
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-1 
 All Rights Reserved 

Chapter 21 

Components and Assemblies 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-2 
 All Rights Reserved 

Components and Assemblies 

Objectives 

 After completing this unit you will be able to: 

• Organize large programs using assemblies and 
components. 

• Call external COM objects from C# 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-3 
 All Rights Reserved 

Overview of Components and 
Assemblies 

• Up until now we have been building exclusively 
monolithic applications, consisting of a single 
executable file.  

• Our applications have been logically modular, 
consisting of several classes, typically distributed 
among a number of files.  

• But these files have all been compiled together, 
forming a single EXE.  

• Modern large applications are rarely monolithic but 
instead are made up of a number of executable units.  

• In the Windows environment an application will 
normally consist of an EXE and a number of DLLs.  

• In this chapter we will see how to create class library 
DLLs, or components, which will expose classes and 
their methods to external programs.  

• We begin by using command-line tools, and later in 
the chapter we will use Visual Studio.NET. We will 
also examine assemblies, which are the unit of 
deployment in .NET.  

• An assembly can be a single EXE or DLL, or it can 
consist of several files, called modules.  



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-4 
 All Rights Reserved 

OverView (Cont’d) 

• An assembly also contains a manifest, which describes 
how the elements of the assembly relate to each other 
and to external elements.  

• An application in .NET can be composed of 
assemblies built using different languages, and you 
can even inherit across languages.  

• As a somewhat larger example, we present a 
componentized version of our bank case study.  

• We conclude the chapter by showing how to call a 
COM component from .NET. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-5 
 All Rights Reserved 

Building Components Using .Net SDK 

• Prior to .NET there was a big divide between using 
classes within an application and creating “software 
components” that implemented classes but could be 
called from independent executable units.  

• With Microsoft software, the mechanism for creating 
such independent components was the Component 
Object Model, or COM.  

• Implementing a COM component is nontrivial, as 
much “plumbing” code must be provided to facilitate 
proper operation across executable boundaries.  

• Tools such as the Active Template Library in C++ 
were developed in individual languages to simplify 
the process.  



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-6 
 All Rights Reserved 

Building Components Using .Net SDK 
(Cont’d) 

• Visual Basic provided an easy way to create COM 
components, but this was specific to Visual Basic, and 
not all features of COM were supported. 

• .NET changes the picture completely.  

• It is totally trivial to create a component from a class.  

• You just need to build a different kind of project, a 
“class library.”  

• The .NET Framework takes care of the plumbing for 
you automatically.  

• In this section we will see how to create a component 
using the command-line compiler. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-7 
 All Rights Reserved 

Creating a Component: A 
Demonstration 

• Let’s begin with a simple demonstration.  

• Do your work in the Demos directory for this chapter.  

• A completed version of the demonstration is available 
in HelloSDK. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-8 
 All Rights Reserved 

Class Library 

• Using any text editor, create the file HelloLib.cs. 
// HelloLib.cs 
 
class Hello 
{ 
   private string greeting = "Hello, I'm a DLL"; 
   public string Greeting 
   { 
      get 
      { 
         return greeting; 
      } 
      set 
      { 
         greeting = value; 
      } 
   } 
} 

• Please type in this program exactly as shown, 
including the lack of any access specifier in front of 
class Hello.  

− This class simply exposes the property Greeting.  

− Notice that there is no Main method.  

− This class is not intended to be used in an EXE file.  



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-9 
 All Rights Reserved 

Building a Class Library 

• To compile the file as a class library, enter the 
following at the command line: 

csc /t:library HelloLib.cs 

• The command switch /t, or /target, specifies the kind 
of file to create. There are four options, as shown in 
the table 

Option Meaning 
/target:exe Console application EXE 
/target:winexe Windows application EXE 
/target:library Class library DLL 
/target:module Module (no manifest) 

 

• The default is /target:exe, or console application, 
which is what we have been building up until now.  

• We will discuss modules later in this chapter.  

• We are now building a class library DLL.  

− If you did not make any typing mistakes, you should get a 
clean compilation, and if you use the DOS dir command, you 
should see that the file HelloLib.dll has been created. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-10 
 All Rights Reserved 

Client Program 

• To exercise our class library we will need to create a 
client program.  

− This could be either a console application or a Windows 
application.  

− We will create a simple console application as a test program.  



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-11 
 All Rights Reserved 

Client Program (Cont’d) 

• Type in the following program and save in the file 
TestHello.cs. 

// TestHello.cs 
 
using System; 
 
public class TestHello 
{ 
   public static void Main() 
   { 
      Hello obj = new Hello(); 
      Console.WriteLine(obj.Greeting); 
   } 
} 

• Compile this program using the following command: 
csc /r:HelloLib.dll TestHello.cs 

• The compiler option /r, or /reference, is used to 
import metadata from the specified class library.  

− This makes any public classes in the class library available to 
the current compilation unit.  

− You will get compiler error messages: 

TestHello.cs(9,3): error CS0122: 'Hello' is 
inaccessible due to its protection level 
TestHello.cs(10,21): error CS0234: The type or 
namespace name 'obj' does not exist in the class or 
namespace '' 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-12 
 All Rights Reserved 

Internal and Public Access 

• The problem comes from the fact that in the file 
HelloLib.cs we did not place any access modifier on 
the Hello class.  

− The default access is internal, which means that the class can 
be accessed within the current assembly.  

− We mentioned internal access in Chapter 13, but were not 
able to demonstrate its implications, because up until now, all 
our programs have consisted of only a single assembly.  

− We will discuss assemblies in detail in the next section. 

• The fix is simply to make the Hello class public. 
// HelloLib.cs 
 
public class Hello 
{ 
   ... 

• Make this change, and then recompile both files. Now 
you should get a clean compilation. You can then run 
the file TestHello.exe and obtain the expected output. 

C:\OI\CSharp\Chap21\Demos>testhello 
Hello, I'm a DLL 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-13 
 All Rights Reserved 

Monolithic Program 

• The directory MonolithicHello contains a monolithic 
version of this program.  

− There is a Visual Studio project consisting of the two files.  

− The Hello class is left with no access modifier, so the default 
internal access is in place.  

− This time there is no problem, because we are building only a 
single assembly. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-14 
 All Rights Reserved 

Assemblies 

• In this section we will take a closer look at assemblies.  

• We begin by examining the structure of assemblies in 
some detail, and then we will work through an 
example that illustrates creating and using different 
types of assemblies. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-15 
 All Rights Reserved 

Assembly Structure 

• An assembly is a grouping of types and resources that 
work together as a logical unit.  

− An assembly consists of one or more physical files, called 
modules, which may be code files or resources (such as 
bitmaps).  

− An assembly forms the boundary for security, deployment, 
type resolution, and versioning. 

• Logically, an assembly holds three kinds of 
information: 

− MSIL (Microsoft Intermediate Language) implementing one 
or more types 

− Metadata 

− A manifest describing how the elements in the assembly 
relate to each other and to external elements 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-16 
 All Rights Reserved 

Assembly Structure (Cont’d) 

• The general structure of an assembly is shown in the 
figure. 

Manifest

Resource Module

Code Module

Metadata

MSIL

Type Type

 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-17 
 All Rights Reserved 

Assembly Structure (Cont’d) 

• All of the information in an assembly could be stored 
in a single file, or it could be distributed among a 
number of files, called modules.  

− All of the assemblies we have built so far, including the DLL 
we built in the preceding section, have been single-file 
assemblies.  

− In a multiple-file assembly, the manifest could be a 
standalone file or it could be contained in one of the modules. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-18 
 All Rights Reserved 

Manifest 

• The manifest contains comprehensive information 
about the contents of an assembly and facilitates 
other assemblies using the assembly. The manifest 
contains a number of elements: 

− Assembly identity. The name of the assembly, version 
information (consisting of four parts for very fine-grained 
versioning), and culture (containing locale in-formation 
suitable for globalization). 

− Files. A list of files in the assembly. 

− Referenced assemblies. A list of external assemblies that are 
referenced. 

− Types. A list of all types in the assembly, a mapping to the 
modules containing the types, and visibility information 
about the types. 

− Security permissions. Details needed by client programs 
that will determine whether or not they have rights to run the 
assembly. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-19 
 All Rights Reserved 

Manifest (Cont’d) 

− Product information. Information such as company, 
trademark, and copyright. 

− Custom attributes. Special attribute information specific to 
this assembly. We touched on attributes in Chapter 20. 

− An (optional) shared name and hash. This information 
facilitates running the assembly from a common location 
where multiple programs may access it. The hash protects 
client programs from running a corrupted version of the 
assembly. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-20 
 All Rights Reserved 

Assembly Example 

• We will illustrate assemblies, including an assembly 
with multiple modules, with a version of our bank 
example.  

− The general logic of this program should be very familiar by 
this point. Our example is intended to focus on different ways 
of packaging the units of the program.  

• There are three assemblies in the example, as 
illustrated in the figure. 

Account.DLL

Account

SimpleMath

TestBank.EXE

Bank.DLL

CheckingAccount.cs

Statement.cs

 
− Account.dll is an assembly consisting of two modules. 

− Bank.dll is an assembly built from two source files. 

− TestBank.exe is a test program. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-21 
 All Rights Reserved 

Monolithic Version 

• We begin with a monolithic version, consisting of a 
single assembly.  

• A Visual Studio solution is provided in the directory 
BankAssembly\Step1.  

− Since all the classes are in the same assembly, we can utilize 
internal accessibility.  

− In the class Account, the field numXact has internal access 
modifier.  

− The namespace directive will be discussed shortly. 

// Account.cs 
namespace OI.NetCs.Examples 
{ 
   using OI.NetCs.Examples; 
   public class Account 
   { 
      protected int balance; 
      private string owner; 
      static private string bankName = "Fiduciary 
Bank"; 
      internal int numXact = 0;  // number of 
transactions 
      ... 
      public int Transactions 
      { 
         get 
         { 
            return numXact; 
         } 
      } 
   } 
} 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-22 
 All Rights Reserved 

Monolithic Version (Cont’d) 

− This means that the Statement class can access this field 
directly, without going through the public Transactions 
property. 

// Statement.cs 
 
using OI.NetCs.Examples; 
 
public class Statement 
{ 
   public static string 
GetStatement(CheckingAccount acc) 
   { 
      string s = "Statement for " + acc.Owner + 
"\n" + 
         acc.numXact + " transactions, balance = " 
         + acc.Balance + ", fee = " + acc.Fee; 
      return s; 
   } 
} 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-23 
 All Rights Reserved 

Namespace 

• This example also illustrates the namespace directive.  

− Look again at the Account class, which is enclosed in the 
namespace OI.NetCs.Examples. 

// Account.cs 
 
namespace OI.NetCs.Examples 
{ 
... 

• The name of the class Account is rather generic, and 
if this code were part of a large system, with 
components acquired from many third-party 
vendors, we might well run into a name collision.  

• By enclosing the class in a namespace, we can remove 
ambiguity.  

− To refer to the Account class in another program, we would 
have to use the long, fully qualified name 
OI.NetCs.Examples.Account. 

− Such usage does indeed get around the possible name 
collision, but is also quite cumbersome.  



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-24 
 All Rights Reserved 

Namespace Illustration 

• Hence, client programs can make use of the using 
directive, as illustrated in Statement.cs. 

// Statement.cs 
 
using OI.NetCs.Examples; 
 
public class Statement 
{ 
   public static string 
GetStatement(CheckingAccount acc) 
   ... 

− Here we employ the short name CheckingAccount (the 
CheckingAccount class was also created in the namespace 
OI.NetCs.Examples). 

• This example of a namespace also illustrates a 
common sort of hierarchy: 

− OI is a company/brand (Object Innovations). 

− NetCs is an acronym for this book (Introduction to C# Using 
.NET). 

− Examples is for the example programs. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-25 
 All Rights Reserved 

Multiple Assemblies 

• BankAssembly\Step2 illustrates building multiple 
assemblies.  

− You may compile at the command line.  

• First, build Account.dll: 
csc /t:module /out:SimpleMath.mod SimpleMath.cs 
csc /t:library /addmodule:SimpleMath.mod Account.cs 

− The first line illustrates the /t:module option for compiling 
SimpleMath.cs.  

− This will create a module without a manifest. We then could 
not obtain metadata in another compilation using the 
/reference option.  

− To make clear that the output file is not an ordinary DLL, we 
use the /out option to explicitly allow us to name the output 
file.  

− We make up a .mod extension (this is not standard, we are 
just using it to remind ourselves that we have created a 
module). 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-26 
 All Rights Reserved 

Multiple Assemblies (Cont’d) 

• Since we cannot use the /reference switch to bring in 
metadata from SimpleMath.mod, we need another 
mechanism.  

• The C# compiler provides the /addmodule option for 
this purpose.  

− As the name suggests, this option will add a module to the 
current assembly that is being built.  

− The target is a library, so the output file will be a DLL.  

− We don’t specify a name for the output file, so it will be 
Account.dll. 

• Next we will build bank.dll using the following 
command: 

csc /t:library /r:Account.dll /out:Bank.dll  
CheckingAccount.cs Statement.cs 

− Again we are building a class library, so we use the 
/t:library option.  

− We need a reference to Account.dll.  

− The source files are CheckingAccount.cs and Statement.cs.  

− Finally, we specify the name of the output file bank.dll. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-27 
 All Rights Reserved 

Multiple Assemblies (Cont’d) 

• The last thing we build is TestBank.exe: 
csc /t:exe /r:Bank.dll /r:Account.dll 
/out:TestBank.exe  
TestBank.cs InputWrapper.cs 

− This time we need references to two DLLs, Bank.dll and 
Account.dll.  

− The build is automated by the batch file build.bat. You can 
run this batch file at the command line simply by typing 
build. (In Windows Explorer you could run the batch file by 
double-clicking on build.bat). 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-28 
 All Rights Reserved 

Multiple Language Applications 

• BankAssembly\Step3 illustrates inheriting from a 
VB.NET class.  

• The class CheckingAccount, implemented in C#, now 
inherits from Account implemented in VB.NET.  

− We are continuing to work at the command line, and the 
batch file buildvb.bat builds the assemblies. 

− There is no equivalent of /addmodule in the VB.NET 
compiler, so SimpleMath.dll is built as a separate assembly.  

− There is no case sensitivity in VB.NET, so some variables 
are changed in Account.vb, which has a ripple effect into 
CheckingAccount.cs. (If you are going to do this sort of 
thing, you should pay attention to the Common Language 
Specification!) 

• In case you are curious about VB.NET, look at the 
code for Account.vb (next slide).  

− Semantically, the class is identical to the C# class 
Account.cs. (Actually, the Step 3 example is somewhat 
simplified. There is now no Owner property. )  

− The syntax is somewhat different.  

− There are many new Visual Basic keywords in VB.NET to 
denote inheritance, name-spaces, and so on.  



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-29 
 All Rights Reserved 

VB.NET Code Example 

' Account.vb -- Step 3 
Imports OI.NetCs.Examples 
Namespace OI.NetCs.Examples 
  Public Class Account 
    Protected bal As Integer 
    Private Shared bank As String = "Fiduciary Bank" 
    Protected numXact As Integer = 0  ' number of 
transactions 
      Public Sub New(balance As Integer) 
          Me.bal = balance 
      End Sub 
    Public Sub Deposit(amount As Integer) 
      numXact = numXact + 1 
      bal = SimpleMath.Add(balance, amount) 
      End Sub 
    Public Sub Withdraw(amount As Integer) 
      numXact = numXact + 1 
      bal = SimpleMath.Subtract(balance, amount) 
      End Sub 
    Public ReadOnly Property Balance() As Integer 
      Get 
        Return bal 
      End Get 
    End Property 
    Public Shared Property BankName() As String 
      Get 
        Return bank 
      End Get 
      Set 
        bank = Value 
      End Set 
    End Property 
    Public ReadOnly Property Transactions() As Integer 
      Get 
        Return numXact 
      End Get 
    End Property 
  End Class 
End Namespace 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-30 
 All Rights Reserved 

Building Components Using Visual 
Studio. NET 

• So far in this chapter we have done all our component 
building at the command line.  

− By using the various command-line compiler options, you 
should by now be fairly familiar with the build process, 
including especially the use of references via the /reference 
option.  

• In this section we will see how to use Visual Studio for 
building class libraries and client programs.  

− The class library and the client program will be separate 
projects within one solution.  

− If you would like to look at the complete solution, see 
BankClientAnswer. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-31 
 All Rights Reserved 

Demonstration: Solution with Multiple 
Projects 

• To learn how to create a multiple-project solution, 
including a class library, go through the following 
demonstration.  

• Do your work in the Demos directory for this chapter.  

− To save typing, you may copy source files from 
BankMonolithic. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-32 
 All Rights Reserved 

Creating the First Project 

• From Visual Studio main menu choose File | New | 
Project.... This will bring up the New Project dialog. 

• For Project Types choose “Visual C# Projects” and 
for Templates choose “Empty C# Project.” 

• Click the Browse button and navigate to Demos and 
click Open. 

• In the Name field, type BankClient. See the figure. 
Click OK. 

 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-33 
 All Rights Reserved 

Adding the Source Files 

• Using Windows Explorer, copy the files BankClient.cs 
and Account.cs from BankMonolithic into the current 
directory, Demos\BankClient. 

• In the Solution Explorer right-click over BankClient, 
and from the context menu choose Add | Add 
Existing Item....  

− In the dialog that comes up, select the two files BankClient.cs 
and Account.cs (you may use multiple selection by having 
the Control key pressed). Click Open. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-34 
 All Rights Reserved 

Adding the Source Files (Cont’d) 

• Examine the code for the test program BankClient.cs.  

− A new Account object is created, initialized with a starting 
balance of 100.  

− A deposit is made, followed by a withdrawal.  

− The balance is displayed at the beginning and after each 
transaction. (The prompt to read a string at the end will 
prevent a quick close of the application if you run it in the 
debugger.) 

// BankClient.cs 
 
using System; 
 
public class BankClient 
{ 
   static int Main(string[] args) 
   { 
      Account acc = new Account(100); 
      Console.WriteLine("balance = {0}", 
acc.Balance); 
      acc.Deposit(25); 
      Console.WriteLine("balance = {0}", 
acc.Balance); 
      acc.Withdraw(50); 
      Console.WriteLine("balance = {0}", 
acc.Balance); 
      Console.WriteLine("press Enter to exit"); 
      string s = Console.ReadLine(); 
      return 0; 
   } 
} 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-35 
 All Rights Reserved 

Adding the Source Files (Cont’d) 

• Examine the code for the Account class Account.cs.  

− There is a constructor which initializes the starting balance 
and the methods Deposit and Withdraw.  

− There is also a property Balance. 

// Account.cs 
 
public class Account 
{ 
   private int balance; 
   public Account(int balance) 
   { 
      this.balance = balance; 
   } 
   public void Deposit(int amount) 
   { 
      balance += amount; 
   } 
   public void Withdraw(int amount) 
   { 
      balance -= amount; 
   } 
   public int Balance 
   { 
      get 
      { 
         return balance; 
      } 
   } 
} 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-36 
 All Rights Reserved 

Changing the Output Path 

• Up until now when we have built a project in Visual 
Studio, we have always excepted the default location 
for the executable.  

− If we are building a Debug version of our project, the 
executable will be located in the bin\Debug directory.  

• When we are working with an application that 
consists of several assemblies, it will be convenient for 
the our executable and component files to all reside in 
the same directory.  

− At runtime our application can then easily find its 
components.  

• We can achieve this goal by changing the output path 
of our executable to be the source directory.  

− Later we will build our component to reside in the same 
directory. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-37 
 All Rights Reserved 

Changing the Output Path (Cont’d) 

1. 1. In Solution Explorer, right-click on the BankClient project, 
and choose Properties. 

2. 2. In the Property Pages window that comes up, click on 
Configuration Properties and then on Build. 

3. 3. Click in the right side of the Output Path area, and then click 
on the three dots. Navigate to the BankClient directory. See the 
figure. Click OK. 

 
4. 4. Build and run. You should see the following output: 

balance = 100 
balance = 125 
balance = 75 
press Enter to exit 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-38 
 All Rights Reserved 

Adding a Second Project 

• In Solution Explorer, right-click over the solution 
and choose Add | New Project.  

− The Add New Project dialog comes up. 

• Choose “Visual C# Projects” as the Project Type and 
“Class Library” as the template.  

• Click the Browse button and navigate to the 
Demos\BankClient directory.  

• Click Open. Type BankLib as the name of the 
project. See the figure. Click OK.  

• Observe that a subdirectory BankLib will be created 
underneath BankClient. 

 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-39 
 All Rights Reserved 

Move Code to the Second Project 

• The file AssemblyInfo.cs contains code that can be 
used to customize the manifest in the assembly.  

− For simplicity, remove the two files AssemblyInfo.cs and 
Class1.cs from the new project (use Delete key or right-click 
on the project and choose Delete). 

• Move the file Account.cs from BankClient to BankLib 
(you can drag inside Solution Explorer). 

• Following the same procedure we used previously for 
the BankClient project, change the output path for 
BankLib to be the BankClient source directory (so 
that BankClient.exe and BankLib.dll will wind up in 
the same directory). 

• Build the class library: Right-click on BankLib and 
choose Build. 

• Try to build the client test program: Right-click on 
BankClient and choose Build.  

− You will get a number of error messages pertaining to 
Account not existing in the current namespace. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-40 
 All Rights Reserved 

Adding a Reference 

• In Solution Explorer right-click on BankClient and 
choose Add Reference. 

• Click Browse and navigate to BankLib.dll. (It is in 
BankClient.) Click Open. See the figure. 

 

• Click OK. You will now see a Reference in Solution 
Explorer.  

− Note also the two projects in our solution. 

• Now build the client again.  

− This time it should work! Run the client. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-41 
 All Rights Reserved 

Solutions and Projects 

• We have now constructed a solution with two 
projects.  

• The figure shows Solution Explorer with this solution 
and its two projects. 

 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-42 
 All Rights Reserved 

Building a Solution 

• There are two build toolbar buttons:  

• The first button builds the currently selected project.  

− You can select a project by clicking on it in Solution 
Explorer.  

• The second button builds the entire solution. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-43 
 All Rights Reserved 

Project Dependencies 

• Continuing our demonstration, close the solution 
(menu File | Close Solution) and delete the bin and obj 
directories for both projects. (If you have trouble 
deleting the directories, close down Visual Studio.)  

• Open up the solution again and build the entire 
solution.  

− You will get build errors, because the client program is built 
first and the class library does not yet exist.  

− To fix this problem, open up the Project Dependencies dialog 
from the menu Project | Project Dependencies.  



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-44 
 All Rights Reserved 

Project Dependencies (Cont’d) 

− With the BankClient project selected from the Project 
dropdown, check BankLib in the Depends On list. See the 
figure. Click OK. 

 

• Now try building the solution again. This time the 
build should succeed, because the library will be built 
first. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-45 
 All Rights Reserved 

Bank Case Study: Componentized 
Version 

• We have built some small components.  

− Now let’s try something a little more elaborate.  

• We will build a componentized version of our bank 
case study.  

− The starting point is the Step 7 version from Chapter 18.  

• We have a copy in the current chapter in 
CaseStudy\Monolithic.  

− If you want to refresh yourself on the case study, you may 
build and exercise this monolithic version. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-46 
 All Rights Reserved 

Bank Case Study: Componentized 
Version (Cont’d) 

• Our componentized version consists of three pieces: 

− Account.dll. This class library is built from 
AccountDefinitions.cs, Account.cs, CheckingAccount.cs, 
and SavingsAccount.cs. 

− BankLib.dll. This class library is built from Bank.cs, 
Atm.cs, and InputWrapper.cs. It contains a reference to 
Account.dll. 

− BankClient.exe. This console application is built from 
TestBank.cs and InputWrapper.cs. It contains references to 
Account.dll and BankLib.dll. 

• Projects for these pieces are in the directories 
CaseStudy\AccountLib, CaseStudy\BankLib, and 
CaseStudy\BankClient.  

− You may wish to examine these projects, build them, and 
exercise the client program.  

− The BankLib directory contains a copy of Account.dll. The 
BankClient directory contains copies of BankLib.dll and 
Account.dll. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-47 
 All Rights Reserved 

Interoperating With COM 

• We have seen that .NET components can be built in 
different languages, such as C# and VB.NET, and 
interoperate with each. It is also possible for .NET 
components to interoperate with COM components. 

− You can call a COM component from .NET. 

− You can call a .NET component from COM. 

• The .NET Framework supports both of these kinds of 
interoperability, and tools are provided.  

• We will illustrate the first scenario, which is the 
common one, of a .NET application calling a legacy 
COM component.  

− We will use the Type Library Importer tool, which imports 
a type library for a COM component and generates a .NET 
proxy for calling a COM component from .NET. This tool is 
transparently invoked by Visual Studio when you add a 
reference to a COM component. 

• The subject of Microsoft’s Component Object Model, 
or COM, is a large one, far be-yond the scope of this 
book. For a discussion of COM and COM+ you can 
refer to the book Understanding and Programming 
COM+, by Robert J. Oberg. In Chapter 12 of that 
book you will find a discussion of the Logger 
component, which we use as an illustration in this 
section. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-48 
 All Rights Reserved 

Calling a COM Component from .NET 

• We will demonstrate COM interoperability with a 
.NET application that calls a COM Logger 
component, which happens to be written in C++ 
using ATL, the Active Template Library.  

• The sample program is in the directory LoggerVc.  

− If you are curious about the code used to create a COM 
component, where the infrastructure code is in the component 
itself, you can examine the C++ code in LoggerVc\Source.  

− It is much simpler to create components using .NET. 

• First we will run the sample program, and then we 
will switch to the Demos directory and create the test 
program ourselves. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-49 
 All Rights Reserved 

Running the Test Program 

• Open up the test program in LoggerVc\TestLogger. 
Try to build it. You will get an error message: 

error CS0234: The type or namespace name 
'LOGGERLib' does  
not exist in the class or namespace '' 

• The reason for this error is that the COM component 
must be registered before it can be used.  



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-50 
 All Rights Reserved 

Running the Test Program (Cont’d) 

• You can register the component by running the batch 
file reg_logger.bat. (In Windows Explorer you can 
double-click on this file to run it.)  

− You will see a message box announcing that registration is 
successful. See the figure. (If by chance this component was 
already registered on your machine, you can try unregistering 
it by running the batch file unreg_logger.bat.) 

 

• Now you should succeed in building TestLogger.  

− Running the program does not produce any output, because 
what the program does is write to a logfile, which for 
convenience we have located at the root of the c: drive.  

− In any text editor (for example, Notepad), examine the file 
c:\logfile.txt. You should see the following test messages 
displayed: 

first line 
second line 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-51 
 All Rights Reserved 

Creating the Test Program 

• Now let’s create the test program. Do your work in 
the Demos directory.  

• Open up Visual Studio and create a new Empty C# 
project TestLogger in Demos. 

• Add a new empty C# file called TestLogger.cs to the 
project. 

• Type the following code into this file. 
// TestLogger.cs 
 
using LOGGERLib; 
 
public class TestLogger 
{ 
   public static void Main() 
   { 
      Log log = new Log(); 
      log.Write("first line"); 
      log.Write("second line"); 
   } 
} 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-52 
 All Rights Reserved 

Creating the Test Program (Cont’d) 

• In Solution Explorer right-click over References and 
choose Add References from the context menu.  

− Click on the COM tab and click on “Logger 1.0 Type 
Library.” Click Select. See the figure. Click OK. 

 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-53 
 All Rights Reserved 

Creating the Test Program (Cont’d) 

• A dialog will come up talking about a “primary 
interop assembly” and asking you if you would like to 
have a wrapper generated for you. See the figure. 
Click Yes. (The primary interop assembly is the DLL 
Interop.LOGGERLib_1_0.dll, which was in the 
bin\Debug directory of the TestLogger program that 
was provided for you.) 

 

• You should now be able to build and run the project.  

− You should see two lines added to the log file c:\logfile.txt. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-54 
 All Rights Reserved 

Creating the Test Program (Cont’d) 

• You can view the LOGGERLib library in the Object 
Browser, which you can bring up from the menu 
View | Other Windows | Object Browser. See the 
figure. 

 
 

 
 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 21-55 
 All Rights Reserved 

Summary 

• Modern large applications are rarely monolithic but 
instead are made up of a number of executable units.  

• In the Windows environment an application will 
normally consist of an EXE and a number of DLLs.  

• In this chapter we saw how to create class library 
DLLs, or components, which expose classes and their 
methods to external programs.  

• Assemblies are the unit of deployment in .NET.  

• An assembly can be a single EXE or DLL, or it can 
consist of several files, called modules. An assembly 
also contains a manifest, which describes how the 
elements of the assembly relate to each other and to 
external elements.  

• An application in .NET can be composed of 
assemblies built using different languages, and you 
can even inherit across languages.  

• You can call a COM component from .NET. 
 


