. 1.0 Copyright © 2003 Object Innovations, Inc.

All Rights Reserved

5-11

Short-Circuit Evaluation

* An important feature of the logical operators is that
they are evaluated from left to right.

e Evaluation terminates as soon as the answer is
known.

e This may have some puzzling results if the terms of
the expression have side effects.

/1l ShortCircuit.cs
usi ng System
public class ShortCircuit

{
public static int Main(string[] args)
{

int x = 4;

int y =5;

Console.WiteLine("x = {0}, y = {1}", X, Vy);
bool result =true || (++x ==Y);

Console. WiteLine("result = {0}", result);
Console.WiteLine("x = {0}, y = {1}", X, VY);
result = true && (++x == vy);

Console. WiteLine("result = {0}", result);
Console.WiteLine("x = {0}, y = {1}", X, Vy);

y =~ X,
bool a = true;
bool b = fal se;
result = a ™ b;
return O;
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-12

All Rights Reserved

Ternary Conditional Operator

* The ternary operator (?:) is similar to an if
statement, except that it returns a value.

e Ternary form:

exprl ? expr2 : expr3;

— The first term (exprl) must be bool.

— If exprl is true, the value of the expression is expr2;
otherwise, the value of the expression is expr3.

— The 2™ and 3" terms (expr2 and expr3 above) must evaluate

to the same type.

/| Absol ut eVal ue. cs

usi ng System

publ i c cl ass Absol ut eval ue

{
public static int Main(string[] args)
{
int x = 5;
int abs = (x <0) ? -x : Xx;
Console. WiteLine("x = {0}, abs = {1}",
x, abs);
X = -X;
abs = (x < 0) ? -x : Xx;
Console. WiteLine("x = {0},
X, abs);
return O;
}
}
Rev. 1.0 Copyright © 2003 Object Innovations, Inc.

All Rights Reserved

abs = {1}",

5-13

Bitwise Operators

» Bitwise logical operators are similar to the Boolean
operators, except that they are applied to the bits of
an integer.

Operator Description
~ Bitwise NOT
& Bitwise AND
| Bitwise OR
A Bitwise XOR

e Bitwise shift operators shift an integer value right or
left.

Operator Description
<< Left Shift
>> Right Shift
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-14

All Rights Reserved

Bitwise Logical Operators

e The truth tables for the bitwise logical operators are
similar to the truth tables for the Boolean operators,
with a zero being treated as false, and a one treated as
true.

e The bitwise logical operators do not use short-circuit
evaluation.

e The exclusive OR, or XOR, (") is available only in
bitwise form.

X y XMy
0 0 0
0 1 1
1 0 1
1 1 0
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-15

All Rights Reserved

Bitwise Shift Operators

* The bitwise shift Operators take two operands.
— The first in the value to be shifted.

— The second is the number of bit positions to shift by.

a =Db<<n; /] shift n positions left,
/'l equivalent to multiplying by 2 n tines

a=Db>n; // shift n positions right and extend

/1l sign, equivalent to dividing by 2
[l n times

— See Shift

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-16
All Rights Reserved

Assignment Operators

* Normal assignment (=) is the most commonly used

operator.

— Note that assignment is an expression that returns a value.

Evaluating an expression can change a variable as a side

effect.
int x = 30;
int y = 5;
int z = 1;

X = (y = z++) + 60;

— See the program Assign.

e Compound assignment combines assignment with
binary arithmetic operator.

Description Operators
Arithnmetic *= /= Y%, +=, -=
Shi ft <<=, >>=

Bitw se &=, "=, |=

— Example:

X += 5;

Equivalent to:

X =X+5

Rev. 1.0

All Rights Reserved

Copyright © 2003 Object Innovations, Inc.

5-17

Expressions

e Expressions are built using constants and variables
with operators.

e The result of one operation can then be used in
another.

* Operations are performed in precedence order.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc.
All Rights Reserved

5-18

Precedence

* Precedence rules pre-date programming languages,
and were developed to simplify the writing of
algebraic expressions.

e Judicious use of precedence will result in cleaner
code. But use parens if you need to!

* Precedence order in C# is given in the following table.

Category Operators

Primary (x) x.y f(x) a[x] x++
X-- new typeof sizeof
checked unchecked

Unary + - I~ ++x --x (T)x

Mul tiplicative * %

Addi tive + -

Shi ft << >>

Rel ati onal < > <= >= |s as

Equal ity == 1=

Logi cal AND &

Logi cal XOR A

Logi cal OR |

Condi tional AND |&&

Condi tional OR | |

Condi ti onal ?:

Assi gnnent = *= /= % += -= <<=
>>= &K= A= |:

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-19

All Rights Reserved

Associativity

* When an operand occurs between two operators at
the same precedence level, the associativity of the
operator controls the order of evaluation.

* Most operators associate left-to-right.

e The assignment operator (=) and the ternary
operator (?:) associated right-to-left.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-20
All Rights Reserved

Checking

e C# allows you to control compile and runtime
checking of various arithmetic operations (to detect
conditions such as multiplication overflow).

e The default is to do compile time checking but not
runtime checking.

— See Unchecked.

* Checking may be applied to an entire module using
the command line switch /checked+

* A block of code or a specific expression may be
checked.

checked // check a bl ock

{
Z =X + 1;
z =X *vy,
}
z = checked (x * y); // check this nmultiplication
— See Checked
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-21

All Rights Reserved

Summary

* We covered the many simple operators in C#.

* Some of the operators behave differently with respect
to the different data types.

e Expressions are built from operators, constants, and
variables, and may be used in other expressions.

* The programmer may specific the level of checking
(how exceptional conditions, such as overflow, are
handled).

— The default for checking is to perform compile-time
checking, but not run-time checking.

e Use precedence rules to simplify how you write
expressions.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 5-22
All Rights Reserved

