
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-1
 All Rights Reserved

Chapter 7

Object-Oriented Programming

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-2
 All Rights Reserved

Object-Oriented Programming

Objectives

 After completing this unit you will be able to:

• Describe the role of objects in modeling the real
world.

− Explain how objects facilitate the development of reusable
software components.

− Explain the fundamental concepts of abstraction and
encapsulation.

• Describe the concept of a class and its relationship to
an object.

− Explain the concept of inheritance, and describe other
important relationships among classes.

• Define the term polymorphism and explain how it can
be used to make object oriented programs more
flexible and easy to maintain.

• Discuss the process of object-oriented analysis and
design.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-3
 All Rights Reserved

Objects

• Objects have both a real-world and a software
meaning

• An object model can describe a relationship between
the two.

• This section summarizes the key terminology of
objects.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-4
 All Rights Reserved

Objects in the Real World

• The term object has an intuitive real world meaning.

− There are concrete, tangible objects such as a ball, an
automobile and an airplane.

− There are more abstract objects that have a definite
intellectual meaning, such as a committee, a patent or an
insurance contract.

• Objects have both attributes or characteristics, and
operations that can be performed upon them.

− A ball has a size, a weight, a color, etc.

− Operations may be performed on the ball such as throw,
catch, drop, etc.

• There can be various relationships among classes of
objects.

− A specialization relationship, such as an automobile is a
special kind of vehicle.

− A whole/part relationship, such as an automobile consists of
an engine, a chassis, wheels, etc.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-5
 All Rights Reserved

Object Models

• Objects can also be used in programs.

− We’ve already seen a little about classes and objects in C#
programs.

• Objects are useful in programming because you can
set up a software model of a real world system.

− Objects in software correspond to objects in the real world.

− Explicitly describing the real world system in terms of
objects helps you to understand the system more explicitly
and precisely.

− The model can then be implemented as actual software using
a programming language.

− A software system implemented in this way tends to be more
faithful to the real system, and it can be changed more readily
when the real system is changed.

• There are formal languages for describing object
models.

− The most popular language is UML (Unified Modeling
Language, which is a synthesis of several earlier modeling
languages).

− Formal modeling languages are beyond the scope of this
course, but we will find that informal models are useful.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-6
 All Rights Reserved

Reusable Software Components

• Another advantage of objects in software is that they
can facilitate reusable software components.

• Hardware has long enjoyed significant benefits from
reusable hardware components.

− For example, computers can be created from power supplies,
printed circuit boards, etc.

− Printed circuit boards in turn can be created from chips.

− The same chip can be reused in many different computers,
and new hardware designs do not have to be done from
scratch.

• With appropriate software technology similar reuse is
feasible in software systems.

• Objects provide the foundation for software reuse.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-7
 All Rights Reserved

Objects in Software

• An object is a software entity containing data and
related functions as a self contained module.

 Bank Account Object

Owner
Id

Balance
Deposit

Withdraw

ChangeOwner

Statement

• Objects hold state and specify behavior.

• Objects provide the means for abstraction,

encapsulation, and instantiation.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-8
 All Rights Reserved

State and Behavior

• An object has data, i.e. a set of properties or
attributes, which are its essential characteristics.

− The state of an object is the value of these attributes at any
point in time.

• The behavior of an object is the set of operations or
responsibilities it must fulfill for itself and for other
objects.

• The data and operations are packaged together.

Data
and

Operations

− As part of software design, this packaging aids

conceptualization and abstraction.

− Disparate items are turned into a conceptual unit.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-9
 All Rights Reserved

Abstraction

• An abstraction captures the essential features of an
entity, suppressing unnecessary details.

• All instances of an abstraction share these common
features.

• Abstraction helps us deal with complexity.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-10
 All Rights Reserved

Encapsulation

• The implementation of an abstraction should be
hidden from the rest of the system, or encapsulated.

• Objects have a public and a private side.

• Public side is what the rest of the system knows, while
private side implements the public side.

Private

Public Interface

• Data itself is private, walled off from the rest of the
program.

• Data can only be accessed through functions with a
public interface.

• There are two kinds of protection:

− Internal data is protected from corruption.

− Users of the object are protected from changes in the
representation.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-11
 All Rights Reserved

Classes

• A class groups all objects with common behavior and
common structure.

• A class allows production of new objects of the same
type. An object is an instance of some class.

Instances

Class

(objects)

194AFX 821ZAY 715GVN

CAR

• We refer to the process of creating an individual
object as instantiation.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-12
 All Rights Reserved

Inheritance Concept

• Inheritance is a key feature of the object oriented
programming paradigm.

− You abstract out common features of your classes and put
them in a high level base class.

− You can add or change features in more specialized derived
classes, which "inherit" the standard behavior from the base
class.

− Inheritance facilitates code reuse and extensibility.

• Consider Account as a base class, with derived classes
CheckingAccount and SavingsAccount

− All accounts share some characteristics, such as balance.

− Different kinds of accounts differ in other respects. For
example, a checking account has a monthly fee, while a
savings account pays interest at a certain rate.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-13
 All Rights Reserved

Inheritance Example

Account

CheckingAccount SavingsAccount

Balance

Fee

Balance

Rate

Balance Account

CheckingAccount

SavingsAccount

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-14
 All Rights Reserved

Relationships Among Classes

• Classes may be related to each other in various ways

• The inheritance (IS-A) relationship specifies how one
class is a special case of another class

− A CheckingAccount (subclass or derived class) is a special
kind of Account (superclass or base class)

• The composition (HAS-A) relationship specifies how
one class (the whole) is made up of other classes (the
parts)

− A Bank (whole) has a list of Account objects.

• A weaker kind of relationship (USES-A) can be
identified when one class merely makes use of some
other class when carrying out its responsibilities.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-15
 All Rights Reserved

Polymorphism

• Consider the problem of generating monthly
statements for different kinds of accounts.

− Checking and savings accounts differ, with one possibly
resulting in a fee and the other in a posting of interest.

• A traditional approach is to maintain a type field in
an account structure and to perform processing in a
switch statement, with cases for each type.

− Such use of switch statements is error prone and requires
much maintenance when adding a new account type.

• An alternative is to localize the intelligence to
generate a statement in each account class, which will
support its own GetStatement method.

− Generic monthly statement code can then be written that will
handle different types of accounts and will not have to be
modified to support an additional account type.

− Provide a GetStatement method in the base class and an
override of this method in each derived class.

− Call GetStatement through an object reference to a general
Account object.

− Depending on the actual account class referred to, the
appropriate GetStatement method will be called.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-16
 All Rights Reserved

Polymorphism (Cont’d)

• The ability for the same method call to result in
different behavior depending on the object through
which the method is invoked is referred to as
polymorphism.

• Although somewhat advanced, polymorphism can
greatly simplify complex systems and is an important
part of the object-oriented paradigm.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-17
 All Rights Reserved

Object Oriented Analysis and Design

• The process of creating an object model of a system
that can be used as the foundation of implementing a
corresponding software system is referred to as object
oriented analysis and design (OOAD)

− Analysis refers to the first part of the process in which the
essential features of the system to be created are captured,
without regard to details of implementation

− Design refers to a refinement in which more details are
provided, in preparation for actually coding the software

− In practice the dividing line between the two is fuzzy, and in
modern terminology the two are often grouped together
under the phrase “object oriented analysis and design”

• Key parts of OOAD include

− Identify “use cases” capturing the different ways in which the
system will be used

− Identify the most important classes in the system

− Identify responsibilities of the classes

− Identify classes that “collaborate” in carrying out the
responsibilities of each class

− Identify relationships among the classes in the system

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-18
 All Rights Reserved

Use Cases

• The use cases describe how the system we are trying
to model will be used

• A use case represents an interaction of a person or
another element with the system

− The persons or entities doing the interactions are called
actors

• Use cases are used early in the analysis process to
ensure that your system will do all the different
things it is supposed to do

• Use cases can be used late in the implementation to
help specify tests of the completed software

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-19
 All Rights Reserved

CRC Cards and UML

• A very popular “low tech” approach to the early
stage of object oriented analysis and design is the use
of CRC Cards

− CRC stands for class – responsibilities – collaborations

• A CRC card is typically 4” x 6“ and has the following
information

− Class name written at top (and possibly superclass)

− Two columns, with responsibilities written in the first column
and collaborating classes written in the second column

Class

Responsibilities Collaborations

• A more full-blown notation for object oriented
analysis and design is Unified Modeling Language or
UML.

• Details of OOAD are beyond the scope of this course.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 7-20
 All Rights Reserved

Summary

• Objects can model entities in the real world.

• A software system based on objects tends to be more
faithful to the real system, and it can be changed
more readily.

• Objects also facilitate the development of reusable
software components.

• An object is an instance of a class.

• Fundamental concepts of object-oriented
programming include abstraction, encapsulation and
inheritance.

• The process of object oriented analysis and design
helps you find useful objects.

• Use cases describe how the system we are trying to
model will be used.

• CRC cards document classes, responsibilities and
collaborations.

