
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-1
 All Rights Reserved

Chapter 10

Methods, Properties, and
Operators

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-2
 All Rights Reserved

Methods, Properties, and Operators

Objectives

 After completing this unit you will be able to:

• Explain how methods are defined and used, how
parameters are passed to and from methods, and how
the same method name can be overloaded, with
different versions having different parameter lists.

• Implement methods in C# that take a variable
number of parameters.

• Use the C# get/set (property syntax) methods for
accessing data

• Overload operators in C#, which makes invoking
certain methods more natural and intuitive.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-3
 All Rights Reserved

Static and Instance Methods

• We have seen that classes can have different kinds of
members, including fields, constants, and methods.

− A method implements behavior that can be performed by an
object or a class.

− Ordinary methods, sometimes called instance methods, are
invoked through an object instance.

Account acc = new Account();
acc.Deposit(25);

− Static methods are invoked through a class, and do not
depend upon the existence of any instances.

int sum = SimpleMath.Add(5, 7);

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-4
 All Rights Reserved

Method Parameters

• Methods have a list of parameters, which may be
empty.

− Methods either return a value or have a void return.

− Multiple methods may have the same name, so long as they
have different signatures, a feature known as method
overloading.

− Methods have the same signature if they have the same
number of parameters, and these parameters have the same
types and modifiers (such as ref or out).

• The return type does not contribute to defining the
signature of a method. By default, parameters are
value parameters, which means a copy is made of the
parameter.

− The keyword ref designates a reference parameter, in which
case the parameter inside the method and the corresponding
actual argument refer to the same object.

− The keyword out refers to an output parameter, which is the
same as a reference parameter, except that on the calling side,
the parameter need not be assigned prior to the call.

− We will study parameter passing and method overloading in
more detail later in this chapter.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-5
 All Rights Reserved

No “Freestanding” Functions in C#

• In C# all functions are methods and so are associated
with a class.

− There is no such thing as a freestanding function, as in C and
C++.

− “All functions are methods” is rather similar to “everything is
an object” and reflects the fact that C# is a pure object-
oriented language.

− The advantage of all functions being methods is that classes
become a natural organizing principle. Methods are nicely
grouped together.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-6
 All Rights Reserved

Classes with All Static Methods

• Sometimes part of the functionality of your system
may not be tied to any data but may be purely
functional in nature.

• In C# you would organize such functions into classes
that have all static methods and no fields.

• The program TestSimpleMath/Step1 provides an
elementary example.

// SimpleMath.cs

public class SimpleMath
{
 public static int Add(int x, int y)
 {
 return x + y;
 }
 public static int Multiply(int x, int y)
 {
 return x * y;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-7
 All Rights Reserved

Parameter Passing

• Programming languages have different mechanisms
for passing parameters.

• In the C family of languages the standard is “call by
value.”

− This means that the actual data values themselves are passed
to the method.

− Typically, these values are pushed onto the stack, and the
called function obtains its own independent copy of the
values.

− Any changes made to these values will not be propagated
back to the calling program. C# provides this mechanism of
parameter passing as the default, but C# also supports
“reference” parameters and “output” parameters.

− In this section we will examine all three of these
mechanisms, and we will also look at the ramifications of
passing class and struct data types.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-8
 All Rights Reserved

Parameter Terminology

• Storage is allocated on the stack for method
parameters.

− This storage area is known as the activation record.

− It is popped when the method is no longer active.

− The formal parameters of a method are the parameters as
seen within the method.

− They are provided storage in the activation record.

− The actual parameters of a method are the expressions
between commas in the parameter list of the method call.

int sum = SimpleMath.Add(5, 7);
 // actual parameters are
 // 5 and 7
...

public static int Add(int x, int y)
{ // formal parameters are
 // x and y
 ...
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-9
 All Rights Reserved

Value Parameters

• Parameter passing is the process of initializing the
storage of the formal parameters by the actual
parameters.

• The default method of parameter passing in C# is
call-by-value, in which the values of the actual
parameters are copied into the storage of the formal
parameters.

− Call-by-value is “safe,” because the method never directly
accesses the actual parameters, only its own local copies.

• But there are drawbacks to call-by-value:

− There is no direct way to modify the value of an argument.
You may use the return type of the method, but that only
allows you to pass one value back to the calling program.

− There is overhead in copying a large object.

• The overhead in copying a large object is borne when
you pass a struct instance.

− If you pass a class instance, or an instance of any other
reference type, you are passing only a reference and not the
actual data itself.

− This may sound like “call-by-reference,” but what you are
actually doing is passing a reference by value.

− Later in this section we will discuss the ramifications of
passing struct and class instances.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-10
 All Rights Reserved

Reference Parameters

• Consider a situation in which you want to pass more
than one value back to the calling program.

• C# provides a clean solution through reference
parameters.

− You declare a reference parameter with the ref keyword,
which is placed before both the formal parameter and the
actual parameter.

− A reference parameter does not result in any copying of a
value.

− Instead, the formal parameter and the actual parameter refer
to the same storage location.

− Thus changing the formal parameter will result in the actual
parameter changing, as both are referring to exactly the same
storage location.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-11
 All Rights Reserved

Reference Parameters (Cont’d)

• The program ReferenceMath illustrates using ref
parameters.

− The two methods Add and Multiply are replaced by a single
method Calculate, which passes back two values as
reference parameters.

// ReferenceMath.cs

public class ReferenceMath
{
 public static void Calculate(int x, int y,
 ref int sum, ref int prod)
 {
 sum = x + y;
 prod = x * y;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-12
 All Rights Reserved

Reference Parameters (Cont’d)

• Notice the use of the ref keyword in front of the third
and fourth parameters. Here is the test program:

// TestReferenceMath.cs

using System;

public class TestReferenceMath
{
 public static void Main(string[] args)
 {
 int sum = 0, product = 0;
 MultipleMath.Calculate(5, 7, ref sum,
 ref product);
 Console.WriteLine("sum = {0}", sum);
 Console.WriteLine("product = {0}", product);
 }
}

• The ref keyword is used in front of the parameters.

• Variables must be initialized before they are used as
reference parameters.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-13
 All Rights Reserved

Output Parameters

• A reference parameter is used for two-way
communication between the calling program and the
called program, both passing data in and getting data
out.

• Thus reference parameters must be initialized before
use.

− In TestReferenceMath.cs (previous slide), we are only
obtaining output, so initializing the variables only to assign
new values is rather pointless.

− C# provides for this case with output parameters.

− Use the keyword out wherever you would use the keyword
ref.

− Then you do not have to initialize the variable before use.

− Naturally, you could not use an out parameter inside the
method; you can only assign it.

• The program OutputMath illustrates the use of output
parameters.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-14
 All Rights Reserved

Structure Parameters

• A struct is a value type, so if you pass a struct as a
value parameter, the struct instance in the called
method will be an independent copy of the struct in
the calling method.

• The program HotelStruct illustrates passing an
instance of a Hotel struct by value.

• The object hotel in the RaisePrice method is an
independent copy of the object ritz in the Main
method.

− This figure shows the values in both structures after the price
has been raised for hotel.

− Thus the change in price does not propagate back to Main.

ritz Boston
Ritz
100

$200.00

Boston
Ritz
100

$250.00

Main

RaisePrice hotel

− The program HotelStructRef has the same struct definition,
but the test program passes the Hotel instance by reference.

− Now the change does propagate, as you would expect.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-15
 All Rights Reserved

Class Parameters

• A class is a reference type, so if you pass a class
instance as a value parameter, the class instance in
the called method will refer to the same object as the
reference in the calling method.

• The program HotelClass/Step1 illustrates passing an
instance of a Hotel class by value.

− This figure illustrates how the hotel reference in the
RaisePrice method refers to the same object as the ritz
reference in Main.

ritz Boston
Ritz
100

$250.00

Main

RaisePrice hotel

− Thus when you change the price in the RaisePrice method,
the object in Main is the same object and shows the new
price.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-16
 All Rights Reserved

Method Overloading

• In a traditional programming language such as C,
you need to create unique names for all your
methods.

• If methods do basically the same thing but only apply
to different data types, it becomes tedious to create
unique names.

− For example, suppose you have a FindMax method that can
find the maximum of two int or two long or two string.

− If we need to come up with a unique name for each method,
we would have to create method names such as FindMaxInt,
FindMaxLong, and FindMaxString.

• In C#, as in other object-oriented languages such as
C++ and Java, you may overload method names.

− That is, different methods can have the same name, if they
have different signatures.

− Two methods have the same signature if they have the same
number of parameters, the parameters have the same data
types, and the parameters have the same modifiers (none, ref,
or out).

− The return type does not contribute to defining the signature
of a method.

− So, in order to have two functions with the same name, there
must be a difference in the number and/or types and/or
modifiers of the parameters.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-17
 All Rights Reserved

Method Overloading (Cont’d)

• At runtime the compiler will resolve a given
invocation of the method by trying to match up the
actual parameters with formal parameters.

− A match occurs if the parameters match exactly or if they can
match through an implicit conversion.

− For the exact matching rules, consult the C# Language
Specification.

• The program OverloadDemo illustrates method
overloading.

− The method FindMax is overloaded to take either long or
string parameters.

− The method is invoked three times, for int, long, and string
parameters.

− There is an exact match for the case of long and string.

− The call with int actual parameters can resolve to the long
version, because there is an implicit conversion of int into
long.

− You may wish to review the discussion of conversions of
data types at the end of Chapter 4.

• We will cover the string data type and the Compare
method in Chapter 11.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-18
 All Rights Reserved

Modifiers as Part of the Signature

• It is important to understand that if methods have
identical types for their formal parameters, but differ
in a modifier (none, ref, or out), then the methods
have different signatures.

• The program OverloadHotel provides an illustration.

− We have two RaisePrice methods.

− In the first method, the hotel is passed as a value parameter.

− In the second version, the hotel is passed as a reference
parameter.

− These methods have different signatures.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-19
 All Rights Reserved

Variable Length Parameter Lists

• Our FindMax methods in the previous section were
very specific with respect to the number of
parameters—there were always exactly two
parameters.

• Sometimes you may want to be able to work with a
variable number of parameters, for example, to find
the maximum of two, three, four, or more numbers.

• C# provides the params keyword, which you can use
to indicate that an array of parameters is provided.

− Sometimes you may want to provide both a general version
of your method that takes a variable number of parameters
and also one or more special versions that take an exact
number of parameters.

− The special version will be called in preference, if there is an
exact match. The special versions are more efficient.

• The program VariableMax illustrates a general
FindMax method that takes a variable number of
parameters.

− There is also a special version that takes two parameters.

− Each method prints out a line identifying itself, so you can
see which method takes precedence.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-20
 All Rights Reserved

Properties

• The encapsulation principle leads us to typically store
data in private fields and to provide access to this
data through public accessor methods that allow us to
set and get values.

− For example, in the Account class we used as an illustration
in Chapter 8, we provided a method GetBalance to access
the private field balance.

− You don’t need any special syntax; you can simply provide
methods and call these methods what you want, typically
GetXXX and SetXXX.

• C# provides a special property syntax that simplifies
user code.

• Rather than using methods, you can simply use an
object reference followed by a dot followed by a
property name.

− Here are some hypothetical examples of a Balance property
(that we assume for the sake of argument is both read/write)
of a hypothetical Account class.

− We show in comments the corresponding method code.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-21
 All Rights Reserved

Properties Example

Account acc = new Account();
decimal bal;
bal = acc.Balance; // bal =
acc.GetBalance();
acc.Balance = 100m; // acc.SetBalance(100m);
acc.Balance += 1m; //
acc.SetBalance(acc.GetBalance() + 1m);

• As you can see, the syntax using the property is a
little more concise.

• Properties were popularized in Visual Basic, and are
now part of .NET and available in selected other
.NET languages, such as C#.

− The program AccountProperty illustrates implementing and
using several properties, Balance, Id, and Owner.

− The first two properties are read-only (only get defined), and
the third property is read/write (both get and set).

− It is also possible to have a write-only property (only set
defined).

• The next page shows the code for the Account class,
where the properties are defined.

− Notice the syntax and the special C# keyword value.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-22
 All Rights Reserved

Properties Example (Cont’d)

// Account.cs

public class Account
{
 private int id;
 private static int nextid = 1;
 private decimal balance;
 private string owner;
 public Account(decimal balance, string owner)
 {
 this.id = nextid++;
 this.balance = balance;
 this.owner = owner;
 }
 public void Deposit(decimal amount)
 {
 balance += amount;
 }
 public void Withdraw(decimal amount)
 {
 balance -= amount;
 }
 public decimal Balance
 {
 get
 {
 return balance;
 }
 }
 public int Id
 {
 get
 {
 return id;
 }
 }

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-23
 All Rights Reserved

Properties Example (Cont’d)

 public string Owner
 {
 get
 {
 return owner;
 }
 set
 {
 owner = value;
 }
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-24
 All Rights Reserved

Operator Overloading

• Another kind of syntactic simplification that can be
provided in C# is operator overloading.

• The idea is that certain method invocations can be
implemented more concisely using operators rather
than method calls.

− Suppose we have a class Matrix that has static methods to
add and multiply matrices.

− Using methods, we could write a matrix expression like this:

Matrix a, b, c, d;
// code to initialize the object references
d = Matrix.Multiply(a, (Matrix.Add(b, c));

− If we overload the operators + and *, we can write this code
more succinctly:

d = a * (b + c);

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-25
 All Rights Reserved

Operator Overloading (Cont’d)

• You cannot create a brand new operator, but you can
overload many of the existing C# operators to be an
alias for a static method.

− For example, given the static method Add in the Matrix
class ...

class Matrix
{
...
 public static Matrix Add(Matrix x, Matrix y)
 {

− ... you could write instead:

 public static Matrix operator+(Matrix x,
 Matrix y)

• All of the rest of the class implementation code stays
the same, and you can then use operator notation in
client code. Operator declarations, such as operator+
shown above, must obey the following rules:

− Operators must be public and static, and may not have any
other modifiers.

− Operators take only value parameters, and not reference or
output parameters.

− Operators must have a signature that differs from the
signatures of all other operators in the class.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-26
 All Rights Reserved

Operator Overloading (Cont’d)

• There are three categories of operators that can be
overloaded.

− The table shows the unary and binary operators that can be
overloaded.

− A third category of operators is user-defined conversions,
which will be discussed in Chapter 15.

Type Operators
Unary + - ! ~ ++ -- true false
Binary + - * / % & | ^ << >> == != > < >= <=

− If you overload a binary operator op, the corresponding
compound assignment operator op= will be overloaded for
you by the compiler. For example, if you overload + you will
automatically have an overload of +=.

• The relational operators must be overloaded in pairs:

− operator== and operator!=

− operator> and operator<

− operator>= and operator<=.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-27
 All Rights Reserved

Sample Program

• As an illustration of operator overloading, consider
the program TestClock, which has a class Clock that
does “clock arithmetic.”

− The legal values of Clock are integers between 1 and 12
inclusive.

− Addition is performed modulo 12. Thus 9 + 7 is 16 modulo
12, or 4.

− We overload the plus operator to do this special kind of
addition operation.

− We have two different versions of the plus operator. One
adds two Clock values, and the other adds a Clock and an
int.

− In the test program note that we are able to use += even
though we have not explicitly provided such an overload.
The compiler automatically furnishes this overload for us by
virtue of our overloading +.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-28
 All Rights Reserved

Operator Overloading in the Class
Library

• Although you may rarely have occasion to overload
operators in your own classes, you will find that a
number of classes in the .NET Framework Class
Library make use of operator overloading.

• In Chapter 11 you will see how + is used for
concatenation of strings.

• In Chapter 19 you will see how += is used for adding
an event handler to an event.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 10-29
 All Rights Reserved

Summary

• In this chapter we examined a number of features of
methods.

• In C# there is no such thing as a freestanding
function.

• All functions are tied to classes and are called
methods.

• If you do not care about class instances, you can
implement a class that has only static methods.

• By default, parameters are passed by value, but C#
also supports reference parameters and out-put
parameters.

• A method name can be overloaded, with different
versions having different parameter lists.

• You can also implement methods in C# that take a
variable number of parameters.

• C# provides a special property syntax for concisely
invoking get/set methods for accessing data.

• You can overload operators in C#, a feature which
makes the C# language inherently more extensible
without requiring special coding in the compiler.

