
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-1
 All Rights Reserved

Chapter 3

Using Visual Studio.NET

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-2
 All Rights Reserved

Using Visual Studio.NET

Objectives

 After completing this unit you will be able to:

• Use the Visual Studio.NET integrated development
environment (IDE) to create, edit, debug and run C#
programs.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-3
 All Rights Reserved

Visual Studio.NET

• While it is possible to write C# programs using any
text editor, and compile them with the command-line
compiler, it is very tedious to program that way.

• An IDE makes the process of writing software much
easier.

− An IDE provides convenience items such as a syntax-
highlighting editor.

− An IDE reduces the tedium of keeping track of
configurations, environment settings, and file organizations.

• VS.NET is a highly configurable IDE.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-4
 All Rights Reserved

Overview of VS.NET

• When you open up Visual Studio .NET, you will see a
window similar to the following.

• The main window is an HTML page with some
navigation information and configuration options.

− If you close this page, you can get it back from the menu:
Help | Show Start Page

• Clicking on the item "My Profile" will bring up a
profile settings page.

− For this course, choose "Visual Studio Developer".

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-5
 All Rights Reserved

Overview of VS.NET (Cont’d)

• This module does not have a separate lab. Instead,
we will work through some examples together so that
you can get a good feel for how the IDE works.

• Open the Bank console solution.

− File | Open

− Navigate to directory OIC\Chap03\Bank

− Select the file Bank.sln, and open it.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-6
 All Rights Reserved

Overview of VS.NET (Cont’d)

• On the top right is the Solution Explorer, which
shows you the structure of your solution (which may
consist of several projects).

• Double-click on each of Account.cs and Bank.cs, the
two source files in the Bank project.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-7
 All Rights Reserved

Toolbars

• Visual Studio comes with many configurable
toolbars.

− You can configure which toolbars are shown.

− You can drag toolbars to whatever position you find most
convenient.

− You can add or delete buttons on the toolbars.

• To bring up the menu to specify which toolbars are
shown, choose View | Toolbar, or right-click on any
empty area of a toolbar.

• If you don't have the Build and Debug toolbars
shown, add them now.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-8
 All Rights Reserved

Customizing a Toolbar

• To illustrate how to customize a toolbar, we will add
the "Start Without Debugging" command (a red
exclamation point) to the Debug toolbar.

1. Select menu Tools | Customize... to bring up the Customize
dialog.

2. Select the Commands tab.

3. In Categories, select Debug, and in Commands select Start
Without Debugging.

4. Drag the selected command onto the Debug toolbar, positioning
it to the immediate right of the wedge shaped Start button.

5. Close the Customize dialog.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-9
 All Rights Reserved

Creating a Console Application

• We will now create a simple console application.

− Our program Bytes will attempt to calculate how many bytes
there are in a kilobyte, a megabyte, a gigabyte, and a
terabyte.

1. From Visual Studio main menu choose File | New | Project....
This will bring up the New Project dialog.

2. For Project Types choose “Visual C# Projects” and for
Templates choose “Empty Project.”

3. Click the Browse button, navigate to Demos, and click Open.

4. In the Name field, type Bytes. See below. Click OK.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-10
 All Rights Reserved

Adding a C# File

• At this point you will have an empty C# project. We
are now going to add a file Bytes.cs, which contains
the text of our program.

1. In Solution Explorer right click over Bytes and choose Add |
Add New Item.... This will bring up the Add New Item dialog.

2. For Categories choose “Local Project Items” and for Templates
choose “Code File.”

3. For Name type Bytes.cs. Click Open.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-11
 All Rights Reserved

Using the Visual Studio Text Editor

• In the Solution Explorer, double-click on Bytes.cs.

• Enter the following program into the empty file in the
Visual Studio text editor.

// Bytes.cs

using System;

public class Bytes
{
 public static int Main(string[] args)
 {
 int bytes = 1024;
 Console.WriteLine("kilo = {0}", bytes);
 bytes = bytes * 1024;
 Console.WriteLine("mega = {0}", bytes);
 bytes = bytes * 1024;
 Console.WriteLine("giga = {0}", bytes);
 bytes = bytes * 1024;
 Console.WriteLine("tera = {0}", bytes);
 return 0;
 }
}

− Notice that the Visual Studio text editor highlights syntax,
indents automatically, and even inserts matching closing
braces for you!

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-12
 All Rights Reserved

Build and Run the Bytes Project

• You can build the project by using one of the
following:

− Menu Build | Build

− Toolbar

− Keyboard shortcut Ctrl + Shift + B

• You can run the program by using one of the
following:

− Menu Debug | Start Without Debugging

− Toolbar

− Keyboard shortcut Ctrl + F5

• You can run the program in the debugger by using
one of the following:

− Menu Debug | Start

− Toolbar

− Keyboard shortcut F5

• Try it!

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-13
 All Rights Reserved

Project Configurations

• A project configuration specifies build settings for a
project.

• Every project in a Visual Studio solution has two
default configurations, Debug and Release.

• You can choose the configuration from the main
toolbar or using the menu Build |
Configuration Manager..., which will bring up the
Configuration Manager dialog (shown below).

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-14
 All Rights Reserved

Creating a New Configuration

• Sometimes it is useful to create additional
configurations, which can save alternate build
settings.

• As an example, let’s create a configuration for a
“checked” build (we will discuss “checked” builds in
a later module).

1. Bring up the Configuration Manager dialog.

2. From the Active Solution Configuration: dropdown, choose
<New...>. The New Solution Configuration dialog will come
up.

3. Type CheckedDebug as the configuration name. Choose Copy
Settings from Debug. Check “Also create new project
configuration(s)” (see below). Click OK.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-15
 All Rights Reserved

Setting Build Settings for a
Configuration

• Next we will set the build settings for the new
configuration.

− Check the toolbar to verify that the new CheckedDebug is
the currently active configuration.

1. Right-click over Bytes in the Solution Explorer and choose
Properties. The “Bytes Property Pages” dialog comes up.

2. In Configuration Properties, select Build. Change the setting for
“Check for overflow underflow” to True (see below). Click
OK.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-16
 All Rights Reserved

Debugging

• To be able to benefit from debugging at the source
code level, you should have built your executable
using a Debug configuration, as discussed previously.

• There are two ways to enter the debugger:

− Just-in-Time Debugging. You run normally, and if an
exception occurs you will be allowed to enter the debugger.
The program has crashed, so you will not be able to run
further from here to single step, set breakpoints, and so on.
But you will be able to see the value of variables, and you
will see the point at which the program failed.

− Standard Debugging. You start the program under the
debugger. You may set breakpoints, single step, and so on.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-17
 All Rights Reserved

Just-in-Time Debugging

• Build and run (without debugging) the Bytes program
from the previous section, making sure to use the
CheckedDebug configuration.

• This time the program will not run through smoothly
to completion, but an exception will be thrown.

− A “Just-In-Time Debugging” dialog will be shown (see
below). Click Yes to debug.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-18
 All Rights Reserved

Standard Debugging -- Breakpoints

• The way you typically do standard debugging is to set
a breakpoint and then run using the debugger.

• The easiest way to set a breakpoint is by clicking in
the gray bar to the left of the source code window.

− You can also set the cursor on the desired line and click the
“hand” toolbar button to toggle a breakpoint (set if not
set, and remove if a breakpoint is set).

− If you want to remove all breakpoints, you can use the menu
Debug | Clear All Breakpoints, or you can use the toolbar
button

− A yellow arrow over the red dot of the breakpoint shows
where the breakpoint has been hit.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-19
 All Rights Reserved

Standard Debugging -- Watch
Variables

• The easiest way to inspect the value of a variable is to
slide the mouse over the variable you are interested
in, and the value will be shown as a yellow tool tip.

• You can also right-click over a variable and choose
Quick Watch (or use the eyeglass toolbar button).

− The illustration shows a typical Quick Watch window.

• When you are stopped in the debugger, you can add a
variable to the Watch window by right-clicking over
it and choosing Add Watch.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-20
 All Rights Reserved

Debugger Options

• You can change debugger options from the menu
Tools | Options, and select Debugging from the list.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-21
 All Rights Reserved

Stepping with the Debugger

• When you are stopped in the debugger, you can step
through instructions either one at a time or by set
amounts.

• There are a number of single step buttons .
The most common are (in the order shown on the
toolbar):

− Step Into

− Step Over

− Step Out

• There is also a Run to Cursor button .

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-22
 All Rights Reserved

Demo: Stepping with the Debugger

• Build the Bytes\Step2 project.

− The multiplication by 1024 has been replaced by a function.

• Set a breakpoint at the first function call, start the
program (), and then Step Into ().

− Note the red dot at the breakpoint and the yellow arrow in the
function.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-23
 All Rights Reserved

The Call Stack

• When debugging, Visual Studio maintains a Call
Stack.

• In our simple example the Call Stack is just two deep.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 3-24
 All Rights Reserved

Summary

• Visual Studio.NET is a very rich integrated
development environment (IDE), with many features
to make programming more enjoyable.

• In this module we covered the basics of using Visual
Studio to edit, compile, run, and debug programs, so
that you will be equipped to use Visual Studio in the
rest of the course.

• A project can be built in different configurations,
such as Debug and Release.

• In this course we will use only a tiny fraction of the
capabilities of this powerful tool.

