
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-1 
 All Rights Reserved 

Chapter 19 

Delegates and Events 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-2 
 All Rights Reserved 

Delegates and Events 

Objectives 

 After completing this unit you will be able to: 

• Use delegate objects to implement callbacks. 

• Use aggregations of delegate objects. 

• Use delegate objects to implement and handle event 
notifications. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-3 
 All Rights Reserved 

Overview of Delegates and Events 

• In the previous two chapters we examined interfaces 
in some detail.  

• One feature of interfaces is that they facilitate writing 
code in such a way that your program is called into by 
some other code.  

• This style of programming has been available for a 
long time, under the guise of “callback” functions.  

• In this chapter we examine delegates in C#, which can 
be thought of as type-safe and object-oriented 
callback functions.  

• Delegates are the foundation for a more elaborate 
callback protocol, known as events.  

• Events are a cornerstone of COM, the predecessor of 
.NET, and are widely used in Windows 
programming.  

• We will study events and look at several example 
programs that illustrate delegates and events. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-4 
 All Rights Reserved 

Callbacks and Delegates 

• A callback function is one that your program 
specifies and “registers” in some way, and then gets 
called by another program.  

− In C and C++ callback functions are implemented using 
function pointers. 

• In C# you can encapsulate a reference to a method 
inside a delegate object.  

• While a function pointer can reference only a static 
function, a delegate can refer to either a static method 
or an instance method.  

• When a delegate refers to an instance method, it 
stores both an object instance and an entry point to 
the instance method.  

− The instance method can then be called through this object 
instance.  

− When a delegate object refers to a static method, it stores just 
the entry point of this static method. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-5 
 All Rights Reserved 

Usage of Delegates  

• You can then pass this delegate object to other code, 
which can then call your method.  

− The code that calls your delegate method does not have to 
know at compile time which method is being called; it only 
has to know the exact signature. 

• In C# a delegate is considered a reference type that is 
similar to a class type.  

− A new delegate instance is created just like any other class 
instance, using the new operator.  

− C# delegates are implemented by the .NET Framework class 
library as a class, derived ultimately from System.Delegate. 

• Delegates are object-oriented and type-safe, and they 
enjoy the safety of the managed code execution 
environment. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-6 
 All Rights Reserved 

Declaring a Delegate 

• You declare a delegate in C# using a special notation 
with the keyword delegate and the signature of the 
encapsulated method.  

− A suggested naming convention is to end your name with 
“Callback.” Here is an example of a delegate declaration: 

public delegate void NotifyCallback(decimal bal); 
 

− The NotifyCallback delegate in this example can contain a 
reference to any function with the return type void, and one 
parameter of type decimal. 

− A delegate reference is not restricted to any one class as long 
as the signature of the function matches. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-7 
 All Rights Reserved 

Defining a Method 

• When you instantiate a delegate, you will need to 
specify a method, which must match the signature in 
the delegate declaration.  

• The method may be either a static method or an 
instance method.  

• Here are some examples of methods that can be 
hooked to the NotifyCallback delegate: 

private static void NotifyCustomer(decimal balance) 
{ 
    Console.WriteLine("Dear customer,"); 
    Console.WriteLine( 
       "   Account overdrawn, balance = {0}", 
       balance); 
} 
private static void NotifyBank(decimal balance) 
{ 
   Console.WriteLine("Dear bank,"); 
   Console.WriteLine( 
      "   Account overdrawn, balance = {0}", 
      balance); 
} 
private void NotifyInstance(decimal balance) 
{ 
   Console.WriteLine("Dear instance,"); 
   Console.WriteLine( 
      "   Account overdrawn, balance = {0}", 
      balance); 
} 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-8 
 All Rights Reserved 

Creating a Delegate Object 

• You instantiate a delegate object with the new 
operator, just as you would with any other class.  

− The following code illustrates creating two delegate objects.  

− The first one is hooked to a static method, and the second to 
an instance method.  

− The second delegate object internally will store both a 
method entry point and an object instance that is used for 
invoking the method. 

NotifyCallback custDlg = new 
NotifyCallback(NotifyCustomer); 
... 
DelegateAccount da = new DelegateAccount(); 
NotifyCallback instDlg =   
   new NotifyCallback(da.NotifyInstance); 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-9 
 All Rights Reserved 

Calling a Delegate 

• You “call” a delegate just as you would a method. 

−  The delegate object is not a method, but it has an 
encapsulated method.  

− The delegate object “delegates” the call to this encapsulated 
method, hence the name “delegate.”  

• In the following code the delegate object notifyDlg is 
called whenever a negative balance occurs on a 
withdrawal.  

− In this example the notifyDlg delegate object is initialized in 
the method SetDelegate. 

   private NotifyCallback notifyDlg; 
   ... 
   public void SetDelegate(NotifyCallback dlg) 
   { 
      notifyDlg = dlg; 
   } 
   ... 
   public void Withdraw(decimal amount) 
   { 
      balance -= amount; 
      if (balance < 0) 
         notifyDlg(balance); 
   } 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-10 
 All Rights Reserved 

Combining Delegate Objects 

• A powerful feature of delegates is that you can 
combine them, implementing an invocation list of 
methods.  

− When such a delegate is called, all the methods on the 
invocation list will be called in turn.  

− The + operator can be used to combine the invocation 
methods of two delegate objects, and the – operator can be 
used to remove methods. 

NotifyCallback custDlg = new 
NotifyCallback(NotifyCustomer); 
NotifyCallback bankDlg = new 
NotifyCallback(NotifyBank); 
NotifyCallback currDlg = custDlg + bankDlg; 
// or NotifyCallback currDlg += bankDlg; 
 

• In this example we construct two delegate objects, 
each with an associated method.  

• We then create a new delegate object whose 
invocation list will consist of both the methods 
NotifyCustomer and NotifyBank.  

− When currDlg is called, these two methods will be invoked. 
Later on in the code we may remove a method. 

currDlg -= bankDlg; 
 

• Now NotifyBank has been removed from the delegate, 
and the next time currDlg is called, only 
NotifyCustomer will be invoked. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-11 
 All Rights Reserved 

Complete Example 

• The program DelegateAccount illustrates using 
delegates in our bank account scenario.  

• The file DelegateAccount.cs declares the delegate 
NotifyCallback.  

− The class DelegateAccount contains methods matching the 
signature of the delegate.  

− The Main method instantiates delegate objects and combines 
them in various ways.  

− The delegate objects are passed to the Account class, which 
uses its encapsulated delegate object to invoke suitable 
notifications when the account is overdrawn. 

− Observe how dynamic and loosely coupled is this structure.  

• The Account class does not know or care which 
notification methods will be invoked in the case of an 
overdraft.  

• It simply calls the delegate, which in turn calls all the 
methods on its invocation list.  

− These methods can be adjusted at runtime. 

• Please examine the code online. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-12 
 All Rights Reserved 

Stock Market Simulation 

• As a further illustration of the use of delegates, 
consider the simple stock market simulation, 
implemented in the directory StockMarket.  

• The simulation consists of two modules: 

− The Admin module provides a user interface for configuring 
and running the simulation. It also implements operations 
called by the simulation engine. 

− The Engine module is the simulation engine. It maintains an 
internal clock and invokes randomly generated operations, 
based on the configuration parameters passed to it. 

• The figure shows the high level architecture of the 
simulation. 

Admin Engine

Run

Operations

 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-13 
 All Rights Reserved 

Stock Market Simulation (Cont’d) 

• The following operations are available: 

− PrintTick: shows each clock tick. 

− PrintTrade: shows each trade. 

• The following configuration parameters can be 
specified: 

− Ticks on/off 

− Trades on/off 

− Count of how many ticks to run the simulation 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-14 
 All Rights Reserved 

Running the Simulation 

• Build and run the example program in StockMarket.  

• Start with the default configuration: Ticks are OFF, 
Trades are ON, Run count is 100. (Note that the 
results are random and will be different each time 
you run the program.) 

• The available commands are listed when you type 
“help” at the colon prompt. The commands are:        

        count    set run count 
        ticks    toggle ticks 
        trades   toggle trades 
        config   show configuration 
        run      run the simulation 
        quit     exit the program 
 

• The output shows clock tick, stock, price, volume. 
: run 
   6  IBM    112   400 
  24  MSFT    60   600 
  38  MSFT    66   800 
  43  MSFT    60   500 
  58  MSFT    66   600 
  59  INTC    91   800 
  60  IBM    107   600 
  64  MSFT    72   900 
  76  IBM    102   800 
  83  IBM     97   900 
  86  MSFT    79   500 
  94  MSFT    86   100 
  97  INTC    81   500 
  99  MSFT    94   900 
 100  MSFT    85   800 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-15 
 All Rights Reserved 

Delegate Code 

• Two delegates are declared in the Admin.cs file. 
public delegate void TickCallback(int ticks); 
public delegate void TradeCallback(int ticks, 
   string stock, int price, int volume); 
 

• As we saw in the previous section, a delegate is 
similar to a class, and a delegate object is instantiated 
by new. 

TickCallback tickDlg = new TickCallback(PrintTick); 
TradeCallback tradeDlg = new 
TradeCallback(PrintTrade); 
 

• A method is passed as the parameter to the delegate 
constructor. The method signature must match that 
of the delegate. 

   public static void PrintTick(int ticks) 
   { 
      Console.Write("{0} ", ticks); 
      if (++printcount == LINECOUNT) 
      { 
         Console.WriteLine(); 
         printcount = 0; 
      } 
   } 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-16 
 All Rights Reserved 

Passing the Delegates to the Engine 

• The Admin class passes the delegates to the Engine 
class in the constructor of the Engine class. 

Engine engine = new Engine(tickDlg, tradeDlg); 
 

• The heart of the simulation is the Run method of the 
Engine class.  

− At the core of the Run method is assigning simulated data 
based on random numbers.  

• We use the System.Random class, which we discussed 
in Chapter 12. 

double r = rangen.NextDouble(); 
if (r < tradeProb[i]) 
{ 
   int delta = (int) (price[i] * volatility[i]); 
   if (rangen.NextDouble() < .5) 
   { 
      delta = -delta; 
   } 
   price[i] += delta; 
   int volume=rangen.Next(minVolume,maxVolume)*100; 
   tradeOp(tick, stocks[i], price[i], volume); 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-17 
 All Rights Reserved 

Using the Delegates 

• In the Engine class, delegate references are declared: 
TickCallback tickOp; 
TradeCallback tradeOp; 
 

• The delegate references are initialized in the Engine 
constructor: 

public Engine(TickCallback tickOp,  
TradeCallback tradeOp) 

{ 
   this.tickOp = tickOp; 
   this.tradeOp = tradeOp; 
} 
 

• The method that is wrapped by the delegate object 
can then be called through the delegate reference: 

if (showTicks) 
   tickOp(tick); 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-18 
 All Rights Reserved 

Events 

• Delegates are the foundation for a more elaborate 
callback protocol known as events.  

• Conceptually, servers implement incoming interfaces, 
which are called by clients.  

− In a diagram, such an interface may be shown with a small 
bubble (a notation used in COM).  

• Sometimes a client may wish to receive notifications 
from a server when certain “events” occur.  

• In such a case the server will specify an outgoing 
interface.  

− The server defines the interface and the client implements it.  

− In a diagram, such an interface may be shown with an arrow 
(again, a notation used in COM).  



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-19 
 All Rights Reserved 

Events (Cont’d) 

− The figure illustrates a server with one incoming interface 
and one outgoing interface.  

Server
Client

 

− In the case of the outgoing interface, the client will 
implement an incoming interface, which the server will call. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-20 
 All Rights Reserved 

Events in C# and .NET 

• The .NET Framework provides an easy-to-use 
implementation of the event paradigm built on 
delegates.  

• C# simplifies working with .NET events by providing 
the keyword event and operators to hook up event 
handlers to events and to remove them.  

• We will examine this event architecture through 
salient code from the example program EventDemo, 
which illustrates a chat room. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-21 
 All Rights Reserved 

Server-Side Event Code 

• We begin with server-side code, in ChatServer.cs.  

− The .NET event architecture uses a specific signature: 

public delegate void JoinHandler(object sender, 
                                 ChatEventArg e); 
 

− The first parameter specifies the object that sent the event 
notification, the second parameter is used to pass data along 
with the notification.  

• Typically, you will derive a class from EventArg to 
hold your specific data. 

public class ChatEventArg : EventArgs 
{ 
   public ChatEventArg(string name){...} 
   ... 
} 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-22 
 All Rights Reserved 

Delegate Objects 

• A delegate object reference is declared using the 
keyword event. 

public event JoinHandler Join; 
 

• A helper method is typically provided to facilitate 
calling the delegate object(s) that have been hooked 
up to the event. 

protected void OnJoin(ChatEventArg e) 
{ 
   if (Join != null) 
   { 
      Join(this, e); 
   } 
} 
 

• A test for null is made in case no delegate objects 
have been hooked up to the event.  

• Typically, access is specified as protected so that a 
derived class has access to this helper method.  

− You can then “fire” the event by calling the helper method. 

public void JoinChat(string name) 
{ 
   members.Add(name); 
   OnJoin(new ChatEventArg(name)); 
} 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-23 
 All Rights Reserved 

Client-Side Event Code 

• The client provides event handler functions. 
public static void OnJoinChat(object sender, 
ChatEventArg e) 
{ 
   Console.WriteLine( 
      "sender = {0}, {1} has joined the chat",  
      sender, e.Name); 
} 
 

• The client hooks the handler to the event, using the 
+= operator. 

ChatServer chat = new ChatServer("OI Chat Room"); 
//Register to get event notifications from server 
chat.Join += new JoinHandler(OnJoinChat); 
 

• The event starts out as null, and event handlers get 
added through +=.  

− All of the registered handlers will get invoked when the event 
delegate is called.  

− You may unregister a handler through -=. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-24 
 All Rights Reserved 

Chat Room Example 

• The chat room example in EventDemo illustrates the 
complete architecture on both the server and client 
side.  

• The server provides the following methods: 

− JoinChat 

− QuitChat 

− ShowMembers 

• Whenever a new member joins or quits, the server 
sends a notification to the client.  

− The event handlers print out an appropriate message.  

• Here is the output from running the program: 
sender = OI Chat Room, Michael has joined the chat 
sender = OI Chat Room, Bob has joined the chat 
sender = OI Chat Room, Sam has joined the chat 
--- After 3 have joined--- 
Michael 
Bob 
Sam 
sender = OI Chat Room, Bob has quit the chat 
--- After 1 has quit--- 
Michael 
Sam 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-25 
 All Rights Reserved 

Client Code 

• The client program provides event handlers.  

− It instantiates a server object and then hooks up its event 
handlers to the events.  

− The client then calls methods on the server.  

− These calls will trigger the server firing events back to the 
client, which get handled by the event handlers. 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-26 
 All Rights Reserved 

Server Code 

• The server provides code to store in a collection the 
names of people who have joined the chat.  

• When a person quits the chat, the name is removed 
from the collection.  

− Joining and quitting the chat triggers firing an event back to 
the client.  

− The server also contains the “plumbing” code for setting up 
the events, including declaration of the delegates, the events, 
and the event arguments.  

− There are also helper methods for firing the events. 

• It may appear that there is a fair amount of such 
“plumbing” code, but it is much simpler than the 
previous connection point mechanism used by COM 
for events.  

− Also, in practice various wizards and other tools will 
generate the infrastructure for you automatically.  

• Events are used extensively in Windows 
programming.  

 



Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 19-27 
 All Rights Reserved 

Summary 

• Delegates can be thought of as type-safe and object-
oriented callback functions.  

• In C# you can encapsulate a reference to a method 
inside a delegate object.  

• You can then pass this delegate object to other code, 
which can then call your method.  

• The code that calls your delegate method does not 
have to know at compile time which method is being 
called.  

• Delegates are the foundation for a more elaborate 
callback protocol, known as events.  

 

 


