
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-1
 All Rights Reserved

Chapter 1

.NET Framework

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-2
 All Rights Reserved

.NET Framework

Objectives

 After completing this unit you will be able to:

• Describe the minimal “what you need to know” about
.NET to start programming in the .NET environment.

• Answer the high level question “What is .NET?”

− Outline the new programming platform and tools provided by
.NET.

• Present an overview of the .NET Framework.

• Describe the Common Language Runtime.

− Explain the concepts of Microsoft Intermediate Language,
metadata and JIT compilation.

− Describe the use of assemblies in the CLR and outline the
assembly/module/type hierarchy.

− Explain the role of types and the Common Type System
(CTS) as the heart of the CLR.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-3
 All Rights Reserved

.NET: What You Need To Know

• A beautiful thing about .NET is that from a
programmer’s perspective you scarcely need to know
anything about it to start writing programs for the
.NET environment.

− You write a program in a high-level language such as C#, a
compiler creates an executable (.EXE) file, and you run that
EXE file.

• Even very simple programs, if they are to do
something interesting, such as perform output, will
require that the program employ the services of
library code.

− A large library, called the .NET Framework Class Library,
comes with .NET, and you can use all of the services of this
library in your programs.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-4
 All Rights Reserved

.NET: What Is Really Happening

• The EXE file that is created does not contain
executable code, but rather code in Intermediate
Language, or IL (sometimes called Microsoft
Intermediate Language, or MSIL).

− In the Windows environment, this IL code is packaged up in
a standard portable executable (PE) file format, so you will
see the familiar EXE extension (or, if you are building a
component, the DLL extension).

• When you run the EXE, a special runtime
environment (the Common Language Runtime, or
CLR) is launched, and the IL instructions are
executed by the CLR.

− Unlike some runtimes, where the IL would be interpreted
each time it is executed, the CLR comes with a just-in-time
(JIT) compiler, which translates the IL to native machine
code the first time it is encountered.

− Then, on subsequent calls, the code segment runs as native
code.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-5
 All Rights Reserved

.NET Programming in a Nutshell

1. Write your program in a high-level .NET language such as C#.

2. Compile your program into IL.

3. Run your IL program, which will launch the CLR to execute
your IL, using its JIT to translate your program to native code as
it executes.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-6
 All Rights Reserved

Understanding .NET

• The nice thing about a high-level programming
language is that for the most part you do not need to
be concerned with the platform on which the
program executes.

• You can work with the abstractions provided by the
language and with functions provided by libraries.

• Your appreciation of the C# programming language
and its potential for creating great applications will
be richer if you have a general understanding of
.NET.

• The rest of this chapter is concerned with helping you
to achieve such an understanding. We will address
three broad topics:

− What Is Microsoft .NET?

− .NET Framework

− Common Language Runtime

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-7
 All Rights Reserved

What Is .NET?

• Microsoft .NET is a new platform at a higher level
than the operating system.

− Three years in the making before public announcement,
.NET is a major investment by Microsoft.

− .NET draws on many important ideas, including XML, the
concepts underlying Java, and COM.

• Microsoft .NET provides:

− A robust runtime platform, the Common Language Runtime

− Multiple language development

− An extensible programming model, the .NET Framework,
which includes a very large class library of reusable code
available from multiple languages

− A networking infrastructure built on top of Internet standards
that supports a high level of communication among
applications

− A new mechanism of application delivery, the Web Service,
that supports the concept of an application as a service

− Powerful development tools, including tools to greatly
simplify both Windows programming and Web programming

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-8
 All Rights Reserved

A New Programming Platform

• .NET provides a new programming platform at a
higher level than the operating system.

• This level of abstractions has many advantages:

− Safety and security checking can be done, providing more
robust operation.

− The higher level platform is much easier to program than at
the lower level of the Win32 API or COM.

− Potentially the whole platform can be implemented on many
different kinds of computers (as has been done with Java).

− One class library is used by all the languages

− Languages can interoperate with each other.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-9
 All Rights Reserved

Multiple Language Development

• As its name suggests, the CLR supports many
programming languages.

− A “managed code” compiler must be implemented.

• Microsoft itself has implemented compilers for
managed C++, Visual Basic.NET, JScript and the
new language C#.

• Well over a dozen other languages are being
implemented by third parties, among them COBOL
by Fujitsu and Perl by ActiveState.

− PerlNET is a practical tool that lets you call .NET classes
from Perl programs, and vice versa.

• Programmers do not need to be retrained in a new
language in order to gain the benefits of .NET.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-10
 All Rights Reserved

.NET Framework Overview

• There are five principal parts to .NET Framework:

− Common Language Runtime

− .NET Framework Class Library

− Common Language Specification

− .NET Languages

− Visual Studio.NET

C# VB.NET C++

Common Language Specification

.NET Framework Class Library

Common Language Runtime

Visual Studio.NET

Other

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-11
 All Rights Reserved

Common Language Runtime

• A runtime provides services to executing programs.

• Traditionally there are different runtimes for
different programming environments.

− Examples of runtimes include the standard C library, MFC,
the Visual Basic runtime and the Java Virtual Machine.

• The runtime environment provided by .NET is called
the Common Language Runtime or CLR.

• The CLR manages the execution of code and provides
useful services.

• The services of the CLR are exposed through
programming languages.

− The syntax for these services varies from language to
language.

• But the underlying engine providing the services is
the same.

• Not all languages expose all the features of the CLR.

• The language with the best mapping to the CLR is
the new language C# (“C sharp”).

• The CLR will be examined in greater detail in the
next section.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-12
 All Rights Reserved

.NET Framework Class Library

• The .NET Framework class library is huge,
comprising over 2500 classes.

− All this functionality is equally available to all the .NET
languages.

• The library consists of four main parts:

− Base class library (includes networking, security, diagnostics,
I/O and other operating system type services)

− Data and XML classes

− Web services and web UI

− Windows UI

Web Services
and Web UI Windows UI

Data and XML

Base Class Library

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-13
 All Rights Reserved

 Common Language Specification

• An important goal of the .NET Framework is to
support multiple languages.

• But all languages are not created equal, so it is
important to agree upon a common subset that all
languages will support.

• The Common Language Specification (CLS) is an
agreement among language designers and class
library designers about those features and usage
conventions that can be relied upon.

• CLS rules apply to public features that are visible
outside the assembly where they are defined.

• A typical CLS rule is that public names should not
rely on case for uniqueness, because some languages
are not case sensitive.

• The complete rules are contained in the ECMA
specifications.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-14
 All Rights Reserved

Languages in .NET

• A language is a CLS-compliant consumer if it can use
any CLS-compliant type, i.e. call methods, create
instances of types, etc.

• A language is a CLS-compliant extender if it is a
consumer and can also extend any CLS-compliant
base class, implement any CLS-compliant interface,
etc.

• Microsoft itself is providing four CLS-compliant
languages.

− C#, Visual Basic .NET and Visual C++ .NET are all
extenders.

− JScript .NET is a consumer.

• Third parties are providing additional languages
(over a dozen so far).

− ActiveState is implementing Perl and Python
(http://aspn.activestate.com/ASPN).

− Fujitsu is implementing COBOL
(http://www.adtools.com/info/whitepaper/net.html).

− Oberon Microsystems is implementing Pascal
(http://www.oberon.ch/)

− QKS is implementing Smalltalk (http://www.qks.com/)

− For other third-party offerings, see
http://msdn.microsoft.com/net/thirdparty/default.asp

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-15
 All Rights Reserved

.NET Framework SDK

• The .NET Framework SDK provides a complete set
of tools, documentation and sample programs for
building .NET applications.

− The tools are invoked from the command line.

− The SDK is available on one CD (and is also included with a
multiple CD distribution of Visual Studio.NET).

• The .NET Framework SDK provides extensive online
documentation.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-16
 All Rights Reserved

.NET Framework Class Library

• Modern programming relies heavily on reusable code
provided in libraries.

• Object-oriented languages facilitate the creation of
class libraries, which are flexible, have a good degree
of abstraction, and are extensible by adding new
classes and basing new classes on existing ones,
“inheriting” existing functionality.

• The .NET Framework Class Library provides over
2500 classes of reusable code, which can be called by
all the .NET languages.

• The class library is extensible, and new classes can
inherit from existing classes, even ones implemented
in a different language.

• .NET Classes support Windows programming, web
programming, database programming, XML,
interoperability with COM and Win32, and many,
many important features.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-17
 All Rights Reserved

Development Tools

• A practical key to success in software is effective
tools.

• Microsoft has long had great tools, including Visual
C++ and Visual Basic.

• With .NET they have combined their development
tools into a single integrated environment called
Visual Studio .NET

− VS.NET provides a very high degree of functionality for
creating applications in all the languages supported by .NET.

− You can do multiple language debugging, etc.

− VS.NET has many kinds of designers for forms, databases
and other software elements.

• As with the languages themselves, third parties can
provide extension to Visual Studio .NET, creating a
seamless development environment for their language
that interoperates with the other .NET language.

• The tool set includes extensive support for building
web applications and web services.

• There is also great support for database applications.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-18
 All Rights Reserved

Common Language Runtime

• In this section we go more deeply into the structure of
.NET by examining the CLR. At the end of this
section you will be able to

− Outline the design goals of the Common Language Runtime
(CLR).

− Discuss the rationale for using managed code and a runtime.

− Explain the concepts of Microsoft Intermediate Language,
metadata and JIT compilation.

− Describe the use of assemblies in the CLR and outline the
assembly/module/type hierarchy.

− Explain the role of types and the Common Type System
(CTS) as the heart of the CLR.

− Explain the role of managed data and garbage collection.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-19
 All Rights Reserved

Design Goals of the CLR

• The Common Language Runtime has the following
design goals:

− Simplify application development

− Support multiple programming languages

− Provide a safe and reliable execution environment

− Simplify deployment and administration

− Provide good performance and scalability

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-20
 All Rights Reserved

Why Use a CLR?

• Why did Microsoft create a CLR for .NET?

• Let’s look at how far the goals just discussed could
have been achieved without a CLR, focusing on the
two main goals of:

− Safety

− Performance

• Basically there are two philosophies:

− Compile-time checking and fast native code at runtime.

− Runtime checking.

• Without a CLR, we must rely on the compiler to
achieve safety.

• This places a high burden on the compiler.

− Typically there are many compilers for system, including
third-party compilers.

− It is not robust to trust that every compiler will adequately
perform all safety checking.

− Not every language has features supporting adequate safety
checking.

− Compilation speed is slow with complex compilation.

− Compiler cannot optimize code based on enhanced
instructions available on some platforms but not others.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-21
 All Rights Reserved

Intermediate Language

• So we want a runtime, how do we design it?

• One extreme is to use an interpreter and not a
compiler at all.

− All the work is done at runtime.

− We have safety and fast “builds”, but runtime performance is
very slow.

• Modern systems divide the load between the front-
end compiler and the back-end runtime.

• The front-end compiler does all the checking it can do
and generates an intermediate language. Examples:

− P-code for Pascal

− Bytecode for Java

• The runtime does further verification based on the
actual runtime characteristics, including security
checking.

• With “just-in-time” (JIT) compilation, native code
can be generated when needed, and subsequently
reused.

− Runtime performance becomes much better.

− The native code generated by the runtime can be more
efficient, because the runtime knows the precise
characteristics of the target machine.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-22
 All Rights Reserved

Microsoft Intermediate Language

• All managed code compilers for Microsoft .NET
generate Microsoft Intermediate Language (MSIL).

− MSIL is machine-independent and can be efficiently
translated into native code.

• MSIL has a wide variety of instructions:

− Standard operations such as load, store, arithmetic and logic,
branch, etc.

− Calling methods on objects

− Exceptions

• Before executing on a CPU, MSIL must be translated
by a just-in-time compiler.

• There is a JIT compiler for each machine
architecture supported.

− The same MSIL will run on any supported machine.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-23
 All Rights Reserved

Metadata

• Besides generating MSIL, a managed code compiler
emits metadata.

• Metadata contains very complete information about
the code module and all the types within it:

− Version and locale information

− All the types

− Details about each type, including name, visibility, etc.

− Details about the members of each type, such as methods, the
signatures of methods, etc.

• Metadata is the “glue” that binds together the
executing code, the CLR, and tools such as compilers,
debuggers, browsers, etc.

• On Windows MSIL and metadata are packaged
together in a standard Windows portable executable
file (PE).

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-24
 All Rights Reserved

JIT Compilation

• Before executing on the target machine, MSIL is
translated by a just-in-time (JIT) compiler to native
code.

• Some code typically will never be executed during a
program run.

− Hence it may be more efficient to translate MSIL as needed
during execution, storing the native code for reuse.

• When a type is loaded, the loader attaches a stub to
each method of the type.

− On the first call the stub passes control to the JIT, which
translates to native code and modifies the stub to save the
address of the translated native code.

− On subsequent calls to the method transfer is then made
directly to the native code.

• As part of JIT compilation code goes through a
verification process.

− Type safety is verified, using both the MSIL and metadata.

− Security restrictions are checked.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-25
 All Rights Reserved

Assemblies

• An assembly is a grouping of types and resources that
work together as a logical unit.

− An assembly can be thought of as a logical DLL or EXE.

− An assembly consists of one or more physical files, called
modules, which may be PE code files or resources (such as
bitmaps).

• An assembly holds three kinds of information:

− MSIL implementing one or more types

− Metadata

− A manifest describing how the elements in the assembly
relate to each other and to external elements

• An assembly forms the boundary for:

− Security

− Deployment

− Type resolution

− Versioning

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-26
 All Rights Reserved

Assembly Hierarchy

Manifest

Resource Module

Code Module

Metadata

MSIL

Type Type

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-27
 All Rights Reserved

Types

• Types are at the heart of the programming model for
the CLR.

• A Type is basically a Class in most object-oriented
programming languages, providing an abstraction of
data and behavior, grouped together.

• A Type in the CLR contains:

− Fields (data members)

− Methods

− Properties

− Events

• There are also built in primitive types, such as integer
and floating point numeric types, string, etc.

• In the CLR there are no functions outside of types,
but all behavior is provided via methods or other
members.

• We will discuss types under the guise of classes when
we cover C#.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-28
 All Rights Reserved

Common Type System

• The Common Type System (CTS) provides a wide
range of types and operations that are found in many
programming languages.

• The CTS is shared by the CLR and by compilers and
other tools.

• The CTS provides a framework for cross-language
integration and addresses a number of issues:

− Similar but subtly different type (e.g. Integer is 16 bits in
VB6 but int is 32 bits in C++, strings in VB6 are represented
as BSTRs and in C++ as char pointers or a string class of
some sort, etc.).

− Limited code reuse (e.g. you can’t define a new type in one
language and import it into another language)

− Inconsistent object models

• Not all CTS types are available in all languages.

− The Common Language Specification (CLS) establishes
rules that must be followed for cross language integration,
including which types must be supported by a CLS-compliant
language.

• Built-in types can be accessed through the System
class in the Base Class Library (BCL) and through
reserved keywords in the .NET languages.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 1-29
 All Rights Reserved

Summary

• C# does not exist in isolation, but has a close
connection with the underlying .NET Framework.

− In this introductory chapter, we began by telling you just
enough about the .NET Framework so that, if you so desired,
you could proceed directly to Chapter 2 and start learning C#.

• Microsoft .NET is a new platform at a higher level
than the operating system that provides many
capabilities for building and deploying both standard
applications and new web-based ones.

• The .NET Framework includes the Common
Language Runtime (CLR), the .NET Framework
class library, the Common Language Specification
(CLS), the .NET languages, and Visual Studio.NET.

• The CLR manages the execution of code and provides
useful services.

− .NET compilers translate source code into MSIL, which is
translated at runtime into native code by a JIT compiler.

− An assembly is a grouping of types and resources that work
together as a logical unit.

− Types and the Common Type System are the heart of the
CLR.

