
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-1
 All Rights Reserved

Chapter 15

Formatting and Conversion

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-2
 All Rights Reserved

Formatting and Conversion

Objectives

 After completing this unit you will be able to:

• Use the formatting features of C# to control how your
output looks.

• Use System.Convert to do type conversions.

• Define your own type conversions.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-3
 All Rights Reserved

Introduction to Formatting

• For simple programs where we are not concerned
with appearance, the default formatting provided by
.NET library classes may be quite adequate.

• When you do wish to control formatting, there are
some simple facilities provided by the .NET library
classes that you can use.

• Every class in C# inherits the ToString method of the
object base class, so there is always a string
representation available.

• We will discuss how to control the format of numeric
types and how to align strings, illustrating this using
our case study.

• Many conversions among the standard types can be
accomplished with the System.Convert class.

• Finally, we will see how you can define conversion
operations in your own classes.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-4
 All Rights Reserved

ToString

• The fundamental issue in formatting is obtaining an
appropriate string representation of an object.

• In C# every class ultimately derives from object,
which has a method ToString, which returns a string
representation of the object.

− Since primitive data types can be treated as classes, we can
also apply the ToString method to data types like int,
decimal, and float.

− If we use the object in a context where a string is expected,
the ToString method will be called automatically to obtain
its string representation.

• Obtaining a string representation of a number should
not be confused with converting a number to a string.

− A string and a number are fundamentally different data types,
and in C# there is no implicit conversion from one to the
other.

− Conversion is reserved for situations like converting an
integer into a wider integer, or an integer to a floating point
number, and so on.

− We will discuss conversions later in the chapter.

• The program NumberToString illustrates obtaining a
string representation in several simple scenarios.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-5
 All Rights Reserved

ToString in Your Own Class

• The ToString method is available in every class in C#,
including classes you define yourself.

− As an example, consider the simple hotel class in
HotelToString\Step1.

// Hotel.cs – Step 1

using System;

public class Hotel
{
 private string city;
 private string name;
 public Hotel(string city, string name)
 {
 this.city = city;
 this.name = name;
 }
}

− In the test program we create two hotel objects and write
them out with WriteLine, relying on ToString to implicitly
obtain the string representation for us.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-6
 All Rights Reserved

ToString in Your Own Class (Cont’d)

• The ToString method being used is the one defined in
the base class object from which our Hotel class
implicitly inherits.

− The base class knows nothing about the particulars of our
class, so it does something very simple: It displays the name
of the class. (You may wonder how the base class knows the
name of our particular class. It obtains the name using a
feature in .NET known as reflection, which we will touch
upon in Chapter 20.)

− The ToString method is virtual, which means we may
override it in our own class to display a more meaningful
representation.

• The new version of our class is implemented in the
directory HotelToString\Step2.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-7
 All Rights Reserved

Using Placeholders

• When doing output with WriteLine, we usually use
placeholders, {0}, {1}, and so on.

− This output mechanism uses ToString under the hood.

• HotelToString\Step3 illustrates using placeholders in
the test program.

// HotelToString.cs - Step 3

using System;

public class HotelToString
{
 public static void Main()
 {
 Hotel alpha = new Hotel("Atlanta", "Dixie");
 Hotel beta = new Hotel("Boston", "Yankee");
 Console.WriteLine("Hotel alpha is {0}",
 alpha);
 Console.WriteLine("Hotel beta is {0}", beta);
 }
}

• Output is:
Hotel alpha is Atlanta Dixie
Hotel beta is Boston Yankee

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-8
 All Rights Reserved

Format Strings

• C# has extensive formatting capabilities, which you
can control through placeholders and format strings.

− Simple placeholders: {n}, where n is 0, 1, 2, and so on.

− Control width: {n,w}, where w is width (positive for right
justified and negative for left justified).

− Format string: {n:S}, where S is a format string.

− Width and format string: {n,w:S}.

• A format string consists of a format character
followed by an optional precision specifier.

− The table shows the available format characters.

Table 15–1 C# Format Characters

Format Character Meaning
C Currency (locale specific)
D Decimal integer
E Exponential (scientific)
F Fixed point
G General (E or F)
N Number with embedded commas
X Hexadecimal

• We will illustrate a number of different format
scenarios by a series of programs displaying powers
of two in various formats, beginning with just using
simple placeholders.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-9
 All Rights Reserved

Simple Placeholders

• The simplest way to perform output in C# is to use
the Console.WriteLine method with placeholders {0},
{1}, and so on.

• Our first program is PowerTwo\Step0, which simply
displays powers of two without any special
formatting.

using System;
public class PowerTwo
{
 public static void Main()
 {
 long power = 1;
 for (int i = 0; i < 16; i++)
 {
 Console.WriteLine("{0} {1}", i, power);
 power *= 2;
 }
 }
}

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
...

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-10
 All Rights Reserved

Controlling Width

• The simplest way to control format is through a
width specifier.

− The placeholders now have the form {n,w}, where n = 0, 1,
2, and so on and w specifies the width (positive for right
justified and negative for left justified).

• The program PowerTwo\Step1 illustrates controlling
width.

− The first column is printed left justified, and the second
column is printed right justified.

using System;
public class PowerTwo
{
 public static void Main()
 {
 long power = 1;
 for (int i = 0; i < 16; i++)
 {
 // Negative value for left justification
 Console.WriteLine("{0,-3} {1,10}",
 i, power);
 power *= 2;
 }
 }
}

0 1
1 2
2 4
3 8
4 16
...

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-11
 All Rights Reserved

Format String

• The next step in formatting is to use a format string,
usually in conjunction with a width specifier.

− The available format characters are shown in Table 15–1
earlier in the chapter.

− Here are some examples of placeholders with format strings.

− In each case the width is 36.

{0,36:D} Decimal integer
{0,36:N0} Number with commas, precision 0
{0,36:N4} Number with commas, precision 4
{0,36:X} Hexadecimal
{0,36:F} Fixed point
{0,36:G} General (E or F)
{0,36:F26} Fixed point, precision 26
{0,36:E26} Exponential, precision 26

• The program PowerFormat illustrates use of these
format strings in displaying 260 or 2-60.

• For some additional illustrations of numeric
formatting you may look at the programs
PowerTwo\Step2 and NegativePower.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-12
 All Rights Reserved

Currency

• The “C” format character formats in a manner
appropriate for currency, including using a currency
symbol.

− Currency formatting is specific to a locale.

− The default locale is the United States, and the currency
symbol is the dollar sign $. Working with other locales is
beyond the scope of this course.

− If globalization issues are of interest to you, you may wish to
study the documentation of the System.Globalization
namespace.

− The C format character is used in exactly the same manner as
the other format characters discussed previously.

• The program MoneyPower provides an illustration.

− This program calculates the amount of money paid to a wise
man who performed a service for an Eastern monarch.

When asked for a reward, he replied that his wants were
modest: All he wanted was the amount of money equal to a
penny placed on the first square of a chessboard, two pennies on
the second square, four pennies on the third square, eight
pennies on the fourth square, and so.

− This program also illustrates using the decimal data type to
obtain accurate representations of financial quantities, with
many digits of precision. The program shows the total day by
day.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-13
 All Rights Reserved

Currency Format Example

// MoneyPower.cs

using System;

public class MoneyPower
{
 public static void Main()
 {
 decimal power = .01m;
 decimal total = 0m;
 for (int i = 1; i <= 64; i++)
 {
 total += power;
 Console.WriteLine("{0,-3} {1,30:C}",
 i, total);
 power *= 2;
 }
 }
}

1 $0.01
2 $0.03
3 $0.07
4 $0.15
5 $0.31
6 $0.63
7 $1.27
8 $2.55
...
61 $23,058,430,092,136,939.51
62 $46,116,860,184,273,879.03
63 $92,233,720,368,547,758.07
64 $184,467,440,737,095,516.15

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-14
 All Rights Reserved

String.Format

• The System.String class has several useful methods to
help you with formatting tasks.

− We will discuss the methods Format, PadLeft, and
PadRight.

• Often we may wish to format numbers into a string.

− This task can be accomplished with the Format method of
the String class.

public static string Format(
 string format,
 object[] args
);

− The format has exactly the same syntax used in the
WriteLine method.

• As an illustration, consider the MoneyReport program
the wise man wrote to prepare a report for the king
stating the amount owed him.

public static string CreateReport(decimal amount)
{
 string str = "Dear Your Majesty,\n\t" +
 string.Format("You owe me {0,30:C}", amount)
 + "\nSincerely, Your Humble Servant";
 return str;
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-15
 All Rights Reserved

PadLeft and PadRight

• The Format method is useful for formatting numbers
into a string.

− What if you want to control the formatting of just strings—
i.e., make them align the way you want.

• An easy approach is to use the PadLeft and PadRight
methods, which are quite self-explanatory.

− Each method has two overloaded forms. Consider PadLeft.

public string PadLeft(
 int totalWidth
);
public string PadLeft(
 int totalWidth,
 char paddingChar
);

− The totalWidth is the total number of characters in the result
string, equal to the original characters plus any padding
characters.

− The default character used for padding is space, but you can
change that by using the second form of the method.

• The program PowerTwo\Step2 illustrates use of
PadLeft and PadRight to make headers line up
properly with the columns of numbers underneath.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-16
 All Rights Reserved

PadLeft and PadRight (Cont’d)

// PowerTwo.cs - Step 2

using System;

public class PowerTwo
{
 public static void Main()
 {
 decimal power = 1;
 string header1 = "Num";
 string header2 = "Power";
 string header = header1.PadRight(4) +
 header2.PadLeft(30);
 Console.WriteLine(header);
 for (int i = 0; i < 64; i++)
 {
 Console.WriteLine("{0,-4}{1,30:N0}",
 i, power);
 power *= 2;
 }
 }
}

− The format N0 is number with commas, precision 0.

Num Power
0 1
1 2
2 4
3 8
4 16
...
61 2,305,843,009,213,693,952
62 4,611,686,018,427,387,904
63 9,223,372,036,854,775,808

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-17
 All Rights Reserved

Bank Case Study: Step 4

• The Step 3 version of our bank case study from
Chapter 14 does not do any special formatting, and
the result is not very neat.

• As an example, try the top level “show” command.
> show
1 C: Bob 100
2 S: Mary 200
3 C: Charlie 300

− The columns do not line up, and the balances are not shown
as monetary amounts.

− If we examine the code for the “show” command, we see that
it uses the GetAccounts method of the Bank class. In all we
have to make minor code changes in three classes: Bank,
Account, and Atm.

• The new versions are in the CaseStudy directory for
Chapter 15.

• Please examine the code online.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-18
 All Rights Reserved

Type Conversions

• Another important practical programming issue is
converting among types.

• This is particularly important in C#, which is a
strongly typed language.

− Where in some languages (such as Visual Basic 6) you can
quite freely mix different data types and the compiler will
usually sort things out in a reasonable manner, in C# you
have to be quite precise in your use of types.

− We discussed this issue in Chapter 4.

− While you are becoming oriented to the C# environment, you
may find that having to make explicit type conversions is
somewhat of a chore, but you should soon get used to it, and
your programs can benefit from the increased robustness that
type safety provides.

• This section discusses type conversions, both for
built-in types and for user-defined types.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-19
 All Rights Reserved

Conversion of Built-In Types

• The Convert class of the System namespace provides a
comprehensive set of methods for converting among
the built-in types.

− The conversion methods are static, with names of the form
ToXxxx, where Xxxx is a type.

− Note that type names are those used in the System
namespace, not C# type names. For example, to convert to an
int, use the method ToInt32.

• An illustration is provided by our InputWrapper class
in CaseStudy.

using System;

class InputWrapper
{
 public int getInt(string prompt)
 {
 Console.Write(prompt);
 string buf = Console.ReadLine();
 return Convert.ToInt32(buf);
 }
 public double getDouble(string prompt)
 {
 Console.Write(prompt);
 string buf = Console.ReadLine();
 return Convert.ToDouble(buf);
 }
 ...
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-20
 All Rights Reserved

Conversion of User-Defined Types

• Recall from Chapter 4 that there are two kinds of
conversions in C#: implicit and explicit.

− An implicit conversion can be performed transparently by
the compiler when there is no loss of information, such as in
widening an integer data type.

− Thus the following is legal:

int a = 718;
long b = a;

− If there is a potential loss of information, the compiler will
disallow a conversion, unless you explicitly tell the compiler
to accept the conversion by performing a cast operation.

− Such a conversion is said to be explicit.

− Here is an example of an explicit conversion:

long c = 718;
c = c*c;
int d = (int) c;

• To implement conversions in your own class you
must define appropriate operators.

− Recall the discussion of operator overloading in Chapter 10.

− Operators are special static methods that contain the keyword
operator.

− There are additional keywords, implicit and explicit, for
defining implicit and explicit conversions.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-21
 All Rights Reserved

Conversion of User-Defined Types
(Cont’d)

• We illustrate conversions through the class Money,
which internally stores a money value as a decimal.

− Constructors are provided to create a money object from a
string, a double, and a decimal.

− A property is provided that can return a string representation
of a money object. We then provide three overloaded
operators to explicitly convert to Money and three
overloaded operators to implicitly convert to string, double,
and decimal, respectively.

• Our example program is in the MoneyConvert
directory. Note that the code illustrates using the
System.Convert class.

• The conversion to string is implicit, as illustrated by
the line of code

 string s = a;

− There is an explicit cast to string in the WriteLine
statements.

− Without the cast, the call to WriteLine would be ambiguous,
since WriteLine can also accept decimal and double
parameters, and we define implicit conversions for these data
types as well as to string.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-22
 All Rights Reserved

User Defined Conversions: Example

// Money.cs

using System;

public class Money
{
 private decimal amount;
 public Money(string str)
 {
 amount = Convert.ToDecimal(str);
 }
 ...
 public static explicit operator Money(
 string str)
 {
 Money mon = new Money(str);
 return mon;
 }
 public static explicit operator Money(
 double num)
 {
 Money mon = new Money(num);
 return mon;
 }
 ...
 public static implicit operator string(
 Money mon)
 {
 return string.Format("{0:C}", mon.amount);
 }
 public static implicit operator double(
 Money mon)
 {
 return Convert.ToDouble(mon.amount);
 }
 ...
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-23
 All Rights Reserved

Conversion Example (Cont’d)

// MoneyConvert.cs

using System;

public class MoneyConvert
{
 public static void Main()
 {
 Money x = new Money("30.33");
 Console.WriteLine(x.MoneyStr);
 Money a = new Money();
 a = (Money) "40.44";
 Console.WriteLine((string) a);
 a = (Money) 50.55;
 Console.WriteLine((string) a);
 a = (Money) 60.66m;
 Console.WriteLine((string) a);
 string s = a;
 Console.WriteLine("a = (string) {0}", s);
 double b = a;
 Console.WriteLine("a (double) = {0}", b);
 decimal c = a;
 Console.WriteLine("a (decimal) = {0:C}", c);
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 15-24
 All Rights Reserved

Summary

• Fundamentally, formatting is obtaining an
appropriate string representation of an object.

• Every class in C# inherits the ToString method of the
object base class, so there is always a string
representation available.

• This default simply returns the name of the class, so
normally you will want to override the default.

• Numeric types may be formatted with width and
precision specifiers.

• Strings may be aligned with PadRight() and
PadLeft().

• Many conversions among the standard types can be
accomplished with the System.Convert class.

• You can define both explicit and implicit conversions
in your own classes by providing the appropriate
operators.

