
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 6-1
 All Rights Reserved

Chapter 6

Control Structures

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 6-2
 All Rights Reserved

Control Structures

Objectives

 After completing this unit you will be able to:

• Use the common C# control structures to perform
tests and loops.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 6-3
 All Rights Reserved

If Test

• In an if test a bool expression is evaluated, and
depending on the result, the “true branch” or “false
branch” is executed.

if (expression)
 statement 1;
else // optional
 statement 2;

• If the else is omitted, then if the test is false, the
control simply passes to the next statement after the if
test.

expression?

statement2statement1

True
False/else
(optional)

− See LeapYear

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 6-4
 All Rights Reserved

Blocks

• Several statements may be combined into a block,
which is semantically equivalent to a single statement.

− A block is enclosed in curly braces.

− Variables declared inside a block are local to that block.

• The program Swap illustrates a block and the
declaration of a local variable temp within the block.

− An attempt to use temp outside the block is a compiler error.

// Swap.cs

using System;

public class Swap
{
 public static int Main(string[] args)
 {
 int x = 5;
 int y = 12;
 Console.WriteLine("Before: x = {0}, y = {1}",
 x, y);
 if (x < y)
 {
 int temp = x;
 x = y;
 y = temp;
 }
 Console.WriteLine("After: x = {0}, y = {1}",
 x, y);
 // Console.WriteLine("temp = {0}", temp);
 return 0;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 6-5
 All Rights Reserved

Loops

• while

• for

• do/while

• foreach

• break

• continue

• goto

• switch

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 6-6
 All Rights Reserved

While Loop

• The most basic type of loop in C# is a while loop.
while (expression)
{
 statements;
 ...
}
more statements;

− Recommendation: Use blocks (in curly braces) even if there
is only one statement in a loop.

Expression?

Statement
False

True

− See LeapYearLoop

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 6-7
 All Rights Reserved

Do/While Loops

• In the while loop, if the condition is initially false,
then the loop is skipped.

• If you want a loop in which the body is always
executed, use a do/while.
do
{

 ...
 }

while (expression); // note semicolon!

Expression?

Statement

False

True

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 6-8
 All Rights Reserved

For Loops

• A perennial favorite of C/C++/Java programmers,
the for loop is the most flexible of the loop control
structures.
for (initialization; test; iteration)
{

 statements;
 ...
 }
 more statements;

− The test must be a Boolean expression. Initialization and
iteration can be nearly any kind of expression.

Expression?

Statement
False

True

Initialization

Iteration

− See ForUp and ForDown

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 6-9
 All Rights Reserved

Foreach Loop

• The foreach loop is familiar to VB programmers, but
is not present in C/C++/Java.

• It is a special loop for iterating through collections.

• In C#, an array is a collection, so you can use a
foreach loop to iterate through an array.

// ForEachLoop.cs

using System;

public class ForEachLoop
{
 public static int Main(string[] args)
 {
 int [] primes = {2, 3, 5, 7, 11, 13};
 int sum = 0;
 foreach (int prime in primes)
 {
 Console.Write("{0} ", prime);
 sum += prime;
 }
 Console.WriteLine();
 Console.WriteLine("sum = {0}", sum);
 return 0;
 }
}

• Foreach will be covered in greater detail in a later
chapter.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 6-10
 All Rights Reserved

Control Flow – Break and Continue

• The break statement allow immediate exit from a
loop.

− See BreakSearch

• The continue statement bypasses the remainder of a
loop, and transfers control to the beginning of the
loop.

− See ContinueLoop

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 6-11
 All Rights Reserved

goto

• Considered by purists to be evil, the infamous goto
was even completely banned from some languages.

− Use goto sparingly and with great care.

goto label;
 ...
 label:
 ...

// GotoSearch.cs
using System;
public class GotoSearch
{
 public static int Main(string[] args)
 {
 int [] primes = {2, 3, 5, 7, 11, 13};
 foreach (int prime in primes)
 Console.Write("{0} ", prime);
 Console.WriteLine();
 int target = 7;
 int i;
 for(i = 0; i < primes.Length; i++)
 {
 if (target == primes[i])
 goto found;
 }
 Console.WriteLine("{0} not found", target);
 return 0;
 found:
 Console.WriteLine("{0} found at {1}",
 target,i);
 return 0;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 6-12
 All Rights Reserved

Switch

• The switch statement can be substituted in some cases
for a sequence of if tests.

• There are comparable control structures in other
languages, such as

− Select in Visual Basic

− case in Pascal

− "computed goto" in FORTRAN.

− switch in C/C++

• Example Program:

− SwitchDemo

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 6-13
 All Rights Reserved

Switch in C# and C/C++

• In C# after a particular case statement is executed,
control does not automatically continue to the next
statement.

− You must explicitly specify the next statement, typically by
break or goto label.

− This avoids a “gotcha” in C/C++

switch (code)
{
 case 1:
 goto case 2;
 case 2:
 Console.WriteLine("Low");
 break;
 case 3:
 Console.WriteLine("Medium");
 break;
 case 4:
 Console.WriteLine("High");
 break;
 default:
 Console.WriteLine("Special case");
 break;
}

• In C# you may also switch on a string data type.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 6-14
 All Rights Reserved

Summary

• If, while, do/while, for, and switch

• Avoid the use of goto.

• Special loop: foreach, used for collections

