
Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-1
 All Rights Reserved

Chapter 11

Characters and Strings

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-2
 All Rights Reserved

Characters and Strings

Objectives

 After completing this unit you will be able to:

• Use the string class to address several common
programming problems.

• Use the StringBuilder class in situations requiring a
mutable string.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-3
 All Rights Reserved

Characters

• C# provides the primitive data type char to represent
individual characters. A character enclosed in single
quotes represents a character literal.

char ch1 = 'a';

• A C# char is represented internally as an unsigned
two-byte integer. You can cast back and forth
between char and integer data types.

char ch1 = 'a';
int n = (int) ch1;
n++;
ch1 = (char) n; // ch1 is now 'b'

• The relational operators ==, <, >, and so on apply to
char.

char ch1 = 'a';
char ch2 = 'b'
if (ch1 < ch2) // expression is true
 ...

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-4
 All Rights Reserved

Sample Program

// CharTest.cs

using System;

public class CharTest
{
 public static void Main(string[] args)
 {
 char ch1 = 'a';
 char ch2 = 'b';
 Console.WriteLine("ch1 = {0}, ch2 = {1}",
 ch1, ch2);

 // demonstrate inequality for char
 if (ch1 < ch2)
 Console.WriteLine(ch1 + " < " + ch2);
 else if (ch1 == ch2)
 Console.WriteLine(ch1 + " == " + ch2);
 else
 Console.WriteLine(ch1 + " > " + ch2);

 // demonstrate casting between integers
 int n = (int) ch1;
 n++;
 ch1 = (char) n;
 Console.Write("After increment: ");
 Console.WriteLine("ch1 = {0}, ch2 = {1}",
 ch1, ch2);
 if (ch1 < ch2)
 Console.WriteLine(ch1 + " < " + ch2);
 else if (ch1 == ch2)
 Console.WriteLine(ch1 + " == " + ch2);
 else
 Console.WriteLine(ch1 + " > " + ch2);
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-5
 All Rights Reserved

Character Codes

• The integer corresponding to a character is referred
to as its character code.

− You can easily write a C# program to display character
codes.

• The program CharCode provides an illustration.
// CharCode.cs

using System;

public class CharCode
{
 public static void Main(string[] args)
 {
 byte nA = (byte) 'A';
 byte nZ = (byte) 'Z';
 for (int i = nA; i <= nZ; i++)
 {
 Console.Write(i + " ");
 Console.WriteLine((char) i);
 }
 char ch = '\u0041';
 Console.WriteLine(ch);
 }
}

• The output gives you a table of character codes for
'A' through 'Z'.

− The last line shows the character 'A' via a special Unicode
escape sequence for characters (discussed in the next
section).

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-6
 All Rights Reserved

ASCII and Unicode

• Traditionally, a one-byte character code called ASCII
has been used to represent characters.

− ASCII code is simple and compact.

− But ASCII cannot be used to represent many different
alphabets used throughout the world.

• Modern computer systems prefer to use a two-byte
character code called Unicode.

− Most modern (and many ancient) alphabets can be
represented by Unicode characters.

− ASCII is a subset of Unicode, corresponding to the first 255
Unicode character codes.

− For more information on Unicode, you can visit the Web site
www.unicode.org.

− C# uses Unicode to represent characters.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-7
 All Rights Reserved

Escape Sequences

• You can represent any Unicode character in a C#
program by using the special escape sequence
beginning with \u followed by hexadecimal digits.

char A = '\u0041'; // 41 (hex) is 65 (dec) or
'A'

• Special escape sequences are provided for a number
of standard non-printing characters and for
characters like quotation marks that would be
difficult to represent otherwise.

Escape
Character

Name Value

\’ Single quote 0x0027
\” Double quote 0x0022
\\ Backslash 0x005C
\0 Null 0x0000
\a Alert 0x0007
\b Backspace 0x0008
\f Form feed 0x000C
\n New line 0x000A
\r Carriage return 0x000D
\t Horizontal tab 0x0009
\v Vertical tab 0x000B

• The program Escape illustrates a few escape
sequences in a C# program.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-8
 All Rights Reserved

Strings

• More useful in programs than individual characters
are strings of characters.

• C# provides a string type, which is an alias for the
String class in the System namespace.

− As a class type, string is a reference type.

− Much string functionality, available in all .NET languages, is
provided by the String class.

− The C# compiler provides additional support to make
working with strings more concise and intuitive.

• In this section we will first outline the main features
of the String class.

• We will then look at string input, at the additional
support provided by C#, and at the issues of string
equality.

• The following section surveys some of the useful
methods of the String class.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-9
 All Rights Reserved

String Class

• The String class inherits directly from Object and is a
sealed class, which means that you cannot further
inherit from String.

− We will discuss inheritance and sealed classes in Chapters 13
and 14.

− When a class is sealed, the compiler can perform certain
optimizations to make methods in the class more efficient.

• Instances of String are immutable, which means that
once a string object is created, it cannot be changed
during its lifetime.

− Operations that appear to modify a string actually return a
new string object.

− If, for the sake of efficiency, you need to modify a string-like
object directly, you can make use of the StringBuilder class,
which we will discuss in a later section.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-10
 All Rights Reserved

Compiler Support

• The C# compiler provides a number of features to
make working with strings easier and more intuitive:

− String literals and initialization

− Concatenation

− Index

− Relational operators

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-11
 All Rights Reserved

String Literals and Initialization

• You can define a string literal by enclosing a string of
characters in double quotes.

− Special characters can be represented using an escape
sequence, as discussed earlier in the chapter.

− You may also define a “verbatim” string literal using the @
symbol.

− In a verbatim string, escape sequences are not converted but
are used exactly as they appear.

− If you want to represent a double quote inside a verbatim
string, use two double quotes.

• The proper way to initialize a string variable with a
literal value is to supply the literal after an equal sign.

− You do not need to use new like you do with other data
types.

− The following provides some examples of string literals and
initializing string variables:

string s1 = "bat";
string path1 = "c:\\OI\\CSharp\\Chap11\\Concat";
string path = @"c:\OI\CSharp\Chap11\Concat\";
string greeting = @"""Hello, world""";

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-12
 All Rights Reserved

Concatenation

• The String class provides a method Concat for
concatenating strings.

− In C# you can use the plus operator + to perform
concatenation.

− As we saw in Chapter 10, when + is overloaded, you
automatically get an overload of the compound operator +=.

− The program Concat illustrates string literals and
concatenation.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-13
 All Rights Reserved

Index

• A string has a zero-based index, which can be used to
access individual characters in a string.

− That means that the first character of the string str is str[0],
the second character is str[1], and so on.

• You can extract an individual character from a string
using a square bracket and a zero-based index.

string s1 = "bat";
char ch = s1[0]; // contains ‘b’

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-14
 All Rights Reserved

Relational Operators

• In general, for reference types, the == and !=
operators check if the object references are the same,
not whether the contents of the memory locations
referred to are the same.

− However, the String class overloads these operators, so that
the textual content of the strings is compared.

• The program StringRelation illustrates using these
relational operators on strings.

− The inequality operators, such as <, are not available for
strings; use the Compare method.

using System;

public class StringRelation
{
 public static void Main(string[] args)
 {
 string a1 = "hello";
 string a2 = "hello";
 string b = "HELLO";
 string c = "goodbye";
 Console.WriteLine("{0} == {1}: {2}",
 a1, a2, a1 == a2);
 Console.WriteLine("{0} == {1}: {2}",
 a1, b, a1 == b);
 Console.WriteLine("{0} != {1}: {2}",
 a1, c, a1 != c);
 //Console.WriteLine("{0} < {1}: {2}",
 // a1, c, a1 < c); //illegal
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-15
 All Rights Reserved

String Equality

• To fully understand issues of string equality, you
should be aware of how the compiler stores strings.

− When string literals are encountered, they are entered into an
internal table of string identities.

− If a second literal is encountered with the same string data, an
object reference will be returned to the existing string in the
table; no second copy will be made.

− As a result of this compiler optimization, the two object
references will be the same, as represented in this figure.

a "hello"

b

• You should not be mislead by this fact to conclude
that two object references to the same string data will
always be the same.

− If the contents of the string get determined at runtime, for
example, by the user inputting the data, the compiler has no
way of knowing that the second string should have an
identical object references.

− Hence you will have two distinct object references, which
happen to refer to the same data, as illustrated in this figure.

a "hello"

c "hello"

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-16
 All Rights Reserved

String Comparisons

• As discussed, when strings are checked for equality,
either through the relational operator == or through
the Equals method, a comparison is made of the
contents of the strings, not of the object references.

− So in both the previous cases, the strings a and b will check
out as equal.

− You have to be more careful with other reference types,
where reference equality is not the same as content equality.

− We will see an example shortly when we discuss the
StringBuilder type.

− Comparison operations on strings are by default case-
sensitive, although there is an overloaded version of the
Compare method that permits case-insensitive comparisons.

− The empty string should be distinguished from null.

− If a string has not been assigned, it will be a null reference.

− Any string, including the empty string, compares greater than
a null reference.

− Two null references compare equal to each other.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-17
 All Rights Reserved

String Comparison

• The fundamental way to compare strings for equality
is to use the Equals method of the String class.

− There are several overloaded versions of this function,
including a static version that takes two string parameters,
and a non-static version that takes one string parameter that
is compared with the current instance.

− These methods test if the contents of the strings are identical
and are case sensitive. A bool value of true or false is
returned.

• If you wish to perform a case-insensitive comparison,
you may use the Compare method.

− This method has several overloaded versions, all of them
static.

− Two strings, s1 and s2, are compared.

− An integer is returned expressing the lexical relationship
between the two strings, as shown in the table.

Relationship Return Value
s1 less than s2 Negative integer
s1 equal to s2 0
s1 greater than s2 Positive integer

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-18
 All Rights Reserved

String Comparison (Cont’d)

• A third parameter allows you to control the case
sensitivity of the comparison.

− If you use only two parameters, a case-sensitive comparison
is performed. The third parameter is a bool. A value of false
calls for a case-sensitive comparison, and a value of true
calls for ignoring case.

• The program StringCompare illustrates a number of
comparisons, using both the Equal and Compare
methods.

// StringCompare.cs

using System;

public class StringCompare
{
 public static void Main(string[] args)
 {
 string a1 = "hello";
 string a2 = "hello";
 string b = "HELLO";
 string c = "goodbye";
 Console.WriteLine("{0}.Equals({1}): {2}",
 a1, a2, a1.Equals(a2));
 Console.WriteLine(
 "String.Equals({0},{1}): {2}",
 a1, a2, String.Equals(a1,a2));
 Console.WriteLine("Case sensitive...");
 Console.WriteLine(
 "String.Compare({0},{1}): {2}",
 a1, b, String.Compare(a1,b));
 ...

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-19
 All Rights Reserved

String Input

• The Console class has methods for inputting
characters and strings.

− The method Read will read in a single character (as an int).

− The method ReadLine will read in a line of input, terminated
by a carriage return, line feed, or combination, and will return
a string.

− In general, the ReadLine method is the easier to use and
synchronizes nicely with Write and WriteLine.

− The program ReadStrings illustrates reading in a first name,
a middle initial, and a last name.

− All input is done via ReadLine.

− The middle initial as a character is determined by extracting
the character at position 0.

• Our InputWrapper class, which we introduced in
Chapter 2 and have used from time to time, has a
method getString, which provides a prompt and reads
in a string.

• For an illustration in this chapter of using
InputWrapper for string input, see the program
StringDemo.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-20
 All Rights Reserved

String Methods and Properties

• In this section we will survey a few useful methods
and properties of the String class.

− Many of the methods have various overloaded versions. We
show a representative version.

− Consult the online documentation for details on these and
other methods.

− The program StringMethods demonstrates all the examples
that follow.

• Length
public int Length {get;}

− This property returns the length of a string. Notice the
convenient shorthand notation that is used for declaring a
property.

 string str = "hello";
 int n = str.Length; // 5

• ToUpper
public string ToUpper();

− This method returns a new string in which all characters of
the original string have been converted to upper case.

 str = "goodbye";
 str = str.ToUpper(); // GOODBYE

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-21
 All Rights Reserved

More String Methods and Properties

• ToLower
public string ToLower();

− This method returns a new string in which all characters of
the original string have been converted to lower case.

 str = str.ToLower(); // goodbye

• Substring
public string Substring(int startIndex,
 int length);

− This method returns a substring that starts from a specified
index position in the value and continues for a specified
length. Remember that in C# the index of the first character
in a string is 0.

 string sub = str.Substring(4,3); // bye

• IndexOf
public int IndexOf(string value);

− This method returns the index of the first occurrence of the
specified string. If the string is not found, –1 is returned.

 str = "goodbye";
 int n1 = str.IndexOf("bye"); // 4
 int n2 = str.IndexOf("boo"); // -1

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-22
 All Rights Reserved

StringBuilder Class

• As we have discussed, instances of the String class are
immutable.

− As a result, when you manipulate instances of String you are
frequently obtaining new String instances.

− Depending on your applications, creating all these instances
may be expensive.

− The .NET library provides a special class StringBuilder
(located in the System.Text namespace) in which you may
directly manipulate the underlying string without creating a
new instance.

− When you are done, you can create a String instance out of
an instance of StringBuilder by using the ToString method.

• A StringBuilder instance has a capacity and a
maximum capacity.

− These capacities can be specified in a constructor when the
instance is created.

− By default, an empty StringBuilder instance starts out with
a capacity of 16.

− As the stored string expands, the capacity will be increased
automatically.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-23
 All Rights Reserved

StringBuilderDemo

• The program StringBuilderDemo provides a simple
demonstration of using the StringBuilder class.

− It shows the starting capacity and the capacity after strings
are appended. At the end, a String is returned.

// StringBuilderDemo.cs

using System;
using System.Text;

public class StringBuilderDemo
{
 public static void Main(string[] args)
 {
 StringBuilder build = new StringBuilder();
 Console.WriteLine("capacity = {0}",
 build.Capacity);
 build.Append(
 "This is the first sentence.\n");
 Console.WriteLine("capacity = {0}",
 build.Capacity);
 build.Append(
 "This is the second sentence.\n");
 Console.WriteLine("capacity = {0}",
 build.Capacity);
 build.Append("This is the last sentence.\n");
 Console.WriteLine("capacity = {0}",
 build.Capacity);
 string str = build.ToString();
 Console.Write(str);
 }
}

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-24
 All Rights Reserved

StringBuilder Equality

• You should be aware that StringBuilder instances are
object references and obey the normal rules of
reference equality.

• Thus if you have two distinct StringBuilder references
that happen to have the same contents, these
references will not compare as equal using the
relational operator ==, but they will compare as equal
using the Equals method.

• The StringBuilderCompare program illustrates this
point.

− It also shows how the relational operator == is overloaded to
check for content equality in the case of string.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-25
 All Rights Reserved

Programming With Strings

• We conclude this chapter by providing several
common examples of programming with strings:

− Command Line Arguments

− Command Loops

− Splitting a String

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-26
 All Rights Reserved

Command Line Arguments

• The Main method contains a string array.

− The elements of this array are the arguments passed to the
program when the program is started from the command line.

• The program EchoArguments writes out each
argument on a separate line.

// EchoArguments.cs

using System;

public class EchoArguments
{
 public static void Main(string[] args)
 {
 foreach (string arg in args)
 Console.WriteLine(arg);
 }
}

• We previewed arrays and the foreach loop in Chapter
6, and we will discuss arrays in more detail in
Chapter 12.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-27
 All Rights Reserved

Command Line Arguments in the IDE

• You can set command line arguments in the Visual
Studio IDE from the project properties.

− Go to Configuration Properties | Debugging

− Save the .csproj.user file for this setting to be preserved.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-28
 All Rights Reserved

Command Loops

• A common pattern for console programs is for there
to be a “command loop.”

− Commands are entered at the keyboard in response to a
prompt, the command typed in is compared to the supported
commands, and the appropriate code is executed for each
command.

− This command processing continues in a loop until an
appropriate command such as “quit” is entered to stop the
processing.

Console.WriteLine("Enter command, 'quit' to exit");
cmd = iw.getString("> ");
while (! cmd.Equals("quit"))
{
 if (cmd.Equals("length"))
 // process "length" command
 else if (cmd.Equals("new"))
 // process " new " command
 else if (cmd.Equals("show"))
 // process " show " command
...
 else
 help();
 cmd = iw.getString("> ");
}

• The program StringDemo illustrates such a command
loop.

− This program provides an interactive demonstration of a
number of methods of the String class.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-29
 All Rights Reserved

Splitting a String

• The String class provides a very useful method, Split,
that can be used for splitting a string into substrings,
based on specified characters that are used as
separators.

string[] Split(char[] separator);

− The separators (such as blank, comma, tab, and new line) are
placed in an array of characters, which is passed to the Split
method.

− The substrings that are delimited by these separators are
returned as an array of strings.

− If the separators do not occur, the whole string is returned as
a one-element array.

• The program StringSplit provides an illustration of
the use of this method.

− If you are not accustomed to the foreach loop, you may wish
to refer back to Chapter 6.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. 11-30
 All Rights Reserved

Summary

• In this chapter we studied the C# data types char and
string.

• In C# characters are represented in Unicode and take
up 16 bits.

• The C# string data type is an alias for the String class,
which has a number of useful methods.

• The C# compiler makes working with strings
somewhat easier, allowing you to use operators for
concatenation and testing for equality.

• Instances of String are immutable once they have
been created. A special class StringBuilder can be
used in situations where we want to make changes to
a string without creating a new object.

• We concluded the chapter by looking at several
common programming situations involving strings,
including working with command line arguments,
processing a command loop, and splitting a string
into constituent parts.

