
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-1
 All Rights Reserved

Chapter 4

Data Types in C#

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-2
 All Rights Reserved

Data Types in C#

Objectives

 After completing this unit you will be able to:

• Explain what strongly typed means, and why strongly
typed languages contribute to program reliability.

• Explain when implicit conversion is used in C#, and
when casting must be used.

• Name the types available in C#, and state the size of
each type.

• Use C# types in simple programs.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-3
 All Rights Reserved

Strong Typing

• C# is a strongly typed language.

− Variables and constants of different types may not be mixed,
except according to strict rules.

− The C# compiler will refuse to compile type conversions that
are not 'safe'.

• By contrast, C++ is a weakly typed language, and
Visual Basic is untyped.

• Strong typing prevents certain types of errors

− Unintended mixing of types

− Loss of precision

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-4
 All Rights Reserved

Demo: Typing in C#, VB and C++

• C# is a strongly typed language.

− See Seven\Charp

• C++ is a weakly typed language.

− See Seven\Cpp

• VB6 can be programmed in an untyped manner.

− See Seven\Vb

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-5
 All Rights Reserved

C# Types

• In C#, the size of each type is specified.

− In C and C++, the sizes of the types are not completely
specified; only relative sizes are given.

− C# is similar to Java in size specification.

• C# has five categories of types.

− Integer Types

− Floating-point Types

− Decimal Type

− Character Type

− Boolean Type

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-6
 All Rights Reserved

Integer Types

• C# has a large variety of integer data types.

− Allows great flexibility to choose appropriate size and
signed/unsigned for you application.

C#
Keyword

Size

Signed/
Unsigned

Type in
System
Namespace

sbyte 8 bits signed SByte
byte 8 bits unsigned Byte
short 16 bits signed Int16
ushort 16 bits unsigned UInt16
int 32 bits signed Int32
uint 32 bits unsigned UInt32
long 64 bits signed Int64
ulong 64 bits unsigned UInt64

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-7
 All Rights Reserved

Integer Type Range

• Use the MinValue and MaxValue members of the
types in the System namespace to find the range of
each integer type.

− Example:

Console.WriteLine("min int= " + UInt32.MinValue);
Console.WriteLine("max int= " + UInt32.MaxValue);

− Output:

min int = -2147483648
max int = 2147483647

− See the program IntegerRange

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-8
 All Rights Reserved

Integer Literals

• A literal is a source code representation of a value.
squaresChess = 64;

− In this example, '64' is an integer literal.

• Integer literals are always stored as either 32-bit or
64-bit values.

− In the above example, the value '64' is stored as a 32-bit
number.

• You may specify the type that is used with a suffix.

− L (or l) for long

− U (or u) for unsigned

− Suffixes may be combined: LU, UL, ul, lu (any combination
of case and order)

• Hexadecimal representation uses the prefix 0x (or
0X).

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-9
 All Rights Reserved

Floating Point Types

• Used to express very large and very small quantities.

• There are two floating point types in C#,
corresponding to single and double precision.

C#
Keyword

Size

Type in
System
Namespace

float 32 bits Single
double 64 bits Double

• There is actually a third floating point type, called
decimal, which is covered later in this module.

• Use the MinValue and MaxValue members of the
types in the System namespace to find the range of
each floating point type.

− See Lab 4

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-10
 All Rights Reserved

Floating Point Literals

• Floating point literals may use either decimal or
exponential notation.

− Decimal notation example: 3.141529

− Exponential notation example: 2e-9 (0.000000002)

− Mixed notation: 3.01e3 (3,010)

• The default type of a floating point literal is double.

− To specify float, use a suffix of F or f.

− A suffix of D or d can be used to signify double (even though
that is redundant, you might want to emphasize it for some
reason).

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-11
 All Rights Reserved

IEEE Standard for Floating Point

• C# uses the IEEE 754 floating point standard (see
http://grouper.ieee.org/groups/754/).

− IEEE 754-1985 governs binary floating-point arithmetic. It
specifies number formats, basic operations, conversions, and
exceptional conditions. The related standard IEEE 854-1987
generalizes 754 to cover decimal arithmetic as well as binary.

• IEEE 754 defines two special values, NaN, and
Infinity

− Infinity results from an attempt to divide a non-zero number
by a floating point zero.

− NaN results from an attempt to divide a floating point zero by
any number, including floating point zero.

• Example program

− See SpecialFloat

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-12
 All Rights Reserved

Decimal Type

• Floating point types (even double) are frequently not
sufficiently precise for financial calculations.

− Even a small round-off error may be unacceptable.

• To address this problem, a new type was introduced
which can precisely represent decimal numbers with
up to 28 digits.

C#
Keyword

Size

Type in
System
Namespace

decimal 96 bits Decimal

• As with integer and floating point types, the range
may be found using the MinValue and MaxValue
member functions of Decimal.

• This type is new for C#.

− C++ and Java require library support to get the equivalent of
decimal.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-13
 All Rights Reserved

Decimal Literals

• The decimal literal suffix is M

− For "Money".

− The M suffix may be combined with exponential and decimal
notation.

decimal billGatesSalary = 4.0e6M;

• Example program:

− See DecimalLiterals

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-14
 All Rights Reserved

Character Type

• C# uses a 16-bit Unicode character set.

C#
Keyword

Size

Type in
System
Namespace

char 16 bits Char

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-15
 All Rights Reserved

Character Literals

• Character in single quotes

− '7' // Unicode character '7'

• Hex encoding (\x)

− \x0055 // '7' in hex

• Unicode prefix (\u)

− \u0055 // '7' using Unicode prefix

• To represent characters with a special meaning, use a
backslash (\) to 'escape'.

− '\'' // the single quote character

− '\\' // the backslash character

• Example program:

− See CharacterLiterals

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-16
 All Rights Reserved

Escape Characters

• There are a number of non-printing or special
characters used by C# which have been given special
escape sequences.

Escape
Character

Name

Value

\’ Single quote 0x0027
\” Double quote 0x0022
\\ Backslash 0x005C
\0 Null 0x0000
\a Alert 0x0007
\b Backspace 0x0008
\f Form feed 0x000C
\n New line 0x000A
\r Carriage return 0x000D
\t Horizontal tab 0x0009
\v Vertical tab 0x000B

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-17
 All Rights Reserved

Boolean Type

• The bool type represents the logical values 'true' and
'false'.

− true and false are the two Boolean literals.

C#
Keyword

Size

Type in
System
Namespace

bool 8 bits Boolean

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-18
 All Rights Reserved

Implicit Conversions

• Since C# is strongly typed, if we need to use a value of
one data type where another type is expected, we
must use a conversion.

• An implicit conversion is done silently by the compiler
where needed.

− Implicit conversions are only done for safe conversions,
where the target type has a larger dynamic range (wider) than
the type to be converted.

• Examples:

− float to double

− byte to int

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-19
 All Rights Reserved

Explicit Conversions

• An explicit conversion is specified by the
programmer, using a cast.

− An explicit conversion is generally required if the target type
has a smaller dynamic range (narrower).

− Example:

float pi = 3.141529; // compiler error;
// default is double

float pi = (double) 3.141529; // ok

− An explicit conversion is needed if the dynamic range of the
target doesn't include all of the values possible for the type to
be converted.

− Example:

char seven = '7';
short number;
number = seven; // compiler error
// character range 0 to 65535
// short range -32768 to 32767

• The bool type may not be cast to or from any other
type.

− However, there are conversion functions available in a
special class (called Convert) for this purpose.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-20
 All Rights Reserved

Conversions Example

• Example program illustrates a number of issues in
implicit and explicit conversion.

// Conversions.cs

using System;

public class Conversions
{
 public static int Main(string[] args)
 {
 // float pi = 3.14; // compiler error
 float pi = (float) 3.14;
 Console.WriteLine("pi = " + pi);
 // short seven = '7'; // compiler error
 short seven = (short) '7'; // cast
 ushort useven = '7'; // ok
 Console.WriteLine("seven = " + seven);
 Console.WriteLine("useven = " + useven);
 //int itrue = (int) true; // cast fails
 int itrue = Convert.ToInt32(true);
 int ifalse = Convert.ToInt32(false);
 Console.WriteLine("itrue = " + itrue);
 Console.WriteLine("ifalse = " + ifalse);
 return 0;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 4-21
 All Rights Reserved

Summary

• C# is strongly typed

• Types in C# have specified sizes

• Some conversions are safe, and can be implicitly
performed by the compiler.

• Some conversions are potentially unsafe, but may be
explicitly specified by the programmer, using casts

• Boolean conversions to or from other types are only
permitted using member conversion functions

