
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-1
 All Rights Reserved

Chapter 14

Virtual Methods and
Polymorphism

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-2
 All Rights Reserved

Virtual Methods and Polymorphism

Objectives

 After completing this unit you will be able to:

• Use polymorphism to simplify your code and enhance
maintainability.

• Use static and dynamic binding as appropriate in
your code.

• Describe and use the C# features that support
polymorphism.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-3
 All Rights Reserved

Introduction to Polymorphism

• The fundamentals of inheritance we discussed in the
last chapter are extremely important, but they
constitute only part of the story of inheritance.

• The other part of the story involves the mechanism of
virtual methods, which are not bound to an object at
compile time but are bound dynamically at runtime.

• This dynamic behavior enables polymorphic code,
which is general code that applies to classes in a
hierarchy, and the specific class that determines the
behavior is determined at runtime.

• Polymorphic code can simplify program development
and maintenance.

• C# provides keywords virtual and override that
precisely specify in base and derived classes,
respectively, that the programmer is depending on
runtime, dynamic binding.

• Specifying polymorphic behavior eliminates the
fragile base class problem, which can result in
unexpected behavior in a program when a base class
in a library is modified, but the program itself is
unchanged.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-4
 All Rights Reserved

Abstract and Sealed Classes

• Sometimes in an inheritance hierarchy, the base class
is never intended to be instantiated.

• Such a base class is said to be abstract, and must be
derived from in order to be useful.

• At the opposite end of the spectrum, a class is said to
be sealed if derivation is not allowed.

• A class hierarchy can be used to implement
heterogeneous collections that can be treated
polymorphically. We illustrate the topics of this
chapter with the bank case study.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-5
 All Rights Reserved

Virtual Methods And Dynamic
Binding

• In C# the normal way methods are tied to classes is
through static binding.

− That means the type of an object reference is used at compile
time to determine the class whose method is called.

• The program StaticAccount illustrates static binding,
using a simplified version of our Account class and a
derived CheckingAccount class.

− Note the use of the new keyword in the Show methods of the
derived class to specify method hiding.

• In this program acc is an object reference of type
Account, and calling Show through this object
reference will always result in Account.Show being
called, no matter what kind of object acc may
actually be referring to.

− Notice that the second time we call Show through acc we are
still getting Account.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-6
 All Rights Reserved

Type Conversions in Inheritance

• This program also illustrates another feature of
inheritance, type conversions.

− After the objects acc and chk have been instantiated, the
object references will be referring to different objects, one of
type Account and the other of type CheckingAccount, as
illustrated in the figure.

− Note that the CheckingAccount object has an additional
field, fee.

acc balance

chk balance
fee

Account

CheckingAccount

− The test program tries two type conversions:

 //chk = acc; // illegal
 acc = chk;

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-7
 All Rights Reserved

Converting Down the Hierarchy

• The first assignment is illegal (as you can verify by
uncommenting and trying to compile).

− Suppose the assignment would be allowed.

− Then you would have an object reference of type
CheckingAccount referring to an Account object, as
illustrated in the figure.

acc balance

chk balance
fee

Account

CheckingAccount

− If the conversion “down the hierarchy” (from a base class to

a derived class) were allowed, the program would be open to
a bad failure at runtime if code tried to access a nonexistent
member, such as chk accessing the member fee.

• The program BadConversion illustrates this behavior.

− The class definition is the same.

− In the test program an explicit cast operation is performed.

− There will then be no error messages at compile time, but
there will be a runtime failure.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-8
 All Rights Reserved

Converting Up the Hierarchy

• The opposite assignment:
 acc = chk;

• is perfectly legal. We are converting “up the
hierarchy.”

• This is okay because of the IS-A relationship of
inheritance.

− A checking account “is” an account. It is a special kind of
account.

− Everything that applies to an account also applies to a
checking account.

− There can be no “extra field” in the Account class that is not
also present in the CheckingAccount class.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-9
 All Rights Reserved

Virtual Methods

• In C# you can make a small change to specify that a
method in C# will be bound dynamically.

• That means it will be determined at runtime which
class’s method will be called.

• The program VirtualAccount illustrates this behavior.

− The file VirtualAccount.cs contains class definitions for a
base class and a derived class, as before.

− But this time the Show method is declared as virtual in the
base class.

− In the derived class the Show method is declared override
(in place of new that we used before with method hiding).

− Now the Show method in the derived class does not hide the
base class method, but overrides it.

− We use the same test program. We just dropped the
commented out illegal assignment and changed the comment
on invoking the second acc.Show.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-10
 All Rights Reserved

Virtual Method Example

// VirtualAccount.cs

using System;

public class Account
{
 public int balance = 100;
 virtual public void Show()
 {
 Console.WriteLine("I am an Account");
 }
}

public class CheckingAccount : Account
{
 public int fee = 5;
 override public void Show()
 {
 Console.WriteLine(
 "I am a CheckingAccount, fee = {0}", fee);
 }
}

// TestVirtualAccount.cs

public class TestAccount
{
 public static void Main(string[] args)
 {
 Account acc = new Account();
 CheckingAccount chk = new CheckingAccount();
 acc.Show();
 chk.Show();
 acc = chk;
 acc.Show(); // now CheckingAccount.Show
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-11
 All Rights Reserved

Virtual Method Cost

• Virtual method invocation is slightly less efficient
than calling an ordinary nonvirtual method.

− With a virtual method call, there is some overhead at runtime
associated with determining which class’s method will be
invoked.

− C# allows you to specify in a base class whether you want
the flexibility of a virtual method or the slightly greater
efficiency of a nonvirtual method.

− You simply decide whether or not to use the keyword
virtual. (In some languages all methods are virtual, and you
don’t have this choice.)

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-12
 All Rights Reserved

Method Overriding

• The override keyword in C# is very useful for making
programs clearer.

− In some languages, such as C++, there is no special notation
for overriding a method in a derived class.

− You simply declare a method with the same signature as a
method in the base class.

− If the base class method is virtual, the behavior is to override.

− If the base class method is not virtual, the behavior is to hide.

− In C# this behavior is made explicit.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-13
 All Rights Reserved

The Fragile Base Class Problem

• There is a subtle pitfall in object-oriented
programming: the fragile base class problem.

• Suppose there is no override keyword and you have a
method in a class that does not hide or override any
method in your base classes.

• But assume that you are using a third-party class
library, and your class is ultimately derived from a
class in this library.

− Now suppose a new version of the class library comes out,
and the base class you are deriving from has a new virtual
method whose signature happens to match one of the
methods in your class.

− Now you can be in trouble!

− Code in the combined system that consists of your classes
and the class library may now behave in unexpected ways.

• Code that was “expected” to call the new method in
the class library—or in code in a derived class that
deliberately overrides this method—may now call
your method that has nothing whatever to do with the
method in the class library.

− This situation is rare, but if it occurs it can be extremely
vicious.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-14
 All Rights Reserved

overrride Keyword

• Fortunately, C# helps you avoid such situations by
requiring you to use the override keyword if you are
indeed going to perform an override.

− If you do not specify either override or new, you will get a
compiler error or warning if a method in your derived class
has the same signature as a method in a base class.

− Thus, if you build against a new version of the class library
that introduces an accidental signature match with one of
your methods, you will get warned by the compiler.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-15
 All Rights Reserved

Polymorphism

• The machinery of virtual functions makes it easy to
write polymorphic code in C#.

− As an example of polymorphic code, consider our bank
account case study.

− Imagine a large system with a great many different kinds of
accounts.

− How will you write and maintain code that deals with all
these different account types?

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-16
 All Rights Reserved

Polymorphism Using “Type Tags”

• A traditional approach is to have a “type field” in an
account structure.

− Then code that manipulates an account can key off this type
field to determine the correct processing to perform, perhaps
using a switch statement.

− Although straightforward, this approach can be quite tedious
and error-prone.

• What happens if you have to add a new derived type
to a legacy program?

• Introducing a new kind of account can require
substantial maintenance.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-17
 All Rights Reserved

Polymorphism Using Virtual

• Polymorphism enables a cleaner solution.

1. Organize the different kinds of accounts in a class hierarchy,
and structure your program so that you write general purpose
methods that act upon an object reference whose type is that of
the base class.

2. In your code, call virtual methods of the base class.

3. The call will be automatically dispatched to the appropriate
class, depending on what kind of account is actually being
referenced.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-18
 All Rights Reserved

Polymorphism Example

• The program PolyAccount provides an illustration (a
more full-blown illustration will be presented later in
the chapter with Step 3 of the case study).

− This version of the Account hierarchy is similar to Step 2 of
the case study presented in the previous chapter, only now
there are virtual methods in the base class, and methods in
the derived class override them.

− Methods in the derived classes override the virtual methods
in the base class.

• The payoff comes in the client program, which can
now call the virtual methods polymorphically.

− In this program there is a single Account object reference
acc.

− At different places in the program, it is assigned to different
kinds of account objects: Account, CheckingAccount, and
SavingsAccount.

• The code that gets invoked is determined at runtime
based upon the type of account being referenced. This
is polymorphism.

− In particular, notice that we need only one helper method,
ShowAccount.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-19
 All Rights Reserved

Polymorphism Example (Cont’d)

// PolyAccount.cs

public class Account
{
 private int id;
 protected decimal balance;
 private string owner;
 protected int numXact = 0;
 // number of transactions
 public Account(decimal balance,
 string owner, int id)
 {
 this.balance = balance;
 this.owner = owner;
 this.id = id;
 }
 virtual public void Deposit(decimal amount)
 {
 balance += amount;
 numXact++;
 }
 virtual public void Withdraw(decimal amount)
 {
 balance -= amount;
 numXact++;
 }
 public decimal Balance
 {
 get
 {
 return balance;
 }
 }

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-20
 All Rights Reserved

Polymorhphism Example (Cont’d)

 public int Id
 {
 get
 {
 return id;
 }
 }
 public string Owner
 {
 get
 {
 return owner;
 }
 set
 {
 owner = value;
 }
 }
 public int Transactions
 {
 get
 {
 return numXact;
 }
 }
 virtual public string GetStatement()
 {
 string s = "Statement for " + this.Owner +
 " id = " + Id + "\n" + this.Transactions +
 " transactions, balance = " + balance;
 return s;
 }
 virtual public void Post()
 {
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-21
 All Rights Reserved

Polymorphism Example (Cont’d)

// CheckingAccount.cs

using System;

public class CheckingAccount : Account
{
 private decimal fee = 5.00m;
 private const int FREEXACT = 2;
 public CheckingAccount(decimal balance,
 string owner, int id)
 : base(balance, owner, id)
 {
 }
 public decimal Fee
 {
 get
 {
 if (numXact > FREEXACT)
 return fee;
 else
 return 0.00m;
 }
 }
 override public string GetStatement()
 {
 string s = base.GetStatement();
 s += ", fee = " + Fee;
 return s;
 }
 override public void Post()
 {
 balance -= Fee;
 numXact = 0;
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-22
 All Rights Reserved

Abstract Classes

• Sometimes it does not make sense to instantiate a
base class.

• Instead, the base class is used to define a standard
template to be followed by the various derived
classes.

• Such a base class is said to be abstract, and it cannot
be instantiated.

• An abstract class may have abstract methods, which
are not implemented in the class but only in derived
classes.

• The purpose of an abstract method is to provide a
template for polymorphism.

− The method is called through an object reference to the
abstract class, but at runtime the object reference will
actually be referring to one of the concrete derived classes.

• The Account class in Step 3 of the case study, which
we will examine later in the chapter, provides an
example of an abstract class.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-23
 All Rights Reserved

Keyword: abstract

• In C# you can designate a base class as abstract by
using the keyword abstract.

• The compiler will then flag an error if you try to
instantiate the class.

• The keyword abstract is also used to declare abstract
methods. In place of curly brackets and
implementation code, you simply provide a semicolon
after the declaration of the abstract method.

• Example:
// Account.cs - Step 3

abstract public class Account
{
 private int id;
 protected decimal balance;
 private string owner;
 protected int numXact = 0;
 // number of transactions
 ...
 abstract public void Post();
 abstract public string Prompt {get;}
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-24
 All Rights Reserved

Sealed Classes

• At the opposite end of the spectrum from abstract
classes are sealed classes.

• While you must derive from an abstract class, you
cannot derive from a sealed class.

− A sealed class provides functionality that you can use as is,
but you cannot derive from the class and hide or override
some of the methods.

− An example in the .NET Framework class library of a sealed
class is System.String.

• Marking a class as sealed protects against
unwarranted class derivations.

− It can also make the code a little more efficient, because any
virtual functions in the sealed class are automatically treated
by the compiler as nonvirtual.

• In C# you use the sealed keyword to mark a class as
sealed.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-25
 All Rights Reserved

Heterogeneous Collections

• A class hierarchy can be used to implement
heterogeneous collections that can be treated
polymorphically.

− For example, you can create an array whose type is that of a
base class.

− Then you can store within this array object references whose
type is the base class, but which actually may refer to
instances of various derived classes in the hierarchy.

− You may then iterate through the array and call a virtual
method.

− The appropriate method will be called for each object in the
array.

• The program HeterogeneousAccount illustrates a
heterogeneous array of three accounts, which are a
mixture of checking and savings accounts.

− The virtual property Prompt returns a prompt string, which
is “C: ” for a checking account and “S: ” for a savings
account.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-26
 All Rights Reserved

Heterogeneous Collections Example

// HeterogeneousAccount.cs

using System;

public class TestAccount
{
 public static void Main(string[] args)
 {
 Account[] list = new Account[3];
 list[0] = new CheckingAccount(100, "Bob", 1);
 list[1] = new SavingsAccount(200, "Mary", 2);
 list[2] = new CheckingAccount(300,
 "Charlie", 3);
 foreach (Account acc in list)
 ShowAccount(acc.Prompt, acc);
 }
 private static void ShowAccount(string caption,
 Account acc)
 {
 Console.Write("{0}: ", caption);
 Console.WriteLine(acc.GetStatement());
 }
}

• Here is the output:
C: : Statement for Bob id = 1
0 transactions, balance = 100, fee = 0
S: : Statement for Mary id = 2
0 transactions, balance = 200, interest = 1
C: : Statement for Charlie id = 3
0 transactions, balance = 300, fee = 0

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-27
 All Rights Reserved

Bank Case Study: Step 3

• Step 3 of the case study, as usual in the CaseStudy
directory for this chapter, is an extension of Step 1
from Chapter 12.

• The big change is that now we support two kinds of
accounts, CheckingAccount and SavingsAccount,
which are derived from the abstract base class
Account.

− Each kind of account has its own characteristics. There are
now seven classes in all, each in its own file.

• Please look at the online files for the code listings.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-28
 All Rights Reserved

Case Study Classes

• InputWrapper. This class simplifies prompting for
input and reading in the data. It is identical to the
class by this name that we have used previously.

• Account. This abstract base class provides a template
for accounts, specifying an Id, an Owner, a Balance,
and the number of Transactions. Operations are
Deposit, Withdraw, and GetStatement.

− There is an abstract method Post and an abstract property
Prompt. There is also a virtual method MonthEnd.

• CheckingAccount. This class provides a Fee property
and overrides GetStatement, Post, and Prompt.

• SavingsAccount. This class provides an Interest
property, which is based on a minimum balance.

− It overrides Withdraw, GetStatement, Post, MonthEnd,
and Prompt.

• Bank. This class represents a bank, which has several
accounts.

− Methods are provided to add an account, delete an account,
and get a list of accounts.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-29
 All Rights Reserved

Case Study Classes (Cont’d)

• TestBank. This class provides an interactive test
program for exercising the Bank class.

− Commands are provided to open an account, close an
account, show all the accounts, and start an “ATM” to
perform transactions on a particular account.

• Atm. This class provides a user interface for the ATM
that allows a user to perform transactions on a
particular account.

− The operations supported are deposit, withdraw, change
owner name, and show account information.

− A special prompt of “C: ” or “S: ” is shown, depending on
whether the account being operated upon is a checking or a
savings account.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-30
 All Rights Reserved

Run the Case Study

• At this point you should try to understand in general
terms how the case study works, especially the
operation of the virtual functions.

− Do not be concerned about every nuance of the business rules
of our little bank.

• The case study is elaborated in greater detail at Step
6 in Chapter 17, where we introduce interfaces.

− The use of interfaces will help us view the bank at a higher
level of abstraction, and in that chapter we provide additional
explanation of the case study and more sample runs.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-31
 All Rights Reserved

Account

• The Account class is similar to the version of the class
used to illustrate polymorphism earlier in the
chapter.

− The class is now abstract, with the abstract method Post and
the abstract property Prompt.

− Notice the syntax used in specifying the signature of a
property.

− In this case the property is read-only, so there is only a get.

− There is a nuance introduced here in the form of another
virtual method, MonthEnd.

− This virtual method reinitializes an account for the next
month.

− The basic initialization is to set the transaction count to zero.
Additional initialization may be done in derived classes (such
as the SavingsAccount class, discussed later in this chapter).

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-32
 All Rights Reserved

CheckingAccount, SavingsAccount

• Step 3 of the CheckingAccount class is similar to the
class that was shown in the previous section on
polymorphism.

− The difference is that Post method does not set the number of
transactions to zero, as that is now the responsibility of the
MonthEnd method, which is inherited from the Account
class.

• The SavingsAccount class has an interest rate, which
is expressed as a property.

− The interest itself is the monthly interest, based on a
minimum balance.

− To compute the minimum balance, the Withdraw method is
overridden. The class also overrides Post, GetStatement,
Prompt, and MonthEnd.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-33
 All Rights Reserved

Bank and Atm

• The class Bank maintains an array of Account
objects.

− The code is very similar for Step 1 provided in Chapter 12.

• The big change is that the AddAccount method now
takes an account type parameter, which is specified
as an enum data type, AccountType.

− Based on the type, either a CheckingAccount or a
SavingsAccount is instantiated.

− Also, the GetAccounts method is modified so that the
prompt string for the particular kind of account is returned as
part of the string describing the account.

• The Atm class is virtually identical to the Step 1
version.

− This is the beauty of polymorphism.

• The ProcessAccount method takes an object reference
to the Account base class, and it calls virtual methods
of this class, which get resolved properly at runtime
to the appropriate methods of CheckingAccount or
SavingsAccount.

• The only enhancement added to the Step 3 version is
using the virtual Prompt property of Account to tailor
the prompt according to the type of account being
worked on.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-34
 All Rights Reserved

TestBank

• The TestBank class provides a user interface in the
Main method to open an account, close an account,
and show all the accounts.

− The command “account” brings up an ATM user interface to
allow the user to perform transactions on a particular
account.

− The only difference between Step 3 and Step 1 is in opening
an account, where the user is queried for the type of account
(checking or savings) to open.

• When you run the case study, you should find similar
behavior to Step 1.

− The difference, of course, is that when you open accounts,
you specify checking or savings.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 14-35
 All Rights Reserved

Summary

• In this chapter we discussed the mechanism of virtual
methods, which are not bound to an object at compile
time but are bound dynamically at runtime.

• Polymorphic code can simplify program development
and maintenance.

• C# provides keywords virtual and override that
precisely specify in base and derived classes,
respectively, that the programmer is depending on
runtime dynamic binding.

• A base class which is not intended to be instantiated
is said to be abstract, and must be derived from in
order to be useful.

• At the opposite end of the spectrum, a class is said to
be sealed if derivation is not allowed.

• A class hierarchy can be used to implement
heterogeneous collections that can be treated
polymorphically.

• Our bank case study provides a nice example of a
heterogeneous collection of savings and checking
accounts.

