
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-1
 All Rights Reserved

Chapter 9

The C# Type System

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-2
 All Rights Reserved

The C# Type System

Objectives

 After completing this unit you will be able to:

• Describe the difference between reference and value
types in C#.

• Use structs, classes, and enums in your C# programs.

• Specify what default values are assigned
automatically by the compiler.

• Explain how boxing and unboxing work.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-3
 All Rights Reserved

Overview Of Types In C#

• In C# there are three kinds of types:

− Value types

− Reference types

− Pointer types

• Value types directly contain their data.

− Each variable of a value type has its own copy of the data.

− Value types are typically allocated on the stack and are
automatically destroyed when the variable goes out of scope.

− Value types include the simple types discussed in Chapter 4,
structures, and enumeration types.

• Reference types do not contain data directly but only
refer to data.

− Variables of reference types store references to data, called
objects.

− Two different variables can reference the same object.

− Reference types are allocated on the managed heap and
eventually get destroyed through a process known as
garbage collection.

• Reference types include string, object, class types,
array types, interfaces, and delegates.

• Pointer types will be discussed in Chapter 20.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-4
 All Rights Reserved

Value Types

• In this section we will survey all the value types,
beginning with a review of the simple data types
discussed in Chapter 4.

− We will see that there is a correspondence between these C#
types and types in the Common Language Runtime, as
expressed by classes in the System namespace.

− We will also discuss structures and enumeration types.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-5
 All Rights Reserved

Simple Types

• The simple data types are general-purpose value data
types, including numeric, character, and Boolean.

− The sbyte data type is an 8-bit signed integer.

− The byte data type is an 8-bit unsigned integer.

− The short data type is a 16-bit signed integer.

− The ushort 16-bit unsigned integer.

− The int data type is a 32-bit signed integer.

− The uint 32-bit unsigned integer.

− The long data type is a 64-bit signed integer.

− The ulong 64-bit unsigned integer.

− The char data type is a Unicode character (16 bits).

− The float data type is a single-precision floating point.

− The double data type is a double-precision floating point.

− The bool data type is a Boolean (true or false).

− The decimal data type is a decimal type with 28 significant
digits (typically used for financial purposes).

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-6
 All Rights Reserved

Types in System Namespace

• There is an exact correspondence between the simple
C# types and types in the System namespace.

− C# reserved words are simply aliases for the corresponding
type in the System namespace.

− The table shows this correspondence.

C# Reserved Word Type in System Namespace
sbyte System.SByte
byte System.Byte
short System.Int16
ushort System.UInt16
int System.Int32
uint System.UInt32
long System.Int64
ulong System.UInt64
char System.Char
float System.Single
double System.Double
bool System.Boolean
decimal System.Decimal

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-7
 All Rights Reserved

Structures

• A struct is a value type, which can group different
types together.

− It can also have constructors and methods, although it is
semantically different from a class, which is a reference type.

• These basic features are illustrated in the program
HotelCreate.

− There are fields city, name, rooms, and cost. There is a
constructor, and there is a method Show.

− A struct object is created using the new operator.

Hotel ritz = new Hotel("Boston", "Ritz", 100,
200.00m);

− A struct object can also be created without new, but then the
fields will be unassigned, and the object cannot be used until
the fields have been initialized.

Hotel flop;
flop.city = "Podunk";
// Now it is OK to use the city field
flop.name = "Flop";
flop.rooms = 50;
flop.cost = 30.00m;
// Now it is OK to use the complete object
flop.Show();

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-8
 All Rights Reserved

Uninitialized Variables

• The C# compiler will detect attempts to use
uninitialized variables.

− A struct object cannot be used until its fields have been
assigned.

− A simple local variable must be initialized before it can be
used.

 int x;
 Console.WriteLine("x = {0}", x); // error

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-9
 All Rights Reserved

Test Program

• See HotelCreate\HotelCreate.cs for a test program
that exercises the Hotel structure.

// HotelCreate.cs

using System;

public class HotelCreate
{
 public static void Main()
 {
 Hotel ritz = new Hotel("Boston", "Ritz", 100,
 200.00m);
 ritz.Show();
 Hotel flop;
 flop.city = "Podunk";
 // Now it is OK to use the city field
 flop.name = "Flop";
 flop.rooms = 50;
 flop.cost = 30.00m;
 // Now it is OK to use the complete object
 flop.Show();
 // Attempt to use an uninitialized variable
 int x;
 x = 5; // NEED this initialization
 Console.WriteLine("x = {0}", x);
 }
}

• Note that a constructor is invoked by new, but no
constructor is involved when a struct object is created
simply by declaring it.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-10
 All Rights Reserved

Copying a Structure

• When you assign one struct variable to another, you
will get two independent copies of the same data.

− If you subsequently change one copy, the two copies will be
different.

− This is in contrast to a class, where if you do an assignment,
you will have two references to the same data.

− The program HotelCopy illustrates a number of aspects of
copying structures.

− The class definition now has a special constructor for making
a copy of a Hotel object. When do you think it will be
invoked?

• Two new objects, flop and fancy, are created by
copying, shown by the comments #1 and #2 in the
listing.

− In both cases an independent copy is made, and changing the
value of one copy will not affect the value of the other copy.

− Copy #1 does not involve any constructor; there is simply an
implicit memberwise copy of all the elements of the struct.

− In the case of #2, we explicitly invoke the additional
constructor by using the new operator, and any copying that
gets done is performed within that constructor.

− To demonstrate, we did not perform a perfect copy, but
incremented the cost by $1 for the copy.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-11
 All Rights Reserved

Classes and Structs

• While in C++ the concept of class and struct is very
close, there is more fundamental difference in C#.

• In C++ a class has default visibility of private and a
struct has default visibility of public, and that is the
only difference.

• In C# the key difference between a class and a struct
is that a class is a reference type and a struct is a
value type.

− A class must be instantiated explicitly using new.

− The new instance is created on the heap, and memory is
managed by the system through a garbage collection process.

− A struct instance may simply be declared, or you may use
new.

− For a struct the new instance is created on the stack, and the
instance will be deallocated when it goes out of scope.

• There are different semantics for assignment,
whether done explicitly or via call by value
mechanism in a method call.

− For a class, you will get a second object reference, and both
object references refer to the same data.

− For a struct, you will get a completely independent copy of
the data in the struct.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-12
 All Rights Reserved

Enumeration Types

• The final kind of value type is an enumeration type.

− An enumeration type is a distinct type with named constants.

• Every enumeration type has an underlying type,
which is one of the following.

− byte

− short

− int

− long.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-13
 All Rights Reserved

Enumeration Types Examples

• An enumeration type is defined through an enum
declaration.

public enum BookingStatus : byte
{
 HotelNotFound, // 0 implicitly
 RoomsNotAvailable, // 1 implicitly
 Ok = 5 // explicit value
}

− If the type is not specified, int is used.

− By default, the first enum member is assigned the value 0, the
second member 1, and so on.

− Constant values can be explicitly assigned.

− You can make use of an enumeration type by declaring a
variable of the type indicated in the enum declaration (e.g.,
BookingStatus).

− You can refer to the enumerated values by using the dot
notation. Here is some illustrative code:

BookingStatus status;
status = hotel.ReserveRoom(name, date);
if (status == BookingStatus.HotelNotFound)
 Console.WriteLine("Hotel not found");
...

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-14
 All Rights Reserved

Reference Types

• A variable of a reference type does not directly
contain its data, but instead provides a reference to
the data stored elsewhere (the heap). In C# there are
the following kinds of reference types:

− Class

− Array

− Interface

− Delegate

− Reference types have a special value null, which indicates
the absence of an instance.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-15
 All Rights Reserved

Class Types

• A class type defines a data structure that has fields,
methods, constants, and other kinds of members.

− Class types support inheritance.

− Through inheritance a derived class can extend or specialize
a base class.

− We introduced C# classes in the previous chapter, and we
will discuss inheritance and other details about classes in
later chapters.

• There are two classes in the .NET Framework Class
Library that are so important that they have C#
reserved words as aliases for them: object and string.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-16
 All Rights Reserved

object

• The object class type is the ultimate base type for all
types in C#.

• Every C# type derives directly or indirectly from
object.

− The object keyword in C# is an alias for the predefined
System.Object class.

− System.Object has methods such as ToString, Equals, and
Finalize, which we will study later.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-17
 All Rights Reserved

string

• The string class encapsulates a Unicode character
string.

− The string keyword is an alias for the predefined
System.String class.

− The string type is a sealed class. (A sealed class is one that
cannot be used as the base class for any other classes.)

• The string class inherits directly from the root object
class.

− String literals are defined using double quotes.

− There are useful built-in methods for string.

− For now, note that the Equals method can be used to test for
equality of strings.

string a = "hello";
if (a.Equals("hello"))
 Console.WriteLine("equal");
else
 Console.WriteLine("not equal");

− There are also overloaded operators:

if (a == "hello")
 ...

− We will study string in detail in Chapter 11.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-18
 All Rights Reserved

Arrays

• An array is a collection of elements that are all of the
same type.

− Arrays are accessed using a square bracket and an index.

− In C# array indices start at 0, as in other C family languages.

− We previewed arrays in Chapter 6 and will study arrays in
detail in Chapter 12.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-19
 All Rights Reserved

Interfaces

• The purpose of an interface is to specify a contract
independently of implementation.

• Like a class, an interface has methods.

− But whereas a class provides an implementation of its
methods, an interface only specifies them.

− A class may implement one or more interfaces, specified by
using a colon notation.

public class Acme : ICustomer, IHotelInfo,
IHotelReservation
{
...

− We will study interfaces in detail in Chapter 17.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-20
 All Rights Reserved

Delegates

• The purpose of a delegate is to provide a “callback”
behavior in an object-oriented, type-safe manner.

− In C/C++ you would use a function pointer, which is neither
object-oriented nor type safe.

• In C# you can encapsulate a reference to a method
inside a delegate object.

− You can then pass this delegate object to other code, which
can then call your method.

− The code that calls your method does not have to know at
compile time which method is being called.

− We will study delegates in detail in Chapter 19.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-21
 All Rights Reserved

Default Values

• Several kinds of variables are automatically
initialized to default values:

− Static variables

− Instance variables of class and struct instances

− Array elements

− Local variables are not automatically initialized, as we saw
earlier in the chapter.

− The default value of a variable of reference type is null.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-22
 All Rights Reserved

Default Values (Cont’d)

• The default value of a variable of value type is the
value assigned in the default constructor.

− For simple types this value corresponds to a bit pattern of all
zeros:

− For integer types, the default value is 0

− For char, the default value is ‘\u0000’

− For float, the default value is 0.0f

− For double, the default value is 0.0d

− For decimal, the default value is 0.0m

− For bool, the default value is false.

− For an enum type, the default value is 0.

− For a struct type, the default value is obtained by setting all
value type fields to their default values, as described above,
and all reference type fields to null.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-23
 All Rights Reserved

Boxing And Unboxing

• One of the strong features of C# is that is has a
unified type system.

− Every type, including the simple built-in types such as int,
derive from System.Object.

− In C# “everything is an object.”

− A language such as Smalltalk also has such a feature, but
pays the price of inefficiency for simple types.

− Languages such as C++ and Java treat simple built-in types
differently than objects, thus obtaining efficiency but at loss
of a unified type system.

• C# enjoys the best of both worlds through a process
known as boxing.

• Boxing converts a value type such as int or a struct to
an object reference, and is done implicitly.

− Unboxing converts a boxed value type (stored on the heap)
back to an unboxed simple value (stored on the stack).

− Unboxing is done through a type cast.

int x = 5;
object o = x; // boxing
x = (int) o; // unboxing

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 9-24
 All Rights Reserved

Summary

• In this chapter we discussed the overall type system
of C#.

• There is a fundamental distinction between value
types, whose storage is allocated immediately when
the variable is declared, and reference types, where
storage is allocated elsewhere and the variable is only
a reference to the actual data.

• We looked at the various kinds of value types,
including the simple types discussed in Chapter 4,
struct, which is somewhat similar to class but
different due to being a value type, and enum.

• We then surveyed several other important types,
including string, array, interface, and delegate, which
will be examined in detail later.

• The default value of value types is a bit pattern of all
zeros, and the default value of reference types is null.

• We saw that all types in C# are rooted in a
fundamental base class called object.

• In C# “everything is an object,” and simple types are
transparently converted to objects as needed through
a process known as boxing. The inverse process,
unboxing, returns an object to the simple value from
which it came.

