
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-1
 All Rights Reserved

Chapter 12

Arrays and Indexers

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-2
 All Rights Reserved

Arrays and Indexers

Objectives

 After completing this unit you will be able to:

• Use arrays and indexers in C#.

• Use the Random class to generate pseudo-random
sequences.

• Start creating more interesting and less trivial
programs.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-3
 All Rights Reserved

Arrays

• An array is a collection of elements with the following
characteristics.

− All array elements must be of the same type. The element
type of an array can be any type, including an array type. An
array of arrays is often referred to as a jagged array.

− An array may have one or more dimensions. For example, a
two dimensional array can be visualized as a table of values.
The number of dimensions is known as the array’s rank.

− Array elements are accessed using one or more computed
integer values, each of which is known as an index. A one-
dimensional array has one index.

− In C# an array index starts at 0, as in other C family
languages.

− The elements of an array are created when the array object is
created. The elements are automatically destroyed when there
are no longer any references to the array object.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-4
 All Rights Reserved

One Dimensional Arrays

• An array is declared using square brackets [] after
the type, not after the variable.

int [] a; // declares an array of int

− Note that the size of the array is not part of its type. The
variable declared is a reference to the array.

• You create the array elements and establish the size
of the array using the new operator.

a = new int[10]; // creates 10 array elements

− The new array elements start out with the appropriate default
values for the type (0 for int).

• You may both declare and initialize array elements
using curly brackets, as in C/C++.

int a[] = {2, 3, 5, 7, 11};

− You can indicate you are done with the array elements by
assigning the array reference to null.

a = null;

− The garbage collector is now free to deallocate the elements.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-5
 All Rights Reserved

System.Array

• Arrays are objects. System.Array is the abstract base
class for all array types.

− Accordingly, you can use the properties and methods of
System.Array for any array.

• Here are some examples:

− Length is a property that returns the number of elements
currently in the array.

− Sort is a static method that will sort the elements of an array.

− BinarySearch is a static method that will search for an
element in a sorted array, using a binary search algorithm.

int [] a = {5, 2, 11, 7, 3};
Array.Sort(a); // sorts the array
for (int i = 0; i < a.Length; i++)
 Console.Write("{0} ", a[i]);
Console.WriteLine();
int target = 5;
int index = Array.BinarySearch(a, target);
if (index < 0)
 Console.WriteLine("{0} not found", target);
else
 Console.WriteLine("{0} found at {1}", target,
index);

• A complete program containing the code shown
above can be found in ArrayMethods.

− Here is the output:

2 3 5 7 11
5 found at 2

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-6
 All Rights Reserved

Sample Program

• The program ArrayDemo is an interactive test
program for arrays.

− A small array is created initially, and you can create new
arrays.

− You can populate an array either with a sequence of square
numbers or with random numbers.

− You can sort the array, reverse the array, and perform a
binary search (which assumes that the array is sorted in
ascending order).

− You can destroy the array by assigning the array reference to
null.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-7
 All Rights Reserved

Interfaces for System.Array

• If you look at the documentation for methods of
System.Array, you will see many references to various
interfaces, such as IComparable.

• By using such interfaces you can control the behavior
of methods of System.Array.

− For example, if you want to sort an array of objects of a class
that you define, you must implement the interface
IComparable in your class so that the Sort method knows
how to compare elements to carry out the sort.

− The .NET Framework provides an implementation of
IComparable for all the primitive types. We will come back
to this point after we discuss interfaces in Chapter 17.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-8
 All Rights Reserved

Random Number Generation

• The ArrayDemo program contains the following code
for populating an array with random integers
between 0 and 100.

Random rand = new Random();
for (int i = 0; i < size; i++)
{
 array[i] = rand.Next(100);
}

• The .NET Framework provides a useful class,
Random, in the System namespace that can be used
for generating pseudo-random numbers for
simulations.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-9
 All Rights Reserved

Constructors for Random

• There are two constructors:
Random(); // uses default seed
Random(int seed); // seed is specified

• The default seed is based on date and time, resulting
in a different stream of random numbers each time.

− By specifying a seed, you can produce a deterministic stream.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-10
 All Rights Reserved

Next Methods

• There are three overloaded Next methods that return
a random int.

int Next();
int Next(int maxValue);
int Next(int minValue, int maxValue);

− The first method returns an integer greater than or equal to
zero and less than Int32.MaxValue.

− The second method returns an integer greater than or equal to
zero and less than maxValue.

− The third method returns an integer greater than or equal to
minValue and less than or equal to maxValue.

• The NextDouble method produces a random double
between 0 and 1.

double NextDouble();

− The return value r is in the range: 0 <= r < 1.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-11
 All Rights Reserved

Jagged Arrays

• You can declare an array of arrays, or a “jagged”
array.

− Each row can have a different number of elements.

int [][] binomial;

• You then create the array of rows, specifying how
many rows there are (each row is itself an array).

binomial = new int [rows][];

• Next you create the individual rows:
binomial[i] = new int [i+1];

• Finally you can assign individual array elements.
binomial[0][0] = 1;

• The example program Pascal creates and prints
Pascal’s triangle.

• Higher dimensional jagged arrays can be created
following the same principles.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-12
 All Rights Reserved

Rectangular Arrays

• C# also permits you to define rectangular arrays,
where all rows have the same number of elements.
First you declare the array:

int [,] MultTable;

• Then you create all the array elements, specifying the
number of rows and columns:

MultTable = new int[rows, columns];

• Finally you can assign individual array elements.
MultTable[i,j] = i * j;

• The example program RectangularArray creates and
prints out a multiplication table.

− Note that the columns do not quite line up. We will discuss
formatting in Chapter 15.

− Higher dimensional rectangular arrays can be created
following the same principles.

int [,,] Mult3DimTable; // 3 dimensions

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-13
 All Rights Reserved

Arrays As Collections

• The class System.Array supports the IEnumerable
interface.

− Hence arrays can be treated as collections, a topic we will
discuss in Chapter 18.

− This means that a foreach loop can be used to iterate through
the elements of an array.

• The Pascal example code contains nested foreach
loops to display the jagged array.

− The outer loop iterates through all the rows, and the inner
loop iterates through all the elements within a row.

Console.WriteLine(
 "Pascal triangle via nested foreach loop");
foreach (int[] row in binomial)
{
 foreach (int x in row)
 {
 Console.Write("{0} ", x);
 }
 Console.WriteLine();
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-14
 All Rights Reserved

Arrays As Collections (Cont’d)

• In the RectangularArray example there is only one
collection.

− The foreach loop prints out all the array elements on one
line, which represents the order in which the array elements
are stored in memory.

− You can see that C# uses “row major” order for storing
rectangular arrays: All the elements of the first row are
stored, then all the elements of the next row, and so on.

− Here is the code:

// RectangularArray.cs
...

foreach (int x in MultTable)
{
 Console.Write("{0} ", x);
}
Console.WriteLine();

− Here is the output:

0 0 0 0 0 0 1 2 3 4 0 2 4 6 8 0 3 6 9 12 0 4 8 12
16

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-15
 All Rights Reserved

Bank Case Study: Step 1

• We have covered enough C# that we can begin
implementing some interesting programs.

− Over the next several chapters, the bulk of our examples will
be focused on a case study of a banking system.

• The code for the case study will be in the CaseStudy
directory of each chapter.

• The examples we have looked at so far in this chapter
have all been arrays of integers.

− Arrays can be constructed using any data type, including
user-defined classes.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-16
 All Rights Reserved

Bank Case Study: Step 1 (Cont’d)

• In this section we will extend our bank account
sample program to implement a Bank class, which
will contain an array of Account objects.

• Our case study at this point consists of five classes,
each in its own file.

− InputWrapper. This class simplifies prompting for input
and reading in the data. It is identical to the class by this
name that we have used previously.

− Account. This class encapsulates a single bank account,
consisting of an Id, an Owner, and a Balance. Operations are
Deposit and Withdraw.

− Bank. This class represents a bank, which has several
accounts. Methods are provided to add an account, delete an
account, and get a list of accounts.

− TestBank. This class provides an interactive test program for
exercising the Bank class. Commands are provided to open
an account, close an account, show all the accounts, and start
an ATM to perform transactions on a particular account.

− Atm. This class provides a user interface for the ATM, which
allows a user to perform transactions on a particular account.
The operations supported are deposit, withdraw, change
owner name, and show account information.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-17
 All Rights Reserved

Account Class

• The Account class is based on the Account class in the
AccountProperty program in Chapter 10.

− This version of Account adds a Transactions property,
which keeps a count of the number of transactions (deposits
and withdrawals) that have been performed.

− A new method, GetStatement, returns a string showing the
owner, the ID, the number of transactions, and the balance.

− The class no longer assigns an ID internally; instead, an ID is
assigned by the Bank class.

// Account.cs

public class Account
{
 private int id;
 private decimal balance;
 private string owner;
 private int numXact = 0;
 // number of transactions
 public Account(decimal balance, string owner,
 int id)
 {
 this.balance = balance;
 this.owner = owner;
 this.id = id;
 }
 public void Deposit(decimal amount)
 {
 balance += amount;
 numXact++;
 }

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-18
 All Rights Reserved

Account Class (Cont’d)

 public void Withdraw(decimal amount)
 {
 balance -= amount;
 numXact++;
 }
 public decimal Balance
 {
 get
 {
 return balance;
 }
 }
 public int Id
 {
 get
 {
 return id;
 }
 }
 public string Owner
 {
 get
 {
 return owner;
 }
 set
 {
 owner = value;
 }
 }
 public int Transactions
 {
 get
 {
 return numXact;
 }
 }

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-19
 All Rights Reserved

Account Class (Cont’d)

 public string GetStatement()
 {
 string s = "Statement for " + this.Owner
 + " id = " + Id + "\n"
 + this.Transactions
 + " transactions, balance = " + balance;
 return s;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-20
 All Rights Reserved

Bank Class

• The class Bank maintains an array of Account
objects.

− Separate counters are maintained for the next ID and for the
number of open accounts.

− Methods are provided to add an account, delete an account,
get a list of accounts (in the form of an array of strings), and
find an account, given the account ID.

− The constructor creates an array that can store up to 10
accounts and then adds three accounts as initial test data.

// Bank.cs

using System;

public class Bank
{
 private Account[] accounts;
 private int nextid = 1;
 private int count = 0;
 public Bank()
 {
 accounts = new Account[10];
 AddAccount(100, "Bob");
 AddAccount(200, "Mary");
 AddAccount(300, "Charlie");
 }

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-21
 All Rights Reserved

Bank Class (Cont’d)

 public int AddAccount(decimal bal, string owner)
 {
 Account acc;
 int id = nextid++;
 acc = new Account(bal, owner, id);
 accounts[count++] = acc;
 return id;
 }
 public string[] GetAccounts()
 {
 string[] array = new string[count];
 for (int i = 0; i < count; i++)
 {
 string owner = accounts[i].Owner;
 string sid = accounts[i].Id.ToString();
 string sbal =
 accounts[i].Balance.ToString();
 string str = sid + "\t" + owner
 + "\t" + sbal;
 array[i] = str;
 }
 return array;
 }
 public void DeleteAccount(int id)
 {
 int index = FindIndex(id);
 if (index != -1)
 {
 // move accounts down
 for (int i = index; i < count; i++)
 {
 accounts[i] = accounts[i+1];
 }
 count--;
 }
 }

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-22
 All Rights Reserved

Bank Class (Cont’d)

 private int FindIndex(int id)
 {
 for (int i = 0; i < count; i++)
 {
 if (accounts[i].Id == id)
 return i;
 }
 return -1;
 }
 public Account FindAccount(int id)
 {
 for (int i = 0; i < count; i++)
 {
 if (accounts[i].Id == id)
 return accounts[i];
 }
 return null;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-23
 All Rights Reserved

TestBank Class

• The TestBank class provides a user interface in the
Main method to open an account, close an account,
and show all the accounts.

− The command “account” brings up an ATM user interface to
allow the user to perform transactions on a particular
account.

// TestBank.cs

using System;

public class TestBank
{
 public static void Main()
 {
 Bank bank = new Bank();
 InputWrapper iw = new InputWrapper();
 string cmd;
 Console.WriteLine(
 "Enter command, quit to exit");
 cmd = iw.getString("> ");
 while (! cmd.Equals("quit"))
 {
 if (cmd.Equals("open"))
 {
 decimal bal = iw.getDecimal(
 "starting balance: ");
 string owner = iw.getString("owner: ");
 int id = bank.AddAccount(bal, owner);
 Console.WriteLine(
 "Account opened, id = {0}", id);
 }

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-24
 All Rights Reserved

TestBank Class (Cont’d)

 else if (cmd.Equals("close"))
 {
 int id = iw.getInt("account id: ");
 bank.DeleteAccount(id);
 }
 else if (cmd.Equals("show"))
 ShowArray(bank.GetAccounts());
 else if (cmd.Equals("account"))
 {
 int id = iw.getInt("account id: ");
 Account acc = bank.FindAccount(id);
 Atm.ProcessAccount(acc);
 }
 else
 help();
 cmd = iw.getString("> ");
 }
 }
 private static void ShowArray(string[] array)
 {
 foreach (string str in array)
 Console.WriteLine(str);
 }
 private static void help()
 {
 Console.WriteLine(
 "The following commands are available:");
 Console.WriteLine(
 "\topen -- open an account");
 Console.WriteLine(
 "\tclose -- close an account");
 ...
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-25
 All Rights Reserved

Atm Class

• The Atm class has a single static method,
ProcessAccount, which provides a user interface for
performing transactions on an account.

− The operations supported are deposit, withdraw, change the
owner name, and obtain a current statement for the account.

// Atm.cs

using System;

public class Atm
{
 public static void ProcessAccount(Account acc)
 {
 Console.WriteLine("balance = {0}",
 acc.Balance);
 string cmd;
 InputWrapper iw = new InputWrapper();
 Console.WriteLine(
 "Enter command, quit to exit");
 cmd = iw.getString(">> ");
 while (! cmd.Equals("quit"))
 {
 if (cmd.Equals("deposit"))
 {
 decimal amount =
 iw.getDecimal("amount: ");
 acc.Deposit(amount);
 Console.WriteLine("balance = {0}",
 acc.Balance);
 }

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-26
 All Rights Reserved

Atm Class (Cont’d)

 else if (cmd.Equals("withdraw"))
 {
 decimal amount = iw.getDecimal(
 "amount: ");
 acc.Withdraw(amount);
 Console.WriteLine("balance = {0}",
 acc.Balance);
 }
 else if (cmd.Equals("owner"))
 {
 string owner = iw.getString(
 "new owner name: ");
 acc.Owner = owner;
 show(acc);
 }
 else if (cmd.Equals("show"))
 show(acc);
 else
 accountHelp();
 cmd = iw.getString(">> ");
 }
 }
 private static void show(Account acc)
 {
 Console.WriteLine(acc.GetStatement());
 }
 private static void accountHelp()
 {
 Console.WriteLine(
 "The following commands are available:");
 Console.WriteLine(
 "\tdeposit -- make a deposit");
 ...
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-27
 All Rights Reserved

Running the Case Study

• You should become thoroughly familiar with this case
study, as we will use it extensively in the next several
chapters.

− You should both study the code and run it.

• Again, the program is located in the CaseStudy
directory for this chapter.

− The following is a transcript of a sample run, in which an
account is added, the accounts are shown, a deposit is made
to the new account, an account is deleted, and the accounts
are shown again.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-28
 All Rights Reserved

Running the Case Study (Cont’d)

C:\OIC\CSharp\chap12\CaseStudy>TestBank
Enter command, quit to exit
> ?
The following commands are available:
 open -- open an account
 close -- close an account
 show -- show all accounts
 account -- perform transactions on an account
 quit -- exit the program
> open
starting balance: 100
owner: Howard
Account opened, id = 4
> account
account id: 4
balance = 100
Enter command, quit to exit
>> deposit
amount: 1000
balance = 1100
>> quit
> show
1 Bob 100
2 Mary 200
3 Charlie 300
4 Howard 1100
> close
account id: 3
> show
1 Bob 100
2 Mary 200
4 Howard 1100
> quit

C:\OIC\CSharp\chap12\CaseStudy>

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-29
 All Rights Reserved

Indexers

• C# provides various ways to help the user of a class
access encapsulated data.

− In Chapter 10 we saw how properties can provide access to
a single piece of data associated with a class, making it
appear like a public field.

• In this section we will see how indexers provide a
similar capability for accessing a group of data items,
using an array index notation.

− Indexers can be provided when there is a private array or
other collection.

− An indexer can also be provided even if there is nothing like
an array within the class.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-30
 All Rights Reserved

Indexers (Cont’d)

• The program ColorIndex provides an illustration.

− There are three byte private variables, red, green, and blue,
that hold a color intensity value between 0 and 255 for the
three primary colors.

− We want to provide a way of accessing these values through
a “color index” that will be 0 for red, 1 for green, and 2 for
blue.

• The notation is somewhat similar to that used for
properties, with set and get functions.

− But there is no “name” for the indexer, as the indexer is
accessed through a variable of type ColorIndex and an
index.

− So where a property name would be present, we use this for
an indexer, and there is an index. In making an assignment,
the keyword value is used, just as for properties.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-31
 All Rights Reserved

ColorIndex Example Program

// ColorIndex.cs

public class ColorIndex
{
 private byte red = 255;
 private byte green = 127;
 private byte blue = 0;
 public byte this[int index]
 {
 get
 {
 if (index == 0)
 return red;
 else if (index == 1)
 return green;
 else
 return blue;
 }
 set
 {
 if (index == 0)
 red = value;
 else if (index == 1)
 green = value;
 else
 blue = value;
 }
 }
 public string Color
 {
 get
 {
 return red + ":" + green + ":" + blue;
 }
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-32
 All Rights Reserved

Using the Indexer

• The indexer is used via array notation.
// TestColorIndex.cs

using System;

public class TestColorIndex
{
 public static void Main(string[] args)
 {
 ColorIndex ci = new ColorIndex();
 Console.WriteLine(ci.Color);
 Console.WriteLine("red = {0}", ci[0]);
 Console.WriteLine("green = {0}", ci[1]);
 Console.WriteLine("blue = {0}", ci[2]);
 ci[0] = 77;
 ci[1] = 133;
 ci[2] = 199;
 Console.WriteLine(ci.Color);
 }
}

− Here is the output of the program:

255:127:0
red = 255
green = 127
blue = 0
77:133:199

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 12-33
 All Rights Reserved

Summary

• In C# arrays are objects of a reference data type and
are based on the class System.Array.

• Arrays have methods to perform operations such as
sorting and searching.

• The Random class provides a convenient way to
populate arrays with test data.

• There are two varieties of higher dimensional arrays:
jagged, and rectangular.

• A jagged array is an array of arrays, and each row
can have a different number of elements. In
rectangular arrays, all rows have the same number of
elements.

• Arrays are a special kind of collection, which means
that the foreach loop can be used in C# for iterating
through array elements.

• Indexers provide a way to access encapsulated data in
a class with an array notation.

