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Density profile of a hole at the fractional Hall edge
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The density profile of a hole excitation is investigated when it is located at the edge of the fractional
guantum Hall state at filling factor 1/3. Of interest is the issue how the hole profile decays at long distances,
both along the edge and into the bulk. We find that the hole is exponentially localized in both directions. Its
localization length along the edge depends on the range of the interelectron interaction, increasing roughly by
a factor of two in going from a short-range interaction to the long-range Coulomb interaction.
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There has been much interest in the physics describing thibe effective cyclotron energy for the composite fermions is
edge of a fractional quantum Hall effe@QHE) state! Be-  governed by the same energy scale as the interaction
cause of a gap in the bulk, the only low-energy excitations oktrength.

a FQHE system occur at the edge, and it is believed that their Here, we study the profile of a hole at the edge, obtained
dynamics can be mapped into that of a one-dimensionaby annihilating an electron at the edg&he hole is not to be
Tomonaga-Luttinger liquid. There has been much experi- confused with the fractionally charged quasihpiEhe hole
mental work toward determining the value of the exponents not a low-energy excitation, but is relevant for tunneling,
that describes the long-distance behavior of this liquid,ag this is precisely the state produced when an electron tun-

throulg§14thel-v curve for tunneling of an electron into the a5 ot of the FQHE edgéA determination of the tunneling
edge-*The measured exponent appears to be in disagregq,q ctance requires the spectral resolution of this state,
ment with its theoretical interpretation as a topological quany nich is beyond the scope of this worlOur main conclu-

i 1
gj dndrgg;%efhg ggrr:lubrﬁ\r/éa:sﬁi{ier:)tftthh%o;extlcoarl];/\r/](t)ﬁ(é have sion is that even though the density of a hole at the edge has
Y P ' much more complicated structure at short distances than

An interesting feature noted in Refs. 5, 7, and 12 is tha hat of a hole in the interior. th | f the densi
the long-range Coulomb interaction induces density oscillalat Of & hole in the interior, the envelope of the density

tions at the edge that decay slowly, apparently with a poWeprofile depays exponentially. We c;onfi_rm this for wave func-
law as one moves into the interior. Other theoreticaltions at different levels of approximation, as well as for the

works*1? have indicated the possibility of edge reconstruc-exact wave function for small systems. The extension of a

tion. That brings up the question that we wish to address ifiole at the edge into the bulk is approximately restricted

this article: How one-dimensional is the edge? The slow dewithin four magnetic lengths.

cay of density oscillations may suggest that the edge physics For a given ground state wave functidf(ry, ... ry), the

is not entirely decoupled from the bulk physics. However,hole atR is given by

these density oscillations are a part of the ground state. The

important question is whethexcitationsat the edge are con-

fined to the edge, or extend into the bulk. If the excitations at

the edge are not confined to the edge, that would imply that ~

the physics of the edge is, strictly speaking, not onewhereVy=2>,7,(R)c, is the standard annihilation operator

dimensional. Our modest aim in this paper is to investigatg»,(r) are single-particle eigenstates, ang destroys an

this issue using an approdch'?that does not allow for edge electron in the state], and|¥) denotes the wave function in

reconstruction. the second quantized form. The wave function for the hole at
For filling factor unity, if one neglects spin and higher g gptained by the application oF to the ground state, is

Landau levels, it is clear that the low-energy excitations argyiyen by

confined to the edge and have a mapping into a system O

pne—dimensiongl fermion@.NQgIect of higher Landau Ievels_ h_

is possibly justified in the limit of extremely large magnetic WR=W(R,rp ...l (@)

fields, when the cyclotron energy overwhelms the interaction

energy between electrondf one takes electrons to be non- We will compute the density of a holeneasured relative to

interacting, then, of course, higher Landau levels can be nehe ground state densjtgituated at the edge.

glected at any magnetic fiejJddowever, such a mapping has ~ We will work in the disk geometrythe spherical geom-

not been established rigorously for the FQHE states. Indeedtry, often used for the study of the FQHE states, is not

the slow decay of density oscillations in the ground state isiseful for our present purpose for lack of edg&%e calcu-

an indication of the fact that the bulk is not as inert in FQHEIation requires a sufficiently accurate approximation for the

as it is in the integral quantum Hall effedQHE). The rea-  ground-state wave functiof/. The exact ground-state wave

son is that the mixing betweenomposite-fermion(CF)  function for the Coulomb interactiony®*@® can be evalu-

guasi-Landau-levels cannot be neglected, due to the fact thated from the Hamiltonian of a second-quantized form

[Why = Vgl W), 1)
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where the operatcxi;r (a,) creategannihilate$ an electron at T I
state|r) with angular momentumm and V is the Coulomb 0 O—0—0—0-"0
interaction. For the Coulomb interaction matrix element we " -2-10 1 2 3 4 «N-1
used the expression derived by Goldman and T&ijzef @ £
(s+r)!(t+r)! 2
(s+rtVst+ry=/——— II
s!t! ]
F(r+s+t+§) T !l “ oo
X ) [AgtB{s + BrstA{sL 0 v
n -2-10 1 2 3 4 wN-1
(4) p—=
. (b)
with
FIG. 1. The zeroth-order wave functio#® is schematically
. ° /s I‘(% +i)1"(% +r+i) depicted in(a). ¥’ is obtained by a diagonalization of the full
Ast:_z i) (r+i) F(§+r+t+i)' (5 Hamiltonian in the composite-fermion basis states of the type
i=0 Y shown schematically @) and (b).
r S (s\ TE+ir(E+r+i) (1 . structed from the trivial, orthonormal Slater determinant ba-
BL=2> | , 3 S| 5+r+2i). (6) sis for noninteracting electrons kt, denoted by{®-"}, in
N I T(S 4+ i)\ 2 - : ’
the following manner:
The above expressions are6 more stable for nu_rnerlca}l .work ‘I’I;IPH (z- Zk)zpq)l(;*. R
than those used previousht® because they consist of finite i<k

sums ofpositiveterms. In order to obtain the ground state we
have employed a modified Lanczos algorithfnyhich has ~ Here,z=x;=iy; denotes the position of thH¢h electron, P is
allowed computation at filling factow=1/3 for up toN  the vorticity of composite fermions, arfé indicates projec-
=10. tion into the lowest Landau level. The symbak
For larger systems, exact diagonalization is not possiblez1,2, ... D* labels theD* Slater determinants included in
and one must resort to variational wave functiéh® We  the study. The ground state is then obtained by a diagonal-
will investigate the structure of the edge hole in the contexization of the full Hamiltonian in the space defined {y.}.
of »=1/3, where a good approximation to the exact groundDifferent choices of the starting baﬂ@';f} produce differ-
state is given by Laughlin’s wave functiéh.To obtain a  ent approximations for the ground statelat
better representation, we will use a method called “CF At »=1/3 we have L=L*+N(N-1) and L*=N(N
diagonalization,”?°which refers to a diagonalization of the —1)/2. We have considered three wave functions for the
full Hamiltonian (which is simply the Coulomb interaction in ground state(i) ¥° denotes the zeroth-order wave function,
the lowest-Landau-level subspacen a relatively small obtained when we keep only the ground statd_#atlt is
strongly correlated basis constructed with the help of theschematically shown in Fig.(4). The wave functiort?® is
CF theory. The advantage of this method is that, becausentical to Laughlin’s wave functior{ii) ¥’ is an improved
of the smaller dimension of the basis, it can be used wheapproximation, obtained by allowing mixing with a single
exact diagonalization is not possible. It has been shown to bparticle-hole pair of composite fermions; this was considered
very accurate, and can be improved by successively increas Ref. 5. ¥’ is obtained by a diagonalization of the full
ing the dimension of the correlated basis, which, in turn,Hamiltonian in the space defined by basis functions of the
involves increasing the amount of mixing between CFtype shown in Figs. () and Xb). (iii) Finally, for small
quasi-Landau-leve®. The disadvantage is that the calcula- systems, we also have available the exact wave function,
tion of Hamiltonian matrix elements is more involved than wexact which will be evaluated for the Coulomb interaction.
that for simple Slater determinant basis functions, and reThe length will be measured in units of the magnetic length
quires extensive Monte Carlo evaluation. The method, which= \7c/eB throughout the paper.
involves several steps, has been described in the The above three wave functions can be interpreted as dif-
literaturé*"2*and will not be repeated here in detail. Here weferent levels of approximation to the Coulomb ground state
only provide a brief outline. of the many-electron system. The accuracy increases in the
The CF theor}f1921.22maps strongly interacting elec- order W°— W’ —Wexact Alternatively, one can interpret the
trons at angular momentuin into weakly interacting elec- results in terms of the range of the interactidf. is known
trons atL* =L-pN(N-1). A correlated basi$\lf;} for the  to be the exact ground state for a short-range interaétion,
low-energy states of interacting electronsLatan be con-  while ¥@tjs by definition, exact for théull Coulomb in-
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teraction. Becaus®’ is somewhere in between the two, it 0.08
can be identified with the ground state of sofm@known)
interaction whose effective range is between the short-range
interaction and the Coulomb interaction. Accordingly, the
change of the properties in the sequemicd— ¥’ — pexact h°~°4
can be regarded as a reflection of the variation in the effec- PR
tive range of the interaction between electrons.

The electron density for the state containing a hol@ &
given by 0

fdzrg-“derI\P(R,r,rg, ...’rN)|2

pr(r) =

NS 004
fdzrz"'derI‘I’(R,rz.---,rN)|2 0

which we evaluate by the Monte Carlo method. It is noted 0.08
that this is identical to the pair correlation functigtR,r)
g(R,r)=(ar;=R)é&ry—r)) 9

apart from an overall normalization factor. We define the
density of the hole as

0.04
pR(r) == [pr(r) = p°(r)], (10) PR

which is also the excess charge density in units of the elec-
tron charge. Here? is the electron density for the ground
state, given by

ry- - d?r W (r,rors, -1y I o I
) = LAy e
fdzrl...erNmf(rl,rz,---,rN)|2

FIG. 2. The density profile of the hole excitation fRi=6X (a)

. . in the angular direction(b) in the radial direction. The density is
As noted in Refs. 5 and 12, the exact density shows Stronguoted in units of the inverse square of magnetic letgtt In this

radial oscillations, which are accurately capturedbybut i the bulk density fow=1/3 is 1/6m) ~0.053] The solid, the
not by Wy, R ) ) dashed, and the dotted lines correspon®f$2t ¥’ andW¥P, re-
We now place one hole &=6X, at the maximum in the gspeciively. The density of the ground state as a functiom of

ground-state density near the edge. The hole density profilgefs. 5 and 12 has a peak =6, beyond which it decreases
has a peak @R, which has a radius of4l both in the radial  exponentially.

and angular directions. Along the circumferenégg. 2@)],
the hole profile exhibits oscillations attenuating with dis-result for ten particles. Figure 3 indicates that the hole den-
tance. The amplitude of the oscillations increases with imsity profile remains confined to the edge in the thermody-
proving accuracy. Fow?, we can hardly identify any oscil- namic limit.[The size of the hole has increased very slightly
lations beyond the second valley! captures the long-range in going fromN=10 to N=20, but the change is very small
nature of the oscillations, but underestimates the amplitudecompared with the increase in the disk size3l), and is
The period of the oscillations is obtained correctly by allunrelated to the extension of a hole into the bllk.
three wave functions. For the radial direction, we find that What is the behavior in the azimuthal direction along the
W’ provides an almost exact account of the hole density, asdge of the disk? The equal-time Green’s function along the
noted by the fact that the solid and dashed lines are indistilFQHE edge is known to exhibit a power-law decay. Some
guishable in Fig. &). microscopic studi€s’ have suggested that the exponent de-
Now we come to the question of whether the edge excipends on the nature of the electron-electron interaction. A
tations are confined to the edge of a FQHE system. Figurguick inspection of Fig. @) tells us that the hole density
2(b) shows that the hole is well localized near the edge. Trofile is also affected by the interaction: As we go from a
study the dependence on the number of particles, we displaghort-range interaction to the long-range Coulomb interac-
in Fig. 3 the density profile of the hole fdd=10 andN  tion (V0—W’' - W¥®a%  the oscillations become more
=20 particles, when it is located approximately at the maxi{prominent.
mum ground state density at the edgéle have choselR For a quantitative analysis, we have investigated the be-
=6 for N=10 andR=9 for N=20). Since the exact wave havior of the oscillation amplitude as a function of the dis-
function w®@°js not available foN=20, we have used the tance along the edge. The amplitude of the oscillation at each
wave function¥’, which was seen to give a practically exact extremum can be estimated by the differermé; between
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0.08

TABLE I. The localization lengthé of the hole density profile
along the edge. We put one holeRit 6% for N=10 andR=9X for
N=20. Even for theN=10 system, all the estimated localization
lengths are far smaller than half of the circumference considered
(7R=18.8), which guarantees the validity of our estimation. The
exact value forN=20 is unavailable due to the huge size of the

plly 004 Hilbert space.
N ‘I’O P! q,exact
10 2.2 3.5 4.5
0 20 1.9 3.1 —
1 1
-10 -6 0 5 .
z—R the upper and the lower envelope functions of the hole den-

sity profile. At each minimum we have approximated the
FIG. 3. The density profile in the radial direction for the hole value of the upper envelope function by a linear interpolation
excitation atR=6% for N=10 (solid line) and atR=9% for N=20  of two adjacent maxima, and vice versa. Even though the
(dashed ling The wave function¥’ has been used for the calcula- decay of the oscillations depends on the form of the wave
tion, and the origin has been shifted to the hole position forfunction(and hence on the form of the interactjpthe hole
comparison. appears, quite generally, to be exponentially localized along
the edge. By fittingAp',; of each wave function to an expo-
nential function, we obtain the localization leng¢hin the
angular direction[The fitting curves are also plotted by lines
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FIG. 4. Semilogarithmic plot of the oscillation amplitude of the  (p) z
hole density profile as a function of the distance along the disk edge
for (&) N=10 andR=6; (b) N=20 andR=9. The data forr®*at ¥y’ FIG. 5. The density profile of the hole excitation fla=7% (a)

and W0 are denoted by squares, circles and triangles, respectiveljn the angular direction(b) in the radial direction. There are 10
The best fits to the equatioApE(Re):A exp(—RO/¢) are also  electrons in the system, and the solid, the dashed, and the dotted
shown. lines correspond ta®@% ¥’ and WO, respectively.
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FIG. 7. The density profile for the hole excitation in the radial

FIG. 6. Semilogarithmic plot of the oscillation amplitude of the
hole density profile as a function of the distance along the disk edgeirection forR=6x (solid line) andR=7X (dashed ling There are

for N=10 andR=7. The data for#®@tand ¥’ are denoted by 10 electrons in the system.

squares and circles, respectively. The best fits to the equation
Apg(Re):AeXp(._ng) are also shown(The first point is ne- _g 5 forwexach For WO, the oscillations are too weak for a
glected for the fitting. meaningful analysis. The hole density is well localized in the
- o . radial direction also foR=7.
in Fig. 4@).] The localization lengths for different wave "z comparison of the density profiles for holes located at
functions are summarized in Table |. The long-range COUR=6 andR=7 in Fig. 7 shows that the maximum in the hole
lomb Interaction e”h?‘”c?s the Io_cahzatlon _Ien@tho 4'5_ density occurs at=6 independent of the hole location at the
magnetic lengths, which is approxm_ately twice the IOCf""l'za'edge, and the density profiles are identical in the outer re-
tion Iength for a short-rangg interaction. The r—_:xponennal IO'gion. The reason is that in the close vicinity of the hole
calization of the hole density as well as the interaction de- osition R, the densitypg is essentially zero, and conse-
lpendence of tple_ Izo(;:allzatrl?n Iengtle. has beeg 1C-08rlrr|n?/(\j/ for guently, the hole density is essentially the same as the ground
arger systeniN=20) as shown in Fig. @) and lable 1. We  giate density. In particular, the maximum of the hole density
believe that the conclusions are valid in the thermodynami¢y siches the maximum in the ground state density.
limit. ) ) In summary, we have examined the density profile of a
So far we have examined a hole placed at the maximum,je excitation at the edge of the fractional quantum Hall

in the ground state density near the edge. One may ask if th§te 4t filling factory=1/3. It hasbeen found to be expo-
%hentially localized both in the angular and radial directions.

behavior is sensitive to the exact position of the hole. T
investigate this question, we also study a hol®at7X (for e range of the electron-electron interaction affects the lo-
calization length along the edge, which is enhanced roughly

N=10), where the density of the ground state~€.55°(r
=6). Figure §a) shows that oscillations in the angular direc- py, 5 factor of two as the interaction is tuned from a short-

tion are also present f&k=7, again most prominent for the range interaction to the long-range Coulomb interaction. In
long-range interaction. The only difference is that the oscilthe radial direction, the hole density is confined roughly
lations are not symmetric about zero. Proceeding as beforgyithin four magnetic lengths.

we find that the hole profile far from its center decays expo-

nentially for R=7% as well (see Fig. &, although with Partial support by the National Science Foundation under
slightly different localization lengthéé~5.8 for ¥/ and ¢  Grant No. DMR-0240458 is gratefully acknowledged.
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