

Exercises and Case Study

Revision 1.0

Introduction to C#
Using .NET

Rev. 1.0 Copyright ©2003 Object Innovations, Inc. ii
 All Rights Reserved

Introduction to C# Using .NET
Exercises and Case Study
Rev. 1.0

These exercises are designed to accompany the book Introduction to C# Using .NET by Robert J.
Oberg and published by Prentice Hall PTR, Upper Saddle River, NJ 07458.

© 2002 by Robert J. Oberg
ISBN 0-13-041801-3
www.phptr.com

Information in this document is subject to change without notice. Companies, names and data used
in examples herein are fictitious unless otherwise noted. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without the express written permission of Object Innovations.

Product and company names mentioned herein are the trademarks or registered trademarks of their
respective owners.

Exercises have Copyright ©2003 Object Innovations, Inc. All rights reserved.

Object Innovations, Inc.
4515 Emory Lane
Charlotte, NC 28211
877-558-7246
www.ObjectInnovations.com

Printed in the United States of America.

Rev. 1.0 Copyright ©2003 Object Innovations, Inc. iii
 All Rights Reserved

Table of Contents

Introduction
Chapter 1 .NET Framework
Chapter 2 First C# Programs
Chapter 3 Visual Studio .NET
Chapter 4 Simple Data Types
Chapter 5 Operators and Expressions
Chapter 6 Control Structures
Chapter 7 Object-Oriented Programming (no programs)
Chapter 8 Classes
Chapter 9 The C# Type System
Chapter 10 Methods, Properties and Operators
Chapter 11 Characters and Strings
Chapter 12 Arrays and Indexers
Chapter 13 Inheritance
Chapter 14 Virtual Methods and Polymorphism
Chapter 15 Formatting and Conversion
Chapter 16 Exceptions
Chapter 17 Interfaces
Chapter 18 Interfaces and the .NET Framework
Chapter 19 Delegates and Events
Chapter 20 Advanced Features
Chapter 21 Components and Assemblies
Chapter 22 Introduction to Windows Forms
Appendix Case Study: The Electronic Commerce Game

Rev. 1.0 Copyright ©2003 Object Innovations, Inc. iv
 All Rights Reserved

Rev 1.0 Copyright © 2003 Object Innovations, Inc. Intro-1
 All Rights Reserved

Introduction to C# Using .NET
Exercises and Case Study

Introduction

Learning a programming language is much like learning any other skill. It requires lots of
practice! These exercises are designed to give you practice with Microsoft’s new
programming language, C#. If you are an experienced programmer, you can probably
skip most of the exercises in the early chapters and focus on the later chapters that discuss
some features of C# that may be less familiar to you from earlier languages. If you are
new to programming, do as many exercises as you can!

These exercises map to the chapters in the book Introduction to C# Using .NET. This
write-up can be viewed as a reader’s guide to the book. The focus is on the new
programmer. If you already have another programming language under your belt, you can
go directly to exercises in areas where you’d like a little reinforcement of your
understanding. There is also a major case study.

C# as a First Programming Language

There have been many programming languages in vogue for learning programming.
There is a tension between learning a language that will be “useful” in the real world, and
one that is friendly to the newcomer. Happily, the popular languages for beginners are
usually quite useful for practical applications. The first programming language I learned
was FORTRAN (which is an acronym for FORmula TRANslation), a language designed
originally for mathematical computations and widely used for a variety of other
applications. My second language was BASIC (Beginners All-purpose Symbolic
Instruction Code). I could not believe how easy BASIC was to learn! Bill Gates got his
start writing a Basic interpreter for early personal computers. After dabbling in Algol I
learned Pascal shortly after the language was released by its creator, Nicklaus Wirth. Like
BASIC, Pascal was intended for learning programming. Unlike BASIC, it was designed
with a view to teaching sound programming methodology, including disciplined use of
data structures and control structures. After some experience with other languages, such
as PL/I, I came to C, a very elegant language. After having generally experienced little
difficulty in learning another language after my first, I found C to be a somewhat
surprising hurdle. Maybe it was the quirky expressions one could write. Maybe it was the
use of pointers. Whatever, it did present some hurdles, but once over them I enjoyed the
language a lot.

While learning various languages I also became interested in programming methodology.
“Structured programming,” with the disciplined use of a limited number of control
structures, seemed like a very natural concept, readily supported by languages such as
Pascal, PL/I and C. Early FORTRAN did not have IF ... THEN ... ELSE or a WHILE
loop, so you could not naturally write structured code in FORTRAN (you could write
code in a structured way by using GOTO in a disciplined way, adhering to certain
conventions, but this was somewhat artificial). There were a number of preprocessors

Rev 1.0 Copyright © 2003 Object Innovations, Inc. Intro-2
 All Rights Reserved

developed that would take “structured FORTRAN” and generate standard FORTRAN. In
one of my programming classes, a team of students developed their own preprocessor
called BIGFOR, which was actually used as the language of choice by one of my students
in a later class! FORTRAN 77 added structured control to the standard language, and
from then on most mainstream programming languages automatically supported
structured programming.

Beyond disciplined control structures is structured handling of data. A key idea is
“information hiding,” in which data would be encapsulated and only made accessible
through functions. A useful program construct is an “informational-strength module” in
which data is hidden, with access through only well-defined entry points. Informational-
strength modules can be implemented in languages like C and C++.

I started to hear about “object-oriented programming,” and wondered how this went
beyond programming concepts with which I was already familiar. I thought that I was
already creating “objects” with encapsulated data and operations in the informational-
strength modules that I was writing. I did not quite grasp the concept of “instantiation”,
allowing many objects to be created from a given template or “class.” As early languages
like FORTRAN did not directly support structured programming, languages such as C
and PL/I did not directly support object-oriented programming. To cleanly implement
classes you needed a new programming language construct. And the early history was
similar to that of structured languages. Bjarne Stroustrup’s first implementation of an
object-oriented language was to create a preprocessor that would transform code in a
language called “C with Classes” to ordinary C. His new programming language quickly
became C++, the first object-oriented language that I learned.

Learning C++ presented some hurdles for me, just like C had done earlier. By this time I
was comfortable with the features of the language in common with C, but there were a
surprising number of nuances in things like copy constructors, the use of const and the
like.

As a teacher I have always been interested in how to teach programming languages, and
in particular how to teach beginning programmers. I never considered C++ as a first
language – it was just too complex.

Then came Java. By design, the language was simpler than C++ (for example, there is no
multiple-inheritance). This time, I thought, surely the learning curve will be easier for
me! I understood object-oriented programming, and the basic syntax of Java was like C,
so it will surely be a snap. Not so! For one thing, even the programming model is a little
different from conventional languages. You don’t run a compiler to create a machine-
language program, which then gets executed. Instead, you generate “bytecode,” which
gets executed by the Java Virtual Machine. “Running” the program involves invoking the
JVM. The JVM may be invoked for you by a Web browser, which downloads and runs a
Java “applet.” We’re not in Kansas anymore! But you can have a simpler environment,
which is to write command-line programs, compile them to a Java class file, and then
invoke the JVM yourself to execute the class file. Quite a bit is going on behind the

Rev 1.0 Copyright © 2003 Object Innovations, Inc. Intro-3
 All Rights Reserved

scenes, but operationally, at least, what you do is reasonably straightforward. So I was off
and running to teach myself Java. I wrote “Hello, world”, which was easy. Now for my
second program, to echo back my own name. I stared and stared at the documentation
and at introductory Java books and could not see how to do input from the command-
line! It had to do with streams, and eventually I learned how to do it using several Java
classes, but it was not easy. Bummer! Fortunately, once you understand the problem, the
solution is reasonable—encapsulate the input operation through a class. A good friend of
mine who knew Java well wrote an InputWrapper class for me, and I could then write
an introduction to Java course, building up programming skills step-by-step, using object-
oriented concepts quite early.

When Microsoft introduced C#, I was curious about how easy it would be to learn this
new language. After my earlier experiences with C, C++ and Java, I wondered what the
learning curve would be like. I was delighted at how easy the language was! For one
thing, the conceptual foundation was a little cleaner. Just like a Java compiler generates
bytecode, a C# compiler generates Intermediate Language or IL. But the packaging is a
little bit easier. Instead of a class file that is interpreted by a JVM, IL is packaged inside
an ordinary EXE file, which can be run at the command-line (provided the Common
Language Runtime is installed on your machine). Next I wanted to write my little “echo”
program, and, unlike Java, this was easy in C#. The same Console class that has the
WriteLine method for output has an easy-to-use ReadLine method for input. So we are
off and running with a simple testbed without any fuss. It turns out the rest of the
language is quite regular. For example, “everything is an object,” and simple data types
can be treated like objects when needed, without resort to special wrapper classes.

My conclusion: C# is a wonderful first programming language. I hope you will enjoy it!

Case Study: The Electronic Commerce Game

There are many approaches to learning a programming language. You can read about it,
and you can read code. To really learn it, you need to write programs—many programs.
In the case of an object-oriented language, you should also gain some experience writing
larger programs, because it is only in “programming in the large” that the benefit of the
object-oriented approach really emerges. The book provides one case study, a banking
system, that is developed incrementally in Chapters 12 – 18 with a componentized
version in Chapter 21. These exercises provide a somewhat more elaborate case study,
The Electronic Commerce Game. It is developed in ten steps, Chapters 12 – 19 and
Chapters 21– 22. The final version is a Windows application, with the business logic
encapsulated in a class library. Detailed instructions for developing the case study are
provided in the chapter exercises, and an overview is presented in the appendix. Another
good way to get an understanding of the game is to experiment with the final Windows
program in Chapter 22. You can use the write-up in Chapter 22 as a player’s guide.

Robert J. Oberg
Object Innovations

Rev 1.0 Copyright © 2003 Object Innovations, Inc. Intro-4
 All Rights Reserved

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 1-1
 All Rights Reserved

Chapter 1 – .NET Framework

The first chapter starts off with “.NET: What You Need to Know,” which turns out not to
be very much in order to compile and run your first program! The exercises for this
chapter are essentially a few variations of the famous “Hello, world” program. We’ll
preview a few topics that you’ll study in Chapter 2, and we invite you to begin looking at
the .NET Framework online documentation.

Ex. 1.1 Type in and run the following program:

// Name.cs

class Name
{
 public static void Main()
 {
 string myName = "Bob";
 string greeting = "Hello, " + myName;
 System.Console.WriteLine(greeting);
 }
}

Note the use of the string variables myName and greeting. Note also the use of the +
operator for concatenating (joining together) two strings. Modify the program to use your
own name.

Ex 1.2 Create a program to display a 4x4 square using the asterisk symbol *. Thus your
program should display:

* *
* *

Ex 1.3 Write a program to prompt the user to enter a name, read the name typed in at the
keyboard, and print a greeting message welcoming the user by name. To do this you will
need to do a little research on the System.Console class. Look up the online
documentation for this class and see if you can figure out how to use the Write and
ReadLine methods. You can base your solution on the Name program in Exercise 1.1.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 1-2
 All Rights Reserved

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 2-1
 All Rights Reserved

Chapter 2 – First C# Programs

In this chapter you can begin writing C# programs in earnest. True, you don’t know
enough about C# yet to do anything complicated, but you can accomplish a surprising
amount using very simple C#. As discussed in the book on page 28, you can use C# as a
miniature calculator by writing little programs to do arithmetic. You can either hardcode
the numbers used in the calculation into the program, or you can read the numbers in at
runtime. For input, you can use the InputWrapper class discussed on pages 30 – 32.
Using this class provides an example of creating an object using the new operator, our
first taste of object-oriented programming! Using .NET Framework classes in your
programs can be simplified somewhat by applying the using keyword to a namespace.
Finally, you can control output more conveniently by using placeholders.

In these exercises you’ll get practice with all these concepts, and we’ll preview some
other features of C#!

Ex. 2.1 Write a program to calculate the area of a triangle.

(a) Do this with hardcoded base of 15 inches and height of 5 inches.
(b) Write a general program that will prompt the user to enter a base and height and

calculate the area of the corresponding triangle.

Ex. 2.2 Write a program to calculate the cube of a number entered by the user.

(a) Do this by multiplication.
(b) Do this by raising the number to the power 3. (Hint: look at the Math class for a

method that you can use.)

Ex 2.3 Write a program to compute the volume of a sphere. The user should be
prompted to enter the radius R, and your program should calculate the volume using the

formula 3

3
4 RV π= . For pi you may use 3.1416. Or, try to find a more exact value using

the Math class.

Ex. 2.4 Write a program to calculate the accumulation of $300 at 5% simple interest over
a period of 8 years. (Answer: $420.00)

Ex. 2.5 Do the same problem, only using compound interest, where the interest is
compounded annually. Your program should be general, allowing the user to enter the
principal, interest rate, and number of years. You may use the compound interest formula

NRPA)1(+= , where P is the principal, R is the interest rate, N is the number of years,
and A is the amount accumulated. (Answer for input data from Ex. 2.4: $443.24)

Ex. 2.6 Write a program to round an arbitrary double number to two decimal places.
Can you think of two different ways to do this problem?

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 2-2
 All Rights Reserved

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 3-1
 All Rights Reserved

Chapter 3 – Visual Studio .NET

In this chapter you can begin using Visual Studio .NET to create projects, edit files, and
run and debug programs. As practice you can create Visual Studio projects for all the
previous exercises you have done and run them in Visual Studio. The supplied answers
provide suitable project files. In this short problem set you will implement a new
program, taking care to do everything in Visual Studio.

In an optional exercise you will preview creating Windows applications using Visual
Studio. If you are familiar with Visual Basic, you should find creating Windows apps
using Visual Studio .NET a snap. You may then wish to implement some Windows
versions of exercises that follow, even though we won’t officially come to Windows
programming until Chapter 22!

Ex. 3.1 You own a small company for which you believe you can double the sales in the
next year. Write a program to calculate by what rate your company will need to grow
each quarter in order to achieve your goal.

(a) Calculate the quarterly growth rate by solving the equation
2)1(4 =+ r

(b) Check your work by multiplying by (1+r) four times.
(c) Single-step in the debugger and inspect the variable representing the current

increase in sales each quarter. When you reach the fourth quarter, this value
should be 2.0.

Ex. 3.2 Create a Windows application SayHello that has one textbox for displaying a
greeting and two buttons. One button has the text Say Hello and will cause the greeting
Hello, Windows to be displayed in the textbox. The second button has the text Clear and
will cause the textbox to become blank.

(a) Create a C# project of type Windows Application with name SayHello.
(b) Use the Form Designer to drag one textbox and two buttons onto the form, as

shown in the figure.
(c) Set the Name property of the textbox to txtMessage and of the buttons to

cmdSayHello and cmdClear. Set the Text property of the textbox to blank, and
of the buttons to the captions that are shown.

(d) Double-click each button to add a command handler in it.
(e) Add code to display an appropriate greeting, and to clear the greeting.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 3-2
 All Rights Reserved

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 4-1
 All Rights Reserved

Chapter 4 – Simple Data Types

This chapter begins the systematic study of the C# programming language with a careful
examination of the simple data types. Although this chapter does not immediately help
you write more interesting programs, it contains fundamental information that you need
to know as a C# programmer. Besides the textbook, it would be a good idea at this point
to start becoming acquainted with the official reference to the C# language, the C#
Language Specification published by ECMA International in December, 2002. The
standard is available as a PDF file Ecma-334.pdf and can be downloaded from the Web
site http://www.ecma-international.org.

Ex. 4.1 Download the ECMA C# specification and answer the following historical
questions about C#.

(a) Who are the principal inventors of C#?
(b) What companies co-sponsored the submission of C# to ECMA along with

Microsoft?
(c) When did Microsoft release the first widely available version of C#?
(d) Which of the following is not a design objective for C#?

i. Be a simple, modern, general-purpose, object-oriented programming
language.

ii. Source code portability and programmer portability for programmers
already knowing C and C++.

iii. Runtime and size performance comparable to what can be obtained by C
and C++.

iv. Useful for developing software components suitable for deployment in
distributed environments.

v. Support for internationalization.

Ex. 4.2 Write a program to display the smallest and largest of each of the signed integer
types, arranged from smallest to largest, each on a separate line.

Ex. 4.3 Study the section on literals in the ECMA C# Language Specification and
answer the following questions:

(a) What are the possible boolean literal values?
(b) What data types can be stored in an integer literal?
(c) What data types can be stored in a real literal?
(d) Write a character literal to represent each of the following: slash, backslash, single

quote, double quote.

Ex. 4.4 Write a program which will display, each on a separate line, a slash, backslash,
single quote, and double quote. Show both the literal inside a single quote and not inside
a single quote. The output should look like this:

'/' = /
'\' = \
''' = '
'"' = "

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 4-2
 All Rights Reserved

Ex 4.5 Write a program which will find the numerical representation of the following
characters: ‘A’, ‘Z’, ‘a’, ‘z’. Also find out the character whose numeric representation is
91. For extra credit, display the numerical value in both decimal and hex.

Ex 4.6 Write a program to perform the following conversions:

(a) The value 3.14 to an integer.
(b) The number 1 to boolean.
(c) The number 2 to boolean.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 5-1
 All Rights Reserved

Chapter 5 – Operators and Expressions

In this chapter we start working with the different operators provided by the C# language.
As a member of the C family of languages, C# enjoys a very rich set of operators.
Expressions can be built up by combining constants, variables and operators, and you can
perform many useful calculations by evaluating expressions and printing out the results.
These exercises should provide plenty of practice!

Ex. 5.1 Write a program to determine whether an integer read in at the console is
divisible by four. Don’t use any feature of C# that we have not discussed yet in the book!
And don’t even use the ternary ? : operator! (This exercise is the beginning of an
investigation of how to determine whether a year is a leap year—to be continued later.)
Read in two numbers, so that you can test for both a number divisible by four and a
number not divisible by four. Here is some sample output:
Number: 2003
Divisible by 4: False
Number: 2004
Divisible by 4: True

Ex. 5.2 Implement a different solution to the previous problem that will print a more
elaborate message than “True” or “False” for the divisibility by 4. Here is some sample
output:
Number: 2003
The number 2003 is not divisible by 4
Number: 2004
The number 2004 is divisible by 4

Ex. 5.3 Without using the computer, determine the values of the following expressions.
Again write a program to check your results.

(a) 365 / 7
(b) 365 % 7
(c) 365 / 7.0
(d) 1E1 / (1E1 – 1E1)
(e) 1 / (1 – 1)
(f) 1m / (1m – 1m)

Ex. 5.4 Given the following assignments:
int x = 44;
int y = 45;
int z = 0;

determine the value of the following expressions, evaluated sequentially. Try to work this
out with the computer. Then verify your work by writing a program.

(a) x++ == --y
(b) --x > y ? 5 : 10
(c) z = (++x – y++)
(d) z << 3
(e) z < 3
(f) z <<< 3
(g) x
(h) y

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 5-2
 All Rights Reserved

Ex. 5.5 Write a program to create a truth table for the bitwise AND operation.

Ex. 5.6 Write a program to assign a 32-bit integer and display the following 32-bit
numbers:

(a) The leftmost byte of the number read in, with remaining bits 0.
(b) The rightmost byte of the number read in, with remaining bits 0.
(c) The middle two bytes of the number read in, with remaining bits 0.

Display both the input number and the results in. Also, display the three masks you use.
For hex output, formatted to always show all 8 hex digits, you can use the following
helper method:
 private static void WriteHex(int x)
 {
 Console.WriteLine("{0,8:X8}", x);
 }

Ex. 5.7 Write a program to assign a 32-bit integer and swap the leftmost byte with the
rightmost byte. The middle two bytes should be left as they are. Display both the original
number and the swapped number in hex.

Ex. 5.8 The .NET Framework defines an enumeration type ThreadState to represent the
possible states a thread can be in. This enumeration allows a bitwise combination of
member values. Some combinations are valid and others are not. Without worrying right
now about what a thread is, consider how to obtain a readable string representation of a
numeric value representing a thread state. Here is a simplified table of member values of
the enumeration.

0 ThreadState.Run
8 ThreadState.Unstarted
16 ThreadState.Stopped
32 ThreadState.WaitSleepJoin
64 ThreadState.Suspended
128 ThreadState.AbortRequested

Write a program which provides a loop for entering integers, –1 for end of file. For each
number determine by masking which bit(s) are set and display the string(s) representing
the state.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 6-1
 All Rights Reserved

Chapter 6 – Control Structures

In this chapter we at last come to the control structures in C#. By using if tests and loops,
you can implement programming logic that will enable you to solve many problems. In
fact, the data types we have already discussed and the control structures covered in this
chapter together are sufficient to solve almost any problem that can be implemented by a
program in C#. Later concepts such as classes and methods will help us to write much
better structured programs and enable us to build large programming systems. But the
basic tools are already in place! There are more exercises than previously, because you
can now do more interesting things!

Ex. 6.1 Write a program to calculate a worker’s wage based on the number of hours
worked in a week. Assume that the base pay rate is $12.00 an hour, with time and a half
for overtime, which is defined as the number of hours worked beyond 40 hours.

Ex. 6.2 Write a program to determine whether a given year is a leap year or not. One
solution to this problem was presented in the chapter, making use of a complex Boolean
expression and a single if test. Implement a different solution using only simple Boolean
expressions and multiple if tests.

Ex. 6.3 The previous solution is a little awkward to test, because only a single year is
tested on any given run of the program. So to completely test the logic, you will need to
run the program four times. Modify the program so that the processing will be done
inside a loop. Use a year of 0 to terminate the loop. You should also maintain a count of
the number of years processed.

Ex. 6.4 Write a program to evaluate π from the formula.

6

2π
= ∑

∞

1
2

1
i

Your program in a loop should read in an integer N and then calculate an approximate
value of π by summing the series from 1 to N. Use a value of N = 0 to terminate the
loop. Here is a sample run:
N: 100
Approximate value of pi is 3.1320765318
N: 1000
Approximate value of pi is 3.1406380562
N: 10000
Approximate value of pi is 3.1414971639
N: 100000
Approximate value of pi is 3.1415831043
N: 1000000
Approximate value of pi is 3.1415916987
N: 10000000
Approximate value of pi is 3.1415925581
N: 0
Math.PI = 3.1415926536
Difference = 0.0000000955

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 6-2
 All Rights Reserved

Ex. 6.5 Write a program to create a truth table for the bitwise AND operation. Instead of
the brute force method used in Chapter 5, implement a solution using two loops, each of
which goes from 0 to 1.

Ex. 6.6 Write a program to assign a 32-bit integer and swap the leftmost byte with the
rightmost byte. The middle two bytes should be left as they are. Display both the original
number and the swapped number in hex. The following code will display a 32-bit number
in hex with all 8 hex digits shown:
 Console.WriteLine("{0:X8}", x);

Ex. 6.7 Write a program to display the accumulation in an IRA account year by year.
The program will accept the inputs:

• Annual Deposit = A
• Interest Rate = R
• Number of Years = N

Assume that a deposit is made at the end of each year and that interest is compounded
annually. Test with values of A = $2500.00, R = 0.05, N = 10. As a check of your work,
compare the total accumulation at the end with the amount calculated from the formula
provided in Chapter 5.

Ex. 6.8 A number greater than 1 is prime if it has no factors other than 1 and itself. Write
an interactive program to read a series of numbers and test each number for being prime.

Ex. 6.9 Write a program to determine all prime numbers less than 1000. Display the
results neatly in rows of 10 with the numbers lined up in columns. Also, display a count
of how many numbers less than 1000 are prime.

Ex. 6.10 Write an interactive program containing a command loop that lets the user enter
simple commands, which will be carried out. The commands are:

a) “add” – prompt for two numbers, which will be added and the sum displayed
b) “subtract” – prompt for two numbers, which will be subtracted and the difference

displayed
c) “quit” – exit the program

Any other command should cause a simple help message to be displayed that lists the
legal commands. Make use of the InputWrapper class to simplify input. You can store a
command in a string variable, and you can test for equality and inequality of strings
using the == and != operators. Here is a sample run of the program:
Enter command, 'quit' to exit
> help
legal commands are:
 add
 subtract
 quit
> add
first number: 5
second number: 7
sum = 12
> quit

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 8-1
 All Rights Reserved

Chapter 8 – Classes

We have been using classes in C# from the very beginning. Indeed, every C# program
has at least one class. However, it is only in this chapter that we have studied classes
systematically. Classes are the foundation for object-oriented programming in C#. They
are also the foundation for components, which we will study later. From now on, classes
will be very integral to all the C# programs we write.

It has been suggested that the traditional kind of “Hello World” program sets a poor
example of how programs should be constructed. See Ralph Westfall, “Hello, World
Considered Harmful”, Communications of the ACM, October, 2001, p. 129. The basic
argument is that the traditional program starts students thinking in terms of monolithic
programs, a habit that is hard to shake. Indeed, a few of our exercises in Chapter 6 are a
bit monolithic and might be clearer if they were broken down into smaller program units.
From now on we will aim to structure programs by building them from smaller units.

These exercises will give you practice in working with classes in C#. The last exercise
introduce the first of several classes that comprise The Electronic Commerce Game case
study. This case study will be developed incrementally, beginning in earnest in Chapter
12.

Ex. 8.1 Implement an object-oriented version of a basic “Hello World” program. Your
program should include a class that encapsulates a greeting string and provides the
following features:

a) A default constructor, for which greeting will be “Hello, world.”
b) A constructor taking a string parameter used to specify the greeting.
c) A method SetGreeting() which can be used to specify the greeting for an object

after it has been constructed.
d) A method DisplayGreeting() which can be used to display the current greeting at

the terminal.
Your program should also include a test program in a separate file that constructs several
greeting objects, specifying various greetings, which are displayed.

Ex. 8.2 Remember the exercise from Chapter 1 in which you wrote out a square using
the asterisk (*) character? Well, now you will create a Square class with various fields
and methods, including displaying the square graphically using asterisks. To keep life
simple, in this problem you can show the square solid. Your Square class should provide
the following features:

a) Private fields specifying the size and origin of the square as integers. The origin
(always zero or greater) specifies how many blank characters to display before
showing the square.

b) A constructor to initialize the size of a new square, with the origin set to 0.
c) A method Show() to display the square.
d) Methods SetSize() and GetSize() to set and get the size of the square.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 8-2
 All Rights Reserved

e) A method Move() to move the origin by a specified displacement. A positive
displacement moves the origin to the right, and a negative displacement moves
the origin to the left.

f) A method GetOrigin() to return the current origin.

Implement a test program that will instantiate a Square and perform various operations
on the square. The square should be shown so that you can verify the results of the
various operations.

Ex. 8.3 Enhance your Square class to add a private field specifying whether the square
should be displayed solid or in outline form. Provide a public method to set this field, and
modify the Show() method to display the square appropriately. You may find the code to
be somewhat cleaner if you use helper methods ShowSolid() and ShowOutline().
Enhance your test program to exercise the new functionality. Be sure to test boundary
conditions, such as a square of size 0 or 1.

Ex. 8.4 Implement a Triangle class with functionality similar to your Square class. You
may limit yourself to solid triangles, but you should be able to specify the size and origin.
A triangle should be displayed like this:
 *
 * *
 * * *
* * * *
size = 4, origin = 0

Ex. 8.5 Implement a ProductItem class to represent a product item. Your class should
implement the following features:

(a) Private fields to hold an integer id, a string description, and a decimal price.
(b) A private static member that can be used to auto-assign ids starting at 1.
(c) A constructor to initialize a new item given a description and a price.
(d) Methods to get the id, the description, and the price.
(e) A method to set the price.
(f) A method to discount an item by a given percentage amount. Note that a discount

must be between 0 and 100%. Display an error message if discount is outside this
range.

(g) A method to return a string that shows the fields of an item.
Implement a test program that will instantiate two items. Show the first item by using the
class method for showing an item. Show the second item that will use a private helper
method that displays item data by calling the various get methods. Assign a new price to
the first item and show it. Apply a discount to the second item and show it. Also try
applying illegal discounts that are negative and greater than 100%.

Ex. 8.6 Implement a Player class to represent a player in a game. Your class should
implement the following features:

(a) Public fields to hold a string name, a decimal balance, and a boolean flag
indicating whether the player is active.

(b) A private field to hold a string password.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 8-3
 All Rights Reserved

(c) A constructor to initialize a new player given a name, balance and password. The
player should be initialized as inactive.

(d) A method to return a string that shows the public fields of a player separated by
tabs.

(e) A method to check a string for being a valid password, returning a bool.
Implement a test program that will do the following:

(a) Instantiate a player object and show it
(b) Change the balance and active flag and show it again
(c) Give a user three chances to enter a correct password. If the user succeeds, the

player should be welcomed by name, other an error message should be displayed.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 8-4
 All Rights Reserved

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 9-1
 All Rights Reserved

Chapter 9 – The C# Type System

There are many different data types in C#. A fundamental distinction is between
reference types and value types. In Chapter 8 we studied the class type, which is a
reference types. Among the types studied in this chapter is struct, which is a value type.
The simple data types studied in Chapter 4 are value types. Enumerations are another
kind of value type. We will see a number of different reference types in the chapters
ahead, including the built-in object and string types.

Ex. 9.1 In this exercise you will study the differences between classes and structs.
Implement a class NameC which has the following features:

a) A public string field Name.
b) A default constructor which simply displays a message that a class object has

been created.
c) A constructor taking a string parameter which initializes the Name field to this

string and displays a message that a class object with specified name has been
created.

Implement a struct NameS which replicates as much of this functionality as possible.
Run your class and struct against the following test program. Make sure that you
understand every nuance of the output.

// TestName.cs

using System;

public class TestName
{
 public static void Main()
 {
 // class
 NameC c1 = null;
 ShowNameC(c1);
 c1 = new NameC();
 ShowNameC(c1);
 NameC c2 = new NameC("Amy");
 ShowNameC(c2);
 c1 = c2;
 ShowNameC(c1);
 c1.Name = "Bob";
 ShowNameC(c1);
 ShowNameC(c2);

 // struct
 NameS s1;
 s1.Name = "";
 ShowNameS(s1);
 NameS s2 = new NameS("Carol");
 ShowNameS(s2);
 s1 = s2;
 ShowNameS(s1);
 s1.Name = "David";
 ShowNameS(s1);

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 9-2
 All Rights Reserved

 ShowNameS(s2);
 }
 private static void ShowNameC(NameC n)
 {
 if (n == null)
 Console.WriteLine("Name is null");
 else
 Console.WriteLine("name = {0}", n.Name);
 }
 private static void ShowNameS(NameS n)
 {
 Console.WriteLine("name = {0}", n.Name);
 }
}

Output:

Name is null
Class object created
name =
Class object Amy created
name = Amy
name = Amy
name = Bob
name = Bob
name =
Struct object Carol created
name = Carol
name = Carol
name = David
name = Carol

Ex. 9.2 Write an interactive program that will allow you to test the four different types
supported by the InputWrapper class from Chapter 2. Your program should prompt for
a data type (“quit” to exit the program) and then prompt for a number of that type and
display the number read in.

Ex. 9.3 Create a new version of the InputWrapper class that will enable you to input
signed or unsigned integers of all types of 32 bits or less. Write an interactive test
program that will prompt for the data type and then prompt for a number of that type and
display the number read in.

Ex. 9.4 Write a program that will exercise an enumeration type Day defined as follows:

public enum Day : byte
{
 SUN, MON, TUE, WED, THU, FRI, SAT
}

Your program should prompt for an integer between 0 and 6 and convert the integer to a
value of type Day. Then, depending on the value, display a message showing the
corresponding day of the week. An input of 99 is used for end-of-file.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 9-3
 All Rights Reserved

Ex. 9.5 Enhance your Player class to keep track of a player’s role through a public data
member RoleId. This id should be of an enumeration type PlayerRole that has two
values, Shopper = 1 and Vendor = 2. Your constructor should add a parameter to
initialize the role id. The Show method should display a string representation of the role
id. The test program should simply prompt for values of a new player object, create this
object and then display it. Use an integer for inputting a role id and do the necessary
conversion in passing this id to the constructor.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 9-4
 All Rights Reserved

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 10-1
 All Rights Reserved

Chapter 10 – Methods, Properties and Operators

This chapter examines methods in detail. We study instance methods and static methods,
parameter passing, method overloading, and variable length parameter lists. C# has a
special property syntax that can be used to simplify the notation for get/set methods.
Finally, C# allows you to overload certain operators, providing a notation that is
sometimes a little more concise than method notation. These problems give you practice
with these various concepts.

Ex. 10.1 Implement a struct Vector that is an ordered set of three integers. A constructor
creates a vector given three integers. Define methods to implement vector addition, scalar
multiplication, and dot product. Use method names Sum and Product. Note that Product
is overloaded. Also implement a Show method that takes a string parameter that can be
used as a label. Create a suitable test program to exercise your class. Here is some sample
output from the test program:

a = (1, 2, 3)
b = (10, 20, 30)
sum = (11, 22, 33)
scalar product of a and 5 = (5, 10, 15)
dot product of a and b = 140

Ex. 10.2 Redo the previous exercise so that the Sum and the two Product methods are
all static. Thus these methods will now take two parameters, and when you invoke a
method you will qualify it by Vector rather than by an object instance.

Ex. 10.3 Now redo the exercise again, this time overloading the + operator for Sum and
the * operator for Product.

Ex. 10.4 Write a program to compare the behavior of a vector implemented as a struct
versus an implementation as a class. In each case the three integer data members will be
public (so you can change them). A constructor creates a vector given three integers. The
only method is Show. The struct version will be called Vector and the class version
CVector. Write a test program that has the following features:

a) A method Copy that takes a Vector parameter and returns this same vector.
b) An overloaded method Copy that takes a CVector parameter and returns this

same vector.
c) The Main method first creates and shows a Vector and a CVector.
d) It then copies the Vector and modifies the copy. Both the original and modified

vectors are shown.
e) It then copies the CVector and modifies the copy. Both the original and modified

vectors are shown.
Build and run. Make sure you understand clearly the reason for the different behavior of
the struct and class versions.

Ex. 10.5 We have been working with three-dimensional vectors. Now let’s create an N-
dimensional vector of integers using an array. Please review the preview material on

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 10-2
 All Rights Reserved

arrays in Chapter 6, and also the discussion of variable length parameter lists in Chapter
10. Implement a class Vector in which a vector will be represented by an array of
integers. Your class should have the following public members:

a) A constructor with a variable number of integer parameters .
b) A read-only property Size that returns the dimension of the vector.
c) A method Product that returns the scalar product of a vector and an integer

scalar.
d) A method Show that displays to the console a vector identified by a string label.

Create a test program to create and show vectors of various dimensions and also the
scalar product of a vector and an integer.

Ex. 10.6 Write a program to keep track of two player instances of the Player class that
you implemented in Chapter 8 (Exercise 6). Your class Players should implement the
following features:

a) A constructor to initialize two object instances.
b) A method ShowPlayers that will display the two players.
c) A method FindPlayer that will return a Player given a name, returning null if the

name does not match either player.
d) A method that will login in a player given name and password. The method has an

out parameter to pass back a reference to the Player object that has been logged
in (null if login not successful). A string is returned that is set to “OK” in case of
success and a descriptive error message otherwise. To succeed, the player must be
found and not already active, and the password must match. As part of the login,
the player is made active.

e) A method to logout a player given the name. Again a string is returned to indicate
success or failure. Logout makes the player inactive.

Implement a suitable test program to exercise your Players class and the Player class.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 11-1
 All Rights Reserved

Chapter 11 – Characters and Strings

String data is ubiquitous in programming. Strings are made up of individual characters.
This chapter examines characters and strings in detail and looks at a few typical uses of
strings in programs. A pattern for an interactive test program is introduced, consisting of
a simple command processing loop and a “help” message that is displayed whenever an
illegal command is introduced. The first two exercises involve implementing such
interactive test programs for previously developed classes. The third exercise presents a
slight refinement to this pattern, making the input command case insensitive. The
remaining exercises give you further practice in working with strings.

Ex. 11.1 Implement an interactive test program for the Players class from Chapter 10,
Exercise 6. Implement the following commands:

Enter command, quit to exit
: help
The following commands are available:
 list -- list players
 find -- find a player
 login -- login a player
 logout -- logout a player
 change -- change balance
 quit -- exit the program
:

Ex. 11.2 Implement an interactive test program for the shape classes from Chapter 8:
Square (Exercise 2) and Triangle (Exercise 4). Your program should maintain both a
Square object and a Triangle object, which can be manipulated by various commands:

Shape is square
> help
legal commands are:
 show -- show the shape
 size -- change the size
 move -- move the shape (+ for right, - for left)
 mark -- change the mark character
 triangle -- set shape to triangle
 square -- set shape to square
 quit -- exit the program
>

Ex. 11.3 Implement a case-insensitive version of the StringDemo example program
from this chapter. The behavior of the program should be the same, only the user may
enter commands in any case (all lower, all upper, or mixture of upper and lower).

Ex. 11.4 Write a program to read a series of strings from the console (empty string for
end-of-file). For each string display a count of the number of vowels, the number of
letters (alphabetic characters), and the total number of characters in the string.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 11-2
 All Rights Reserved

Ex. 11.5 Write a program to read a series of strings from the console (empty string for
end-of-file. For each string display the individual words in the string. A word is designed
as a contiguous sequence of letters, delimited by non-letters.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 12-1
 All Rights Reserved

Chapter 12 – Arrays and Indexers

Arrays are a very useful data type in computer programming. We previewed arrays in
Chapter 6 and have made occasional use of simple arrays since then. This chapter
discussed arrays in detail, and we will use arrays extensively from now on. With the help
of arrays we can now create more interesting programs.

For the next several chapters our problems are going to be mainly focused on a case
study, The Electronic Commerce Game, which you will build by incremental steps.
Please read the introduction to this case study in the Appendix before beginning work on
the exercises in this chapter.

Ex. 12.1 The most important class in the game is Player, which we implemented in
Chapter 8, Exercise 6. Our game can have multiple players, so the very first step will be
to create a new class PlayerList that can store a list of players. We will represent this list
by an array (and later use other data representations, such as a .NET collection). To get
started, implement the class with these features:

a) A constant MAXPLAYER to specify the size of the array. You can use a small
value to make it easy to test for array index out of bounds.

b) A static data member to keep track of the next index at which to add an array
element.

c) An array of type Player[] to hold the list of players.
d) A read-only property Count that will return the number of players.
e) A method AddPlayer that will create a new player given name, password and

starting balance and add it to the list. This method should return the string “OK” if
the operation was successful and a string with a descriptive error message if there
was an error.

f) A method Display that will display a list of all the players at the console.
Implement a simple driver test program to exercise your class. To save typing while you
test your program, you may wish to initialize PlayerList with some starting test data in
your code.

Enter command, quit to exit
player> help
The following commands are available:
 add -- add a new player
 list -- list player information
 quit -- exit the driver
player>

Ex. 12.2 The first version of our PlayerList class is rather primitive. A list should
usually have a unique key, which in our case will be the player name. Add code to your
class to ensure that player names are unique. If an attempt is made to add a player with
the same name as a player already on the list, an error message should be returned.

Ex. 12.3 There is a fundamental defect in the first implementation of our PlayerList
class—we do output in the class. Normally, that is not a good idea, because it makes the
code too specific, tying it to a specific form of user interface. A class such as PlayerList

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 12-2
 All Rights Reserved

that is concerned with data should normally not do user interface. If we later do a
different kind of user interface, for example a Windows graphical user interface, a data
class should not have to be changed. Note that in the Player class we observe this
principle; the Show method returns a string representation of a player rather than
performs console output. Modify the PlayerList class so that it does not do output. You
will also need to modify your driver test program.

Ex. 12.4 Now that we have a good, clean implementation of the basic functionality of
PlayerList, we can start to add features. Add the following methods. Unless otherwise
specified, the method should return a string that is “OK” if successful and otherwise is a
descriptive error message.

a) A method DeletePlayer that will delete a player given the name.
b) A method FindPlayer that returns the corresponding Player object if the name is

found and null otherwise.
c) A method GetBalance that will find the balance, returned as an out parameter,

given a player name.
d) A method SetBalance that will set a new balance for a player.
e) A method ChangeBalance that will adjust the balance of a player by a specified

amount (increasing the balance if the delta is positive, otherwise decreasing the
balance).

Add code to the test driver to exercise these new features.

Ex. 12.5 Add login and logout methods:

a) A method Login that will login in a player given name and password. The method
has an out parameter to pass back a reference to the Player object that has been
logged in (null if login not successful). A string is returned that is set to “OK” in
case of success and a descriptive error message otherwise. To succeed, the player
must be found and not already active, and the password must match. As part of
the login, the player is made active.

b) A method Logout to logout a player given the name. Again a string is returned to
indicate success or failure. Logout makes the player inactive.

Add code to the test driver to exercise these new features.

Ex. 12.6 Implement a class Item that will keep track of items on a shopping list. An item
consists of the name of a product and the quantity to be purchased. Provide a constructor
and a suitable Show method. Implement a class ItemList with the features shown below.
As usual, each method should return status in a string, unless otherwise specified.

a) A constant MAXITEM to specify the size of the array. You can use a small value
to make it easy to test for array index out of bounds.

b) A static data member to keep track of the next index at which to add an array
element.

c) An array of type Item[] to hold the list of items.
d) A read-only property Count that will return the number of players.
e) A method AddItem that will create a new item given name and quantity. Item

names should be unique, so return an error on an attempt to add a duplicate name.
f) A method GetItems that will return an array consisting of all the items on the list.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 12-3
 All Rights Reserved

g) A method DeleteItem that will delete an item given the name.
h) A method FindItem that returns the corresponding Item object if the name is

found and null otherwise.
i) A method ChangeQuantity that changes the quantity of an item given the name

and a delta.
Implement a suitable test driver program.

Enter command, quit to exit
item> help
The following commands are available:
 list -- list items
 add -- add an item
 delete -- delete an item
 find -- find an item
 change -- change quantity
 quit -- exit the driver
item>

Ex. 12.7 Implement a master driver program that will have commands that will bring up
either the player driver program or the item driver program.

Enter command, quit to exit
: help
The following commands are available:
 player -- player driver
 item -- item driver
 quit -- exit the program
:

Build and exercise the program thoroughly. You are now at Step 1 of The Electronic
Commerce Game.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 12-4
 All Rights Reserved

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 13-1
 All Rights Reserved

Chapter 13 – Inheritance

Inheritance is a key concept of object-oriented programming. It can be an effective
technique for reusing code. The exercises of this chapter continue the implementation of
The Electronic Commerce Game.

Ex. 13.1 Another important class for the commerce game is Product. A product has a
name, a quantity, and a price. Implement this class by inheriting from Item. Test your
class with a simple non-interactive test program that creates a product, displays it,
changes some data, and shows it again.

Ex. 13.2 The next job is to create a class ProductList that can store a list of products.
Again, you can use inheritance, this time inheriting from ItemList. Your class should
have the following features:

a) A public field VendorName that is the name of the vendor that has this list of
products.

b) A constructor that takes a string parameter that initializes VendorName.
c) A read-only property Count that will return the number of products.
d) A method AddProduct that will create a new product given name, quantity and

price and add it to the list.
e) A method FindProduct that returns the corresponding Product object if the

name is found and null otherwise.
f) A method DeleteProduct that will delete a product given its name.
g) A method ChangeQuantity that changes the quantity of a product given the name

and a delta.
h) A method ChangePrice that changes the price of a product given the name and a

delta.
i) A method GetItems that will return an array consisting of all the products on the

list.
Implement a suitable test driver program.

Enter command, quit to exit
product> help
The following commands are available:
 list -- list products
 add -- add a product
 delete -- delete a product
 find -- find a product
 changeq -- change quantity
 changep -- change price
 quit -- exit the driver
product>

Ex. 13.3 There are both wholesale and retail vendors in the commerce game. The first
vendor we will work with is a wholesaler that maintains the master list of all products
that are available in the game. Implement a class Wholesaler with the following features:

a) A private product list.
b) A constructor that initializes the product list with the vendor name “Wholesaler.”

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 13-2
 All Rights Reserved

c) A method Sell that takes a product name and quantity as input parameters and
returns a price as an output parameter. As usual, status is returned in a string. If
the product is not found on the list, or the quantity available is insufficient, an
error is returned. The available quantity is decremented, and the price of the item
is passed back.

d) A property Products that gives access to the ProductList that is managed by the
wholesaler.

Implement a simple non-interactive test program that initializes the wholesaler with some
test data, shows the wholesaler’s vendor name and product list, sells an item, and then
shows the wholesaler’s data again.

Ex. 13.4 Implement a game driver program that integrates everything you have done so
far. The top-level driver will have two commands:

Enter command, quit to exit
: help
The following commands are available:
 player -- player driver
 product -- product driver
 quit -- exit the program
:

The “player” command is identical to what we implemented in Chapter 12. The
“product” command is a replacement for the previous “item” command. A new Game
class is introduced that has the following features:

a) A public static member to hold the wholesaler.
b) A read-only property of type ProductList that gives access to the product list

maintained by the wholesaler.
c) A static constructor that initializes the wholesaler’s product list.

The product driver is modified to work with the wholesaler’s product list maintained in
the Game class. Also, add a “sell” command. Build and exercise the program thoroughly.
You are now at Step 2 of The Electronic Commerce Game.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 14-1
 All Rights Reserved

Chapter 14 – Virtual Methods and Polymorphism

This chapter continues the story of inheritance with a discussion of virtual methods and
polymorphism. We begin with some small exercises illustrating a polymorphic collection
of shapes. The last of these shape exercises depends on a topic not mentioned in the
chapter in the book but which is occasionally of importance—the GetType() method of
object and the typeof operator. You may wish to consult the MSDN documentation. We
then resume the implementation of The Electronic Commerce Game.

Ex. 14.1 Implement a tiny shape hierarchy consisting of squares and triangles. Create an
abstract base class and two derived classes. There should be a single method Display in
each class. The concrete classes should implement the method by displaying the string
“Square” or “Rectangle”. Write a simple test program that will create different shape
objects and store them in an array. Show the shapes by iterating through this array.

Ex. 14.2 Elaborate your shape classes by storing the dimensions of the shapes. For a
square you need only to store a single size. For a rectangle you need to store two sizes,
the base and height. The Display method should display the size(s) along with the string
description of the shape.

Ex. 14.3 Create a class ShapeList to hold a list of shapes in an array. Your class should
support the following features:

a) A constant MAXSHAPE to specify the size of the array. You can use a small
value to make it easy to test for array index out of bounds.

b) A static data member to keep track of the next index at which to add an array
element.

c) An array of type Shape[] to hold the list of shapes.
d) A read-only property Count that will return the number of shapes.
e) A method AddShape that will add a new Shape object to the list. This method

should return the string “OK” if the operation was successful and a string with a
descriptive error message if there was an error.

f) A method DisplayShapes that will display a list of all the shapes. Each shape
should be shown on a separate line along with the index showing position of the
shape in the array.

Implement a simple driver test program to exercise your class. To save typing while you
test your program, you may wish to initialize ShapeList with some starting test data in
your code. In the “add” command, prompt for the type of shape (1 = Square, 2 =
Rectangle).

> help
The following commands are available:
 display -- display shapes
 add -- add a shape
 quit -- exit the driver
>

Ex. 14.4 Add a method ChangeSize that will change the size(s) of a shape at a given
index. The input parameters should be an index and a Shape object reference. Note that

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 14-2
 All Rights Reserved

this method is not allowed to change the type of shape, only its size. Thus a square can be
changed into a square of a different size, and a rectangle into a rectangle with different
sizes. You need to do several things to implement and test this functionality.

a) Implement the ChangeSize method. Include a check comparing the data type of
the shape object reference being passed in with the data type of the existing shape
object at the specified index. Use the GetType method that is one of the built-in
methods of the object root class.

b) Add a method GetShape to the ShapeList class that will retrieve the shape object
at a specified index. It should return null if the index is out of range.

c) Add a command to the driver program to test the ChangeSize method. Prompt for
an index and retrieve the existing shape at that index. Depending on the shape
type, prompt for either a single size (square) or else for a base and a height
(rectangle). Invoke the ChangeSize method. You will need to use both the
GetType() method and the typeof operator. You can read the MSDN
documentation for a description of GetType() and typeof.

The next exercises continue the implementation of The Electronic Commerce Game,
culminating in a full working version. What we are adding are two kinds of players,
Vendor and Shopper. The program will exploit polymorphism, in a manner similar to its
usage in the shape exercises you just completed.

Ex. 14.5 Create a class Vendor derived from Player. It will have a new field Url, a
constructor, and overrides of the Prompt and Show methods. The prompt for a vendor is
“V> “. The Show method shows the url along with the string from the base class. Several
other changes will also be needed to the overall master driver program (pick up from
Exercise 4 of Chapter 13).

a) The methods Prompt and Show in the base class must now be virtual. In the
Show method include the prompt string.

b) Add an enum called PlayerType that can specify either Shopper (= 1) or Vendor
(= 2).

c) Move the players array from the player driver to the Game class as a public static
data member. Move the initialization code to the Game class also.

d) Implement an overloaded AddPlayer method in Player that takes as a parameter
a Player object reference (which at runtime may in fact be a Vendor, and
beginning with the next exercise, a Shopper).

e) Modify the “add” command in the player driver so that you will also prompt for a
player type. If the type is Vendor, add a Vendor object, otherwise a vanilla
Player object.

Build and run, exercising your new features thoroughly, and also checking that the old
features still work (this will be the normal practice in all the incremental steps to the case
study).

Ex. 14.6 Create a class Shopper derived from Player. It will have no new fields at this
point, but it will have a constructor and an override of the Prompt method. The prompt
for a shopper is “S> “. Modify the “add” command in the player driver so that you will
now create either a Vendor or a Shopper depending on the player type—never a generic

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 14-3
 All Rights Reserved

Player. Also, modify the initialization code in the Game class so that you will create a
few shoppers and vendors, not generic players. Build and exercise thoroughly.

Ex. 14.7 Modify the Vendor class so that it will now maintain a private ProductList
representing the products that this vendor carries. Give access to this list through the
property Products. Also provide a method GetProducts that will return an array of
Product. The constructor should initialize the product list as well as assign the vendor
name. Provide the following additional features in your overall program in order to
implement the functionality of a vendor.

a) A public static member CurrentVendor of Game that is initially null and will be
set to a vendor when a vendor logs in.

b) Initialization code in Game to set up several starting vendors and product lists for
them.

c) A new command “vendor” in GameDriver that will login in a player. A test is
made of the type of the player, and if a Vendor, then the CurrentVendor is set
and a welcome message will be displayed showing player’s name and balance.
Then a vendor driver program will be invoked. The first thing that program does
is to display the vendor’s inventory, and then it enters a command processing
loop.

d) A class VendorDriver with a Loop method that does the initial inventory display
and provides the following commands:

V> help
The following commands are available:
 logout -- logout current vendor
 buy -- buy from wholesaler
 add -- add a product to product list
 delete -- delete a product from product list
 mylist -- list products of current vendor
 wlist -- list products of wholesaler
V>

e) The code for a vendor buying from the wholesaler will be placed in the Game
class. The reason for this design decision is to keep the Vendor code as general as
possible, basically managing a list of products, a balance, and a name. In the
Game class implement a method VendorBuy which takes input parameters of a
product name and quantity and returns status as a string. The wholesaler will sell
this product, if available in the requested quantity. The product will be added to
the vendor’s inventory, and the vendor’s balance will be decremented to represent
the cost of this wholesale purchase.

Build and test thoroughly.

Ex. 14.8 Modify the Shopper class so that it will now maintain a private ItemList
representing the items on the shopping list for this shopper. Give access to this list
through the property Items. Also provide a method GetShoppingList that will return an
array of Item. The constructor should initialize the shopping list, which will be identical
for all shoppers. Provide the following additional features in your overall program in
order to implement the functionality of a shopper.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 14-4
 All Rights Reserved

a) A public static member CurrentShopper of Game that is initially null and will
be set to a shopper when a shopper logs in.

b) A new command “shopper” in GameDriver that will login in a player. A test is
made of the type of the player, and if a Shopper, then the CurrentShopper is set
and a welcome message will be displayed showing player’s name and balance.
Then a shopper driver program will be invoked. The first thing that program does
is to display the new player’s shopping list, and then it enters a command
processing loop.

c) A class ShopperDriver with a Loop method that does the initial shopping list
display and provides the following commands:

S> help
The following commands are available:
 visit -- visit a vendor
 logout -- logout a player
 buy -- buy from current vendor
 list -- list products of current vendor
 mylist -- show my shopping list
S>

d) Implement the “visit” command, which will prompt for a URL and then find the
vendor with that URL. The CurrentVendor is set to the Vendor that is fouond.
Provide a FindVendor method in the Game class that takes a string parameter for
the URL and returns a Vendor object, null if not found.

e) Implement the “buy” command. Again, the code for a shopper buying from a
vendor will be placed in the Game class. The reason for this design decision is to
keep the Shopper code as general as possible, basically managing a shopping list
of items and a balance. In the Game class implement a method ShopperBuy
which takes input parameters of a product name and quantity and returns status as
a string. The vendor will sell this product, if available in the requested quantity.
The number of items bought will be decremented from the player’s shopping list,
and the player’s balance will be decremented to represent the cost of this
purchase.

f) To carry out the shopper’s buy logic, you will also need to implement a suitable
Sell method in the Vendor class.

Build and test thoroughly. The Electronic Commerce Game is now at Step 3.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 15-1
 All Rights Reserved

Chapter 15 – Formatting and Conversion

This chapter covers formatting and conversion. Again, we illustrate with The Electronic
Commerce Game, which provides an opportunity to practice formatting your output more
attractively. Two kinds of formatting are illustrated. One case involves formatting strings,
and the other formatting console output in Write and WriteLine statements. Our game
has also illustrated conversions of various sorts, such as converting an integer to an
enumeration type and type conversions associated with inheritance.

Ex. 15.1 Provide neat formatting in the Player class and in the PlayerDriver. As an
example, here is some formatted output.

player> login
name: Petworld
password: ppp
Welcome, Petworld
Your balance is $15,000.00
player> list
Count = 6
S> Ann $5,000.00 Not Active
S> Bob $5,000.00 Not Active
S> Carl $5,000.00 Not Active
V> Toyland $15,000.00 Not Active toyland.com
V> Petworld $15,000.00 Active petworld.com
V> Foodstore $15,000.00 Not Active foodstore.com
player>

Ex. 15.2 Format your output in Product and ProductDriver. Again, we provide some
sample output.

product> list
Vendor name = Wholesaler
Count = 6
airplane toy 10000 $10.00
beanie baby 10000 $15.00
cat carrier 10000 $25.00
dog bone 10000 $5.00
elephant gun 10000 $55.00
fruit basket 10000 $10.00
product> sell
name: airplane toy
quantity: 1500
1500 sold at price of $10.00
product>

Ex. 15.3 Comb through the rest of the case study code and format any output you have
not yet taken care of. Build and test thoroughly. This would be a good time to also check
that there are not any lurking logic errors in your program. You are now at Step 4.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 15-2
 All Rights Reserved

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 16-1
 All Rights Reserved

Chapter 16 – Exceptions

Error handling is a very important part of programming. There are two basic approaches
to handling errors. One is to have your method calls return a status, which may either
indicate success or a particular kind of error. The other approach is the use of exceptions,
the subject of this chapter. After a small example, we will continue our illustrations using
The Electronic Commerce Game case study.

Ex. 16.1 One source of errors concerns numbers exceeding the size of the data type that
is being used to represent them. Study the use of the different integer data types in C# by
writing a program that will allow the user for any of the integer data types up to 32 bits in
size and receive the input the user types in. Catch any exceptions and display an
appropriate error message. Here is a sample run:

> help
legal commands are:
 sbyte
 byte
 short
 ushort
 int
 uint
 quit
> sbyte
enter sbyte: 128
Value was either too large or too small for a signed byte.
>

Ex. 16.2 We designed The Electronic Commerce Game to pay attention to a number of
error conditions. Method calls usually return a string status that is set to “OK” on success
and to a descriptive error message otherwise. Still, it is possible for additional errors to
occur that are not explicitly checked for. As an example of what can happen, run the
product driver and try to change the quantity of a product by entering a non-integer
quantity, such as 1.5, for the delta. You will encounter an exception, and the program will
crash. Go through the program and put in exception handling code so that your program
will never crash. This is not as difficult as it may appear, because you do not have to
bracket every call that might cause an exception. It will suffice to enclose the entire body
of a command-processing loop in a try block and drop through to reading the next
command. Implement this exception-handling scheme. Build and test thoroughly,
throwing all the bad data and other anomalies that you can think of at your program. You
are now as Step 5 of the case study.

Ex. 16.3 The ArrayDemo program from Chapter 12 in the book can run across
numerous exception. As an example, try creating a new array with various kinds of illegal
data, such as a non-numeric string or a negative number. Implement exception handling
for the command loop and provide two catch handlers. The first one should catch
FormatException and display your own error message, “Format error. Try again." The
second handler should catch the remaining exceptions and simply display whatever error
message is stored in the exception.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 16-2
 All Rights Reserved

Ex. 16.4 To illustrate some more error processing in the ArrayDemo program,
implement a “set” command, which will call a helper method set that prompts for an
array index and new value, and then sets the array at the index to the new value. We will
certainly get an error if the index entered by the user is out of bounds. Create a user-
defined exception class MyArrayException that has two public fields, CurrentSize and
NeededSize. The constructor should take three parameters, the error message, the current
size of the array, and the needed size of the array. In the set helper method throw a
MyArrayException if the index is out of bound. In your call of the set method provide a
catch handler that will catch MyArrayException and display the data members of this
exception object. Here is some sample output.

Enter command, quit to exit
: show
5 2 11 7 3
: set
index: 8
Array is too small
Current size = 5
Needed size = 9
:

Ex. 16.5 Good error handling can sometimes go further than merely reporting an error. It
some cases it may be possible to repair the error. In the error for the “set” command, it
may be possible to grow the array to a larger size, and set the new array at the requested
index. Implement this error handling strategy for your ArrayDemo program. Here is
some sample output.

Enter command, quit to exit
: show
5 2 11 7 3
: set
index: 8
Array is too small
Current size = 5
Needed size = 9
new value: 77
: show
5 2 11 7 3 0 0 0 77
:

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 17-1
 All Rights Reserved

Chapter 17 – Interfaces

Interfaces are an important feature of C# and .NET, but their significance may be
somewhat difficult to grasp. A good way to think about an interface is that it is a
contract. The contract is very important in a world of components, where a large software
system may be assembled by gluing together components from various sources. For the
system to work, these components must fit with each other! If the components faithfully
honor the contracts defined by interfaces, we can have confidence that the components
will work together.

There is a discipline to working with interfaces. Consider the situation where you have a
client program that makes use of a class, and you have some interfaces that implements
certain interfaces. First you must make sure that you actually declare your class as
implementing the interfaces by using the C# colon inheritance notation. Second, your
client program should only use interface references in calling features provided by the
class. Don’t make use of some “extras” that the class provides, because then you may
find that you can’t just swap in another component that implements the same interfaces.

We will again make use of The Electronic Commerce Game case study as the source of
exercises for this chapter. You are given a set of interfaces. Your challenge is restructure
your program code so that your classes implement appropriate sets of these interfaces,
and your driver programs use only interface references when they invoke functionality
provided by your classes. Here is the complete set of interfaces. (They are also
implemented by a set of classes that use a relational database for the storage medium.)

// Defs.cs

using System.Collections;

interface IProducts
{
 int Count {get;}
 string AddProduct(string name, int qty, decimal price);
 string DeleteProduct(string name);
 Product FindProduct(string name);
 string ChangeQuantity(string name, int delta);
 string ChangePrice(string name, decimal delta);
}

interface IProductList : IProducts
{
 IList GetProducts();
}

interface IItems
{
 int Count {get;}
 string AddItem(string name, int qty);
 string DeleteItem(string name);
 Item FindItem(string name);
 string ChangeQuantity(string name, int delta);

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 17-2
 All Rights Reserved

}

interface IItemList : IItems
{
 IList GetItems();
}

interface IVendorName
{
 string VendorName {get; set;}
}

public interface IPlayerAdmin
{
 int Count {get;}
 string AddPlayer(string name, string pwd, decimal bal, int
roleId);
 Player FindPlayer(string name);
 string DeletePlayer(string name);
 IList GetPlayers();
}

public interface IVendorAdmin
{
 string FindUrl(string name);
 string AddUrl(string name, string url);
 string DeleteUrl(string name);
}

interface IVendorInfo
{
 Vendor FindVendor(string url);
}

public interface IPlayer
{
 string Login(string name, string pwd, out Player play);
 string Logout(string name);
 string ChangeBalance(string name, decimal delta);
 string GetBalance(string name, out decimal bal);
 string SetBalance(string name, decimal bal);
}

Examining these interfaces, you should, on the whole, feel quite comfortable. Most of the
signatures match exactly with various class methods from our implementation. There is
one conspicuous exception, which is the fact that the methods that return multiple data
items always return it as IList, which is an interface reference. This return type is much
more satisfactory than various arrays that we have been using, because it is more general.
Arrays implement IList, but so do many other .NET classes. Although we will discuss
IList in Chapter 18, it is easy to start making use of IList immediately. As you work your
way through the classes, remember one of the changes to make is to replace an array
return (such as Player[]) by IList. You will also have to have a using statement to bring
in the namespace System.Collections.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 17-3
 All Rights Reserved

Ex. 17.1 Let’s begin with the key class, PlayerList. Looking at the interfaces, it is fairly
evident that the class should implement the interfaces IPlayer and IPlayerAdmin. There
is one fairly striking difference between the interfaces and our current implementation.
The AddPlayer method takes a role id, while we have been using an AddPlayer method
that takes a Player object as an input parameter. We instantiate either a Shopper object
or a Vendor object to pass as the parameter. The constructor for Vendor takes a URL. In
the scheme dictated by the interface, we must proceed somewhat differently. We need to
add the appropriate kind of player first, and then afterwards add the URL information.
Thus our PlayerList class must also implement the IVendorAdmin interface.
 Restructure your program to do three things:

a) Your PlayerList class should implement the interfaces IPlayer, IPlayerAdmin
and IVendorAdmin.

b) All the driver code should call through interface references, not object references.
c) Methods in PlayerList which are not implementations of interfaces should be

either made private or deleted.
As you do this restructuring, also take the opportunity to make additional improvements
to your program’s structure. For example, in our implementation we had done
initialization in a static constructor for the Game class. This was not a good idea, because
exceptions will not be caught. We moved this code to an initialization method that is
explicitly called inside a try block. When you are done, test thoroughly. (You will find
that with the new AddPlayer method, the initialization of product data for a vendor has
to be done a little differently.)

Ex. 17.2 The next set of interfaces to use are those for products, IProductList and
IVendorName. Restructure your program so that the ProductList class supports these
interfaces, and all client code calls through interface references and not object references.
Again, test thoroughly.

Ex. 17. 3 The next step is to restructure your program so that the ItemList class supports
the IItemList interface, and all client code calls through an interface reference not a class
reference. As usual, test thoroughly.

Ex.17.4 The final step is to support the IVendorInfo interface. What class is a likely
candidate? You may try the Game class and encounter a problem from FindVendor
being a static method. Work around this issue. Build and test very thoroughly. Your case
study is now as Step 6.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 17-4
 All Rights Reserved

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 18-1
 All Rights Reserved

Chapter 18 – Interfaces and the .NET Framework

This chapter continues the study of interfaces, with a focus on some interfaces that are
provided by the .NET Framework itself. We look at collection classes and also at features
provided by the object base class. Again we base exercises on The Electronic Commerce
Game case study. In contrast to the previous chapter where a substantial amount of
restructuring of the program was required to accommodate the consistent use of
interfaces, you should find the exercises pertaining to the case study in this chapter a
comparative breeze. We can now start to reap some of the benefits of our object-oriented
approach to the development of our program. Changing the private data structures while
still preserving the external interfaces is comparatively easy. In this chapter you will
replace the arrays by .NET collection classes. Although it is beyond the scope of this
book, it is quite easy in .NET (using ADO.NET) to access data stored in relational
databases. As a supplement you might be interested in checking out a database
implementation that we provide for the case study.

Ex. 18.1 Change the implementation of the PlayerList class to use some .NET
collection class in place of an array. You should find the code changes inside the class to
be quite easy; in fact, collections are easier to use than arrays! You should find no
required changes in any of the driver classes. Build and test.

Ex. 18.2 Change the implementation of the ItemList and ProductList classes to use
.NET collections class in place of arrays. Again, you should find no required changes in
any of the driver classes. Build and test.

Ex. 18.3 We have been using our own method ToShow to return a string representation
of a number of objects, such as Player, Item, and Vendor. A better approach is to
override the method ToString from the object root class. This is standard and so
promotes consistency in code. Another advantage is that the .NET Framework knows
about ToString and thus can call it for you under certain circumstances.
 In this exercise you should go through your case study code and replace the Show
method by overrides of ToString. Adjust your client code accordingly. As a test of the
.NET Framework calling ToString on your behalf, in the DisplayPlayers helper method
omit an explicit call to ToString. You will see that the code works just fine without it.
(Although this code is succinct, it is probably clearer to explicitly call ToString, which is
what we did in the rest of the client code.) Your case study is now at Step 7. Test
thoroughly at this point.

Ex. 18.4 In the various lists in our case study, a name, such as a player name or a product
name, is a unique key. In our implementations up to now we have written program code
to enforce this uniqueness. We can have the behavior of a unique key provided for us
automatically by .NET if we employ the right collection class. Study the documentation
for Hashtable. This class makes use of a unique key, and it also does efficient searches.
Our earlier implementations did linear searches, which would not be efficient for large
amounts of data. Study the documentation of Hashtable, and then use this kind of

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 18-2
 All Rights Reserved

collection to implement a simplified version of our PlayerList class. Create a simple
Player object with these features:

a) Public fields Name and Balance.
b) A constructor taking name and balance parameters.
c) An override of ToString.

Implement PlayerList with a Hashtable as the private data store . This class should have
these features:

a) A property Count returning number of elements in the table.
b) FindPlayer, which returns the player with a given key, null if not found.
c) AddPlayer, which adds a player to the list, given a name and balance.
d) DeletePlayer, which deletes a player given a key.
e) GetPlayers, which returns a IList. The Hashtable class does not implement the

IList interface, so you have to build up another kind of list, such as an ArrayList,
to return. To iterate through a Hashtable, use a IDictionaryEnumerator.

Provide a suitable driver program. Build and test.

Ex. 18.5 The ArrayList class is very flexible. With very little code, you can do basic
work of adding different kinds of objects to an ArrayList and extract them. As an
illustration create a program to keep track of a list of first and last names. Your program
should implement a class Name with the following features:

a) Public fields First and Last for first and last name respectively.
b) A constructor to initialize a Name object from first and last names that are passed

as separate parameters.
c) An override of ToString that will return a complete name by concatenating the

first and last names.
Provide a test driver program that implements the following commands.

a) An “addname” command that prompts for first and last name, creates a Name
object and adds it to the list.

b) An “addstring” command that prompts for first and last name, concatenates these
strings and adds the concatenated string to the list.

c) A “list” command that will iterate through all the objects in the list as string type
and display the string

d) A “first” command that will iterate through all the objects in the list as Name type
and display the first name.

e) An “index” command that will use indexing to iterate through the list and display
the object at each index as a string along with the value of the index.

f) A “clear” command that will clear the list of all elements.
Enclose the body of your loop in a try block so that you can recover from exceptions.
Build and test. Try entering all names. Then try entering all strings. Try a mixture. You
can use the “clear” command between experiments. Here is a sample run.

Enter command, quit to exit
: addname
first name: Joan
last name: Smith
: addname
first name: Bill
last name: Jones

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 18-3
 All Rights Reserved

: index
0 Joan Smith
1 Bill Jones
: first
Joan
Bill
: list
Exception: Specified cast is not valid.
:

Ex. 18.6 The problem with this solution is that the ArrayList class is not type-safe by
itself. You can put any kind of data type into an ArrayList (they are stored as object).
When you extract the data, you perform a cast. You are in trouble if you cast to a
different data type when you take the data out than you used when you put the data in. A
standard solution to this issue is to create a type-safe wrapper class. The .NET
Framework makes it easy to create type-safe collection classes by inheriting from the
CollectionBase class. Study the documentation for CollectionBase and implement a
class NameList that inherits from CollectionBase. Supply just one method, AddName
that adds a name to the built in List object in the base class. Use the same driver program
with only two changes:

a) Declare the list as a NameList rather than ArrayList.
b) In both the “list” and “first” commands iterate through Name objects.

You’ll get two compiler errors—where you attempt to add a string to the list and where
you do indexing. Comment out the offending code, build and run. You should now be
able to work cleanly with Name objects, and you got a compile-type error when you
attempted to add something other than a Name to your list.

Ex. 18.7 Add an indexer to your NameList class to access the indexer in the built-in List
object. You should now be able to use the “index” command in the driver program. (You
may wish to review the discussion of indexers from Chapter 12 in the book.)

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 18-4
 All Rights Reserved

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 19-1
 All Rights Reserved

Chapter 19 – Delegates and Events

Delegates in C# are somewhat analogous to function pointers in C, but they are much
more powerful and robust. Delegates are like classes and thus can provide a type-safe
implementation of callbacks. It is also possible to compose delegates, so a single call can
result in multiple delegate methods being called. Delegates are also the foundation of
events. Events were popularized in Visual Basic and are now a useful feature in all .NET
languages.

When you first study delegates and events, it may not be entirely clear what additional
features and benefits are provided by events as opposed to just using delegates. Events
provide a useful syntax for expressing the event-handling paradigm and for placing
reusable code for specifying and firing events right in a class. Events can even be part of
a formal interface contract.

Ex. 19.1 As a warm-up exercise, write a program that sets up an “echo” delegate which
will simply echo back any string to the console. Provide two static delegate methods, one
which will echo the string verbatim, and another which will convert the string to upper
case and then display it. Provide a driver that will allow you to enter strings and then
invoke the delegate. Here is some sample output:

Enter string, quit to exit
: hello
hello
HELLO
: goodbye
goodbye
GOODBYE
: this is boring
this is boring
THIS IS BORING
: quit

Ex. 19.2 For our next example we will illustrate dynamically adding and subtracting
delegate methods. Before setting up the delegates, first implement a program that can
maintain a list of strings. Provide commands to add names, delete names, and list all the
names on the list. If you try to add a duplicate name or delete a name not on the list, you
should get an error message.

Ex. 19.3 Extend the previous example by declaring a delegate HistoryDelegate, whose
method takes two string parameters, a name and an action. Create a class History with
the following features:

a) A data structure to record a history list of names and actions.
b) A method Announce which will concatenate a name and an action and display

the concatenated string at the console.
c) A method Record which will concatenate a name and an action and add the

concatenated string to the history list.
d) A method Display which will display the history list at the console.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 19-2
 All Rights Reserved

In the driver program create two delegate objects holding the Announce and Record
methods respectively. Declare a third delegate object, initially null, which at run time can
have the announce and record delegates added and subtracted. Depending on the setting,
the name/action may be displayed at the console, written to the history list, or both, or
neither. Provide commands to toggle the announce and record delegates, and also to
display the history list. Here are the complete commands:

Enter command, quit to exit
: help
The following commands are available:
 add -- add a name
 delete -- delete a name
 list -- list all names
 announce -- toggle announce
 record -- toggle record
 history -- display the history list
 quit -- exit the program
:

Build and test thoroughly.

Ex. 19.4 Our next goal is to get practice using events in classes in order to achieve
greater code reuse. Before tackling events, let’s make a type-safe string list class. You
may wish to review Exercise 6 in Chapter 18 for an example of creating a type-safe
collection by inheriting from CollectionBase. Implement a type-safe class StringList
with the following features:

a) A method Add to add a string to the list. The method tests for duplicate strings
and returns true is successful in adding a non-duplicate string, otherwise false.

b) A method Delete to remove a string from the list. If the string was not on the list,
return false, otherwise true.

Modify the test driver program from Exercise 2 to use the StringList class in place of a
generic ArrayList.

Ex. 19.5 We will now add code to the file containing the StringList class to define an
event handler delegate, declare an event in the class, and fire the event in the class
methods when appropriate. This structure will make it easier for clients of the class to
work with the events. Basically, they will implement event handlers and hook the event
handlers to the event. Begin by adding the following to the file containing the StringList
class:

a) Definition of a delegate HistoryEventHandler. It takes a name and action string
parameters and returns void. This is the same as the HistoryDelegate defined in
Exercise 3, only changing the name to reflect usage associated with events.

b) In the class declare a public event Changed of type HistoryEventHandler.
c) In the Add method place a call to Changed when a new name is added. You

should check that Changed is not null before calling it.
In the driver class do the following:

a) Remove the third delegate object, whose role is now filled by the public Changed
event in the class we are calling.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 19-3
 All Rights Reserved

b) Change the names of the first two delegates to AnnounceHandler and
RecordHandler. They are of type HistoryEventHandler. Again, the name
change is to reflect usage associated with events.

c) In the “add” and “delete” commands, remove the code that called the delegate.
Event firing is now done in the class itself.

d) In the “announce” and “record” commands modify the += and -= code to reflect
the new names.

Build and test. You should have the same behavior as in Exercise 3. Examine the driver
code. Do you think it is simpler and more intuitive than the code from Exercise 3?

Ex. 19.6 Although events can have any signature, as illustrated in the preceding exercise,
the .NET Framework prescribes a standard signature for events, as discussed in the book.
The first parameter specifies the object that sent the notification, and the second
parameter is of type EventArgs or of a class derived from EventArgs. If you do not
provide any data to go along with the event, you can use a standard delegate data type
defined in the .NET Framework, EventHandler. Otherwise, define your own delegate
type and create your own event argument class, such as HistoryEventArgs, derived from
EventArgs. Rework your solution to conform to this standard.

Ex. 19.7 One of the advantages of events over delegates is that events can be placed in
an interface and thus become part of the formal contract that a class must fulfill. Create a
file Defs.cs that has the definition of your HistoryEventHandler delegate and also the
definition of an interface IStringList that specifies the methods and the event of the
StringList class. Rework your solution to incorporate this definition file, and make your
StringList class inherit from IStringList.

Ex. 19.8 Add an event interface to your PlayerList class in The Electronic Commerce
Game case study. This interface should have a Disqualified event, which fires whenever
a player’s balance becomes negative. Provide an event handler which will display a
message at the console giving the disqualified player’s name and ending balance. Build
and test thoroughly. Note that there are many places in the program which can trigger a
negative event for a shopper or vendor player, but the logic for raising the event and
handling the event can be quite localized. The case study is now at Step 8.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 19-4
 All Rights Reserved

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 20-1
 All Rights Reserved

Chapter 20 – Advanced Features

This chapter takes up a few somewhat more advanced topics. We begin with a number of
exercises illustrating multiple-thread programming in C#. This makes a nice follow-on to
the previous chapter’s discussion of delegates, because the .NET threading model is
based on delegates. A sequence of exercises leads you to set up a small testbed for
investigating multiple threads. You could easily do some further threading experiments at
this point, but our exercises next turn to the use of files and streams in .NET. We
conclude with an exercise on serialization, which is a nice way to persistently store object
data.

Ex. 20.1 A good way to investigate a programming topic is to write interactive programs
that allow you to explore the behavior of a program under varying inputs. To get started
exploring threads, create an interactive version of the ThreadDemo program in the book.
Rather than hardcoding some specific threads, provide a command loop that allows you
to create an arbitrary number of threads, giving them whatever starting parameters you
decide on at runtime. There are two commands, “new” and “quit.” Here is some sample
output.

Enter command, quit to exit
thread> help
The following commands are available:
 new -- start a new thread
 quit -- exit the program
thread> new
delta: 400
count: 5
name: aaa
thread> new
delta: 1000
count: 5
name: bbb
thread>

You will then see the output from the threads. Note that in this program we had the user
assign a name for each thread. Note also that we had to make some other changes to the
ConsoleLog class to get the output shown, avoiding the first thread starting up
immediately and making it hard to enter data for the second thread.

Ex. 20.2 A general solution to the problem of threads starting up prematurely is to
decouple the actual thread startup from creating the threads. Modify your program to
maintain a list of threads, and also provide “list” and “start” commands. The “list” will
command will display a list of threads by name along with the sleep interval specified.
The “start” command will start all the threads on the list. Here is some sample output.

Enter command, quit to exit
thread> new
delta: 400
count: 5
name: aaa

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 20-2
 All Rights Reserved

thread> new
delta: 1000
count: 5
name: bbb
thread> list
aaa 400
bbb 1000
thread> start
thread> aaa: ticks = 0
bbb: ticks = 0
aaa: ticks = 400
...

Ex. 20.3 To explore further, investigate the ThreadState enumeration from the .NET
Framework documentation. This enumeration provides masks for various thread states,
some of which may occur in combination. In Chapter 5, Exercise 8, we wrote a program
to display a string representation of several common thread states given the numeric
representation. Use this program logic to enhance your “list” command, so that the thread
state will be displayed along with the name and sleep interval. Here is a sample list
before we have started the threads.

thread> list
aaa 400 Unstarted
bbb 1000 Unstarted

Ex. 20.4 A chronic problem with a program such as this one is the intermingling of
output from various threads. While it is easy to input data for a number of threads before
starting any of them, once some threads are started it is difficult to enter information for
some additional threads. Another issue is that a simplistic “start” command will run into
trouble trying to restart threads that have stopped. Enhance your program by putting into
place locking behavior, so that once you have started entering data for a new thread, you
will not be interrupted by output from running threads until you have finished your input.
Also, address the issue of attempting to restart threads that have stopped.

Ex. 20.5 Another approach to the intermingling of output from various threads is to have
different threads write to different output streams. Modify your solution for Exercise 3 to
have the main program open up a StreamWriter that writes to a file. Replace the
ConsoleLog class by a FileLog class. The FileLog constructor should take a
StreamWriter object, which is saved away. All output is done to this writer. It is the
responsibility of the main program to close the writer (which is important to ensure the
buffer is flushed and the data is actually written to the file). Build and run. This should
give you a more interesting view of the states of the threads at various point during
program execution. Here is some sample output:

thread> list
aaa 400 Unstarted
bbb 1000 Unstarted
thread> start
thread> list
aaa 400 WaitSleepJoin
bbb 1000 WaitSleepJoin

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 20-3
 All Rights Reserved

thread> list
aaa 400 Stopped
bbb 1000 WaitSleepJoin
thread> list
aaa 400 Stopped
bbb 1000 Stopped

Ex. 20.6 In principle, we could do file input and output of complex data structures using
files and streams, as illustrated (for output) in the preceding exercise. But traversing
complex data structures and formatting appropriately for the stream we write to can
quickly become rather tedious. Fortunately, the .NET Framework provides a powerful
serialization mechanism to greatly simplify reading and writing of objects. Serialization
was discussed in the chapter in the book. You should find it fairly easy to apply the
technique to your own examples. We will illustrate with a simplified PlayersList class.
For starters, create classes and a driver program with the following features (you can
quickly implement by stripping down relevant code from the case study):

a) A Player class with a string Name and a decimal Balance. There should be a
constructor taking a name and a balance, and an override of ToString.

b) A PlayerList class with the following features:
i. A private array list for holding players
ii. A read-only property Count
iii. A FindPlayer method that will return a Player given a name, null if

not found.
iv. An AddPlayer method taking a name and a balance that will create a

player and add it to the list. An error string is returned if the player is
already on the list, otherwise “OK.”

v. A GetPlayers method that return an IList.
vi. A Clear method that will empty the list.

c) A driver program that implements these command:

Enter command, quit to exit
player> help
The following commands are available:
 add -- add a new player
 find -- find a player
 list -- list player information
 clear -- clear players
 quit -- exit the driver
player>

Ex. 20.7 Now add the capability to PlayerList to serialize itself. Add “save” and “load”
commands to the driver program. In the book we illustrated use of a binary formatter. For
variety, try a SOAP formatter. The file written will be a text file. If you are familiar with
XML, you will recognize that the file is formatted as XML. Build and test.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 20-4
 All Rights Reserved

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 21-1
 All Rights Reserved

Chapter 21 – Components and Assemblies

Components are a key concept of modern software engineering. Components represent a
step beyond object-oriented programming in software reuse. In .NET components, are
very easy to create via a special kind of project type, a class library. The exercises give
you practice creating a number of class libraries and client programs that use the class
library you have created. You will conclude by creating a componentized version of The
Electronic Commerce Game case study, bringing you to Step 9 of this project.

Ex. 21.1 As a warm-up we’ll create a component to do simple math, the operations of
add, subtract, multiply and divide. When developing a new component, you may find it
easiest to first create a monolithic program in which the component logic and the user
interface test code are all in one project. This will make it easy to debug. When your
logic is correct, you can then break the files into a class library project and an application
project. So to get started, create a class SimpleMath that has static methods to perform
the four elementary arithmetic operations on the type double. Implement a simple test
driver program that will allow the user to interactively test the class by choosing a
command and then entering test data. Place the body of your command loop inside a try
block, so that you can catch exceptions such as bad input format or divide by zero.

Ex. 21.2 Create a class library MathLib that contains the SimpleMath class. Build the
component, obtaining the dynamic link library MathLib.dll.

Ex. 21.3 Create a client console program MathClient that contains the test driver. Copy
the DLL MathLib.dll to the source directory of MathClient. Add a reference to this
DLL. Build and test.

Ex. 21.4 Now let’s tackle componentizing the game cases study. One of the goals of the
design was to create reusable code. We attempted to design the Player and PlayerList
classes so that they would be generally useful in a number of games in which players are
identified by name, hold a currency balance, and may be active or inactive, moving
between these states by logging in and logging out. Adapt the code from the last version
of the game (Exercise 8 in Chapter 19) to create a component PlayerLib that embodies
these core features. You will find that in order to accomplish this task you will need to do
a little redesign as well as stripping out other features of the game, such as items,
products, and so on. We can keep the concept of a role ID, which can be useful in a
number of different game scenarios, but specific references to the classes Vendor and
Shopper have to go. Build your component, obtaining the DLL PlayerLib.dll.

Ex. 21.5 Create a client console program PlayerClient that contains a test driver. You
can adapt the driver program from PlayerDriver.cs in the case study. Also had a handler
for the Disqualified event, basing your code on the handler in the Game class of the case
study. Copy the DLL PlayerLib.dll to the source directory of PlayerClient. Add a
reference to this DLL. Build and test.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 21-2
 All Rights Reserved

Ex. 21.6 We now wish to build a component containing the entire game logic, apart from
the user interface driver code. One approach would be to use the PlayerLib.dll
component already created and create a second component with the remaining
functionality. Unfortunately, the current inheritance-based design create a tight coupling
between the Player class and the derived classes Vendor and Shopper, which in turn
entangles us with the Item and Product classes. So our design would have to be
refactored. For the purpose of this exercise, don’t worry about such an overhaul. Build a
single component GameLib.dll that has all the game logic and none of the user interface
driver code.

Ex. 21.7 Create a client console program GameClient that contains all the test drivers.
Copy the DLL GameLib.dll to the source directory of GameClient. Add a reference to
this DLL. Build and test thoroughly. You are now at Step 9 of the case study.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 22-1
 All Rights Reserved

Chapter 22 – Introduction to Windows Forms

Although console programs like we have been using so far in the book are very
convenient for learning a programming language, very few modern programs are of this
type. Most programs are either Windows applications or Web applications. We conclude
our coverage of C# with an introduction to creating Windows applications using C# and
.NET, making use of the Windows Forms classes of the .NET Framework.

The format of the exercises for this last chapter is somewhat different. It is very easy to
create exercises, because every program you have written so far using a console interface
could be rewritten using a Windows graphical user interface (or GUI). The first thing you
should do is to write a few simple Windows versions of programs you have already
written.

The next step would be to write a larger Windows application, and the natural project to
tackle is a Windows version of The Electronic Commerce Game. That is the major
assignment for the last chapter, which will bring the project to Step 10. You should feel
free to craft whatever user interface is most appealing to you. You can instantly gain
access to all the backend logic you have created by adding a reference to the class library
GameLib.dll that you created in Chapter 21.

In these notes we walk through one example of a user interface.

Top-Level Window

The top-level window provides a login screen for both shoppers and vendors. Note that in
Windows it is very easy to conceal a password that is typed in by setting a password
character property in the TextBox control.

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 22-2
 All Rights Reserved

Shopper Window

When a shopper logs in, a shopper window is brought up that shows the shopper’s name
in the title bar. The shopper’s balance and shopping list are shown, and buttons are
provided to visit a vendor (whose URL is entered in a textbox) and to logout. The only
way to exit this window is through the logout button.

Visiting a Vendor

Clicking the Visit Vendor button brings up the window shown:

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 22-3
 All Rights Reserved

The name of the Vendor is shown in the title of the window, and the inventory in a list
view control. Textboxes are provided for entering the name and quantity of a product to
purchase. Here Ann is going to buy 100 airplane toys, fulfilling the first item on her
shopping list. She clicks Buy, which will update the vendor quantity, showing a decrease
in inventory. If she wants, she can buy more products while still at Toyland. When done,
she closes this window. Back in the shopper window, the shopping list and balance have
been updated:

She can visit other vendors and try to fulfill all items on her shopping list. If she does so
without her balance becoming negative, she wins. When she is done, she logs out.

Back in the top-level window, we can now explore how a vendor will play the game.
Here Toyland is about to login:

Rev 1.0 Copyright © 2003 Object Innovations, Inc. 22-4
 All Rights Reserved

Vendor Window

The vendor window shows name in the title. The balance and inventory are shown. In
this case, the balance has been increased from a starting value of $15,000 reflecting a sale
of 100 airplane toys to Ann. The quantity in inventory has been decreased.

Buttons are provided to add or delete a product, and to buy a product from the
wholesaler. Another button will bring up the wholesale pricelist:

That’s it! Try out the supplied version, and then build your own!

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. Case Study-1
 All Rights Reserved

Appendix
Case Study: The Electronic Commerce Game

Introduction

Learning object-oriented programming involves more than learning the syntax of an
object-oriented language such as C#. It is also more than learning how to write small
programs with classes. To fully understand and internalize the object-oriented mindset, it
is necessary to gain some experience with larger programs. It is only with “programming
in the large” that object-oriented techniques really come into their own. For learning
purposes, of course, the program cannot be too large. It needs to be large enough to
illustrate the interactions of various objects, but still small enough to be manageable.

The book Introduction to C# Using .NET contains one such case study, a hypothetical
banking system, that is elaborated in seven progressive steps in Chapters 12 through 18.
From the standpoint of learning, it will also be helpful for you to progressively
implement your own system. The Electronic Commerce Game is designed as a small
system that you can implement using object-oriented programming in C#. Exercises in
the chapters will lead you to one implementation, using first arrays and then .NET
collections. Another approach would be for you to design your own implementation. You
could use the supplied solution as a reference.

This appendix gives an overall introduction to the case study. It includes a player’s guide
and also an outline of the program design. It also sketches some further elaborations of
the case study that could be implemented to illustrate various topics in the .NET
Framework, including ADO.NET, ASP.NET and Web services. A database
implementation using ADO.NET is also supplied with the source code accompanying this
set of exercises.

Another version of this case study was used for illustrating COM+. See Appendix B in
the book Understanding and Programming COM+ by Robert J. Oberg.

Overview

The basic concept of the game is extremely simple—online buying and selling of
products. It is structured as a game in which players compete to fulfill a shopping list by
visiting various vendor sites and making purchases.

Players take on the role of Shopper (and may temporarily assume the role of a Vendor if
they can discover a Vendor password). Vendors carry different products, which they buy
at wholesale and sell at retail. Vendors decide what products to stock, what inventory
level to maintain, and what retail prices to charge for their products. They may adjust
their product list, prices and inventory during the game. All Vendors are given the same
starting capital, and they earn more money by selling products to Shoppers. Their balance
declines when they buy products at wholesale for their inventory. The winning Vendor is

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. Case Study-2
 All Rights Reserved

the one with the most money when the game is over. A Vendor whose balance drops
below zero is disqualified.

At the beginning of a game all Shoppers are supplied with an identical starting balance
and an identical shopping list, specifying items to be purchased from Vendors. Shoppers
pay for their purchases out of their balance. The winning Shopper is the one who has
purchased all the items on the shopping list and has the largest balance. A Shopper whose
balance drops below zero is disqualified. The ending balance gives the score for the
game.

There are multiple Shoppers, and there are preassigned Vendors with various starting
inventories. New Shoppers and Vendors can be dynamically created. A Shopper may
temporarily assume the role of a Vendor by logging in as a Vendor. Shopper transactions
are carried out through a simulated Web. To make a purchase, a Shopper visits a Vendor
by specifying a URL.

There are two user interfaces to the game. The first is a command-line interface, and the
second is a graphical user interface, implemented via Windows Forms. (A Web-based
interface will also be developed. Check the Object Innovations website for information.)

Command-line Version of the Game

The command-line version discussed in this appendix uses an Access database for
permanent storage. The advantage of this version is that you can look at the data as the
game is played independently from the game interface. Thus as you enter various
commands in the game, you may observe how the data changes in the database.

Database

The database is Game.mdb. There are four tables.

Products

The Products table has columns for VendorName, ProductName, Quantity, and Price.
There are several retail vendors, and one wholesale supplier whose name is Wholesaler.
The starting data is illustrated in the screenshot. Each retail vendor has a starting
inventory of 500 of each item, and the Wholesaler a starting inventory of 10000. (It is
assumed the wholesaler will never run out. Vendors can buy to restock their inventory,
and can add or delete items that they carry.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. Case Study-3
 All Rights Reserved

Vendors

The Vendors table has columns Name and Url.

Players

The Players table has columns Name, Password, Balance, Active, and RoleId.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. Case Study-4
 All Rights Reserved

RoleLookup

The RoleLookup table has columns RoleId and RoleName.

GameDriver

The top-level class GameDriver has a loop offering a choice of four commands.

Enter command, quit to exit
: help
The following commands are available:
 shopper -- shopper driver
 vendor -- vendor driver
 player -- player admin
 product -- product admin
 quit -- exit the program

ProductAdmin

The ProductAdmin class has a loop to exercises working with products in a stand-alone
fashion.

: product
Enter command, quit to exit
prod> help
The following commands are available:
 list -- list products
 add -- add a product
 delete -- delete a product
 find -- find a product
 changeq -- change quantity
 changep -- change price
 vendor -- new vendor
 quit -- exit the program
prod>

PlayerAdmin

The PlayerAdmin class has a loop to exercise working with players in a stand-alone
fashion.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. Case Study-5
 All Rights Reserved

: player
Enter command, quit to exit
player> help
The following commands are available:
 login -- login a player
 logout -- logout a player
 add -- add a new player
 delete -- delete a player
 list -- list player information
 quit -- exit the program
player>

ShopperDriver

The ShopperDriver class has a loop that lets a Shopper play the game. A player enters
the loop via the “shopper” command. After logging in, the program verifies that the
player has the role Shopper. Then a welcome message is displayed and the starting
balance and shopping list are shown. Note that the shopping list only applies to this game
and is not persistent.

: shopper
Please login
name: Bob
password: bbb
Welcome, Bob
Your balance is 5000
Your shopping list:
 airplane toy 100
 beanie baby 200
 dog bone 60
Enter command, logout when done
S>

Commands are provided to allow the Shopper to visit various vendors and buy products.
Both the list of products available from the current vendor and the player’s own shopping
list can be shown. When done, the player logs out.

S> help
The following commands are available:
 visit -- visit a vendor
 logout -- logout a player
 buy -- buy from current vendor
 list -- list products of current vendor
 mylist -- show my shopping list
S>

VendorDriver

The VendorDriver class has a loop that lets a Vendor play the game. A player enters the
loop via the “vendor” command. After logging in, the program verifies that the player has
the role Vendor. Then a welcome message is displayed and the starting balance and
inventory are shown.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. Case Study-6
 All Rights Reserved

: vendor
Please login
name: Toyland
password: ttt
Welcome, Toyland
Your balance is 15000
Your inventory:
airplane toy 500 $15.00
beanie baby 500 $25.00
dog bone 500 $10.00
Enter command, logout when done
V>

Commands are provided to allow the Vendor to buy from wholesale, add a product to the
list of products carried, and list the vendor’s own products and those carried by the
wholesaler. When done, the player logs out.

Enter command, quit to exit
V> help
The following commands are available:
 logout -- logout current vendor
 buy -- buy from wholesaler
 add -- add a product to product list
 delete -- delete a product from product list
 mylist -- list products of current vendor
 wlist -- list products of wholesaler
V>

Design Notes

This section contains some informal notes describing the design. It is not a formal design
specification.

Goals

The design is influenced by several goals.

1. Extensible. We aim to develop a number of different versions of the game, i.e. we
want to be able to extend our program in various directions.

a. Different data stores. Data store may be arrays, .NET collections and
database tables.

b. Different user interfaces. Both a command-line interface and a Windows
graphical user interface will be provided. Eventually we want to provide a
Web-based interface.

c. Extensions to the game itself. Electronic commerce is a big area, and our
game captures only a small element of what is involved. We should be
able to extend the game to incorporate additional elements (for example,
shipping).

2. Reusable code. As we develop different versions of the game, we would like to
reuse as much code as possible.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. Case Study-7
 All Rights Reserved

3. Simple error processing. Many different kinds of errors can occur. Both during
development and when the game is being played we want reasonable error
messages to be displayed. To minimize development effort, we want this error
processing to be as simple as we can make it.

Class Hierarchies

Player

One of the main component of the game is players of various sorts. A login/logout
protocol is provided, which we would like to implement only once. A natural model is a
base class Player and derived classes for each type of player.

Player

Shopper Vendor

Product

Another kind of component are products. As products are bought and sold, they need a
name, quantity and price. But for a shopping list only a name and quantity is needed. This
leads to another class hierarchy. An Item has a name and quantity, and a Product has a
name, quantity, and price.

Item

Product

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. Case Study-8
 All Rights Reserved

Error Processing

We implement a very simple, consistent error processing scheme. Most methods will
have string as the return data type. For success, the return will be “OK.” For failure, the
return will be a descriptive error message. Thus we do not need a system of error codes
and simply can use the descriptive string directly in error messages. Find methods that
are expected to return an object reference will return null if the object is not found.

Interfaces

We specify key functionality through C# interfaces, which define various contracts. This
use of interfaces will help us ensure that different implementations of data stores, such as
array, collection and database, can be used interchangeably with the same client code.

For reference, here are the various interfaces:

interface IProducts
{
 int Count {get;}
 string AddProduct(string name, int qty, decimal price);
 string DeleteProduct(string name);
 Product FindProduct(string name);
 string ChangeQuantity(string name, int delta);
 string ChangePrice(string name, decimal delta);
}

interface IProductList : IProducts
{
 IList GetList();
}

interface IItems
{
 int Count {get;}
 string AddItem(string name, int qty);
 string DeleteItem(string name);
 Item FindItem(string name);
 string ChangeQuantity(string name, int delta);
}

interface IItemList : IItems
{
 IList GetList();
}

interface IVendorName
{
 string VendorName {get; set;}
}

interface IPlayerAdmin
{
 int Count {get;}
 string AddPlayer(string name, string pwd, decimal bal, int roleId);

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. Case Study-9
 All Rights Reserved

 Player FindPlayer(string name);
 string DeletePlayer(string name);
 IList GetPlayers();
}

interface IVendorAdmin
{
 string FindUrl(string name);
 string AddUrl(string name, string url);
 string DeleteUrl(string name);
}

interface IVendorInfo
{
 Vendor FindVendor(string url);
}

public interface IPlayer
{
 string Login(string name, string pwd, out Player play);
 string Logout(string name);
 string ChangeBalance(string name, decimal delta);
 string GetBalance(string name, out decimal bal);
 string SetBalance(string name, decimal bal);
}

Note that none of the methods do input or output, which will be performed in separate
user interface classes. For the purpose of obtaining a list of objects of various sorts,
methods will consistently return an IList.

Rev. 1.0 Copyright © 2003 Object Innovations, Inc. Case Study-10
 All Rights Reserved

