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The density profile of a hole excitation is investigated when it is located at the edge of the fractional
quantum Hall state at filling factor 1/3. Of interest is the issue how the hole profile decays at long distances,
both along the edge and into the bulk. We find that the hole is exponentially localized in both directions. Its
localization length along the edge depends on the range of the interelectron interaction, increasing roughly by
a factor of two in going from a short-range interaction to the long-range Coulomb interaction.
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There has been much interest in the physics describing the
edge of a fractional quantum Hall effectsFQHEd state.1 Be-
cause of a gap in the bulk, the only low-energy excitations of
a FQHE system occur at the edge, and it is believed that their
dynamics can be mapped into that of a one-dimensional
Tomonaga-Luttinger liquid.2 There has been much experi-
mental work toward determining the value of the exponent
that describes the long-distance behavior of this liquid,
through theI-V curve for tunneling of an electron into the
edge.1,3,4 The measured exponent appears to be in disagree-
ment with its theoretical interpretation as a topological quan-
tum number.2 A number of recent theoretical works5–11 have
addressed the nonuniversality of the exponent.

An interesting feature noted in Refs. 5, 7, and 12 is that
the long-range Coulomb interaction induces density oscilla-
tions at the edge that decay slowly, apparently with a power
law, as one moves into the interior. Other theoretical
works9,10 have indicated the possibility of edge reconstruc-
tion. That brings up the question that we wish to address in
this article: How one-dimensional is the edge? The slow de-
cay of density oscillations may suggest that the edge physics
is not entirely decoupled from the bulk physics. However,
these density oscillations are a part of the ground state. The
important question is whetherexcitationsat the edge are con-
fined to the edge, or extend into the bulk. If the excitations at
the edge are not confined to the edge, that would imply that
the physics of the edge is, strictly speaking, not one-
dimensional. Our modest aim in this paper is to investigate
this issue using an approach5,7,12that does not allow for edge
reconstruction.

For filling factor unity, if one neglects spin and higher
Landau levels, it is clear that the low-energy excitations are
confined to the edge and have a mapping into a system of
one-dimensional fermions.13 Neglect of higher Landau levels
is possibly justified in the limit of extremely large magnetic
fields, when the cyclotron energy overwhelms the interaction
energy between electrons.sIf one takes electrons to be non-
interacting, then, of course, higher Landau levels can be ne-
glected at any magnetic field.d However, such a mapping has
not been established rigorously for the FQHE states. Indeed,
the slow decay of density oscillations in the ground state is
an indication of the fact that the bulk is not as inert in FQHE
as it is in the integral quantum Hall effectsIQHEd. The rea-
son is that the mixing betweencomposite-fermionsCFd
quasi-Landau-levels cannot be neglected, due to the fact that

the effective cyclotron energy for the composite fermions is
governed by the same energy scale as the interaction
strength.

Here, we study the profile of a hole at the edge, obtained
by annihilating an electron at the edge.sThe hole is not to be
confused with the fractionally charged quasihole.d The hole
is not a low-energy excitation, but is relevant for tunneling,
as this is precisely the state produced when an electron tun-
nels out of the FQHE edge.sA determination of the tunneling
conductance requires the spectral resolution of this state,
which is beyond the scope of this work.d Our main conclu-
sion is that even though the density of a hole at the edge has
a much more complicated structure at short distances than
that of a hole in the interior, the envelope of the density
profile decays exponentially. We confirm this for wave func-
tions at different levels of approximation, as well as for the
exact wave function for small systems. The extension of a
hole at the edge into the bulk is approximately restricted
within four magnetic lengths.

For a given ground state wave functionCsr 1, . . . ,r Nd, the
hole atR is given by

uCR
h l = ĈRuCl, s1d

whereĈR=oahasRdca is the standard annihilation operator
fhasr d are single-particle eigenstates, andca destroys an
electron in the stateag, anduCl denotes the wave function in
the second quantized form. The wave function for the hole at

R, obtained by the application ofĈR to the ground state, is
given by

CR
h = CsR,r 2, . . . ,r Nd. s2d

We will compute the density of a holesmeasured relative to
the ground state densityd situated at the edge.

We will work in the disk geometrysthe spherical geom-
etry, often used for the study of the FQHE states, is not
useful for our present purpose for lack of edgesd. The calcu-
lation requires a sufficiently accurate approximation for the
ground-state wave function,C. The exact ground-state wave
function for the Coulomb interaction,Cexact, can be evalu-
ated from the Hamiltonian of a second-quantized form
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where the operatorar
† sard createssannihilatesd an electron at

state url with angular momentumr and V is the Coulomb
interaction. For the Coulomb interaction matrix element we
used the expression derived by Goldman and Tsiper6,12,14

ks+ r,tuVus,t + rl =Îss+ rd ! st + rd!
s ! t!

3
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2d
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with
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2
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The above expressions are more stable for numerical work
than those used previously15,16 because they consist of finite
sums ofpositiveterms. In order to obtain the ground state we
have employed a modified Lanczos algorithm,17 which has
allowed computation at filling factorn=1/3 for up to N
=10.

For larger systems, exact diagonalization is not possible,
and one must resort to variational wave functions.18,19 We
will investigate the structure of the edge hole in the context
of n=1/3, where a good approximation to the exact ground
state is given by Laughlin’s wave function.18 To obtain a
better representation, we will use a method called “CF
diagonalization,”5,7,20which refers to a diagonalization of the
full Hamiltonianswhich is simply the Coulomb interaction in
the lowest-Landau-level subspaced in a relatively small
strongly correlated basis constructed with the help of the
CF theory. The advantage of this method is that, because
of the smaller dimension of the basis, it can be used when
exact diagonalization is not possible. It has been shown to be
very accurate, and can be improved by successively increas-
ing the dimension of the correlated basis, which, in turn,
involves increasing the amount of mixing between CF
quasi-Landau-levels.20 The disadvantage is that the calcula-
tion of Hamiltonian matrix elements is more involved than
that for simple Slater determinant basis functions, and re-
quires extensive Monte Carlo evaluation. The method, which
involves several steps, has been described in the
literature5,7,21and will not be repeated here in detail. Here we
only provide a brief outline.

The CF theory16,19,21,22 maps strongly interacting elec-
trons at angular momentumL into weakly interacting elec-
trons atL* ;L−pNsN−1d. A correlated basishCa

Lj for the
low-energy states of interacting electrons atL can be con-

structed from the trivial, orthonormal Slater determinant ba-
sis for noninteracting electrons atL*, denoted byhFa

L*j, in
the following manner:

Ca
L = Pp

j,k

szj − zkd2pFa
L* . s7d

Here,zj =xj − iyj denotes the position of thej th electron, 2p is
the vorticity of composite fermions, andP indicates projec-
tion into the lowest Landau level. The symbola
=1,2, . . . ,D* labels theD* Slater determinants included in
the study. The ground state is then obtained by a diagonal-
ization of the full Hamiltonian in the space defined byhCa

Lj.
Different choices of the starting basishFa

L*j produce differ-
ent approximations for the ground state atL.

At n=1/3 we have L=L* + NsN−1d and L* = NsN
−1d /2. We have considered three wave functions for the
ground state.sid C0 denotes the zeroth-order wave function,
obtained when we keep only the ground state atL*. It is
schematically shown in Fig. 1sad. The wave functionC0 is
identical to Laughlin’s wave function.sii d C8 is an improved
approximation, obtained by allowing mixing with a single
particle-hole pair of composite fermions; this was considered
in Ref. 5. C8 is obtained by a diagonalization of the full
Hamiltonian in the space defined by basis functions of the
type shown in Figs. 1sad and 1sbd. siii d Finally, for small
systems, we also have available the exact wave function,
Cexact, which will be evaluated for the Coulomb interaction.
The length will be measured in units of the magnetic length
l ;Î"c/eB throughout the paper.

The above three wave functions can be interpreted as dif-
ferent levels of approximation to the Coulomb ground state
of the many-electron system. The accuracy increases in the
order C0→C8→Cexact. Alternatively, one can interpret the
results in terms of the range of the interaction.C0 is known
to be the exact ground state for a short-range interaction,23

while Cexact is, by definition, exact for thefull Coulomb in-

FIG. 1. The zeroth-order wave functionC0 is schematically
depicted insad. C8 is obtained by a diagonalization of the full
Hamiltonian in the composite-fermion basis states of the type
shown schematically insad and sbd.
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teraction. BecauseC8 is somewhere in between the two, it
can be identified with the ground state of somesunknownd
interaction whose effective range is between the short-range
interaction and the Coulomb interaction. Accordingly, the
change of the properties in the sequenceC0→C8→Cexact

can be regarded as a reflection of the variation in the effec-
tive range of the interaction between electrons.

The electron density for the state containing a hole atR is
given by

rRsr d =
E d2r 3 ¯ d2r NuCsR,r ,r 3, ¯ ,r Ndu2

E d2r 2 ¯ d2r NuCsR,r 2, ¯ ,r Ndu2
, s8d

which we evaluate by the Monte Carlo method. It is noted
that this is identical to the pair correlation functiongsR ,r d

gsR,r d ; kdsr 1 − Rddsr 2 − r dl s9d

apart from an overall normalization factor. We define the
density of the hole as

rR
h sr d = − frRsr d − r0sr dg, s10d

which is also the excess charge density in units of the elec-
tron charge. Herer0 is the electron density for the ground
state, given by

r0sr d =
E d2r 2 ¯ d2r NuCsr ,r 2,r 3, ¯ ,r Ndu2

E d2r 1 ¯ d2r NuCsr 1,r 2, ¯ ,r Ndu2
. s11d

As noted in Refs. 5 and 12, the exact density shows strong
radial oscillations, which are accurately captured byC8 but
not by C0.

We now place one hole atR=6x̂, at the maximum in the
ground-state density near the edge. The hole density profile
has a peak atR, which has a radius of<4l both in the radial
and angular directions. Along the circumferencefFig. 2sadg,
the hole profile exhibits oscillations attenuating with dis-
tance. The amplitude of the oscillations increases with im-
proving accuracy. ForC0, we can hardly identify any oscil-
lations beyond the second valley.C8 captures the long-range
nature of the oscillations, but underestimates the amplitude.
The period of the oscillations is obtained correctly by all
three wave functions. For the radial direction, we find that
C8 provides an almost exact account of the hole density, as
noted by the fact that the solid and dashed lines are indistin-
guishable in Fig. 2sbd.

Now we come to the question of whether the edge exci-
tations are confined to the edge of a FQHE system. Figure
2sbd shows that the hole is well localized near the edge. To
study the dependence on the number of particles, we display
in Fig. 3 the density profile of the hole forN=10 andN
=20 particles, when it is located approximately at the maxi-
mum ground state density at the edge.sWe have chosenR
=6 for N=10 andR=9 for N=20d. Since the exact wave
function Cexact is not available forN=20, we have used the
wave functionC8, which was seen to give a practically exact

result for ten particles. Figure 3 indicates that the hole den-
sity profile remains confined to the edge in the thermody-
namic limit. fThe size of the hole has increased very slightly
in going fromN=10 to N=20, but the change is very small
compared with the increase in the disk sizes<3ld, and is
unrelated to the extension of a hole into the bulk.g

What is the behavior in the azimuthal direction along the
edge of the disk? The equal-time Green’s function along the
FQHE edge is known to exhibit a power-law decay. Some
microscopic studies5–7 have suggested that the exponent de-
pends on the nature of the electron-electron interaction. A
quick inspection of Fig. 2sad tells us that the hole density
profile is also affected by the interaction: As we go from a
short-range interaction to the long-range Coulomb interac-
tion sC0→C8→Cexactd, the oscillations become more
prominent.

For a quantitative analysis, we have investigated the be-
havior of the oscillation amplitude as a function of the dis-
tance along the edge. The amplitude of the oscillation at each
extremum can be estimated by the differenceDrR

h between

FIG. 2. The density profile of the hole excitation forR=6x̂ sad
in the angular direction;sbd in the radial direction. The density is
quoted in units of the inverse square of magnetic lengthl−2. fIn this
unit, the bulk density forn=1/3 is 1/s6pd<0.053.g The solid, the
dashed, and the dotted lines correspond toCexact, C8, andC0, re-
spectively. The density of the ground state as a function ofr in
Refs. 5 and 12 has a peak atr <6l, beyond which it decreases
exponentially.
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the upper and the lower envelope functions of the hole den-
sity profile. At each minimum we have approximated the
value of the upper envelope function by a linear interpolation
of two adjacent maxima, and vice versa. Even though the
decay of the oscillations depends on the form of the wave
function sand hence on the form of the interactiond, the hole
appears, quite generally, to be exponentially localized along
the edge. By fittingDrR

h of each wave function to an expo-
nential function, we obtain the localization lengthj in the
angular direction.fThe fitting curves are also plotted by lines

TABLE I. The localization lengthj of the hole density profile
along the edge. We put one hole atR=6x̂ for N=10 andR=9x̂ for
N=20. Even for theN=10 system, all the estimated localization
lengths are far smaller than half of the circumference considered
spR<18.8d, which guarantees the validity of our estimation. The
exact value forN=20 is unavailable due to the huge size of the
Hilbert space.

N C0 C8 Cexact

10 2.2 3.5 4.5

20 1.9 3.1 —

FIG. 3. The density profile in the radial direction for the hole
excitation atR=6x̂ for N=10 ssolid lined and atR=9x̂ for N=20
sdashed lined. The wave functionC8 has been used for the calcula-
tion, and the origin has been shifted to the hole position for
comparison.

FIG. 4. Semilogarithmic plot of the oscillation amplitude of the
hole density profile as a function of the distance along the disk edge
for sad N=10 andR=6; sbd N=20 andR=9. The data forCexact, C8,
and C0 are denoted by squares, circles and triangles, respectively.
The best fits to the equationDrR

h sRud=A exps−Ru /jd are also
shown.

FIG. 5. The density profile of the hole excitation forR=7x̂ sad
in the angular direction;sbd in the radial direction. There are 10
electrons in the system, and the solid, the dashed, and the dotted
lines correspond toCexact, C8, andC0, respectively.
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in Fig. 4sad.g The localization lengths for different wave
functions are summarized in Table I. The long-range Cou-
lomb interaction enhances the localization lengthj to 4.5
magnetic lengths, which is approximately twice the localiza-
tion length for a short-range interaction. The exponential lo-
calization of the hole density as well as the interaction de-
pendence of the localization length has been confirmed for a
larger systemsN=20d as shown in Fig. 4sbd and Table I. We
believe that the conclusions are valid in the thermodynamic
limit.

So far we have examined a hole placed at the maximum
in the ground state density near the edge. One may ask if the
behavior is sensitive to the exact position of the hole. To
investigate this question, we also study a hole atR=7x̂ sfor
N=10d, where the density of the ground state is<0.55r0sr
=6d. Figure 5sad shows that oscillations in the angular direc-
tion are also present forR=7, again most prominent for the
long-range interaction. The only difference is that the oscil-
lations are not symmetric about zero. Proceeding as before,
we find that the hole profile far from its center decays expo-
nentially for R=7x̂ as well ssee Fig. 6d, although with
slightly different localization lengthssj<5.8 for C8 and j

<6.2 for Cexactd. For C0, the oscillations are too weak for a
meaningful analysis. The hole density is well localized in the
radial direction also forR=7.

A comparison of the density profiles for holes located at
R=6 andR=7 in Fig. 7 shows that the maximum in the hole
density occurs atr =6 independent of the hole location at the
edge, and the density profiles are identical in the outer re-
gion. The reason is that in the close vicinity of the hole
position R, the densityrR is essentially zero, and conse-
quently, the hole density is essentially the same as the ground
state density. In particular, the maximum of the hole density
matches the maximum in the ground state density.

In summary, we have examined the density profile of a
hole excitation at the edge of the fractional quantum Hall
state at filling factorn=1/3. It hasbeen found to be expo-
nentially localized both in the angular and radial directions.
The range of the electron-electron interaction affects the lo-
calization length along the edge, which is enhanced roughly
by a factor of two as the interaction is tuned from a short-
range interaction to the long-range Coulomb interaction. In
the radial direction, the hole density is confined roughly
within four magnetic lengths.
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