
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-1
 All Rights Reserved

Chapter 2

First C# Programs

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-2
 All Rights Reserved

First C# Programs

Objectives

 After completing this unit you will be able to:

• Write a basic “Hello, World” program in C#.

• Compile and run C# programs in your local
development environment.

• Describe the basic structure of C# programs.

• Describe how related C# classes can be grouped into
namespaces.

• Use variables and simple expressions in C# programs.

• Write C# programs that can perform simple
calculations.

• Perform simple input and output in C#.

• Describe objects and classes in C#.

• Use an input wrapper class to perform input in C#.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-3
 All Rights Reserved

Hello, World

• Whenever learning a new programming language, a
good first step is to write and run a simple program
that will display a single line of text.

− Such a program demonstrates the basic structure of the
language, including output.

− You must learn the pragmatics of compiling and running the
program.

• Here is “Hello, World” in C#.

− See Demos\Hello\Hello.cs, backed up in Hello.

// Hello.cs

class Hello
{
 public static int Main(string[] args)
 {
 System.Console.WriteLine("Hello, World");
 return 0;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-4
 All Rights Reserved

Compiling, Running (Command Line)

• See Appendix B for information on the Microsoft
Visual Studio.NET IDE (integrated development
environment).

• If you are using the .NET SDK, you may do the
following:

− Compile the program via the command line:

csc Hello.cs

− An executable file Hello.exe will be generated. To execute
your program, type at the command line:

Hello

− The program will now execute, and you should see displayed
the greeting. That’s all there is to it!

Hello, World

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-5
 All Rights Reserved

Program Structure

// Hello.cs

class Hello
{
...
}

• Every C# program has at least one class.

− A class is the foundation of C#’s support for object-oriented
programming.

− A class encapsulates data (represented by variables) and
behavior (represented by methods).

− All of the code defining the class (its variables and methods)
will be contained between the curly braces.

− We will discuss classes in detail later.

• Note the comment at the beginning of the program.

− A line beginning with a double slash is present only for
documentation purposes and is ignored by the compiler.

• C# files have the extension .cs

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-6
 All Rights Reserved

Program Structure (Cont’d)

// Hello.cs

class Hello
{
 public static int Main(string[] args)
 {
 ...
 return 0;
 }
}

• Every C# program has a distinguished class that has
a method whose name must be Main.

− Note the capitalization!

− The method should be public and static.

− An int exit code can be returned to the operating system. Use
void if you do not return an exit code.

public static void Main(string[] args)

− Command line arguments are passed as an array of strings.

− The runtime will call this Main method – it is the entry point
for the program.

− All the code of the Main method will be between the curly
braces.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-7
 All Rights Reserved

Program Structure (Cont’d)

// Hello.cs

class Hello
{
 public static int Main(string[] args)
 {
 System.Console.WriteLine("Hello, World");
 return 0;
 }
}

• Every method in C# has one or more statements.

• A statement is terminated by a semicolon.

− A statement may be spread out over several lines.

• The Console class provides support for standard
output and standard input.

− The method WriteLine displays a string, followed by a new
line.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-8
 All Rights Reserved

Namespaces

• Much standard functionality in C# is provided
through many classes in the .NET Framework.

• Related classes are grouped into namespaces.

• The fully qualified name of a class is specified by the
namespace followed by a dot followed by class name.
System.Console

• A using statement allows a class to be referred to by
its class name alone.

// Hello2.cs

using System;

class Hello
{
 public static int Main(string[] args)
 {
 Console.WriteLine("Hello, World");
 return 0;
 }
}

• Note that in C# it is not necessary for the file name to
be the same as the name of the class containing the
Main method.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-9
 All Rights Reserved

Exercise

• Take a few minutes to add two more lines of code to
your program.

− Print out the phrase “My name is XXXX” (use your own
name).

− Then print out “Goodbye”.

• Save your file, compile the program, and run it.

− Your output should be something like this:

Hello, World
My name is Bob
Goodbye

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-10
 All Rights Reserved

Answer

// Hello3.cs

using System;

class Hello
{
 public static int Main(string[] args)
 {
 Console.WriteLine("Hello, World");
 Console.WriteLine("My name is Bob");
 Console.WriteLine("Goodbye");
 return 0;

}
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-11
 All Rights Reserved

Variables

• In C# you can define variables to hold data.

• Variables represent storage locations in memory.

• In C# variables are of a specific data type.

− Some common types are int for integers and double for
floating point numbers.

− You must declare variables before you can use them.

• A variable declaration reserves memory space for the
variable and may optionally specify an initial value.

int kilo = 1024; // reserves space and assigns
 // an intial value
int mega; // reserves space but does

// not initialize

− If an initial value is not specified, C# initializes the variable
to a default value, such as 0.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-12
 All Rights Reserved

Expressions

• You can combine variables and constants (or
“literals”) via operators to form expressions.

• Examples of operators include the standard
arithmetic operators:

+ addition
- subtraction
* multiplication
/ division

• Here are some examples of expressions:
kilo * 1024
(fahrenheit – 32) * 5 / 9
3.1416 * radius * radius

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-13
 All Rights Reserved

Assignment

• You can assign a value to a variable by using the =
symbol.

− On the left hand side is a variable.

− On the right hand side is an expression.

− The expression is evaluated and its value is assigned to the
variable on the left.

− Assignment is a statement and must be terminated by a
semicolon.

mega = kilo * 1024;
celsius = (fahrenheit – 32) * 5 / 9;
area = 3.1416 * radius * radius;

• Note that the same variable can be used on both sides
of an assignment statement.

int item = 5;
int total = 30;
total = total + item;

− The expression total + item evaluates to 35, using the old
value of total, and this value is assigned to total, creating a
new value.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-14
 All Rights Reserved

Calculations Using C#

• You can easily use C# to perform calculations by
adding code to the Main method of a C# class.

− Declare whatever variables you need.

− Create expressions and assign values to your variables.

− Print out the answer using Console.WriteLine().

• You can easily do labeled output relying on two
features of C#:

− The operator + performs concatenation for string data.

− There is an automatic, implicit conversion available that
converts numeric data to string data when required.

− Hence this code ...

int total = 35;
System.Console.WriteLine("The total is " + total);

− ... will produce this output:

The total is 35

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-15
 All Rights Reserved

Sample Program

• This program will convert from Fahrenheit to
Celsius.

− See Convert\Step1.

// Convert.cs - Step 1
//
// Program converts a hardcoded temperature in
// Fahrenheit to Celsius

using System;

class Convert
{
 public static void Main(string[] args)
 {
 int fahr = 86;
 int celsius = (fahr - 32) * 5 / 9;
 Console.WriteLine("fahrenheit = " + fahr);
 Console.WriteLine("celsius = " + celsius);
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-16
 All Rights Reserved

Input in C#

• Our first Convert program is not too useful because
the Fahrenheit temperature is hardcoded.

− To convert a different temperature you would have to edit the
source file and recompile

• What we really want to do is allow the user of the
program at runtime to enter a value for the
Fahrenheit temperature.

• Although simple console input in C# is fairly easy, we
can make it even easier using object oriented
programming.

− We can encapsulate or “wrap” the details of input in a class.

− It will be easy to use the wrapper class.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-17
 All Rights Reserved

More About Classes

• Although we will discuss classes in more detail later,
there is a little more you need to know now.

• A class can be thought of as a template for creating
objects.

− An object is an instance of a class.

• A class specifies data and behavior.

− The data is different for each object instance.

• In C# you instantiate a class by using the new
keyword.

InputWrapper iw = new InputWrapper();

− This code creates the object instance iw of the
InputWrapper class.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-18
 All Rights Reserved

InputWrapper Class

• The InputWrapper class “wraps” interactive input for
several basic data types.

− The supported data types are int, double, decimal and
string.

− Methods getInt, getDouble, getDecimal and getString are
provided.

− A prompt string is passed as an input parameter.

− See the files InputWrapper.cs in directory InputWrapper
which implements the class and TestInputWrapper.cs
which tests the class.

• Although the code is quite short, it is a little complex,
involving a number of different methods of different
.NET Framework classes

• But you do not need to be familiar with the
implementation of InputWrapper in order to use it.

− That is the beauty of “encapsulation” – complex functionality
can be hidden by an easy to use interface.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-19
 All Rights Reserved

Echo Program

• We illustrate interactive input by a simple “echo”
program.

− Program prompts user for name, and then prints out a
personalized greeting.

− See Echo.

• This directory has two files, each defining a class.

− InputWrapper.cs defines the wrapper class. There is no
Main method in this class.

− EchoName.cs has a class Echo with a Main method.

// EchoName.cs
//
// Prompts user to enter name and then
// prints out greeting using name

using System;

class Echo
{
 public static void Main(string[] args)
 {
 InputWrapper iw = new InputWrapper();
 string name = iw.getString("Enter your name: ");
 Console.WriteLine("Hello, " + name);
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-20
 All Rights Reserved

Using InputWrapper

• The shaded statements illustrate how to use the
InputWrapper class.

− Instantiate an InputWrapper object iw by using new.

− Prompt for an obtain input data by calling the appropriate
getXXX method.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-21
 All Rights Reserved

Compiling Multiple Files

• It is easy to compile multiple files at the command
line.

csc *.cs

− This will compile all the files in the current directory.

− The file containing a class with the Main method will be
used as the name of the generated EXE file:

Directory of C:\OI\CSharp\Chap2\Echo

01/05/2001 12:20p <DIR> .
01/05/2001 12:20p <DIR> ..
01/05/2001 12:02p 334 EchoName.cs
01/05/2001 12:03p 3,584 EchoName.exe
01/05/2001 11:36a 855 InputWrapper.cs

− If multiple classes contain a Main method, you can use the
/main command line option to specify which class contains
the Main method that you want to use as the entry point into
the program.

csc *.cs /main:Echo

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-22
 All Rights Reserved

The .NET Framework

• The .NET Framework has a very large class library
(over 2500 classes).

• To make all this functionality more manageable, the
classes are partitioned into namespaces.

• The root namespace is System, which directly
contains many useful classes, among them:

− Console provides access to standard input, output and error
streams for doing I/O.

− Convert provides conversions among base data types.

− Math provides mathematical constants and functions.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-23
 All Rights Reserved

The .NET Framework (Cont’d)

• Underneath System there are other namespaces,
among them:

− System.Data contains classes constituting the ADO.NET
architecture for accessing databases.

− System.Xml provides standards based support for processing
XML.

− System.Drawing contains classes providing GDI+ graphics
functionality.

− System.WinForms provides support for creating
applications with rich Windows based interfaces.

− System.Web provides support for browser/server
communication.

− System.IO provides support for reading and writing with
streams and files. Both synchronous and asynchronous IO are
supported.

− System.Net provides support for several standard network
protocols.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 2-24
 All Rights Reserved

Summary

• Every C# application has a class with a method Main,
which is the entry point into the application.

• The System class includes methods for doing output,
such as WriteLine.

• Expressions in C# are formed from constants,
variables and operators.

• With the assignment statement you can assign a value
computed by an expression to a variable.

• Input in C# is a little more complicated than output,
but you can use a wrapper class that encapsulates the
required C# classes and presents a simple
programming interface.

• The .NET Framework has a large class library that is
partitioned into namespaces.

