
C# .NET Illuminated

Art Gittleman

JONES AND BARTLETT PUBLISHERS

Art Gittleman
California State University, Long Beach

World Headquarters
Jones and Bartlett Publishers
40 Tall Pine Drive
Sudbury, MA 01776
978-443-5000
info@jbpub.com
www.jbpub.com

Jones and Bartlett Publishers
Canada
2406 Nikanna Road
Mississauga, ON L5C 2W6
CANADA

Jones and Bartlett Publishers
International
Barb House, Barb Mews
London W6 7PA
UK

Copyright © 2005 by Art Gittleman

Cover Image © Photodisc

Library of Congress Cataloging-in-Publication Data
Gittleman, Art.
C# .Net illuminated / Art Gittleman.

p. cm.
Includes bibliographical references and index.
ISBN 0-7637-2593-5 (pbk.)

1. C# (Computer program language) 2. Microsoft .NET. I. Title.
QA76.73.C154G52 2004
005.13’3—dc22

2004004572

9257

All rights reserved. No part of the material protected by this copyright notice may be reproduced
or utilized in any form, electronic or mechanical, including photocopying, recording, or any
information storage or retrieval system, without written permission from the copyright owner.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the USA and
other countries. Screen shots and icons reprinted with permission of Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Acquisitions Editor: Stephen Solomon
Production Manager: Amy Rose
Editorial Assistant: Caroline Senay
Marketing Manager: Matthew Bennett
Sales Manager: Jennifer Corr
Manufacturing Buyer: Therese Bräuer
Composition: Northeast Compositors
Technical Artist: George Nichols
Text and Cover Design: Kristin E. Ohlin
Printing and Binding: Courier Westford
Cover Printing: John Pow Company

Printed in the United States of America
08 07 06 05 04 10 9 8 7 6 5 4 3 2 1

www.jbpub.com

In memory of my Uncle Julius who
always volunteered his help

This page intentionally left blank

PREFACE
I designed this text to teach programmers and aspiring programmers how
to build applications using the C# language and Visual Studio .NET. These
tools facilitate building applications for desktop computers, the Internet,
and mobile devices. The text provides a thorough introduction to C#, and
carefully shows how to exploit the power of the Visual Studio .NET envi-
ronment to minimize the coding a developer needs to do “by hand.”

The text starts by introducing the event-driven programming style, in
which we write code to respond to users interacting with the forms we cre-
ate. The second chapter goes through the steps of building an application
using Visual Studio .NET, while the third presents user interface controls.
Chapters 4, 5, and 6 cover the basics of C#.

In Chapter 7 we access a database, and in Chapters 8 and 9 we build Web
applications, which are an ever-increasing part of the computing land-
scape. Chapters 10 and 11 cover XML and Web services, the technologies
that allow applications to communicate and integrate functions and data.
The concluding chapters, 12 and 13, treat mobile applications for hand-
held computers and other devices and the Crystal Reports report writing
tool included with Visual Studio .NET.

The Visual Studio .NET platform makes rapid application development
possible for those with a wide range of interests. This text will be useful to
those preparing to become developers, as well as to those who use comput-
ers as a tool to enhance their productivity in their major areas of interest.

Visual Studio .NET incorporates all of the capabilities of the .NET class
framework library. It generates much of the code we need, leaving only the
event-handling code to be written by the developer. For those who want to
look behind the scenes and do all the programming without the aid of
application building tools, the author’s book Computing with C# and the
.NET Framework (Jones and Bartlett, 2003) uses the .NET class framework
directly, covering many of the same topics as in this text.

Software

Microsoft Visual Studio .NET 2003 or later will handle all the examples in
this text. Visual C# .NET, which can be bundled with this text, will handle
the examples in the first 11 chapters.

In the text, we deploy Web applications (Chapter 8 and later) locally using
Microsoft Internet Information Server. If IIS is not installed, Web Matrix is
available at no cost from Microsoft and will run Web applications locally
while not permitting connections from other sites. Once Web Matrix is
installed, its readme file will show how to use it.

The database examples use the Microsoft Access database. If Access is not
installed, the SQL Server Desktop Engine is available at no cost from
Microsoft.

Resources

All of the applications are included on the publisher’s website at
http://computerscience.jbpub.com, so readers have the complete code for
each example. Answers to the odd-numbered Test Your Understanding
exercises appear at the end of the book.

Acknowledgments

I thank the following reviewers for their helpful comments and suggestions
on an earlier draft. I found their feedback to be extremely valuable.

Corinne Hoisington, Northern Virginia Community College

Sheila Sicilia, Onondaga Community College

Ron Greenwald, Saint Petersburg Community College

Gerald Baumgartner, The Ohio State University

Ayad Boudiab, Georgia Perimeter College

I am thankful for the dedicated assistance and support from the Jones and
Bartlett staff, including Stephen Solomon, Caroline Senay, Amy Rose,
Matthew Bennett, Kristin Ohlin, Anne Spencer, and Tracey Chapman, and
Mike Wile of Northeast Compositors.

Errata

Please e-mail any errors or typos to me at artg@csulb.edu. I will post them
on my website at http://www.cecs.csulb.edu/~artg/csharp/errata1.txt

vi Preface

http://www.cecs.csulb.edu/~artg/csharp/errata1.txt
http://computerscience.jbpub.com

CONTENTS
Chapter 1 Introduction 1

Event-Driven Programming 1
Windows Applications 2
Using a Database 4
Web Applications 5
Web Services 6
Mobile Applications 6
Crystal Reports 7

Computing with C# 8
Hardware 8
Software 9
History 10
Features 12

Visual Studio .NET 12

Summary 14

Chapter 2 Creating an Application 15

Creating a Windows Application 15
The Start Page 15
Creating a Project 16
The Properties Window 17
Changing Properties 18

Adding Controls 19
The Toolbox 19
TextBox 20
Label 21
Code for an Event 22
IntelliSense 23
Running an Application 24
Closing the Project 25
Test Your Understanding 25

Positioning and Sizing Controls 25
Anchoring 27
Aligning Text 28

Docking 31
Moving and Sizing Controls 33

Using a Button 34
Setting Properties 35
Handling the Click Event 37
Context-Sensitive Help 37

Summary 38

Programming Exercises 39

Chapter 3 Controls for Windows Forms 41

Using Radio Buttons and Link Labels 41
Radio Buttons 41
Adding a Link 45
Grouping Radio Buttons 47
Adding Another Group 51

More Boxes 52
Picture Boxes 52
Check Boxes 53
List Boxes 58
Combo Boxes 61

Keeping Track 62
DateTimePicker 63
NumericUpDown 65
Enabling the Display 65
StatusBar 66
Timer 66

Menus and Dialogs 68
MainMenu 68
RichTextBox 70
File Dialogs 72
A Print Dialog 75
A Color Dialog 75
A Font Dialog 77

Summary 78

Programming Exercises 79

Chapter 4 Variables and Types 81

Variables and the Assignment Operator 81
Identifiers 81

viii Contents

Keywords 82
The Character Set 82
Variables 82
The Assignment Operator 83
Illustrating Variables 84
Constants 87

Types 87
Formatting 89
Format Specifiers 90
Field Width 92

Operators and Expressions 96
Precedence of Arithmetic Operators 97
Increment and Decrement Operators 99
Relational Operators and Expressions 100
The AND, OR, and NOT Operators 101
Conditional AND 101
Conditional OR 102
Logical Complement 102
Operator Precedence 103
Combining AND with OR 103

Summary 106

Programming Exercises 107

Chapter 5 Selection and Repetition 109

The if and if-else Statements 110
The if Statement 110
The if-else Statement 111
Blocks 112

Nested ifs and the switch Statement 116
Nested if Statements 117
Pairing else with if 119
The switch Statement 122

Repetition 126
The while Statement 126
Loop Termination 127
The for Statement 128
The do Statement 133

Summary 136

Programming Exercises 137

Contents ix

Chapter 6 Reference Types 140

Arrays 140
Multiple ListBox Selections 141
Using the Documentation 142
A CheckBox Array 143
A Search Game 144
Random Numbers 145
Array Variables and Values 148

Strings 150
Visualizing a String 150
Creating a String 151
A String Property 152
A String Indexer 152
String Methods 152
Overloaded Methods 154
Class Methods 156
Using StringBuilder 158

Library Classes 162
Namespaces 162
Control Objects 163

Summary 164

Programming Exercises 165

Chapter 7 Using a Database 170

The Northwind Database 170
Relational Databases 170
Queries 171

The Connected Model 173
Connecting to a Database 173
Building a Command 175
Reading and Displaying the Data 176

The Disconnected Model 179
The Data Adapter Configuration Wizard 180
A Query Builder 181
A Data Set 182
Using the Data Form Wizard 183

Using Multiple Tables 187
Building the Query 188
Displaying the Query Results 190

x Contents

Summary 192

Programming Exercises 191

Chapter 8 Web Applications 195

HTML 196
Some HTML Tags 196

Web Server Controls and Code Behind 200
Hosting a Web page 200
Server Controls 202
Code Behind 202
More Web Controls 204

Accessing a Database 208
Adding a Connection 209
Configuring a Command 209
Displaying in a DataGrid 209
Writing the Event Handler 210
Choosing Data to Display 211

Using Multiple Web Forms 216
Redirecting a Response 216
The AutoPostBack Property 217
Adding a Web Form to a Project 218
Initializing the Page 219
Hidden State 220
Initializing the Page 223

Summary 224

Programming Exercises 225

Chapter 9 Validation Controls 227

Checking Required Fields 227

Range Checking 231
String Values 232
Integer Values 233
Dates 233
Currency 234

Comparing Values 235
Client-Side Versus Server-Side Validation 237

Validating Expressions and Summarizing 239
Validating Expressions 239

Contents xi

Summarizing Validation Errors 243

Summary 244

Programming Exercises 244

Chapter 10 XML 247

XML and Its Syntax 247
The Limitations of HTML 247
XML Syntax 248

Schemas 251
Building a Schema in Visual Studio .NET 252
Valid Documents 255
Using a Schema to Create an XML Document 256

From Data to XML 258
Northwind Data to XML 258
The Document Object Mode (DOM) 260
Processing an XML Document 261

Transforming XML 263
XSLT (Extensible Stylesheet Language for

Transformations) 263

Summary 272

Programming Exercises 273

Chapter 11 Web Services 276

Web Service Clients 276
Adding a Web Reference 276
Asynchronous Calls 279
The Event Handler and the Callback Methods 280

Creating a Web Service 282
Testing the Web Service 284
A Client for the Reverse Service 285

Accessing Data 286
Creating the Web Service 286
Creating a Client 290

Summary 292

Programming Exercises 292

xii Contents

Chapter 12 Mobile Applications 295

Introduction 295
Mobile Devices 295
Operating Systems 296
The .NET Compact Framework 297
Mobile Web Applications 298

A Simple Mobile Web Application 301
Creating a Web Application 301
The Windows CE .NET Emulator 302
The Pocket PC 2002 Emulator 304

A Smart Device Application: Appointment List 306
Using Tabs 307
Saving the Appointment List 309
Initializing the Appointment List 310

Accessing Web Services 311
Adding Web References 313

Summary 315

Programming Exercises 316

Chapter 13 Crystal Reports 317

Creating a Simple Report 317
Adding and Creating a Report 317
Viewing the Report 320
Filtering 321

Adding Features to a Report 323
The Data Tab 323
The Fields Tab 324
The Group Tab 325
The Total Tab 325
The Remaining Tabs 326
Viewing the Report 326

Reports via the Web 327
Viewing a Report in a Web Form 327
A Web Service Report 328
Accessing the Web Service 329

Summary 330

Programming Exercises 330

Contents xiii

Appendix A C# Keywords 331

Appendix B Operator Precedence Table 332

Appendix C The ASCII Character Set 333

Answers to Odd-Numbered Test Your Understanding Exercises 337

Index 343

xiv Contents

1CHAPTER
Introduction
Sending e-mail, playing games, and buying books are just a few of the many

uses for our computer. With powerful tools we can learn to create computer

applications ourselves. The C# language and Visual Studio .NET are two such

powerful tools, both of which are introduced in this chapter. C# is a general-pur-

pose programming language that lends itself to many programming styles.

Visual Studio .NET is a development environment that makes it easy to develop

applications for desktop computers, mobile devices, and the Web. The style of

these applications frequently is event-driven, presenting an interface with

which the user interacts.

Chapter Objectives:
■ Explain event-driven programming

■ Introduce the C# language

■ Introduce Visual Studio .NET

1.1 Event-Driven Programming

User-generated events control an event-driven program. A simple example
appears in Figure 1.1.

The application shown in Figure 1.1 waits for the user to enter a name in
the text box. As the user enters a name, the name replaces the initial mes-
sage in the label. If the user does not enter a name or even goes away, then
no code is executed. The system executes code when the user enters text.

Using Visual Studio .NET means that we have very little C# code to write
ourselves. For an event-driven application, the code we need to write consists
of event handlers. Event handlers respond to an event generated by the user.

In the application shown in Figure 1.1 we need to handle the event that
occurs when the user enters text in the text box. Our code will consist of

2 CHAPTER 1 Introduction

Figure 1.1 A simple form.

only one line used to copy the text from the text box to the label. Visual Stu-
dio .NET writes the code to create the text box and label, position them in
the form, and make the label color red. It provides the code structure
needed to run the application.

In this text we will create several types of event-driven applications. They
include Windows applications, ASP.NET Web applications, ASP.NET Web
services, and mobile Web applications.

1.1.1 Windows Applications

A Windows application runs on a computer using the Windows operating
system. Currently, Windows XP is the latest version. The application starts
by displaying a user interface, such as the simple one shown in Figure 1.1. It
waits for the user’s actions and responds to them. In Chapter 2 we carefully
go through the steps necessary to create a Windows application.

A form represents a window for a user interface. Controls are components
with a visual representation that we can add to a form to build a user inter-
face. Chapter 3 presents a wide variety of Windows application controls.

1.1 Event-Driven Programming 3

Figure 1.2 Using list box and combo box controls.

Figure 1.3 A form to calculate the change from a dollar.

For example, Figure 1.2 shows a screen that contains a list box, a combo
box, and a label. When the user selects a drink from the combo box, the
event handler that we wrote displays the food and drink that the user
selected in the label.

Because we have not really begun to explore the C# language, we only do
simple things in the event-handling code that we write. We only allow the
user to select one food and one drink because we need to cover more C#
concepts to allow multiple selections.

Chapters 4, 5, and 6 introduce the C# language, presenting the features we
need to write various types of event-driven applications. Chapter 4 uses C#
for simple computations, introducing arithmetic expressions and basic
data types. Figure 1.3 shows the screen for an application that finds the

Figure 1.4
Change from a dollar.

4 CHAPTER 1 Introduction

Figure 1.5 Assigning a letter grade.

coins needed to make change from a dollar given the purchase amount the
user enters in a text box. We respond to the event the user generates by
pressing a button. We use the button to allow the user to complete the entry
in the text box before calculating the change. Had we responded to the user
entering text in the text box, we would have responded after each digit was
entered, which is not what we want.

Figure 1.4 shows the result of the calculation display in a message box. It is
correct mathematically, but not grammatically. The display shows “1
dimes”, but would be better as “1 dime”. Similarly, “1 nickels” should be “1
nickel”. To correct the grammar we need to learn how to make choices,
which is the subject of Chapter 5.

In Chapter 5 we cover the C# statements needed to select from among
alternatives and to repeat steps. Figure 1.5 shows a form in which the user
enters a test score in a text box and presses a button to find out the letter
grade assigned to that score. The event-handling code selects the grade
based on the range of values in which the grade lies. It makes choices
depending on the results of comparisons.

Chapter 6 covers arrays and strings. Array notation lets us use collections of
data conveniently. We use character strings in each chapter, and then we
take the time in Chapter 6 to cover important details about them that we
will use in later examples. Applications can handle multiple selections in a
list box and can produce the grammatically correct response shown in the
text box of Figure 1.6.

1.1.2 Using a Database

Chapter 7 continues Windows applications, adding the use of a database.
Many applications use and create data that needs to be saved. A database

8

1.1 Event-Driven Programming 5

Figure 1.6 Choosing animals and a thing.

system uses efficient methods to save possibly large sets of data. Figure 1.7
shows a screen that displays the products from the Northwind database
included with the Microsoft Access database program.

1.1.3 Web Applications

The World Wide Web is becoming the platform of choice for many applica-
tions. Users can browse sites all over the world with Internet Explorer or
other similar software. Web pages are written in HTML, the hypertext
markup language. Chapter 8 introduces HTML, but in our application
Visual Studio .NET writes the HTML we need.

Visual Studio .NET provides Web forms and Web controls to enable us to
build Web applications. We host these applications on our Web site. Users
browse our site and download our application to their own computers.
They may submit information that they enter on forms to our server. Web
server controls, covered in Chapter 8, execute on our server and send
responses back to the users who submitted requests. Figure 1.8 shows a Web
form that confirms the user’s choices for ordering an ice cream sundae.

Chapter 9 continues discussion of building Web applications. It illustrates
validation controls that make sure the user does not leave a field blank.
These controls can also check that a value is in a correct range or that it
compares correctly with another value such as a password. They can also

6 CHAPTER 1 Introduction

Figure 1.7 Displaying database data.

check for valid formats of common data items such as telephone numbers
and zip codes. Checking correct data entry is an important part of building
a robust application. Figure 1.9 shows a screen indicating that the user has
failed to enter a name or an address in the Web form.

1.1.4 Web Services

The Web applications covered in Chapters 8 and 9 let a user access and
interact with forms downloaded from a remote site. More generally, Web
services allow programs to access other sites without depending on a
human user with a browser. Web services use XML, a general notation for
expressing information, which we cover in Chapter 10. In Chapter 11 we
access and build Web services.

Figure 1.10 shows an interface to a weather-temperature Web service. In
this case we provided a user interface. The user enters a zip code, and then
the Web service returns the temperature in that zip code.

1.1.5 Mobile Applications

Mobile devices, including handheld computers, personal digital assistants,
and cell phones, have installed applications and may access Web applica-
tions hosted on servers. Visual Studio .NET, starting with the 2003 version,

1.1 Event-Driven Programming 7

Figure 1.8 A Web application.

allows us to develop applications for these devices. We introduce applica-
tion development for mobile devices in Chapter 12.

1.1.6 Crystal Reports

Visual Studio .NET includes the Crystal Reports package that enables us to
create a variety of reports to present the data and results of .NET applications.
In Chapter 13 we show how to create reports and to access them on the Web.

8 CHAPTER 1 Introduction

Figure 1.9 Validating entries in a Web form.

Figure 1.10 Using a Web Service.

1.2 Computing with C#

Microsoft created the C# language along with the .NET platform. We start
with some basic computing concepts and then trace the evolution of C#
and highlight its features.

1.2.1 Hardware

A computer has several basic components. The processor executes pro-
grams stored in memory, using the memory to store data needed in the

1.2 Computing with C# 9

Figure 1.11 A computer system.

computation. External storage, including disk drives, holds programs and
data. Input devices such as a keyboard and a mouse allow user interaction.
Output devices display results. Figure 1.11 illustrates this system. Changing
technology continually improves the performance of these components
and provides new types, but current commercial computers are structured
in this manner.

1.2.2 Software

Software consists of the programs that the computer executes. The oper-
ating system software makes it much easier for us to use the computer. It
provides an interface to the hardware so that we do not have to write
programs to read input from the keyboard, write output to the screen, or
create files on the hard disk. An operating system can be relatively sim-
ple, providing few services, or it can be a huge program with many bells
and whistles.

Programmers appreciate utility programs such as editors that allow us to
create or modify programs, and compilers that translate programs from
one language to another to facilitate their execution. End users run word
processors, spreadsheets, games, and browsers, among many other applica-
tions. Businesses rely on computer software to serve customers and for
their own accounting, payroll, and other management needs.

The processor executes software using its specially designed instruction set.
Each instruction is simple, so it may take hundreds, thousands, or millions
of instructions to implement the tasks we want our software to perform.
Each instruction has several parts. These parts specify the operation—addi-

tion, for example—that the instruction performs and any operands that it
uses, such as the numbers to add. Each memory location has a numerical
address. High-level languages such as C# provide instructions that perform
the equivalent of many low-level machine instructions.

Processor

Memory

Storage OutputInput

10 CHAPTER 1 Introduction

High-Level Languages

Each processor has its own instruction set that uses numerical codes for the
operators and numerical addresses for the operations. Each instruction
performs one basic step such as an addition, a load, or a store. Program-
ming using a processor’s instruction set would make it difficult to accom-
plish anything more than the simplest tasks. Moreover, we would have to
write such a program all over again for the instruction set of a different
processor. A program using processor ABC’s instruction set will not run on
processor XYZ, and vice versa.

A high-level language allows us to express the computation in a more
understandable form, combining several steps into one expression, and to
write a program that we can implement on many different types of proces-
sors. For example, we can express an addition as

totalSalary = baseSalary + bonus;

and write more complicated statements such as

totalScore =
(judge1Score + judge2Score + judge3Score) * difficulty;

which represents the total score obtained by first adding the scores of three
judges and then multiplying that sum by a difficulty factor. We use the star,
*, to denote multiplication.

1.2.3 History

FORTRAN and COBOL were among the first high-level languages, introduced
in the late 1950s. Both are still used today, FORTRAN for scientific applications
and COBOL for business. Smalltalk, released around 1980, is a fully object-ori-
ented language that influenced its successors, including Java and C#.

Systems programmers who needed access to the machine hardware used
assembly languages, which are very low-level and specific to the hardware.
The C language, developed in the early 1970s, is sometimes described as a
portable assembly language. It is a high-level language, like FORTRAN and
COBOL, but provides access to machine hardware. The UNIX operating
system, developed for the then new minicomputers, was mostly written in
C, and both C and UNIX rapidly grew in popularity.

1.2 Computing with C# 11

Although good for systems programming, C is a small language that does
not facilitate the development of large software systems. Introduced in the
late 1960s, object-oriented programming started to become popular in the
mid 1980s. Languages that support object-oriented programming do facili-
tate the development of large software systems. C++ extends C to include
constructs that support object-oriented programming, while still including
those that access machine hardware. Consequently, C++ grew in popularity.

Meeting a different need, BASIC was developed in the 1960s as an easier
way for students to learn to program. It used an interpreter so that students
could immediately see the results of execution. Originally, personal com-
puters had very limited memory chips in which to hold programs, so
BASIC, which did not require compilation to a larger low-level representa-
tion, became the main language used on early PCs. As memory became
cheaper and graphics capabilities grew, BASIC morphed to Visual Basic, an
extremely popular language for the rapid development of user applications.

With the introduction of the .NET Framework, Visual Basic has evolved to
Visual Basic .NET, a cousin of C#. One way we might describe C# is as a
language that tries to combine the rapid application development of Visual
Basic with much of the power of C++.

With the rise of desktop computers and the rapid growth of the Internet in
the mid 1990s came the need for a language to support programming by
allowing users on vastly different systems to interact in a secure way. Java,
introduced in 1995, uses a Java Virtual Machine to provide security and
enable programs developed on different systems to interact. A large library
extends its capabilities for Internet programming. Because it suited the new
demands placed on developers, Java has become very popular.

The goals of C# are similar to those of Java. Those versed in one of these
languages can rapidly convert to using the other. C# had the advantage of
seeing the Java approach and how it might enhance it. C# adds features for
the easy development of components to make it simpler for developers to
combine programs from different sources. One can annotate a C# program
with attributes that are available when the application is running. This
metadata describes the program so that other programs can use it. C#,
newly developed in the 21st century, promises to become very popular as
the primary .NET programming language.

12 CHAPTER 1 Introduction

1.2.4 C# Features

Microsoft identifies C# as a modern, object-oriented language that allows pro-
grammers to quickly build .NET components from high-level business objects
to system-level applications. These components can easily be converted to
Web services to be used over the Internet. Important characteristics are:

■ Productivity and Safety

— C# uses the .NET platform supporting Web technologies. C#
works well with XML, the emerging standard way to pass struc-
tured data over the Internet.

— The C# design eliminates many costly programming errors. It
includes automatic memory management and initialization of
variables. It checks types to avoid run-time errors.

— C# reduces updating costs by supporting versioning in the lan-
guage, making it easier and less costly to introduce a new ver-
sion of a product.

■ Power, Expressiveness, and Flexibility

— C# allows a close connection between the abstract business
process and its software implementation. The developer can
associate metadata with a program that will allow tools to
determine whether a component is correctly identified as part
of a business object or to create reports.

— To avoid the need to use C++ to access basic machine func-
tions, C# permits carefully identified low-level access to
machine resources.

1.3 Visual Studio .NET

Visual Studio .NET is a complete set of development tools for building
desktop applications, ASP Web applications, XML Web services, and
mobile applications. In Chapter 2 we carefully detail the steps needed to
create a Windows application. In this section we illustrate some of the fea-
tures of Visual Studio .NET.

Figure 1.12 shows Visual Studio .NET opened to the design view with a
form. The Toolbox on the left show the controls that we can drag onto the
form. The form currently contains a TextBox and a Label. The selected tab at

1.3 Visual Studio .NET 13

Figure 1.12 Using Visual Studio .NET.

the top of the left side has the label Form1.cs [design]. Visual Studio .NET
creates the default name Form1. The extension .cs denotes a C# application.

The form contains the user interface design that we create by dragging con-
trols from the Toolbox. The rightmost tab, Form1.cs, is not selected. It con-
tains the C# code that Visual Studio .NET has written to implement our
design. We never need to select it. The only C# code we will need to write to
make this application work will be one line to copy the text that the user
enters in the text box to the label below it. To write event-handling code, we
double click on the control in which the event occurs. In the design shown
in Figure 1.12, we will double click the TextBox and add that one line of
code inside the template that appears.

Similarly, we use Visual Studio .NET forms and a Toolbox to design Web
applications and mobile applications. We use a similar process to write
event-handling code for these types of applications. Visual Studio .NET is
a powerful tool that minimizes the amount of C# code the developer
needs to write.

14 CHAPTER 1 Introduction

1.4 Summary
■ With powerful tools we can learn to create computer applications

ourselves. The C# language and Visual Studio .NET are two such
powerful tools.

■ User-generated events control an event-driven program. Types
of event-driven applications include Windows applications,
ASP.NET Web applications, ASP.NET Web services, and mobile
Web applications.

■ Using Visual Studio .NET means that we have very little C# code to
write ourselves. For an event-driven application, the code we need
to write consists of event handlers.

2CHAPTER
Creating an Application
We start by building a simple application illustrating the use of Visual Studio

.NET. Controls are components with visual representations that we add to a

form to make a user interface.We discuss placing controls in a form, configuring

controls by setting properties, and writing code to make a control respond to

the user’s actions.

Chapter Objectives:
■ Create a simple Windows application

■ Add controls using the Toolbox

■ Configure controls using Properties

■ Write code to respond to user actions

■ Use context-sensitive help

2.1 Creating a Windows Application

We show how to use Visual Studio .NET to begin creating a simple Win-
dows application.

2.1.1 The Start Page

Visual Studio .NET opens by default with a Start Page, as shown in Figure
2.1.

We can change the default by choosing the Tools, Options menu item. In the
upper-right corner, we can pop up the following choices:

Show Start Page

Load last loaded solution

Show Open Project dialog box

16 CHAPTER 2 Creating an Application

Figure 2.1 The Start Page.

Show New Project dialog box

Show empty environment

2.1.2 Creating a Project

To create a new project we click the New Project button, choosing Visual C#
Projects as the project type and the Windows Application template. Templates
provide the correct starting environment for the type of project we are
building. The various project types with their accompanying descriptions
are:

Windows Application A project for creating an application with a
Windows user interface

Class Library A project for creating classes to use in other
applications

Windows Control Library A project for creating controls to use in Win-
dows applications

Mobile Web Application A project for creating an application viewable
on PDAs, cell phones, and other mobile devices

2.1 Creating a Windows Application 17

ASP.NET Web Application A project for creating an application with a Web
user interface

ASP.NET Web Service A project for creating XML Web services to use
from other applications

Web Control Library A project for creating controls to use in Web
applications

Console Application A project for creating a command-line application

Windows Service A project for creating services for Windows

Empty Project An empty project for creating a local application

Empty Web Project An empty project for creating a Web Application

New Project in An empty project created in an existing folder
Existing Folder

We will use some of these templates later in the text. Later versions of
Visual Studio .NET include a few additional choices. The Mobile Web Appli-
cation template requires a separate download to install in earlier versions.
For the Windows application we are creating, we choose the name Exam-
ple2-1 and the location c:\booknet\ch2, and click OK. The location is the
folder in which all the files for this project will be stored.

2.1.3 The Properties Window

Figure 2.2 shows the form on the left with the Properties window on the
right. If the Properties window does not appear, we can view it by clicking
the View, Properties Window menu item.

The form in Figure 2.2 has a grid of dots that we can use to align controls
that we add to the form. Using the scroll bar in the Properties window, we
can explore the various properties that we can use to configure the form. The
main Properties categories for a Form are Accessibility, Appearance, Behavior,
Configurations, Data, Design, Focus, Layout, Misc, and Window Style. If they show
with a plus sign (+) at the left, clicking on the plus sign will open a list of
properties in that category. Figure 2.2 shows the Appearance properties. The
highlighted property, Text, has its description below the Properties window.

In the Properties windows, the row just below the name, Form1, contains five
buttons. The leftmost two, separated by a vertical bar from the rest, allow us
to choose to arrange the properties by category or alphabetically. The left
button of these two, for categories, is the default. The second group of two
buttons lets us choose this window to display property values or event

18 CHAPTER 2 Creating an Application

Figure 2.2 A Windows application.

methods. The default is property values. We will discuss event methods later
and use another approach to define them. We stick with the default choice
of property values. The rightmost button, for Property Pages, is disabled.

2.1.4 Changing Properties

The Text property contains the title of the application. It appears in the
frame of the form. We can replace the default text, Form1, with our own title.
We type A Simple Form, and after pressing the Enter key this text appears as
the new title in the form.

We use the BackColor property to change the background color of the form.
The current color is a gray, which is the default for a Control. If we click on
this current BackColor value we get a combo box with an arrow to allow us
to pop up a window with three tabs, Custom, Web, and System. The System tab
is on top and shows the default color for various system elements. We could
select ControlLight or ControlLightLight to get a lighter color for the form
background, but we select the Custom tab to get a grid of custom color selec-
tions. We choose the fourth color in the top row, which is a light pinkish
yellow. The numbers 255, 255, and 192 associated with this color represent

Visual Studio .NET opens
with a Start page that we
can configure in various
styles. We begin by creat-
ing a project of which there
are several types. A Win-
dows application provides
a Form for creating a user
interface. A Properties
window lists properties of
the form, such as its
background color, that we
can customize with our
choices.

The BIG Picture

2.2 Adding Controls 19

its red, green, and blue components on a scale from 0 to 255, with 255
being the most intense.

We can use properties to specify the size and the location of the form. We
use pixels to indicate size and location. A pixel is a picture element, a single
dot on the screen. The screen resolution determines the number of pixels
for the full screen. Some usual configurations are 800 by 600 or 1024 by
768, where the first measurement is the number of pixels making up the
width and the second is the height.

Test Your Understanding

1. Using Visual Studio .NET, find the property to set the size of a
form. What is the default size?

2. Using Visual Studio .NET, in what property group is the Location

property? At which corner of the form does it specify the position?

2.2 Adding Controls

Controls are components that we can add to a form. They enable us to cre-
ate rich user interfaces.

2.2.1 The Toolbox

The Visual Studio .NET Toolbox contains controls that we can add to a
form. To view the Toolbox, we click on the View, Toolbox menu item. The
main window is getting crowded with the form, the Properties window,
and the Toolbox. The Properties window in Figure 2.2 shows a pushpin in
the vertical position just to the left of the X that allows the user to close that
window. Clicking on the pushpin turns it to the horizontal position and
hides the Properties window in a bar on the right side. It reappears when
we move the mouse over the bar. By auto-hiding the Properties window we
can have it readily available without cluttering the screen. We could auto-
hide the Toolbox but leave it showing as in Figure 2.3, so that we can refer to
it. Figure 2.3 shows the form with its new title and background color.

The Toolbox groups controls into the following categories:

Data Controls to represent database data

Components Nonvisual components such as a timer or report document

Windows Forms Controls that make up the visual interface

20 CHAPTER 2 Creating an Application

Figure 2.3 The Toolbox.

Clipboard Ring Used to copy text

General Used to add additional controls

In Figure 2.3, the opened Windows Forms tab shows the first of the user inter-
face controls. Notice that the controls are not in alphabetical order, but
rather are in order of expected frequency of use. The commonly used Label,
LinkLabel, Button, and TextBox controls appear first. Clicking once on a con-
trol will enable it, so that clicking the mouse in the form will place that con-
trol on the form in the position of the mouse click. The Pointer option
appears in every category. Clicking on it releases the mouse to function
normally. We could click Pointer if we had clicked Button but changed our
mind about adding a button to the form.

For our application, we will use two of most frequently used controls,
TextBox and Label. A TextBox allows the user to enter text and displays it,
while a Label is just for display.

2.2.2 TextBox

The TextBox control allows the user to enter text in an application. We click
the mouse on the TextBox entry under the Windows Forms tab in the Toolbox,

2.2 Adding Controls 21

and click the mouse again at the location in the form where we want to add
the text box. We can also drag the TextBox from the Toolbox to the form.

When we add the TextBox to the form or later select it by clicking on it, the
Properties window shows its properties. The Properties window always
shows the values of the properties for the selected control. The categories
for a TextBox are Accessibility, Appearance, Behavior, Configurations, Data,
Design, Focus, and Layout.

Properties may be relevant for one control and not another. For example,
the Appearance category for a TextBox includes a Lines property that contains
the lines of text in the text box. The Form control does not have a Lines prop-
erty. The default text, textBox1, appears in the text box initially. It is the
default value of the Text property. To allow the user to enter text without
having to erase, we could delete the value textBox1 from the Text property
field in the Properties window.

Visual Studio .NET generates default names for each control that it uses in
the code it generates. It generates the name textBox1 for the TextBox that we
include in Example2-1. We prefer to change the names of our controls to be
more meaningful. This makes the programs easier to understand. To
change the variable name, we look for the (Name) property in the Design sec-
tion of the Properties window for the text box. We change the default
name, textBox1, to nameEntry because the user should enter his or her name.

Note that properties refer to the control when the application is running,
not while using Visual Studio .NET to design the application. For example,
the Cursor property indicates the style of cursor that will appear when the
user passes the mouse over the control when the application is running.
The TextBox is initially configured with the IBeam cursor that looks like the
letter I. This IBeam cursor will appear when the user passes the mouse over
it in the running application. During the design, the cursor is either the
default Arrow or the SizeAll cursor pointing in all four directions.

2.2.3 Label

Labels are often used to provide descriptive text for controls. We add a
Label to the form by clicking Label in the Toolbox and then clicking at the
location where we wish to place the label. Using the grid of dots, we can
align the label in the same column below the text box already on the form.
The default text in the label is label1, but we use the Text property in the

22 CHAPTER 2 Creating an Application

Figure 2.4 Adding a Label.

Properties window to change it to Enter your name. We also change the
(Name) property value from label1 to display in order to make it more
meaningful. Figure 2.4 shows the form so far.

2.2.4 Code for an Event

To make a complete application we ask the user to input his or her name in
the text box and then display it in color in a larger font in the label. The
user’s action of entering a name in the text box generates an event. Visual
Studio .NET generates code to register an event handler for the text box.
The event handler uses a C# method. (We will discuss methods in detail
later.) A method performs an operation. The operation we want to perform
is to take whatever the user enters in the text box and display it larger and in
color in the label.

We know that both the TextBox and the Label have a Text property. We can
get and set the values of these properties in our C# code. The line

display.Text = nameEntry.Text;

will copy the text from the text box to the label. It is an example of an
assignment statement that we will discuss later.

2.2 Adding Controls 23

Not only does Visual Studio .NET generate code to register an event han-
dler, it generates the outline of the method needed, and we only have to fill
in the specific action we want to happen. To see the template that Visual
Studio .NET provides, we double-click on the TextBox and another tab
appears with the code for our application. The template is

private void nameEntry_TextChanged
(object sender, System.EventArgs e)

{

}

For now all we need to observe about this method is that its name, nameEn-
try_TextChanged, identifies it as the method that will be called automatically
when the user changes the text in the nameEntry text box. This is where we
want to add the line that copies the text from the text box to the label. After
adding this line, the code is

private void nameEntry_TextChanged
(object sender, System.EventArgs e)

{
display.Text = nameEntry.Text;

}

We terminate the line with a semicolon.

2.2.5 IntelliSense

Visual Studio .NET is very helpful when coding. The IntelliSense feature
pops up a list of possible continuations of the code we are entering. For
example, as soon as we type the period after display, a menu pops up that
lists all the Label properties, and we can just choose Text from that menu
rather than typing it. This has the advantage of saving typing and reducing
spelling errors as well as of reminding us of all the possibilities in this con-
text. A similar menu pops up after we type the period following nameEntry.

Our project now has two tabs. One is Form1.cs[Design], that shows our
application window. The other is Form1.cs, that shows the C# code, most of
which has been generated by Visual Studio .NET. Let’s return to the design
tab, because we need to set some properties for the label to make it use a
larger font and display in color.

To set properties for the label we first select it by clicking on it with the
mouse. Now the Properties window will display the properties for the label.

24 CHAPTER 2 Creating an Application

Figure 2.5 Executing the application.

Clicking on the ForeColor property whose default is black, normally used
for ControlText, pops up a color editor. We choose the Custom tab and select
the second color in the third row, which is Red. Doing that changes the color
of the text in the label to red.

A FontDialog window pops up when we click on the Font value in the Prop-
erties window. We change the size from 8 to 16. Making the font size larger
changes the display in the label from Enter your name to Enter you because
the label is not large enough to hold the original text. To fix this, we find the
AutoSize property under the Behavior category in the Properties window for
the label and change its value to True. This will allow the label to change its
size automatically to accommodate the text we place in it.

2.2.6 Running an Application

Our application is very simple, but before going any further we want to
execute it. The easiest way to execute an application is to click the Debug,
Start menu item. This will compile the code and execute it. We could com-
pile the code first by clicking Build, Build Solution and then run it by click-
ing Debug, Start. Figure 2.5 shows the application window. Notice that the
label has the same indentation as the text box, because we use the grid in
Visual Studio .NET to align them.

The name that the user enters appears in the label in a larger size and in red.
Each character appears in the label as soon as the user enters it in the text
box because the event handler responds to each entry. Another approach,

The Toolbox contains
controls that we can drag
onto a form.It groups con-
trols by categories. The
TextBox control allows
the user to enter text in an
application. Labels are
often used to provide
descriptive text for con-
trols. Double-clicking on a
TextBox displays the
template for an event
handler that will be called
to respond when the user
changes the text in the
box. We enter the C# code
to perform the desired
action to respond to this
event. We can execute the
application from Visual
Studio .NET.

The BIG Picture

2.3 Positioning and Sizing Controls 25

which we explore later, would add a button and copy the text from the text
box to the label when the user clicks the button. This alternative would
allow the user to finish the entry and make any necessary corrections before
the result appears in the label.

Notice that the application window in Figure 2.5 has three buttons in the
upper-right corner. Clicking on the leftmost button, the minus sign, mini-
mizes the application as an icon on the taskbar. Clicking on the middle but-
ton, the screen, maximizes the window to fill the screen. When we
maximize the window, the text field and the label remain in their original
locations with respect to the upper-left corner. Thus they appear in the
upper-left corner of the maximized window. We will see later how to allow
these positions to change when the window is maximized. Clicking on the
rightmost button, the X, closes the window and terminates the execution of
the application.

2.2.7 Closing the Project

We want to save this project as it stands to compare it with later extensions.
We click File, Close Solution. A window pops up asking us whether we want
to save those parts of the project that have changed. We click Yes. All the files
pertaining to this project are located in the folder c:\booknet\ch2\Example2-1.

Test Your Understanding

3. Using Visual Studio .NET, find the properties in the Appearance
category for each of the three controls, Form, TextBox, and Label.
Which appear in one Control and not in one of the others?

4. What happens if you click Label in the Toolbox and then click
Pointer before clicking in the Form?

5. Describe how the running Example2-1 application looks when you
maximize it by clicking the middle button in the upper-right corner.

2.3 Positioning and Sizing Controls

We will use anchoring to position a control appropriately when the user
resizes the form containing it. We will dock a control to an edge of the
form. We can use the mouse to drag a control to a new location or to resize
it. The keyboard can also be used to resize a control.

26 CHAPTER 2 Creating an Application

Figure 2.6 Creating a new project.

To illustrate, we start a new Visual Studio .NET project. After Visual Studio
.NET opens, we click the New, Project menu item to pop up the New Project

window. We choose Visual C# Projects on the left and Windows Application on
the right. Then we enter Example2-2 as the project name, as Figure 2.6 shows.

Clicking OK opens the design for Example2-2 with a blank form. We add a
TextBox to the form. Under it we add a Label, and under the Label we add
another TextBox. We align all three the same distance from the left of the
form and roughly centered horizontally.

First we want to choose more meaningful names for each control and change
the default display messages. (Figure 2.11 shows how the running application
will look.) Because this example illustrates the different anchoring positions,
we name the upper text box topText, name the label middleDisplay, and name
the lower text box bottomText. To assign these names we select each control by
clicking on it and changing the value of its (Name) property from the default
name to the desired name. The default Text property of the form itself is
Form1. This text appears in the title of the form at the top. We change the Text
property of the form to Anchor and Align.

The default display message for a TextBox or a Label just displays its
name. To prompt the user, we change the Text properties of topText and
bottomText to Enter a message. We change the Text property of the middle-
Display label to Display here.

2.3 Positioning and Sizing Controls 27

Figure 2.7 Selecting a control in the Properties window.

2.3.1 Anchoring

The default anchor for a control is top and left. This means that the control
will maintain the same distance from the top and the left of the form as the
user resizes the form. The Anchor property allows us to change this default.
To balance the appearance of the form, we can anchor some controls to the
top and some to the bottom, or some to the right and some to the left.

Because the default anchor is Top, Left, if we run this application and max-
imize the form by clicking the middle button on the upper left of the form,
all three controls will appear in the top left part of the form, not centered as
we originally placed them. To change the Anchor property, we find it in the
Properties window toward the bottom in the Layout category.

The Properties window has a combo box at the top that allows us to select
the control whose properties we wish to view. Pressing the arrow button at
the right pops up all the choices, as shown in Figure 2.7. Choosing topText
and clicking its Anchor value pops up a diagram with rectangles pointing up,
right, down, and left, and a larger rectangle in the center, as shown in Figure
2.8. We can choose from 0 to 4 of the four outer rectangles for the Anchor

28 CHAPTER 2 Creating an Application

Figure 2.8 Choices for the Anchor property.

value. For topText, we select the rectangle pointing up to set its Anchor to
Top. We do not use the center rectangle for a TextBox.

We set the Anchor property for middleDisplay to Left, Right by selecting both
the left and right rectangles in the window similar to Figure 2.8, but for mid-
dleDisplay. This will force middleDisplay to keep the same distance from the
left and right edges of the form when the form is resized. If the user maxi-
mizes the form, middleDisplay will have to expand horizontally because its
distance from either edge cannot increase and the form gets much wider.
Finally, we set the Anchor property of bottomText to Bottom.

2.3.2 Aligning Text

If we click Debug, Start to execute this application and click the middle but-
ton on the upper right to maximize the window, we see that upperText and
lowerText remain in the center of the form because they are no longer
anchored to the left edge. But the text Display here still appears near the left
edge, which at first glance looks inconsistent with the new anchoring of
Left, Right for middleDisplay. But we cannot see the boundaries of mid-

dleDisplay because its default color is the same as the color of the form. To
see the extent of middleDisplay, we change its BackColor to pink using the
color dialog that pops up in the Properties window, as shown in Figure 2.9.

Rerunning the application now shows that middleDisplay remains centered
in the form, but expanded in width so that its left and right edges remain

2.3 Positioning and Sizing Controls 29

Figure 2.9 Setting the BackColor property.

Figure 2.10 TextAlign choices.

the same distance from the left and right edges of the form. The text, Dis-
play here, appears at the upper-left edge of middleDisplay because its align-
ment is TopLeft. To change the alignment we click on the value of the
TextAlign property in the Appearance category in the Properties window,
bringing up the choices shown in Figure 2.10. Selecting the center rectangle
will change TextAlign to MiddleCenter. Rerunning the application again will
show the text in the center of the label.

30 CHAPTER 2 Creating an Application

Now that we have used anchoring to position the controls, we can respond
to user actions. For Example2-2, we let the user enter a message in the
upper text box, which we display in middleDisplay. When the user enters a
message in bottomText we copy it to topText. Whenever the text in topText
changes, the event handler for topText displays the new text in middleDis-
play. So as the user enters text in bottomText, it winds up being copied to
both topText and middleDisplay.

Next, we need to write the event-handling code. We handle topText events
just as we did in Example2-1. Double-clicking on topText brings up a code
template to which we add one line, copying the text from topText to mid-
dleDisplay. As in Example2-1, the result is

private void topText_TextChanged
(object sender, System.EventArgs e)

{
middleDisplay.Text = topText.Text;

}

We want to copy the text the user enters in bottomText into topText. Double-
clicking on bottomText brings up the template

private void bottomText_TextChanged
(object sender, System.EventArgs e)

{

}

We add the line

topText.Text = bottomText.Text;

giving

private void bottomText_TextChanged
(object sender, System.EventArgs e)

{
topText.Text = bottomText.Text;
}

Running Example2-2 produces the application of Figure 2.11. We widen
the form by placing the cursor on the right edge until the cursor changes to
horizontal arrows, and then dragging the right edge to the right. The label
widens to keep the same distance from the left and right edges, and the text
remains centered in it. When we enter Hi there in bottomText it appears in
topText and middleDisplay. Figure 2.12 shows the result.

2.3 Positioning and Sizing Controls 31

Figure 2.11 Executing Example2-2.

Figure 2.12 Widening the form of Example2-2.

2.3.3 Docking

Docking a control attaches it to an edge of the form, or to all edges. To illus-
trate, in Example2-3 we will dock a TextBox to the top of the form and allow
a Label to fill the rest. The width of the text box must expand to match the
edge of the form. The text box will remain docked to the top edge of the
form when the form is resized.

32 CHAPTER 2 Creating an Application

Figure 2.13 Setting the Dock property.

We create the Example2-3 project, add a TextBox to the form, and add a
Label below the TextBox. First we choose meaningful names for the controls
by using the Properties window of each control to set the following (Name)
property values:

Default name Meaningful name

textBox1 enterMessage

label1 display

We also change the Text property of each control to something more
descriptive.

Default text Descriptive text

Form1 Dock

textBox1 Enter a message

label1 Display here

To dock the enterMessage text box to the top of the form, we find the Dock

property of the enterText text box in the Layout section of the Properties win-
dow. Clicking on the Dock value pops up the window shown in Figure 2.13.
Selecting the top rectangle will set the Dock property for enterMessage to Top.

When setting the Dock property for the display label, we select the middle
rectangle. This sets the Dock property to Fill, indicating that all four edges

2.3 Positioning and Sizing Controls 33

Figure 2.14 Illustrating docking.

will be docked to the form and fill the remaining space. To continue config-
uring display, we set BackColor to green, ForeColor to purple, and TextAlign
to MiddleCenter. We click on the Font value to open a Font dialog, and we
change the size to 14 and the style to Bold.

When we add code to handle the user’s text entries, we not only copy the
text to the label, but use the ToUpper method to change it to uppercase. The
event-handling method is

private void enterMessage_TextChanged
(object sender, System.EventArgs e)

{
display.Text = enterMessage.Text.ToUpper();

}

The parentheses after the method name contain information we pass to the
method. We do not pass any information, so we leave that position empty.
We will discuss methods later in the text. Figure 2.14 shows Example2-3.

2.3.4 Moving and Sizing Controls

We do not have to place our controls in exactly the right location initially. If
we click the mouse in the center of the control and hold the mouse button
down, we can drag the control to a new location.

The Anchor property
determines which edges
of a control are anchored
to the edges of its con-
tainer. The TextAlign
property of a Label
positions its text. The
Dock property specifies
an edge on which to
attach the control.We use
the mouse to move a con-
trol or resize it.

The BIG Picture

34 CHAPTER 2 Creating an Application

We can make the control larger or smaller using the mouse. When we select
a TextBox or a Label in the form that we are designing in Visual Studio .NET,
eight small squares appear around the boundary, as we saw earlier in Figure
2.4. For a TextBox, when we point the mouse over the middle square on the
left or right edge, the cursor changes to a horizontal line with arrows point-
ing left and right. This signifies that if we press the mouse and drag the
control, we can expand or contract it horizontally. None of the other
squares on the selected TextBox box provide resizing starting points.

By contrast, each of the eight squares around a selected label provides a
resizing starting point. Placing the cursor on the squares in the middle of
the left and right sides of the label allows horizontal resizing. When we put
the cursor on one of the middle squares on the top or bottom side of the
label, the cursor changes to a vertical bar with an arrow pointing up or
down. This signifies that we can resize the label vertically. Placing the cur-
sor on one of the four corners changes the cursor to a diagonal bar with
arrows pointing in both diagonal directions. This indicates that we can
resize diagonally, changing both the vertical and horizontal dimensions of
the label as we drag the mouse.

Test Your Understanding

6. If the Anchor property of a control has the value Top, Right, what
can we conclude about the distances of the control to the edges
of the form?

7. What value does the Dock property have when the control attaches
to all four edges of the form?

8. The Multiline property of a TextBox is False by default. How do
you think changing its value to True would affect the resizing
capability of that text box?

2.4 Using a Button

The applications so far have copied the text from the text box to the label
character by character as the user types it. We might prefer to wait until the
user has completed the entry, making any necessary corrections, before copy-
ing that text. We can do that by using a button. Only when the user clicks the
button will the application copy the text from the text box to the label.

2.4 Using a Button 35

Figure 2.15 Some form properties.

We create an Example2-4 project with a text box, a label, and a button.
After opening Visual Studio .NET, we click on the File, New, Project menu
item to display the New Project window. We choose Visual C# Projects and
Windows Application and then enter Example2-4 in the Name text box. Click-
ing OK displays an empty form.

If the Toolbox is not visible we click on the View, Toolbox menu item to dis-
play it. We drag a TextBox, a Label, and a Button from the Toolbox to the form.

2.4.1 Setting Properties

Our next objective is to customize these controls by changing various prop-
erty values. We start with the form itself. To display its Properties window we
first select the form by clicking on it. Next we click the View, Properties menu
item to display the long list of properties that we are able to modify. Figure
2.15 shows a portion of that list of properties for the form. The Text prop-
erty, highlighted in Figure 2.15, has the default value Form1 that will be dis-
played in the title of the application. We prefer a more meaningful title, so we
change that property value to Using a Button. As soon as we key in this new
title and press the Enter key, the changed title appears at the top of the form.

36 CHAPTER 2 Creating an Application

Figure 2.16 Changing the background color.

The BackColor property specifies the color of the background of the control.
For a form, the default background color is a gray, called Control in Figure
2.15. To change this color to white we click on the BackColor property, caus-
ing it to display an arrow on the right. Clicking on the arrow will display the
list of colors shown in Figure 2.16. Because the System tab is showing, the list
shows colors that were predefined for various features. We prefer a lighter
color, so we choose ControlLightLight. We could also click on the Custom tab
to display a grid of colors, from which we can choose one color to be the
new background color for this form.

We follow a similar procedure to change some properties for the TextBox,
Label, and Button controls. We list the changes that we made with each
property name and new value.

TextBox
Text Enter a message
Anchor Top
(Name) enterMessage

Label
BackColor Red
Font
Size 14
Text Display here
TextAlign MiddleCenter

2.5 Context-Sensitive Help 37

Anchor Left, Right
(Name) displayLabel

Button
BackColor Yellow
Text Copy
Anchor Bottom
(Name) copyButton

2.4.2 Handling the Click Event

For Example2-4, we write code to handle the event generated when the user
clicks the button. Double-clicking the button brings up the following template:

private void copyButton_Click
(object sender, System.EventArgs e)

{

}

We add our usual line to copy the text giving the completed method

private void copyButton_Click
(object sender, System.EventArgs e)

{
displayLabel.Text = enterMessage.Text;

}

Notice that the name of this method is copyButton_Click, while the meth-
od name for the TextBox event handler of Example2-3 was enter-

Message_TextChanged. These names chosen by Visual Studio .NET reflect the
difference between entering text in a text box, which generates a TextChanged
event, and clicking a button, which generates a Click event.

Running Example2-4 produces the form of Figure 2.17. If we enter a mes-
sage in the text box and click the Copy button, this application will display
the message in a larger font in the center label.

2.4.3 Context-Sensitive Help

We conclude this chapter by describing a useful Visual Studio .NET feature
that we can use to get information about buttons or about any part of the
design or code we are creating. Pressing the F1 function key at the top of
the keyboard brings up help information about the currently selected item.
For example, selecting button1 in Example2-4 in the Visual Studio .NET

38 CHAPTER 2 Creating an Application

Rather than responding to
an event each time the
user makes a change in a
TextBox, we can add a
Button and only re-
spond when the user fin-
ishes entering text and
clicks the button. Pressing
the F1 key provides con-
text-sensitive help on the
selected control.

The BIG Picture

Figure 2.17 Using a button.

design and clicking the F1 key brings up a full description of button mem-
bers from the .NET Framework Class Library. A link near the top of that
screen directs us to a button overview. We can get the same information by
pressing the F1 key when selecting Button in the Toolbox. We will study
many other controls in later chapters. Selecting any of them and pressing
the F1 key will bring up descriptive information about that control.

Test Your Understanding

9. How would the form of Example2-4 appear if we change the Auto-
Size property of labe11 to True?

10. Is Button resizing behavior more like a TextBox or a Label? Explain.

2.5 Summary
■ Visual Studio .NET opens with a Start page that we can configure

in various styles. We begin by creating a Project of which there are
several types. A Windows Application provides a Form in which we can
create a user interface. A Properties window lists properties of the
form, such as its background color, that we can customize with our
choices.

2.6 Programming Exercises 39

■ The Toolbox contains controls that we can drag onto a form. It
groups controls by categories. The TextBox control allows the user
to enter text in an application. Labels are often used to provide
descriptive text for controls. Double-clicking on a TextBox displays
the template for an event handler that will be called to respond
when the user changes the text in the box. We enter the C# code to
perform the desired action to respond to this event. We can execute
the application from Visual Studio .NET.

■ The Anchor property determines which edges of a control are
anchored to the edges of its container. The TextAlign property of a
Label positions its text. The Dock property specifies an edge on
which we can attach the control. We use the mouse to move a con-
trol or resize it.

■ Rather than responding to an event each time the user makes a
change in a TextBox, we can add a Button and only respond when
the user finishes entering text and clicks the button. Pressing the F1
key provides context-sensitive help on the selected control.

2.6 Programming Exercises

2.1 Modify Example2-1 to make the background color of the form white.

2.2 Reset the Anchor of each control in Example2-2 to the default of
Top, Left. Rerun the example and maximize the form that appears.
Compare the positioning of the controls here with that of the orig-
inal when the form is maximized.

2.3 Restore the TextAlign property of the label in Example2-2 to the
default of TopLeft. Rerun the example and indicate how its appear-
ance changes.

2.4 Change the Dock property of the Label in Example2-3 to Bottom.
Rerun the example and describe how its appearance changes.

2.5 Create a Windows application that includes a TextBox, two Label
controls, and two Button controls. Clicking one button will display
the text in the text box in a small size in the first label. Clicking the
other button will display it in a large size in the other label.

2.6 Redo Exercise 2.5 to anchor each control to a different edge of the
form.

40 CHAPTER 2 Creating an Application

2.7 Create a Windows application that includes a TextBox, Label, and
two Button controls. Clicking one button will display the textbox's
contents as red in the label field. Clicking the other button will dis-
play it in blue.

2.8 Redo Exercise 2.7 so that the controls stay in the center of the form
when it is maximized.

3CHAPTER
Controls for Windows Forms
Visual Studio .NET provides many controls to build user interfaces for Windows

applications. We have already used TextBox, Label, and Button in Chapter 2. In

this chapter, we introduce radio buttons, more boxes, bars, dates, timers, menus,

and dialogs.

Chapter Objectives:

Add controls to

■ make selections

■ add links

■ add images

■ choose a date or number

■ time events

■ make menu choices

■ respond to dialogs

3.1 Using Radio Buttons and Link Labels

Several controls allow the user to make selections. Radio buttons require an
exclusive choice, while check boxes allow multiple selections. We can add a
larger number of selections to a list box, or, to save space, to a combo box that
shows one choice and pops up others.We use a link label to display a hyperlink.

3.1.1 Radio Buttons

A RadioButton may display text, an image, or both. By default the radio but-
tons on a form comprise a group, and the user must select exactly one. This
explains the name RadioButton. Older radios used to have buttons set to dif-
ferent stations. Pushing in a button would tune the radio to the preset sta-
tion, releasing the previously pushed button. The selected button would

42 CHAPTER 3 Controls for Windows Forms

remain depressed until another button was pushed. Car radio buttons
work similarly, but they do not remain depressed. By using a GroupBox or a
Panel we can create groups of radio buttons where exactly one button in
each group must be selected.

Example3-1 contains three radio buttons, each representing a color, and a
label. When the user selects a color, the text in the label changes to the
selected color. The text of the label also changes to reflect the selection. We
open Visual Studio .NET and click on the File, New, Project menu to display
the New Project window. We select Visual C# Projects as the project type,
select the Windows Application template, enter Example3-1 in the Name field,
and click OK.

The design will show a blank form with the default title, Form1, showing at
its top. We change this default to the more meaningful Select a Color. To
make this change we select the form by clicking on it. Then we click the
View, Properties menu item to display the Properties window. Now we can
change the Text property.

We use the Toolbox to add controls to the form. To display the Toolbox we
click the View, Toolbox menu item. To add the controls to the form, we
select each from the Toolbox and drag it to the form. Figure 3.1 shows the
Toolbox with the RadioButton control selected.

We use the Properties window to configure each of the three radio buttons
and the label that we added to the form. Our three radio buttons will repre-
sent the colors red, green, and blue, so we will set their background colors
and their text to show the user the color in two ways. To make the text more
visible we will change the font style to Bold. As usual, we give each control a
more meaningful name. Finally, we change the anchor of each radio button
to Top to allow them to remain centered should the user maximize the form.

The list below shows the properties we configure for each radio button. It
shows the values for the topmost button.

BackColor Red

Font

Bold True

Text Red

Anchor Top

(Name) redButton

3.1 Using Radio Buttons and Link Labels 43

Figure 3.1 Selecting RadioButton.

Figure 3.2a Before expanding the Font properties. Figure 3.2b After expanding the Font properties.

To see the Font.Bold property in the Properties window we click on the plus
sign to the left of the Font property. Figure 3.2a shows part of the Properties
window before we click on the plus sign, and Figure 3.2b shows that win-
dow after the click.

Figure 3.3 shows the form of Example3-1 after we have configured the
remaining controls. The application is running and the user has selected
the color red.

The list that follows shows the properties we configure for the Label con-
trol. The BorderStyle can be the default of None, or FixedSingle that frames it

44 CHAPTER 3 Controls for Windows Forms

Figure 3.3 Using radio buttons.

with a black rectangle, or Fixed3D that recesses it. We chose Fixed3D. The
form displays the initial message in the label before the user chooses a
color. It will be in the default color of black, so we set the initial message to
state that the color is black. Giving the text a MiddleCenter alignment will
center it in the label for a nicer appearance. Choosing Left, Right for the
Anchor property will keep the label centered in the form even if the user
resizes it.

BorderStyle Fixed3D

Font

Size 14

Text The text color is black

TextAlign MiddleCenter

Anchor Left, Right

Name display

We need to code the event handlers to make the radio buttons respond to
the user’s selection. When the user checks a radio button it generates a
CheckedChanged event. Double-clicking the topmost radio button in Exam-
ple3-1 displays the template

3.1 Using Radio Buttons and Link Labels 45

private void redRadio_CheckedChanged
(object sender, System.EventArgs e)

{

}

We add code to change the label’s foreground color to the one shown in the
radio button. We also change the label’s text to describe the chosen color.
The completed event handlers for all three radio buttons are

private void redRadio_CheckedChanged
(object sender, System.EventArgs e)

{
display.ForeColor = Color.Red;
display.Text = "The color is red";

}
private void greenRadio_CheckedChanged

(object sender, System.EventArgs e)
{

display.ForeColor = Color.Green;
display.Text = "The color is green";

}
private void blueRadio_CheckedChanged

(object sender, System.EventArgs e)
{

display.ForeColor = Color.Blue;
display.Text = "The color is blue";

}

3.1.2 Adding a Link

The LinkLabel control lets us add links to Web sites to our form. In Exam-
ple3-2, we start by adding a link to a White House site giving a short biog-
raphy of George Washington. Then we will enhance this application to
include three radio buttons to allow the user to choose a president. When
the user chooses a president, the link changes to point to the site for that
president’s biographical information. Clicking on the link will open an
Internet Explorer window displaying the selected president’s biography.

By default, radio buttons form a group. The user can only choose one radio
button from the group. The final enhancement to Example3-2 will include a
second group of two radio buttons to choose the border style for the LinkLa-

bel control. Figure 3-4 shows how the application appears when running.

46 CHAPTER 3 Controls for Windows Forms

Figure 3.4 A form with two radio button groups and a link label.

To start building Example3-2, we create a new project named Example3-2
and drag a LinkLabel control from the Toolbox to the design form. Before
adding any radio buttons, we will configure the link to access a Web site for
George Washington. Building an application one step at a time and testing
it is much more effective than trying to build it in one big step.

We use the Text property to change the default link text, linkLabel1, to
George Washington. We also change the (Name) property of the LinkLabel from
linkLabel1 to presidentLink. When the user clicks on this link, we want to
have Internet Explorer appear showing George Washington’s biography.
The user click generates a LinkClicked event. Our job as developers is to
write the code to open Internet Explorer.

To start Internet Explorer, we use the Process class of the System.Diagnostics
namespace. The Process class is useful for starting, stopping, controlling,
and monitoring applications. We use its Start method to start the Internet
Explorer browser, passing it the address of the site we seek, which is

http://www.whitehouse.gov/history/presidents/gw1.html

The code to open Internet Explorer displaying George Washington’s
biography is

System.Diagnostics.Process.Start("IEExplore",
"http://www.whitehouse.gov/history/presidents/gw1.html");

http://www.whitehouse.gov/history/presidents/gw1.html
http://www.whitehouse.gov/history/presidents/gw1.html

3.1 Using Radio Buttons and Link Labels 47

Figure 3.5 Adding a link.

We need to place this code inside the event handler that will be called when
the user clicks the presidentLink link label. Double-clicking the link in the
Visual Studio .NET design displays the template for the event handler.

private void presidentLink_LinkClicked(object sender,
System.Windows.Forms.LinkLabelLinkClickedEventArgs e)

{

}

We add code to open Internet Explorer, so the completed event handler
becomes

private void presidentLink_LinkClicked(object sender,
System.Windows.Forms.LinkLabelLinkClickedEventArgs e)

{
System.Diagnostics.Process.Start("IEExplore",
"http://www.whitehouse.gov/history/presidents/gw1.html");

}

Figure 3.5 shows the link in Example3-2. We changed the Text property of
the form to show Example3-2 rather than Form1.

3.1.3 Grouping Radio Buttons

By default, all radio buttons on a form are in one group, and the user selects
one of them. We can use GroupBox controls to let the user choose one radio
button from each group.

We add a GroupBox to Example3-2 to hold radio buttons that allow us to
choose the president whose biography we wish to view. A GroupBox displays
a border with the default title groupBox1. To make this title more meaning-
ful, we change the Text property of this GroupBox to Choose a President,
which describes the function of the radio buttons that we will add to it.

48 CHAPTER 3 Controls for Windows Forms

Figure 3.6 Adding a group of radio buttons.

The user can select only one of the RadioButton controls in a GroupBox. Using
the Toolbox, we add three radio buttons to this group box, one for each
president: George Washington, Thomas Jefferson, and Theodore Roosevelt.
We set the Text property for each radio button to a president’s name and
change their (Name) properties to george, tom, and teddy. Initially we have no
president selected, so we change the Text property of presidentLink to Select
a president first.

To give our form the familiar colors of the U.S. flag, we set the BackColor
property of the radio buttons to Red, White, and Blue. We set Font.Bold to
True for each radio button to make the text stand out more.

Because we cannot link until the user chooses a president, we use the Prop-
erties window to set the LinkBehavior property of presidentLink to NeverUn-
derline. The choices for LinkBehavior are

SystemDefault Use default system underlining rules

AlwaysUnderline Always underline

HoverUnderline Underline when mouse hovers over the link

NeverUnderline Never underline

Figure 3.6 shows how Example3-2 now looks when it starts.

3.1 Using Radio Buttons and Link Labels 49

To make the links function, we need to change the approach we used when
we had only one radio button. When the user selects a radio button, we
want to do three things:

1. Show the president’s name in the link.

2. Underline the link.

3. Associate the link with the site containing the president’s biography.

Double-clicking on the George Washington radio button in the Visual Studio
.NET design displays the template for the CheckedChanged event handler. We
add three lines to it, resulting in the following code:

private void george_CheckedChanged
(object sender, System.EventArgs e)

{
presidentLink.Text = "George Washington";
presidentLink.LinkBehavior =

LinkBehavior.AlwaysUnderline;
presidentLink.Links[0].LinkData =

"http://www.whitehouse.gov/history/presidents/gw1.html";
}

The first line

presidentLink.Text = "George Washington";

sets the text of the link. The second statement

presidentLink.LinkBehavior = LinkBehavior.AlwaysUnderline;

sets the LinkBehavior property. Note that in the code we need to prefix the
value AlwaysUnderline with its type, LinkBehavior. When we set LinkBehavior
during design, Visual Studio .NET remembered this detail for us.

The third statement

presidentLink.Links[0].LinkData =
"http://www.whitehouse.gov/history/presidents/gw1.html";

associates the site for George Washington’s biography with the link. A Link-
Label has a Links property that holds a collection of the links that the LinkLabel
contains. A LinkLabel may contain more than one link, although we only use
one in Example3-2.

50 CHAPTER 3 Controls for Windows Forms

The collection of links is indexed by integers starting with index 0 for the
first link. To access an element of a collection using an index, we place the
index in square brackets so that the Link in the presidentLink is

presidentLink.Links[0]

Each link has a LinkData property that we set to associate the George Wash-
ington site with the link.

Writing the event handlers for the other two radio buttons is just a matter
of changing the president’s name and the biography site. The other two
event-handling methods are

private void tom_CheckedChanged
(object sender, System.EventArgs e)

{
presidentLink.Text = "Thomas Jefferson";
presidentLink.LinkBehavior =

LinkBehavior.AlwaysUnderline;
presidentLink.Links[0].LinkData =

"http://www.whitehouse.gov/history/presidents/tj3.html";
}

private void teddy_CheckedChanged
(object sender, System.EventArgs e)

{
presidentLink.Text = "Theodore Roosevelt";
presidentLink.LinkBehavior =

LinkBehavior.AlwaysUnderline;
presidentLink.Links[0].LinkData =

"http://www.whitehouse.gov/history/presidents/tr26.html";
}

To make the link work, we use the event-handling code

private void presidentLink _LinkClicked(object sender,
System.Windows.Forms.LinkLabelLinkClickedEventArgs e)

{
System.Diagnostics.Process.Start

(e.Link.LinkData.ToString());
}

Because the link site depends on which radio button the user clicks, we do
not want to hard code the link in this event-handling method. When .NET
calls an event handler, it passes information to it about the event. For the
LinkClicked event it uses an object with type LinkLabelLinkClickedEventArgs,

Exactly one RadioBut-
ton of a group can be
selected. By default, all
RadioButton controls
belong to one group. We
can use a GroupBox to
create another group. The
BorderStyle property
specifies the type of bor-
der for a Label.

The LinkLabel con-
trol lets us add links to our
form. A LinkLabel may
contain more than one
link. The Links property
holds the collection of
links. The first link is at
index 0. The LinkBe-
havior property speci-
fies the underline rule for
the link. To start Internet
Explorer we use the
Process class of the
System.Diagnos-
tics namespace.

The BIG Picture

3.1 Using Radio Buttons and Link Labels 51

which we refer to as e in the code. This long name identifies itself as the
EventArgs of the LinkClicked event of the LinkLabel.

The object e has a Link property describing the link. The Link has a LinkData
property, which in general is an object, so we use the ToString method to get
the string representing the link to pass to the Start method. Because the
string has the .html extension, the Start method will start Internet Explorer.

3.1.4 Adding Another Group

We add another group box, this time including two radio buttons. The
radio buttons will give the user a choice of border styles for presidentLink.
We set the group box Text property to Border Style, the Text of one radio
button to FixedSingle, and the Text of the other to Fixed3D. We change the
names of these two radio buttons to singleBorder and threeDBorder.

To make the form balance the controls when the user resizes it, we set the
Anchor property of the upper GroupBox for choosing a president to Top and
the Anchor of the lower GroupBox for choosing a border style to Right. Figure
3.4 shows the final version of Example3-2.

To make the added radio buttons implement the user’s choice, we double-
click each to display its event-handling template and add code to set the
border style of linkLabel1. The event-handling code is

private void singleBorder_CheckedChanged
(object sender, System.EventArgs e)

{
presidentLink.BorderStyle = BorderStyle.FixedSingle;

}

private void threeDBorder_CheckedChanged
(object sender, System.EventArgs e)

{
presidentLink.BorderStyle = BorderStyle.Fixed3D;

}

Test Your Understanding

1. Name the event that occurs when the user checks a RadioButton.

2. Name the event that occurs when the user clicks a LinkLabel.

3. Which property of a LinkLabel do we set to specify how the link is
underlined?

52 CHAPTER 3 Controls for Windows Forms

Figure 3.7 Using PictureBox controls.

4. Which property of a LinkLabel holds the collection of links it con-
tains?

5. How would the application of Example3-2 work if we just added
the five radio buttons but omitted the two group boxes?

3.2 More Boxes

A PictureBox displays an image. We use CheckBox controls when the user can
select zero or more items, in contrast to RadioButton controls that are mutu-
ally exclusive. A ListBox conveniently holds a list of choices. A ComboBox
holds a list of choices but saves space by showing only one. It also allows the
user to enter additional choices.

3.2.1 Picture Boxes

We can display graphics in a PictureBox. Example3-3, shown in Figure 3.7,
includes four picture boxes. To create this application we dragged four Pic-
tureBox controls to the form. The user does not interact with this applica-
tion. It simply illustrates the use of the PictureBox control.

To place an image in a PictureBox, we click on the PictureBox and display its
Properties window. Clicking on the Image property lets us search for an
image file to display. Three of the PictureBox controls use a picture,
amanda.jpg, of the author’s daughter. The other PictureBox uses an image of
the author, gittleman.gif.

3.2 More Boxes 53

Figure 3.8 Illustrating check boxes.

The SizeMode property specifies how the image will be displayed. It has four
modes of type PictureBoxSizeMode. They are:

Normal Places the image in the upper-left corner, clipped if too large

StretchImage Stretches or shrinks the image to fit

AutoSize Resizes the PictureBox to the size of the image

CenterImage Displays the image in the center if the PictureBox is larger
than the image. Centers and clips the image if it is larger.

In Example3-3, the large picture on the left, of the author’s daughter
Amanda, uses AutoSize mode to adjust the size of the PictureBox. The
upper-right PictureBox uses the Normal mode to show the same image
placed in the upper-left corner and clipped to fit. The middle-right image
uses the CenterImage mode to clip the center of the image to fit. The lower-
left image uses the StretchImage mode that distorts the image to fit. The
author felt it prudent to use his own image rather than his daughter’s in
this case.

The BorderStyle property lets us choose one of the three styles: None, Fixed-
Single, or Fixed3D. The upper-right image has the Fixed3D border, the middle-
right image has None, while the lower-right uses the FixedSingle border style.

3.2.2 Check Boxes

Using CheckBox controls, we can make multiple selections or select nothing.
In Example3-4 we add four CheckBox controls and a Label. Each CheckBox

names a type of food. The Label displays the result of the last change the
user made. Figure 3.8 shows Example3-4 running when the user has

54 CHAPTER 3 Controls for Windows Forms

checked the upper two CheckBox controls. The user’s last change was to check
the Salad box, so the label contains the message Salad true. If the user next
removes the Strawberry box check, the message will read Strawberry false.

Each CheckBox in Figure 3.8 has a different appearance. The Appearance
property determines the form of the check box. A Normal value displays a
CheckBox with a small square for the user to check or uncheck. A Button
value makes the check box appear like a button. Checking it in this mode
depresses it. In Example3-4 we set the Appearance property for the Pizza
check box to Button. The other three check boxes have a Normal appearance
with a square box for the user to check or uncheck.

The BackColor property lets us specify a background color for a CheckBox. As
we see from Figure 3.8, we changed the BackColor property of the Salad
check box to green and that of the Pizza check box to yellow.

We can set the Image property to add an image or set the BackgroundImage
property to have an image cover the background. In Example3-4 we added
an image of a strawberry to the Strawberry check box. The steps needed to
add an image are:

1. Click on the View, Properties menu item to show the list of
properties.

2. Click on the Image property to display a small button at the right.

3. Click on the small button to pop up a window to open a file.

4. Browse to locate the desired image, and click the Open button.

Setting the BackgroundImage property follows similar steps. We set the same
strawberry image, a file named straw.jpg, as the Image property for the
Strawberry check box and as the BackgroundImage for the Strawberries check-
box. As a background image it repeats to cover the check box. As an image
it appears only once.

The ImageAlign property lets us place the image at different positions within a
CheckBox. The CheckAlign property functions in the same way for the position
of the box that the user checks. The TextAlign property determines the place-
ment of the text. The steps to set any of these three alignment properties are

1. Click on the View, Properties menu item to show the list of properties.

2. Click on the ImageAlign, CheckAlign, or TextAlign property to dis-
play a small button at the right.

3.2 More Boxes 55

3. Click on the small button to pop up a grid of three rows and three
columns that allows us to choose the alignment position.

4. Click to choose one of the nine positions. The three vertical posi-
tions, Top, Middle, and Bottom, combine with the three horizon-
tal positions, Left, Center, and Right, to give the nine choices.

In the Salad check box we changed the TextAlign property value from its
default of MiddleLeft to MiddleRight. We changed the ImageAlign property to
MiddleRight in the Strawberry check box so the image would not cover the text.

The FlatStyle property determines the flat style appearance of the square
box holding the check. Its possible values are

Flat The box appears flat.

Popup The box appears flat until the mouse passing over makes it
appear three-dimensional.

Standard The box appears three-dimensional.

System The appearance of the box is determined by the user’s operat-
ing system.

In Example3-4 we set the FlatStyle property of the Strawberries check box
to Popup. The others are Standard.

Figure 3.8 shows the form of Example3-4. Each time the user selects a Check-

Box, the name of the food appears in the label followed by the word True.
When the user deselects a CheckBox, the name of the food appears followed
by False. Only the last change appears in the label. We set the Anchor property
of each control to Top to allow the controls to adjust during resizing.

Selecting or deselecting a CheckBox generates a CheckChanged event. If we
want an immediate response to a selection or deselection, we write an event
handler for the CheckChanged event. Another approach would be to use a
button to generate an event and get the state of each check box in the but-
ton’s event handler. We can determine whether the user checked the box by
getting the Checked property.

In Example3-4 we handle each CheckedChanged event. Double-clicking on a
check box in the Visual Studio .NET design displays the template shown in
Figure 3.9.

We add a line to the event handler to set the text of the label to show the
current status of the check box after it has just been checked. In that line of

56 CHAPTER 3 Controls for Windows Forms

Figure 3.9 The CheckedChanged event-handling template.

code, we concatenate the status of the check box to the food name using the
+ operator. Similarly, we click on each of the other three check boxes to dis-
play the event-handling template and add a line of code to each. The code
for the event handlers is

private void berryBox_CheckedChanged
(object sender, System.EventArgs e)

{
display.Text = "Strawberry " + berryBox.Checked;

}

private void pizzaBox_CheckedChanged
(object sender, System.EventArgs e)

{
display.Text = "Pizza " + pizzaBox.Checked;

}

private void saladBox_CheckedChanged
(object sender, System.EventArgs e)

{
display.Text = "Salad " + saladBox.Checked;

}

private void berriesBox_CheckedChanged
(object sender, System.EventArgs e)

{

3.2 More Boxes 57

display.Text = "Strawberries " + berriesBox.Checked;
}

To summarize, we set the following properties for the controls in Example3-4.

berry

Image straw.jpg

ImageAlign MiddleRight

Text Strawberry

Anchor Top

Font

Bold True

(Name) berry

pizza

Appearance Button

BackColor Yellow

Text Pizza

TextAlign MiddleCenter

Anchor Top

Font

Bold True

(Name) pizza

salad

BackColor 0, 192, 0

CheckAlign MiddleRight

Text Salad

Anchor Top

Font

Bold True

(Name) salad

berries

BackgroundImage straw.jpg

FlatStyle Popup

58 CHAPTER 3 Controls for Windows Forms

Figure 3.10 Selecting an item in a list box.

Text Strawberries

Anchor Top

Font

Bold True

(Name) berries

display

Text Choose some food

AutoSize True

Anchor Top

(Name) display

3.2.3 List Boxes

The ListBox control lets us display items that the user can select by clicking.
Until we cover more C#, we will select just a single item, leaving the se-
lection of multiple items until later. Figure 3.10 shows the form of Exam-
ple3-5 containing a ListBox on the left with a Label below it and a ComboBox
on the right. The list box lists foods. When the user selects a food, the label
displays the number of letters in the word selected.

We change the (Name) property for these controls to choose the more mean-
ingful names foodList, drinksCombo, and display.

We use the Properties window of Visual Studio .NET to enter the list items.
Selecting the Items property in the Display section displays a button. Click-

3.2 More Boxes 59

Figure 3.11 Inserting items in a list box.

ing the button pops up the window shown in Figure 3.11 that allows us to
add the list items. We add five food names. We set the Anchor property to Top
to allow the list box to adjust its position during resizing. The default value
of the Sorted property is False. By changing it to True we could display the
list items in alphabetical order.

The default setting of BorderStyle is Fixed3D. Figure 3.10 shows the recessed
implementation of the list box. The default SelectionMode value is One,
meaning that the user can select only one item at a time. The SelectionMode
property has four possible values:

None No items can be selected.

One One item can be selected.

MultiSimple Multiple items can be selected.

MultiExtended Multiple items can be selected, and the user can use the
shift, control, and arrow keys to make the selection.

Selecting a list item generates a SelectedIndexChanged event. The index is the
value by which we refer to a list item. We number the items starting with 0 at
the top, so the items in listBox1 have indices 0 through 4. When the user
selects an item, it changes the selected index to the index of the new selection.

To respond to the SelectedIndexChanged event, we need to write an event
handler for it. Double-clicking on foodList in the Visual Studio .NET
design displays the template

private void foodList_SelectedIndexChanged
(object sender, System.EventArgs e)

{
}

60 CHAPTER 3 Controls for Windows Forms

for the event-handling method.

The SelectedItem property of a ListBox refers to the selected item. To repre-
sent the item as a string we call the ToString method. Thus the expression

foodList.SelectedItem.ToString()

is a string representing the selected food. The Length property of this string
represents the number of characters in the string as an integer. Again we
call the ToString method to represent this length as a string. The expression

foodList.SelectedItem.ToString().Length.ToString()

is long, but it simply displays the number of characters in the selected
word. For example, if the user selects spaghetti, the above expression will
display 9.

Figure 3.10 displays the message hamburger has 9 letters. We build this
expression in four parts:

hamburger the selected item

has

9 the length of the selected word

letters

No matter which word the user selects, the second and fourth parts of the
message will be the same. But parts one and three depend on what the user
selects. We use C# expressions to represent the parts that change, so in C#
the four parts are

foodList.SelectedItem.ToString()
" has "
foodList.SelectedItem.ToString().Length.ToString()
" letters "

Notice that we surround the words that do not change with blanks; otherwise
the message would appear as hamburgerhas9letters, which is not what we want.

To complete the code for the event handler, we concatenate the four parts
together to form the message and set the Text of the display label to this
message. The + operator concatenates strings one after the other. The com-
pleted code is

private void foodList_SelectedIndexChanged
(object sender, System.EventArgs e)

{

3.2 More Boxes 61

Figure 3.12 Choices in a combo box.

display.Text = foodList.SelectedItem.ToString()
+ " has "
+ foodList.SelectedItem.ToString().Length.ToString()
+ " letters";

}

3.2.4 Combo Boxes

Figure 3.10 shows a ComboBox on the right side of the form. Like a ListBox,
the ComboBox holds choices. But in the default format shown it takes up less
space than a ListBox because the choices are hidden. Clicking the button at
the right of that combo box pops up the list of items shown in Figure 3.12.
The user may be able to edit the text showing in the combo box.

When the user selects a drink from the combo box, the name of the drink
selected appears in the combo box text and the label shows the food and
drink selected. Figure 3.13 shows this result. We set the Text property of the
label to Select a food first, because when the user selects a drink we include
the selected food in the message displayed.

The DropDownStyle property determines the style of ComboBox to display. The
three ComboBoxStyle values are

DropDown The user clicks the arrow button to display the choices and
can edit the text that shows.

DropDownList The user clicks the arrow button to display the choices and
cannot edit the text that shows.

A PictureBox displays
an image in one of four
modes. Using CheckBox
controls, we can make
multiple selections or
select nothing. We set the
Appearance, Back-
Color, Background-
Image, CheckAlign,
FlatStyle, Image,
ImageAlign,and Text-
Align properties to con-
figure a CheckBox.

A ListBox conve-
niently holds a list of
choices. A ComboBox
holds a list of choices but
saves space by showing
only one. We use the
Items,Anchor,Selec-
tionMode, and Sorted
properties to configure a
ListBox. The Drop-
DownStyle property
determines the style of a
ComboBox.

The BIG Picture

62 CHAPTER 3 Controls for Windows Forms

Figure 3.13 Selecting milk.

Simple The choices are always visible, and the user can edit the
text portion.

As with the ListBox, we entered the choices by clicking on the Items prop-
erty in the Data section of the Properties window in Visual Studio .NET. We
set the Text property to Drinks and the Anchor property to Top.

Test Your Understanding

6. Which PictureBoxSizeMode value changes the size of the PictureBox?

7. Explain the effect of each of the different values for the Appearance
property of a CheckBox.

8. Explain the difference between the Image and the BackgroundImage
properties for a CheckBox.

9. Which event will the user generate when making a selection in
a ListBox?

10. Which ComboBoxStyle displays all the choices?

3.3 Keeping Track

Various controls help us keep track of dates, time, and numbers. We create
a simple example to illustrate the DateTimePicker, NumericUpDown, StatusBar,
and Timer controls. After covering more C# constructs in later chapters, we
will be able to complete more substantial projects. Figure 3.14 shows the
form of Example3-6. When the user presses the Show button, the application

3.3 Keeping Track 63

Figure 3.14 The application of Example3-6.

displays the date selected in one label and the number selected in another
label. The current date and time appear in the status bar in the lower-left
corner. Watching the application run will show that the time in the status
bar updates every second. The background colors of the middle controls
switch every second, giving a flashing effect.

To create Example3-6, we drag several controls from the Toolbox to the
form. From the top down in Figure 3.14, these controls are: DateTimePicker,
Label, NumericUpDown, Label, Button, and StatusBar. We also drag a Timer con-
trol that does not appear on the form.

3.3.1 DateTimePicker

The topmost control in Figure 3.14 is a DateTimePicker. It allows the user to
select a date and time and to display it in a specific format. We choose the
format by setting the Format property to one of the following four values:

Custom Displays using a custom format.

Long Uses the long date format set by the user’s operating system.

Short Uses the short date format set by the user’s operating system.

Time Uses the time format set by the user’s operating system.

For the author’s Windows XP system configured for the United States, Eng-
lish-speaking locale, the displays are

64 CHAPTER 3 Controls for Windows Forms

Figure 3.15 Popping up a monthly calendar.

Long Tuesday, January 28, 2003

Short 1/28/03

Time 10:32:56 AM

To use a custom format, we could set the CustomFormat property using a pat-
tern for a custom DateTime string. We do not cover custom formats in this text.

By default the MinDate property has the value 1/1/1753 and MaxDate has the
value 12/31/9998. Great Britain and the embryonic United States adopted
the Gregorian calendar in 1752, so its first full year was 1753. The maxi-
mum date seems to allow a year to solve the Y10K problem of changing to
allow five digits for a year instead of four.

The ShowUpDown property controls whether up-down buttons are used to
modify dates rather than a drop-down calendar. In Figure 3.14, ShowUpDown
is True. Clicking on January and pressing the up arrow will change the
month to February. Clicking on day 28 and then the down arrow will
change the day to 27. The user can similarly change the year. When one
value changes, the others adjust in accordance.

When the ShowUpDown value is False, a single button shows at the right, and
clicking on it pops up a calendar for that month as shown in Figure 3.15.
There is also a MonthCalendar control that displays a calendar for the month,
like the one shown in Figure 3.15.We do not use MonthCalendar in Example3-6.

3.3 Keeping Track 65

3.3.2 NumericUpDown

We can use a NumericUpDown control to specify a number. The user can
change the value of the number in a NumericUpDown control by clicking the
up or down buttons it contains. The Minimum value by default is 0 and the
Maximum is 100. The default Increment on each button click is 1, representing
the amount to increment when clicking the up button or decrement when
clicking the down button.

The DecimalPlaces property starts with a default value of 0, representing the
number of places to show following the decimal. If the ThousandsSeparator
property is False, the digits will not be grouped in threes. The Value dis-
played in a NumericUpDown is a Decimal type that we will discuss later.

3.3.3 Enabling the Display

We use a DateTimePicker to allow the user to select a date, and a NumericUp-
Down to allow the user to select a number. For now we just display each of
the selected values in a label when the user clicks the Show button. We need
to write the event handler for the button’s Click event. Clicking on the but-
ton in the design form displays the code template

private void showButton_Click
(object sender, System.EventArgs e)

{
}

The event-handling code should copy the value from the DateTimePicker
named date to the Label control under it named dateDisplay. The Value
property of a DateTimePicker holds the date that the user selected. The
ToLongDateString method will convert this value to a date in the Long format
described above. The line of code we need to add is

dateDisplay.Text =
"Date selected: " + date.Value.ToLongDateString();

The event-handling code for the Show button should also copy the number
selected using the NumericUpDown control named number to the Label below it
named numberDisplay. The Value property of the NumericUpDown control holds
the number the user selected. The ToString method will convert that num-
ber to a string for display. Thus, the line of code we need to add to the event
handler is

66 CHAPTER 3 Controls for Windows Forms

Figure 3.16 Adding a Timer to the form.

numberDisplay.Text =
"Number selected " + number.Value.ToString();

The completed event-handling code for the Show button is

private void showButton_Click
(object sender, System.EventArgs e)

{
dateDisplay.Text =

"Date selected: " + date.Value.ToLongDateString();
numberDisplay.Text =

"Number selected " + number.Value.ToString();
}

3.3.4 StatusBar

A StatusBar displays text. By default, it is docked to the bottom of the form
so that it remains there during resizing. We set the initial value of the Text
property to the empty string, but the timer introduced next will copy the
current time every second. Thus the status bar functions like a digital clock
showing both the date and the time.

3.3.5 Timer

A Timer generates a Tick event at a set interval, say, every second. It does not
have a visual representation in the form of Example3-6 shown in Figure
3.14. The Visual Studio .NET design shows it below the form as shown in
Figure 3.16.

We set the Interval property to 1000 milliseconds, or one second, to specify
the frequency of the Tick event. When the tick event occurs we want to
show the current time in a StatusBar at the bottom of the form. We also
want to change the background colors of the two Label controls and the

A DateTimePicker
allows the user to select a
date and time and to dis-
play it in a specific format.
A NumericUpDown rep-
resents a Windows up-
down control that displays
numeric values. A Timer
generates a Tick event
at a set interval, say, every
second. A StatusBar
displays text.

The BIG Picture

3.3 Keeping Track 67

NumericUpDown to create a flashing effect. Double-clicking on the Timer con-
trol displays the event-handling template.

private void timer1_Tick(object sender, System.EventArgs e)
{
}

First we update the time in the StatusBar that we named currentDateTime.
The Now property of the DateTime type gives the current time. We call the
ToString method to get a string representation that we copy to the Text
property of the StatusBar. The first line of code we add to the event-han-
dling method for the Timer is

currentDateTime.Text = DateTime.Now.ToString();

Next we want to use the Timer to change the background colors of three
controls every second. In Figure 3.14 we see that the dateDisplay control has
a yellow background while the number and numberDisplay controls have white
backgrounds. The code

number.BackColor = dateDisplay.BackColor;
dateDisplay.BackColor = numberDisplay.BackColor;
numberDisplay.BackColor = number.BackColor;

will change the dateDisplay to white and the number and numberDisplay con-
trols to yellow. The next time it is executed it will revert the controls back to
their original colors. Running this code every second will flash back and
forth between these two patterns. Thus we insert this code into the event
handler for the Timer control that will be executed every second. The com-
pleted Tick event-handling code is

private void timer1_Tick(object sender, System.EventArgs e)
{

currentDateTime.Text = DateTime.Now.ToString();
number.BackColor = dateDisplay.BackColor;
dateDisplay.BackColor = numberDisplay.BackColor;
numberDisplay.BackColor = number.BackColor;

}

Test Your Understanding

11. Which control used in Example3-6 does not have a visual repre-
sentation on the form?

12. Which property controls whether a DateTimePicker will provide a
drop-down calendar?

68 CHAPTER 3 Controls for Windows Forms

Figure 3.17 Adding a main menu.

13. How would you configure a NumericUpDown to allow values such as
prices, which have two places after the decimal point?

14. What Interval should a Timer use to generate a Tick event four
times per second?

3.4 Menus and Dialogs

Menus are a standard feature of useful software. Fortunately, the MainMenu
control makes it easy to add menus to our applications. Dialogs are another
friendly way to allow the user to make selections that are more involved
than checking a box or clicking a list item. We illustrate the OpenFileDialog,
SaveFileDialog, PrintDialog, ColorDialog, and FontDialog in this section. The
RichTextBox and PrintDocument controls help us to implement Example3-7.

3.4.1 MainMenu

The MainMenu control contains the menu structure for the form. Figure 3.17
shows the start of Example3-7. Using the Toolbox, we added a MainMenu con-
trol to the form. The MainMenu does not itself appear on the form, so it is
shown underneath it. A box appears in the upper-left corner of the form
with the caption Type Here, indicating the place for us to enter our desired
menu choices.

The menu structure we want will have two menus showing at the top of the
form, a File menu and a Format menu. These two menus are at the upper

3.4 Menus and Dialogs 69

Figure 3.18 Inserting menu items.

left, as shown later in Figure 3.19. When the user clicks on the File menu
we want to pop up the menu items

Open Ctrl+O
Save Ctrl+S
Print

The Ctrl+O indicates a keyboard shortcut. Typing the O key while holding
down the Ctrl key will also activate the open file dialog. When the user
clicks the Format menu, we want to pop up the choices

Font
Color

The arrow indicates that Clicking on the Color menu will display additional
choices, in this case,

Foreground
Background

To create this menu structure, we start by entering File as the first menu
name. This brings up a box to the right of it to start a second menu on the
main menu bar, and a box below to add a menu item for the File menu.
Figure 3.18 shows the design at this stage.

We add Open, Save, and Print as the menu items under the File menu. To the
right of the File menu item we add a Format menu. Under the Format menu
we add Font and Color menu items. To the right of the Color menu we add
the Foreground menu item, under which we add Background.

The Shortcut property allows us to associate a keyboard shortcut with each
menu item. Clicking on Shortcut in the Properties window for the Open

▲

70 CHAPTER 3 Controls for Windows Forms

menu item and then clicking on the button in the field for the Shortcut
value displays a list of choices for the keystrokes to operate the menu. We
select CtrlO for the Open menu item and CtrlS for the Save menu item. To
begin to open a file, we can either click the Open menu item or press the O
key while pressing the Ctrl key. When we click on File to see its menu
items, we see that the Open menu item appears as

Open Ctrl+O

to remind the user of the shortcut.

Clicking on a menu item generates a Click event. We need to handle this
Click event to make the menu item perform its intended function. Double-
clicking on a menu item in the Visual Studio .NET design will display a
template for the Click event handler. We will implement event handlers for
the following menu items listed with their intended behavior. We will
implement each event handler after describing the controls that it uses.

Open Select a file and copy it to a rich text box.

Save Select a file path and save the contents of the rich text box to
that location.

Print Choose print options and display a message that the
printer is busy.

Font Select a font and change the rich text box to use it for its text.

Foreground Choose a color and make it the foreground color of the
rich text box.

Background Choose a color and make it the background color of the
rich text box.

3.4.2 RichTextBox

The RichTextBox control allows the user to enter and edit text and provides
advanced formatting capabilities. We use the Toolbox to select a RichTextBox
control and add it to our form, stretching it to be as wide as possible and
reducing the height of the form to fit. We will not add any other visible
controls to the form, so we do not need any extra space. The File and For-

mat menu items appear at the upper left of the form of Example3-7 shown
in Figure 3.19.

3.4 Menus and Dialogs 71

Figure 3.19 The form of Example3-7.

To allow richTextBox1 to expand as the user resizes the form, we set the
value of the Anchor property to Top, Bottom, Left, Right. We change the
value of the WordWrap property to False to avoid clumsy line breaks.

Vertical and horizontal scroll bars will automatically be added to a rich text
box when necessary to view the text. The ScrollBars property enables this
behavior with the default setting of Both. The choices for the Rich-
TextBoxScrollBars value of the ScrollBars property are

None No scroll bars

Horizontal Horizontal when needed, but no vertical

Vertical Vertical when needed, but no horizontal

Both Both when needed

ForcedHorizontal Always horizontal but no vertical

ForcedVertical Always vertical but no horizontal

ForcedBoth Always both

The RichTextBox control has a LoadFile method to load text from a file and a
SaveFile method to save its text to a file. We will activate these methods
from a menu via dialogs that we will introduce next. To use these methods
we need to know the file name to load or save. The dialogs will allow us to
choose these file names. We need to know the type of file, too. For our
application we will use the PlainText type that includes simple text files
without special formatting.

72 CHAPTER 3 Controls for Windows Forms

Figure 3.20 Selecting a file to open.

3.4.3 File Dialogs

The OpenFileDialog and SaveFileDialog controls do not visually appear in
the form, so when we add them to the design they appear below it as we saw
with the MainMenu control. Each has a ShowDialog method that pops up a
window allowing the user to select a file to open or save to. Figure 3.20
shows that the user selected rich.txt as the file to open. Pressing the Open
button will set the FileName property to the name that the user selected.

We want the event handler for the Click event, generated when the user
clicks the Open menu item, to show the open file dialog and then load the
selected file into richTextBox1. To write the event handler for the Click
event, we first double-click the Open menu item in the Visual Studio .NET
design to display the template. The code uses the meaningful names we
gave the controls, openMenu for the Open menu item, openDialog for the Open-
FileDialog, and displayBox for the RichTextBox. The completed event-han-
dling template is

private void openMenu_Click
(object sender, System.EventArgs e)

{
openDialog.ShowDialog();
displayBox.LoadFile(openDialog.FileName,

3.4 Menus and Dialogs 73

Figure 3.21 Displaying a file.

RichTextBoxStreamType.PlainText);
}

The first line of code we wrote shows the dialog of Figure 3.20. The second
line loads the file whose name the dialog saves in the FileName property. Fol-
lowing the LoadFile method name are the two pieces of information Load-
File needs. These are called arguments. We will discuss methods and their
arguments more fully later. We enclose method arguments in parentheses
and separate them with commas. The first argument

openDialog.FileName

is the name of the file to load, and the second

RichTextBoxStreamType.PlainText

is the type of data it contains.

To illustrate loading a file, we use the simple rich.txt file shown being
selected in Figure 3.20. Figure 3.21 shows how the form looks after the user
clicks the Open button in Figure 3.20.

We can edit the text in displayBox. Figure 3.22 shows the form of Example3-7
after the user added a line and resized the form to make it wider.

When the user clicks on File and then on Save, it will generate a Click event,
which we can handle to show a SaveFileDialog and save the edited text to
the file name indicated by the user. The event handler for this Click event
whose template we filled in using Visual Studio .NET is

private void saveMenu_Click
(object sender, System.EventArgs e)

74 CHAPTER 3 Controls for Windows Forms

Figure 3.23 Saving a file.

Figure 3.22 Editing the text.

{
saveDialog.ShowDialog();
displayBox.SaveFile(saveDialog.FileName,

RichTextBoxStreamType.PlainText);
}

The first line

saveDialog.ShowDialog();

shows the SaveFileDialog of Figure 3.23. In order not to overwrite the orig-
inal file, the user has entered another name, richEdit.txt, under which the

3.4 Menus and Dialogs 75

edited file can be saved. When the user clicks the Save button, this name will
be set as the FileName property of saveDialog.

The second line

displayBox.SaveFile(saveDialog.FileName,
RichTextBoxStreamType.PlainText);

saves the text in displayBox using the name just chosen by the user. The first
argument to the SaveFile method is the file name, and the second argument
is its type, PlainText.

3.4.4 A Print Dialog

The PrintDialog control allows a user to configure a print job by selecting
the printer, the number of copies, and the pages to print. Clicking on the
Print menu item generates a Click event. To print, we would need to write
C# code to write each line of text. We defer implementing printing until we
cover more C# constructs. Even though we will defer printing, we need to
add a PrintDocument control to allow for configuration of the print job later.
The PrintDocument control does not appear on the form, but shows below it
in the design along with the menu and dialog controls. In Example3-7,
when the user clicks the Print menu item we simply display a message that
the printer is busy. The event-handling method is

private void printMenu_Click
(object sender, System.EventArgs e)

{
printDialog.Document = printDocument;
printDialog.ShowDialog();
displayBox.Text = "Printer busy \n Try later";

}

The first line of the event handler sets the Document property of printDialog

to the PrintDocument, printDocument, that we will use later to configure the
job. The second line shows the dialog to the user. We are not ready to use
the printer selection that the user makes, so the third line will just display a
message in displayBox.

3.4.5 A Color Dialog

A ColorDialog control lets the user choose a color from a palette. Figure 3.24
shows the color dialog that appears when the user clicks the Format menu,
then the Color menu item, and finally the Foreground menu item. We will

76 CHAPTER 3 Controls for Windows Forms

Figure 3.24 A color dialog.

write the event handler so that when the user selects a color in the dialog,
the foreground color of the text in displayBox displays in that color.

During the design we added the ColorDialog by dragging it from the Tool-
box to the form. It appears below the form in the design window because
this control has no visual representation on the form. Double-clicking on
the Foreground menu item displays the template for the event-handling
method that we complete to give

private void foregroundMenu_Click
(object sender, System.EventArgs e)

{
colorDialog.ShowDialog();
displayBox.ForeColor =colorDialog.Color;

}

The first line shows the color dialog, and the second sets the ForeColor
property of displayBox to the Color selected by the user.

Similarly, we can handle a click of the Background menu item to change the
background color of displayBox to the color selected by the user. The event-
handling code is

private void backgroundMenu_Click
(object sender, System.EventArgs e)

3.4 Menus and Dialogs 77

Figure 3.25 A font dialog.

{
colorDialog.ShowDialog();
displayBox.BackColor = colorDialog.Color;

}

3.4.6 A Font Dialog

When the user clicks the Font menu item, we will show a font dialog to
enable the user to select a font and change the font used in displayBox to
that selected by the user. When building Example3-7 using Visual Studio
.NET, we drag a FontDialog control from the Toolbox to the form. It appears
below the form. Double-clicking on the Font menu item displays the tem-
plate for the event-handling code that we complete to give the code

private void fontMenu_Click
(object sender, System.EventArgs e)

{
fontDialog.ShowDialog();
displayBox.Font = fontDialog.Font;

}

Figure 3.25 shows the font dialog, and Figure 3.26 shows the result of the
user’s selection.

78 CHAPTER 3 Control for Windows Forms

Figure 3.26 Changing the font and colors.

Test Your Understanding

15. Explain how to use the keyboard instead of a menu to begin sav-
ing the text in the RichTextField control of Example3-7 to a file.

16. Which controls do we use in Example3-7 that do not have a visual
representation on the form?

17. Which OpenFileDialog property holds the file name selected by the
user in the dialog?

18. What event does a user generate by clicking on a menu item?

19. What is the name of the C# method that pops up a dialog?

3.5 Summary
■ Exactly one RadioButton of a group can be selected. By default, all

RadioButton controls belong to one group. We can use a GroupBox to
create another group. The BorderStyle property specifies the type
of border for a Label.

■ The LinkLabel control lets us add links to our form. A LinkLabel may
contain more than one link. The Links property holds the collec-
tion of links. The first link is at index 0. The LinkBehavior property
specifies the underline rule for the link. To start Internet Explorer,
we use the Process class of the System.Diagnostics namespace.

The MainMenu control
represents the menu
structure for the form. We
can easily add menus with
menu items in the Visual
Studio .NET design. The
RichTextBox control
allows the user to enter
and edit text and provides
advanced formatting
capabilities. An Open-
FileDialog allows the
user to choose a file to
open, and SaveFile-
Dialog lets the user save
a file. Each has a Show-
Dialog method. A
PrintDialog allows
the user to select a printer
and choose which por-
tions of the document to
print. A ColorDialog
control lets the user
choose a color from a
palette. A FontDialog
lets the user choose a
font.

The BIG Picture

3.6 Programming Exercises 79

■ A PictureBox displays an image in one of four modes. Using Check-
Box controls, we can make multiple selections or select nothing. We
set the Appearance, BackColor, BackgroundImage, CheckAlign, FlatStyle,
Image, ImageAlign, and TextAlign properties to configure a CheckBox.

■ A ListBox conveniently holds a list of choices. A ComboBox holds a list
of choices but saves space by showing only one. We use the Items,
Anchor, SelectionMode, and Sorted properties to configure a ListBox.
The DropDownStyle property determines the style of a ComboBox.

■ A DateTimePicker allows the user to select a date and time and to dis-
play it in a specific format.A NumericUpDown represents a Windows up-
down control that displays numeric values. A Timer generates a Tick

event at a set interval, say, every second. A StatusBar displays text.

■ The MainMenu control represents the menu structure for the form. We
can easily add menus with menu items in the Visual Studio .NET
design. The RichTextBox control allows the user to enter and edit text
and provides advanced formatting capabilities. An OpenFileDialog

allows the user to choose a file to open, and SaveFileDialog lets the
user save a file. Each has a ShowDialog method. A PrintDialog allows
the user to select a printer and choose which portions of the docu-
ment to print. A ColorDialog control lets the user choose a color
from a palette. A FontDialog lets the user choose a font.

3.6 Programming Exercises

3.1 Modify Example3-1 so the Label is surrounded by a black rectangle
and the text is in italics.

3.2 Modify Example3-2 to choose a college. Pick three colleges to
include in the choices.

3.3 Modify Example3-4 so that all four CheckBox controls look like but-
tons.

3.4 Modify Example3-5 so that the ComboBox shows all choices.

3.5 Modify Example3-6 so that the DateTimePicker works as shown in
Figure 3.15.

3.6 Create a Windows application that includes two CheckBox and two
PictureBox controls. Checking one box will display a photo of the

80 CHAPTER 3 Control for Windows Forms

author’s daughter in a PictureBox on the left of the form. Checking
the other will display a photo of the author on the right of the form.

3.7 Create a Windows application that includes radio buttons for the
user to select either a small or a large size. Include a text box for the
user to enter a message and two labels to display the message. Dis-
play the message in the first label if the selected size is small and in
the second if it is large.

3.8 Create a Windows application that includes a RichTextBox and a
StatusBar. Display the length of the text in the status bar.

3.9 Create a Windows application that includes a DateTimePicker, a
Label, and a MainMenu including Color and Font menu items. Display
the date that the user selects in the label. Display the label text in
the color and font that the user selects.

3.10 Create a Windows application that includes a Timer and a Label. Dis-
play the current time in the label each second. Make the size large.

3.11 Create a Windows application that includes an Open button, a Save
button, and a RichTextBox. When the user clicks the Open button,
pop up an OpenFileDialog and display the file that the user selects in
the RichTextBox. When the user clicks the Save button, pop up a
SaveFileDialog, and save the file in the RichTextBox using the file
name that the user selects.

4CHAPTER
Variables and Types
We have introduced a variety of forms using Visual Studio .NET. In the next few

chapters we cover some essential C# that will enable us to develop more inter-

esting applications. In this chapter we discuss variables, types, and expressions.

Chapter Objectives:
■ Learn how to construct names and expressions

■ Work with useful types of data, including formatting

■ Use variables and assignments

4.1 Variables and the Assignment Operator

Variables help us store data for later use in a program. The assignment
operator gives a variable a value. First we need to learn the rules for naming
variables and other entities.

4.1.1 Identifiers

An identifier names program elements. The identifier age names an integer
variable. These identifiers can include both uppercase and lowercase char-
acters. C# is case-sensitive, so identifiers age, Age, and AGE are all different
even though they each use the same three letters of the alphabet in the same
order. Good C# style starts variables with a lowercase letter.

Digits occur in identifiers but cannot be the first character. Starting an
identifier with a digit would confuse it with numbers. Identifiers may also
use the underscore character and even start with it. For example, _hat,
hat_box, and My_____my are all valid identifiers.

We use underscores or uppercase letters to make identifiers easier to read.
For example, use a_big_car or aBigCar rather than abigcar. Preferred style
uses meaningful names such as age rather than arbitrary names such as xyz.

82 CHAPTER 4 Variables and Types

4.1.2 Keywords

Keywords are identifiers that are reserved for special uses. The event-han-
dling templates we used in Chapter 3 started with the two keywords private
and void. Because these are keywords, they cannot be user-defined names.
We include the complete list of C# keywords in Appendix A.

Some valid C# identifiers are:

savings
textLabel
rest_stop_12
B3
_test
My____my

Some invalid identifiers are:

4you // Starts with a number

x<y // Includes an illegal character, <

top-gun // Includes an illegal character, -

int // Reserved keyword

4.1.3 The Character Set

The character set defines the characters that we can use in a program. The
ASCII (pronounced as′-key) character set contains 128 printing and non-
printing characters shown in Appendix C. The ASCII characters include
uppercase and lowercase letters, digits, and punctuation. For worldwide
use, a programming language must have a much bigger character set to
include the many characters of the various major languages. C# uses the
Unicode character set that contains thousands of characters, including all
of the ASCII characters. For example, Unicode includes the Greek letter
gamma, �. We will use only the ASCII characters in this book.

4.1.4 Variables

A variable represents a storage location. Every variable has a name and a
type that determines what kind of data it holds. We must declare every
variable before we use it. A variable declaration states its name and type,
and may provide an initial value. For example,

int age;

Figure 4.2 A variable
holding the value 19.

19age

Figure 4.1 Memory
location for the age
variable.

???age

4.1 Variables and the Assignment Operator 83

declares a variable whose name is age and whose type is int. We will dis-
cuss types in the next section, where we will see that the type int denotes
integer values.

The variable age represents a memory location. Figure 4.1 shows the effect of
this declaration. The box signifies a location in the computer’s memory. The
question marks signify that we do not know the contents of that memory
location. The C# compiler checks that a variable has a value before it is used.

We can initialize a variable with a value in a declaration. For example, the
declaration

int age = 19;

declares the variable age and initializes it to hold 19, as Figure 4.2 shows.

4.1.5 The Assignment Operator

We initialize a variable only once, in its declaration. To change the value of
a variable after we have declared it, we can use the assignment operator.
This, as its name suggests, assigns a value to a variable. C# uses the equal
sign, =, for the assignment operator. An example of a simple assignment
statement is

age = 10;

in which we assign the value 10 to the variable age. This assignment state-
ment assumes that we have already declared the variable age. The compiler
would report an error if we did not declare age.

We declare and initialize a variable only once, but we can assign it a value
many times in a program. Later in the program we may wish to change the
value of age, say, to 20, using the assignment statement

age = 20;

Remember that the variable, age, has one location. Each assignment
replaces the old value with the newly assigned value. Figure 4.3 shows the
changes taking place resulting from the above assignments to age.

Figure 4.3 Declaring and assigning values to a variable.

19age 10age 20

a. int age = 19; b. int age = 10; c. int age = 20;

age

84 CHAPTER 4 Variables and Types

Figure 4.4 The result of an assignment.

9

int mySize = 9;

10

int yourSize = 10;

mySize yourSize

10

mySize = yourSize

10

So far we have only assigned constant values to variables, but we can also
assign the value of one variable to another, as in

int mySize = 9;
int yourSize = 10;
mySize = yourSize;

The assignment takes the value of yourSize, which we initialized to 10, and
assigns it to mySize. Figure 4.4 shows the locations for yourSize and mySize

before and after the assignment.

We can write an arithmetic expression, such as y + 2, on the righthand side
of an assignment. The computer will then evaluate the expression and
assign that value to the variable on the lefthand side of the assignment. We
will learn about arithmetic expressions later in this chapter. The assignment

mySize = yourSize + 2;

would give mySize a value of 12, given that yourSize still has the value of 10
that it was initialized with above.

Notice that when a variable occurs on the righthand side of an assignment,
we use the value that we find in its storage location. When a variable occurs
on the lefthand side of an assignment, we store a value in its memory loca-
tion. Variables perform this very important function—storing values for
later use—in our program.

4.1.6 Illustrating Variables

Example4-1 includes a TextBox for the user to enter a price of an item. A Label

informs the user to enter a price in cents. We assume that the user will be
paying with a dollar bill worth 100 cents. Pressing the Make Change button

a. Initialize

b. Assign

4.1 Variables and the Assignment Operator 85

Figure 4.5 Making change.

1If the Properties window is not showing, we click the View, Properties menu item.

will pop up a MessageBox describing the correct amount of change in quar-
ters, dimes, nickels, and pennies. Figure 4.5 shows the form of Example4-1.

To build Example4-1, we create the Example4-1 project and drag TextBox,
Label, and Button controls from the Toolbox to the form. We click on each
control to display its Properties window.1 The properties, with their new
values, that we configure are

Form
Text Change from a Dollar

TextBox
(Name) centsBox
Text " "
Anchor Top

Label
Text Enter a price in cents
Anchor Top

Button
(Name) changeButton
Text Make Change
Anchor Top

The only code we need to write is the body of the event handler to respond
when the user presses the Make Change button. We double-click on the but-
ton in the design to display the code template for the event handler, which is

private void changeButton_Click
(object sender, System.EventArgs e)

{
}

Figure 4.6
A MessageBox.

86 CHAPTER 4 Variables and Types

The event-handling method for the button uses local variables to hold the
amount of change necessary, and the numbers of quarters, dimes, nickels,
and pennies. Later in the chapter we discuss arithmetic expressions that
will explain the operations used in this example. We declare local variables
inside a method, and they can be used only inside the method in which
they are declared. Figure 4.6 shows the pop-up MessageBox in which the
event handler displays the change that results. When we learn to use control
structures in the next chapter, we will be able to improve the grammar in
the resulting message.

The completed event-handling code for the button is

private void changeButton_Click
(Object sender, System.EventArgs e)

{
int price = int.Parse(centsBox.Text); // convert string
int change = 100 - price; // $1 deposited
int quarters = change / 25; // 25 cents per quarter
int remainder = change % 25; // after quarters given
int dimes = remainder / 10; // 10 cents per dime
remainder = remainder % 10; // after dimes given
int nickels = remainder / 5; // five cents per nickel
int pennies = remainder % 5; // after nickels given
MessageBox.Show("Change is \n"

+ quarters + " quarters \n"
+ dimes + " dimes \n"
+ nickels + " nickels \n"
+ pennies + " pennies");

}

The event-handling method declares seven local variables. The first, price,
contains the price of the item that the user entered in the TextBox. Because
the TextBox entry is a String, we need to convert it to an integer value using
the int.Parse method. The second variable, change, represents the total
amount of change we need to dispense. The user deposited one dollar,
equal to 100 cents, so we subtract the price from 100 to get the amount of
change. Later in the chapter we explain the C# arithmetic operator symbols
used to compute the quarters, dimes, nickels, and pennies.

A MessageBox is a simple way to display a message to the user. Later we will
look in more detail at String formatting techniques. Here we use the String
concatenation operator, +, to join strings together. To go to the next line of

Variables help us store
data for later use in a pro-
gram. The assignment
operator gives a variable a
value. An identifier names
program elements. Key-
words are identifiers that
are reserved for special
uses. C# uses the Unicode
character set that contains
thousands of characters.
We can define constants,
which we cannot change.

The BIG Picture

4.2 Types 87

the message we add the newline character that we represent using two key-
strokes, a backslash followed by a lowercase n, \n.

4.1.7 Constants

We changed the value of variable quarters in Example4-1. We can define
constants, which we cannot change. For example, the declaration

const int FIXED = 25;

declares a constant named FIXED. Trying to assign a value to FIXED would
generate a compilation error.

Test Your Understanding

1. Which of the following are valid identifiers? For each nonvalid
example, explain why it is not valid.

a. Baby b. _chip_eater c. any.time d. #noteThis

e. &car f. GROUP g. A103 h. 76trombones

i. float j. intNumber k. $$help

2. A variable represents a ___________________ location.

3. We refer to a variable by its ______________. The _____________
of a variable determines what type of data it holds.

4. How can we improve the following declaration?

int number;

4.2 Types

C# provides a number of simple data types. We discuss int, double, decimal,
char, and bool in this section. Figure 4.7 describes these types briefly.

The int type holds values ranging from �2,147,483,648 through
2,147,483,647. We can declare and initialize variables of type double. For
example,

double small = 0.000345;
double large = 12345.6;

The type decimal uses a special format that allows exact representations of
decimal numbers of up to 28 places. Such a representation is essential for

88 CHAPTER 4 Variables and Types

Figure 4.7 Some C# types.

int Positive and negative integers of up to 9–10 digits:

�2,147,483,648 to 2,147,483,647

double Positive and negative decimal numbers with 15–16-place accu-
racy:

�5.0 � 10�324 to �1.7 � 10308

decimal Positive and negative exact decimal numbers with up to 28 digits:

�1.0 � 10�28 to �7.9 � 1028

char Characters in various character sets

bool Two values, True and False

Figure 4.8 Some special characters.

\" Double quote

\\ Backslash

\n New line

\t Horizontal tab

financial applications where a small error in a single number could cause a
large error when repeated over thousands or millions of transactions. For
example, the value .10, which might represent ten cents, cannot be repre-
sented exactly in type double, but it can in type decimal. To distinguish dec-
imal values from double, we suffix them with an m or M, as in

decimal tenth = .10m;

The char type represents characters. We use single quotes for characters, as in

char letter = 'a';

Internally C# represents each character using a numerical code. The ASCII
character set includes the codes for 128 characters listed in Appendix C.
The ASCII code for ‘a’ is 97.

Some of the ASCII characters are used to control printing and do not have
a display form. For example, the character with value 10 is the newline
character signifying that a new line should start. The effect is to move the
cursor to the beginning of the next line. To represent special characters, C#
uses an escape sequence starting with the backslash. Figure 4.8 lists some
special characters.

Some examples illustrate how these special characters can help format
strings. We pass a string that uses a special character to the Format method.

4.2 Types 89

The result shows how the special character affects the formatting. Each use
of Format is followed by the value it produces.

// Inserts a newline

String.Format("Use \n to go to the next line");
Use
to go to the next line

// Inserts a tab

String.Format("***\t tab here");
*** tab here

// Inserts embedded quotes

String.Format("Do you like \"Gone With the Wind\"?");
Do you like "Gone With the Wind"?

// Inserts a backslash that is not an escape character

String.Format("The directory is c:\\newstuff");
The directory is c:\newstuff

4.2.1 Formatting

C# uses formatting strings to display values and text. We have several
options when defining formatting strings. The simplest just inserts a value
into a string. In this case, the Format method we use has two parameters, the
format string and the value. For example, suppose we have an integer vari-
able myAge. We can insert it in a string by invoking

String.Format("I am {0} years old.", myAge);

The result will be to insert the value of myAge into the string at the position
marked by {0}. If myAge has the value 39, the result will be

I am 39 years old.

We can create formatting strings that include more than one value. For
example, if the variables width and height have the values 15 and 12, invoking

String.Format
("The width is {0} feet and the height is {1} feet.",
width, height);

results in

The width is 15 feet and the height is 12 feet.

The variable numbers used inside the braces in the format string corre-
spond to the ordering of the arguments that follow the format string in the
Format method. We start the numbering with 0.

90 CHAPTER 4 Variables and Types

We do not have to use the variables in the order they appear as arguments.
For example, calling

String.Format
("The width is {1} feet and the height is {0} feet.",
height, width);

would produce the same result

The width is 15 feet and the height is 12 feet.

Here the height variable, which appears as the second argument, occurs
later in the formatting string than the variable width, which is the third
argument to the Format method.

If we just want to display a value by itself as a string, we could use the
ToString method. For example

myAge.ToString();

produces 39, and

String.Format("{0}", myAge);

gives the same result.

4.2.2 Format Specifiers

To allow more control over the format, we can use format specifiers. For
example, to express a value in the local currency, dollars and cents in the
United States, we would add the C specifier. If the price variable has the
value 17.227, the statement

String.Format
("I paid {0 : C} for that shirt including tax", price);

would produce the string

I paid $17.23 for that shirt including tax

We could express the price itself as a currency string using

price.ToString({C});

to produce the string $17.23.

Figure 4.9 shows some of the format types.

The Number format inserts commas to separate each three-digit group for
easier reading. It uses a number to specify the number of places after the
decimal point, so N0 would show zero places after the point and N2 would
show two. For example,

4.2 Types 91

Figure 4.9 Formatting specifiers.

Format Specifier Name

C or c Currency

N or n Number

P or p Percent

F or f Fixed-point

G or g General

123456789.ToString("N0");

produces 123,456,789. Using the N specifier without a number will display a
default number of places after the decimal point.

The Percent format converts a number of a percent by multiplying by 100.
We can add a number to indicate the number of places after the decimal
point, as in

.0253456.ToString("P1");

that produces the string 2.5 %.

The Fixed-point format displays a number using a decimal point. We can
specify the number of places after the decimal, as in

1234.56789.ToString("F3");

that produces the string 1234.568, obtained by rounding up because
1234.56789 is closer to 1234.568 than to 1234.567.

The General format, which is the default when we omit a format specifier,
displays in fixed-point but uses scientific notation when it would be more
compact. The precision specifier indicates the number of significant digits
in the resulting string. Some examples are:

1234.56789.ToString("G"); Produces 1234.56789

.00000123456.ToString("G"); Produces 1.23456E-06. The number follow-
ing the E indicates the number of places to
move the decimal point, left if negative, right
if positive.

.00000123456.ToString("G2"); Produces 1.2E-06

Figure 4.11
Displaying a formatted
value.

92 CHAPTER 4 Variables and Types

Figure 4.10 Choosing formatting parameters.

4.2.3 Field Width

We can use format specifiers to indicate the size of the field that the num-
ber will occupy. The format specifier {0, 10} indicates that the variable with
index 0 should appear in a field of size 10. The field will increase in size if
necessary to display the formatted value properly. A positive value for the
size means that the value will be right-justified in the field, while a negative
value provides for left-justification. For example,

String.Format("{0,10}{1,10}", 123, 45678);
String.Format("{0,-10}{1,-10}", "Jack", "Jill");

produces

123 45678
Jack Jill

We can include formatting codes when specifying the field width. For example,

String.Format("{0,12:C}{1,12:C}", 123, 45678);

produces

$123.00 $45,678.00

Example4-2 displays 9876.543 using the user’s choice of formatting param-
eters. Pressing the Display button in Figure 4.10 shows the MessageBox of
Figure 4.11 showing the string produced by

String.Format("{0,10:N2}", 9876.543);

To build Example4-2, we create a new project and drag two NumericUpDown
controls, three Label controls, a Button, and a ComboBox from the Toolbox to

4.2 Types 93

Figure 4.12 Entering choices for a ComboBox.

the form. We use Properties windows to configure each control. For the
Form itself, we change BackColor to orange using the pop-up color dialog,
and change Text to Formatting.

The NumericUpDown at the upper left of the form allows the user to select the
field width for the number. We use its Properties window to set the Minimum
property to 8 and the Maximum to 15. We set its (Name) property to selectSize
and set the Text property of the Label below it to Field size.

The NumericUpDown at the upper right of the form allows the user to select
the number of digits to display after the decimal point. We use its Proper-
ties window to set the Minimum property to 0 and the Maximum to 7. We set its
(Name) property to selectPlaces and set the Text property of the Label below
it to Decimal places.

The ComboBox in the lower-right corner of the form lets the user select a for-
matting style for the number. We use its Properties window to set Text to
Choose a format and (Name) to selectFormat. To add the choices, we click on
the Items property and then on the button at the right to pop up the String
Collection Editor shown in Figure 4.12. We add the format choices C, N, P, F,
and G, and click OK. We set the Text property of the Label below it to Format.

The Button in the lower-left corner lets the user display the number 9876.543

with a format that incorporates the selections made. We use its Properties win-
dow to change BackColor to LightBlue,(Name) to displayName, and Text to Display.

Constructing a formatting string from form values can be tricky. We
designed Example4-2 to allow readers to experiment with formatting
strings. For completeness, we show how to write the event-handling
method, but do not expect readers at this stage of learning C# to create

94 CHAPTER 4 Variables and Types

such expressions. For the example shown in Figure 4.10 and Figure 4.11, we
have the form values

numericUpDown1.Value field size 10

numericUpDown2.Value number of digits 2

comboBox1.Text format code N

Using these values, the code we need to create the MessageBox of Figure 4.11 is

MessageBox.Show(
String.Format("Start {0, 10:N2}", 9876.543));

We prefix the number with the word Start to show the space that the field
of size 10 spans. Had the number had fewer digits, there would have been
more spaces after the word Start in Figure 4.11 which illustrates the N for-
mat for a number using commas to group by threes and with the selected
two places after the decimal point.

We need to build the string “Start {0, 10:N2}" using the property values
determined by the user’s selections. We use the Format method to build the
formatting string. We need to distinguish between braces used to build the
formatting string and those that will be part of the formatting string. We
use {{ to embed a left brace, {, in the formatting string and }} to embed a
right brace, }. Using this approach, we execute

String fString = String.Format("Start {{0,{0}:{1}{2}}}",
numericUpDown1.Value, comboBox1.Text,
numericUpDown2.Value);

to build the formatting string "Start {0, 10:N2}" that we then use to for-
mat 9876.543.

To get the template for the button’s event-handling method, we double-
click on the Display button in the Visual Studio .NET design to show

private void displayNumber_Click
(object sender, System.EventArgs e)

{
}

Entering the code that we just devised produces the completed event-han-
dling method for the Display button as

private void displayNumber_Click
(object sender, System.EventArgs e)

C# provides a number of
simple data types, includ-
ing int, double, dec-
imal, char, and bool.
C# uses formatting strings
to display values and text.
To allow more control over
the format, we can use
format specifiers.

The BIG Picture

4.2 Types 95

{
String fString = String.Format

("Start {{0,{0}:{1}{2}}}",
selectSize.Value, selectFormat.Text,
selectPlaces.Value);

MessageBox.Show(String.Format(fString, 9876.543));
}

Test Your Understanding

5. The largest value that the ______ type can hold is 2,147,483,647.

6. Show the string produced from each of the following statements.

a. String.Format(“Descartes said, \“I think\ntherefore\nI am\””);

b. String.Format(“set path=c:\\C#\\bin”);

c. String.Format(“12345\t678”);

7. Show the string produced from each of the following statements.

a. String.Format(“I like \n\nto write C# programs.”);

b. String.Format(“Ali Baba said, \“Open, Sesame!\””);

c. String.Format(“Find 3\\4 of 24”);

8. Suppose that the double variable, x, has the indicated value. Show
the result of x.ToString("C").

a. 3456.789 b. .0000023456 c. .09876543

d. 1234567890.987 e. –234567.765432

9. Suppose that the double variable, x, has the indicated value. Show
the result of x.ToString("F2").

a. 3456.789 b. .0000023456 c. .09876543

d. 1234567890.987 e. –234567.765432

10. Suppose that the double variable, x, has the indicated value. Show
the result of x.ToString("N2").

a. 3456.789 b. .0000023456 c. .09876543

d. 1234567890.987 e. –234567.765432

11. Suppose that the double variable, x, has the indicated value. Show
the result of x.ToString("P1").

96 CHAPTER 4 Variables and Types

a. 3456.789 b. .0000023456 c. .09876543

d. 1234567890.987 e. –234567.765432

12. Show the string produced by

String.Format("{0,10}{0,-10}", "George", 24);

13. Show the string produced by

String.Format("{0,-10}{0,10}", "George", 24);

4.3 Operators and Expressions

In the process of solving problems, we perform operations on the data.
Each type of data has suitable operations associated with it. Integer and
decimal data have familiar arithmetic operations—addition, subtraction,
multiplication, division, and negation—and a remainder operation.

A binary operator, such as ‘+,’ takes two operands, as in the expression 3 + 4,
where the numbers 3 and 4 are the operands. C# supports these binary
arithmetic operators:

+ addition
- subtraction
* multiplication
/ division
% remainder

A unary operator takes one operand, as in the expression -3. C# supports
these unary arithmetic operators:

- negation
+ (no effect)

If the operands are integers, then the result of an arithmetic operation will
be an integer. Addition, subtraction, and multiplication behave as we
expect from ordinary arithmetic. Some examples are:

Operation Result

32 + 273 305

63 - 19 44

42 * 12 504

2.31 * 6.2 14.322

4.3 Operators and Expressions 97

Figure 4.13 C# arithmetic operations.

Operation Math notation C# (constants) C# (variables)

Addition a + b 3 + 4 score1 + score2

Subtraction a - b 3 - 4 bats - gloves

Multiplication ab 12 * 17 twelve * dozens

Division a/b 7 / 3 total / quantity

Remainder r in a=qb+r 43 % 5 cookies % people

Negation -a -6 -amount

Integer division produces an integer result, truncating toward zero if neces-
sary, meaning that it discards the fractional part, if any.

Operation Result

12 / 3 4 Exact.

17 / 5 3 Discards the 2/5.

-17 / 5 -3 Discards the �2/5.

17.0 / 5.0 2.4 Exact.

The operation x%y computes the remainder when x is divided by y.

Operation Result

17 % 5 2 // 3*5 + 2 = 17

14.56 % 2.21 1.3 // 6*2.21 + 1.3 = 14.56

Examples of the unary operations are -7, which negates the seven, and +3.
In summary, Figure 4.13 shows the C# arithmetic operations for integers.

4.3.1 Precedence of Arithmetic Operators

In mathematics, we apply some common rules to decide how each opera-
tion gets its operands. For example, in the expression 3 + 4*5, we would
multiply 4*5 giving 20, and then add 3+20 to get the result of 23. We say the
multiplication has higher precedence than the addition, meaning that it
gets its operands first. In Figure 4.14 we show that * gets its operands first
by drawing a box around the expression 4*5.

98 CHAPTER 4 Variables and Types

Figure 4.14 Multiplication gets its operands first.

3 + * is first4 * 5

Figure 4.15 Compute within parentheses first.

+ is first (3 + 4) * 5

If we want to do the addition first, we would need to use parentheses, as in
(3+4)*5, shown in Figure 4.15. We compute everything inside parentheses
first, so we would add 3+4 giving 7, and then multiply 7*5 giving 35. By
remembering the rules of precedence, we can often avoid using parenthe-
ses. We could have written parentheses in the original expression, which
would then be 3+(4*5), but these parentheses are not needed because we
know that multiplication goes first.

Higher precedence

-, + Unary Negation and Plus

*, /, % Multiplication, Division, and Remainder

+, - Binary Addition and Subtraction

= Assignment

Lower Precedence

We evaluate x-3/y as x-(3/y) because ‘/’ has higher precedence than ‘-’. We
evaluate -7+10 as (-7)+10 or 3, because negation has higher precedence than
addition. In the case of arithmetic operators of equal precedence, we evalu-
ate from left to right. Thus, we compute 3+x+7 as (3+x)+7 and 10-7-5 as
(10-7)-5, which is -2. We say that the associativity of the binary arithmetic
operators is from left to right.

4.3 Operators and Expressions 99

2Although these operators provide no new functionality, they do make it easier for the com-
piler to generate efficient code.

4.3.2 Combining Assignment and Arithmetic

Suppose we want to add 5 to a variable x. We could do that with the assign-
ment statement

x = x + 5;

C# has an operator that combines2 the assignment and the addition into
one operator, +=. We can write the above statement more simply as

x += 5;

C# also has operators that combine assignment with the other arithmetic
operators, -=, *=, /=, and %=. We must enter these two-character operators
without any space between the two symbols. Some examples are:

Combined Form Equivalent Form

y -= 7; y = y - 7;

a *= x; a = a * x

x /= y; x = x / y;

w %= z; w = w % z;

b *= z + 3; b = b*(z + 3);

Note in the last example that we put parentheses around the entire right-
hand side expression, z + 3, and multiplied that entire expression by the
lefthand side variable, b.

4.3.3 Increment and Decrement Operators

C# has simple forms for the frequent operations of adding one to a variable
(incrementing) or subtracting one from a variable (decrementing). To
increment the variable x using the postfix form of the increment operator,
we write x++. If x had a value of 5, executing x++ would give it a value of 6.
The prefix form of the increment operator, ++x, also increments the variable
by one. We only use the increment operator to increment a variable that is
not part of a larger expression. In this case it makes no difference whether
we use the prefix or the postfix form of this operator.

100 CHAPTER 4 Variables and Types

Figure 4.16 C# relational and equality operators.

The operators <=,>=,==, and != are two-character operators that must be together, without
any spaces between the two characters.The expression 3 <= 4 is fine, but 3 < = 4 will give
an error. (The compiler thinks we want the ‘<’ operator and cannot figure out why we did not
give a correct righthand operand.)

TIP

C# has prefix and postfix forms of the decrement operator, --x and x--.
Each decrements the value of the variable by 1.

4.3.4 Relational Operators and Expressions

Arithmetic operators take numeric operands and give numeric results. For
example, the value of 3+4 is an integer, 7. By contrast, an expression such as
3 < 4, stating that 3 is less than 4, gives the value true, and the expression
7 < 2 gives the bool value, false. C# provides relational and equality opera-
tors, listed in Figure 4.16, which take two operands of a primitive type and
produce a bool result.

We can use variables in relational expressions. For example, if x is an inte-
ger variable, the expression

x < 3

is true if the value of x is less than 3 and false otherwise. The expression

x == 3

evaluates to true if x equals 3, and to false otherwise.

< less than 31 < 25 false

<= less than or equal 464 <= 7213 true

> greater than -98 > -12 false

>= greater than or equal 9 >= 99 false

== equal 9 == 12 + 12 false

!= not equal 292 != 377 true

Symbol Meaning Example

4.3 Operators and Expressions 101

Be careful not to confuse the equality operator,==, with the assignment operator,=. If x has
the value 12, then x == 3 evaluates to false, but x = 3 assigns the value 3 to x, changing it
from 12.

TIP

Figure 4.17 Conditional operators.

The && and || operators use two-character symbols that must be typed without any space
between them. Using & & instead of && would give an error.

TIP

4.3.5 The AND, OR, and NOT Operators

The C# conditional operators express the familiar AND and OR opera-
tions, which we can use to write conditions such as

John’s age is greater than 20 AND John’s age is less than 35.

John’s height is greater than 78.5 OR John’s weight is greater than 300.

Figure 4.17 shows the C# symbols for the conditional operators.

Note that the operands of the conditional operators have type bool. The
expression age > 20 is either true or false, and so is age < 35.

4.3.6 Conditional AND

The conditional AND expression (age > 20) && (age < 35) will be true only
when both of its operands are true, and false otherwise. If the variable age
has the value 25, both operands are true, and the whole && expression is
true. If age has the value 17, the first operand, age > 20 is false, and the
whole && expression is false. Figure 4.18 shows some sample evaluations of
a conditional AND expression, illustrating how the value of an && expres-
sion depends upon the values of its arguments.

Symbol Meaning Example

&& conditional AND (age > 20) && 35)

| | conditional OR (height > 78.5) | | (weight > 300)

Figure 4.20
Evaluating a logical
complement
expression.

A !A

true false

false true

102 CHAPTER 4 Variables and Types

Figure 4.19 Evaluating an example of a conditional OR expression.

height weight height > 78.5 weight > 300 (height > 78.5) || (weight > 300)

62 125 false false false

80 250 true false true

72 310 false true true

80 325 true true true

Figure 4.18 Evaluating an example of a conditional AND expression.

Note that when the first operand is false, as it is when age is 17, we know
that the conditional AND is false without even checking the value of the
second operand.

4.3.7 Conditional OR

The conditional OR expression (height > 78.5) || (weight > 300) is true if
either one of its operands is true, or if both are true. If height has the value
72 and weight has the value 310, then the first operand is false and the sec-
ond operand is true, so the || expression is true. Figure 4.19 shows some
sample evaluations of a conditional OR expression, illustrating how the
value of an || expression depends upon the values of its arguments.

4.3.8 Logical Complement

C# uses the symbol ! for the logical complement, or NOT, operator, which
has only one operand. The logical complement negates the value of its
operand, as Figure 4.20 shows. If the bool variable, on, has the value true,
then !on is false, but if on is false, then !on is true.

age age > 20 age < 35 age > 20 && age < 35

10 false true false

25 true true true

40 true false false

4.3 Operators and Expressions 103

Figure 4.21 Operator precedence.

3See Appendix B for the complete operator precedence table.

4.3.9 Operator Precedence

The conditional AND and conditional OR operators have lower precedence
than the relational and equality operators, as shown in Figure 4.21 where
we show operators of equal precedence on the same line.3

Remember that C# follows precedence rules in evaluating expressions, with
the higher precedence operators getting their arguments first. In the
expression

age > 20 && age < 35

the < and > operators have higher precedence than the && operator, so C#
will evaluate it as if it had been written as

(age > 20) && (age < 35)

4.3.10 Combining AND with OR

We can use both the && and || operators in the same expression, as in:

age > 50 && (height > 78.5 || height < 60)

Highest

NOT !

multiplicative * / %

additive + –

relational < > <= >=

equality == !=

conditional AND &&

conditional OR | |

assignment = += –= /= %=

Lowest

Figure 4.23
Checking a
temperature.

104 CHAPTER 4 Variables and Types

Figure 4.22 Converting a temperature.

where we need the parentheses because the AND operator has higher
precedence than the OR operator. Without parentheses, as in:

age > 50 && height > 78.5 || height < 60

C# will evaluate the expression as if we had written it as:

(age > 50 && height > 78.5) || height < 60

which is not what we intended.

Example4-3 allows the user to enter a temperature in degrees centigrade in
the form shown in Figure 4.22. The user enters a centigrade temperature in
the TextBox. Clicking the Hot? button pops up a MessageBox that indicates
whether that temperature is hot, as shown in Figure 4.23. Clicking the
Fahrenheit button pops up a MessageBox that shows the Fahrenheit equiva-
lent of the Centigrade temperature that the user entered.

To create Example4-3, we open an Example4-3 project and drag a TextBox, a
Label, and two Button controls from the Toolbox to the form. We use the Prop-

erties windows to configure the controls. To change the background color of
the form itself, we click on the BackColor property and then on the button that
appears at the right. We selected a light green color from the grid on the Cus-

tom tab. The Text property of the Form becomes Convert Temperature.

We set the Text property of the TextBox to 25, so the user will have a default
value entered and can try the Hot? or Fahrenheit buttons before entering a
value. We set its (Name) property to enterCentigrade, and set the Text prop-
erty of the Label below it to Centigrade temperature.

We set the BackColor property of each Button control to a medium green.
The Text property of the upper Button becomes Hot? and its (Name) becomes
isHot. The Text of the lower Button becomes Fahrenheit and its (Name)
becomes convert.

Each type of data has suit-
able operations associ-
ated with it. By remem-
bering the rules of
precedence, we can often
avoid using parentheses.
C# includes arithmetic,
relational, equality, logi-
cal, and assignment oper-
ators.

The BIG Picture

4.3 Operators and Expressions 105

Figure 4.24 The conversion result.

Double clicking on the Hot? button in the Visual Studio .NET design dis-
plays the event-handling method for this button. We add code to evaluate an
expression stating that the temperature is greater than thirty degrees Centi-
grade. If so, we conclude that it is hot. We use the Parse method to convert
the user’s entry from a string to a double value. The event-handling code is

private void isHot_Click
(object sender, System.EventArgs e)

{
double temp = double.Parse(enterCentigrade.Text);
bool hot = temp > 30;
MessageBox.Show(String.Format

("It is {0} that {1:F1} is hot", hot, temp));
}

Figure 4.24 shows the result of converting to Fahrenheit. To do the conver-
sion we use the formula F = 9/5C + 32. The event-handling code is

private void convert_Click
(object sender, System.EventArgs e)

{
double cent = double.Parse(enterCentigrade.Text);
double fahr = 9.0*cent/5.0 + 32.0;
MessageBox.Show(String.Format

("{0:F1} Centigrade is {1:F1} Fahrenheit",
cent, fahr));

}

Test Your Understanding

14. If a=4, b=23, c=-5, and d=61, evaluate

a. b/a b. b%a c. a%b d. b/c e. c*d f. d%b g. c/a h. c%a

106 CHAPTER 4 Variables and Types

15. Evaluate the following C# expressions, where x=2, y=3, z=-4, and w=5.

a. x + w / 2 b. z * 4 - y c. y + w % 2

d. x + y - z e. x * z / y

f. x + z * y / w g. y * x - z / x

h. w * x % y - 4 i. 14 % w % y

16. What value would C# assign each variable if, for each expression,
j=7, k=11, and n=-4?

a. j += 31; b. k *= n; c. k -= n + 7;

d. k %= j e. k /= n - 1

17. Write a relational expression in C# for each of the following:

a. 234 less than 52

b. 435 not equal to 87

c. �12 equal to �12

d. 76 greater than or equal to 54

18. Evaluate the following relational expressions:

a. 23 < 45 b. 49 >= 4 + 9 c. 95 != 100 - 5

19. Explain the difference between x = 5 and x == 5.

20. Explain why the expression x > = 3 is not a correct C# expression to
state that x is greater than or equal to 3.

21. For each expression, find values for x and y that make it true.

a. (x == 2) && (y > 4) b. (x <= 5) || (y >= 5)

c. x > 10 || y != 5 d. x > 10 && y < x + 4

4.4 Summary
■ Variables help us store data for later use in a program. The assign-

ment operator gives a variable a value. An identifier names pro-
gram elements. Keywords are identifiers that are reserved for
special uses. C# uses the Unicode character set that contains
thousands of characters. We can define constants, which we can-
not change.

4.5 Programming Exercises 107

■ C# provides a number of simple data types, including int, double,
decimal, char, and bool. C# uses formatting strings to display values
and text. To allow more control over the format, we can use format
specifiers.

■ Each type of data has suitable operations associated with it. By
remembering the rules of precedence, we can often avoid using
parentheses. C# includes arithmetic, relational, equality, logical,
and assignment operators.

4.5 Programming Exercises

4.1 Modify Example4-1 to make change without using any dimes.

4.2 Modify Example4-2 to use a TextBox to enter the field size rather
than a NumericUpDown.

4.3 Modify Example4-2 to use a ComboBox to select the number of digits
after the decimal point.

4.4 Modify Example4-3 to add a Cold? button that displays a MessageBox
indicating whether the entered temperature is cold. Assume that a
temperature is cold if it is below zero centigrade.

4.5 Create a Windows application that includes a ComboBox listing
names, a NumericUpDown to select an age, and a Button to display the
selected name and age in a Label with the name left justified and
the name right justified, each in fields of size 15.

4.6 Create a Windows application that includes a ComboBox listing prod-
ucts, a NumericUpDown to select a price, and a Button to display the
selected product and price in a Label with the name product name
left justified and the price right justified, each in fields of size 15.

4.7 Create a Windows application that includes a TextBox to enter a
numerator and another TextBox to enter a denominator. Allow val-
ues of type double. Include a Button to display the quotient in a Mes-
sageBox using each of the format specifiers N, F, C, P, and G. (Use
the double.Parse method to convert the string in the TextBox to a
double value.)

4.8 Create a Windows application that includes a NumericUpDown to
select an x value and a Button to display the value of the polynomial
3x2 – 7x + 2 in a Label.

108 CHAPTER 4 Variables and Types

4.9 Create a Windows application that includes a TextBox to enter an
integer number of miles. Allow the user to click a Button to convert
to an equivalent number of feet and display the result in a Message-
Box. (There are 5280 feet in a mile.)

4.10 Create a Windows application to convert an integer number of sec-
onds to an equivalent number of hours, minutes, and seconds. For
example, an input of 52,400 should give 14 hours, 33 minutes, and
20 seconds. (Dividing 52,400 by 3600 gives a quotient of 14 hours
with a remainder of 2000 seconds. Dividing the remainder of 2000
by 60 gives a quotient of 33 minutes with a remainder of 20.)
Include a TextBox for the user to enter the number of seconds, and
a Button to convert and display the result in a MessageBox.

5CHAPTER
Selection and Repetition
Our C# event-handling methods so far have been simple. All we have learned to

do so far is to execute one statement after another in order. We have not had

any choices. If we lived life like that, then, no matter how we felt, we would get

up, get dressed, and have breakfast. In reality, we make decisions among alter-

natives. If we are very sick we might stay in bed and not get dressed. (If we are

very lucky, someone might bring us breakfast in bed.) We might not be hungry

one morning, so we would get up, get dressed, but skip breakfast. Here is a

description of our morning, with decisions:

if (I feel ill)
stay in bed;

else {
get up;
get dressed;
if (I feel hungry)

eat breakfast;
}

In this “program,” what I do depends upon whether “I feel ill” is true or false. We

will see in this chapter how to write C# expressions that are either true or false,

and how to write C# statements that allow us to choose among alternatives

based on the truth or falsity of a test expression.

Making choices gives us more flexibility, but we need even more control. For

example, if I am thirsty, I might drink a glass of water,but one glass of water might

not be enough.What I really want to do is to keep drinking water as long as I am

still thirsty. I need to be able to repeat an action.The kind of program I want is:

while (I feel thirsty)
drink a glass of water;

We will see in this chapter how to write C# statements that allow us to repeat

steps in our program.

110 CHAPTER 5 Selection and Repetition

We think of the processor as flowing from one statement to the next as it executes

our program. In this chapter we introduce C# selection statements that allow us

to make choices among alternatives and repetition statements that enable us to

repeat sections of code.These statements will allow us to specify how the proces-

sor should flow through our program as it executes its statements.

Chapter Objectives:
■ Choose using if, if-else, and switch statements

■ Repeat code using while, for, and do statements

■ Use selection and repetition statements to write more powerful event-han-

dling methods

5.1 The if and if-else Statements

We are now ready to make choices about which statements to execute. The
if statement allows us to choose whether to execute a statement. With the
if-else statement we can choose between two alternatives.

5.1.1 The if Statement

The if statement is essential because it allows us to make choices, and it
allows us to solve more complex problems.

The if statement has the pattern

if (condition)
if_true_statement

as in the example

if (checkBox1.Checked)
pictureBox1.Visible = True;

The condition is an expression, such as checkBox1.Checked, that evaluates
to true or false. The if_true_statement is a C# statement such as picture-
Box1.Visible = True. If the condition is true, then execute the if_true_state-
ment; but if the condition is false, skip the if_true_statement and go on to
the next line of the program. In this example, if the user has checked check-
Box1, we set the Visible property of pictureBox1 to true; but if Checked is
false, we would skip the statement pictureBox1.Visible = True.

The if statement allows us to make a choice about the control flow. A flow
diagram represents the logic of an if statement graphically. We use a dia-

5.1 The if and if-else Statements 111

Indent all lines after the first to show that these lines are part of the if statement
and to make it easier to read.

Do
if (checkBox1.Checked)

pictureBox1.Visible = True;

Don’t
if (checkBox1.Checked)

pictureBox1.Visible = True; STYLE

Figure 5.1 Control flow for the if statement.

mond shape to represent a decision based on the truth or falsity of a condi-
tion. One arrow, called the true branch, shows what comes next if the condi-
tion is true. Another arrow, called the false branch, shows what comes next if
the condition is false. Figure 5.1 shows the control flow for an if statement.
When the condition is true, C# will execute an additional statement.

5.1.2 The if-else Statement

The if statement allows us to choose to execute a statement or not to exe-
cute it depending on the value of a test expression. With the if-else state-
ment we can choose between two alternatives, executing one when the test
condition is true and the other when the test condition is false.

Condition
true

if_true_statement
false

112 CHAPTER 5 Selection and Repetition

Figure 5.2 Flow diagram for the if-else statement.

Condition
false

if_false_statement

true

if_true_statement

The if-else statement has the form

if (condition)
if_true_statement

else
if_false_statement

For example,

if (checkBox1.Checked)
pictureBox1.Visible = True;

else
pictureBox1.Visible = False;

If checkBox1 is checked we make it visible, otherwise we make it invisible.
The if-else statement gives us a choice between two alternatives. We
choose if_true_statement if the condition is true and if_false_statement if
the condition is false. Figure 5.2 shows the flow diagram for the if-else
statement.

5.1.3 Blocks

We can group a sequence of statements inside curly braces to form a
block, as in

5.1 The if and if-else Statements 113

Do not forget to enclose the statements that you want to execute if a condition is true within
curly braces. Just indenting them, as in

if (y > 5)
x = 5;
y = -8;
z = x * y;

will not group the three statements together.We indent to make the program easier to read;
indenting does not affect the meaning of the program.Without the braces, C# will interpret
the code as

if (y > 5)
x = 5;

y = -8;
z = x * y;

If y is greater than five, then C# will set x to five.Whether or not y is greater than 5, C# will
always set y to �8, and z to x*y.This is quite a different result than we would get if we
grouped the three statements in a block, and changed the values of x,y, and z only if the con-
dition is true.

TIP

{
x = 5;
y = -8;
z = x * y;
}

We can use a block as a statement in an if or an if-else statement, as in:

if (y > 5) {
x = 5;
y = -8;
z = x * y;

}

By using a block, we can perform more than one action if the test condition
is true. In this example, if y is greater than 5, we want to set x, y, and z to
new values.

Example5-1 includes two check boxes, each of which affects a picture box.
Checking a box makes the picture it affects visible. Unchecking a box makes
the picture it affects invisible. Figure 5.3 shows the form.

114 CHAPTER 5 Selection and Repetition

Figure 5.3 Selecting pictures.

To build Example5-1, we create a new project. Then we drag two CheckBox
controls and two PictureBox controls from the Toolbox to the form. We use
the Properties window for each control to configure it. We change the
(Name) property of the CheckBox on the left to selectJulia and its Text prop-
erty to Julia. We change the (Name) property of the PictureBox on the left to
showJulia.

To configure the CheckBox on the right, we change its (Name) property to
selectGrandpa and set its Text property to Grandpa. We change the TextAlign
and CheckAlign properties to MiddleRight so that the two check boxes appear
more symmetrically in the form. The new (Name) for the PictureBox on the
right will be showGrandpa.

We write the event-handling code for each CheckBox by first double-clicking
each to display its template. That code is

private void selectJulia_CheckedChanged
(object sender, System.EventArgs e)

5.1 The if and if-else Statements 115

Use a consistent style for blocks so that it is easy to match the opening brace,{, with
the closing brace,}. One choice is to put the left brace on the same line as the if or
else, and to align the right brace with the if or else, as in

if (x < 10){

y = 5;

z = 8;

} else {

y = 9;

z = -2;

}

Using this style, we can match the keyword if with the closing brace,}, to keep our
code neatly organized. Another choice is to align the left brace with the if or else,
as in

if (x < 10)

{

y = 5;

z = 8;

}

else

{

y = 9;

z = -2;

}

Either of these styles allows us to add or delete lines within a block without having to
change the braces.The latter style makes it easier to match opening with closing
braces, but uses an extra line to separate the opening brace from the code.We could
make the code more compact by putting the braces on the same line as the code,
but this is harder to read and modify, and not recommended.

STYLE

{
if (selectJulia.Checked)

showJulia.Visible = true;
else

showJulia.Visible = false;
}
private void selectGrandpa_CheckedChanged

(object sender, System.EventArgs e)
{

The if statement allows
us to choose whether to
execute a statement. With
the if-else statement
we can choose between
two alternatives.

The BIG Picture

116 CHAPTER 5 Selection and Repetition

if (selectGrandpa.Checked)
showGrandpa.Visible = true;

else
showGrandpa.Visible = false;

}

In each PictureBox we set the SizeMode property to CenterImage. Using full-size
pictures with the AutoSize value might cause the pictures to overlap. Using
the default Normal mode might only show the upper-left corner of the image.

Test Your Understanding

1. Correct the error in each of the following:

a. if {x == 12} y += 7;

b. if (x=12) y += 7;

c. if (x == 12) then y += 7;

2. Correct the error in each of the following:

a. if (y > 5) b. if y > 5 c. if (y > 5)

z = 7; z = 3; z = 3;

x = 5; else else (

else x = y + 2; s = y + 7;

w = 4; z = s - 2;

);

3. How would you improve the style in each of the following?

a. if (y <= 6) b. if (x != 0)

z += 5; y+=5;

else

z = y + 9;

5.2 Nested ifs and the switch Statement

With the if-else statement, we can choose between two alternatives. In this
section we show two ways to choose between multiple alternatives, nested
if statements and the switch statement.

5.2 Nested ifs and the switch Statement 117

Figure 5.4 Nested if-else statement to choose among three alternatives.

if (score >= 60 && score < 80)
label1.Text = “C”;

else if (score >= 80 && score < 90)
label1.Text = “B”;

else
label1.Text = “A”;

5.2.1 Nested if Statements

Suppose we grade test scores as 60–79 C, 80–89 B, and 90–100 A. Given a test
score between 60 and 100, we can determine the grade by first checking
whether the score is between 60 and 79 or higher, using the if-else statement

if (score >= 60 && score < 80)
label1.Text = “C”;

else
label1.Text = “B or A”;

This if-else statement only chooses between the two alternatives, grades C
and B or better. To choose between the three alternatives, grades A, B, or C,
we nest another if-else statement as the body of the else-part of our orig-
inal if-else statement.

The code in Figure 5.4 has a problem. If we assume that a score is always
between 60 and 100, then the code does what we expect; but let us trace
the code if the score has a value of 40. Then the first test, score >=60 &&

score < 80, fails, so we execute the else-part, which is a nested if-else

statement. Its condition, score >= 80 && score < 90, also fails, so we execute
the else-part, which indicates that a score of 40 receives an A grade, not
what we expect.

We can improve the code of Figure 5.4 by nesting an if statement in the last
else-part to check that the score is really between 90 and 100, as shown in
Figure 5.5.

We see that using nested if-else statements allows us, in this example, to
choose among three alternatives:

118 CHAPTER 5 Selection and Repetition

Figure 5.6 Choosing from multiple alternatives.

if (Is it the first alternative?){
First alternative code

} else if (Is it the second alternative?) {
Second alternative code

}
...

}else if (Is it the last alternative?) {
Last alternative code

}else {
Code when none of the above alternatives is true

}

If you use code like Figure 5.4, having a final else with no nested if, then be sure that the
code in the final else does handle everything else; that is, every case that does not come
under one of the tested alternatives in the preceding if statements.

TIP

Figure 5.5 Improved version of Figure 5.4.

if (score >= 60 && score < 80)
label1.Text = “C”;

else if (score >=80 && score < 90)
label1.Text = “B”;

else if (score >= 90 && score <= 100)
label1.Text = “A”;

scores between 60 and 79
scores between 80 and 89
scores between 90 and 100

Figure 5.5 illustrates the style for nested if-else statements to choose from
multiple alternatives. Figure 5.6 shows the general pattern.

Figure 5.7 shows the flow diagram for a nested if-else statement.

5.2 Nested ifs and the switch Statement 119

Figure 5.7 Flow diagram for the nested if-else statement.

Test1?

false

false

false

Test1 true code
true

Test2? Test2 true code
true

Last? Last true code

Last false code

true

5.2.2 Pairing else with if

Without an additional rule, we cannot always determine how to read
nested if statements. For example, contrast Figure 5.8 with Figure 5.9.

In Figure 5.8, we would like to pair else with the first if, but in Figure 5.9,
we would like to pair the else with the second if. Unfortunately, aligning
the else under the first if in Figure 5.8 will not achieve the outcome we
want. As we know, C# does not consider spacing significant, so both exam-
ples will produce the same result. C# uses the rule that pairs an else with

120 CHAPTER 5 Selection and Repetition

Figure 5.9 Corrected pairing of an else and an if.

if (score >= 60)
if (score >= 80)
label1.Text = “B or A”;

else
label1.Text = “C”; // Correct pairing

Figure 5.10 Figure 5.8 rewritten as an if-else with nested if.

if (score >= 60) {
if (score >= 80)
label1.Text = “B or A”;

}else // Paired to first ‘if’
label1.Text = “D or F”;

Remember the rule:

Pair an else with the nearest preceding if.

Trace each branch of nested if statements, checking carefully which values of the data will
cause execution to flow to that branch.

TIP

Figure 5.8 Incorrect attempt to pair an else with an if.

if (score >= 60)
if (score >= 80)
label1.Text = “B or A”;

else
label1.Text = “D or F”; // Wrong pairing

the nearest if. Figure 5.9 is the correct version, and it would be correct even
if we type the else under the first if, as in Figure 5.8.

Both Figures 5.8 and 5.9 are if statements with nested if-else statements.
What we tried to do in Figure 5.8 was write an if-else statement whose if-
part contained a nested if statement. To do that, we need to enclose the
nested if statement in braces, as in Figure 5.10.

5.2 Nested ifs and the switch Statement 121

Figure 5.11 The form of Example5-2.

Example5-2 includes a TextBox for the user to enter a test score. Pressing the
button invokes an event handler that uses a nested if statement to display
the letter grade in a Label. Figure 5.11 shows the form.

To build Example5-2 we create a new project and drag a TextBox, a Label, a
Button, and two more Label controls to the form. We use the Properties
window for each control to configure it. To configure a control we click on
it and click on the View, Properties menu item to show the Properties win-
dow for it. For the Form control we change the Text property to Grades,
which will show in the title at its top. We change its BackColor property to
yellow by clicking on it and selecting the yellow color from the color grid
on the Custom tab.

We click on the TextBox, and using the Properties window we erase the
default value, textbox1, from the Text property so that its new value will be
the empty string. The form will appear without any text in the TextBox ini-
tially. We change the (Name) property of the TextBox to enterScore.

We change the Text property of the Label to the right of the TextBox to Score,
and the Text of the Label at the lower-left of the form to Grades. These labels
do not change and just describe other controls on the form. The third Label
will display the letter grade corresponding to the numerical score that the
user enters. We change its Text property to the empty string so that it will be
invisible initially. We also change its (Name) property to letterGrade. The
final configuration changes the Text property for the Button to Enter and its
(Name) to showGrade.

We double-click on the button to display the template for the event handler
that will be executed when the user clicks the button. We fill in the code.
The event-handling code for the Button of Example5-2 is

122 CHAPTER 5 Selection and Repetition

private void showGrade_Click
(object sender, System.EventArgs e)

{
int score = int.Parse(textBox1.Text);
if (score < 50)

letterGrade.Text = “F”;
else if (score < 60)

letterGrade.Text = “D”;
else if (score < 80)

letterGrade.Text = “C”;
else if (score < 90)

letterGrade.Text = “B”;
else

letterGrade.Text = “A”;
}

We first convert the number that the user enters to an integer, and then use
nested if statements to determine the letter grade. Later we will cover input
validation, which will allow us to correct for invalid user input.

5.2.3 The switch Statement

Choosing among six alternatives is stretching the use of nested if state-
ments. The efficiency of this construction declines as we add more alterna-
tives. For example, to interpret a score of 98, Example5-2 tests five
conditions, the first four of which fail. The switch statement allows us to
check a large number of alternatives more efficiently.

A switch statement chooses alternatives based upon the value of a variable. In
this section, we use an int variable in our switch statement. We may also use
the char type, String type, or other integer types to indicate switch choices.

The switch statement has the form

switch (test_expression) {
case expression1:

statement1;
case expression2:

statement2;
.....
default:

default_statement;
}

5.2 Nested ifs and the switch Statement 123

Figure 5.12 An example of a switch statement.

switch(mark) {
case 0:
case 1:
case 2:
case 3:
case 4: label3.Text = “F”;

break;
case 5: label3.Text = “D”;

break;
case 6:
case 7: label3.Text = “C”;

break;
case 8: label3.Text = “B”;

break;
case 9:
case 10: label3.Text = “A”;

break;
default: label3.Text = “Incorrect score”;

break;
}

We can use a switch statement to replace the nested if statements of Exam-
ple5-2. Computing score/10 will give a number from zero to ten because
each score is between 0 and 100. For example, 87/10 is 8, and 35/10 is 3. We
can assign score/10 to a variable mark as in:

int mark = score/10;

and use mark in the switch statement of Figure 5.12 to determine the grade
for that score.

In Figure 5.12, C# evaluates the variable mark, jumping directly to one of
twelve cases depending upon the value of mark. We specify each case with a
case label such as case 5:, which is made up of the word case followed by
the number 5, followed by a colon. The label marks the place in the code to
jump to when the switch variable value matches that case label. If mark is 5,
C# executes the code following the label, case 5:, which displays the grade
of D; the break statement then causes a jump out of the switch statement to
the code following the closing brace, }.

Nested if statements and
the switch statement
allow us to choose between
multiple alternatives. Pair
an else with the nearest
preceding if. A switch
statement chooses alterna-
tives based upon the value
of a variable.

The BIG Picture

124 CHAPTER 5 Selection and Repetition

If mark is 10, then C# jumps to the code at the label, case 10:, which displays
an A and breaks to the end of the switch. If mark is any integer other than 0
through 10, then C# jumps to the default case and displays an error mes-
sage. The default case is optional. Had we omitted the default case in Fig-
ure 5.12, then C# would simply do nothing if the variable mark had any
value other than 0 through 10. Note that several labels can refer to the same
code, as, for example, case 6 and case 7, which both label the statement that
displays a C.

We must include the break statement after each case. C# does not allow
code to “fall through” to the code for the next case. However, as in Figure
5.12, several case labels may mark the same location.

Test Your Understanding

4. A charity designates donors who give $1,000 or more as Benefac-
tors, those who give $500–$999 as Patrons, and those who give
$100–$499 as Supporters. Write a nested if-else statement that,
given the amount of a contribution, assigns the correct designa-
tion for that contributor to a string variable.

5. Write a nested if-else statement that includes the categories from
Question 4 and identifies donors of $1–$99 as Contributors.

6. What value will the variable x have after executing

x = 6;

if (k < 10)

if (k < 5)

x = 7;

else

x = 8;

if k has the value

a. 9 b. 3 c. 11 d. �2

7. What value will the variable x have after executing

x = 6;

if (k < 10)

if (k < 5)

x = 7;

5.2 Nested ifs and the switch Statement 125

else

x = 8;

if k has the value

a. 9 b. 3 c. 11 d. �2

8. What value will the variable x have after executing

x = 6;

if (k < 10) {

if (k < 5)

x = 7;

}else

x = 8;

if k has the value

a. 9 b. 3 c. 11 d. �2

9. What value will the variable x have after executing

x = 5;

switch(k) {

case 2:

case 3: x = 6;

break;

case 5: x = 7;

break;

case 9: x = 8;

break;

default: x = 9;

break;

}

if k has the value

a. 1 b. 3 c. 5 d. 6

e. 9 f. �5 g. 10

10. Answer Question 9 for the code

x = 5;

switch(k) {

case 2:

126 CHAPTER 5 Selection and Repetition

Figure 5.13 Flow diagram for the while loop.

case 3: x = 6;

break;

case 5: x = 7;

break;

case 9: x = 8;

break;

}

5.3 Repetition

The if, if-else, and switch statements give us the ability to make choices.
In this section we will see how the while, for, and do statements enable us to
repeat steps.

5.3.1 The while Statement

The while statement follows the pattern

while (condition)
while_true_statement

where the condition evaluates to true or false, and the while_true_statement
can be any C# statement including a code block. If the condition is true, C#
executes the while_true_statement and goes back to check the condition
again. If the condition is still true, C# executes the while_true_statement and
goes back to check the condition again, and so on. This process repeats
until the condition is false. Figure 5.13 shows the flow diagram for the while
statement.

Condition
true

while_true_statement
false

5.3 Repetition 127

For example, suppose that the variable x has the value 7 just before C#
starts to execute the while statement

while (x < 10)
x += 2;

Because 7 < 10 is true, C# executes the statement x += 2, which changes the
value of x to 9. Remember, this is a while statement, so C# again checks the
condition, x < 10. Because 9 < 10 is still true, C# again executes x += 2, giv-
ing x the value 11. Now checking the condition x < 10, C# finds that 11 < 10
is false, so the execution of the while statement is finished.

The while statement is a type of loop, so-called because execution keeps
looping back to check the condition after every execution of the
while_true_statement, which we call the body of the loop. The body of the
loop could be a block, in which case C# executes every statement in the
block while the condition is true.

The condition in a while statement may evaluate to false on the first entry
to the loop, in which case C# never executes the body of the loop. For
example, if x has the value 3 before executing the loop

while (x >= 5)
x -= 4;

then the condition, 3 >= 5, is false, and the loop body, x -= 4, is never executed.

5.3.2 Loop Termination

Each time the loop condition is true, C# executes the loop body. In order
for the loop to terminate, something must change that causes the condition
to fail. In the loop

while (x < 10)
x += 2;

we add 2 to x each time we execute the body. If x has the value 5 before the
loop starts executing, eventually x will become greater than or equal to 10,
so the condition x < 10 will fail and the loop will terminate.

Possibly the loop may never stop. For example, if x has the value 5, the loop

while (x < 10)
x -= 2;

128 CHAPTER 5 Selection and Repetition

Beware of loops that never terminate.We use loops because we want repetition, but we must
make sure that the repetition stops. Check each loop that you write to make sure that it will
terminate.

TIP

will continue executing until the user aborts the program. (Holding the
Control key down and pressing the C key will interrupt the program on
Windows systems.) The value of x is 5, 3, 1, -1, -3, -5, . . ., and so on. The
condition, x < 10, is always true, so the loop keeps on executing. Remember
that when writing a while statement, something must eventually cause the
condition to be false.

5.3.3 The for Statement

The for statement provides a powerful iteration capability. It works well
when we know the number of repetitions. Technically we could use a while
statement instead of a for statement in these cases, but it is much more
convenient to say

Do this calculation 10 times.

than it is to write

Declare and initialize a count variable to zero.
while (count < 10) {

doSomething;
count ++;

}

The for statement performs the same steps but packages them more conve-
niently, following the pattern

for (initialize; test; update)
for_body_statement

where for_body_statement can be a simple statement or a block. Figure 5.14
shows the flow diagram for the for statement. The code in Figure 5.15 uses
a for statement to add the numbers from one to four. The initialize part
declares and initializes a variable, i, called the index or counter, which will
count the repetitions.

The test expression, i <= 4, checks whether we need more repetitions. C#
will execute the statement sum += i, of the for loop body, if the test condition

5.3 Repetition 129

Figure 5.14 Flow diagram for the for statement.

true

false
Test?

Initialize

for_statement

Update

Figure 5.15 A for statement for the sum 1+2+3+4.

int sum = 0;
for (int i = 1; i <= 4; i++)
sum += i;

is true, in this case if the count, i, is less than or equal to four. The loop ter-
minates when the test condition becomes false, in this case when i is greater
than four. The update expression, i++ in this example, increments the
count, i, by one. C# executes the update expression, after executing the for

loop body. Figure 5.16 traces the execution of the for loop of Figure 5.15.

The update expression can be more general than the increment in Figure
5.15. In Figure 5.17, we find the sum of the positive odd numbers less than 10.
In each iteration, we add two to the index variable, i, which gets the values
1, 3, 5, 7, and 9, each of which is added to sum, whose final value is 25.

Normally the index variable increases at each iteration, as in the code of
Figures 5.15 and 5.17. However, we can initialize the index to its highest
value and decrement it at each iteration, as in Figure 5.18, which also com-
putes the sum of the first four positive integers.

130 CHAPTER 5 Selection and Repetition

Figure 5.18 A for statement for the sum 4+3+2+1.

int sum = 0;
for (int i = 4; i >= 1; i--)

sum += i;

Figure 5.16 Trace of execution of the for loop of Figure 5.15.

initialize i = 1
test 1 <= 4 is true
execute body sum += 1 (result: sum = 0 + 1 = 1)
update i++ (result: i = 2)
test 2 <= 4 is true
execute body sum += 2 (result: sum = 1 + 2 = 3)
update i++ (result: i = 3)
test 3 <= 4 is true
execute body sum += 3 (result: sum = 3 + 3 = 6)
update i++ (result: i = 4)
test 4 <= 4 is true
execute body sum += 4 (result: sum = 6 + 4 = 10)
update i++ (result: i = 5)
test 5 <= 4 is false

Figure 5.17 A for statement for the sum 1+3+5+7+9.

int sum = 0;
for (int i = 1; i < 10; i += 2)
sum += i;

Now that we have seen how to write a for statement, we will use it in Exam-
ple5-3 to find how much our money will grow in a bank account. The
account earns interest at a certain rate over a specified time, assuming that
interest is compounded yearly. (At the end of the year, the interest due for
that year is added to the principal.) Example5-3 uses a ComboBox for the user
to select an interest rate, a TextBox to enter the initial account balance, a
NumericUpDown to select the number of years, and a Button to find the accu-
mulated amount. Three Label controls describe the purpose of the other
controls. Figure 5.19 shows the form of Example5-3.

We use Properties windows to configure each control. We click on the Form
in the design view and click on the View, Properties menu item to show the

5.3 Repetition 131

Figure 5.19 The form of Example5-3.

Figure 5.20 Choosing a background color.

Properties window for the Form. We change the Text property to Find
growth, which will display in the title at the top of the form. We change the
BackColor to orange by choosing a color from the grid in the Custom tab that
pops up when we click the button that appears at the right of the BackColor
property entry. Figure 5.20 shows the color grid that appears.

We configure the ComboBox with a list of interest rates. Clicking the Items
property shows a button that we click to pop up the String Collection Edi-
tor window shown in Figure 5.21, in which we enter four interest rates, 2.0,
3.2, 4.5, and 5.1. We change the (Name) of this ComboBox to selectRate and its
Text property to the empty string. The Label below it will have its Text
property set to Interest rate.

Figure 5.22
Displaying the
accumulated amount.

132 CHAPTER 5 Selection and Repetition

Figure 5.21 Entering the interest rate choices.

We change the Text property of the TextBox to the empty string so it will be
blank initially. We change its (Name) property to enterAmount. The Label
below will have its Text property set to Deposit amount.

We set the Text of the Button to Growth and change its (Name) to showResult.
We change the (Name) of the NumericUpDown to selectYears, and change the
Text of the Label below it to Years.

To develop a solution, let us start with a simple case, $1000 at 5% for three
years. For each year, we have to find the interest earned and add it to the
account balance, as the following table shows.

Year Interest New Balance

1 1000 * .05 = 50 1000 + 50 = 1050

2 1050 * .05 = 52.50 1050 + 52.50 = 1102.50

3 1102.50 * .05 = 55.13 1102.50 + 55.13 = 1157.63

From this example, we see that each year we find the interest and add it to
the balance to get the new balance. We will put these two steps in the body
of our for statement.

The user chooses an interest rate from a ComboBox, enters an amount to
deposit in a TextBox, and scrolls a NumericUpDown to specify the duration of
the account. When the user clicks the Growth button, its event handler
computes the amount of money in the account when it matures and dis-
plays it in a MessageBox as shown in Figure 5.22.

5.3 Repetition 133

Figure 5.23 Syntax for the do statement.

do
statement

while (condition) ;

To display the template for the event handler for the Button, we double-
click on it in the design view. The event-handling code is

private void showResult_Click
(object sender, System.EventArgs e)

{
double rate = double.Parse

(selectRate.SelectedItem.ToString())/100;
decimal years = selectYears.Value;
double deposit = double.Parse(enterAmount.Text);
double result = deposit;
for (int i = 1; i <= years; i++)
{

double interest = rate*result;
result += interest;

}
MessageBox.Show(result.ToString(“C”));

}

In the event handler we first place the user entries in variables. We con-
vert the interest rate to a double and divide by 100 so that 3.2% becomes
0.032. The Value for the years in the NumericUpDown has type decimal. We
convert the deposit amount to type double and initialize a result variable
with this value.

The for loop computes the interest for each year and adds it to the result. A
MessageBox displays the result in currency format.

5.3.4 The do Statement

The while statement lets us repeat a block of code; it checks the condition
before executing the loop body. In some problems, when we know we will
execute the body at least once, it is more natural to check the condition
after executing the body. The do statement, having the syntax shown in Fig-
ure 5.23, lets us do that. C# executes the statement and then checks the

The while, for, and do
statements enable us to
repeat steps. The while
statement checks a condi-
tion before executing its
body. The do statement
checks a condition after
executing its body. The
for statement has ini-
tialize, test, and
update parts, as well as
a body. We must make
sure that the repetition
stops.

The BIG Picture

134 CHAPTER 5 Selection and Repetition

condition. If the condition is true, C# executes the statement again, other-
wise it proceeds to the next statement after the loop. The statement in
the body of the do loop can be a simple statement, but most often it is a
block, a group of statements enclosed in curly braces.

As a rule:

■ Use a do statement whenthe loop body will always be executed at
least once.

■ Use a while statement when the loop body may (possibly) never
be executed.

A simple example is

do {
x += 5;

} while (x < 34);

Test Your Understanding

11. Find any errors in the following while loops:

a. while (x != 9} b. while (x) c. while (x =! 7)

x +=4; x *= 2; x++;

12. Draw the flow diagram for the do statement.

13. Which of the following loops terminate? Assume that x has the
value 12 at the start of the loop.

a. while (x != 5) b. while (x != 5) c. while (x != 5)

x++; x--; x = 5;

14. How many times will the body of each of following while loops be
executed if x has the value 5 at the start of the loop?

a. while (x <= 10) b. while (x == 2) c. while (x > 1)

x +=3; x -= 7; x--;

15. Write a for statement that will sum the numbers from one
through ten.

16. Write a for statement that will sum the numbers from seven
through twelve.

5.3 Repetition 135

17. Write a for statement that will sum the numbers from nine
through three, in that order.

18. Write a for statement that will sum the even numbers from four
through twenty.

19. What value will the variable sum have after the execution of the fol-
lowing code?

int sum = 0;

for (int i = 0; i < 8; i++)

sum += i;

20. What value will the variable sum have after the execution of the fol-
lowing code?

int sum = 100;

for (int i = 2; i < 6; i++)

sum -= i;

21. What value will the variable sum have after the execution of the fol-
lowing code?

int sum = 100;

for (int i = 20; i > 16 ; i--)

sum -= i;

22. What value will the variable sum have after the execution of the fol-
lowing code?

int sum = 0;

for (int i = 1; i <= 20 ; i += 3)

sum -= i;

23. What value will the variable sum have after the execution of the fol-
lowing code?

int sum = 100;

for (int i = 20; i > 6 ; i -= 5)

sum -= i;

24. Find the value of the variable i after the execution of the fol-
lowing code.

int i = 1;

int total = 0;

136 CHAPTER 5 Selection and Repetition

do {

total += i;

i++ ;

} while (total < 25);

25. Find the value of the variable i after the execution of the fol-
lowing code.

int i = 10;

int total =100;

do {

total -= i;

i += 5;

} while (total > 25);

26. Find the value of the variable total after the execution of the fol-
lowing code.

int i = 1;

int total = 10;

do {

total += i;

i++ ;

} while (i < 5);

27. Find the value of the variable total after the execution of the fol-
lowing code.

int i = 1;

int total = 100;

do {

total -= i;

i++ ;

} while (i <= 7);

5.4 Summary
■ The if statement allows us to choose whether to execute a state-

ment. With the if-else statement we can choose between two
alternatives. Nested if statements and the switch statement allow
us to choose between multiple alternatives. Pair an else with the

5.5 Programming Exercises 137

nearest preceding if. A switch statement chooses alternatives based
upon the value of a variable.

■ The while, for, and do statements enable us to repeat steps. The
while statement checks a condition before executing its body. The
do statement checks a condition after executing its body. The for
statement has initialize, test, and update parts, as well as a body.
We must make sure that the repetition stops.

5.5 Programming Exercises

5.1 Modify Example5-1 to use radio buttons instead of check boxes.

5.2 Modify Example5-2 to display the grade in a MessageBox rather
than a Label.

5.3 Modify Example5-3 to use a ListBox instead of a ComboBox for the
interest rate.

5.4 Create a Windows application that checks a grade-point average
that the user inputs, and displays Congratulations, You made the
honor roll if the average is 3.5 and above, but displays Sorry, You
are on probation if the average is below 2.0.

5.5 Create a Windows application to convert meters to feet or inches.
There are 39.37 inches in one meter and 12 inches in a foot. If the
length is less than one foot, just display the number of inches.
Show two digits after the decimal point. Thus 3.4 meters converts
to 11.15 feet, while .2 meter converts to 7.87 inches.

5.6 Create a Windows application to determine how many months it
will take to pay off a loan. The user will enter the loan amount, the
annual interest rate, and the monthly payment. For example, sup-
pose the loan amount is $1000 at 12% annual interest with monthly
payments of $100. Each month you pay interest on the remaining
balance. The interest rate is 1% per month, so the first month you
pay $10 interest and $90 goes to reduce the balance to $910. The
next month’s interest is $9.10, and $90.90 is applied to reduce the
balance, and so on. The last month’s payment may be less than $100.

5.7 Create a Windows application that inputs the prices of a box of
cereal and a quart of milk at store A and the prices of the same items

138 CHAPTER 5 Selection and Repetition

at store B. The application should display the total cost of three
boxes of cereal and two quarts of milk at whichever store has the
lower cost. Either store is acceptable if the cost is the same at both.

5.8 Create a Windows application that includes three labels, A, B, and
C, a text box, a button, and a numeric up-down. Let A, B, and C
each represent a hidden number between 1 and 25. The user tries
to guess the three numbers by entering a number from 1 to 25 in
the text box and clicking the button to submit the guess. If the
number matches one of the hidden numbers, the label represent-
ing it changes to show the number. The numeric up-down counts
the number of guesses the user makes until all three numbers have
been guessed. (Using random numbers, covered in the next chap-
ter, can make this game more interesting.)

5.9 Create a Windows application that includes four groups of two
radio buttons each. One radio button of each group has a Text
showing the number 0, and the other shows the number 1. Create a
sequence of four digits, each 0 or 1. For example 1, 0, 1, 0 is such a
sequence. The user is to select one radio button from each group,
either 0 or 1, and click a button to submit the four selections. The
application responds by stating the number of correct selections in
a label. For example, if the user chooses the sequence 0, 1, 1, 0, the
response would be two correct, because the last two values, 1 and 0,
match the last two positions of the 1, 0, 1, 0 sequence chosen ini-
tially. The user plays until a response of four correct is obtained. A
numeric up-down displays the number of submissions that the
user has made. (Using random numbers, covered in the next chap-
ter, can make this game more interesting.)

6CHAPTER
Reference Types
Reference types contrast with value types such as int. A variable of type int

holds an integer value. A reference type such as a String holds a reference to a

String object. Reference types are convenient when the values are large and of

variable size.We can have several references to the same object without making

unnecessary copies. In this chapter we first consider arrays and strings and then

look at objects more generally.

We have written C# code for event handlers to enable controls to perform their

desired functions. Arrays will enable us to be more effective. For example, if the

user checks multiple check boxes, we can use an array to iterate through them

to respond to the user’s selections.We look more carefully at the String objects

we have already been using to learn more about this fundamental type and

compare it to StringBuilder for use in building strings. It will be interesting to

explore some of the object types we use in the .NET Framework Class Library.

Chapter Objectives:
■ Use arrays

■ Study the String type

■ Use StringBuilder

■ Introduce objects from the .NET Framework Class Library

6.1 Arrays

An array contains a number of variables that we access through indices. For
example, if a class has 30 students and each takes a test, we need 30 vari-
ables to save these scores. It would be very inconvenient to declare variables
score1, score2, score3, and so on up to score30. With 300 students it would
be much too much trouble.

140 CHAPTER 6 Reference Types

The array declaration

int[] score = {65, 87, 34, 56, 98, 67, 58};

creates an array of seven variables, score[0], score[1], score[2], score[3],
score[4], score[5], and score[6], and gives each variable an initial value.
Declaring one array of seven variables is easier than declaring seven vari-
ables separately, and the advantage increases if the number of variables is
larger. The type int[] denotes an array of integers. We can declare an array
of any type.

The array declaration for score assigns 65 to score[0], 87 to score[1], and so
on. We can use these values in expressions. For example,

int x = score[3] + score[4];

assigns the variable x a value of 154 because score[3] is 56 and score[4] is 98.

We can change array variables by assignment. For example,

score[6] = 85;

would change the value of score[6] from 58 to 85.

Often we access arrays using loops. We can use a for loop to sum the ele-
ments of the score array. Each array stores its length in the Length property,
which we can use as the upper bound of the loop index. The following code
computes the sum of the test scores in the score array.

int sum = 0;
for (int i = 0; i < score.Length; i++)

sum += score[i];

This loop will sum our score array of seven scores, but it would also work
without modification if the array had 300 scores. Using individual variables
score1, score2, . . ., score300 would not be feasible.

In Example6-1 we use array notation in two ways, once to process multiple
selections in a ListBox and again to process CheckBox selections. Figure 6.1
shows Example6-1.

On the left, a ListBox contains choices of food with three choices selected. A
Label below the ListBox displays the choices the user made. This display
updates immediately when the user selects or deselects a food from the list.

The four CheckBox controls on the right list subjects. The user checks or
unchecks subjects and clicks the Choose Favorites button to show the cur-
rently selected favorite subjects in the Label at the lower left of the form.

6.1 Arrays 141

Figure 6.1 Making multiple selections in a ListBox.

To build Example6-1, we create a new project and drag the controls we use
from the Toolbox to the Form. To make the control names more meaningful,
we change the default (Name) property of the following controls.

Control New name

ListBox foodList

Label (lower-left) display

Button showFavorites

CheckBox (top to bottom) Spanish

Computing

History

Sociology

6.1.1 Multiple ListBox Selections

The SelectionMode property determines the number of selections to allow in
a ListBox. Its values are MultiExtended, MultiSimple, None, or One. In the Multi-
Simple mode, clicking on an item with the mouse selects it, highlighting it
in blue; clicking on it again deselects it. In the MultiExtended mode, the user
can select a range of values. To do this, the user first clicks on an item to
select it. Then, if the user holds the SHIFT key down and selects another
item, the entire range between the two selections will be selected. In this
mode, pressing Ctrl and clicking on an item selects or deselects it while
keeping intact the remaining selections.

142 CHAPTER 6 Reference Types

To enter these items into the list, we clicked on the Items entry in the Prop-
erties window of the Visual Studio .NET design. A String Collection win-
dow pops up, into which we enter the food items.

We used the Properties window in the Visual Studio .NET design to set the
SelectionMode for the ListBox to MultiSimple. The user’s selections appear in
a Label. We would prefer to separate the selection by commas, and use
“and” before the last selection. In the next section we will see how to build
such strings.

To write the event handler for the ListBox selections, we first double-click
on the ListBox in the Visual Studio .NET design to display the template

private void foodList_SelectedIndexChanged
(object sender, System.EventArgs e)

{
}

The .NET run time will call the foodList_SelectedIndexChanged method
whenever the user changes a selection, either by selecting another item or
deselecting one.

The SelectedItems property holds the collection of selected items. It is not
an array, but it is set up to allow us to use array notation to index it. This
collection has a Count property whose value is the number of selected items.
Thus we can use

foodList.SelectedItems.Count

to find the number of items selected, which in Figure 6.1 is three. Because
we can use array indexing, we can refer to the three items as Selecte-
dItems[0], SelectedItems[1], and SelectedItems[2]. We write the event-han-
dling code using a loop to add each selection item to the Text for the display
label. The completed code is

private void foodList_SelectedIndexChanged
(object sender, System.EventArgs e)

{
display.Text = "You selected ";
for (int i = 0; i < foodList.SelectedItems.Count; i++)

display.Text += foodList.SelectedItems[i] + " ";
}

6.1.2 Using the Documentation

The SelectedItems property does not appear in the Properties window in the
Visual Studio .NET design because it is set at run time by the user who makes

6.1 Arrays 143

Figure 6.2 CheckBox selections.

selections from the items in the ListBox. When writing the event-handling
code, we can use the documentation to discover the properties of a control.

In Example6-1, while in the design mode, pressing the F1 key when the
ListBox is selected displays the documentation for the ListBox members.
This documentation shows many ListBox properties. The description for
the SelectedItems property states that it gets a collection of the items
selected by the user. Because it gets a collection, we can assume that we can
use array notation to index its elements.

6.1.3 A CheckBox Array

The right section of Figure 6-2 shows four CheckBox controls. When the user
selects favorite subjects and clicks the Choose Favorites button, the user’s
favorite subjects appear in the label below. Again, we will improve the dis-
play in the label after we consider strings more carefully in the next section.

The four CheckBox variables are spanish, computing, history, and sociology.
We could use these names directly, but it is easier to declare an array to refer
to these controls. We declare

CheckBox[] subject =
{spanish, computing, history, sociology};

so we can refer to the controls using the subject array. For example, sub-
ject[1] refers to computing because the array indices are 0, 1, 2, and 3. The
variable subject[3] refers to sociology.

When the user presses the button, we want the label to display the selected
favorite subjects. In the event-handling code, we use the Checked property of

144 CHAPTER 6 Reference Types

Figure 6.3 Guessing a number.

a CheckBox to determine whether it was checked, and, if so, we add it to the
Text of the display label. The completed event-handling code is

private void showFavorites_Click
(object sender, System.EventArgs e)

{
display.Text = "You chose ";
CheckBox[] subject =

{ spanish, computing, history, and sociology };
for (int i = 0; i < subject.Length; i++)

if (subject[i].Checked)
display.Text += subject[i].Text + " ";

}

6.1.4 A Search Game

We use an array to play a simple guessing game. Figure 6.3 shows the form
of Example6-2. The user enters a number between 1 and 100 in the TextBox
and clicks the Submit button. If the number is contained in the array of
seven numbers, then the message says that the guess was good, but if not it
says that the guess was bad. A NumericUpDown shows the number of guesses
made so far.

We build Example6-2 by creating a project and dragging a TextBox, a Label,
a Button, and a NumericUpDown from the Toolbox to the form. We give the con-
trols more meaningful names by changing the (Name) property as follows:

Control New name

TextBox guessBox

Label display

Button submitGuess

NumericUpDown guessCount

6.1 Arrays 145

The event-handling code for the Submit button is

private void submitGuess_Click
(object sender, System.EventArgs e)

{
int[]score = {65, 87, 34, 56, 98, 67, 58};
int number = int.Parse(guessBox.Text);
int i = 0;

// search for test in score array
while (i < score.Length && number != score[i])

i++;
if (i < score.Length) // number found

display.Text = number + " is a good guess";
else // number not found

display.Text = number + " is not a good guess";
guessBox.Text = ""; // remove previous entry
guessBox.Focus(); // send key presses here
guessCount.Value++; // increment guesses

}
}

We create the array with seven scores, and then convert the user’s entry in
guessBox to an integer. The while statement searches for the number in the
score array. If the number is in the array at index i, the condition number !=

score[i] will fail and the loop will terminate. For example, if the user guesses
34, the condition 34 != score[2] is false and the loop will stop when i is 2.

If the user’s guess is not one of the score elements, then i will continue to
be incremented until it becomes 7 and the condition i < score.Length will
fail, causing the loop to terminate. After the while loop terminates, we use
an if-else statement to determine what caused the termination, finding the
user’s number or incrementing the index past the end of the array. We indi-
cate the result in the label.

To make it easier for the user to enter the next number, we reset the Text in
guessBox to the empty string. We call the Focus method of guessBox to direct
the keystrokes to guessBox. This is helpful because when the user presses the
button, it gets the focus; otherwise the user would have to click the mouse
inside guessBox to direct key presses to it for the next entry.

6.1.5 Random Numbers

The guessing game of Example6-2 will not be interesting to replay because
the user will soon figure out the numbers in the score array. To make it

146 CHAPTER 6 Reference Types

more interesting, we can generate random numbers that will change each
time the program is run.

The Random class has a Next method that returns a number that appears to be
randomly chosen from the integers 0 through 99. The following C# code
will create an array of scores and fill it with randomly chosen numbers
from 1 through 100.

int[] score = new score[7];
Random r = new Random();
for (int i = 0; i < score.Length; i++)

score[i] = r.Next(100) + 1;

In this code, we did not initialize the array, but instead used the new opera-
tor to create seven variables, score[0], . . . , score[6]. We use the new operator
again to create a Random object r that we can use to generate the random
numbers. In the for loop, we assign each variable a value randomly chosen
from 1 through 100. The Next method returns values from 0 through 99, so
we add 1 to each.

Example6-2a revises Example6-2 to fill the score array with random num-
bers. The easiest approach would be to modify the event-handling method
for the button to fill the score array with random numbers. However, doing
this would mean that each time the user made a guess the array would be
recreated. We want to fill the array once and let the user keep making
guesses until successfully finding a value. Thus we need to fill the score
array outside of the event-handling method.

To fill the array in one place and use it in another, we need to create it so
that it will be visible throughout the application. Similarly, the controls we
add in the Visual Studio .NET design need to be visible throughout the
application. Visual Studio initializes them inside the InitializeComponent
method, and we use and change their properties inside our event-handling
methods. We will declare the score array in the same location that Visual
Studio .NET declares the controls. Figure 6.4 shows these declarations from
Example6-2a. The private modifier indicates that only this application can
use these variables directly.

Visual Studio .NET initializes the controls in the InitializeComponent
method. We cannot change this method because Visual Studio automati-
cally regenerates it when we make changes in the design and does not
include any added code. Visual Studio places a comment in the code telling

6.1 Arrays 147

Figure 6.4 Declarations of Example6-2a.

public class Form1 : System.Windows.Forms.Form
{

private int[] score = new int[7];
private System.Windows.Forms.TextBox guessBox;
private System.Windows.Forms.Label display;
private System.Windows.Forms.Button submitGuess;
private

System.Windows.Forms.NumericUpDown guessCount;
// rest of code here

}

Figure 6.5 The Form1 constructor.

public Form1()
{

//
// Required for Windows Form Designer support
//
InitializeComponent();

//
// TODO: Add any constructor code after
// InitializeComponent call
//
Random r = new Random();
for (int i = 0; i < score.Length; i++)

score[i] = r.Next(100) + 1;
}

us where to add our initialization. Figure 6.5 shows the Form1 constructor. A
constructor has the same name as the application class. Notice that in Fig-
ure 6.4 the class name is Form1. The constructor in Figure 6.5 has the same
name, Form1, and no return value.

The .NET system calls the constructor when the application starts. The
Form1 constructor calls the InitializeComponent method to initialize the con-
trols. The TODO comment tells us to add any constructor code we need to
initialize our variables, so we add the code to fill the score array with ran-
dom numbers.

148 CHAPTER 6 Reference Types

Figure 6.6 Primitive types hold values.

The event-handling method for the Submit button, submitGuess_Click, is
the same as the event-handling method used in Example6-2 except that we
omit the first line to initialize the score array because we have already ini-
tialized it with random numbers. Running Example6-2a will produce a
form like Figure 6.3, but each time the user runs this application the score
array will be different, making the game more interesting. We will elaborate
on the concepts introduced in this example later in the chapter.

6.1.6 Array Variables and Values

Data, like many things, comes in different sizes. Many people have a cat that
runs around their house, which they even pick up and hold from time to
time. If the cat is sitting on your lap, and your sister wants to hold it, you
can pass it to her. Some people have horses, but they do not give them free
rein in the house, nor do they hold them on their laps—horses are too big.
Both you and your sister know where to find the horses, in the stable.

Values of primitive types, such as 10, 'e', or 3.14, have fixed small sizes.
Variables hold values of primitive types, and assignment copies the value
from one variable to another, as Figure 6.6 shows.

Values of array types, such as {10,20,30,40,50,60,70}, can often be quite
large. Variables do not hold array values, but hold references to them. A ref-
erence is a memory address: it tells where to find the item, in this case, an
array. We indicate a reference by an arrow pointing to the location of the
array. Figure 6.7 shows the memory usage for the array given by

int[] score = {26, 73, 92};

Figure 6.7 Memory usage for score.

score
26 73 92

score

80

temp

0

80 80

int score = 80, temp = 0;

score = temp

6.1 Arrays 149

Figure 6.8 Memory usage for an array assignment.

x 1 2 3 4 5

y null

int [] x = {1, 2, 3, 4, 5};

int [] y;

a. Before the assignment

x 1 2 3 4 5

y

y = x;

b. After the assignment, y = x

Figure 6.9 Memory usage after the assignment y[2] = 7.

x

y

1 2 7 4 5

The variable score holds a reference to the array of three int elements.

Assigning one array to another copies the reference, not the array value. For
example, Figure 6.8a diagrams the memory that C# uses for an array vari-
able x initialized to refer to an array of five integers, and an uninitialized
array variable y. Figure 6.8b shows the memory usage after we assign x to y.

We see that the assignment copies the reference from the variable x into the
variable y. After the assignment, both variables refer to the same array. Copying
a reference is more efficient than copying the whole array, which can be quite
large. It takes time to copy the array values, and to create the space to hold them.

Because the variables x and y in Figure 6.8b refer to the same array, any
changes made using x will affect y, and vice versa. For example, if we execute

y[2] = 7;

we will see that x[2] also has the value 7; x and y refer to the same array, so
their elements must be the same. Figure 6.9 shows the effect of the assign-
ment to y[2].

150 CHAPTER 6 Reference Types

Test Your Understanding

1. In the array

int[] x = {7, 8, 9};

evaluate

a. x[2]

b. x.Length

2. Explain the difference between the MultiSimple and MultiExtended

modes for a ListBox.

3. Which property holds the number of items in the SelectedItems
collection for a ListBox?

6.2 Strings

We have used String objects often in our previous examples. For example,
many controls have a Text property to display text associated with the con-
trol. For a Label, that Text is its main content.

Instances of the class String represent sequences of characters. The String
class is part of the core .NET Framework library in the System namespace.
Inside a String object is a sequence of characters, such as "C# is fun". The
state (internal configuration) of a String object is private. Users of String

objects do not need to know how the characters are represented.

6.2.1 Visualizing a String

We visualize a String as an object, such as a vending machine with a button for
each service it provides. Strings have many public operations to provide their
services. We show only a few in Figure 6.10, Length, IndexOf('i'), and ToUp-

per(). The String object, "C# is fun" in Figure 6.10 does not have a window to
see inside, because strings do not show any of their state; it is all private.

When we press the Length button in Figure 6.10, we get the result of 9
because "C# is fun" has 9 characters. The result of an operation depends on
the state of the object.

The IndexOf('i') button returns the first position in which the character 'i'
occurs in the string, or �1 if 'i' does not occur in it. For this object the

An array contains a num-
ber of variables that we
access through indices.We
can change array variables
by assignment. Often we
access arrays using loops.
Each array stores its
length in the Length
property, which we can
use as the upper bound of
the loop index.

The Random class a
Next method that
returns a number that
appears to be randomly
chosen.

The BIG Picture

6.2 Strings 151

Figure 6.10 A String object for ”C# is fun”.

Figure 6.11 A String object for “C# IS FUN”.

IndexOf('i') operation returns 3. The first 'i' occurs as the fourth character,
but for technical reasons we start the numbering with 0, so 'i' is at index 3.

Strings objects in C# never change. The String object in Figure 6.10 will
always represent "C# is fun". When we execute the ToUpper() operation, we
do not change the object, but rather we get a new String object representing
"C# IS FUN" shown in Figure 6.11.

Because the state is hidden, Figure 6.11 looks just like Figure 6.10, but it
operates differently. Executing the IndexOf('i') operation will return �1,
signifying the character 'i' does not appear in "C# IS FUN". C# is case-sen-
sitive; a lowercase 'i' differs from an uppercase 'I'.

Visualizing a String object as a vending machine in Figures 6.10 and 6.11
really helps us to keep in mind that to use strings in C# programs, we need
to create a string and ask it to execute one of its operations.

6.2.2 Creating a String

C# makes a special form of declaration available for String objects, because
we use them so frequently. C# treats a literal such as "C# lets us use

objects." as an instance of the String class. The declaration

String s = "C# lets us use objects. ";

IndexOf('i')Length

ToUpper() other services

IndexOf('i')Length

ToUpper() other services

152 CHAPTER 6 Reference Types

Figure 6.12 A String variable referring to a String object.

s "C# lets us use objects. "

creates and initializes a String, which we refer to as s. The variable s refers
to the String object, as shown schematically in Figure 6.12.

6.2.3 A String Property

A property is like a data field, but it does not directly represent a storage
location. For example, the value of a property may be computed from other
values. A property provides information about an object. For example,

s.Length;

will return the number of characters in s, 25 in this example. This string has
two trailing blanks. All characters between the beginning and ending
quotes are significant. We use a property like an instance variable, but inter-
nally it uses an accessor method to retrieve the length; thus we return the
length using s.Length rather than s.Length(). In this text we have often used
predefined properties of objects.

6.2.4 A String Indexer

An indexer is like a property, but it provides access by an index, like arrays.
In C#, the Chars property in the String class is an indexer for the string. It
returns the character at the specified index in the string. For example,

s[4]

returns 'e' because the character at index 4 is an 'e'. We use square brack-
ets, [], to enclose an index, rather than the round parentheses, (), which we
use for method arguments.

6.2.5 String Methods

The String class has both instance and class methods. An instance method
refers to a specific String object. A class method is shared by all instances of
the class. Most of the methods of the String class are instance methods.

6.2 Strings 153

Figure 6.13 s.ToLower() returns a new String.

The ToLower() method returns a new String with the characters converted
to lowercase. For example,

s.ToLower();

returns "c# lets us use objects. ". To use this new String, we need to
assign it to a variable, as in

String sLower = s.ToLower();

Figure 6.13 shows that we now have two String objects referred to by s

and sLower.

The Trim and Substring methods also return new String objects. The Trim
method removes leading and trailing whitespace, where whitespace
includes blank spaces, newlines, and tabs. For example,

s.Trim();

returns "C# lets us use objects."

The Substring method has two parameters. The first gives the index at
which the substring starts. The second indicates the number of characters
in the substring. Thus

s.Substring(11,11);

returns "use objects", composed of the characters starting at position 11 in
s, and including 11 characters.

s "C# lets us use objects. "

sLower

"c# lets us use objects. "

154 CHAPTER 6 Reference Types

6.2.6 Overloaded Methods

The String class contains overloaded methods. For example, the IndexOf
method has six versions, which C# differentiates by the different parame-
ters for each. The six methods are:

1. public int IndexOf(char ch)—returns the index of first occur-
rence of ch

2. public int IndexOf(char ch, int from)—returns the index of first
occurrence of ch starting at index from

3. public int IndexOf(char ch, int from, int len)—returns the
index of first occurrence of ch starting at index from—within the
next len positions

4. public int IndexOf(String str)—returns the index of first occur-
rence of str

5. public int IndexOf(String str, int from)—returns the index of
first occurrence of str starting at index from

6. public int IndexOf(String str, int from, int len)—returns the
index of first occurrence of str starting at index from within the
next len positions

To illustrate,

s.IndexOf('e');

returns 4, because the leftmost 'e' in the string occurs at index 4. The
method call

s.IndexOf('e',8);

returns 13, because the first occurrence of 'e', starting from index 8, is at
index 13. The method call

s.IndexOf('e',8,3);

returns �1, because there is no 'e' in the next three positions starting at
index 8. The method call

s.IndexOf("us");

returns 8, because the leftmost occurrence of "us" starts at index 8. Similarly,

s.IndexOf("us",11);

6.2 Strings 155

returns 11 as the first occurrence of "us", starting from index 11, begins at
index 11. When we try

s.IndexOf("us",15);

the result is �1, because there is no occurrence of "us" in s starting
from index 15.

Programmers find it less cumbersome to use overloaded methods. For
example, if the IndexOf method were not overloaded, we would have to use
something like IndexOfChar, IndexOfCharFrom, IndexOfCharFromLen, IndexOf-

String, IndexOfStringFrom, and IndexOfStringFromLen as the names for these
six methods. Method overloading helps when we have methods that are
similar except that they operate with different arguments.

When we use an overloaded method in a program, C# can determine
which method to call by looking at the type of argument we pass to it. For
example, in

String food = "potato";
int a = food.IndexOf('a'); // passing a char
int to = food.IndexOf("to"); // passing a String

C# will call the IndexOf(char c) method to find the index of the first 'a' in
"potato", because the argument 'a' passed in the call IndexOf('a') has type
char. However, C# will call IndexOf(String s) to find the index of the first
occurrence of "to", because the argument "to" has type String.

Replace is another overloaded method. One version replaces all occurrences of
one character with another. The second version replaces all occurrences of a
String with another. For example, in s = "C# lets us use objects. ",

s.Replace('e', 'o')

returns the String

"C# lots us uso objocts. "

and

s.Replace("us", "them")

returns

"C# lets them theme objects. "

156 CHAPTER 6 Reference Types

Figure 6.14 The form of Example6-3.

1The documentation for the .NET Framework Class Library is available for viewing or
download from http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
cpref/html/cpref_start.asp. It is also available from the Help menu in Visual Studio .NET.

6.2.7 Class Methods

The String class has many other instance methods.1 It also contains some
class methods. Unlike an instance method, a class method does not refer to
a specific object. For example,

double d = 3.14159265;
String w = String.Format("The price is {0:C}", d);

produces the String

"The price is $3.14"

Note that we prefix the Format method with the class name, String, rather
than an object instance name. The Format method does not apply to a
String object, in contrast to the IndexOf method and other instance meth-
ods that only make sense when applied to a String instance. Format is a class
method rather than an instance method.

To illustrate the use of String methods, Example6-3 allows the user to
replace every occurrence of one string with another in the string

"the three did feed the deer and then they were full"

Figure 6.14 shows the form of Example6-3. The user enters the string to
find and the string to substitute for each occurrence. When the user clicks
the Replace All button, the changed string appears in a label above the text

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/cpref_start.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/cpref_start.asp

6.2 Strings 157

boxes. Notice that the replacement is case sensitive and does not replace the
initial “The”, which begins with an uppercase character.

We change the (Name) properties to give the controls the following more
meaningful names:

Control New name

Label (top) display

TextBox (left) find

TextBox (right) substitute

Button replace

We double-click on the button in the design view to display the template
for its event handler. The code for the event handler for the button is

private void replace_Click
(object sender, System.EventArgs e)

{
String oldWord = find.Text; // word to replace
String newWord = substitute.Text; // replacement
String temp = display.Text;
int position = temp.IndexOf(oldWord);

// first occurrence
while(position != -1)

// -1 indicates no match
{

temp = temp.Substring(0,position)
// before match

+ newWord // replacement
+ temp.Substring(position + oldWord.Length);

// after match
position = // next occurrence

temp.IndexOf(oldWord,position + newWord.Length);
}
display.Text = temp;

}

Each iteration of the while loop replaces one occurrence. We construct the
new string by concatenating three parts: the substring before the occur-
rence, the replacement string, and the substring after the occurrence. To
continue, we look for another occurrence further on in the string.

158 CHAPTER 6 Reference Types

Figure 6.15 Concatenating strings.

6.2.8 Using StringBuilder

The StringBuilder class represents a string-like object whose value is a sequence
of characters that we can change. We can modify a StringBuilder object after it
has been created by appending, removing, replacing, or inserting characters.

A C# String is immutable. It cannot be changed. The concatenation opera-
tor causes new temporary strings to be created. Creating a simple message,

String message = "The cow jumped over the moon";

presents no problem, but suppose the animal names and the thing they
jump over are stored in variables. For example, suppose we have two vari-
ables, animal1 and animal2, that hold the names of animals, and a variable,
thing, that holds the name of a thing. To construct a similar String, we
could use the statements

String message = "The ";
message += animal1;
message += " and ";
message += animal2;
message += " jumped over the ";
message += thing;

Each concatenation would create a temporary String and change the mes-
sage variable to refer to it. Figure 6.15 shows how the first step would work.

a. Before

b. After

animal1

message

animal1

message

"cow"

"The"

"cow"

"The"

"The cow"

6.2 Strings 159

Figure 6.16 The form of Example6-4.

By contrast, we can change a StringBuilder. The Append method adds a
string to the existing StringBuilder and does not need to create a new
object. Using a StringBuilder we could create the message with the code

StringBuilder mess = new StringBuilder("The ");
mess.Append(animal1);
mess.Append(" and ");
mess.Append(animal2);
mess.Append(" jumped over the ");
mess.Append(thing);
String message = mess.ToString();

We use a StringBuilder in Example6-4, where we need to make choices con-
cerning the punctuation of the message. We leave the modification of
Example6-1 to use a StringBuilder to improve the display to the exercises.

Figure 6.16 shows the form of Example6-4. The user can select multiple
animals from a ListBox whose SelectionMode is MultiSimple, but must
select one thing from a ListBox whose SelectionMode is One. When the
user selects a thing, a message appears in the TextBox describing that
choice. When the user selects animals and a thing, and then clicks the
Choose Animals button, a message states that the animals jumped over
the thing. The event handler for the button uses a StringBuilder to cre-
ate the message. Two check boxes allow the user to display images in
picture boxes.

We set the (Name) property to assign the following names to the indi-
cated controls.

160 CHAPTER 6 Reference Types

Control New Name

Button showChoices

ListBox (animals) selectAnimals

ListBox (things) selectThing

CheckBox (moon) showMoon

CheckBox (author) showAuthor

TextBox display

PictureBox (author) author

PictureBox (moon) moon

We use the Visible property of a PictureBox to make the desired image visi-
ble when the corresponding CheckBox is checked, and not visible otherwise.
The event-handling code for each CheckBox follows.

private void showMoon_CheckedChanged
(object sender, System.EventArgs e)

{
if (showMoon.Checked)

moon.Visible = true;
else

moon.Visible = false;
}

private void showAuthor_CheckedChanged
(object sender, System.EventArgs e)

{
if (showAuthor.Checked)

author.Visible = true;
else

author.Visible = false;
}

The event-handling method for selectThing, the list box containing things,
just displays a message naming the selected thing. The code is

private void selectThing_SelectedIndexChanged
(object sender, System.EventArgs e)

{
display.Text =

"You selected " + selectThing.SelectedItem;
}

6.2 Strings 161

The event handler for the Button uses a StringBuilder to build the mes-
sage combining constants such as "The " with the animals and thing,
which change depending on the user’s selections. When the user has not
chosen a thing, we use "??" in its place. We separate the user’s two
choices with " and ", and use commas when the user chooses more than
two animals.

private void showChoices_Click
(object sender, System.EventArgs e)

{ // prefix with namespace
System.Text.StringBuilder message =

new System.Text.StringBuilder("The ");
int length = selectAnimals.SelectedItems.Count;
switch(length)
{
case 0: message.Append("??");

break;
case 1: message.Append

(selectAnimals.SelectedItems[0].ToString());
break;

case 2: message.Append
(selectAnimals.SelectedItems[0].ToString());
message.Append(" and ");
message.Append
(selectAnimals.SelectedItems[1].ToString());
break;

default:
for(int i = 0; i < length-1; i++)
{ // comma after all but last
message.Append

(selectAnimals.SelectedItems[i].ToString());
message.Append(", ");
} // "and" before last
message.Append("and ");
message.Append(selectAnimals.

SelectedItems[length-1].ToString());
break;

}
message.Append(" jumped over the ");
message.Append(selectThing.SelectedItem);
display.Text = message.ToString();

}

Instances of the class String
represent sequences of charac-
ters. The String class is part
of the core .NET Framework
library in the System name-
space.C# makes a special form
of declaration available for
String objects, because we
use them so frequently.

A property is like a data field,
but it does not directly repre-
sent a storage location. The
Length property of a
String is an example. An
indexer is like a property,but it
provides access by an index,
like arrays.For a Strings,we
use s[2] to represent the
character at index 2 in the
string.

The String class contains
overloaded methods. For
example, the IndexOf
method has six versions,which
C# differentiates by the differ-
ent parameters for each.

The Format method does
not apply to a String object,
in contrast to the IndexOf
method and other instance
methods that only make sense
when applied to a String
instance. Format is a class
method rather than an
instance method.

A C# String is immutable.
It cannot be changed. By con-
trast, we can change a
StringBuilder object.

The BIG Picture

162 CHAPTER 6 Reference Types

Test Your Understanding

4. Given the String object

String s = "The three did feed the deer";

find

a. s.Length b. s[5] c. s.IndexOf('e')

d. s.IndexOf("did") e. s.Substring(4,5) f. s.ToUpper()

5. Given the String object

String r = "Mississippi";

find

a. r.IndexOf('i') b. r.IndexOf('i',4)

c. r.IndexOf("is",4) d. r.IndexOf("is",9)

e. r.IndexOf("sip") f. r.IndexOf("sissy")

6. If String s = "Happy days are here again", find

a. s.Replace('a', 'i') b. s.Replace("e ", "xkd");

6.3 Library Classes

The .NET Framework Class Library provides a large number of classes,
some of which we have used in our applications. These classes are grouped
into namespaces.

6.3.1 Namespaces

A namespace lets us organize code and create globally unique type names.
Using a name within one namespace would not preclude its being used in
another, because each will have a different prefix. The namespaces we use in
this text include

System Fundamental classes

System.Data Components that manage data

System.Data.OleDb Database access

System.Drawing Graphics functionality

System.Web.Services Web services

System.Web.UI User interfaces on a web page

6.3 Library Classes 163

System.Web.UI.WebControls Web server controls

System.Windows.Forms Windows user interfaces

System.Xml XML processing

System.Xml.Schema XML schemas

System.Xml.Xsl Stylesheet transformations

We prefix a class with its namespace. The full declaration for a String s pre-
fixes the System namespace that contains the String class. For example,

System.String s = "a big car";

To avoid prefixing a class with its namespace, we can add a using declara-
tion at the top of the code file. For example, adding

using System;

allows the String to be declared as

String s = "a big car";

6.3.2 Control Objects

The classes in the .NET Framework Class Library define objects that we use
in our applications. An object is an instance of a class. For example, the But-
ton class defines the features of a button. We can create many Button
instances to use in our applications. The fragment from Example6-2a
shown here (see also Figure 6.4) declares five objects: a TextBox, a Label, a
Button, a NumericUpDown, and an array.

private System.Windows.Forms.TextBox guessBox;
private System.Windows.Forms.Label display;
private System.Windows.Forms.Button submitGuess;
private

System.Windows.Forms.NumericUpDown guessCount;
private int[] score = new int[7];

The declaration for the TextBox is

private System.Windows.Forms.TextBox guessBox;

The private modifier signifies that the guessBox variable is only accessible
within Example6-2a in which it is defined. The prefix System.Windows.Forms
represents the namespace containing the TextBox class. We chose the vari-
able name guessBox instead of the default name textBox1. To change the
variable name, we set the (Name) property of the TextBox.

164 CHAPTER 6 Reference Types

The .NET Framework Class
Library provides a large
number of classes, some
of which we have used in
our applications. These
classes are grouped into
namespaces. A name-
space lets us organize
code and create globally
unique type names. The
classes in the .NET Frame-
work Class Library define
objects that we use in our
applications. An object is
an instance of a class. The
new operator allocates
memory for objects.

The BIG Picture

The variable guessBox has a reference type, meaning that its memory loca-
tion holds a reference to a TextBox, not the TextBox itself. In fact, so far there
is no TextBox object. Until we assign it a TextBox, the variable guessBox has
the value null, signifying an invalid reference.

Visual Studio .NET hides the creation of the user interface controls. Look-
ing at the code for Example6-2a shows the line

+

Clicking on the plus sign in the margin will show the code generated by
Visual Studio .NET to create and position the user interface controls that
we added to the form. It is hidden because we are not to modify it.

This hidden code contains the line

guessBox = new System.Windows.Forms.TextBox();

that creates a TextBox and assigns the reference to it to guessBox. The new
operator allocates memory for the TextBox instance and calls the TextBox
constructor, which is like an initialization method. As in Example6-2a,
Visual Studio .NET creates most of the objects we need when building our
applications.

Test Your Understanding

7. In what namespace is the String class?

8. In what namespace is the TextBox class?

6.4 Summary
■ An array contains a number of variables that we access through

indices. We can change array variables by assignment. Often we
access arrays using loops. Each array stores its length in the Length
property, which we can use as the upper bound of the loop index.

■ The Random class has a Next method that returns an integer.

■ Instances of the class String represent sequences of characters. The
String class is part of the core .NET Framework library in the Sys-
tem namespace. C# makes a special form of declaration available
for String objects because we use them so frequently.

Windows Form Designer generated code

6.5 Programming Exercises 165

■ A property is like a data field, but it does not directly represent a
storage location. The Length property of a String is an example. An
indexer is like a property, but it provides access by an index, like
arrays. For a String s, we use s[2] to represent the character at
index 2 in the string.

■ The String class contains overloaded methods. For example, the
IndexOf method has six versions, which C# differentiates by the dif-
ferent parameters for each.

■ The Format method does not apply to a String object, in contrast to
the IndexOf method and other instance methods that only make
sense when applied to a String instance. Format is a class method
rather than an instance method.

■ A C# String is immutable. It cannot be changed. By contrast, we
can change a StringBuilder object.

■ The .NET Framework Class Library provides a large number of
classes, some of which we have used in our applications. These
classes are grouped into namespaces. A namespace lets us organize
code and create globally unique type names. The classes in the
.NET Framework Class Library define objects that we use in our
applications. An object is an instance of a class. The new operator
allocates memory for objects.

6.5 Programming Exercises

6.1 Modify Example6-1 to use a CheckedListBox instead of four separate
CheckBox controls.

6.2 Modify Example6-2 to use a Label instead of NumericUpDown to dis-
play the number of attempts.

6.3 Modify Example6-3 to give the user a choice of three source strings
that appear in a ComboBox.

6.4 Modify Example6-1 to separate items in the display label with
commas and to put an “and” before the last element. With two
items, do not use a comma.

6.5 Modify Example6-4 to allow the selection of more than one thing.

6.6 Create a Windows application that changes every ‘p’ to a ‘q’ in a
String entered by the user.

166 CHAPTER 6 Reference Types

6.7 Create a Windows application to simulate the roll of two dice, and
display the sum of the numbers on each. A die has six faces num-
bered 1 through 6. Each face is equally likely to occur, so we simu-
late a roll by generating a random number from 1 through 6.

6.8 Create a Windows application with one ListBox showing foods and
another for drinks. Allow the user to make multiple selections
from each, and display the user’s selections in a MessageBox.

6.9 Create a Windows application that includes three labels, A, B, and
C; a text box; a button; and a numeric-up-down. Let A, B, and C
each represent a hidden number between 1 and 25, chosen ran-
domly. The user tries to guess the three numbers by entering a
number from 1 to 25 in the text box and clicking the button to sub-
mit the guess. If the number matches one of the hidden numbers,
the label representing it changes to show the number. The
numeric-up-down counts the number of guesses that the user
makes until all three numbers have been guessed. You may wish to
use the Tag property of a label to store the hidden number.

6.10 Create a Windows application that includes four groups of two radio
buttons each. One radio button of each group has a Text showing the
number 0, and the other shows the number 1. Use random numbers
to create a sequence of four digits, each 0 or 1. For example, 1, 0, 1, 0 is
such a sequence. The user is to select one radio button from each
group, either 0 or 1, and click a button to submit the four selections.
The application responds by stating the number of correct selections
in a label. For example, if the user chooses the sequence 0, 1, 1, 0, the
response would be two correct, because the last two values, 1 and 0,
match the last two positions of the 1, 0, 1, 0 sequence chosen initially.
The user plays until a response of four correct is obtained. A numeric-
up-down displays the numbers of submissions that the user has made.

6.11 Create a Windows application that includes four labels, A, B, C,
and D, with a ComboBox under each label. Each combo box will list
the six colors: Red, Green, Blue, Yellow, White, and Orange. Choose
a color for each label randomly, but do not show those colors in the
form. The user will try to guess the color of each label by selecting
the color for each in the combo box below it. When the user makes
a selection, the label will change to the color selected. When the
user presses a Button, the application will respond with a message

6.5 Programming Exercises 167

stating how many colors are correct and how many are in the cor-
rect position. For example, if the user guesses Red, Red, Blue, Yel-
low, and the correct choices are Red, Blue, Yellow, and Green, the
response will be 1, 2, meaning that one color matches exactly and
two other colors are correct but in the wrong positions. A Numer-
icUpDown will count the number of tries until the user guesses all
four colors correctly. You may wish to use the Tag property of a
label to store its color to be guessed.

6.12 Create a Windows application to play a game. The game uses six
letters: a, b, c, d, e, and f. The computer chooses four letters at ran-
dom, and they may be repeated, so they might be abcc or aadd, and
so forth. The player enters a string of letters, say, ddec, in a TextBox
and clicks the Submit button. The application displays two num-
bers, the number of letters that exactly match the pattern chosen in
advance, and the number of letters that are in the pattern but that
the user put in the wrong position. For example, if the pattern is
abcc, some guesses and scores are:

adef 1, 0

deaf 0, 1

cabb 0, 3

cccc 2, 0

acbc 2, 2

The game continues until the user guesses all letters in the correct
position (4, 0). The score is the number of guesses it takes. Natu-
rally, lower scores are better.

This page intentionally left blank

7CHAPTER
Using a Database
Visual Studio .NET tools make it easy to connect to a database to retrieve or

update data. We can process data while connected to the database or we can

process the data locally in our application. By processing data locally using a

DataSet, we can free the connection to the database for others to use. Later we

will develop Web applications in which the client and the server by default do

not maintain a connection.

We use a .NET data provider for connecting to a database, executing com-

mands, and retrieving results. Connection, Command, and DataReader objects pro-

vide these three functions. A DataAdapter populates a DataSet to process data

without maintaining a connection.

The simplest and most efficient database access uses a DataReader to process

data while connected to the database. When using multiple tiers, the user does

not directly connect to the database but rather to a middle tier that provides

database access. Using multiple tiers allows applications to handle many users

while maintaining performance. For simplicity, we do not use multiple tiers in

this chapter but do show both methods of data access: using a DataReader while

connected and populating a DataSet for offline processing.

Chapter Objectives:
■ Use the Northwind example database

■ Use a DataReader while connected to a database

■ Use a DataAdapter to load data from a data source to a DataSet

■ Build a query to retrieve data

■ Generate a DataSet

■ Display data in a DataGrid

■ Generate a data Form

170 CHAPTER 7 Using a Database

Figure 7.1 The Northwind database tables.

1If Northwind is not installed, clicking will prompt the user to install it from the Microsoft
Office CD.

7.1 The Northwind Database

The Microsoft Access database system is part of the Microsoft Office pack-
age. In this chapter we use Microsoft Access 2002. Microsoft Access comes
with a Northwind database that we will use for several examples. To view it,
we first open Microsoft Access. Then, clicking on Help, SampleDatabases,
Northwind Sample Database produces the window of Figure 7.1 listing the
tables in the Northwind database.1

7.1.1 Relational Databases

A relational database is a collection of data items organized as a set of tables
from which data can be accessed in many different ways without having to
reorganize the database tables. Figure 7.1 lists the eight tables of the North-
wind database. The columns of a table represent categories. Each row is an
entry with data in each of the categories.

Figure 7.2 shows the Shippers table. It has three columns, Shipper ID, Com-
pany Name, and Phone, and three rows containing the data for three shippers.

7.1 The Northwind Database 171

Figure 7.2 The Shippers table.

2For display purposes, the Orders table shows the Company Name rather than CustomerID.

The first column, Shipper ID, is the key. It uniquely identifies the shipper.
Even if two shippers had the same name, they would have a unique Shipper
ID to identify them. For display purposes, the column headers have spaces,
but the names in the design view are ShipperID, CompanyName, and Phone.

A well-designed relational database avoids duplication of information. For
example, in Northwind each entry in the Orders table specifies the Customer
who placed it. The Orders table just includes the CustomerID2 and not the
Address. If the Orders table included the address for each customer, then
when the address changed all the entries in the Orders table containing that
customer’s address would have to change. In Northwind, the Customers
table contains the customer’s address, which only occurs once and can be
updated in one place. Figure 7.3 lists the column categories for each of the
Northwind tables.

The Order Details table has a compound key. We need both the OrderID and
the ProductID to uniquely identify an Order Details entry. The Order Details
table helps to avoid redundancy. Each order may include several products.
Making multiple entries for each order in the Orders table would force rep-
etition of the Customer, Employee, Order Date, and so on, which are the same
for all items of the order. All the information that is the same for an entire
order occurs in the Orders table. The information that depends on the item
ordered occurs in the Order Details table.

7.1.2 Queries

A query retrieves information from a database. The Structured Query Lan-
guage (SQL) is the standard for expressing queries, but we will not need to

A relational database is a
collection of data items
organized as a set of
tables from which data
can be accessed in many
different ways without
having to reorganize the
database tables. A query
retrieves information from
a database.

The BIG Picture

172 CHAPTER 7 Using a Database

Figure 7.3 Columns of the Northwind tables.

Categories
CategoryID (key), CategoryName, Description, Picture

Customers
CustomerID (key), CompanyName, ContactName, ContactTitle, Address,
City, Region, PostalCode, Country, Phone, Fax

Employees
EmployeeID (key), LastName, FirstName, Title, TitleOfCourtesy,
BirthDate, HireDate, Address, City, Region, PostalCode, Country,
HomePhone, Extension, Photo, Notes, ReportsTo

Order Details
OrderID (key), ProductID (key), UnitPrice, Quantity, Discount

Orders
OrderID (key), CustomerID, EmployeeID, OrderDate, RequiredDate,
ShippedDate, ShippedVia, Freight, ShipName, ShipAddress, ShipCity,
ShipRegion, ShipPostalCode, ShipCountry

Products
ProductID (key), ProductName, SupplierID, CategoryID, QuantityPerUnit,
UnitPrice, UnitsInStock, UnitsOnOrder, ReorderLevel, Discontinued

Shippers
ShipperID (key), CompanyName, Phone

Suppliers
SupplierID (key), CompanyName, ContactName, ContactTitle, Address,
City, Region, PostalCode, Country, Phone, Fax, HomePage

use it explicitly because Visual Studio .NET provides the Query Builder
tool to construct queries. We will use it in the next section.

A simple query might ask for a list of all company names. We can find the
company names from the Customers table. A more involved query might ask
for the total sales in August 1996. This would require checking the dates in
the Orders table, finding those rows of the Order Details table with Order ID
corresponding to an August 1996 date, computing the sales from that item,
and updating the total.

Test Your Understanding

1. Why is ProductID a better choice than ProductName as the key for the
Products table in the Northwind database?

7.2 The Connected Model 173

7.2 The Connected Model

In the connected model, we process data while maintaining a connection to
the database. We use a data reader to read from a database for more effi-
cient processing when we do not need a middle tier or are not sharing the
dataset with many users. In Example7-1, we connect to the Northwind
database. We will query Northwind to find the price for each product, and
then display the products and prices in a ListBox control.

7.2.1 Connecting to a Database

We start by opening Visual Studio .NET and creating a new Windows Appli-
cation project for Example7-1. In the Toolbox, we click the Data tab to open
a list of controls useful for accessing data. A .NET data provider links our
application with a data source. In this book, we use the OLE DB .NET Data
Provider to communicate with the Microsoft Access Northwind database.

We drag an OleDbConnection control from the Toolbox to the form. This
control represents a connection to a database. Note that in Figure 7.4 it
appears below the form because it has no visible representation on the

Figure 7.4 Adding an OleDbConnection.

174 CHAPTER 7 Using a Database

Figure 7.5 Selecting a provider.

form. Its Properties window at the right allows us to configure the connec-
tion. We change the (Name) property to northwind.

To connect to the Northwind database, we need to set the ConnectionString
property for the OleDbConnection. Clicking on the button at the right of the
ConnectionString entry in the Properties window displays a list of connec-
tion strings previously set and a <New Connection...> choice that we select.
Figure 7.5 shows the Data Link Properties window that pops up, in which
we have selected the Provider tab and selected the Microsoft Jet 4.0 OLE DB
Provider used to connect to a Microsoft Access database.

Clicking Next displays the Connection tab shown in Figure 7.6. We browse to
select a database name. On the author’s system, Northwind has the path

H:\Program Files\Microsoft Office\Office10\Samples\Northwind.mdb

We enter Admin as the password and check Blank Password. Clicking the Test
Connection button should display a message saying that the test connection

7.2 The Connected Model 175

Figure 7.6 Configuring a database connection.

succeeded. We click OK to close the message box and click OK to close the
Data Link Properties window.

7.2.2 Building a Command

We want to find the price of each Northwind product. With an OleDbCommand
control, we can configure a query to the Northwind database to retrieve
product information. We drag an OleDbCommand from the Toolbox to the
form. It also appears below the form in the design. We change its (Name)
property to productPrices.

To associate a database with the command, we set the Connection property.
Clicking the button at its right displays the choices shown in Figure 7.7.
Clicking the + sign to the left of Existing shows the existing connections. We
select the northwind connection that we configured above.

The CommandText property will specify the query that we build to find the
prices of Northwind products. We click on it and on the button that appears

176 CHAPTER 7 Using a Database

Figure 7.7 Associating a connection with a command.

Figure 7.8 Selecting the Products table.

at the right. Figure 7.8 shows the Add Table window that appears. We will be
using the Products table, so we select Products and click Add and Close. The
Query Builder form appears showing the columns of the Products table. We
check ProductName and UnitPrice, as shown in Figure 7.9, and click OK.

7.2.3 Reading and Displaying the Data

We use a data reader to read the product names and prices from the North-
wind database. To display the data that we retrieve from the Northwind

7.2 The Connected Model 177

Figure 7.9 Building a query.

database, we need to enter it in a user interface control. We use a ListBox
control to display the list of Northwind products with their prices. Clicking
the Windows Forms tab in the Toolbox displays the user interface controls
available. We drag a ListBox control to the form and change its (Name) prop-
erty to display. We change the Font.Name property to Courier New so that the
display will be evenly spaced. In the Courier New font, each character has the
same width.

We retrieve the data from the database when the application begins execu-
tion. Double-clicking on the form displays the template

private void Form1_Load(object sender, System.EventArgs e)
{

}

for the Form1_Load method that executes when the application starts. We
need to add the C# code to query the database and to enter the data into the
ListBox. The completed Form1_Load method is

private void Form1_Load(object sender, System.EventArgs e)
{

178 CHAPTER 7 Using a Database

northwind.Open();
System.Data.OleDb.OleDbDataReader reader

= productPrices.ExecuteReader();
while (reader.Read())

display.Items.Add
(String.Format("{0,-35}{1,10:C}",
reader.GetString(0), reader.GetDecimal(1)));

reader.Close();
northwind.Close();

}

To read the data from the database, we use an OleDbDataReader. First we
open the connection to the database using

northwind.Open();

The ExecuteReader method of the OleDbCommand sends the command to the
connection and builds an OleDbDataReader

System.Data.OleDb.OleDbDataReader reader
= productPrices.ExecuteReader();

The Read method reads a row of Northwind data. It returns false when there
are no more rows. We use a while loop to read all the rows. We enter each
row that we read into the list box. The Items property represents the collec-
tion of items in the list box. The Add method adds a string to the collection.

We built the command to get the product name and price of each North-
wind product. The product name is a String, and the price is a Decimal. We
use the GetString method to retrieve a string field and the GetDecimal
method to return a decimal field. We refer to the fields in each row by
indices, starting with 0. Thus

reader.GetString(0)

returns the product name and

reader.GetDecimal(1)

returns the price. The Format method

String.Format("{0,-35}{1,10:C}",
reader.GetString(0), reader.GetDecimal(1))

left-justifies each product name in a field of width 35 and right-justifies the
price as a currency in a field of size 10. Finally, we close the reader and the
connection to release the resources that they are using back to the system.

In the connected model,
we process data while
maintaining a connection
to the database.We use an
OleDbConnection to
connect, an OleDbCom-
mand to query, and an
OleDbDataReader to
read from the database.

The BIG Picture

7.3 The Disconnected Model 179

Figure 7.10 Northwind product names and prices.

reader.Close();
northwind.Close();

Figure 7.10 shows the application of Example7-1 displaying the Northwind
products and prices.

Test Your Understanding

2. List the controls in Example7-1 that do not have visual represen-
tations on the form.

3. Which OLE DB Provider class contains the Read method to read
from a database while maintaining a connection?

7.3 The Disconnected Model

A data adapter serves as a bridge between a data source and a data set in
memory. A data set is an in-memory cache of data retrieved from a data-
base. We use a data set because we do not want to maintain a connection to
the database or because we are accessing the data via a middle tier and can-
not maintain a connection. Too many users connecting to a database will
degrade performance. By using a data set, we can offload processing to our
local computer and leave the database available for other users.

A data adapter can fill the data set with data from the data source and can
update the data source. It uses a data connection to connect to a database
only for the purpose of filling the data set, and then it disconnects from the
database, allowing the user to process the data locally. A data command
specifies a query or an update to the database. In Example7-2, we redo
Example7-1 to illustrate the disconnected model. We will use a data
adapter to fill a data set that we bind to a DataGrid control. The user will

180 CHAPTER 7 Using a Database

Figure 7.11 Selecting a data connection.

work with the data grid. We will not make any changes, but if we did, the
data adapter could update the database to reflect the changes made while
processing locally.

7.3.1 The Data Adapter Configuration Wizard

We start by opening Visual Studio .NET and creating a new Windows
Application project for Example7-2. In the Toolbox, we click the Data tab
to open a list of controls useful for accessing data. There are two data
adapters in the first .NET version, SqlDataAdapter and OleDbDataAdapter, and
additional adapters in later versions. The SqlDataAdapter can be applied to
the Microsoft SQL Server database. We use the OleDbDataAdapter to connect
to the Microsoft Access database. Dragging an OleDbDataAdapter from the
Toolbox to the form of Example7-2 displays the Data Adapter Configura-
tion Wizard. Clicking Next on the welcome screen displays the Choose Your
Data Connection window shown in Figure 7.11. We select the connection we
configured in Example7-1. Clicking Next displays the Choose a Query Type
screen shown in Figure 7.12. We check the Use SQL statements radio button
and click Next.

7.3 The Disconnected Model 181

Figure 7.12 Choosing a query type.

7.3.2 A Query Builder

In the Generate the SQL statements window, click the Query Builder button
at the lower right. The Query Builder tool builds a query to extract infor-
mation from the database. Figure 7.8 shows the Add Table window that
appears. We will be using the Products table, so we select Products and click
Add and Close. The Query Builder form appears showing the columns of the
Products table. We check ProductName and UnitPrice as shown in Figure 7.9
and click OK.

We are only going to read the data and do not need the capability to insert,
delete, or update data. By default, the data adapter configuration wizard
will generate commands to insert, delete, and update. To change the
default, we click the Advanced Options. . . button in the Generate the SQL
statements screen shown in Figure 7.13. We remove the check from the
Generate Insert, Update, and Delete statements box and click OK.

We click Next in the Generate the SQL statements screen and then click Fin-
ish. We have configured the data adapter with a data connection and a
query to extract information. As in Example7-1, these controls appear

182 CHAPTER 7 Using a Database

Figure 7.13 Generating SQL statements.

below the form in the design. We change the (Name) property of the Ole-
DbAdapter to northwindAdapter and that of the OleDbConnection to northwind-
Connection. Now that we have built the query, we need to generate a DataSet
to hold the data in our application.

7.3.3 A Data Set

A DataSet holds data in memory that has been received from a database. We
use a DataSet in our program to receive the Northwind data. We start by
clicking the Data, Generate Dataset menu item that displays the Generate
Dataset form of Figure 7.14. We click OK to accept the default setting show-
ing that the Products table will be part of the data set. The data set control
also appears below the form in the design. We change its (Name) property to
productPrices.

To display the data, we can use a DataGrid control. We drag a DataGrid control
from the Windows Forms tab of the Toolbox to the form in the Visual Studio
.NET design. We click on the DataSource property in the Properties window
and choose productPrices.Products. This will enter the ProductName, Unit-

7.3 The Disconnected Model 183

Figure 7.14 Generating a data set.

Price, and ProductID in the DataGrid control. Notice that the ProductID key was
automatically added. We need to widen the DataGrid to show all the fields.

To fill the DataGrid with the desired information, we use the Fill method of
the OleDbDataAdapter. We double-click on the form (not the DataGrid con-
trol) in the Visual Studio .NET design to display the Form1_Load template
and enter the code to fill the data set, giving

private void Form1_Load(object sender, System.EventArgs e)
{

northwindAdapter.Fill(productPrices);
}

Figure 7.15 shows the resulting data from the Products table.

7.3.4 Using the Data Form Wizard

With the Data Form Wizard, we can display information from a dataset
using a Windows Form, either in a DataGrid or in individual controls. Exam-
ple7-3 uses the Data Form Wizard to create a Form to present the Products
table from the Northwind database.

184 CHAPTER 7 Using a Database

Figure 7.15 The Northwind product prices.

Figure 7.16 Adding a data form.

We start by creating a new Windows Application project, Example7-3, in
Visual Studio .NET. Clicking File, Add New Item displays the screen of Fig-
ure 7.16. We choose Data Form Wizard and click Open to display the welcome
screen. Clicking Next displays the Choose the dataset you want to use screen.
We check the Create a new dataset radio button, enter the name products,
and click Next.

In the Choose a data connection screen, we select the Northwind database
and click Next. In the Choose tables or views screen of Figure 7.17, we select

7.3 The Disconnected Model 185

Figure 7.17 Selecting the Products table.

the Products table, click the right arrow to transfer it to the Selected items
area, and click Next.

By default, the Choose tables and columns to display on the form screen
shown in Figure 7.18 has all columns of the Products table selected. Clicking
Next displays the Choose the display style screen of Figure 7.19. We select the
Single record in individual controls radio button to display each field in its
own control. We uncheck the Add, Delete, and Cancel check boxes because
we do not want to make any changes to the Northwind database, but we
check the Navigation controls check box to inspect the data from the Prod-
ucts table.

Clicking the Finish button produces the DataForm1 form, which we need to
make the start-up form so that it will appear when we execute this applica-
tion. We right-click on Form1 in the Visual Studio .NET design and click
View Code. We scroll down to the Main method and change Form1 to
DataForm1 so that the Main method reads

static void Main()
{

Application.Run(new DataForm1());
}

186 CHAPTER 7 Using a Database

Figure 7.19 Choose the display style.

Figure 7.18 Choose tables and columns to display on the form.

In the disconnected
model, we use a data set
to process data locally. A
data adapter serves as a
bridge between a data
source and a data set for
retrieving and storing
data. The Data Adapter
Configuration Wizard adds
a data connection config-
ured to a particular data-
base. Its query builder tool
constructs a query to get
the desired information
from the database.

A DataSet holds data
in memory that has been
received from a database.
It allows us to process
data without maintaining
a connection to the data-
base.The DataGrid con-
trol displays data on a
form. We fill the Data-
Grid when the form
loads.

With the Data Form
Wizard, we can display
information from a data
set using a Windows
Form, either in a Data-
Grid or in individual con-
trols. It adds another form
to the project, which can
be started by modifying
the Main method of the
original form.

The BIG Picture

7.4 Using Multiple Tables 187

Figure 7.20 The data form showing Northwind products.

We execute Example7-3 and press the Load button to fill the form with the
data from the Northwind Products table as shown in Figure 7.20.

Test Your Understanding

4. Which control represents data from the database in memory?

5. Which control displays data in a scrollable grid?

6. What does SQL stand for?

7.4 Using Multiple Tables

The most interesting uses of databases require data to be gathered from
multiple tables. When using a relational database, the database system
processes the query to make it access the data efficiently. In Example7-4, we
will display the names of all the products from the Seafood category. The
Products table does not directly show the category name for each product. It
lists the CategoryID.

If we use the Categories table, we can match the CategoryID for a product
with the CategoryID in the Categories table and find the corresponding Cat-
egoryName for that CategoryID. For example, the first product, Chai, has a Cat-
egoryID of 1. Looking at entry 1 in the Categories table shows that its
CategoryName is Beverages, so Chai is not part of the result. However, the
tenth product, Ikura, has a CategoryID of 8. From the Categories table we
find that the corresponding CategoryName is Seafood, so it is one of the
results. This is the kind of processing performed by the database system,

188 CHAPTER 7 Using a Database

Figure 7.21 Selecting multiple tables.

Microsoft Access in our example. We use Visual Studio .NET tools to set up
our query.

7.4.1 Building the Query

We start by creating Example7-4 as a new Windows Application. Dragging an
OleDbDataAdapter onto the form brings up the Data Adapter Configuration
Wizard. Clicking Next displays the Choose Your Data Connection screen. We
select the Northwind database and click Next. In the Choose a Query Type
screen, we select Use SQL statements and click Next. In the Generate the SQL
statements screen, we click the Query Builder button. In the Add Table
screen shown in Figure 7.21, we select the Categories table and hold the Ctrl
key down while selecting the Products table. Holding the Ctrl key down
allows us to make multiple selections.

Clicking Add and Close shows the Query Builder form with the columns of
the Categories and Products tables displayed. We check ProductName in the
Products table because that is the result we want to show in our application.
Figure 7.22 shows the Query Builder form.

The Query Builder shown in Figure 7.22 has four panes. From top to bottom
they are the Diagram, Grid, SQL, and Results panes. The Diagram pane displays
the tables we are using. A bar joins the CategoryID field in the Categories
table with the CategoryID field in the Products table. This identifies the
search process described above where we matched the CategoryID of a prod-

7.4 Using Multiple Tables 189

Figure 7.22 Selecting ProductName in the Query Builder.

uct in the Products table with the same CategoryID in the Categories table to
find the corresponding CategoryName for that product. The boldface type in
the Categories table indicates that CategoryID is the primary key of that
table. The CategoryID field appears as a foreign key in the Products table.

The Grid pane allows us to specify options about the data to be selected.
Checking the ProductName column in the Products table in the Diagram pane
makes an entry in the Grid pane showing, by default, that ProductName will
be part of the output. We want to include a condition restricting the output
to products in the Seafood category. The restriction we want is that the Cat-
egoryName in the Categories table be Seafood.

To add this restriction, we first check the CategoryName column in the Cate-
gories table in the Diagram pane. This will add it to the Grid pane. We then
uncheck the Output column in the Grid pane for the CategoryName row. This
will also uncheck the CategoryName box in the Categories table in the Diagram
pane. In the Criteria column for the CategoryName row in the Grid pane, we
add the constraint " = 'Seafood' ". Figure 7.23 shows the Query Builder win-
dow after these steps.

The SQL pane shows the SQL statement for this query that was constructed
using the Query Builder tool. We click OK to return to the Generate the SQL

190 CHAPTER 7 Using a Database

Figure 7.23 The configured query.

statements screen. We click Advanced Options and uncheck the Generate
Insert, Update, and Delete statements box, because we will not be using these
statements. We click OK to return to the Generate the SQL statements screen
and then click Next. Finally, we click Finish in the View Wizard Results screen.

7.4.2 Displaying the Query Results

We first add a DataSet to hold the results of the query. Clicking on the Data,
Generate dataset menu item displays the Generate Dataset form of Figure
7.24. We enter seafoodProducts as the name of the new data set and click OK.

To display the results, we drag a DataGrid control from the Toolbox to the
form. We choose seafoodProducts1.Products as the DataSource in the Proper-

ties window for the DataGrid. We expand the DataGrid to show the fields fully.

To fill the DataGrid with the desired information, we double-click on the
form (not the DataGrid control) in the Visual Studio .NET design and fill in
the Form1_Load template as shown:

private void Form1_Load(object sender, System.EventArgs e)
{

oleDbDataAdapter1.Fill(seafoodProducts1);
}

The most interesting uses
of databases require data
to be gathered from mul-
tiple tables. We use
Query Builder to
construct a query that
uses multiple tables.

The BIG Picture

7.4 Using Multiple Tables 191

Figure 7.24 Generating a data set.

Figure 7.25 The seafood products from the Northwind database.

Figure 7.25 shows the seafood products in the DataGrid on the form of
Example7-4.

Test Your Understanding

7. Name the four sections of the Query Builder screen.

192 CHAPTER 7 Using a Database

7.5 Summary
■ A relational database is a collection of data items organized as a set

of tables from which data can be accessed in many different ways
without having to reorganize the database tables. A query retrieves
information from a database.

■ In the connected model, we process data while maintaining a connec-
tion to the database. We use an OleDbConnection to connect, an OleDb-

Command to query, and an OleDbDataReader to read from the database.

■ In the disconnected model, we use a data set to process data locally.
A data adapter serves as a bridge between a data source and a data
set for retrieving and storing data. The Data Adapter Configuration
Wizard adds a data connection configured to a particular database.
Its query builder tool constructs a query to get the desired informa-
tion from the database. A DataSet holds data in memory that has
been received from a database. The DataGrid control displays data
on a form. We fill the DataGrid when the form loads.

■ With the Data Form Wizard, we can display information from a
data set using a Windows Form, either in a DataGrid or in individual
controls. It adds another form to the project, which can be started
by modifying the Main method of the original form.

■ The most interesting uses of databases require data to be gathered
from multiple tables. We use Query Builder to construct a query
that uses multiple tables.

7.6 Programming Exercises

7.1 Modify Example7-1 to add the quantity of each product in stock to
the display.

7.2 Modify Example7-3 to use a DataGrid rather than individual con-
trols. Continue to use the Data Form Wizard.

7.3 Modify Example7-4 to show the beverages rather than the
seafood products.

7.4 Create a Windows application to display the names and titles of all
Northwind employees.

7.5 Create a Windows application to display the order date of each
order from the Orders table.

7.6 Programming Exercises 193

7.6 Use the Data Form Wizard to display the CompanyName, ContactName,
Address, and City from the Northwind Customers table in individ-
ual controls.

7.7 Create a Windows application to display the CompanyName of all
Northwind customers who ordered beverages.

7.8 Create a Windows application to list the CompanyName of all North-
wind customers whose orders were shipped by Speedy Express.

This page intentionally left blank

8CHAPTER
Web Applications
The browser provides access to Web sites all over the world. It is the primary

mode of computing for many users. Static World Wide Web pages return the

same content to every user, but very often users submit information and

receive responses based on that information. The Web server uses programs

running on the server to provide a response tailored to the client. Microsoft

includes ASP.NET in the .NET Framework to support dynamic Web pages. ASP

(Active Server Pages), the previous Web technology from Microsoft, in its new

form uses the .NET Framework Class Library.

Browsers display HTML documents. HTML (Hypertext Markup Language) is the

language used to write Web pages, adding markup tags to indicate how the

browser should present the document. A Web form can pass information to a

C# program running on the server, called the code behind, which processes it

and sends results back to the client.This approach separates the presentation in

the Web form seen by the client using the browser from the content in the code

behind run on the server. A Web page designer can focus on the presentation

while a C# developer prepares the code behind.

With a three-tiered architecture, the client communicates with the code behind

on the middle-tier, which in turn connects with a database server on the third

tier. In this way, clients do not have to connect directly to a database.

HTTP connections are stateless, meaning that when a client connects again

there is no record of previous connections. Session-tracking allows servers to

maintain client information from one connection to the next, an essential fea-

ture needed for many Web applications including Web commerce.

Chapter Objectives:
■ Introduce HTML

■ Use Web forms and code behind to provide dynamic Web pages

■ Add database connectivity in a three-tiered architecture

■ Use multiple Web forms in a single application

196 CHAPTER 8 Web Applications

8.1 HTML

The Internet includes many applications, of which the most used is e-mail.
The rapidly growing World Wide Web (WWW) allows computers all over
the world to explore the enormous web of links from one site to another for
educational, commercial, and recreational purposes. We introduce the
HTML notation used to write Web pages.

8.1.1 Some HTML Tags

Web page files often have the .html extension. We use HTML to create the
hypertext files found on the Web. This mark-up language adds tags to spec-
ify the formatting of the text. For example, the tag
 causes a break to a
new line. A browser, such as Internet Explorer, interprets these tags, for-
matting the page for the client. Using tags allows browsers of different
capabilities to interpret the tags differently. For example, the tag ,
requesting emphasis for the text that follows, might cause one browser to
display the text in italics, but another browser, without the capability to use
italics, might underline that text for emphasis.

The World Wide Web must adapt itself to many computers with differing
capabilities. By using HTML tags, Web documents can be displayed by a vari-
ety of browsers including those on terminals without graphics capabilities.

Although HTML is not hard to learn to use, we need only an introduction to
experiment with Web forms. To get the flavor of HTML, we list a few tags in
Figure 8.1 and use them to write a rudimentary Web page.

We can insert an empty tag such as
 anywhere to cause a line break.
Non-empty tags such as have a closing form using the forward slash
that marks the end of the text covered by that tag. Thus

 .NET is fun.

would emphasize the text, .NET is fun. The six levels of header tags specify
the importance of the header, with <h1> being the most important, and <h6>
the least. Browsers will try to make the more important headers larger and
more impressive. An unordered list includes, between its starting and
ending tags, various list elements with tags .

8.1 HTML 197

Figure 8.1 Some HTML tags.

 Break to the next line

<p> New paragraph (after a blank line)

... Emphasize the text

... Strongly emphasize the text

<title>...</title> Title, displayed separately from the text

<h1>...</h1> Top-level header

<h3>...</h3> Third-level header (lowest is sixth)

... An unordered list

 Element of a list

<a>... An anchor, a hypertext link

 An image

Some tags use attributes embedded in the tag to provide information
needed to interpret that tag. The anchor tag uses the href attribute to spec-
ify the URL of a hypertext link. For example, to link to Microsoft’s .NET
home page we can use the anchor

 Microsoft's .NET home page.

The href attribute gives the URL for Microsoft’s .NET home page. The text,
Microsoft’s .NET home page, will usually appear underlined and in blue,
indicating that a mouse click will cause the browser to request, using
HTTP, the Microsoft server to serve up its .NET home page HTML file,
which the browser then interprets, displaying Microsoft’s .NET home page.

The client must be connected to the Internet to link to other computers.
Anchors can also link to files on the same machine using a relative URL.
For example, to link to a file funStuff.html in the same directory, we could
use the anchor

 some fun stuff

We use the tag to display an image, with an src attribute that gives the
URL of the source of the picture. For example, to display a picture of the
author of the text, found in the same directory as the Web page itself, use

198 CHAPTER 8 Web Applications

Figure 8.2 A WebPage.html.

<!— Illustrates some html tags in
— a simple Web page.
—>

<title> Let’s try HTML </title>

<h1> .NET is fun </h1>
<p>
<h3> With C# and .NET we can </h3>
 Do object-oriented programming

 Create nifty graphics
 Display dynamic Web pages
 Network to remote computers
 Deploy Web services

<p>

Download the .NET Framework SDK from
<a href =
“http://msdn.microsoft.com/netframework/downloads/”>
Downloads for the .NET Framework

<h2> Get ready — Here comes the prof

who wrote this Web page </h2>

A browser that cannot display graphics will fill the space with text such as
[IMAGE]. The image file uses a GIF, a graphics format.

Comments in HTML documents start with <!-- and end with -->. The
<title> displays at the top of the frame, not in the document itself. Web
search engines use the title in their searches.

Figure 8.2 shows an HTML file for a very simple Web page, displayed in
Figure 8.3, which uses some of the tags from Figure 8.1.

Use a browser to see this page. In Netscape Navigator, click on File, click on
Open File, and browse to locate a Web page file. In Microsoft Internet
Explorer, click on File, click on Open, and click on Browse to locate a Web

8.1 HTML 199

Figure 8.3 Displaying WebPage.html in a browser.

page. The URL is a file URL, using the file protocol. The domain name of
the server is just the local host, which can be omitted, so the URL looks like

file:///path/AWebPage.html

where path is the path on the local machine to the AWebPage.html file.

Figure 8.3 shows us browsing a local file, but this is just for testing purposes
during development. We deploy Web pages on a Web site, making them
available to anyone who has a browser and is connected to the Internet.
Browsing the author’s Web site at

http://www.cecs.csulb.edu/~artg/AWebPage.html

will download this Web page.

The Web site runs a Web server that expects Web pages to be in a default
directory, often named htdocs. On the author’s Web site, the files A Web-
Page.html and gittleman.gif are in the htdocs folder.

http://www.cecs.csulb.edu/~artg/AWebPage.html

Using a browser, we can
connect to sites anywhere
in the World Wide Web to
display Web pages, writ-
ten using HTML, the
Hypertext Markup Lan-
guage. HTML uses tags
enclosed in angle brackets
to indicate formatting.

The BIG Picture

200 CHAPTER 8 Web Applications

Test Your Understanding

1. Which protocol does the browser use to download Web pages?

2. Given the URL

http://www.cecs.csulb.edu/~artg/AWebPage.html

a. What is the protocol?

b. What is the domain name of the server?

c. What is the path to the resource?

3. What language do we use to write Web pages?

4. Which header tag, h2 or h5, will most likely cause a more promi-
nent display of the text to which it applies?

5. For what purpose is an HTML anchor tag used?

8.2 Web Server Controls and Code Behind

Web server controls provide much richer Web pages. Using Visual Studio
.NET, we can drag these controls from the Toolbox to a Web form, creating
the desired user interface. Visual Studio .NET creates an HTML file with
special tags for these controls that the server translates into HTML for the
particular client. When the user interacts with the control, our event-han-
dling code will be called. We put the event-handling code in a separate
code-behind file to separate the C# code from the HTML.

8.2.1 Hosting a Web Page

We need a .NET Web server to host our Web pages. With Microsoft Win-
dows 2000 or XP Professional operating systems, we can install IIS (Inter-
net Information Server) to host our Web pages. If IIS is not available in this
way, another option is to download Web Matrix from http://www.asp.net/
webmatrix. Web Matrix provides a free web server that runs locally. The
README file available after installation shows how to use it.

To create a Web application, we open a new project in Visual Studio .NET
choosing Visual C# Projects and the ASP .NET Web Application templates. In
the Location field, we change the default name WebApplication1 to a name of
our choice. In this case we use Example8-1. This will create an Example8-1
folder in a special folder in which IIS keeps the Web pages it hosts. On the
author’s machine that folder is C:\Inetpub\wwwroot, so this is where the

http://www.cecs.csulb.edu/~artg/AWebPage.html
http://www.asp.net/webmatrix
http://www.asp.net/webmatrix

8.2 Web Server Controls and Code Behind 201

Figure 8.4 An ASP.NET Web Application project.

1Rather than placing our code in the special directory used by IIS, we can create a virtual direc-
tory to refer to another folder containing our Web page and code. To create a virtual directory,
we click on Start, Control Panel, Administrative Tools, Internet Information Services to open the
Microsoft Management Console. Right-clicking on Default Web Site, New, Virtual Directory
opens the Virtual Directory Creation Wizard. We click Next, enter ch8 as the alias for our vir-
tual directory, and click Next. We browse to find the directory that contains the Web pages we
want to host in this virtual directory. We click Next, and Next again in the Permissions screen,
and then click Finish. The name of the virtual directory appears in the URL referring to the
Web page.

Example8-1 folder will be created.1 Figure 8.4 shows the Visual Studio
.NET New Project screen.

Web forms use the .aspx extension. The Example8-1 project opens with a
Web form whose default name is WebForm1.aspx. We have a choice of two
layout styles for our Web forms, GridLayout or FlowLayout. These layout
modes determine how we can position elements in a Web page. Using Grid-
Layout, the default, positions elements at fixed coordinate values that do not
change. FlowLayout positions elements from top to bottom, allowing resiz-
ing by different browsers. It is the more flexible layout. To change to
FlowLayout, we would set the pageLayout property in the Properties window
to FlowLayout.

Figure 8.5
Some Web Forms
controls.

202 CHAPTER 8 Web Applications

Example8-1 is a simple Web application with a Label, a TextBox, a Button,
and another Label. We enter an item in the TextBox. Pressing the button
sends that item name to the server. In a fully developed application, the
server might check that item for availability or provide more information.
To illustrate how a Web application works, we simply have the server tell
the user that the submission was received.

8.2.2 Server Controls

When creating a Web application, we could use various HTML input tags
to enable the user to submit data to the server, but the .NET Framework
provides server controls that handle the details of the HTML. They execute
on the server using a code-behind file that we will introduce soon. Visual
Studio .NET shows both the Design and the HTML views. Unless we want to
add HTML code to that generated by Visual Studio .NET, we can concen-
trate on the Design view.

To set up Example8-1, we drag a Label, a TextBox, a Button, and another
Label from the Web Forms tab in the Toolbox onto the Web form in the
Visual Studio .NET design. Figure 8.5 shows some of the Web Forms con-
trols in the Toolbox.

We select the first Label in the Design view and change its Text property to
Enter an item name. We change the Text property of the button to Submit
and the Text property of the second Label to the empty string. We change
the (ID) property of a control to give it a more meaningful name. In Exam-
ple8-1 we set the following new names. Visual Studio .NET uses uppercase
letters to start names in Web applications.

TextBox EnterItem
Button SubmitItem
Label (lower) DisplayItem

Figure 8.6 shows the Visual Studio .NET design for Example8-1.

8.2.3 Code Behind

The code-behind file contains the C# code that initializes the page and the
event-handler methods. We double-click on the Button to create the event-
handler template that will be called when the user clicks the button. Visual
Studio .NET displays a C# file, WebForm1.aspx.cs, which contains the
event-handling template.

8.2 Web Server Controls and Code Behind 203

Figure 8.6 Designing Example8-1.

private void SubmitItem_Click
(object sender, System.EventArgs e)

{
}

We want the second label to show the text that the user entered in the
TextBox, so we add

DisplayItem.Text = "You ordered " + EnterItem.Text;

to the template, giving

private void SubmitItem_Click
(object sender, System.EventArgs e)

{
DisplayItem.Text = "You ordered " + EnterItem.Text;

}

To view the Web page, WebForm1.aspx, of Example 8-1, we enter the URL

http://localhost/Example8-1/WebForm1.aspx

in the address field of the Internet Explorer browser. Figure 8.7 shows this
simple Web application.

204 CHAPTER 8 Web Applications

Figure 8.7 The Web application of Example8-1.

8.2.4 More Web Controls

In Example8-2 we illustrate the TextBox, ListBox, CheckBoxList, RadioButton-
List, Button, and Label Web server controls. The user creates an order for an
ice cream sundae. The server sends a message acknowledging receipt of the
order. After opening a new ASP .NET Web Application project, we drag
Web controls in six rows to create the application of Figure 8.8. The first
row contains a Label and a TextBox to enter the user’s name, while the sec-
ond row contains a Label and a TextBox to enter the user’s password. The
TextMode property of a TextBox has three possible values: SingleLine, Multi-
Line, and Password. We accept the SingleLine default for the first TextBox, but
set the TextMode of the second to Password.

Next, we add a ListBox to the Web form to hold the ice cream flavors. We
accept the default SelectionMode of Single rather than change it to Multiple
because we only allow one flavor of ice cream to be selected. To add the fla-
vors, we click on the value of the Items property of the ListBox to display a
ListItem Collection Editor. We add the flavors Vanilla, Chocolate, and Straw-
berry. To add a flavor, we click the Add button and fill in the Text property
of the item we want to add, as shown in Figure 8.9 for Vanilla.

We will allow several choices of toppings and will use a CheckBoxList con-
trol to display the choices. We click on the value of the Items property to
display the ListItem Collection Editor and add the toppings, Hot Fudge, But-
terscotch, Nuts, and Whipped Cream.

8.2 Web Server Controls and Code Behind 205

Figure 8.8 The Web form of Example8-2.

Figure 8.9 Adding an item to the ListBox.

206 CHAPTER 8 Web Applications

We add a RadioButtonList to allow the user to select whether to eat at the
facility or to take it out. The choices, again added using the ListItem Col-
lection Editor, are Eat here and Take out. We next add a Label under each of
the three list controls to label the lists Flavor, Toppings, and Location.

We add two buttons, one to submit the user’s entries and another to reset
them. We set the Text property of the first to Submit and the second to
Reset. To finish the form, we add a TextBox to hold the message that the
server returns, set its Text property to the empty string, and set its TextMode
property to MultiLine.

We use the Properties window to set the (ID) property of the following con-
trols to give them more meaningful names.

TextBox (at top) Name

TextBox Password

ListBox Flavor

CheckBoxList Toppings

RadioButtonList Location

Button (left) Submit

Button (right) Reset

TextBox (bottom) Display

The Submit button should send the data to the server and place the server’s
response in the bottom TextBox. We double-click on the Submit button to
display the template for its event-handling method in the code-behind file.
We first check the password that the user entered. In a fully developed
application, we would check the password in a database. Here we just check
that it is “1234” using the code

if (Password.Text == "1234") {
// respond to user's selections

}

When the server responds to the user’s selections, it first sends a greeting
including the user’s name, taken from the first TextBox, and adds a newline
at the end so that the next part of the message will start on the second line.

Display.Text = "Hi " + Name.Text + "\n";

Next, the event-handling code will add the user’s choice of flavor to the
message.

Display.Text += "You ordered "
+ Flavor.SelectedItem.Text + " ice cream";

8.2 Web Server Controls and Code Behind 207

The next addition to the code concatenates the location to the message.

if (Location.SelectedItem.Value == "Eat here")
Display.Text += " to eat here.";

else
Display.Text += " to go.";

The event-handling code needs a loop to add each of the selected toppings
to the response message.

// If checkbox selected, add its item to the toppings
Display.Text += "\nYou selected toppings";

// The Count property gives the number of checkboxes
for (int i = 0; i < Toppings.Items.Count; i++)

if (Toppings.Items[i].Selected)
Display.Text

+= "\n\t" + Toppings.Items[i].Text;

Figure 8.10 shows the complete event-handling code for the Submit button.

To handle the click of the Reset button, we set the Text in the three TextBox
controls to the empty string, and set the SelectedIndex of the ListBox, Check-
BoxList, and RadioButtonList controls to �1. Setting the SelectedIndex to
�1 causes all items to be unchecked. Figure 8.11 shows this event handler.

Figure 8.10 The Submit button click event handler.

private void Submit_Click
(object sender, System.EventArgs e)

{
if (Password.Text == “1234”)
{

Display.Text = “Hi “ + Name.Text + “\n”;
Display.Text += “You ordered ”

+ Flavor.SelectedItem.Text + “ ice cream”;
if (Location.SelectedItem.Value == “Eat here”)

Display.Text += “ to eat here.”;
else

Display.Text += “ to go.”;
// If checkbox selected, add its item to the toppings

Display.Text += “\nYou selected toppings”;
// The Count property gives the number of checkboxes

for (int i = 0; i < Toppings.Items.Count; i++)
if (Toppings.Items[i].Selected)
Display.Text += “\n\t” + Toppings.Items[i].Text;

}
}

Web server controls pro-
vide much richer Web
pages. Using Visual Studio
.NET, we can drag these
controls from the Toolbox
to a Web form, creating
the desired user interface.
Visual Studio .NET creates
an HTML file with special
tags for these controls
that the server translates
into HTML for the particu-
lar client. When the user
interacts with the control,
our event-handling code
will be called. We put the
event-handling code in a
separate code-behind file
to separate the C# code
from the HTML. Web
server controls include
TextBox, ListBox,
C h e c k B o x L i s t ,
RadioButtonList ,
Button, and Label.

The BIG Picture

208 CHAPTER 8 Web Applications

Figure 8.11 The Reset button click event handler.

private void Reset_Click(object sender, System.EventArgs e)
{

Name.Text = “”;
Password.Text = “”;
Display.Text = “”;
Flavor.SelectedIndex = -1;
Toppings.SelectedIndex = -1;
Location.SelectedIndex = -1;

}

Test Your Understanding

6. Name the two layout styles for a Web form and describe how
each works.

7. What does a code-behind file include?

8. Which property of a ListBox determines whether the user can
select more than one item?

9. Which property of a TextBox determines whether it can hold more
than one line?

10. Which property of a CheckBoxList contains the collection of check
box choices?

11. What value should the SelectedIndex property of a RadioButtonList
be assigned to uncheck all of its radio buttons?

8.3 Accessing a Database

Using a browser, we can get information from a database using the Web. We
develop a Web application that displays the names and addresses of the
suppliers in the Northwind database. The client Web application connects
to the Web server, which in turn connects to the Northwind database to
execute a query and presents the results in a DataGrid control.

In this example, we do not use a DataSet to save the data locally. This means
that we do not need a data adapter to fill the dataset from the database.
Because we only execute one query, we use a data reader to obtain the data
while connected and bind it directly to the DataGrid. The data reader is a

8.3 Accessing a Database 209

read-only forward-only reader optimized for fast access. We do not want to
update the database, so we will not have to make another connection.

8.3.1 Adding a Connection

We create Example8-3 in Visual Studio .NET as a C# ASP .NET Web Appli-
cation project. We set the title property of the document to Display North-
wind Suppliers. From the Data tab on the Toolbox, we add an OleDbConnection
to the design. We click on the value of its ConnectionString property in the
Properties window and select the path to the Northwind database. It
should be already available from creating the Chapter 7 examples, but if
not, we can repeat the steps we used there. We set the (Name) property to
northwind.

8.3.2 Configuring a Command

We add an OleDbCommand from the Toolbox. This command will express the
query that we want to make of the Northwind database. We need to associ-
ate it with the connection to Northwind that we just configured. Clicking
on its Connection property pops up a choice of Existing or New. Clicking
Existing displays the northwind connection that we added to the form. We
select this connection. We set the (Name) property to suppliers.

We need to create the specific command that we wish to execute. Clicking
on the value of the CommandText property of the OleDbCommand that we added
displays a small button at the right. Clicking it displays the Query Builder
with the Add Table window open and showing the list of the Northwind
tables. We select Suppliers and click the Add button and then the Close but-
ton. The Query Builder shows a list of all the pieces of information available
for each supplier listed in the Northwind database. We do not want to show
all this information, so we select the Address, City, and CompanyName fields
and click OK.

8.3.3 Displaying in a DataGrid

We will display the supplier data in a DataGrid control. We open the Web Forms

tab in the Toolbox, drag a DataGrid control onto the form, and set its (ID)

property to Display. We click on the AutoFormat link at the bottom of the Prop-

erties window for the DataGrid to choose a format for the data. We choose
Colorful1 from the Auto Format screen shown in Figure 8.12 and click OK.

210 CHAPTER 8 Web Applications

Figure 8.12 The AutoFormat screen.

8.3.4 Writing the Event Handler

The Page_Load method executes when the page that we are creating is loaded.
Double-clicking on the form will display the template for it in the code-
behind file. We will put the code here that will read the data from the data-
base and bind it to the DataGrid for viewing. To read the data from the
database we use an OleDbDataReader. First, we open the connection to the data-
base using

northwind.Open();

The ExecuteReader method of the OleDbCommand sends the command to the
connection and builds an OleDbDataReader

System.Data.OleDb.OleDbDataReader Reader
= suppliers.ExecuteReader();

We set this Reader as the DataSource property of the DataGrid and execute the
DataBind method of the DataGrid so that as the reader reads from the data-
base it will display the data in the data grid.

Display.DataSource = Reader;
Display.DataBind();

Finally, we close the reader and the connection to release the resources they
are using back to the system.

8.3 Accessing a Database 211

Figure 8.13 Initializing a Web form with data.

private void Page_Load(object sender, System.EventArgs e)
{

northwind.Open();
System.Data.OleDb.OleDbDataReader Reader

= suppliers.ExecuteReader();
Display.DataSource = Reader;
Display.DataBind();
Reader.Close();
northwind.Close();

}

2The default ConnectionString for northwind may cause a database access error. In this
case, click on the value of the ConnectionString property and remove everything after
Northwind.mdb.

Reader.Close();
northwind.Close();

Figure 8.13 shows the complete Page_Load method.

Running the application produces Figure 8.14.2

8.3.5 Choosing Data to Display

Example8-4 creates a simple Web form, shown in Figure 8.15, that gives the
user a choice of displaying the Northwind supplier data as we did in Exam-
ple8-3 or displaying information about Northwind products. For this
form, we set the pageLayout property in the Properties window to FlowLay-
out. The FlowLayout lets us type on the form. We can use the space bar to
position Web controls. We set the title property of the Web form to Sup-
pliers or Products.

We start by adding two RadioButton controls to the Web page. They appear
at the upper left of the page with empty Text property values. We set the
Text property of the first RadioButton to Suppliers and that of the second to
Products. We change the (ID) properties to selectSuppliers and selectProp-

erties. Figure 8.16 shows the page so far.

212 CHAPTER 8 Web Applications

Figure 8.15 The initial Web page of Example8-4.

Figure 8.14 Displaying Northwind suppliers.

To enter a message in the Web page, we position the cursor in the Visual
Studio .NET design just before the first RadioButton and press the Enter key
to open a blank line above. We enter the message Choose Northwind sup-
plier or product data to display. To display each RadioButton on a separate
line, we position the cursor between the two RadioButton controls and hit
the Enter key.

8.3 Accessing a Database 213

Figure 8.16 Adding RadioButton controls using FlowLayout.

3The AutoPostBack property is false by default for a RadioButton because we often use a But-
ton to submit data to the server. The AutoPostBack property for a Button has a default of
true.

We need to change the AutoPostBack property of each RadioButton from
False to True.3 Remember that the user checks a RadioButton on the client.
We use the AutoPostBack property to indicate whether the state of the check
box for the radio button is posted back to the server when an event such as
checking or unchecking a RadioButton occurs. We want to post back to the
server so that it will respond by getting and displaying the data correspon-
ding to the RadioButton checked.

The RadioButton controls need to be part of a group, so exactly one of the
group will be checked. We will display the Supplier data or the Product data,
but not both, so the user should only be able to select one or the other
RadioButton. To put both radio buttons in the same group, we set the Group-
Name property of each to Group1.

We position the cursor below the second RadioButton and drag a DataGrid to
the Web page. It does not show in the initial page of Figure 8.15 because we
have not entered any data yet. We set its (ID) property to Display. We select
the DataGrid and click the AutoFormat link at the bottom of the Properties
window. After choosing Colorful1 in the AutoFormat screen, we click OK.

From the Data tab in the Toolbox we add an OleDbConnection and two OleDb-
Command controls. We set the (Name) property of the OleDbConnection to north-
wind and the (Name) property of the OleDbCommand controls to suppliers and
products. We will use a command to acquire the data requested by a
RadioButton.

214 CHAPTER 8 Web Applications

Figure 8.17 Configuring the products command.

To set the ConnectionString property of the northwind connection, we click
on it in the Properties window and select the connection string that we
configured in earlier examples. On the author’s system, this string is

Provider=Microsoft.Jet.OLEDB.4.0;Password="";User ID=Admin;
Data Source="C:\Program Files\Microsoft Office\Office10\
Samples\Northwind.mdb"

The Data Source file may differ somewhat on other systems.

For each OleDbCommand, we set the Connection property by choosing northwind
from the Existing connections shown in the Connection property box. Both
commands will use the same connection. For the suppliers command, we
use the QueryBuilder as in Example8-3 to set the CommandText property, again
including the Address, City, and CompanyName fields of the Suppliers table in
the display.

For the products command, we click on the value of the CommandText prop-
erty to display the Add Table screen, click Products, and then Add and Close.

8.3 Accessing a Database 215

Figure 8.18 The event handler for suppliers.

private void selectSuppliers_CheckedChanged
(object sender, System.EventArgs e)

{
northwind.Open();
System.Data.OleDb.OleDbDataReader Reader

= suppliers.ExecuteReader();
Display.DataSource = Reader;
Display.DataBind();
Reader.Close();
northwind.Close();

}

Figure 8.19 The event handler for products.

private void selectProducts_CheckedChanged
(object sender, System.EventArgs e)

{
northwind.Open();
System.Data.OleDb.OleDbDataReader Reader

= products.ExecuteReader();
Display.DataSource = Reader;
Display.DataBind();
Reader.Close();
northwind.Close();

}

From the Products list in the QueryBuilder, we select ProductName, Quantity-
PerUnit, UnitPrice, and UnitsInStock, as shown in Figure 8.17, and click OK.

When the user selects a RadioButton, we want to connect to the database,
create an OleDbDataReader to read the data, and bind the OleDbDataReader to
the DataGrid for display. The code is like that of Example8-3, but we need to
do it twice, once in each of the RadioButton event handlers. We click on each
RadioButton to display the template. Figure 8.18 shows the code to display
the supplier data while Figure 8.19 shows the analogous code to display the
Product data.

Figure 8.20 shows the Web form of Example8-4 when the user requests the
Products display.

Using a browser, we can
get information from a
database using the Web.
The client Web application
connects to the Web
server, which in turn con-
nects to the database to
execute a query and pres-
ents the results in a Web
form control. We use a
data reader to obtain the
data while connected to
the database. When using
a data reader, we need to
add a data connection to
connect to the database
and a data command to
specify a query.

The BIG Picture

216 CHAPTER 8 Web Applications

Figure 8.20 Displaying the Northwind Product data.

Test Your Understanding

12. Which control can we use to read data from a database while con-
nected to it?

13. Which control can we use to express the query that we want to
execute?

14. Which C# method executes when a Web page is loaded and ini-
tialized?

15. Which property of a control determines whether its state is sent to
the server when an event occurs?

8.4 Using Multiple Web Forms

Often a Web application uses several forms. Our example will use three forms.

8.4.1 Redirecting a Response

The Response property of a Page allows us to access the HttpResponse that the
server sends to the client’s request. We will use it to redirect the response to

8.4 Using Multiple Web Forms 217

Figure 8.21 The initial Web form of Example8-5.

another Web page. The initial Web form of Example8-5 will ask the user to
choose whether to see the list of Northwind beverages or dairy products.
Whichever the user chooses will display in another Web form, allowing the
user to select items from the list. Figure 8.21 shows the initial Web form.

After creating the Example8-5 ASP .NET Web application project, we set
the pageLayout property to FlowLayout to allow us to type on the form. We
ask the user to choose which Northwind data to display and add two radio
buttons, one for each choice. We set the Text property of the upper radio
button to Beverages and its (ID) property to selectBeverages. We set the Text
property of the lower radio button to Dairy Products and its (ID) property
to selectDairy. We set the GroupName property for each RadioButton to Group1,
because we want the user to select one or the other but not both.

8.4.2 The AutoPostBack Property

When the user makes a selection, we want to redirect the response to come
from another page. Each time the user interacts with a form, the application
makes a roundtrip to the server sending the request and receiving the
response to it. The AutoPostBack property of a control determines whether the
state of that control is sent to the server during a post back. By default, the
AutoPostBack property of a RadioButton is set to false, because we often
depend on Button controls instead to submit the request to the server. In this
form, we would like to send the state of the radio buttons to the server when
the user makes a selection, so we set the AutoPostBack property of each to true.

218 CHAPTER 8 Web Applications

When the user checks a RadioButton, we want to redirect the response to
another Web form. We click on each RadioButton in the Visual Studio .NET
design to display the event-handling templates and fill in the code to give

private void selectBeverages_CheckedChanged
(object sender, System.EventArgs e)

{
Response.Redirect("WebForm2.aspx");

}

private void selectDairy_CheckedChanged
(object sender, System.EventArgs e)

{
Response.Redirect("WebForm3.aspx");

}

8.4.3 Adding a Web Form to a Project

To add the second Web form, we click Project, Add Web Form, and click
Open in the Add New Item screen that appears. The form’s default name will
be WebForm2.aspx. We want this form to display Northwind data, so we add
an OleDbDataConnection and an OleDbDataCommand. We set the (Name) property
of the data connection to northwind and the ConnectionString property to

Provider=Microsoft.Jet.OLEDB.4.0;Password="";User ID= Admin;Data
Source="C:\Program Files\Microsoft Office \Office10\Samples\Northwind.mdb"

The Data Source path may vary on other systems.

For the OleDbCommand, we select northwind as the Connection property and set
its (Name) property to beverages. We use Query Builder to set the CommandText
property to show Northwind beverages. In the Add Tables screen, we add
Categories and Products, clicking Add twice and then Close. In the Query
Builder, we select ProductName from Products and CategoryName from Cate-
gories. In the CategoryName row, we add

= 'Beverages'

in the Criteria column, uncheck the box in the Output column as shown in
Figure 8.22, and click OK.

We add a CheckBoxList to the form to hold the data and allow the user to
select beverages. By default, when the user checks a box it is not posted to
the server. The AutoPostBack property of a CheckBoxList is false. This reflects
the common usage that lets a user complete making selections and then

8.4 Using Multiple Web Forms 219

Figure 8.22 Building a query for beverages.

submit them using a button. We set the (ID) property to BeveragesList. We
set the DataTextField property to ProductName to display the product name
for each beverage.

We add a Button Web server control to submit the selections, and change its
(ID) property to SubmitChoices and its Text property to Select. We add a sec-
ond button to restart the selection process, changing its (ID) property to
Back and its Text property to Restart. We add a Label to display the user’s
selections and change its (ID) property to Display.

8.4.4 Initializing the Page

When the user makes a selection of beverages in the original Web forms, the
Page_Load method of the second Web page will be called. To display the tem-
plate for this event handler, we double-click on the second Web form. We
insert the code to connect to the database, create a data reader for the com-
mand that we configured, and bind the data reader to the check box so that
each box will represent a beverage from the Northwind database. The code is

private void Page_Load(object sender, System.EventArgs e)
{

if (!IsPostBack)

220 CHAPTER 8 Web Applications

{
northwind.Open();
System.Data.OleDb.OleDbDataReader Reader

= beverages.ExecuteReader();
BeveragesList.DataSource = Reader;
BeveragesList.DataBind();
Reader.Close();
northwind.Close();

}
}

Whenever the user interacts with the form, it generates a post back to the
server, which recreates the form to submit the response back to the user.
The server will execute the Page_Load method once to create the form the
first time, and then again every time that the user generates an event by
interacting with a control. Because we only need to connect to the database
once, we only do it when IsPostBack is false, which occurs once when the
form is first created before the user interacts with any controls.

Each Button has its AutoPostBack property set to true by default, so pressing
a button will submit the request to the server. In the event handler for the
Select button, we add the text of each selected checkbox to the label.

private void SubmitChoices_Click
(object sender, System.EventArgs e)

{
Display.Text = "Selections: ";
for (int i = 0; i < BeveragesList.Items.Count; i++)

// Add each selected item to the label
if (BeveragesList.Items[i].Selected)

Display.Text +=
BeveragesList.Items[i].Text + ", ";

// Remove the trailing comma and space
Display.Text =
Display.Text.Substring(0, Display.Text.Length -2);

}

8.4.5 Hidden State

Each time the user makes a selection or clicks a button, it generates a round
trip to the server. When using standard HTML controls, the information
sent in one trip is not preserved in the next unless special effort is made to
save the state between posts. Web server controls hide action by the server

8.4 Using Multiple Web Forms 221

Figure 8.23 Selecting beverages.

to save the state between round trips automatically. Thus, when the user
submits a selection of beverages to the server, the response comes back with
the selections still checked, ready for the user to make changes if desired.

The Restart button sends the user back to the original form to choose again
between beverages and dairy products. The beverage data selected will now
be lost. The code for this event handler is

private void Back_Click
(object sender, System.EventArgs e

{
Response.Redirect("WebForm1.aspx");

}

Figure 8.23 shows the Web form for selecting beverages.

Creating the Web form for selecting dairy products is very similar. The dif-
ference is that in the Query Builder, we add the criteria

= 'Dairy Products'

To add the third Web form, we click Project, Add Web Form, and click Open
in the Add New Item screen that appears. The form’s default name will be Web-
Form3.aspx. We want this form to display Northwind data, so we add an
OleDbDataConnection and an OleDbDataCommand. We set the (Name) property of
the data connection to northwind and the ConnectionString property to

222 CHAPTER 8 Web Applications

Figure 8.24 Building a query for dairy products.

Provider=Microsoft.Jet.OLEDB.4.0;Password="";User ID= Admin;Data
Source="C:\Program Files\Microsoft Office \Office10\Samples\Northwind.mdb"

The Data Source path may vary on other systems.

For the OleDbCommand, we select northwind as the Connection property and set
its (Name) property to dairy. We use Query Builder to set the CommandText
property to show Northwind dairy products. In the Add Tables screen, we
add Categories and Products, clicking Add twice and then Close. In the
Query Builder, we select ProductName from Products and CategoryName from
Categories. In the CategoryName row, we add

= 'Dairy Products'

in the Criteria column, uncheck the box in the Output column as shown in
Figure 8.24, and click OK.

We add a CheckBoxList to the form to hold the data and allow the user to select
dairy products. We set the (ID) property to DairyList. We set the DataTextField

property to ProductName to display the product name for each beverage.

We add a Button Web server control to submit the selections, and change its
(ID) property to SubmitChoices and its Text property to Select. We add a sec-
ond button to restart the selection process, changing its (ID) property to

8.4 Using Multiple Web Forms 223

Back and its Text property to Restart. We add a Label to display the user’s
selections and change its (ID) property to Display.

8.4.6 Initializing the Page

When the user makes a selection of dairy products in the original Web
forms, the Page_Load method of the third Web page will be called. To display
the template for this event handler, we double-click on the third Web form.
We insert the code to connect to the database, create a data reader for the
command we configured, and bind the data reader to the check box so that
each box will represent a beverage from the Northwind database. The code is

private void Page_Load(object sender, System.EventArgs e)
{

if (!IsPostBack)
{

northwind.Open();
System.Data.OleDb.OleDbDataReader Reader

= beverages.ExecuteReader();
DairyList.DataSource = Reader;
DairyList.DataBind();
Reader.Close();
northwind.Close();

}
}

Each Button has its AutoPostBack property set to true by default, so pressing
a button will submit the request to the server. In the event handler for the
Select button, we add the text of each selected checkbox to the label.

private void SubmitChoices_Click
(object sender, System.EventArgs e)

{
Display.Text = "Selections: ";
for (int i = 0; i < DairyList.Items.Count; i++)

// Add each selected item to the label
if (DairyList.Items[i].Selected)

Display.Text +=
DairyList.Items[i].Text + ", ";

// Remove the trailing comma and space
Display.Text =
Display.Text.Substring(0, Display.Text.Length -2);

}

224 CHAPTER 8 Web Applications

Often a Web application
uses several forms.We use
the Response property
to redirect the response to
another Web page. A page
is recreated every time an
event occurs that causes a
post back to the server. To
perform initialization only
once, we do it only when
IsPostBack is false.
Web server controls hide
action by the server to
save the state between
round trips automatically.

The BIG Picture

Figure 8.25 Selecting dairy products.

The Restart button sends the user back to the original form to choose again
between beverages and dairy products. The beverage data selected will now
be lost. The code for this event handler is

private void Back_Click
(object sender, System.EventArgs e

{
Response.Redirect("WebForm1.aspx");

}

Figure 8.25 shows the form for selecting dairy products.

Test Your Understanding

16. Which property of a Web page holds the HttpResponse that we can
use to redirect a response to another page?

17. Which property is false when a page is first loaded but true when-
ever the page contacts the server after that?

8.5 Summary
■ Using a browser, we can connect to sites anywhere in the World

Wide Web to display Web pages, written using HTML, the Hyper-
text Markup Language. HTML uses tags enclosed in angle brackets
to indicate formatting.

■ Web server controls provide much richer Web pages. Using Visual
Studio .NET, we can drag these controls from the Toolbox to a Web

8.6 Programming Exercises 225

form, creating the desired user interface. Visual Studio .NET cre-
ates an HTML file with special tags for these controls that the server
translates into HTML for the particular client. When the user inter-
acts with the control, our event-handling code will be called. We
put the event-handling code in a separate code-behind file to sepa-
rate the C# code from the HTML. Web server controls include
TextBox, ListBox, CheckBoxList, RadioButtonList, Button, and Label.

■ Using a browser, we can get information from a database using the
Web. The client Web application connects to the Web server, which
in turn connects to the database to execute a query and presents
the results in a Web form control. We use a data reader to obtain
the data while connected to the database. When using a data
reader, we need to add a data connection to connect to the data-
base and a data command to specify a query.

■ Often a Web application uses several forms. We use the Response
property to redirect the response to another Web page. A page is
recreated every time an event occurs that causes a post back to the
server. To perform initialization only once, we do it only when
IsPostBack is false. Web server controls hide action by the server to
save the state between round trips automatically.

8.6 Programming Exercises

8.1 Modify Example8-1 to display the result message in a larger size
and in red.

8.2 Modify Example8-2 to accept three passwords: 1234, 5678, and 9999.

8.3 Modify Example8-3 to add the contact name to the display.

8.4 Modify Example8-4 to add a third choice, Shippers, which will dis-
play the Shippers data.

8.5 Modify Example8-5 to add a third choice, Confections.

8.6 Create a Web application in which the user orders a pizza, selecting
the size and the toppings. The server should send a message verify-
ing the order.

8.7 Write a Web application that will give the user a choice of which
Northwind table to list. List all the data for all fields of the table the
user selects.

226 CHAPTER 8 Web Applications

8.8 Create a Web application that lets the user choose whether to order
pizza or ice cream. If the user chooses pizza, another form will
appear that allows the user to choose the size and the toppings. If
the user chooses ice cream, a form will appear that allows the user
to choose the flavor and the toppings. In each case the application
displays the user’s choices.

8.9 Create a Web application that allows the user to choose various
items of clothing. The choices will show the items with the price for
each. When the user makes a selection, a RadioButtonList will dis-
play a list of available sizes. When the user clicks the Submit button,
the application will describe the order, including the total price.

8.10 Create a Web application that provides a list of Northwind
employees. When the user chooses an employee, the application
will list orders by that employee, the cost of each order, and the
total cost of all the orders by that employee.

9CHAPTER
Validation Controls
Users may forget to enter data in a field or may enter it in an incorrect format.

Before the .NET Framework became available, validation often involved writing

extra client-side code, usually in a separate scripting language. Validation con-

trols enable the server to check the user’s entry and return the form for correc-

tions before processing.

Chapter Objectives:
■ Check that required fields are not empty

■ Check that values are entered in the correct range

■ Compare field values

■ Validate an expression

■ Summarize validation messages

9.1 Checking Required Fields

Forms often have many entries, and users may try to submit a form with
insufficient information. To make sure that the user completes a field, we
can associate a RequiredFieldValidator Web control with the original con-
trol. It will display a message if the user leaves that field empty. In Exam-
ple9-1, we ask the user to enter a name and an address and validate that the
user does in fact change the default entry.

We create a new ASP .NET Web Application project named Example9-1.
Figure 9.1 shows the validation controls available in the Toolbox.

We drag a TextBox to the form, and to the right of it we drag a Required-
FieldValidator control. To the left we drag a Label. We change the (ID) prop-
erty of the TextBox to EnterName, and the Text property of the Label to Last

228 CHAPTER 9 Validation Controls

Figure 9.1 Validation controls.

Figure 9.2 Adding a RequiredFieldValidator control.

Name. Figure 9.2 shows the Visual Studio .NET design. The Properties win-
dow at the right, for the RequiredFieldValidator control, contains the Ini-
tialValue property with a default value of the empty string. After we
associate the RequiredFieldValidator with the TextBox, the InitialValue
property will determine what the user must enter in that text box to avoid a
validation error.

We want to make sure that the user makes an entry. To associate a
RequiredFieldValidator with the EnterName text box, we click the Required-
FieldValidator control in the Visual Studio .NET design and set its
ControlToValidate property to EnterName in the Properties window. We set
its ErrorMessage property to A last name is required. This error message will
display if the user does not make any entry in the EnterName text box. Fig-
ure 9.3 shows these property entries.

9.1 Checking Required Fields 229

Figure 9.3 Configuring a RequiredFieldValidator control.

The InitialValue property of the RequiredFieldValidator determines what
the user must enter to make the entry valid. The user must make an entry
that differs from the InitialValue. The RequiredFieldValidator control used
to validate the EnterName entry has its InitialValue property set to the empty
string by default, so the user must enter a non-empty string in TextBox1 to
avoid receiving an error message from the validator.

To show another way to use a RequiredFieldValidator, we add another Label,
TextBox, and RequiredFieldValidator in a second row below the first three
controls that we already added. We set the Text property of the Label to
Address and the (ID) property of the second TextBox to EnterAddress. We left
the EnterName text box blank initially, but we set the Text property of the
EnterAddress text box to Enter your address. The easiest response from the
user would be to leave this message and not replace it with an address. To
check that this does not happen, we use the second RequiredFieldValidator,
setting the following properties:

ControlToValidate EnterAddress

ErrorMessage An address is required

InitialValue Enter your address

The InitialValue property is the same as the initial Text in the EnterAddress
text box. Its associated RequiredFieldValidator will display an error message
unless the user changes the initial entry in the EnterAddress text box, in
which case it will differ from InitialValue.

230 CHAPTER 9 Validation Controls

Figure 9.4 Validation errors.

The Web form of Example9-1 includes a Button to submit the user’s entries.
We change the Text property of the Button to Submit and the (ID) property
to SubmitInfo. Figure 9.4 shows the response when the user does not make
any changes to the initial form and receives two error messages.

Had we left the InitialValue property as the empty string, the second error
message would not be displayed because the default entry in the EnterAd-
dress text box would differ from the InitialValue property of the associated
RequiredFieldValidator control.

The Web form of Example9-1 has a third Label used to display the last
name and address that the user enters. We change its (ID) property to Dis-
play. We set the Text of this Label in the event-handling method for the Sub-
mit button. Clicking on this button in the Visual Studio .NET design
displays the event-handling template to which we add code to display the
last name with the address below it. We are making an entry on a Web page,
so we use the
 tag to go to the next line. The event-handling method is

private void SubmitInfo_Click
(object sender, System.EventArgs e)

{
Display.Text = "Name: " + EnterName.Text + "
"

+ "Address: " + EnterAddress.Text;
}

Forms often have many
entries, and users may try
to submit a form with
insufficient information.
To make sure that the user
completes a field, we can
associate a Required-
FieldValidator Web
control with the original
control. It will display a
message if the user does
not change the field entry
from the Initial-
Value specified in the
validator.

The BIG Picture

9.2 Range Checking 231

Figure 9.5 Valid entries.

The Display label does not show in Figure 9.4 because when validation fails
the server sends the error messages to display rather than responding as it
would to valid input. Figure 9.5 shows the response to valid user entries.

Test Your Understanding

1. Which RequiredFieldValidator property specifies the control that it
is validating?

2. How does the RequiredFieldValidator indicate the string that the
user must change in order to make an entry valid?

9.2 Range Checking

Using a RangeValidator Web control, we can require that the user enter values
in a specified range. Figure 9.6 shows the data types for which we can validate
ranges.

Example9-2 illustrates validating String, Integer, Date, and Currency values.
We add four TextBox Web server controls and pair each with a RangeValida-
tor control. We precede each TextBox with a label describing its contents. A
Button at the bottom submits the data to the server. Figure 9.7 shows the
design view of Example9-2.

From top to bottom, we change the (ID) properties of the four text boxes to
EnterString, EnterInt, EnterDate, and EnterPrice. We also change the (ID) prop-
erty of the Button to SubmitInfo and that of the Label to its right to Display.

232 CHAPTER 9 Validation Controls

Figure 9.6 Validation data types.

Type Description

String A character string, compared alphabetically

Integer An integer value

Double A double value

Date A date expressed numerically

Currency A value in dollars and cents (in the US)

Figure 9.7 Adding the controls for Example9-2.

9.2.1 String Values

In the topmost text box, we ask the user to enter a word between “bed” and
“red”, and add a RangeValidator to validate the entry. We set the following
properties for the topmost RangeValidator:

ControlToValidate EnterString

ErrorMessage Enter a word alphabetically from “bed” to “red”

MaximumValue red

MinimumValue bed

9.2 Range Checking 233

The default Type is String, so we do not need to set it. A valid entry, such as
potato, will be submitted to the server. An entry that is out of the specified
range, such as trip, will cause the display of the error message. Entries are case
sensitive, so Potato will generate an error because the ASCII value of ‘P’ is less
than the value of ‘b’, the smallest possible start of a valid word in this example.

9.2.2 Integer Values

The second EnterInt text box will hold a test score, which we require to be
between 0 and 100. The properties we set for the RangeValidator to its right are:

ControlToValidate EnterInt

ErrorMessage Enter a score from 0 to 100

MaximumValue 100

MinimumValue 0

Type Integer

Entering anything except an integer between 0 and 100 will cause display of
the error message. The value 64 will be valid, but 102 will cause an error, as
will 59.5 or “red”. An empty string will not cause an error. To rule this out,
we could add a RequiredFieldValidator as we did in Example9-1.

9.2.3 Dates

The third text box, EnterDate, holds a date that we require to be within the
years 2003, 2004, and 2005. The properties we set for the RangeValidator to
its right are:

ControlToValidate EnterDate

ErrorMessage Enter a 2003 to 2005 date

MaximumValue 12/31/2005

MinimumValue 1/1/2003

Type Date

Dates must be formatted numerically. We can use four-digit or two-digit
years, as in 5/28/2003 or 5/28/03. We can use one- or two-digit days or
months, as in 5/28/03 or 05/28/03. The forward slash or the dash can sepa-
rate the month, day, and year, as in 5/28/03 or 5-28-03. However, we cannot
write out the months, as in May 28, 2003.

234 CHAPTER 9 Validation Controls

Figure 9.8 Entries in the specified range.

9.2.4 Currency

We can restrict entries to a range of currency values. In the United States,
we use the period as a decimal point and the comma to separate groups of
three digits. We can use these symbols in our currency values. In Example9-2,
we will restrict the entries in the EnterPrice text box to the range of zero to
one hundred thousand dollars. The property settings for the RangeValidator
to its right are:

ControlToValidate EnterPrice

ErrorMessage Enter the price in dollars
and cents

MaximumValue 100,000

MinimumValue 0

Type Currency

Values 32.35, 12,567.22, and 12 are valid, but the value 1,000,000 is invalid
because it is too large, and the value 123.456 is invalid because it has three
decimal places rather than two. Unfortunately, a value such as 12,34.56 is
deemed valid, because the validator does not require grouping by threes
when using the comma separator. Figure 9.8 shows the Web form of Exam-
ple 9-2 with all values valid, while Figure 9.9 shows invalid entries.

Using a RangeValida-
tor Web control, we can
require that the user enter
values in a specified
range. We can do range
checking on string, inte-
ger, double, date, and cur-
rency data.

The BIG Picture

9.3 Comparing Values 235

Figure 9.9 Invalid entries in Example9-2.

Test Your Understanding

3. Which properties do we need to set to specify the allowable values
for a RangeValidator to verify?

4. What is the default value of the Type property for a RangeValida-

tor control?

5. Is either 05/31/2003 or 3/31/03 a valid date between the beginning
of 2003 and the end of 2005?

6. Is either 56.780 or 5,6.78 a valid currency format?

9.3 Comparing Values

Many situations require a comparison of the value in one control with the
value in another. In Example9-3, we add a TextBox to enter a password and
another to have the user confirm the first entry. The second entry must
equal the first to verify the user’s entry. We can use a CompareValidator Web
control to compare values from two controls. Its Operator property can have
the values

Equal
NotEqual
GreaterThan
GreaterThanEqual

236 CHAPTER 9 Validation Controls

LessThan
LessThanEqual
DataTypeCheck

The GreaterThanEqual value requires that the value in the ControlToVali-

date be greater than or equal to the value in the ControlToCompare. The
DataTypeCheck operator does not compare the value to the value in another
control. It requires that the value of the ControlToValidate be of a type
specified by the Type property. Type choices are String, Integer, Double,
Date, and Currency.

In Example9-3, we add a TextBox for the user to enter a password, setting its
(ID) property to EnterPassword. We set its TextMode property to Password, so
the password will not show when the user enters it. A Label added at its left
has its Text property set to Password to indicate the desired entry in the
EnterPassword text box.

We add another TextBox for the user to confirm the password, setting its
(ID) property to ConfirmPassword and its TextMode property to Password. To
the left of this text box we add a Label with the Text property changed to
Confirm. On the right of this text box we add a CompareValidator. The prop-
erties we set are:

ErrorMessage Entry does not match password field

ControlToCompare EnterPassword

ControlToValidate ConfirmPassword

If the EnterPassword text box entry does not match the ConfirmPassword
entry, this CompareValidator will display the error message.

To illustrate type checking, we add a third TextBox labeled Code, and set the
(ID) of this text box to EnterCode. We want to require that the user enters an
integer value for the code, so we add another CompareValidator and set the
following properties for it:

ErrorMessage Code must be an integer

ControlToValidate EnterCode

Operator DataTypeCheck

Type Integer

9.3 Comparing Values 237

Figure 9.10 Valid entries in Example9-3.

Figure 9.11 Comparison errors.

Figure 9.10 shows all valid entries and no error messages, before clicking
the Submit button. Figure 9.11 shows the failure to confirm a password and
the failure to enter an integer value.

9.3.1 Client-Side Versus Server-Side Validation

Notice that when entering values using Internet Explorer, the messages
appear before the click of the Submit button. This indicates that the

238 CHAPTER 9 Validation Controls

browser client is performing validation before submitting the data to the
server. Validating on the client side improves efficiency, saving round trips
to the server of bad data with error messages coming back. With client-side
validation, the user corrects the data before sending it to the server. Before
.NET, one had to write JavaScript or other client-side code to perform such
validation. The .NET validation controls generate this JavaScript automati-
cally. We can view it by clicking View, Source in Internet Explorer when
running the application.

When the user confirms the password correctly and enters a valid integer
code, clicking the Submit button sends the data to the server for processing.
In Example9-3 we display the message “No data entry errors” in another
label. We need to write the event-handling code for the Submit button. In
the design, we double-click on the button to display the template for the
event handler and fill it in, to give

private void SubmitInfo_Click
(object sender, System.EventArgs e)

{
Display.Text = "No data entry errors";

}

where Display is the (ID) property of the label to the right of the button.
Figure 9.12 shows the form after the user has confirmed a valid password

Figure 9.12 Submitting valid entries.

Many situations require a
comparison of the value in
one control with the value
in another. We can use a
CompareValidator
Web control to compare
values from two controls.
It uses an operator to
compare the two values.
The DataTypeCheck
operator does not com-
pare the value to the value
in another control. It
requires that the value of
the ControlToVali-
date be of a type speci-
fied by the Type
property.

The BIG Picture

9.4 Validating Expressions and Summarizing 239

and entered a valid integer code. The application displays the message and
empties the password fields after they have been submitted to the server.

Test Your Understanding

7. Which CompareValidator properties do we set to specify the two
controls whose values it will compare?

8. What is the advantage of validating controls on the client instead
of on the server?

9. How can we configure a CompareValidator to check that a value has
type double?

9.4 Validating Expressions and Summarizing

Often, a field requires that data fit a certain pattern. For example, a U.S.
phone number has 10 digits including the area code. One common format
is (ddd)ddd-dddd, where d stands for some digit. A format such as
ddd*ddd*dddd is not used. A phone number pattern such as (dd)dd-ddd would
not match U.S. phone numbers.

9.4.1 Validating Expressions

The RegularExpressionValidator Web control lets us validate that user
entries match a particular pattern. The regular expression syntax is a way of
expressing patterns. Writing regular expressions is beyond the scope of this
text, but we do not need to, as the RegularExpressionValidator control pro-
vides patterns for the following expression types:

French Phone Number
French Postal Code
German Phone Number
German Postal Code
Japanese Phone Number
Japanese Postal Code
P.R.C. Phone Number
P.R.C. Postal Code
P.R.C. Social Security Number (ID Number)
U.S. Phone Number
U.S. Zip Code

240 CHAPTER 9 Validation Controls

Figure 9.13 Validating expressions.

Internet E-mail Address
Internet URL
U.S. Social Security Number

In Example9-4, we illustrate the validation of a URL, an e-mail address, a
phone number, a social security number, and a zip code. For each field we
add a Label to identify the data, a TextBox for the user to enter it, and a
RegularExpressionValidator to validate it. There will be five rows of these
three controls, one for each type of field. Below these five rows we
include a Button to submit the validated data and a Label to indicate that
the user entered all the fields correctly. Figure 9.13 shows the design.
From top to bottom, we set the (ID) properties of the five TextBox controls
to EnterURL, EnterEmail, EnterPhone, EnterSSN, and EnterZip. We set the (ID)

property of the Button to SubmitInfo and that of the Label to its right to
Display.

The EnterURL text box will hold a URL, so we configure the RegularExpres-
sionValidator to its right by setting the following properties:

ErrorMessage Format: http://www.cecs.csulb.edu/index.html
ControlToValidate EnterURL
ValidationExpression Internet URL

9.4 Validating Expressions and Summarizing 241

The regular expression pattern for an Internet URL requires starting with
http:// and requires at least one period in the address part. Thus
http://localhost would not fit the default pattern, although one could
write a custom regular expression that would include it.

The EnterEmail text box requires a correctly formatted e-mail address. It
requires at least two words separated by a period after the @ character. Thus
it accepts artg@csulb.edu but not artg@csulb. It also accepts g.art@csulb.edu,
g-art@csulb.edu, and g+art@csulb.edu. We set the properties for the Regular-
ExpressionValidator to its right as follows:

ErrorMessage Format: artg@csulb.edu
ControlToValidate EnterEmail
ValidationExpression Internet E-mail Address

The regular expression for validating a phone number that we use to vali-
date the EnterPhone text box accepts two formats, (ddd)ddd-dddd or ddd-ddd-

dddd, where d stands for a digit from 0 through 9. Thus it would accept
(123)456-7890 and 123-456-7890 but not 123 456 7890. We set the following
properties for the RegularExpressionValidator to its right:

ErrorMessage (ddd)ddd-dddd or ddd-ddd-dddd
ControlToValidate EnterPhone
ValidationExpression U.S. Phone Number

The social security number format requires the pattern ddd-dd-dddd. Thus
222-22-2222 is valid but 222222222 is not. The properties we set for the Regu-
larExpressionValidator to the right of the EnterSSN text box that validates
the social security number field are

ErrorMessage ddd-dd-dddd
ControlToValidate EnterSSN
ValidationExpression U.S. Social Security Number

A zip code may either have five or nine digits. Acceptable formats are ddddd
or ddddd-dddd. For RegularExpressionValidator, to the right of the EnterZip
text box we set the following properties:

ErrorMessage ddddd or ddddd-dddd
ControlToValidate EnterZip
ValidationExpression U.S. Zip code

Figure 9.14 shows valid data entry for every field, while Figure 9.15 shows
invalid values.

242 CHAPTER 9 Validation Controls

Figure 9.14 Valid entries.

Figure 9.15 Invalid entries.

Often a field requires that
data fit a certain pattern.
The RegularExpres-
sionValidator Web
control lets us validate
that user entries match a
particular pattern. This
control comes with prede-
fined patterns for the vali-
dation of a URL, an e-mail
address, a phone number,
a social security number,
and a zip code. Instead of
displaying error messages
next to each control, we
can summarize all the
error messages at the bot-
tom of the form.

The BIG Picture

9.4 Validating Expressions and Summarizing 243

Figure 9.16 Using a validation summary.

9.4.2 Summarizing Validation Errors

Instead of displaying error messages next to each control, we can summa-
rize all of the error messages at the bottom of the form. This might allow an
improved layout of controls. With this approach, we add a ValidationSum-
mary at the bottom of the form. It does not need any configuration. We do
need to specify the Text property for each of the other validation controls to
be the text we want to display next to the control that it validates.

We can use a ValidationSummary with any of the validation controls. We
illustrate by modifying Example9-4, adding a ValidationSummary control
and setting the Text property of each of the five RegularExpressionValidator
controls to *, so that a * will display to the right of the invalid entry with the
summary of all error messages at the bottom, as shown in Figure 9.16.

Test Your Understanding

10. Which of the following would a RegularExpressionValidator recog-
nize as a valid e-mail format: csulb@g.art or g.art@csulb?

244 CHAPTER 9 Validation Controls

11. Show two U.S. phone number formats that a RegularExpressionVa-
lidator would accept using the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0,
in that order.

12. Using a ValidationSummary, where do the error messages appear?

9.5 Summary
■ Validation controls enable the server to check the user’s entry and

return the form for corrections before processing. Forms often
have many entries, and users may try to submit a form with insuf-
ficient information. To make sure that the user completes a field,
we can associate a RequiredFieldValidator Web control with the
original control. It will display a message if the user leaves that
field empty.

■ Using a RangeValidator Web control, we can require that the user
enter values in a specified range. We can do range checking on
string, integer, double, date, and currency data.

■ Many situations require a comparison of the value in one control
with the value in another. We can use a CompareValidator Web con-
trol to compare values from two controls. It uses an operator to
compare the two values. The DataTypeCheck operator does not
compare the value to the value in another control. It requires that
the value of the ControlToValidate be of a type specified by the
Type property.

■ Often a field requires that data fit a certain pattern. The RegularEx-
pressionValidator Web control lets us validate that user entries
match a particular pattern. This control comes with predefined
patterns for the validation of a URL, an e-mail address, a phone
number, a social security number, and a zip code. Instead of dis-
playing error messages next to each control, we can summarize all
the error messages at the bottom of the form.

9.6 Programming Exercises

9.1 Modify Example9-1 to include an initial message in the First Name
box.

9.2 Modify Example9-2 to include a TextBox that checks that a double
value is between �4.5 and 4.5.

9.6 Programming Exercises 245

9.3 Modify Example9-2 to use a ValidationSummary control.

9.4 Modify Example9-2 to add RequiredFieldValidator controls for
each field.

9.5 Modify Example9-3 to include a TextBox that requires a value of
type double.

9.6 Modify Example8-2 to use a RadioButtonList for the radio but-
tons, and validate that the user has selected one by using a
RequiredFieldValidator.

9.7 Modify Example8-2 to use a RequiredFieldValidator to check that
the user has selected a flavor from the ListBox.

9.8 Create a Web application in which the user orders a pizza, selecting
the size and the toppings. The user enters a phone number. Use a
RegularExpressionValidator to check that it has the correct format.
If the phone number has a valid format, the server should send a
message verifying the order.

9.9 Write a Web application that will give the user a choice of which
Northwind table to list. Use a RequiredFieldValidator to require the
user to enter a password, so the password field may not be left
blank. If the user enters “1234”, list all the data for all fields of the
table that the user selects.

9.10 Create a Web application that lets the user sign up to receive a free
magazine. The user must enter a name, address, city, state, zip
code, and phone number. Require that each field has an entry and
that the zip code and phone numbers have correct formats. If so,
display a message that the magazine will be sent.

9.11 Create a Web application that allows the user to choose various
items of clothing. The choices show the items with the price for
each. Include a TextBox for each item in which the user enters the
quantity to order. Add a validation control to check that the value
is correctly formatted as an integer and that its value is within rea-
sonable bounds. When the user clicks the Submit button, the appli-
cation describes the order, including the total price.

This page intentionally left blank

10CHAPTER
XML
Web pages use HTML to indicate formatting to a browser.The Web has become

very popular in part because HTML is relatively simple and easy to use. But

HTML focuses on presentation, making it hard to determine the information on

a page. XML (Extensible Mark-up Language) lets us devise our own tags to

reflect the information content. We can pass these standard XML files among

various applications to transfer information from one program to another. Web

services, which we cover in the next chapter, use XML to allow programs to

communicate even though they may be written in different languages and may

run on different hardware.

Chapter Objectives:
■ Learn XML syntax

■ Use a schema to specify a valid XML type

■ Try DOM (Document Object Model) for processing XML files

■ Use XSLT to transform XML to other representations

10.1 XML and Its Syntax

We first touch upon the limitations of HTML for representing content
before introducing XML.

10.1.1 The Limitations of HTML

With HTML we can easily format data for display, but the content is not
easy to retrieve. Figure 10.1 shows the Web page displayed by the Internet
Explorer browser given the HTML file of Figure 10.2.

248 CHAPTER 10 XML

Figure 10.1 Listing an author’s books.

Figure 10.2 The anAuthor.html file for the Web page of Figure 10.1.

<html>
<title>Art's Page</title>
I have written
 Computing with C# and the .NET Framework
 History of Mathematics
 Advanced Java

</html>

1See http://www.w3.org/XML for the XML specification.

Most of the tags in Figure 10.2 refer to the display of the file. indicates
an unordered list, while specifies a list item. A human reader might
deduce quickly that a person named Art is listing books he has written, but
the word “books” is never used. A program processing this file would find it
very difficult to determine its content.

Moreover browsers accept many variations in HTML syntax. In Figure
10.2, the end tag for the unordered list does not appear, and none of
the list items have end tags . We could have omitted the <html> and
</html> tags. Permitting such variations in syntax makes it hard for pro-
grams to extract information from HTML files.

10.1.2 XML Syntax

We can define our own XML tags to indicate the content.1 For example, we
might rewrite (and expand) the HTML file of Figure 10.2 as the XML file of
Figure 10.3.

http://www.w3.org/XML

10.1 XML and Its Syntax 249

Figure 10.3 The anAuthor.xml file.

<?xml version="1.0" encoding="utf-8" ?>
<author xmlns="http://tempuri.org/XSDSchema1.xsd">
<name>
<first>Art</first>
<last>Gittleman</last>

</name>
<age>39+</age>
<books>
<book kind="text">
<title>
Computing with C# and the .NET Framework

</title>
<edition> first </edition>
<copyright> 2003 </copyright>
<isbn> 0-7637-2339-8 </isbn>

</book>
<book kind="text">
<title>History of Mathematics</title>
<edition> first </edition>
<copyright> 1975 </copyright>
<isbn> 0-675-08784-8 </isbn>

</book>
<book kind="text">
<title>Advanced Java</title>
<edition> second </edition>
<copyright> 2002 </copyright>
<isbn> 1-57676-096-0 </isbn>

</book>
</books>

</author>

Notice that the anAuthor.xml file of Figure 10.3 has content tags such as
<author> and <book>, rather than formatting tags such as and . The
human reader finds it easy to read, and understandable. More importantly,
programs can easily find relevant information such as the copyright date or
the ISBN number.

Each XML file starts with an optional prolog, which in Figure 10.3 is

<?xml version="1.0"?>

XML allows us to define a
language to represent data.
We define tags and their
structure.Well-formed XML
follows precise rules to
make it easier to transfer
XML documents between
programs.

The BIG Picture

250 CHAPTER 10 XML

XML comments use the same HTML syntax, as in

<!-- Comments go here. -->

Tags may have attributes. For example the <book> tag in Figure 10.3 has the
kind attribute with value “text”. Attributes may be optional. For example,
the <title> tag has a full attribute that appears in one title, but not in others.

For programs to easily process XML, the syntax rules are precise. They are:

■ Each tag must have an end tag.

For example, the <book> tag must have a </book> tag to mark the end
of the <book> element. We place the content between the start and
the end tags. A tag may be empty, meaning it has no content. For
example, in Figure 10.3 we might have used a <softcover> tag to
indicate that a book has a soft cover. The correct form would be

<softcover></softcover>

which may be abbreviated as

<softcover/>

■ Tags must be nested.

For example, if the start tag <title> occurs between <book> and
</book>, then its end tag </title> must occur before </book>.

Correct: <book> ... <title> ... </title> ... </book>

Incorrect: <book> ... <title> ... </book> ... </title>

■ Attribute values must be enclosed in quotes.

Correct: kind = "text"

Incorrect: kind = text

An XML document is well-formed if it follows all the rules of XML syntax,
but we still need a way to define the intended usage of the tags we have cre-
ated. For example, is it OK to omit the <age> tag? Can a <first> tag appear
more than once? We introduce schemas in the next section that allow us to
define the intended structure of an XML document.

Test Your Understanding

1. Which of the following are well-formed XML documents?

a. <author>

10.2 Schemas 251

<name>

<first> Art </first>

<last> Gittleman </last>

</name>

</author>

b. <author>

<name/>

<first> Art </first>

<last> Gittleman </last>

</author>

c. <author/>

2. Write an XML document for a record collection.

10.2 Schemas

A well-formed XML document uses correct XML syntax. A document
that had an <author> tag without an </author> tag would not be well-
formed. However, a well-formed document may not make sense. For
example, the fragment

<name>
<first> George </first>
<first> John </first>
<first> Mary </first>

</name>

uses correct syntax, but does not look appropriate. A name has three first
entries and no last entry.

We can use an XML schema to specify the form of a valid type of XML doc-
ument. Before we create a schema, we show the tree structure of the author
type in Figure 10.4. Because XML tags must nest, we can always diagram
XML document structure in tree form.

The schema for the <author> XML document type will specify the structure
shown in Figure 10.4. It will specify the types of each tag. For example, the
<first> and <last> tags have no nested tags. They just contain the string
data for the first and last names of the author. By contrast, the <name> tag is
not simple. It contains two nested tags, a <first> tag followed by a <last>
tag. We want the schema to show this structure for the <author> type.

252 CHAPTER 10 XML

Figure 10.4 The tree structure of the author document type.

author

age booksname

first last book ... book

title edition copyright isbn

We can also specify how many times a tag may occur. By default, a tag
occurs exactly once, but we can specify its minOccurs and maxOccurs proper-
ties to allow it to be optional or to have multiple occurrences. For example,
in the schema for the <author> type we will want to specify that the <age> tag
is optional and that the <book> tag must occur at least once but may occur
more than once. After all, an author may not want to reveal his age and he
may have written more than one book.

10.2.1 Building a Schema in Visual Studio .NET

We can create a schema in Visual Studio .NET. If we create the schema first,
we can use it as guide when creating XML documents that follow that
schema. The schema will define the structure of the author document type
as shown in Figure 10.4. It will include the type of data present in each tag.
It will indicate optional tags or tags that may occur more than once.

We start by creating Example10-1 as an ASP .NET Web Application. Click-
ing on File, Add New Item, we choose the XML Schema template and click
Open in the Add New Item window. This will create a tab for XSDSchema1.xsd
on which we can develop a schema for the XML document for the <author>
tag. The Toolbox in Figure 10.5 now shows an XML Schema tab containing the
various components we use to define an XML document type.

We can drag Toolbox entries to create the schema. First, we drag an element
tag onto the form and enter author as its name. The box in Figure 10.6 has
an E in the upper-left corner signifying that it represents an XML element.
The <author> tag, as we see from the structure of Figure 10.4, has nested
<name>, <age>, and <books> tags. We want the schema to specify this struc-

10.2 Schemas 253

Figure 10.5 The XML Schema tab.

Figure 10.6 Starting to create a schema.

ture, so we enter each of these tags in three rows of the <author> tag box.
Figure 10.6 initially shows one empty row. As we enter each row, another
blank row appears below it for the next entry.

We add name in the first row and hit the Enter key. This will enter the default
type of string. We see from Figure 10.4 that <name> is not a simple type. It is
composed of a <first> tag and a <last> tag. If we click on the string entry,
we get a choice of types. Choosing Unnamed complex type will replace string
by the placeholder (name) for the type and add a child box to enter the fields

254 CHAPTER 10 XML

Figure 10.7 Describing the <author> tag.

for the <name> element. In this way, we can continue to create the structure
shown in Figure 10.4.

In the second row, we add age and accept the default string type. We want
the <age> tag to be optional, so we click on the age entry and open the Prop-
erties window. We set the minOccurs property to 0 and the maxOccurs to 1. In
the third row, we add books and again choose Unnamed complex type from the
pop-up box. Figure 10.7 shows the schema so far.

Notice that there are two tabs, Schema and XML, at the bottom of the screen.
We are using the graphical view on the Schema tab. The schema is an XML
document using various schema tags. We can see the XML version of the
schema on the XML tab, but do not need to write XML ourselves because
Visual Studio .NET is creating the XML schema as we add to the diagram.

In the name box, we enter the rows first and last and accept the default
string type for each because the <first> and <last> tags contain the first
and last name strings rather than any nested XML tags. In the books box, we
enter book and choose Unnamed complex type to add a book box to define the
book entries.

Figure 10.8
Adding an attribute.

10.2 Schemas 255

The book entry has some interesting features. An author may have writ-
ten several books, so we allow the <book> tag to appear one or more
times. To specify this, we click on the book box, open the Properties win-
dow, and set the minOccurs property to 1 and the maxOccurs property to
unbounded.

The <book> tag contains <title>, <edition>, <copyright>, and <isbn> tags, and
a kind attribute indicating if the book is a textbook primarily for student
use or a trade book for the general reader. We add entries for title, edition,
copyright, and isbn in the book box. We want the <edition>, <copyright>, and
<isbn> tags to be optional, so we set the minOccurs property for each to 0,
and the maxOccurs property to 1.

We see the kind attribute used in the XML document of Figure 10.3. Each of
the <book kind="text"> tags includes the kind attribute with the value "text".
The other choice of attribute would be "trade", but this author has not writ-
ten any trade books. To add the kind attribute, we click the small box at the
left of the bottom row in the book box and choose attribute from the box
that pops up, as shown in Figure 10.8. This will place an A at the left of this
row, indicating that it represents an attribute. We enter kind as its name.

To define the type for the kind attribute, we drag a simpleType from the
Toolbox and name it bookType. We want this type to have two values, text
and trade. Clicking on the left of the first row allows us to choose facet, a
constraint on a type, which places an F at the left of the row. The facets will
constrain the string type to have two values. We choose enumeration as the
kind of facet and text as its value. We do the same in the next row to create
a trade facet for this type.

Once we define bookType we can use it in the rest of the schema. If we click
on the type entry for the kind attribute in the book box, bookType will show as
one of the entries and we select it. Figure 10.8 shows the kind attribute with
the bookType type. We want to require that this attribute always be included
in the <book> tag, so we select it and set its use property in the Properties
window to required. Figure 10.9 shows additions to the schema descending
from the author box of Figure 10.7.

10.2.2 Valid Documents

A valid XML document follows the rules given in its schema. A document
can be well-formed without being valid. For example, the fragment

256 CHAPTER 10 XML

Figure 10.9 Completing a schema for the <author> type.

<name>
<first> George </first>
<first> John </first>
<first> Mary </first>

</name>

is not valid. The rule for <name> specifies a single <first> followed by a sin-
gle <last>.

10.2.3 Using a Schema to Create an XML Document

The schema we created defines a pattern that a valid XML document has to
follow. If we add an XML file to our project and associate this schema with
it, the IntelliSense feature of Visual Studio .NET will prompt us for the cor-
rect tags to enter as we create the XML document.

We click File, Add New Item and choose XML File. In its Properties window
we select http://tempuri/XSDSchema1 as the targetSource. This is the URL cre-
ated for the schema we just developed. Each schema is associated with a
URL. Because we did not define our own name, Visual Studio .NET uses the
name tempuri. The XMLFile1.xml tab that we added to our project now shows

<?xml version="1.0" encoding="utf-8" ?>
<author xmlns="http://tempuri.org/XSDSchema1.xsd">

</author>

http://tempuri/XSDSchema1

We can use an XML
schema to specify the
form of a valid type of
XML document. We can
create a schema in Visual
Studio .NET. If we create
the schema first, we can
use it as a guide when cre-
ating XML documents
that follow that schema. A
valid XML document fol-
lows the rules given in its
schema. A document can
be well-formed without
being valid.

The schema we created
defines a pattern that a
valid XML document has
to follow. If we add an
XML file to our project and
associate this schema
with it, the IntelliSense
feature of Visual Studio
.NET will prompt us for
the correct tags to enter as
we create the XML docu-
ment.

The BIG Picture

10.2 Schemas 257

This template allows space for us to fill in the tags nested inside the author tag.
Typing the left bracket, <, to start a nested tag brings up the IntelliSense choice
of age, books, or name. We select name and add the right bracket, >. IntelliSense
adds the closing tag </name> and we start another tag and select <first>.

At any time we can click the XML, Validate XML Data menu item to check
that the document we are creating is following the schema pattern. Any devi-
ation will be reported in a window below the XML file. For example, the file

<?xml version="1.0" encoding="utf-8" ?>
<author xmlns="http://tempuri.org/XSDSchema1.xsd">
<stuff></stuff>

</author>

would generate a validation error even though it is well-formed. There is
no <stuff> tag in the schema associated with this file.

As we continue to create an XML document, we get to the book tag that has
an attribute. The document so far is

<?xml version="1.0" encoding="utf-8" ?>
<author xmlns="http://tempuri.org/XSDSchema1.xsd">

<name>
<first>Art</first>
<last>Gittleman</last>

</name>
<age>39+</age>
<books>
<book

</author>

If we space after we enter <book, IntelliSense will provide the attribute
name, kind, so we choose it to add that attribute. Continuing to use the
IntelliSense guide, we create the XML file shown in Figure 10.3.

Now that we can use XML Designer to create a schema and can create an
XML document that we validate with respect to the schema, we will see
some XML applications in the next sections.

Test Your Understanding

3. Which of the following are valid XML documents with respect to
the schema of Figures 10.7 and 10.9?

a. <author>

<name>

258 CHAPTER 10 XML

<first> Art </first>

<last> Gittleman </last>

</name>

<books>

<book>

<title>Objects to Components with the C#

Platform

</title>

</book>

</books>

</author>

b. <author>

<name>

<last> Gittleman </last>

</name>

<age> 39+ </age>

<books>

<book>

<title>Objects to Components with the

C# Platform</title>

</book>

</books>

</author>

4. When creating a schema, how can we designate that a tag is optional?

10.3 From Data to XML

Each database vendor uses special formats and methods for storing data.
With the connectivity of the Internet, it becomes increasingly important to
be able to share data among diverse applications. XML provides a standard
format for data. If we take data from the database and put it in an XML file,
we can transmit that file to other applications, which can then transform
the XML to whatever internal formats they need.

10.3.1 Northwind Data to XML

Example10-2 will put the data from the Customers table into an XML file.
We create a Windows Application project and drag an OleDbDataAdapter from

10.3 From Data to XML 259

the Toolbox to the form. We set its (Name) property to northwind. When the
Data Adapter Configuration Wizard appears, we select the Northwind data-
base that we used in examples in previous chapters.

In the Generate the SQL statements screen, we click the Query Builder but-
ton, choose Customers from the Add Tables window, and click Add and then
Close. In the Customers box in Query Builder, we check the All Columns box
and click OK. We click Next when the Generate the SQL statements window
returns, and click Finish in the View SQL Results screen.

We begin creating a data set to hold the Northwind customer data by click-
ing the Data, Generate Dataset menu item. We accept the default selection
of a New data set with the Customers table added, enter customerTable as the
data set name, and click OK.

To display the data, we drag a DataGrid control from the Windows Forms tab of
the Toolbox. We open the Properties window for the DataGrid and select
customerTable. Customers as its DataSource property. We expand the size of
the DataGrid control in the Visual Studio .NET design so that it will be eas-
ier to view the data.

In Example10-2, we will display the Customer data in a DataGrid and save it
as an XML file that we can send to other applications. To perform these
operations we add code to the Form1_Load method, which we display by
double-clicking on the form itself, not the data grid control. We fill in the
code in the Form1_Load method as follows:

private void Form1_Load(object sender, System.EventArgs e)
{

// fill the data set from the database
northwind.Fill(customerTable, "Customers");

// make an XML document from the data
System.Xml.XmlDocument customers

= new System.Xml.XmlDataDocument(customerTable);

// store the XML document
customers.Save("customers.xml");

}

The Fill method fills the data set with the Northwind data. We create an
XmlDocument from the data set and use its Save method to save the XML doc-
ument containing the Northwind customer data. Figure 10.10 shows the

260 CHAPTER 10 XML

Figure 10.10 Displaying the Northwind customers.

Figure 10.11 The customers.xml file.

windows form displaying the customers, and Figure 10.11 shows the XML
file we created.

10.3.2 The Document Object Mode (DOM)

The DOM (Document Object Model) API supports the reading of the
entire document to make a tree model of it in memory. We can access
nodes of the tree to locate information contained in the XML document.
We use the following classes from the System.XML namespace.

10.3 From Data to XML 261

Figure 10.12 Extracting titles from an XML document.

2We also change the URL so that the author tag becomes <author xmlns = "http://tempuri.
org/anAuthor.xsd">.

Class Description

XmlDocument Represents the entire XML document

XmlDataDocument Allows data to be manipulated through a DataSet

XmlElement Represents an element in an XML document

XmlNode Represents a single node in an XML document

XmlNodeList A collection of nodes

XmlText The text of an element or attribute

10.3.3 Processing an XML Document

If we receive an XML document, we can create an XmlDocument object and
use its features to extract information from the document. In Example10-3,
we process the anAuthor.xml file that we created in Example10-1. We also
use the schema that we developed, but rename it anAuthor.xsd.2 We will
build an XmlDocument and find all the <title> tags so that we can display the
book titles in a ListBox as shown in Figure 10.12. We leave for the exercises
the making of a user interface to allow users to choose what information
from the XML file to display.

We create Example10-3 as a Windows Application project. We click on File,
Add Existing Item to add anAuthor.xml and anAuthor.xsd to the project. To
create a DataSet for the schema, we click on the anAuthor.xsd tab to show the
schema, and then click Schema, Generate Dataset. This creates a DataSet
named anAuthor. We drag a DataSet control from the Toolbox to the form
and click OK in the Add Dataset dialog that appears. We change the name of
the data set to anAuthor.

262 CHAPTER 10 XML

We will create the XMLDocument and process it when the form loads. We dou-
ble-click on the form to display the template for the Form1_Load method and
complete the code as follows:

private void Form1_Load(object sender, System.EventArgs e)
{

// read XML file into data set
anAuthor.ReadXml

("c:\\booknet\\ch10\\anAuthor.xml");

// represent XML document in memory
System.Xml.XmlDocument author

= new System.Xml.XmlDataDocument(anAuthor);

// get the root element
System.Xml.XmlElement root = author.DocumentElement;

// get all the <title> tags
System.Xml.XmlNodeList titles

= root.GetElementsByTagName("title");

// process each <title>
for (int i=0; i < titles.Count; i++)
{

// get the text from each <title>
System.Xml.XmlNode text = titles[i].FirstChild;

// add title to the list box
listBox1.Items.Add(text.Value);

}
}

The ReadXml method reads the XML file into the DataSet. The XmlDataDocu-
ment constructor takes the DataSet and builds the XmlDocument representing it
in memory using the Document Object Model. Its DocumentElement prop-
erty holds the XmlElement that is the root tag of the document. All other tags
are nested in this root. We use its GetElementsByTag method to find all
<title> tags. These are an XmlNodeList.

The Count property tells us the number of <title> tags. We use a for loop to
process each <title> tag. The FirstChild property of the <title> tag holds
an XmlNode containing the text of the <title> tag. The Value of this node is
the book title. We add each title to the ListBox.

XML provides a standard
format for data. If we take
data from the database
and put it in an XML file,
we can transmit that file
to other applications,
which can then transform
the XML to whatever
internal formats they
need.

If we receive an XML
document, we can create
an XmlDocument object
and use its features to
extract information from
the document. The DOM
(Document Object Model)
API supports the reading
of the entire document to
make a tree model in
memory. We can access
nodes of the tree to locate
information contained in
the XML document.

The BIG Picture

10.4 Transforming XML 263

Test Your Understanding

5. What type of argument did we pass to the XmlDataDocument con-
structor in Example10-2?

6. In Example10-3, we start with an XML file and a schema. How
did we use Visual Studio .NET to get a DataSet to represent the
schema? What method did we use to add data from the XML file
to the data set?

7. Which property of an XmlDocument represents the root element of
the document?

10.4 Transforming XML

XML provides a platform-independent representation for data. We can
pass XML data from system to system. Often, receivers of XML data will
need to transform it to a format suited to their needs. Moreover, XML
focuses on content rather than presentation. We can transform an XML
document to HTML for presentation.

10.4.1 XSLT (Extensible Stylesheet Language for Transformations)

XSL (Extensible Stylesheet Language) has two parts, one for formatting and
the other for transformations. The transformation part, XSLT (Extensible
Stylesheet Language for Transformations), has been developed first. It
allows us to transform one document to another. We can transform an XML
document to another XML document or to HTML for display in a browser.

Stylesheets

We specify the transformations in a stylesheet. The stylesheet follows XML
syntax. The transformations use templates that a processor matches against
the tags in an XML file. Example10-4 applies a stylesheet to an XML docu-
ment to produce an HTML file. Figure 10.13 shows the Web page produced
using the stylesheet of Figure 10.14 for the anAuthorStyle.xml, a slight mod-
ification of the XML file of Figure 10.3, which changes the first two lines to

<?xml version="1.0" encoding="utf-8" ?>
<?xml:stylesheet type="text/xsl" href="author.xslt" ?>
<author>

264 CHAPTER 10 XML

Figure 10.13 Transforming an XML document to HTML.

The new second line indicates that we wish to apply an XML stylesheet
found in the file author.xslt. The third line, the <author> tag, omits the ref-
erence to the schema. To view the transformed XML document locally, we
enter the path to the document in the browser address fields. Figure 10.13
shows that on the author’s system that path is

H:\booknet\ch10\Example10-4\anAuthorStyle.xml

As with other XML files, we start the stylesheet with the processing instruction

<?xml version="1.0"?>

Processing instructions occur between <? and ?>. XSLT stylesheets use the
XSLT namespace to provide a context for the XSLT commands. Each
command uses a tag with the xsl prefix, as in xsl:template. The
xsl:stylesheet tag

10.4 Transforming XML 265

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

indicates the version, 1.0. The xmlns:xsl attribute states that the namespace
name is xsl and gives the URL where that namespace is defined. As with all
XML tags, the xsl:stylesheet tag has a closing tag at the end of the
stylesheet.

The top-level structure of the stylesheet of Figure 10.14 uses five xsl:tem-
plate tags:

<xsl:template match="author">
<xsl:template match="name">
<xsl:template match="age">
<xsl:template match="books">
<xsl:template match="book">

Each template applies to tags whose names match the value of the match
attribute. The first template applies to <author> tags, the second to <name>
tags, and so on. When transforming an XML document using a stylesheet,
the processor outputs the body of the template when it finds a match.

When the XSLT processor applies the first template to anAuthorStyle.xml, it
finds a match with the author template from Figure 10.14, copied here as

<xsl:template match="author">
<html>
<head>
<title> Books written by an author </title>

</head>
<body>
<xsl:apply-templates />

</body>
</html>

</xsl:template>

and the <author> tag, and outputs the template body

<html>
<head>
<title> Books written by an author </title>

</head>
<body>
<xsl:apply-templates />

</body>
</html>

266 CHAPTER 10 XML

Figure 10.14 An XSLT stylesheet,author.xslt.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="author">
<html>
<head>
<title> Books written by an author </title>

</head>
<body>
<xsl:apply-templates />

</body>
</html>

</xsl:template>

<xsl:template match="name">
<h3>

Author: <xsl:value-of select="first"/>
<xsl:text> </xsl:text>
<xsl:value-of select="last"/>

</h3>
</xsl:template>
<xsl:template match="age">

<h4>
Age: <xsl:value-of select="." />

</h4>
<hr/>

</xsl:template>
<xsl:template match="books">

<xsl:apply-templates />
</xsl:template>
<xsl:template match="book">

<h4><xsl:value-of select="title"/>
</h4>
<table>
<th>Edition</th>
<th>Copyright</th>
<th>ISBN</th>
<tr>
<td><xsl:value-of select="edition"/></td>
<td><xsl:value-of select="copyright"/></td>
<td><xsl:value-of select="isbn"/></td>

</tr>
</table>
<hr/>

</xsl:template>
</xsl:stylesheet>

10.4 Transforming XML 267

The <xsl:apply-templates /> tag applies the templates of the stylesheet to
tags nested within the <author> tag. Because it is an empty tag, we use the
short form, closing it with a forward slash.

Next the XSLT processor finds a match with the <xsl:template

match="name"> template and the <name> tag, so it adds the template body

<h3>
Author: <xsl:value-of select="first"/>

<xsl:text> </xsl:text>
<xsl:value-of select="last"/>

</h3>

to the HTML file produced so far, giving

<html>
<head>
<title> Books written by an author </title>

</head>
<body>
<h3>
Author: <xsl:value-of select="first"/>

<xsl:text> </xsl:text>
<xsl:value-of select="last"/>

</h3>
</body>

</html>

The <xsl:value-of select="first"/> tag returns the text body of the <first>
tag as a String. We use the <xsl:text> tag to include text in the output. Here
we include one space between the first and last names. The <xsl:value-of
select="last"/> tag returns the last name.

The author.xsl stylesheet uses the <xsl:value-of select="." /> tag inside
the age match. The “.” in the select attribute refers to the tag of the match
containing the value-of command, which in this case is the age tag. Thus
this value-of template returns the text of the age tag, which is 39+.

The match for the <books> tag does not directly add any new HTML code,
but it specifies the <xsl:apply-templates /> template, which causes the XSLT
processor to apply the templates to the tags nested within <books>. When
matching <book>, we display the title followed by a table containing the
book information. The <th> tag indicates a table header, while <tr> specifies
a table row, and <td> represents the table data in one cell. We follow each
table with the empty <hr/> tag to insert a horizontal rule.

268 CHAPTER 10 XML

Figure 10.15 The transformed file of anAuthorStyle.xml using author.xslt.

<html>
<head> <title>Book written by an author</title> </head>
<body>
<h3> Author: Art Gittleman
 </h3>
<h4> Age: 39+ </h4><hr />
<h4> Computing with C# and the .NET Framework
</h4>
<table><th>Edition</th><th>Copyright</th><th>ISBN</th>
<tr>
<td> first </td><td> 2003 </td><td> xxxxxxxxxx </td>

</tr>
</table><hr />
<h4> History of Mathematics </h4>
<table><th>Edition</th><th>Copyright</th><th>ISBN</th>
<tr>
<td>first</td><td>1975</td><td> 0-675-08784-8 </td>
</tr>
</table><hr />
<h4> Advanced Java </h4>
<table><th>Edition</th><th>Copyright</th><th>ISBN</th>
<tr>
<td>second</td><td>2002</td><td>1-57676-096-0</td>
</tr>
</table><hr /></body></html>

Figure 10.15 shows the HTML file produced by applying the stylesheet of
Figure 10.14 to anAuthorStyle.xml. Internet Explorer applies the stylesheet
and displays the transformed file in Figure 10.13.

Using a Stylesheet

Example10-3 created a DOM tree from an XML file and then processed it
to find the book titles. Example10-5 uses a stylesheet to transform the XML
file anAuthorTitles.xml to an HTML file to display the book titles on a Web
page. The anAuthorTitles.xml document changes the line

<author xmlns="http://tempuri.org/XSDSchema1.xsd">

of anAuthor.xml to

<?xml:stylesheet type="text/xsl" href="titles.xslt" ?>
<author>

10.4 Transforming XML 269

We use a stylesheet and remove the reference to the schema. Figure 10.16
shows the stylesheet, titles.xslt.

We use templates to match each of the <author>, <age>, <name>, <books>,
<book>, and <title> tags. The template for <author> will match first because
<author> is the root of the document. The HTML output will then contain
the body of the template:

<html>
<head>
<title> Book titles </title>

</head>
<body>
<xsl:apply-templates />

</body>
</html>

The <xsl:apply-templates> tag will insert the output of matches with
nested tags.

We do not want to include any age or name information in the HTML output.
The <xsl:apply-templates /> command in the root template will apply to all of
the nested tags including <age> and <name>. If we omit an “age” match, the
default will be to include the text of the <age> tag. To prevent this, we include
an “age” match with an empty body, so no code will be added to the HTML
output. For the same reason, we include a “name” match with an empty body.

When we match the <books> tag, the template body

<xsl:apply-templates />

just continues searching for matches with nested tags. When matching a
<book> tag, the template body

<xsl:apply-templates select="title"/>

will only apply templates to the <title> tag, and will ignore the <edition>,
<copyright>, and <isbn> tags.

Matching a <title> tag will add

<h4>
<xsl:value-of select="."/>

</h4>
<hr/>

270 CHAPTER 10 XML

Figure 10.16 The titles.xsl stylesheet.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="author">
<html>
<head>
<title> Book titles </title>

</head>
<body>
<xsl:apply-templates />

</body>
</html>

</xsl:template>

<xsl:template match="age">
</xsl:template>

<xsl:template match="name">
</xsl:template>

<xsl:template match="books">
<xsl:apply-templates />

</xsl:template>

<xsl:template match="book">
<xsl:apply-templates select="title"/>

</xsl:template>

<xsl:template match="title">
<h4>
<xsl:value-of select="."/>

</h4>
<hr/>

</xsl:template>

</xsl:stylesheet>

Often,receivers of XML data
will need to transform it to
a format suited to their
needs. Moreover, XML
focuses on content rather
than presentation. We can
transform an XML docu-
ment to HTML for presenta-
tion. XSLT (Extensible
Stylesheet Language for
Transformations) allows us
to transform one document
to another. We specify the
transformations in a
stylesheet. The stylesheet
follows XML syntax. The
transformations use tem-
plates that a processor
matches against the tags in
an XML file.

The BIG Picture

10.4 Transforming XML 271

Figure 10.17 Result of applying titles.xslt to anAuthorTitles.xml.

<html>
<head><title> Book titles </title></head>
<body>
<h4>

Computing with C# and the .NET Framework
</h4>
<h4>

History of Mathematics
</h4>
<h4>

Advanced Java
</h4>

</body>
</html>

Figure 10.18 Using a stylesheet to find book titles.

to the HTML output. Figure 10.17 shows the resulting HTML file, and Fig-
ure 10.18 shows the Web page resulting from entering the path to anAuthor-
Titles.xml in the browser address field.

Test Your Understanding

8. List the XSLT tags from the xsl namespace that we use in Fig-
ure 10.14.

272 CHAPTER 10 XML

9. Write the unabbreviated equivalent of the <xsl:apply-templates />
tag.

10. Figure 10.16 includes the

<xsl:apply-templates select="title"/>

tag. Explain the difference between this tag and the tag

<xsl:apply-templates />

10.5 Summary
■ HTML focuses on presentation, making it hard to determine the

information on a page. XML (Extensible Mark-up Language) lets
us devise our own tags to reflect the information content. We can
pass these standard XML files among various applications to trans-
fer information from one program to another.

■ We can use an XML schema to specify the form of a valid type of
XML document. We can create a schema in Visual Studio .NET. If
we create the schema first, we can use it as a guide when creating
XML documents that follow that schema. A valid XML document
follows the rules given in its schema. A document can be well-
formed without being valid.

■ The schema we created defines a pattern that a valid XML docu-
ment has to follow. If we add an XML file to our project and asso-
ciate this schema with it, the IntelliSense feature of Visual Studio
.NET will prompt us for the correct tags to enter as we create the
XML document.

■ XML provides a standard format for data. If we take data from the
database and put it in an XML file, we can transmit that file to
other applications, which can then transform the XML to whatever
internal formats they need.

■ If we receive an XML document, we can create an XmlDocument
object and use its features to extract information from the docu-
ment. The DOM (Document Object Model) API supports the
reading of the entire document to make a tree model in memory.
We can access nodes of the tree to locate information contained in
the XML document.

10.6 Programming Exercises 273

10.6 Programming Exercises

10.1 Modify Example10-1 to create a schema that requires the <age> tag.

10.2 Modify Example10-2 to include only those customers who placed
orders for beverages.

10.3 Modify Example10-3 to add the copyright date to the output.

10.4 Modify Example10-4 to omit the age from the resulting HTML.

10.5 Modify Example10-5 to add the copyright date to the output.

10.6 Write a stylesheet to produce an HTML file from
anAuthorTitles.xml that displays the title and ISBN of each book.

10.7 Write a stylesheet to produce an HTML file from
anAuthorTitles.xml that displays the author’s name and the copy-
right date of each book.

10.8 Write a Windows application to make a user interface to allow
users to choose what information from the anAuthorStyle.xml XML
document to display. Write a stylesheet to create an HTML file that
displays that information.

10.9 Using data from the Northwind database, write a Windows appli-
cation that lists the company name and contact name for each cus-
tomer.

10.10 Write a Windows application to create an XML document from the
Products data in the Northwind database.

This page intentionally left blank

11CHAPTER
Web Services
Web services use a simple protocol with XML to allow programs to communi-

cate. In this way, an application developed on one platform can use methods of

another application running on a different platform at a remote site and per-

haps written in a different language. Companies have many applications that

need to communicate. A manufacturer might contact parts suppliers to deter-

mine availability of needed parts. Using Web services, the search for parts could

be done automatically with the manufacturer’s program using Web services of

the suppliers.

Chapter Objectives:
■ Create a client for existing Web services

■ Create new Web services

■ Create Web services that use data

11.1 Web Service Clients

With Visual Studio .NET, we can easily write a client program to access Web
services available on the Internet. We do not need to know the details of the
protocol used to communicate with the service. The XMethods site,
http://www.xmethods.net, contains many Web services that we can try. The
XMethods Demo Services listed at the bottom of their page are likely to
remain available for some time. We try the Weather-Temperature service
that gives the temperature for any zip code area.

We create Example11-1 as a Windows Application. We add a TextBox for the
user to enter a zip code and a Button to submit it to the Web service. We use
two Label controls, one to label the text box and the other to display the
temperature. We set the (Name) property of the text box to enterZip, the
(Name) property of the button to getTemperature, and that of the label to its

http://www.xmethods.net

276 CHAPTER 11 Web Services

Figure 11.1 Using a Web service to find the temperature.

Figure 11.2 Selecting the Weather-Temperature Web service.

right to display. Figure 11.1 shows the temperature at California State Uni-
versity Long Beach.

11.1.1 Adding a Web Reference

We need to be connected to the Internet to use an external Web service. To
refer to the Weather-Temperature Web service in our project, we click the
Project, Add Web Reference menu item. This displays an Add Web Reference
window that includes a text box to enter the address of the Web service. We
enter www.xmethods.net and hit the Enter key. The frame on the left side
shows the XMethods site. We scroll to the bottom where we find the listing
of the XMethods Demo Services shown in Figure 11.2. Selecting the

www.xmethods.net

11.1 Web Service Clients 277

Figure 11.3 The XMethods Weather-Temperature Web service.

Weather-Temperature Web service displays its Web page on the XMethods
site, as shown in Figure 11.3.

The Web Service Definition Language (WSDL) uses XML to describe Web
services. We look for the WSDL link on the Weather-Temperature page. It
shows the link

http://www.xmethods.net/sd/2001/TemperatureService.wsdl

which we click. Figure 11.4 shows the Add Web Referencewindow in our project.

We click the Add Reference button to add a reference to this Web service
to our project. The Example11-1 folder contains the files for this proj-
ect. Adding a Web reference creates a Web References folder inside Exam-
ple11-1. This folder contains a folder called net.xmethods.www, which in
turn contains the WSDL file TemperatureService.wsdl, and a C# program,
Reference.cs, that exposes the methods of the Weather-Temperature
Web service.

We click Project, Add Existing Item, Browse, as shown in Figure 11.5, to find
the Reference.cs file, and click Open to add it to our project.

http://www.xmethods.net/sd/2001/TemperatureService.wsdl

278 CHAPTER 11 Web Services

Figure 11.4 The WSDL file for the Weather-Temperature Web service.

Figure 11.5 Locating the Weather-Temperature code.

The code for Reference.cs shows that it

■ is contained in the Example11_1.net.xmethods.www namespace

■ defines a TemperatureService class

■ defines a getTemp method that has a String zip code parameter and
returns a System.Single, which is another name for a float number

11.1 Web Service Clients 279

When the user clicks the Temperature button, we want to pass the zip code
that the user entered to the getTemp method and display the return value.
Because we are using a Web service, the getTemp method will actually exe-
cute on the site of the Weather-Temperature service.

We double-click the button in the Visual Studio .NET design to display its
event-handling template and fill in the code as follows:

private void getTemperature_Click
(object sender, System.EventArgs e)

{
Example11_1.net.xmethods.www.TemperatureService t
= new Example11_1.net.xmethods.www.TemperatureService();
display.Text = "The temperature is "

+ t.getTemp(enterZip.Text).ToString();
}

We first create a TemperatureService object, and then call its getTemp method,
passing it the zip code that the user entered. We invoke the ToString method
to convert the float to a string to display in the label.

11.1.2 Asynchronous Calls

The getTemp method we used in Example11-1 calls the Weather-Tempera-
ture Web service, passes the zip code, and waits for the Web service to
return the temperature. We call this synchronous access, because the calling
method is synchronized with the Web service. Weather-Temperature is a
very simple service, not requiring extensive computation, but one can eas-
ily imagine services that might take time to prepare an appropriate
response. They may need to contact other Web services, which would pro-
long the wait. Any network communication is subject to unforeseen delays.

Web services provide asynchronous access to allow the calling program to
contact the Web service and then continue further local processing without
waiting for the response. The client provides a callback method that the
Web service will invoke when it is ready to respond.

The Weather-Temperature Web service has two methods, BegingetTemp and
EndgetTemp, which provide asynchronous access. The client calls Beginget-
Temp when it makes the request. It passes the zip code and the callback
method. When the Web service responds, it invokes the callback method.
The callback method calls the EndgetTemp method to get the result.

Example11-2 accesses the Weather-Temperature Web service asynchro-
nously. We create this Windows Application project in the same way we

Figure 11.7
The response to the
client.

280 CHAPTER 11 Web Services

Figure 11.6 Making an asynchronous request.

created Example11-1. When the user clicks the Temperature button, the
event handler calls the BegingetTemp method and displays a message in a
label telling the user to wait for a message box giving the temperature. The
event handler finishes execution.

Meanwhile, the Web service finds the temperature for the submitted zip
code and calls the callback method, which calls the EndgetTemp method to
get the result and displays it in a MessageBox. This Web service does not take
long to respond, so the message box appears soon after the request, but
other services will not always be so quick. We use a MessageBox here, but the
callback method could write the result to a file or a log, which the user
could inspect to get the result. Figure 11.6 shows making an asynchronous
request, and Figure 11.7 shows the response to the user.

11.1.3 The Event Handler and the Callback Methods

When the user clicks the Temperature button, we want to send the zip code
that the user entered to the Weather-Temperature Web service. Because we
are not waiting for the Web service to find the temperature, we also send it
a callback method that the Web service will call when it is ready to send the
reply with the temperature at the requested zip code. Double-clicking on
the Temperature button in the Visual Studio .NET design displays its event-
handling template, which we complete to give

private void getTemperature_Click
(object sender, System.EventArgs e)

{
Example11_2.net.xmethods.www.TemperatureService t
= new
Example11_2.net.xmethods.www.TemperatureService();

AsyncCallback callback
= new AsyncCallback(Zip_Callback);

11.1 Web Service Clients 281

t.BegingetTemp(enterZip.Text, callback, t);
display.Text = "Wait for message";

}

The four statements of the getTemperature_Click method

■ create an instance of the TemperatureService class

■ create an AsyncCallback callback, passing it the name of the call-
back method

■ call BegingetTemp

■ place a temporary message in a label

We explain each of these in turn. The first statement creates an instance of
the TemperatureService class provided in the Reference.cs file when we
added the Web reference to the Weather-Temperature service to our proj-
ect. The TemperatureService class contains the three methods that we use in
Example11-1 and Example11-2: getTemp, BegingetTemp, and EndgetTemp.

The second statement creates the callback we need to pass to the Web serv-
ice for the callback. The AsyncCallback callback is defined in the System
namespace. It specifies the pattern that an asynchronous callback should
have. We pass it Zip_Callback, a method that follows that pattern and whose
code we discuss later in this section.

The third statement requests a temperature from the Web service by calling
BegingetTemp, passing it three arguments. The first argument is the zip code.
The second argument is the callback that the Web service will use to
respond when it is ready. The third argument is the service object that will
be returned with the result during the callback.

The fourth statement displays a message in a label, so the user is prompted
to expect a delayed response. We need to write the callback method in the
code-behind file that also contains getTemperature_Click. Its code is

private void Zip_Callback(IAsyncResult result)
{

Example11_2.net.xmethods.www.TemperatureService t
= (Example11_2.net.xmethods.www.TemperatureService)

result.AsyncState;
float temperature = t.EndgetTemp(result);
MessageBox.Show("The temperature is " + temperature);

}

With Visual Studio .NET we
can easily write a client
program to access Web
services available on the
Internet.We do not need to
know the details of the
protocol used to communi-
cate with the service. The
XMethods site, http://
www.xmethods.net,
contains many Web services
that we can try.

The Web Service Defini-
tion Language (WSDL) uses
XML to describe Web serv-
ices. When we add a Web
reference,Visual Studio .NET
creates a C# file that
exposes the Web service
methods for us to call in our
application.

In addition to synchro-
nous access, Web services
provide asynchronous
access to allow the calling
program to contact the Web
service and then continue
further local processing
without waiting for the
response. The client pro-
vides a callback method
that the Web service will
invoke when it is ready to
respond.

The BIG Picture

282 CHAPTER 11 Web Services

The Zip_Callback method follows the pattern required by the AsyncCallback
type. It has a parameter, result, of type IAsyncResult, which represents the
result of an asynchronous operation, and a void return type. When the
Weather-Temperature Web service calls the Zip_Callback method, it will
pass a result of this type. The AsyncState property of result provides the
response containing the information about the asynchronous operation. In
this case, that includes the temperature. The first statement of the Zip_Call-
back method casts the AsyncState value to the TemperatureService type we
are using, so we can call the EndgetTemp method to get the temperature.

The second line calls the EndgetTemp method that gets the temperature from
the result parameter. The third line displays the temperature in a MessageBox.

Test Your Understanding

1. What does WSDL stand for?

2. Explain the difference between a synchronous and an asynchro-
nous call to a Web service.

11.2 Creating a Web Service

Visual Studio .NET makes it easy to create a Web service. In Example11-3,
we create a Web service that provides a Reverse method. The client submits
a string, and the Example11-3 service returns the reversed string to the
user. We open Example11-3 as an ASP.NET Web Service template. Visual Stu-
dio .NET provides a design page, but we do not use it in this example. Web
services operate behind the scenes and do not need a user interface, but in
a later example we will add nonvisual components to the design page. Fig-
ure 11.8 shows the design page with a link at the bottom to switch to the
code view.

We click this link to change to the code page with the default file name of
Service1.asmx.cs. Visual Studio .NET creates the code template to include a
sample Web service method that is totally commented out. It is there to
show what needs to be done. That code is

// WEB SERVICE EXAMPLE
// The HelloWorld() example service returns
// the string Hello World
// To build, uncomment the following lines then
// save and build the project

http://www.xmethods.net
http://www.xmethods.net

11.2 Creating a Web Service 283

Figure 11.8 The Web service design page.

// To test this web service, press F5

// [WebMethod]
// public string HelloWorld()
// {
// return "Hello World";
// }

The key feature to note is the Web service attribute, [WebMethod], included
before the method. Adding this attribute enables the method we write to be
available as a Web service.

The code for the Reverse method we add is

[WebMethod]
public String Reverse(String s)
{

int size = s.Length;
char[] c = new char[size];
for (int i=0; i<size; i++)

c[i] = s[size-1-i];
return new String(c);

}

To reverse a string, we first find its length. We then create an array of char-
acters of that same size and copy the characters starting from the end of the
string to the beginning of the array, so that the array will hold the reverse of
the original string. Figure 11.9 shows this process for the string s, where s =
“tomato”. The loop starts with i=0, so the first copy is

c[0] = s[size-1];

284 CHAPTER 11 Web Services

Figure 11.9 Reversing a string.

String s = "tomato"

char [] c = o t a m o t

Figure 11.10 Testing the Reverse service.

Because size is 6, that becomes

c[0] = s[5]

which copies the ending 'o' of the string s to the first position of the array c.

11.2.1 Testing the Web Service

We can test by pressing the F5 key or by clicking the Debug, Start menu
item in Visual Studio .NET, or we can enter http://localhost/Example11-
3/Service1.asmx in the address field of Internet Explorer. Any of these meth-
ods brings up a page with a link at the top labeled Reverse. Clicking this link
displays the text box shown in Figure 11.10 in which we can enter a string
to reverse. Entering tomato and clicking the invoke button produces the
response of Figure 11.11.

11.2 Creating a Web Service 285

Figure 11.11 The response from the Reverse service.

Figure 11.12 A Client for Reverse service.

The response in Figure 11.11 is an XML file. Inside the <string> tag we see
the reserved string, otamot. Next, we will write a client for this service that
will allow users to access it.

11.2.2 A Client for the Reverse Service

Example11-4 will provide a form, shown in Figure 11.12, in which the
client can enter a string. Pressing a button will contact the Reverse service of
Example11-3 and display the reversed string in a label.

We create Example11-4 as a Windows Application project and add a button,
two labels, and a text box to the form. We set a few properties, including the
BackColor and Text of Form1. We set the (Name) property of the TextBox to
enterString and its Text property to the empty string. We change the (Name)
of the Button to reverse and its Text to Reverse. The Label to its right gets a
(Name) of display and an empty string Text.

Example11-4 needs to refer to the Web service of Example11-3. To add this
reference, we click Project, Add Web Reference and enter

http://localhost/Example11-3/Service1.asmx

Visual Studio .NET makes it
easy to create a Web serv-
ice. Adding the [Web-
Method] attribute en-
ables the method we write
to be available as a Web
service.

We can create a client
automatically or build one
ourselves.The three ways to
create a client automati-
cally are by pressing the F5
key, by clicking the Debug,
Start menu item in Visual
Studio .NET, or by entering
the Web services URL in the
address field of Internet
Explorer. Creating a client
ourselves provides a nicer
display of the results.

The BIG Picture

286 CHAPTER 11 Web Services

in the Address box that appears in the Add Web Reference window. When the
service is loaded, we click the Add Reference button.

To display the event-handler template for the Reverse button, we double-
click the button in the Visual Studio .NET design. We add code, so the com-
pleted event handler is

private void reverse_Click
(object sender, System.EventArgs e)

{
Example11_3.localhost.Service1 r

= new Example11_3.localhost.Service1();
display.Text = r.Reverse(enterString.Text);

}

In the event handler we create an instance of the Web service and call its
Reverse method, passing it the string entered in the text box. We display the
reversed string in a label. Example11-4 uses the synchronous call to the
service, but the BeginReverse and EndReverse methods are available for asyn-
chronous calling.

Test Your Understanding

3. With what attribute do we prefix a method to enable it as a
Web service?

11.3 Accessing Data

A Web service can retrieve data from a database. Example11-5 contains a
Web service with methods GetEmployees returning the names and titles of
the Northwind employees, and GetProducts returning the names and quan-
tities of the Northwind products.

11.3.1 Creating the Web Service

We create Example11-5 as an ASP .NET Web Service. To build the Web serv-
ice, we will need one data adapter to get the employee data and another to
get the product data from the Northwind database. We will use a DataSet to
hold the data to return to the clients of this Web service.

To start, we click the Data tab in the Toolbox and drag an OleDbAdapter to the
form. The Data Adapter Wizard pops up. Figure 11.13 shows the screen in
which we select the Northwind connection.

11.3 Accessing Data 287

Figure 11.13 Choosing a data connection.

We click Next and accept the default Use SQL statements in the Choose a
Query Type screen that appears next. In the Generate the SQL statements

screen we click the Query Builder button. Figure 11.14 shows the Add Tables
screen in which we select Employees and click Add and Close. From the
Employees box we select FirstName, LastName, and Title and click OK.

The Query Builder screen of Figure 11.15 shows the Employees table. We
need to select the fields with which we wish to fill the data set that the Web
service will return to the client. From the Employees box we select FirstName,
LastName, and Title and click OK. This finishes building the query and
returns to the Generate the SQL statements screen.

We could immediately accept the work of the query builder and click the
Next button. Optionally, by clicking the Advanced Options button we can
disable the generation of commands we will not be using. In Example11-5,
we click Advanced Options, uncheck the Generate Insert, Update, and Delete
statements box, and click OK before clicking the Next button in the Generate
the SQL statements screen. To complete the configuration of the data
adapter, we click Finish in the View Wizard Results screen.

288 CHAPTER 11 Web Services

Figure 11.14 Selecting the Employees table.

Figure 11.15 Selecting Employees fields.

11.3 Accessing Data 289

Figure 11.16 Adding a data set.

We change the (Name) property of the data adapter that appears in the
design to employees and the (Name) of the data connection that appears to
northwind.

Similarly, we add a second OleDbDataAdapter and use the Data Adapter Wiz-
ard to configure it to use the northwind connection. In that process, we build
the query to use the Products table and its ProductName and UnitsInStock

fields. We change the (Name) property of this data adapter to products.

We adjust the ConnectionString property value for the northwind connection,
if necessary, to

Provider=Microsoft.Jet.OLEDB.4.0;Password=";User ID=Admin; Data
Source="C:\Program Files\Microsoft Office \Office10\Samples\Northwind.mdb"

The Data Source path may vary on other systems.

We need to add the code for the GetEmployees and GetProducts methods that
we will expose as Web services for clients to use. Each method will return a
DataSet containing the data that the client can display. When we drag a
DataSet control from the Toolbox to the design, the Add Dataset window of
Figure 11.16 appears. We select Untyped dataset and click OK. In the design
view, we change the (Name) property of this data set to northwindData.

We click on the View, Code menu item and add the code for the GetEmploy-
ees and GetProducts methods.

290 CHAPTER 11 Web Services

[WebMethod]
public DataSet GetEmployees()
{

employees.Fill(northwindData);
return nortwindData;

}

[WebMethod]
public DataSet GetProducts()
{

products.Fill(northwindData);
return northwindData;

}

The [Web Method] attribute identifies each method as a Web service. Each
method has a DataSet return type. The GetEmployees code uses the Fill
method of the employees data adapter to fill the northwindData data set with
employee data. The GetProducts code uses the Fill method of the products
data adapter to fill the northwindData data adapter with products data.

Next, we need to create a client to use these Web services.

11.3.2 Creating a Client

In Example11-6, we create a client that allows the user to find either North-
wind employees or products. We create Example11-6 as a Windows Applica-
tion project and add two Button controls and a DataGrid. We set the Text
property of the first button to Employees and set the Text of the second to
Products. We change the (Name) property of the Employees button to
employees, the (Name) property of the Products button to products, and that
of the data grid to display.

We click the Project, Add Web Reference menu item to add a reference to the
Web service we just created, entering http://localhost/Example11-5/Ser-
vice1.asmx in the Address box in the window that appears. We click the Add
Reference button to add this reference to the project.

To access the Web service of Example11-5 from this project, we implement
the event handlers for the buttons. Clicking on the Employees button in the
Visual Studio .NET design, we complete the code in the template that
appears, to give

private void employees_Click
(object sender, System.EventArgs e)

A Web service can retrieve
data from a database. The
client adds a Web refer-
ence to a Web service and
is able to call its methods.

The BIG Picture

11.3 Accessing Data 291

Figure 11.17 Using a Web service to get Northwind data.

{
Example11_6.localhost.Service1 service =

new Example11_6.localhost.Service1();
display.DataSource = service.getEmployees();

}

We create an instance of the Web service and call the GetEmployees method
to return a DataSet that we assign as the DataSource property of the DataGrid.
In the event handler for the second button, we call the GetProducts method
of the Web service. The code is

private void products_Click
(object sender, System.EventArgs e)

{
Example11_6.localhost.Service1 service =

new Example11_6.localhost.Service1();
display.DataSource = service.GetProducts();

}

Figure 11.17 shows the user obtaining the names and titles of Northwind
employees.

Test Your Understanding

4. What does a Web service client need to add to its project to link to
the Web service?

292 CHAPTER 11 Web Services

11.4 Summary
■ Web services use a simple protocol with XML to allow programs to

communicate. In this way, an application developed on one plat-
form can use methods of another application running on a different
platform at a remote site and perhaps written in a different language.

■ With Visual Studio .NET, we can easily write a client program to
access Web services available on the Internet. We do not need to
know the details of the protocol used to communicate with the
service. The XMethods site, http://www.xmethods.net, contains
many Web services that we can try.

■ The Web Service Definition Language (WSDL) uses XML to
describe Web services. When we add a Web reference, Visual Studio
.NET creates a C# file that exposes the Web service methods for us
to call in our application.

■ In addition to synchronous access, Web services provide asynchro-
nous access to allow the calling program to contact the Web service
and then continue further local processing without waiting for the
response. The client provides a callback method that the Web serv-
ice will invoke when it is ready to respond.

■ Visual Studio .NET makes it easy to create a Web service. Adding
the [WebMethod] attribute enables the method we write to be avail-
able as a Web service.

■ We can create a client automatically or build one ourselves. The
three ways to create a client automatically are by pressing the F5
key, by clicking the Debug, Start menu item in Visual Studio .NET,
or by entering the Web services URL in the address field of Inter-
net Explorer. Creating a client ourselves provides a nicer display of
the results.

■ A Web service can retrieve data from a database. The client adds a
Web reference to a Web service and is able to call its methods.

11.5 Programming Exercises

11.1 Modify Example11-1 to display the date and time when the tem-
perature is displayed.

http://www.xmethods.net

11.5 Programming Exercises 293

11.2 Modify Example11-2 to display the date and time when the tem-
perature is displayed.

11.3 Modify Example11-4 to display the reversed string in a MessageBox.

11.4 Modify Example11-5 to add a GetShippers method that returns a
DataSet containing the Northwind Shippers data.

11.5 Modify Example11-6 to add a Button to display the Shippers data
added in Exercise 4.

11.6 Create a Web service that returns the amount that will result if a
given initial amount is deposited at a specified interest rate for a
specified number of years, if the interest is compounded yearly.

11.7 Create a Web service that returns a random lucky number
between 1 and 47.

11.8 Pick a service from the www.xmethods.com site and write a client to
access that service.

11.9 Create a client that uses the Web service of Exercise 7. The client
selects the number of lucky numbers desired from a ComboBox and
presses a Button to display the numbers in a Label.

11.10 Write a client to access the Web service of Exercise 6. The client
enters the initial amount in a TextBox and displays the resulting
amount in a Label.

11.11 Write a client that accesses the Web service of Exercise 6 asynchro-
nously. The client enters the initial amount in a TextBox and dis-
plays the resulting amount in a MessageBox.

11.12 Write a client that accesses the Reverse service of Example11-3
asynchronously.

11.13 Write a Web service to display the Northwind Orders data. Include
the Order ID, the Customer, and the Shipped Date.

11.14 Write a client to use the Web service of Exercise 13. Display the
data in a DataGrid control.

www.xmethods.com

This page intentionally left blank

12CHAPTER
Mobile Applications
Devices such as cellular phones and personal digital assistants (PDAs) are

becoming an ever larger part of the computing landscape.These devices vary in

capabilities, most importantly in the size of the display and the amount of

memory available. Devices with limited capabilities can execute Web applica-

tions in which the code for the application resides on the server and a micro

browser executes the client on the small device. Devices with more capabilities

can run stand-alone applications using the .NET Compact Framework, a version

of .NET design for mobile devices.

Visual Studio .NET 2003 includes the ASP .NET mobile controls. We use Visual

Studio .NET 2003 in this chapter.

Chapter Objectives:
■ Build simple mobile applications

■ Store data on the device

■ Access Web services from mobile applications

12.1 Introduction

In this section we give an overview of .NET development for mobile devices.

12.1.1 Mobile Devices

Many types of devices have computing capability and run .NET applica-
tions. These devices vary greatly in computing power and features. A hand-
held computer may have about the same capability as a desktop machine.
Typically, however, its capabilities are more limited, necessitating some
changes in application development. Mobile phones usually have less
memory and a smaller screen than handheld computers. Personal digital

296 CHAPTER 12 Mobile Applications

assistants come in various sizes with differing capabilities. Pagers and other
devices may also be programmable.

12.1.2 Operating Systems

Each device runs operating system software that manages the lower-level
interactions with it. Desktop computers may use the Windows XP operat-
ing system, but this system is too large for the handheld and pocket mobile
devices. Microsoft provides the Windows CE operating system for con-
strained environments.

Devices vary greatly in the features they support. For example, the screen
size differs among devices, and a device may not have a screen at all. A
device may have a keyboard similar to the larger desktop keyboards, it may
have a limited phone keypad, it may have a keyboard simulated in software,
or it may have no keyboard of any kind. And devices vary greatly in the
amount of memory available to host applications.

Consequently, the Windows CE operating system must be very flexible.
Manufacturers may use those Windows CE modules needed to support the
features present on their devices and may omit other unneeded modules. A
developer must test applications developed for the Windows CE system on
an emulator for the target device to make sure that it runs well on that par-
ticular device and does not require any Windows CE capabilities not pres-
ent on the target device.

To make it easier to develop mobile applications that run on many devices,
Microsoft has specified versions of Windows CE for particular classes of
devices. The Pocket PC operating system is a variant of Windows CE,
including specific modules that must be present on conforming devices.
Thus a developer for the Pocket PC system can assume that a Pocket PC
will have the specified capabilities. For example, every Pocket PC device has
a screen size of 240 � 320.

Because the Pocket PC screen size is small, it cannot display more than one
application at a time. It would be inconvenient for the user to close one
application before starting another, because that application would have to
be started again to continue running later. Thus on the Pocket PC, applica-
tions run indefinitely. When the user minimizes an application, it does not
terminate but stays alive in the background.

12.1 Introduction 297

Figure 12.1 Creating a Smart Device Application project.

Every Pocket PC device will have these common features, so developers can
write one application and expect it to run in a similar manner on all Pocket
PC devices. The Pocket PC must have at least 32 megabytes of memory to
host data and applications, and 16 megabytes for the system software. Thus
developers may provide rich clients that will be installed on the device and
run as stand-alone applications without any requirements for network
connectivity. Windows CE devices have varying amounts of memory.
Devices may use the Web to access applications too large to be installed on
the device. Microsoft provides smaller versions of its desktop .NET Frame-
work to develop applications for mobile devices.

12.1.3 The .NET Compact Framework

The .NET Compact Framework is a smaller version of the .NET Frame-
work designed for Windows CE systems. Its class library contains versions
of about 25 to 30 percent of the full framework. It includes many familiar
Windows user interface controls, which we have used earlier in the book to
develop desktop applications. Starting with Visual Studio .NET 2003, the
.NET Compact Framework classes are included.

To illustrate, we open a new project by clicking the File, New, Project menu
item. Figure 12.1 shows the selection of a Smart Device Application project.
Figure 12.2 indicates that we can target either the more specific Pocket PC
platform, whose devices all must have at least a common set of resources,

298 CHAPTER 12 Mobile Applications

Figure 12.2 Choosing a platform.

or the more generic Windows CE platform that allows a great variety of
device capabilities.

In Figure 12.2, we selected the Pocket PC platform. Figure 12.3 shows the
design view that opens when we click OK. The Toolbox on the left lists
some of the device controls that we can add to the form. The form is the
shape of a Pocket PC device. We will see later in the chapter that when we
test a Pocket PC application on the Pocket PC emulator, the emulator looks
like a typical Pocket PC device.

The other platform choice in Figure 12.2 is the Windows CE platform. But
notice on the right of Figure 12.2 that only the Pocket PC emulator is installed
for testing Pocket PC applications. No one emulator could model the variety
of devices that run Windows CE. Thus to test a Windows CE application, we
would need to download an emulator for a specific device from the manufac-
turer’s site. We do not develop stand-alone Windows CE applications in this
book, but do develop mobile Web applications for that platform.

12.1.4 Mobile Web Applications

A server hosts a Web application. Typically, the device makes a wireless
Internet connection to a Web site. Just as with desktop Web applications,

12.1 Introduction 299

Figure 12.3 Designing a Pocket PC application.

the ASP .NET mobile server controls run on the server sending a Web page
to a small browser on the device.

When the device connects to the server it identifies itself, and, based on that
identification, the server can vary the page it sends back to the device. The
server may take into account the screen size, the availability of color, and
other device characteristics in preparing its response. Using .NET, mobile
Web applications can adapt to a variety of devices.

To create a mobile Web application, we create a Visual Studio .NET project.
In Figure 12.4, we have selected an ASP .NET Mobile Web Application. Fig-
ure 12.5 shows the Toolbox that lists a few of the available Mobile Web
Form controls that we can drag onto the form at its right.

The Microsoft Smartphone is another specification based on Windows CE.
Newer versions of the .NET Compact Framework have the capability to
develop applications for Smartphone devices. Because these are currently
less common than Pocket PC devices, we concentrate on Pocket PC and
generic Windows CE applications in this chapter.

Microsoft provides the Win-
dows CE operating system
for constrained environ-
ments. Manufacturers may
use those Windows CE
modules needed to support
the features present on
their devices and may omit
other unneeded modules.
The Pocket PC operating
system is a variant of Win-
dows CE, and includes spe-
cific modules that must be
present on conforming
devices.

The .NET Compact
Framework is a smaller ver-
sion of the .NET Framework
designed for Windows CE
systems. We will use it to
develop stand-alone appli-
cations for Pocket PC
devices. We will use ASP
.NET mobile controls to
build Web applications
hosted on the server and
accessed using a browser
on the device.

The BIG Picture

300 CHAPTER 12 Mobile Applications

Figure 12.4 Selecting an ASP .NET Mobile Web Application.

Figure 12.5 Designing an ASP .NET Mobile Web Application.

Test Your Understanding

1. Which Windows operating system may be installed on devices of
varying capabilities?

2. Which .NET class library has been designed for use in mobile
device applications?

12.2 A Simple Mobile Web Application 301

12.2 A Simple Mobile Web Application

Many of the mobile controls are similar to controls we have used in build-
ing .NET Windows and Web applications for personal computers.

12.2.1 Creating a Web Application

Using Visual Studio .NET, we create Example12-1 as an ASP.NET Mobile
Web Application project. A simple form appears in the Visual Studio .NET
design. The screen area of mobile devices is limited, so we cannot add too
many controls. If necessary, we can use additional forms.

The Toolbox, partially shown in Figure 12.5, contains a list of Mobile Web
Form controls that we can drag onto a form. For this example, we add a
Label and two Command controls. Command controls are like buttons.

We change the Text property of the label to Have a great day and its Align-
ment property to Center. By clicking the plus to the left of the Font property
in the Properties window, we display other properties of the current font.
We set the Bold property to True. We change its (ID) property to Display.

We also set the Bold property for the Font of each Command to True. The Text of
one button is Red and that of the other is Blue. We set their (ID) properties to
MakeRed and MakeBlue.We change the BackColor of each Command to reflect its text.

When the user clicks a command, we want to change the color of the label’s
text to the color indicated by the command. We need to write code to han-
dle the event generated when the user clicks a Command. Double-clicking the
command in the Visual Studio .NET design displays the event-handling
method for that command. We add a line to each to change the ForeColor
property of the label. The code is

private void MakeRed_Click
(object sender, System.EventArgs e)

{
Display.ForeColor = Color.Red;

}
private void MakeBlue_Click

(object sender, System.EventArgs e)
{

Display.ForeColor = Color.Blue;
}

Clicking the Debug, Start menu will test the Web page in the desktop Inter-
net Explorer browser. Starting with the 2003 edition, Visual Studio .NET

302 CHAPTER 12 Mobile Applications

Figure 12.6 Choosing a device or device emulator.

includes an emulator for a Pocket PC, which serves as a test model for the
actual device. Clicking the Tools, Connect to Device menu item displays a
Connect to Device window that permits a choice of two platforms, Pocket PC
or Windows CE.

The Pocket PC option represents a specific version of the Windows CE
platform that is designed primarily for personal information management
devices with more memory and screen area than some of the smaller
mobile devices. Windows CE .NET is a more general platform targeting a
wide array of devices.

12.2.2 The Windows CE .NET Emulator

Choosing the Windows CE platform displays the screen of Figure 12.6. We
chose the Windows CE .NET Emulator.

Pressing the Connect button displays the generic screen of Figure 12.7. We
would need to download specific device emulators from manufacturers to
get device screens that refer to specific hardware devices running Windows
CE. Clicking the Internet Explorer icon displays the generic device browser.
We enter the address, on our system, of Example12-1,

http://192.168.1.100/Example12-1/MobileWebForm1.aspx

to display the Web application of Example12-1, shown in Figure 12.8. In
the URL, we use the address of the local machine we are using,
192.168.1.100. To find this address, we could execute the ipconfig command
in a command window.

12.2 A Simple Mobile Web Application 303

Figure 12.7 The Windows CE .NET Emulator.

Figure 12.8 The generic Windows CE browser.

304 CHAPTER 12 Mobile Applications

Figure 12.9 The Pocket PC emulator.

When we shut down the emulator, we get a dialog that gives us a choice of
saving the emulator state or turning off the emulator. We choose to turn off
the emulator.

12.2.3 The Pocket PC 2002 Emulator

To use the Pocket PC emulator instead, we choose it in the Connect to

Device screen. Because the Pocket PC refers to a specific type of device, the
emulator is able to represent it more closely. Figure 12.9 shows its start-up
appearance.

To configure the Pocket PC emulator to connect to the Internet, we click on
the Start, Settings menu item, then on the Connections tab, and finally on the
Connection icon. Settings will vary depending on the configuration of the
host computer. The uppermost combo box gives a choice of Internet Set-

tings or Work Settings to connect to the Internet. The author selected Work
Settings to use a broadband connection that is always on. The Internet Set-

12.2 A Simple Mobile Web Application 305

tings choice permits the entry of a dial-up number. After completing the
configuration, we click the circular ok in the upper-right corner of the emu-
lator, and the X at the upper right of the Settings screen. We only need to
configure once.

To run Example12-1, we click the Start menu shown in the upper-left cor-
ner of Figure 12.9. Because Example12-1 is a Web application, in the list
that appears we click the Internet Explorer item to use the local browser.
Figure 12.10 shows the emulator running Pocket Internet Explorer.

We click the View, Address Bar menu item in the lower-left corner and then
enter the address of Example12-1. A keyboard appears, provided to model
data entry with a stylus. We can use the mouse with the emulator keyboard.
To browse the site, we click the button with the green arrow at the right of
the address, as shown in Figure 12.11. Figure 12.12 shows Example12-1
running on the Pocket PC emulator.

Figure 12.10 The Pocket PC emulator running Internet Explorer.

We can add various
Mobile Web Controls to a
Web application. We can
test Web applications in
the Windows CE .NET
emulator, which provides
a generic browser, or in
the Pocket PC emulator,
which resembles a Pocket
PC device.

The BIG Picture

306 CHAPTER 12 Mobile Applications

Figure 12.11 Browsing a Web application. Figure 12.12 Example12-1 in the Pocket PC emulator.

Test Your Understanding

3. Which device type, Windows CE or Pocket PC, includes devices
with more limited resources?

12.3 A Smart Device Application: Appointment List

In this section we create an application that resides on a Pocket PC device.
Example12-2 will allow the user to update a schedule of appointments. The
device will store the appointments and allow the user to view the list and to
add or delete appointments. The simple user interface could be enhanced
with additional effort. The Pocket PC simulator includes an appointment
scheduler, so Example12-2 is meant only to introduce Pocket PC applica-
tion building.

We create Example12-2 as a Smart Device Application. In the Smart Device
Wizard that appears, we target the Pocket PC platform and create a Windows

12.3 A Smart Device Application: Appointment List 307

Application project. The Toolbox in the Visual Studio .NET design contains
a list of device controls that includes Label, TextBox, MainMenu, CheckBox,
RadioButton, PictureBox, Panel, DataGrid, ListBox, ComboBox, ListView, TreeView,
TabControl, HScrollBar, VScrollBar, Timer, DomainUpDown, NumericUpDown, Track-
Bar, ProgressBar, ImageList, ContextMenu, ToolBar, StatusBar, OpenFileDialog,
SaveFileDialog, and InputPanel.

12.3.1 Using Tabs

Example12-2 uses a TabControl with two tabs. The first tab lets the user add
a new appointment, and the second tab shows the appointment list. We
drag a TabControl from the Toolbox to the form. Right-clicking the mouse
on it displays a menu in which we click the Add Tab item. Repeating this
step, we add the second tab. We use the Properties window to set the Text
property of the first tab to Add and the text of the second to View.

To permit the user to select an appointment time, we drag a combo box,
two radio buttons, and a label onto the Add tab. The user selects the hour
from the combo box and AM or PM from the radio buttons. We set the (Name)
property of the combo box to time, that of the AM radio button to am, and
that of the PM button to pm. We also drag a text box and a label to this tab so
that the user can describe the appointment briefly, and we set the (Name)
property of the text box to description.

We click Debug, Start to run the application. Figure 12.13 shows the Add tab
that appears when this application starts running. Notice that the controls
appear above the keyboard that the user has displayed by clicking the key-
board icon in the lower-left corner. A button allows the user to add an
appointment. We set its Text property to Add Appointment and its (Name)
property to add.

We add a ListBox to the View tab to display the list of appointments and a
Save button to allow the user to save the updated list of appointments in an
XML file. We set the (Name) property of the list box to appointments and that
of the Save button to save. The application will initialize the list box with
the current list of appointments when it loads. In Example12-2, we do not
keep the list in chronological order or include dates. These features are left
as exercises for the reader.

When the user clicks the Add Appointment button, the event handler adds
the appointment to the list box. Double-clicking on the button in the

308 CHAPTER 12 Mobile Applications

Figure 12.13 Adding an appointment.

Visual Studio .NET design displays the template for the event handler. With
our added code it is

private void add_Click
(object sender, System.EventArgs e)

{
String amOrPm = "";
if(am.Checked)

amOrPm = " AM -- ";
else

amOrPm = " PM -- ";
appointments.Items.Add(time.SelectedItem

+ amOrPm + description.Text);
}

The event-handling code for the button sets the amOrPm string to either AM or
PM depending upon which radio button the user checked. Then it adds to
the list box a string composed of the time followed by the description the
user entered in the text box.

12.3 A Smart Device Application: Appointment List 309

12.3.2 Saving the Appointment List

When the user clicks the Save button in the View tab, the event handler saves
the list of appointments as an XML file. Figure 12.14 shows the list containing
three entries. When the user clicks the Save button, the event-handling code
creates an XmlDocument containing the list items and saves it on the device
under the name Example12_2.xml.

To view Example12_2.xml, we click the X in the upper-right corner to minimize
the application. Then we click the Start, Programs menu item, double-click the
File Explorer icon, and click the arrow in the upper-left corner to show the
My Device folder. We click on My Device and double-click Example12_2 to dis-
play it. Figure 12.15 shows this XML file.

The event-handling code for the Save button is

private void button2_Click
(object sender, System.EventArgs e)

{
System.Xml.XmlDocument xml

= new System.Xml.XmlDocument();

Figure 12.14 An appointment list. Figure 12.15 The list saved as an XML file.

310 CHAPTER 12 Mobile Applications

System.Xml.XmlElement top
= xml.CreateElement("appointments");

xml.AppendChild(top);
foreach (String s in listBox1.Items)
{
if (s != ")
{

System.Xml.XmlElement appt
= xml.CreateElement("anAppt");

appt.InnerText = s;
top.AppendChild(appt);

}
}
xml.Save("Example12_2.xml");

}

The first line of the event-handling code creates the XML document. The
next two lines add the root tag <appointments> to the XML document. The
foreach loop takes each string from the list box, adds it as the text of an
<anAppt> tag, and makes that tag a child of the root. The last line saves the
completed document on the device.

12.3.3 Initializing the Appointment List

When the user starts the application we want to load the Example12-2.xml
file and add each appointment it contains to the ListBox in the View tab.
Double-clicking on the form displays the template for the Form1_Load
method. We add our code to the template, so the completed method is

private void Form1_Load(object sender, System.EventArgs e)
{

if (System.IO.File.Exists("Example12_2.xml"))
{
System.Xml.XmlDocument doc

= new System.Xml.XmlDocument();
doc.Load("Example12_2.xml");
System.Xml.XmlElement root = doc.DocumentElement;
System.Xml.XmlNodeList item

= root.GetElementsByTagName("anAppt");
for (int i = 0; i < item.Count; i++)

appointments.Items.Add
(item[i].FirstChild.OuterXml);

}
}

The Toolbox in the Visual
Studio .NET design con-
tains a list of device con-
trols that we can use to
build smart device appli-
cations. Using a TabCon-
trol lets us break the
user interface into multi-
ple screens to best use the
limited size of mobile
devices. We can save data
in an XML file stored on
the device.

The BIG Picture

12.4 Accessing Web Services 311

The code starts by checking that the file exists. Until the user saves an
appointment list, this file probably will not be available. When it is, we cre-
ate a new XmlDocument and load the file into it. The DocumentElement property
holds the root element of the document. That would be the <appointments>
tag in our example.

Next we get a list of all <anAppt> tags that are nested in this root. These form
an XmlNodeList. The Count property contains the size of that list. We use a for
loop to get each item from the list of <anAppt> tags. The FirstChild property
of each holds an XmlText node that contains the text inside the <anAppt> tag,
which is the appointment we want to add to the list box. The OuterXml prop-
erty gets the content of the tag, which is the text we want to add to the list
box. The Items property contains the collection of items in the list box. The
Add method adds an item to this collection.

Test Your Understanding

4. In designing a smart device application, why might we choose not
to add controls to the lower part of the screen?

5. Which method can we use to find all the <anAppt> tags in an
XML document?

12.4 Accessing Web Services

If we have configured our Pocket PC to connect to the Internet, we can
access Web services from it. Example12-3 lets the user choose whether to
access the Temperature Web service hosted on www.xmethods.com and dis-
cussed in Chapter 11, or the Reverse Web service hosted locally and devel-
oped in Chapter 11. Figure 12.16 shows the initial screen in which the user
has selected the Temperature Web service and entered a zip code.

We create Example12-3 as a Smart Device Application. From top to bottom,
the device controls we add to the form and the properties we set for each are

Label

Text Choose a web service

Radio Button

Text Temperature

(Name) temperature

www.xmethods.com

312 CHAPTER 12 Mobile Applications

Radio Button

Text Reverse

(Name) reverse

Label

Text an empty string

(Name) message

TextBox

(Name) enter

Button

Text Submit

(Name) submit

Figure 12.16 Selecting a Web service.

12.4 Accessing Web Services 313

The lower Label is initially blank. When the user checks the Temperature
radio button, we display Enter a zip code in this label. Double-clicking on
this radio button in the Visual Studio .NET design shows the template for
the event-handling method. We add the code to set the Text property of the
Label so that it becomes

private void temperature_CheckedChanged
(object sender, System.EventArgs e)

{
message.Text = "Enter a zip code";

}

When the user checks Reverse, we display Enter a string to reverse in the
label. The event method to change the label is

private void reverse_CheckedChanged
(object sender, System.EventArgs e)

{
message.Text = "Enter a string to reverse";

}

12.4.1 Adding Web References

To enable our Pocket PC program to use a Web service, we need to add a
Web reference to it to our project. To refer to the Weather-Temperature Web
service in our project, we click the Project, Add Web Reference menu item.
This displays an Add Web Reference window that includes a text box to enter
the address of the Web service. We enter www.xmethods.net and hit the Enter
key. The box on the left side shows the XMethods site. We scroll to the bot-
tom and select the Weather-Temperature Web service.

The Web Service Definition Language (WSDL) uses XML to describe Web
services. We look for the WSDL link on the Weather-Temperature page. It
shows the link

http://www.xmethods.net/sd/2001/TemperatureService.wsdl

that we click. We click the Add Reference button to add a reference to this
Web service to our project.

Example12-3 needs to refer to the Reverse Web service of Example11-3. To
add this reference, we click Project, Add Web Reference and enter

http://192.168.1.100/Example11-3/Service1.asmx

www.xmethods.net
http://www.xmethods.net/sd/2001/TemperatureService.wsdl

If we have configured our
Pocket PC to connect to
the Internet, we can
access Web services from
it.To enable our Pocket PC
program to use a Web
service, we need to add a
Web reference to it to our
project.

The BIG Picture

314 CHAPTER 12 Mobile Applications

in the Address box that appears in the Add Web Reference window. When the
service is loaded we click the Add Reference button. When developing using
the .NET Compact Framework, we need to use a numerical address,
192.169.1.100 on the author’s machine, instead of localhost.

The Submit button will submit the data to either Web service. In its event
handler we determine which radio button the user checked and call the
corresponding Web service. The code is

private void submit_Click
(object sender, System.EventArgs e)

{
if (temperature.Checked)
{
Example12_3.net.xmethods.www.TemperatureService t
= new
Example12_3.net.xmethods.www.TemperatureService();

message.Text = "The temperature is "
+ t.getTemp(enter.Text).ToString();

}
else if (reverse.Checked)
{
Example12_3.WebReference.Service1 r

= new Example12_3.WebReference.Service1();
message.Text = r.Reverse(enter.Text);

}
}

If the user checks the temperature radio button, we create an object to access
the Temperature Web service and display the result of the call of the getTemp
method that returns the temperature in the zip code entered.

If the user checks the reverse radio button, we create an object to access the
Reverse Web service and display the reverse of the string entered. Figure
12.17 shows a successful use of the Reverse service.

Test Your Understanding

6. What do we need to add to a project to enable a Pocket PC pro-
gram to use a Web service?

12.5 Summary 315

Figure 12.17 Using the ReverseWeb service.

12.5 Summary
■ Devices with limited capabilities can execute Web applications in

which the code for the application resides on the server and a micro
browser executes the client on the small device. Devices with more
capabilities can run stand-alone applications using the .NET Com-
pact Framework, a version of .NET design for mobile devices. Many
of the mobile controls are similar to controls we have used in build-
ing .NET Windows and Web applications for personal computers.

■ Starting with the 2003 edition,Visual Studio .NET includes an emula-
tor for a Pocket PC, which serves as a test model for the actual device.
The Pocket PC option represents a specific version of the Windows
CE platform that is designed primarily for personal information
management devices that have more memory and screen area than

316 CHAPTER 12 Mobile Applications

some of the smaller mobile devices.Windows CE .NET is a more gen-
eral platform targeting a wide array of devices, including cell phones.

■ If we have configured our Pocket PC to connect to the Internet, we
can access Web services from it. To enable our Pocket PC program to
use a Web service, we need to add a Web reference to it to our project.

12.6 Programming Exercises

12.1 Modify Example12-1 to allow the user to choose either the Red,
Green, or Blue colors for the text.

12.2 Modify Example12-2 to keep the appointments with the earlier
ones listed first.

12.3 Modify Example12-2 to include dates for the appointments.

12.4 Modify Example12-3 to include a list of zip codes for the user to
choose from.

12.5 Write a Web application that will allow the user to get a list of lucky
numbers from 1 through 49. The user should select how many
numbers are desired. The numbers should be randomly chosen.

12.6 Write a smart device application in which the user can enter a
name and phone number and store them on the device. The user
can choose from a list of names to retrieve the associated phone
number from stored memory.

12.7 Write a smart device application that will allow the user to choose
from two Web services at the www.xmethods.com site and to use
whichever service was selected.

12.8 Write a Web application that allows the user to choose a zip code
and returns a list of three restaurants located in that zip code.

www.xmethods.com

13CHAPTER
Crystal Reports
Crystal Reports for Visual Studio .NET is the standard reporting tool for Visual

Studio .NET. We can host reports on Web and Windows platforms and publish

Crystal reports as Report Web Services on a Web server. Visual Studio .NET

includes Crystal Reports for Visual Studio .NET.

Chapter Objectives:
■ Create a simple report

■ Add features to a report

■ Use data sets as a report source

■ Expose reports as Web services

■ Enable users to interact with a report

13.1 Creating a Simple Report

Example13-1 builds a Windows application to display Northwind product
data. We start by clicking New, Project, selecting the Visual C# Projects

project type and then the Windows Application template. Choosing the Loca-
tion and entering Example13-1 in the Name field, we click OK. Before adding
controls to the form, we will create a report.

13.1.1 Adding and Creating a Report

To add a report to the project, we click on File, Add New Item, select the
Crystal Report template, and click Open, which displays the Crystal Report

318 CHAPTER 13 Crystal Reports

Figure 13.1 Crystal Report Gallery.

Gallery screen shown in Figure 13.1. The three choices for creating a Crys-
tal Report document are:

Using the Report Expert Guides report creation. Adds choices to
Report Designer

As a Blank Report Opens the Report Designer

From an Existing Report Uses the same design as another report

The choices for the report expert are:

Standard Typical report

Form Letter Letter combining text and data

Form Includes a letterhead or logo; used for invoices

Cross-Tab Contains a summarized grid

Subreport Contains a second report

Mail Label Contains multiple columns for address labels

Drill Down Displays summary and reveals details by drilling down

13.1 Creating a Simple Report 319

Figure 13.2 The Standard Report Expert.

Example13-1 accepts the defaults using the report expert with the standard
report. Figure13-2 shows the Standard Report Expert screen that appears. It
has eight tabs that allow many report building options.

Because we want to use Northwind data, we select the OLE DB (ADO) data
source. Clicking on the plus sign, +, at its left displays the OLE DB Provider
screen. We select Microsoft Jet 4.0 OLE DB Provider and click Next. In the
Connection Information screen in the Database Name field, we browse to find
the path to Northwind.mdb and click Next. We click Finish in the Advanced
Information screen.

The display returns to the Standard Report Expert screen that now shows the
Northwind database as an OLE DB (ADO) data source. Clicking on the plus
sign, +, to the left of its Tables item shows a list of the tables in the North-
wind database. We select the Products table and click the Insert Table button
to add Products to the Tables in report list on the right side of the screen.

Clicking Next displays the Fields tab of the Standard Report Expert shown in
Figure 13.3, in which we have selected the ProductId, ProductName, UnitPrice,
and UnitsInStock fields. We held the Ctrl key down while making selections
to allow multiple selections. Clicking the Add button moves the four

320 CHAPTER 13 Crystal Reports

Figure 13.3 Selecting fields.

selected fields to the Field to Display column on the right side. Then we
click Finish.

The project for Example13-1 now contains a CrystalReport1.rpt tab that
has five sections: Report Header, Page Header, Details, Report Footer, and Page
Footer. For this report, the Page Header section shows a date field in the
upper right and column headings for each of the four columns. We increase
the width of the date field to fully display the date.

The Details section shows the four pieces of information contained in a
typical row of this report. In both the Page Header and the Details sections,
we decrease the width of the ProductName field and move the UnitPrice and
UnitsInStock fields to the left to make them visible with less horizontal
scrolling.

13.1.2 Viewing the Report

The Toolbox contains a CrystalReportViewer control that we drag onto the
form. Increasing its size in the Visual Studio .NET design makes it easier to
view the data. We change its (Name) property to viewer.

We can easily configure this viewer to display the data for the entire Prod-
ucts table. Clicking on the CrystalReportViewer in the design and opening

13.1 Creating a Simple Report 321

Figure 13.4 Display information for all products.

the Properties window, we browse to set the ReportSource property to the
path to the CrystalReport1.rpt report contained in the current project. We
set the DisplayGroupTree property to False because we are not grouping data
in this report. Figure 13.4 shows how the report looks so far. To allow the
viewer to resize when the user resizes the form, we change its Anchor prop-
erty to anchor it to all four edges of the form.

13.1.3 Filtering

To make the report more useful, we can allow the user to choose a Company-
Name from the list of Suppliers and filter the data to only report Northwind
products from that supplier. We add a ComboBox to allow the user to select a
CompanyName and change the report to only display Northwind products
from the chosen company.

We drag a Label and a ComboBox onto the form, set the Text property of the
Label to Select a Supplier:, set the Text property of the ComboBox to the
empty string, and set its (Name) property to supplier. We anchor each of
these controls to Top only rather than Top, Left.

To display the current list of Suppliers, we will connect to the Northwind
database. We add an OleDbDataAdapter to the form and set its (Name) prop-
erty to northwindAdapter. We use the Data Adapter Configuration Wizard as
in earlier chapters. In the Add Table screen of the Query Builder, we choose
the Suppliers table. In the CheckBoxList of Suppliers, we select CompanyName

We used the Report Expert
with the Standard format.
We use a Crystal-

ReportViewer control to
view a report. We can filter
data by setting the Selec-
tionFormulaproperty.

The BIG Picture

322 CHAPTER 13 Crystal Reports

and SupplierID as the fields to include in the query. We click the Data, Gen-
erate Dataset menu item to generate a data set to hold the query results and
change its (Name) property to suppliersData.

We will fill the data set when the form is initialized. Double-clicking on the
form itself displays the Form1_Load template. We add C# code, so it becomes

private void Form1_Load(object sender, System.EventArgs e)
{

oleDbDataAdapter1.Fill(suppliersData);
}

We need to display this data set in the combo box. We do this by setting the
DataSource property for comboBox1 to suppliersData.Suppliers. We would like
to display the company name in the combo box but use the corresponding
supplier id to find the products from that supplier. To do this, we select the
ComboBox and in the Properties window set the DisplayMember property to
CompanyName and the ValueMember property to SupplierID.

When the user selects a company name, we want to alter the report to dis-
play only products from the selected supplier. We double-click on the Com-
boBox to display the event-handler template and fill in the code, to give

private void supplier_SelectedIndexChanged
(object sender, System.EventArgs e)

{
viewer.SelectionFormula

= "{Products.SupplierID} = "
+ supplier.SelectedValue;

viewer.RefreshReport();
}

The first line of code sets the SelectionFormula property of the CrystalRe-
portViewer. The selection formula determines which records are selected for
the report. We require that the SupplierID of the product be the same as the
SupplierID corresponding to the CompanyName that the user selected in the
ComboBox. To write the condition we enclose Products.Suppliers in braces.
Figure 13.5 shows the form with the report. The second line of code
refreshes the report to reflect the new selection formula.

Test Your Understanding

1. What choices of report type do we have when using the Report
Expert?

13.2 Adding Features to a Report 323

Figure 13.5 Selecting products from one supplier.

2. Which property of a CrystalReportViewer control holds the path
to the report it displays?

3. Which property of a CrystalReportViewer control can we set to
enable the report to choose which rows of data to display?

13.2 Adding Features to a Report

We can arrange the report by groups, add column subtotals, and add com-
puted fields. Special formatting can highlight or distinguish selected rows.
The report of Example13-2 illustrates these features using the OrderDetails
table from the Northwind database.

Following the steps used in creating the report of Example13-1, we create a
Windows Application project. To add a report to the project we click on
File, Add New Item, select the Crystal Report template and click Open,
which displays the Crystal Report Gallery screen. Example13-2 accepts the
defaults using the report expert with the standard report.

13.2.1 The Data Tab

Because we want to use Northwind data we select the OLE DB (ADO) data
source in the Standard Report Expert screen that appears. Clicking on the
plus sign, + , at its left displays the OLE DB Provider screen. We select Microsoft
Jet 4.0 OLE DB Provider and click Next. In the Connection Information screen
in the Database Name field, we browse to find the path to Northwind.mdb,

324 CHAPTER 13 Crystal Reports

Figure 13.6 The formula editor.

C:\Program Files\Microsoft Office\Office10\Samples\Northwind.mdb

on our system, and click Finish.

The display returns to the Standard Report Expert screen, which now shows
the Northwind database as an OLE DB (ADO) data source. Clicking on the plus
sign, +, to the left of its Tables item shows a list of the tables in the North-
wind database. We select the Order Details table and click the Insert Table
button to add Order_Details to the Tables in report list on the right side of
the screen.

13.2.2 The Fields Tab

Clicking Next displays the Fields tab of the Standard Report Expert. We click
the AddAll button to add all five fields to the report. We would like to add a
column showing the total cost of each order detail before the discount is
applied. To do this we click the Formula button and enter the name Cost in
the text box that appears. Figure 13.6 shows the formula editor that appears.

We want to compute the cost using the formula

Cost = UnitPrice * Quantity

To build this formula, we start by double-clicking Order_Details.UnitPrice
in the Report Fields column. This displays it in the area below. Then we
click the plus sign, +, to the left of Arithmetic in the Operators column to

13.2 Adding Features to a Report 325

Figure 13.7 A formula for the cost.

show the arithmetic operators. Double-clicking Multiply adds the multipli-
cation operator to the formula. To complete the formula, we double-click
Order_Details.Quantity. Figure 13.7 shows the completed formula.

We click the third button from the left in the Formula Editor to save the for-
mula and close the editor. In the Standard Report Expert, we select the Cost field
and click the Add button to add it to the Fields to Display list on the right.

13.2.3 The Group Tab

Clicking Next displays the Group tab. We will group by the amount of dis-
count, so we select Order_Details.Discount and click Add and then Next. A
combo box allows four choices for the sort order: in ascending order, in
descending order, in specified order, and in original order. We select in
descending order and click Next.

13.2.4 The Total Tab

The Total tab displays a screen that enables us to choose one or more fields
to summarize. We choose to summarize the Cost field, making sure that it is
the only field in the Summarized Fields list on the right. The Summary Type
combo box contains a large number of choices for the type of summary.
These include sum, average, maximum, minimum, and count among many others.
We choose sum for this example.

326 CHAPTER 13 Crystal Reports

Figure 13.8 The Order Details report.

13.2.5 The Remaining Tabs

The Top N tab allows various options for sorting the groups in the report.
We do not use this tab and click Next to display the Chart tab. In the Type tab
we select the Pie chart. We do not use the Data and Text tabs to configure
this chart.

Clicking Next displays the Select tab. We do not wish to select fields to
appear in the chart, so we click Next to display the Style tab. We enter the
title Northwind Order Details for this report and click Finish.

13.2.6 Viewing the Report

We add a CrystalReportViewer to the form. Clicking on the CrystalRe-
portViewer in the design and opening the Properties window, we browse to
set the ReportSource property to the path to the CrystalReport1.rpt report
contained in the current project. To allow the viewer to resize when the user
resizes the form, we change its Anchor property to anchor it to all four edges
of the form. Figure 13.8 shows the pie chart at the head of the report and
the start of the listing of order details with 25% discount.

We can arrange the report
by groups, add column
subtotals, and add com-
puted fields. Special for-
matting can highlight or
distinguish selected rows.
Various tabs in the Report
Expert help us to config-
ure a report with addi-
tional features.

The BIG Picture

13.3 Reports via the Web 327

Figure 13.9 Another section of the Order Details report.

On the left, we can choose the section of the report to view by selecting a
discount rate. The report shows the cost (before the discount is applied) of
each item, and the total cost of all items at a given discount rate appears at
the end of the section listing items at that rate. Figure 13.9 shows the sec-
tion containing the items with a 3% discount rate.

Test Your Understanding

4. List the tabs in the Standard Report Expert and describe the func-
tion of each.

13.3 Reports via the Web

We can view a report from the Web, publish it as a Web service, and access
that Web service report from a Windows application.

13.3.1 Viewing a Report in a Web Form

We create Example13-3 as an ASP.NET Web application. We add a Crystal-

ReportViewer control to the Web form. To load the report, we add code to the

328 CHAPTER 13 Crystal Reports

Figure 13.10 Viewing a report on the Web.

Page_Load method, which we can access by clicking the WebForm1.aspx.cs tab. If
that tab is not showing, we show it by clicking the View, Code menu item. In
the Page_Load method, we need to set the ReportSource property for the viewer.
We will view the report of Example13-2. The Page_Load method code is

private void Page_Load(object sender, System.EventArgs e)
{
CrystalReportViewer1.ReportSource
= "c:\\booknet\\ch13\\Example13-2\\CrystalReport1.rpt";

}

Entering http://localhost/Example13-3/WebForm1.aspx in the browser dis-
plays the report shown in Figure 13.10.

13.3.2 A Web Service Report

We create Example13-4 as an ASP.NET Web Service. We will publish the Order
Details report of Example13-2 as a Web service. In the Visual Studio .NET
design, we click the File, Add Existing Item menu item and browse to find
the report of Example13-2.

13.3 Reports via the Web 329

To enable this report as a Web service, we first click the View, Solution
Explorer menu item. Then in the Solution Explorer we right-click on the
report entry, CrystalReport1.rpt in this example, and click Publish as web
service. Visual Studio .NET adds a CrystalReport1Service.asmx file to the
Solution Explorer, which provides the report as a Web service.

13.3.3 Accessing the Web Service

To access the Web service we created in Example13-4, we create Exam-
ple13-5 as a Windows Application. We click the Project, Add Web Reference
menu item to add a reference to the Web service of Example13-4. We enter

http://localhost/Example13-4/CrystalReport1Service.asmx

in the Address field of the Add Web Reference screen, and click the Add Refer-
ence button when it appears.

To view the Web service report, we add a CrystalReportViewer control to the
form. Double-clicking on the form displays the Form1_Load method in
which we set the ReportSource property of the viewer to an instance of the
Web service. The code is

private void Form1_Load(object sender, System.EventArgs e)
{

crystalReportViewer1.ReportSource
= new Example13_5.localhost.CrystalReport1Service();

}

Figure 13.11 shows the Windows application of Example13-5 displaying
the report obtained from the Web service of Example13-4.

Figure 13.11 An Order DetailsWeb service client.

330 CHAPTER 13 Crystal Reports

We can view a report from
the Web,publish it as a Web
service,and access that Web
service report from a Win-
dows application.

The BIG Picture Test Your Understanding

5. Which C# method do we use to initialize a Web application?

6. Describe the steps used to publish a report as a Web service.

13.4 Summary

Crystal Reports for Visual Studio .NET is the standard reporting tool for
Visual Studio .NET. We can host reports on Web and Windows platforms
and publish Crystal reports as Report Web Services on a Web server. Visual
Studio .NET includes Crystal Reports for Visual Studio .NET.

The Report Expert displays a set of tabs that we use to configure reports.
The CrystalReportViewer control enables us to view a report from a Win-
dows application or a Web form. By using the Data Adapter Configuration
Wizard, we can incorporate information from a database in a report.

13.5 Programming Exercises

13.1 Modify Example13-1 to filter the data by the category of the prod-
uct rather than the supplier.

13.2 Modify Example13-2 to show the discounted total cost rather than
the gross total cost.

13.3 Modify Example13-2 to group by the quantity rather than the dis-
count rate.

13.4 Write an application that displays a Crystal Report showing the
Northwind customers. It will list the company name, address, and
country. Group by country.

13.5 Write a Web application that will view the report of Exercise 1.

13.6 Allow the user to filter the report of Exercise 4 by Contact Title.
The user will select a contact title from a ComboBox and the report
will display only those customers with the selected title.

13.7 Enable the report of Exercise 3 as a Web service and write a Web
application that accesses that Web service.

13.8 Add a pie chart to the report of Exercise 4.

AAPPENDIX
C# Keywords

abstract as base bool break

byte case catch char checked

class const continue decimal default

delegate do double else enum

event explicit extern false finally

fixed float for foreach goto

if implicit in int interface

internal is lock long namespace

new null object operator out

override params private protected public

readonly ref return sbyte sealed

short sizeof stackalloc static string

struct switch this throw true

try typeof uint ulong unchecked

unsafe ushort using virtual void

volatile while

This page intentionally left blank

BAPPENDIX
Operator Precedence Table

Highest

Primary [] . () ++ -- new

Unary ++(prefix) --(prefix) + - ~ ! (T)x

Multiplicative * / %

Additive + -

Shift << >>

Relational < > <= >= is

Equality == !=

Bitwise, Logical AND &

Bitwise, Logical XOR ^

Bitwise, Logical OR |

Conditional AND &&

Conditional OR ||

Conditional ?:

Assignment = += -= *= /= %= >>= <<= &= ^= |=

Lowest

This page intentionally left blank

CAPPENDIX
The ASCII Character Set
The first 32 characters and the last one are control characters. We label
those control characters that we use in the text.

0 32 blank 64 @ 96 `
1 33 ! 65 A 97 a
2 34 " 66 B 98 b
3 35 # 67 C 99 c
4 36 $ 68 D 100 d
5 37 % 69 E 101 e
6 38 & 70 F 102 f
7 39 ’ 71 G 103 g
8 \b 40 (72 H 104 h
9 \t 41) 73 I 105 i
10 \n 42 * 74 J 106 j
11 43 + 75 K 107 k
12 44 , 76 L 108 l
13 \r 45 - 77 M 109 m
14 46 . 78 N 110 n
15 47 / 79 O 111 o
16 48 0 80 P 112 p
17 49 1 81 Q 113 q
18 50 2 82 R 114 r
19 51 3 83 S 115 s
20 52 4 84 T 116 t
21 53 5 85 U 117 u
22 54 6 86 V 118 v
23 55 7 87 W 119 w
24 56 8 88 X 120 x
25 57 9 89 Y 121 y
26 58 : 90 Z 122 z
27 59 ; 91 [123 {
28 60 < 92 \ 124 |
29 61 = 93] 125 }
30 62 > 94 ^ 126 ~
31 63 ? 95 _ 127

This page intentionally left blank

ANSWERS
Answers to Odd-Numbered Test Your Understanding Exercises

Chapter 2

1. Size, 300 � 300

3. BackColor, Cursor, Font, ForeColor, RightToLeft, and Text occur
in all three.

BackgroundImage and FormBorderStyle are Form properties
only.

BorderStyle and TextAlign occur in TextBox and Label.

Lines and ScrollBars occur only in TextBox.

Image, ImageAlign, ImageIndex, ImageList, and UseMnemonic
occur only in Label.

5. The Form fills the entire screen.

7. Fill

9. It remains at the left end of the screen.

Chapter 3

1. CheckedChanged

3. LinkBehavior

5. The user would only be able to select one of the five radio but-
tons, and not one from each group.

7. The Normal value provides a square box for the user to check. The
Button value omits the square box and requires the user to click
the check box like a button.

9. SelectedIndexChanged

11. Timer

13. Set the DecimalPlaces property to 2.

15. Hold the Ctrl key down and press the S key.

17. FileName

19. ShowDialog

Chapter 4

1. a, b, f, g, and j are valid. c, d, e, and k use invalid characters.
h starts with a digit, i is a keyword.

3. name, type

5. int

7. a. I like

to write C# programs.

b. Ali Baba said, “Open, Sesame!”

c. Find 3\4 of 24

9. a. 3456.79

b. 0.00

c. 0.10

d. 1234567890.99

e. �234567.77

11. a. 345,678.9%

b. 0.0%

c. 9.9%

d. 123,456,789,098.7%

e. �23,456,776.5%

13. George George

where there are eight spaces in between

15. a. 4

b. �19

c. 4

d. 9

e. �2

f. 0

g. 8

h. �3

i. 1

17. a. 234 < 52

b. 435 != 87

c. �12 == �12

d. 76 >= 54

338 Answers

19. x=5 assigns 5 to x. x==5 tests whether x is equal to 5.

21. Many correct answers are possible, for example

a. x=2, y=7

b. x=0, y = any integer

c. x = 20, y = any integer

d. x=11, y =0

Chapter 5

1. a, b, and c. if (x == 12) y += 7;

3. a. if (y <= 6)

z += 5;

b. if (x != 0)

y+=5;

else

z = y + 9;

5. String category = “”;

if (amount >= 1 && amount <= 99)

category = “Contributor”;

else if (amount >+ 100 && amount < 499)

category = “Supporter”;

else if (amount >= 500 && amount <= 999)

category = “Patron”;

else if (amount >= 1000)

category = “Benefactor”;

7. a. 8

b. 7

c. 6

d. 7

9. a. 9

b. 6

c. 7

d. 9

e. 8

f. 9

g. 9

Answers 339

11. a. } should be)

b. test condition must be bool valued

c. =! should be !=

13. a. does not terminate

b. terminates

c. does not terminate

15. int sum = 0;

for(int i = 1; i <= 10; i++)

sum += 1;

17. int sum = 0;

for(int i = 9; i >= 3; i--)

sum += i;

19. 28

21. 26

23. 55

25. 0

27. 72

Chapter 6

1. a. 9

b. 3

3. Count

5. a. 1

b. 4

c. 4

d. �1

e. 6

f. �1

7. System

Chapter 7

1. ProductID is unique for each product, whereas two or more prod-
ucts may have the same ProductName.

340 Answers

3. System.Data.OleDb.OleDbDataReader

5. DataGrid

7. Diagram, Grid, SQL, and Results

Chapter 8

1. Hypertext Transfer Protocol (HTTP)

3. Hypertext Markup Language (HTML)

5. To link to another document.

7. The code behind the file contains the C# code that initializes the
page and the event-handler methods.

9. MultiLine

11. �1

13. OleDbCommand

15. AutoPostBack

17. IsPostBack

Chapter 9

1. ControlToValidate

3. MaximumValue, MinimumValue, and Type

5. Both are valid

7. ControlToCompare and ControlToValidate

9. Set the Type property to Double

11. (123)456-7890 or 123-456-7890

Chapter 10

1. They are all well-formed

3. The schema of part (a) is valid.

5. DataSet

7. DocumentElement

9. <xsl:apply-templates></xsl:apply-templates>

Answers 341

Chapter 11

1. Web Service Definition Language

3. [WebMethod]

Chapter 12

1. Windows CE

3. Windows CE

5. GetElementsByTagName

Chapter 13

1. Standard, Form Letter, Form, Subreport, Mail, Label, and Drill Down

3. SelectionFormula

5. Form1_Load, where Form1 is the name of the form.

342 Answers

INDEX
SYMBOLS
! 102
!= 100
% 96
%= 99
&& 101
* 96
*= 99
+

addition 96
concatenation 60

++ 99
+= 99
- 96
— 100
-= 99
/ 96
/* 99
< 100
<= 100
== 100
> 100
>= 100
_ 81
|| 101

A
anchoring, 25, 27-28, 39
AND, 101-102
arguments, 73
arithmetic expressions, 84, 96-100
arrays, 139-149

Length property, 140
variables, 148

ASCII, 82, 88, 335
ASP .NET, 195
assignment, 81, 83-84, 87, 99
associativity, 98
attributes, 11

B
BASIC, 11
binary operator, 96
block, 112-113, 134
bool, 88
BorderStyle, 43-44

FixedSingle, 43
Fixed3D, 44

break statement, 124
browser, 198, 200, 216
Button, 34-38

BackColor, 36
Click event, 37
Text, 35

C
C, 10, 11
C#, 1, 11

case-sensitive, 81
expressiveness, 12
features, 12
flexibility, 12
power, 12
productivity, 12
safety, 12

C++, 11
case, 123
char, 88-89
character set, 82
characters

escape, 88
special, 88-89

CheckBox, 53-58, 62
Appearance, 54
BackgroundImage, 54
CheckAlign, 54
CheckChanged event, 55-56
Checked, 143-144
FlatStyle, 55

344 Index

Image, 54
ImageAlign, 54
TextAlign, 54

class method, 152
client, 195, 216

client-side validation, 237
COBOL, 10
code, 22-23
code behind, 195, 202-203
collection

of links, 49-50
ColorDialog, 75-77

Click event, 76-77
Color, 76

ComboBox, 61-62
DropDownStyle, 61
Items, 62

command
database, 169, 175-176, 179

CompareValidator, 235
ControlToCompare, 236
Operator, 235

compilers, 9
components, 11, 12
concatenation, 60
condition, 110
conditional operators, 101-102
connection

database, 169, 173-174, 179
constants, 87
constructor, 147, 164
context-sensitive help, 37-38, 39
controls, 2

adding, 19-25
moving, 33-34
positioning, 25-33
sizing, 33-34

Crystal Reports, 7, 317-330
adding features, 323-327
as a Web service, 328-330
creating, 317-320
CrystalReportViewer, 320-321
filtering, 321-322
reports via the Web, 327-330

SelectionFormula, 322
viewing, 320-321, 326-328

D
data adapter, 169, 179

Configuration Wizard, 180-182,
187

Data Form Wizard, 183-187
data link properties, 174
data provider 173
data reader, 169, 176
data set, 169, 179, 182-183
data source, 179
database, 169-192

connected model, 173-179
disconnected model, 179-187
introductory example, 4-5, 6
multiple tables, 187-191
Web access, 208-216

DataGrid, 179, 182-183, 187
AutoFormat, 209
DataBind method, 210
DataSource, 182

DataSet, 182-183, 187
ReadXml method, 262

DateTime
Now, 67

DateTimePicker, 63-64, 67
Format, 63-64
MaxDate, 64
MinDate, 64
ShowUpDown, 64

decimal, 87-88
decrement operator, 99, 100
do statement, 133-134
docking, 25, 31-33, 39
Document Object Model (DOM),

260-263
double, 87, 88

E
editors, 9
emulator

for Pocket PC, 302, 304-306
for Windows CE, 302-303

Index 345

event-driven programming, 1-8, 14
event handlers, 1

CheckChanged, 44-45, 55-56
Click, 37, 70, 75, 76-77
code, 22-23
LinkClicked, 46-47, 50
SelectedIndexChanged, 59-61
TextChanged, 23
Tick, 66-67

execution, 24-25
Extensible Markup Language

See XML
Extensible Stylesheet Language

(XSL), 263
Extensible Stylesheet Language for

Transformations
See XSLT

F
F1 key, 38, 39, 143
Field width, 92
file dialogs, 72-75
flow diagram

for, 129
if, 111
if-else, 112
nested if-else, 119
while, 126

Focus method, 145
FontDialog, 24, 77-78

Click event, 77
for statement, 128-130
form, 2

BackColor, 18
Text, 18

Format method, 89, 90, 92, 156
format specifiers, 90-92
formatting, 89-92
formatting strings, 89, 95
FORTRAN, 10

G
GroupBox, 42, 47

H
hardware, 8-9
help, 37-38
hidden code, 164
high-level languages, 9-10
history

of programming languages, 10-11
HTML, 5, 195, 196-200

anchor, 197
attributes, 197
image, 197
limitations, 247-248
tags, 196-198

HttpResponse, 216
Hypertext Markup Language

See HTML

I
identifiers, 81, 87
if statement, 110-111, 116

nested, 117, 124
if-else statement, 111-112, 116

nested, 117
pairing, 119

increment operator, 99
indexer, 152, 162
InitializeComponent method, 146
instance, 163
instance method,152
instruction set, 9
int, 83, 87, 88
IntelliSense, 23-24, 256
Internet Explorer, 46
Internet Information Server (IIS), 200

J
Java, 10, 11
JavaScript, 238

K
key

database, 171
keyboard shortcut, 69
keywords, 82, 87, 331

346 Index

L
Label, 21-22, 39

AutoSize, 24
BorderStyle, 43
Dock, 32
Font, 24
ForeColor, 24
Name, 21
Text, 21
TextAlign, 29

Length, 60
library classes, 162-164
LinkLabel, 45-47

LinkBehavior, 48
LinkClicked event, 46-47, 50
LinkLabel.Link.LinkData, 50
Links, 49

LinkLabelLinkClickedEventArgs, 50
Link, 51
Link.LinkData, 51

ListBox, 58-61, 62, 141-142
Items, 58-59
Item.Add method, 178
multiple selections, 141-142
SelectedIndexChanged event, 59-61
SelectedItem, 60
SelectedItems, 142
SelectionMode, 59
Sorted, 59

ListItem Collection Editor, 204
Load method, 177, 183
logical complement, 102
loop termination, 127-128

M
MainMenu, 68-70, 78
meaningful names, 21, 32
MenuItem

Click event, 70
Shortcut, 69

menus, 68-70
MessageBox, 86
metadata, 11, 12
Microsoft Access, 170
middle tier, 169, 195

mobile applications, 6, 295-316
mobile devices, 295-296
mobile operating systems

Pocket PC, 296, 300
Windows CE, 296, 300

mobile Web applications, 298-306
creating, 301-302

mobile Web form controls
Command, 301
Label, 301

MonthCalendar, 64

N
namespace, 162-163
.NET

Compact Framework, 295, 297-
298, 300

components, 12
class library, 162-164

new, 164
newline, 87
Northwind, 170-172
NOT, 102
null, 164
NumericUpDown, 65, 67

DecimalPlaces, 65
Maximum, 65
Minimum, 65
ThousandsSeparator, 65
Value, 65

O
object, 163, 164
OleDbCommand, 175-176

CommandText, 175-176
Connection, 175
ExecuteReader method, 178

OleDbConnection, 173
ConnectionString, 174
Open method, 178
Close method, 178

OleDbDataAdapter, 180
Fill method, 183

OleDbDataReader, 170
Close method, 178

Index 347

GetDecimal method, 178
GetString method, 178
Read method, 178

OpenFileDialog, 72-73, 77
FileName, 72
ShowDialog method, 72

operating system, 9
operator precedence, 103
OR, 101, 102
overloading, 154

P
Panel, 41
Parse method

double, 105
int, 86

PictureBox, 52-53, 62
BorderStyle, 53
SizeMode, 53
Visible, 160

pixel, 19
Pointer option, 20
precedence, 97-98, 103, 333
PrintDialog, 75, 77

Click event, 75
PrintDocument, 75
private, 146, 163
Process, 46

Start method, 46
processor, 8, 9
project, 16-17

closing, 25
code, 23
creating, 26
design, 23
tabs, 23

Properties
autohiding 19
buttons, 17-18
categories, 17
changing, 18-19
window, 17-18, 27, 38

property, 152, 162

Q
query, 171-172
Query Builder tool, 172, 176, 181-182

R
RadioButton, 41-45

CheckChanged event, 44-45
Font.Bold, 43
group, 41, 47-48

Random, 146
Next method, 146

random numbers, 145-146
RangeValidator, 231, 235

ControlToValidate, 232
ErrorMessage, 232
MaximumValue, 232
MinimumValue, 232
Type, 233

reference, 148, 164
reference types, 139
RegularExpressionValidator, 239

expression types, 239
ValidationExpression, 240

relational databases, 170-172
relational operators, 100-101
RequiredFieldValidator, 227

InitialValue, 228
ControlToValidate, 228

Response, 216, 224
Redirect, 218
redirecting, 216-217

RichTextBox, 70-71, 77
LoadFile method, 71, 72
RichTextScrollBars, 71
SaveFile method, 71, 74
ScrollBars, 71
WordWrap, 71

RichTextBoxStreamType, 73

S
SaveFileDialog, 72, 73-75, 77

FileName, 75
ShowDialog method, 72

schemas, 251-257
creating, 252

348 Index

tag types, 251
search, 144
server, 195, 216
session tracking, 195
Smalltalk, 10
smart device application, 306-311

accessing Web services, 311-315
saving data, 309
using tabs, 307-309

software, 9-10
SqlDataAdapter, 180
Start page, 15-16
StatusBar, 66, 67
String, 150-162

Chars, 152
declaration, 151
Format method, 89, 90, 92, 156
immutable, 158
IndexOf, 150, 154-155
Length, 150
methods, 152-157
Replace, 155
Substring, 153
ToLower, 153
ToUpper, 33, 151
Trim, 153

StringBuilder, 158-159
Append, 159

Structured Query Language (SQL), 171
switch statement, 122-124
System.Diagnostics namespace, 46

T
TextBox, 20-21, 39

Anchor, 27
Cursor, 21
Dock, 32
event-handling code, 22-23, 30
Name, 21
Property categories, 21
Text, 21

three-tiered architecture, 195
Timer, 66-67

Interval, 66
Tick event, 66-67

Toolbox, 12-13, 19-20, 39
autohiding, 19
categories, 19-20

ToLongDateString, 65
ToString, 51, 60, 90, 91
ToUpper, 33
types, 87-95, 139-164

validation data types, 232

U
unary operator, 96
Unicode, 82
Uniform Resource Locator (URL), 199
UNIX, 10
using, 163
utility programs, 9

V
validation controls, 5, 8, 227-244
ValidationSummary, 243
variables, 81, 82-83, 87

declaration, 82
initialization, 83
local, 86
name, 82
type, 82

Visual Basic, 11
Visual Studio .NET, 12-13

code generation, 23
design, 12
documentation, 142-143

W
Web applications, 5-6, 195-225

creation, 200-201
execution, 24-25
multiple forms, 216-224
virtual directory, 201

Web forms
adding, 218
DataTextField, 219
FlowLayout, 201, 211
GridLayout, 201
hidden state, 220-221
initializing, 219-220, 223

Index 349

IsPostBack, 220, 224
Page, 216
pageLayout, 201, 211
PageLoad method, 210

Web Matrix, 200
Web reference, 276-279
Web server

hosting, 200-201
Web server controls, 5, 7, 200-208

AutoPostBack property, 213, 217
Button, 202
CheckBoxList, 204
checking required fields, 227-231
code behind, 202-203
comparing values, 235-239
Label, 202
ListBox, 204
RadioButtonList, 206
range checking, 221
Response property, 216, 218
summarizing validation errors, 243
TextBox, 202, 204
validating expressions, 239-242

Web Service Definition Language
(WSDL), 277, 282

Web services, 6, 8, 275-292
accessing data, 286-291
AsyncCallback, 281
AsyncState, 282
asynchronous calls, 279-282
callback method, 279
clients, 275-282, 285, 286
creating, 282-285
IAsyncResult, 282
synchronous call, 286
testing, 284-285
WebMethod attribute, 283, 286

while statement, 126-127

Windows applications, 2-4
closing, 25
creating, 15-19, 26
maximizing, 25
minimizing, 25

X
XML, 12, 247-272

attributes, 250
comment, 250
document creation, 256-257
from data, 258-262
prolog, 249
syntax, 248-250
tags, 250
transforming, 263-271
validate, 257
using schema, 256-257
valid, 255-256
well-formed, 250

XmlDataDocument, 259, 261
XmlDocument, 261

DocumentElement, 262
Save method, 259

XmlElement, 261
GetElementsByTagName, 262

XmlNode, 261
FirstChild, 262

XmlNodeList, 261
Count, 262

XmlText, 261
XSLT, 263-271

apply-templates, 265, 267
processing instruction, 264
stylesheet, 263
template, match 265
text, 267
value-of, 267

This page intentionally left blank

Computer Science Illuminated, Second Edition
Nell Dale and John Lewis
ISBN: 0-7637-0799-6
©2004

Programming and Problem Solving with Java
Nell Dale, Chip Weems,
and Mark R. Headington
ISBN: 0-7637-0490-3
©2003

Databases Illuminated
Catherine Ricardo
ISBN: 0-7637-3314-8
©2004

Foundations of Algorithms Using Java
Pseudocode
Richard Neapolitan and Kumarss Naimipour
ISBN: 0-7637-2129-8
©2004

Artificial Intelligence Illuminated
Ben Coppin
ISBN: 0-7637-3230-3
©2004

The Essentials of Computer Organization and
Architecture
Linda Null and Julia Lobur
ISBN: 0-7637-0444-X
©2003

A Complete Guide to C#
David Bishop
ISBN: 0-7637-2249-9
©2004

A First Course in Complex Analysis
with Applications
Dennis G. Zill and Patrick Shanahan
ISBN: 0-7637-1437-2
©2003

Programming and Problem Solving with C++,
Fourth Edition
Nell Dale and Chip Weems
ISBN: 0-7637-0798-8
©2004

C++ Plus Data Structures, Third Edition
Nell Dale
ISBN: 0-7637-0481-4
©2003

Applied Data Structures with C++
Peter Smith
ISBN: 0-7637-2562-5
©2004

Foundations of Algorithms Using C++
Pseudocode, Third Edition
Richard Neapolitan and Kumarss Naimipour
ISBN: 0-7637-2387-8
©2004

Managing Software Projects
Frank Tsui
ISBN: 0-7637-2546-3
©2004

Readings in CyberEthics, Second Edition
Richard Spinello and Herman Tavani
ISBN: 0-7637-2410-6
©2004

C#.NET Illuminated
Art Gittleman
ISBN: 0-7637-2593-5
©2004

Discrete Mathematics, Second Edition
James L. Hein
ISBN: 0-7637-2210-3
©2003

Outstanding New Titles:

http://www.jbpub.com/ 1.800.832.0034

http://www.jbpub.com/

Take Your Courses to the Next Level
Turn the page to preview new and forthcoming titles

in Computer Science and Math from
Jones and Bartlett…

Providing solutions for students and educators in the following
disciplines:

Please visit http://computerscience.jbpub.com/ and
http://math.jbpub.com/ to learn more about our exciting publishing

programs in these disciplines.

• Introductory Computer Science

• Java

• C++

• Databases

• C#

• Data Structures

• Algorithms

• Network Security

• Software Engineering

• Discrete Mathematics

• Engineering Mathematics

• Complex Analysis

http://www.jbpub.com/ 1.800.832.0034

http://www.jbpub.com/
http://computerscience.jbpub.com/
http://math.jbpub.com/

