
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-1
 All Rights Reserved

Chapter 17

Interfaces

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-2
 All Rights Reserved

Interfaces

Objectives

 After completing this unit you will be able to:

• Use interfaces to implement polymorphic classes

• Use interfaces to implement a limited form of
multiple inheritance

• Define your own interfaces

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-3
 All Rights Reserved

Introduction

• In C# interface is a keyword and has a very precise
meaning.

• An interface is a reference type, similar to an abstract
class, that specifies behavior.

• An interface can be thought of as a contract.

• A class or struct can “implement” an interface, and
must adhere to the contract.

• Interfaces are a useful way to partition functionality.

• While a class in C# can inherit from only one other
class, it can implement multiple interfaces.

• C# provides convenient facilities to query a class at
runtime to see whether it supports a particular
interface.

• We will see that interfaces in C# and .NET are
conceptually very similar to interfaces in Microsoft’s
Component Object Model, but are much easier to
work with.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-4
 All Rights Reserved

Interface Fundamentals

• Object-oriented programming is a powerful
paradigm for helping to design and implement large
systems.

− Using classes helps us to achieve abstraction and
encapsulation.

− Classes are a natural decomposition of a large system into
manageable parts.

− Inheritance adds another tool for structuring our system,
enabling us to factor out common parts into base classes,
helping us to accomplish greater code reuse.

− Interfaces provide yet another weapon for our arsenal.

• The main purpose of an interface is to specify a
contract independently of implementation.

− An interface has associated methods.

− Each method has a signature, which specifies the parameters
with their data types, and the data type of the return value.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-5
 All Rights Reserved

Interfaces in C#

• In C# interface is a keyword, and you define an
interface in a manner similar to defining a class. Like
classes, interfaces are reference types.

• The big difference is that there is no implementation
code in an interface; it is pure specification.

− Also note that an interface can have properties as well as
methods (it could also have other members, such as
indexers).

− The IAccount interface has read-only properties Balance and
Id and the read-write property Owner.

− Note the syntax, with a semicolon where the body of a
method would be in a class.

− There is also a semicolon after set and get in a property.

− As a naming convention, interface names normally begin
with a capital I.

interface IAccount
{
 void Deposit(decimal amount);
 void Withdraw(decimal amount);
 decimal Balance {get;}
 string Owner {get; set;}
 int Id {get;}
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-6
 All Rights Reserved

Interface Inheritance

• Interfaces can inherit from other interfaces. Unlike
classes in C#, for which there is only single
inheritance, there can be multiple inheritance of
interfaces.

− For example, the interface IAccount could be declared by
inheriting from the two smaller interfaces, IBasicAccount
and IAccountInfo.

− When declaring a new interface in this way, you can also
introduce additional methods, as illustrated for IAccount2.

interface IBasicAccount
{
 void Deposit(decimal amount);
 void Withdraw(decimal amount);
 decimal Balance {get;}
}

interface IAccountInfo
{
 string Owner {get; set;}
 int Id {get;}
}

interface IAccount : IBasicAccount, IAccountInfo
{
}

interface IAccount2 : IAccount
{
 void NewMethod();
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-7
 All Rights Reserved

Programming With Interfaces

• It is very easy to program with interfaces in C#. You
implement interfaces through classes, and you can
cast a class reference to obtain an interface reference.

• You can call an interface method through either a
class reference or an interface reference.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-8
 All Rights Reserved

Implementing Interfaces

• In C# you specify that a class implements one or more
interfaces by using the colon notation that is
employed for class inheritance.

− A class can also inherit both from a class and from one or
more interfaces.

− In this case the base class should appear first in the derivation
list after the colon.

class CheckingAccount : Account, IAccount,
 IChecking
{
...

− In this example the class CheckingAccount inherits from the
class Account, and it implements the interfaces IAccount
and IChecking.

− The methods of the interfaces must all be implemented by
CheckingAccount, either directly or by way of inheritance.

• We will examine a full-blown example of interfaces
with the account inheritance hierarchy later in the
chapter, when we implement Step 6 of the case study.

• As a small example, consider the program
SmallInterface.

− The class Account implements the interface IBasicAccount.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-9
 All Rights Reserved

Implementing Interfaces (Cont’d)

// Account.cs

interface IBasicAccount
{
 void Deposit(decimal amount);
 void Withdraw(decimal amount);
 decimal Balance {get;}
}

public class Account : IBasicAccount
{
 private decimal balance;
 public Account(decimal balance)
 {
 this.balance = balance;
 }
 public void Deposit(decimal amount)
 {
 balance += amount;
 }
 public void Withdraw(decimal amount)
 {
 balance -= amount;
 }
 public decimal Balance
 {
 get
 {
 return balance;
 }
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-10
 All Rights Reserved

Using an Interface

• If you know your class supports an interface, you
may simply call methods through a reference to a
class instance.

• If you don’t know whether your class implements the
interface, you may try casting the class reference to
the interface reference.

− If the class does not support the interface, you will get an
InvalidCastException.

try
{
 IBasicAccount ifc2 = (IBasicAccount) acc2;
 ifc2.Deposit(25);
 Console.WriteLine("balance = {0}", ifc2.Balance);
}
catch (InvalidCastException e)
{
 Console.WriteLine("IBasicAccount is not supported");
 Console.WriteLine(e.Message);
}

− In our example, we have two classes.

− Account supports the interface IBasicAccount, and the other
class NoAccount does not support the interface.

− Both classes have the same set of methods and properties.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-11
 All Rights Reserved

Demo: SmallInterface

• We first work with the class Account, which does
support the interface IBasicAccount.

− We are successful in calling the methods both through a class
reference and through an interface reference.

• Next we work with the class NoAccount.

− Although this class has the same methods as Account, in its
declaration it does not indicate that it is implementing the
interface IBasicAccount.

− When we run the test program, we encounter an
InvalidCastException when we attempt to cast the class
reference to an interface reference.

• Please examine and run the code online.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-12
 All Rights Reserved

Dynamic Use Of Interfaces

• A powerful feature of interfaces is their use in
dynamic scenarios, allowing us to write general code
that can test whether an interface is supported by a
class.

• If the interface is supported, our code can take
advantage of it; otherwise our program can ignore
the interface.

− We could in fact implement such dynamic behavior through
exception handling, as illustrated previously.

− Although entirely feasible, this approach is not very elegant.

− C# provides two operators, is and as, that facilitate working
with interfaces at runtime.

• We will illustrate with some code snippets from a
more full-blown account example, which is a
continuation of our bank account case.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-13
 All Rights Reserved

Demo: TryInterfaces

• We have two kinds of accounts, checking and savings.

− These accounts are implemented, respectively, in classes
which inherit from Account. The class CheckingAccount
implements the interface IChecking in addition to IAccount
and IStatement. (The interfaces are defined in the file
AccountDefinitions.cs.)

− Our test program creates two checking account instances and
one savings account instance, having IDs of 0, 1, and 2.

− The object references are stored in an array and can be
selected by using an index, which coincides with the ID.

− Our command loop is generic and does not know which kind
of account it is working on.

• This kind of dynamic behavior is an extension of
polymorphism, which we discussed in Chapter 14.

− With polymorphism you can call methods, which will behave
differently depending upon the type of the object making the
call. But the only methods you can call in this way are ones
defined in the base class.

− Using the concept of interfaces, you can call other methods,
depending on whether additional interfaces are supported.

− Thus if the interface IChecking is supported, you can call the
Fee property. If the method ISavings is supported, you can
call the Interest and Rate properties.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-14
 All Rights Reserved

is Operator

• The processing of the “fee” command illustrates
doing a cast and catching an exception.

• A neater solution is to test for the interface before you
do the cast.

− For this purpose you may use the C# is operator.

− The “interest” command illustrates this point.

// use C# "is" operator
if (acc is ISavings)
{
 isav = (ISavings) acc;
 Console.WriteLine("interest = {0:C}",isav.Interest);
}
else
 Console.WriteLine("ISavings in not supported");

• The is operator is not the most efficient solution, as a
check of the type is made twice:

− When the is operator is invoked

− When the actual type conversion is performed

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-15
 All Rights Reserved

as Operator

• When you use the as operator, you obtain an
interface reference directly.

− The interface reference is null if the class does not support
the interface.

− The type is checked only once in this scenario.

// use C# "as" operator
isav = acc as ISavings;
if (isav != null)
{
 isav = (ISavings) acc;
 Console.WriteLine("rate = {0}", isav.Rate);
}
else
 Console.WriteLine("ISavings in not supported");

− If you are experienced with COM (Component Object
Model), the operation of finding out if an interface is
supported should be very familiar to you.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-16
 All Rights Reserved

Bank Case Study: Step 6

• We will now apply our knowledge of interfaces to do
a little restructuring of the bank case study.

• Actually, comparatively little rewriting is needed, as
C# interfaces integrate quite seamlessly into
traditional class inheritance.

− One of the big benefits of using interfaces is that they raise
the level of abstraction somewhat, helping you to understand
the system by way of the interface contacts, without worrying
about how the system is implemented.

− It turns out that the implementation we have already
constructed, using an abstract base class and two concrete
derived classes, works perfectly for the interfaces.

− But we now have a nice abstract contract, which could be
implemented many different ways.

• As usual, our case study code is in the CaseStudy
directory for this chapter.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-17
 All Rights Reserved

Common Interfaces in Case Study –
IAccount

• We begin by examining the functionality of our base
class Account.

• The methods and properties divide fairly naturally
into two groups.

− The first group is concerned with operations on an account
object (deposit or withdraw) and getting and setting fields.

− This group of methods and properties constitutes the
IAccount interface. These interfaces are defined in
AccountDefinitions.cs.

interface IAccount
{
 void Deposit(decimal amount);
 void Withdraw(decimal amount);
 decimal Balance {get;}
 string Owner {get; set;}
 int Id {get;}
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-18
 All Rights Reserved

Apparent Redundancy

• You may wonder why the Balance, Owner, and Id
properties are in the IAccount interface when they
are already in the abstract base class Account.

• Is there a redundancy here?

− Their functions in the interface and in the abstract base class
are totally different.

− In the interface, they are part of the contract.

− Every class which implements the IAccount interface must
support these properties. The abstract base class implements
these properties.

• You may also wonder about properties in the
IAccount interface.

• Does this mean that somehow an interface can
contain data?

− Not at all.

− The properties specify behavior – how you can read and
write a property value using a convenient notation.

− The implementation of a property, where the data is stored, is
in a class that implements the interface.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-19
 All Rights Reserved

IStatement

• The second group is concerned with getting a
statement of an account and constitutes the
IStatement interface.

interface IStatement
{
 string FormatBalance();
 string GetStatement();
 int Transactions {get;}
 void Post();
 void MonthEnd();
 string Prompt {get;}
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-20
 All Rights Reserved

IStatement Methods

• FormatBalance returns a string representation of the
balance in proper currency format.

• GetStatement returns a string giving a complete
statement for the account, including items such as the
owner, id, balance, and number of transactions.
Specific kinds of accounts will append supplementary
information.

• Transactions returns a count of the number of
transactions so far in the current month.

• Post will apply credits or debits for the current
month. A checking account may have a debit of a fee,
and a savings account a credit of interest.

• MonthEnd will initialize the account for the next
month. The transactions count will be set to 0. For a
savings account, the minimum balance (used for
calculating interest) will be set to the current balance.

• Prompt returns a string indicating the type of
account. The prompt string can be an aid to a user
interface, giving a cue to the user about which kind of
account is being worked on.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-21
 All Rights Reserved

IChecking

• The IChecking interface is an additional interface
supported only by checking accounts.

interface IChecking
{
 decimal Fee {get;}
}

− There is a single property, Fee, which is computed as the
monthly fee owed for this account. (Note that the fee will not
actually be debited from the balance until the Post method is
invoked.)

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-22
 All Rights Reserved

ISavings

• The ISavings interface is an additional interface
supported only by savings accounts.

interface ISavings
{
 decimal Interest {get;}
 decimal Rate {get; set;}
}

− There are two properties.

− Rate is an annual interest rate.

− Interest is computed by multiplying Rate/12 by the
minimum balance.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-23
 All Rights Reserved

The Implementation

• There are no changes required to the Account class.

− This class is abstract, so it is not required to implement any
interfaces.

− This class contains common code that does not have to be
provided separately by derived classes.

• The CheckingAccount class now derives from one
class, Account, and three interfaces, the two common
interfaces IAccount and IStatement, and the special
interface IChecking.

− None of the implementation code has to change.

− We simply used the interfaces to codify the existing methods.

// CheckingAccount.cs - Step 6

using System;

public class CheckingAccount : Account, IAccount,
 IStatement, IChecking
{
...

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-24
 All Rights Reserved

SavingsAccount

• The SavingsAccount class also derives from one class,
Account, and three interfaces, the two common
interfaces IAccount and IStatement, and the special
interface ISavings.

− Again, none of the implementation code has to change.

// SavingsAccount.cs - Step 6

using System;

public class SavingsAccount : Account, IAccount,
 IStatement, ISavings
{
...

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-25
 All Rights Reserved

The Client

• The client code, which uses the account classes, is
where things get interesting.

• We can now write very general, dynamic code, which
can tailor itself to the particular type of account it is
working on, based on which interfaces are supported.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-26
 All Rights Reserved

The Client (Cont’d)

• To keep things simple, in Step 6 we do not include the
Bank class, but instead provide a special class
TestInterfaces, which can be used to test the methods
and properties of the various interfaces.

− The operations are performed on a set of three hardcoded
accounts: two checking and one savings.

− The structure of this class is similar to the TryInterfaces
class we demonstrated earlier in the chapter, but the goals of
the two classes are different.

− The TryInterfaces class was intended to demonstrate
different ways of dynamically working with interfaces (catch
exceptions, use the is operator, and use the as operator).

− The class TestInterfaces is intended to exercise the account
classes fairly thoroughly (though not exhaustively; we do not
provide test for every single method).

− We pick the as operator as the generally most useful operator
for working with interfaces dynamically, and use it
throughout.

• Please examine this code online.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-27
 All Rights Reserved

Resolving Ambiguity

• When working with interfaces, an ambiguity can
arise if a class implements two interfaces and each
has a method with same name and signature.

• As an example, consider the following versions of the
interfaces IAccount and IStatement. Each interface
contains the method Show.

interface IAccount
{
 void Deposit(decimal amount);
 void Withdraw(decimal amount);
 decimal Balance {get;}
 void Show();
}

interface IStatement
{
 int Transactions {get;}
 void Show();

• How can the class specify implementations of these
methods?

• The answer is to use the interface name to qualify the
method, as illustrated in the program Ambiguous.

− The IAccount version IAccount.Show will display only the
balance, and IStatement.Show will display both the number
of transactions and the balance.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-28
 All Rights Reserved

Access Modifier

• You will notice that in the definition of the class
Account, the qualified methods IAccount.Show and
IStatement.Show do not have an access modifier such
as public.

− Such qualified methods cannot be accessed through a
reference to a class instance.

− They can only be accessed through an interface reference of
the type explicitly shown in the method definition.

− The test program attempted to use a class instance reference,
but the program would not compile, so this attempt was
commented out.

− In the test program we use interface references to make the
calls to Show.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 17-29
 All Rights Reserved

Summary

• The term interface is widely used in computer
programming to describe how parts of a large system
fit together.

• In C# interface is a keyword and has a very precise
meaning. An interface is a reference type, similar to
an abstract class, that specifies behavior.

• An interface can be thought of as a contract. A class
or struct can “implement” an interface, and must
adhere to the contract.

• Interfaces are a useful way to partition functionality.

• The methods of a class can be grouped into related
interfaces.

• While a class in C# can inherit from only one other
class, it can implement multiple interfaces.

• Another benefit of interfaces is that they facilitate
very dynamic programs.

• C# provides the operators is and as that can be used
to query a class at runtime to see whether it supports
a particular interface.

• Finally we looked at how to resolve an ambiguity that
can arise if two interfaces have the same method.

