
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-1
 All Rights Reserved

Chapter 13

Inheritance

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-2
 All Rights Reserved

Inheritance

Objectives

 After completing this unit you will be able to:

• Explain what polymorphism means and how it is
implemented in C#.

• Use inheritance relationships to produce cleaner
designs and re-use code.

• Use access qualifiers to encapsulate your
implementations and make your code easier to
maintain.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-3
 All Rights Reserved

Inheritance Fundamentals

• Inheritance is a key feature of the object-oriented
programming paradigm.

− You abstract out common features of your classes and put
them in a high-level base class.

− You can add or change features in more specialized derived
classes, which “inherit” the standard behavior from the base
class.

• Consider Account as a base class, with derived classes
such as CheckingAccount.

− All accounts share some characteristics, such as a balance.

− Different kinds of accounts differ in other respects.

− For example, a checking account has a monthly fee.

− This figure illustrates the relationship between Account and
CheckingAccount.

A c c o u n t

C h e c k in g A c c o u n t

b a la n c e

f e e

b a la n c e A c c o u n t

C h e c k in g A c c o u n t

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-4
 All Rights Reserved

Inheritance in C#

• You implement inheritance in C# by specifying the
derived class in the class statement with a colon
followed by the base class.

• The program SimpleAccount illustrates deriving a
new class CheckingAccount from the class Account.

// CheckingAccount.cs

public class CheckingAccount : Account
{
 private decimal fee = 5.00m;
 public void Post()
 {
 balance -= fee;
 }
}

• The class CheckingAccount automatically has all the
members that Account has, and in addition has the
field fee and the method Post.

• Code for a test program exercises both an Account
object and a CheckingAccount object.

− Notice that the CheckingAccount object can use the Deposit
and Withdraw methods and the Balance property of the base
class.

− No code had to be provided in the derived class for these
operations. The derived class can also make use of the new
method Post.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-5
 All Rights Reserved

Single Inheritance

• It is important to understand that C# supports only
single inheritance.

− In C# a class can derive from only one immediate base class.

− Some languages, such as C++, support multiple inheritance,
in which a class can derive from two or more base classes.

− Multiple inheritance is a powerful feature, but it is also
difficult to use correctly.

− The single inheritance model of C# is simpler.

• Although multiple inheritance is somewhat
problematical, there is great benefit in organizing
class behavior into several independent interfaces.

− The basic idea is to group related methods together into an
interface and allow a class to support multiple interfaces.

• We will discuss interfaces in detail in Chapter 17.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-6
 All Rights Reserved

Root Class – Object

• C# shares a characteristic with some other important
object-oriented languages, such as Java and
Smalltalk, that have a single inheritance model.

− C# has a root class called object that is the ultimate base
class of every class in C#.

− You do not need to use the colon notation to show that your
class derives from object—the compiler does that for you
automatically.

− If your class is derived from another class, it will pick up the
methods of its immediate base class plus the methods from
classes further up the hierarchy.

− This figure illustrates the three-level hierarchy of
CheckingAccount derived from Account, which in turn is
derived from object.

object

Account

CheckingAccount

• The C# keyword object is an alias for System.Object
in the .NET Framework class library.

− All classes in all .NET languages ultimately inherit from
System.Object.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-7
 All Rights Reserved

Access Control

• C# has two means for controlling accessibility of class
members.

− Class Accessibility

− Member Accessibility

• Access can be controlled at both the class level and
the member level.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-8
 All Rights Reserved

Public Class Accessibility

• An access modifier can be placed in front of the class
keyword and controls who can get at the class at all.

− Access can be further restricted by member accessibility,
discussed in the next subsection.

• There are two class accessibility modifiers, public and
internal.

• The most common access modifier of a class is public,
which makes the class available to everyone.

• All of our class examples so far have had public
accessibility.

• Whenever we are implementing a class that anyone
can use, we want to make it public.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-9
 All Rights Reserved

Internal Class Accessibility

• The internal modifier makes a class available within
the current assembly, which can be thought of as a
logical EXE or DLL.

• All of our projects so far have built a single assembly,
with both the client test program and the class(es) in
this assembly.

• That means that if we had used internal for the class
modifier, the programs would have still worked.

• But later, if we put our classes into a DLL and try to
access them from a client program in a separate EXE,
any internal classes would not be accessible.

− So using public for class accessibility is generally a good
idea.

• A common use of the internal modifier is for helper
classes that intended for use within the current
assembly only, and not generally.

− Note that if you omit the access modifier in front of a class,
internal will be the default used by the compiler.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-10
 All Rights Reserved

Member Accessibility

• Access to individual class members can be controlled
by placing an access modifier such as public or private
in front of the member.

− Member access can only further restrict access to a class, not
widen it.

− Thus if you have a class with internal accessibility, making a
member public will not make it accessible from outside the
assembly.

• There are five modes of member accessibility

− Public

− Private

− Protected

− Internal

− Internal Protected

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-11
 All Rights Reserved

Member Accessibility Qualifiers

• Public

− A public member can be accessed from outside the class.

• Private

− A private member can be accessed only from within the
class.

• Protected

− Inheritance introduces a third kind of accessibility,
protected. A protected member can be accessed from within
the class and from within any derived classes.

− Protected mode access should be used sparingly.

• Internal

− An internal member can be accessed from within classes in
the same assembly but not from classes outside the assembly.

• Internal Protected

− An internal protected member can be accessed either from
within the assembly or from outside the assembly by a
derived class.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-12
 All Rights Reserved

Member Accessibility Example

• The SimpleAccount program that we have already
examined illustrates use of protected accessibility.

− The field balance in the Account class is declared as
protected, because the Post method of the CheckingAccount
class needs access to balance.

− Note that read access is publicly available through the
Balance method, but Post also updates balance.

− Here again is the definition of Account. Note use of the
keyword protected.

// Account.cs

public class Account
{
 protected decimal balance;
 ...

− And here is the CheckingAccount class that makes use of
balance:

// CheckingAccount.cs
public class CheckingAccount : Account
{
 private decimal fee = 5.00m;
 public void Post()
 {
 balance -= fee;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-13
 All Rights Reserved

Method Hiding

• In our first example of inheritance we added a new
method Post to our derived class CheckingAccount.

− The derived class inherited the methods Deposit and
Withdraw, which are automatically available “as is.”

• Sometimes we may want the derived class to do
something a little different for some of the methods of
the base class.

− In this case we will put code for these changed methods in
the derived class, and we say the derived class “hides” the
corresponding methods in the base class.

− Note that hiding a method requires that the signatures match
exactly.

− Methods have the same signature if they have the same
number of parameters, and these parameters have the same
types and modifiers, such as ref or out. The return type does
not contribute to defining the signature of a method. We
discussed signatures in Chapter 10.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-14
 All Rights Reserved

Method Hiding and Overriding

• In C#, if you declare a method in a derived class that
has the same signature as a method in the base class,
you will get a compiler warning message.

− In such a circumstance, there are two things you may wish to
do.

− The first is to hide the base class method, which is what we
discuss in this section.

− The second is to override the base class method, which we
will discuss in the next chapter.

• To hide a base class method, place the keyword new
in front of the method in the derived class.

− When you hide a method of the base class, you may want to
call the base class method within your implementation of the
new method.

− You can do this by using the keyword base, followed by a
period, followed by the method name and actual parameters.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-15
 All Rights Reserved

Example: Method Hiding

• The example program HideAccount illustrates
method hiding.

− This program has the same Account base class, as in our
previous example SimpleAccount.

− But our derived class CheckingAccount is somewhat
different.

− In place of calculating a flat fee, the fee instead is based on
the number of transactions.

− Thus the methods Deposit and Withdraw now have to
increment a count of the number of transactions besides
performing the actual operation, which can be delegated to
the base class by using the base keyword.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-16
 All Rights Reserved

Initialization

• An important issue when working with inheritance is
initialization.

• A common way to initialize a class instance is through
a constructor.

− When the class is derived from a base class, we may want to
invoke a base class constructor to perform further
initialization.

− In this section we will see how to do implement such
initializations.

− We will also review how initialization works without regard
to inheritance.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-17
 All Rights Reserved

Initialization Fundamentals

• A classic problem in computer programming is
uninitialized variables.

− In many programming languages you can get unpredictable
results, based on what happens to be in memory when the
program is run.

• C# addresses this issue by either requiring
initialization or through assignment of default values.

− Local variables must be initialized prior to use; you will get a
fatal compiler error if you attempt to use a local variable
which has not been initialized.

− Member variables of a class are initialized to default values.

− Numeric data types are initialized to zero, and reference data
types are initialized to null.

• A member variable can be initialized right where it is
defined. This code of both declaring and initializing a
variable is called an initializer.

− An initializer applies to all class instances.

− A member variable can be initialized in a constructor. The
constructor code applies after the value has been set in the
initializer, and can be used to initialize each instance
individually.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-18
 All Rights Reserved

Initialization Fundamentals Example

• The program TestInitial illustrates these
fundamentals.

− Note: It is illegal to use a local variable without first
initializing it. Fields of classes have a default value assigned,
but you will get a warning if you do not assign a value in
your own code.

using System;

public class TestInitial
{
 private static int b;
 private int c = 1;
 private int d;
 public TestInitial()
 {
 Console.WriteLine(
 "In TestInitial constructor");
 Console.WriteLine("c = {0}", c);
 Console.WriteLine("d = {0}", d);
 d = 2;
 }
 public static void Main(string[] args)
 {
 int a;
 //Console.WriteLine("a = {0}", a);
 Console.WriteLine("b = {0}", b);
 TestInitial ti = new TestInitial();
 Console.WriteLine(
 "In Main after TestInitial object constructed");
 Console.WriteLine("c = {0}", ti.c);
 Console.WriteLine("d = {0}", ti.d);
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-19
 All Rights Reserved

Default Constructor

• As discussed in Chapter 8, constructors can be used
to assign values to fields and perform other
initializations.

• If you do not explicitly code an instructor, a default
constructor taking no parameters will be provided by
the compiler.

− The default constructor initializes all fields to their default
values.

• The program InitialAccount\Step0 illustrates a very
simple version of the Account class, with reliance on a
default constructor.

− The four fields of the class do not have initializers, and you
will get warning messages when you compile, but the code is
legal.

− The default constructor will assign these fields to their
default values, which will be reported when the
GetStatement method is called.

− An account object is constructed using new, which invokes
the default constructor.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-20
 All Rights Reserved

Overloaded Constructors

• You may overload a constructor just like you
overload ordinary methods of a class.

− You provide code for several constructors, which must each
have a unique signature.

− As part of one constructor you may invoke another
constructor by using a special colon notation, followed by
this and actual parameters.

− This code for the other constructor will then be invoked
before entering the curly braces.

• If you explicitly code one or more constructors, you
can no longer have a default constructor provided
automatically by the compiler.

− If you need to be able to create a new object instance without
passing any parameters, you must define a constructor
without parameters.

− You do not need to put any code in the curly braces.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-21
 All Rights Reserved

Example: Overloaded Constructors

• The program InitialAccount\Step1 illustrates several
overloaded constructors.

− The class is designed so that the user of the class can invoke
new with three parameters, two parameters, one parameter,
or no parameters.

− Any parameters not explicitly assigned will be given their
default values.

− Write statements are provided inside the various constructors
so that you can see the order in which they are invoked.

− If you like, you may add a write statement to the constructor
without parameters.

− Before running the program, try to figure out the exact order
in which the various constructors will be invoked and also
what values will be assigned.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-22
 All Rights Reserved

Invoking Base Class Constructors

• If your derived class has a constructor with
parameters, you may wish to pass some of these
parameters along to a base class constructor.

• In C# you can conveniently invoke a base class
constructor by using a colon, followed by the base
keyword and a parameter list.

− This notation is similar to the notation applied for invoking
another constructor in the derived class, only the base
keyword is used in place of this.

− Note that the syntax allows you to explicitly invoke a
constructor only of an immediate base class. There is no
notation that allows you to directly invoke a constructor
higher up the inheritance hierarchy.

• The program InitialAccount\Step2 illustrates
initialization in the CheckingAccount class. (The code
for Account is the same as in Step 1.)

− An Account object is constructed, and then a
CheckingAccount object is constructed.

− Again, you should figure out the order of the various
constructors before running the program.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-23
 All Rights Reserved

Bank Case Study: Step 2

• We conclude this chapter by giving Step 2 of our case
study.

− This step is not a direct extension of Step 1, as there is no
bank consisting of many accounts.

− Also, there is no interactive test program.

• Instead, Step 2 illustrates an inheritance hierarchy
consisting of an Account base class and derived
classes CheckingAccount and SavingsAccount, with
some simple hardcoded test data.

− The figure illustrates this class hierarchy.

Account

CheckingAccount SavingsAccount

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-24
 All Rights Reserved

Bank Case Study Analysis

• Our case study at this point consists of four classes,
each in its own file.

− Account. This class encapsulates a single bank account
consisting of an Id, an Owner, and a Balance. Operations
are Deposit and Withdraw. There is also a field holding the
number of transactions, and a GetStatement method is pro-
vided to show the current data for an account. The Account
class counts the number of transactions.

− CheckingAccount. This derived class adds a monthly fee,
which is assessed to checking accounts but not to other
accounts.

− SavingsAccount. This derived class adds interest, which is
paid to savings ac-counts but not to other accounts.

− TestAccount. This class provides a hardcoded test program,
which instantiates some classes, performs some transactions,
and obtains statements.

• As usual, the case study code may be found in the
CaseStudy directory for this chapter.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-25
 All Rights Reserved

Account

• The Account class for Step 2 is identical to the class
for Step 1, except two of the fields are protected,
because derived classes need to access them.

// Account.cs – Step 2

public class Account
{
 private int id;
 protected decimal balance;
 private string owner;
 protected int numXact = 0;
 // number of transactions
 ...

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-26
 All Rights Reserved

CheckingAccount

• The CheckingAccount class is new to the case study in
Step 2.

− It is similar to the CheckingAccount class in the standalone
examples, but a somewhat different algorithm is used for
calculating the fee.

− Some free transactions are allowed.

− Also, the base class already counts the number of
transactions, so the Deposit and Withdraw methods can be
used without change.

− The GetStatement method hides the corresponding method
in the base class and adds the functionality of also showing
the fee.

− The Post method subtracts the fee from the balance and
resets the number of transactions to 0.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-27
 All Rights Reserved

Checking Account (Cont’d)

// CheckingAccount.cs - Step 2

using System;

public class CheckingAccount : Account
{
 private decimal fee = 5.00m;
 private const int FREEXACT = 2;
 public CheckingAccount(decimal balance,
 string owner, int id)
 : base(balance, owner, id)
 {
 }
 public decimal Fee
 {
 get
 {
 if (numXact > FREEXACT)
 return fee;
 else
 return 0.00m;
 }
 }
 new public string GetStatement()
 {
 string s = base.GetStatement();
 s += ", fee = " + Fee;
 return s;
 }
 public void Post()
 {
 balance -= Fee;
 numXact = 0;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-28
 All Rights Reserved

SavingsAccount

• The SavingsAccount class is new to the case study in
Step 2.

− It adds the feature of interest, which is calculated monthly
and based on an annual rate.

− Interest is paid on the minimum balance.

− The base class Withdraw method is hidden, so that the
derived class can also up-date the minimum balance.

− The GetStatement method also hides the base class version,
appending information about the interest paid to the
statement string.

− The Post method adds the interest and resets the number of
transactions and minimum balance.

using System;
public class SavingsAccount : Account
{
 private decimal minBalance;
 private decimal rate = 0.06m;
 public SavingsAccount(decimal balance, string
 owner, int id) : base(balance, owner, id)
 {
 minBalance = balance;
 }
 public decimal Interest
 {
 get
 {
 return minBalance * rate/12;
 }
 }

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-29
 All Rights Reserved

SavingsAccount (Cont’d)

 new public void Withdraw(decimal amount)
 {
 base.Withdraw(amount);
 if (balance < minBalance)
 {
 minBalance = balance;
 }
 }
 public void Post()
 {
 balance += Interest;
 numXact = 0;
 minBalance = balance;
 }
 new public string GetStatement()
 {
 string s = base.GetStatement();
 s += ", interest = " + Interest;
 return s;
 }
 public decimal Rate
 {
 get
 {
 return rate;
 }
 set
 {
 rate = value;
 }
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-30
 All Rights Reserved

TestAccount

• The test program is hardcoded.

• It creates a few account objects, performs a few
transactions, and obtains statements.

• It also shows the balance after posting.

− Notice the three overloaded ShowAccount methods that do
exactly the same thing!

− We will see in Chapter 14 that with virtual methods we can
handle this kind of situation more simply, with a single
method that applies to any Account object and does the
proper thing, depending on the kind of account.

• You may look at the straightforward code online.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-31
 All Rights Reserved

Running the Case Study

• Again, you should both study the code and run the
case study.

− In this case, running the case study is trivial, as the program
is not interactive.

− You should study the output to make sure you completely
understand it. Here is a sample run:

Account: Statement for Bob id = 1
0 transactions, balance = 100
Account: Statement for Bob id = 1
3 transactions, balance = 100
CheckingAccount: Statement for Charlie id = 2
0 transactions, balance = 200, fee = 0
CheckingAccount: Statement for Charlie id = 2
3 transactions, balance = 150, fee = 5
After posting, balance = 145
SavingsAccount: Statement for David id = 3
0 transactions, balance = 300, interest = 1.5
SavingsAccount: Statement for David id = 3
3 transactions, balance = 250, interest = 1.25
After posting, balance = 251.25

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 13-32
 All Rights Reserved

Summary

• Inheritance is a fundamental part of object-oriented
programming.

• C# supports single inheritance, and all classes in C#
ultimately inherit, or derive, from a common base
class, object.

• Inheritance supports code reuse by automatically
making all code in a base class available to the
derived classes.

• Inheritance gives rise to another option for access
control, called protected.

• Methods in a derived class may hide the
corresponding method in the base class, possibly
making use of the base class method in their
implementation.

• C# has a robust set of features for handling
initialization issues, including a mechanism for the
proper initialization of the base class as well as the
current class.

• We extended the case study to support an inheritance
hierarchy of accounts, including checking and savings
accounts.

• We will continue our study of inheritance in the next
chapter, taking up polymorphism and related topics.

