26

(8 ответов, оставленных в Linux)

2.3 HAL

Главная и самая интересная часть linuxcnc — Hardware Abstraction Layer. Это такая специальная прослойка которая позволяет обычному пользователю получать доступ к оборудованию(ядру) Linux. Раньше был ещё один HAL , который потом заменил проект udev , так вот это разные вещи, HAL Linuxcnc нужен только для linuxcnc.

Итак каждый компонент в HAL представлен черным ящиком с некоторым количеством ножек, каждая ножка обладает такими свойствами, как вход/выход а также тип передаваемого по ней сигнала. Ещё есть псевдо ножки, это константы, параметров компонента.

Все это похоже на блоксхемы и в итоге можно представить как вот такую вот схему(чем-то напоминает LabView, но увы удобного редактора нет).

http://777russia.ru/images/forum/Linux/3.png

Пример конвертера GEDA2HAL

Ещё стоит заметить что в HAL всегда работают два типа компонентов ,работают они в разных потоках loadrt загружает компоненты работающие в real time потоке, loadusr загружает компоненты работающие не real time т.е. с периодом >=200 мс … это например интерфейс или джойстик подключенный по USB.

Также с помощью специального синтаксиса макросов и языка С, можно создавать свои компоненты, с помощью утилиты comp.

Также можно вручную вводить команды с помощью halcmd , с поддержкой автодополнения, ведь файлы с расширением .hal всего лишь сценарии написанные на этом языке.

27

(8 ответов, оставленных в Linux)

2. Состав LinuxCNC

2.1 RealTime Linux ядро

Простое ядро(ванильное) в тех.процессах связанных с реальным временем. Реализаций real time в linux несколько, конкретно linuxcnc использует RTAI и хотя RTAI ушел далеко вперед(3.9 версия реализована) , на данный момент поддерживаются ядра 2.4 и 2.6 , вы скажите фи, а я отвечу что на производстве железо меняется крайне медленно, что большинство софта использует DOS а также что современный многоядерный монстр может показать… результаты на jitter time хуже чем одноядерный комп.

2.2 Драйвера

На данный момент хорошо реализованы и опробованы на практике, с работой в реальном времени , это параллельный порт(до 3-х штук) а также RS232 или COM-PORT.
Также ведутся работы(не могу оценить степень их активности), по реализации real time управления через Ethernet.

http://777russia.ru/images/forum/Linux/rt8p8c.jpg

USB — использует буфферицацию и и говорить о настоящем real time не получается, в общем, с этим все сложно.
Итак представьте что вы делает сложную дугу, дугу можно представить как набор ступенчатых шажков.

http://777russia.ru/images/forum/Linux/2.png

Чем меньше размер шагов тем ближе мы к реальному изображению кривой, конечно это зависит и от минимального шага станка.. ну да ладно. В общем если наша задача увеличить частоту с которой компьютер передает сигналы управляющей плате, то нужно уменьшать параметр jitter time, один из способов это увеличение частоты процессора, также можно избавляться от «лишних» процессов в системе, ну там браузер выключить, музыку на этом компьютере не слушать, compiz отрубить, network demon-а развеять…. ИЗБАВИТСЯ ОТ ГРАФИЧЕСКОГО СЕРВЕРА, но это совсем хардкор и теоретически linuxcnc предполагает клиент-серверную модель, так что интерфейс будет работать на компе с браузерами и прочими кофеварками, а преобразователь G-code и вся управляющая логика на другом.

Другой вариант использовать другой вариант и на железе с помощью ПЛИС преобразовывать G-code в управляющие сигналы, количество читаемых/передаваемых компьютером команд заметно уменьшиться, для этого и существуют MESA платы стоят они дороже чем PCI-parrport переходник.

28

(8 ответов, оставленных в Linux)

1. Что такое LinuxCNC?

Linux обладает замечательными свойствами, его можно поставить куда хочешь даже на ATmega микроконтроллер. Или с помощью него можно сделать из обычного компьютера что то специфичное. Например на заре Linux его любили за то что он позволяет на дешевом оборудование создавать небольшие сервера, программно маршрутизировать пакеты и.т.д.

LinuxCNC — набор утилит который позволяет сделать из вашего компьютера стойку управления ЧПУ. Он позволяет программно генерировать шаги в случае управление по типу STEP-DIR-ENABLE, обрабатывать информацию с датчиков, позволяет вам собрать собственную заточенную под ваш станок — панель управления.

Ну а также LinuxCNC поддерживает работу с промышленными платами с аппаратной обработкой G-code — так называемые Mesa платы.

29

(8 ответов, оставленных в Linux)

Статья для тех кто плохо знает английский и не любит читать километры форумов

http://777russia.ru/images/forum/Linux/1.png

30

(31 ответов, оставленных в Linux)

Сегодня я хочу поднять вопрос о софте который используется для обработки деталей на ЧПУ станках.

Если вы используете ЧПУ фрезер в производстве, то вопрос о легальности софта встает в полный рост. Все коммерческие программы управления ЧПУ станками стоят весьма не малых денег, таких, что малому бизнесу на первых порах не осилить. Тут и встает вопрос о том, как и легальный софт использовать и заплатить за него поменьше.

Конечно, в интернете можно найти много бесплатного и самописного софта, но зачастую данное ПО оказывается или малорабочим или заточенным под конкретный контроллер да и для работы требует то DOS, то Win 95-98. А уж чего стоит отсутствие богатства функционала!

Но есть выход из этого, пренеприятного положения - это разработанный умельцами LinuxCNC.  Фактически это программа управления ЧПУ станком совмещенная с операционной системой. На текущий момент в сборке используется бесплатная Ubuntu. Скачать бесплатно программу для управления ЧПУ станком можно на сайте разработчиков - тут

Разработчики ПО LinuxCNC переписали частично саму ОС для того, что бы улучшить работу с ЧПУ станками в реальном времени. Ведь в основе своей Linux и тем более Windows не предназначены для работы с портами в реальном времени с ограниченными тайменгами. А именно этого и требуется для работы со станками с числовым программным управлением. При этом, промышленные станки имеют свой встроенный блок управления, на который подается список команд, а работу с осями выполняет уже микроконтроллер. А самописные программы для ЧПУ работают из под DOSа или старых версий виндовс, где можно было стучаться к портам напрямую, а не через виртуальное управление железом.

Программа LinuxCNC на сайте разработчика есть как в виде инсталяционного пакета, так и в виде LifeCD на базе Ubuntu 8.04 Hardy Heron.
Вам достаточно записать образ на диск и загрузиться с него, после чего вы сразу сможете работать с LinuxCNC и управлять своим самодельным ЧПУ устройством.
http://www.linuxcnc.org/images/stories/screen_thumb.png

LinuxCNC это универсальная программа, которая может может управлять фрезерно-гравировальным станком, лазерной и плазменной резкой, а так же любыми другими станками. Было бы желание разобраться и настроить программу. Но самое главное, это то, что LinuxCNC абсолютно бесплатен, имеет свою техподдержку и постоянно развивается

На сегодняшний день OS Ubuntu, на базе которой сделан дистрибутив LinuxCNC, это одна из наиболее успешных реализаций Linux для ПК. Устанавливаясь на комп Ubuntu автоматически находит практически 96% известных устройств, а пользовательский интерфейс может поспорить с  Windows 7.

Для нормальной работы вам необходим комп с  512 Мб оперативной памяти и 4 Gb свободного места на харде. Процессор желателен не менее 1500 Мгц. Если судить по сегодняшним меркам, то эти требования довольно слабые. Всегда можно взять недорого ноутбук 5-6 летней давности с рук с подобной конфигураций.

Документацию по программе управления ЧПУ станком можно взять здесь. Она лежит в PDF файлах так же доступна Wiki и сообщество с форумом. Все это добро на английском языке, но такова уж судьба бесплатных проектов.

Остается лишь привести пример работы 4-х осевого ЧПУ станка под управлением LinuxCNC и на этом завершить обзор.

https://777russia.ru/galery/cnc-stanok/max7-cncmetall/13-frezernyj-stanok-chpu-metall-max7.jpg
Фрезерный станок, 4-координатный для обработки металла MAX7. Станок может применяться для обработки алюминия или стали.

Станки собраны в заводских условиях на промышленном оборудовании. Точность изделий проверяется с помощью электронно-измерительных приборов.

У нас вы всегда можете купить качественные станки ЧПУ недорого!
Стандартная комплектация:

  • Дискретность позиционирования (мм)    0,001

  • Шагов за один оборот двигателя    6400

  • Расчетная точность (мм)    0,00046875

  • Повторяемость (мм)    0,01

  • Общая точность станка (мм)    0,02

  • Обрабатываемый объем по координате X (мм)    400

  • Обрабатываемый объем по координате Y (мм)    500

  • Обрабатываемый объем по координате Z (мм)    200

  • Максимальная рабочая скорость (мм/мин)    2000-5000

  • Максимальная скорость обработки на ШВП (мм/мин)    7000

  • Габаритный размер станка (XxYxZ, мм)    1000x1050x1050

  • Вес (кг)    230

Гарантия: 18 месяцев на все кроме шпинделя
Более подробную информацию и цены смотрите на нашем сайте

http://777russia.ru/images/forum/ustroistvo.jpg
Металлообрабатывающим оборудованием с программным управлением называют любые виды станков для обработки металлов резанием, например токарные, фрезерные, сверлильные, шлифовальные, расточные, многоцелевые, электроэрозионные и т.п., а также другие виды оборудования для обработки металлов (листогибочные машины, дыропробивные прессы и др.), осуществляющие по заданной программе автоматическую обработку заготовок.

Управляющая программа (УП) — совокупность команд на языке программирования, соответствующая алгоритму функционирования станка по обработке конкретной заготовки.

Числовое программное управление станков — управление обработкой заготовки на станке по УП, в которой данные об обработке заданы в цифровом коде.

Программоноситель — носитель геометрических и технологических данных, на котором записана УП. в качестве носителя данных применяются бумажная или пластиковая перфолента, магнитная лента, магнитные диски, запоминающие устройства разных видов и типов.

Геометрическая информация — информация, описывающая форму, размеры элементов детали и инструмента, их взаимное расположение на столе станка.

Технологическая информация — информация, описывающая технологические характеристики детали и условия ее обработки.

Кадр УП — составляющая часть программы, вводимая и отрабатываемая как единое целое и содержащая не менее одной команды.

Покадровая работа — функционирование устройства чпу, при котором отработка каждого кадра УП происходит после воздействия оператора.

Работа устройства ЧПУ с ручным вводом данных — функционирование устройства ЧПУ, при котором набор данных, ограниченный форматом кадра, выполняется вручную оператором на пульте станка.

Зеркальная обработка — функционирование устройства ЧПУ, при котором рабочие органы перемешаются по траектории, представляющей собой зеркальное отображение траектории, записанной в УП.

Ввод УП — ввод данных в память устройства ЧПУ с программного носителя от эвм верхнего ранга или с пульта оператора.

Групповое ЧПУ станками — числовое управление группой станков от эвм, имеющей общую память для хранения программ, распределяемых по запросам от станков.

Нулевая точка станка — точка на узле станка, принятая за начало отсчета системы координат станка.

Координата — величина, определяющая положение точки в пространстве по отношению к заданной базе или началу отсчета.

Исходная точка станка — точка на узле станка, определенная относительно нулевой точки станка и используемая для начала работы по УП.

Фиксированная точка станка — точка, определенная относительно нулевой точки станка и используемая для определения положения рабочего органа.

Точка начала обработки — точка, определяющая начало обработки конкретной заготовки.

Плавающий нуль — возможность перемещения посредством устройства чпу начала отсчета перемещения рабочего органа в любое положение относительно нулевой точки.

Дискретность задания перемещения — минимальное перемещение рабочего органа (линейное или на угол поворота), которое может быть задано в УП.

Дискретность отработки перемещения — минимальное перемещение или минимальный угол поворота рабочего органа, контролируемые в процессе управления.

Максимальное программируемое перемещение — наибольшее перемещение рабочего органа, которое может быть задано в одном кадре УП.

Контурная скорость — результирующая скорость подачи рабочего органа, направление которой совпадает с направлением касательной в каждой точке заданного контура обработки.

Коррекция положения инструмента — изменение с пульта управления запрограммированных координат рабочего органа станка.

Коррекция скорости подачи — изменение с пульта оператора запрограммированного значения скорости подачи.

Коррекция скорости подачи — изменение с пульта оператора запрограммированного значения скорости подачи.

Коррекция скорости главного движения — изменение с пульта оператора запрограммированной частоты вращения главного привода.

Отказ устройства ЧПУ — событие, заключающееся в нарушении работоспособности устройства чпу.

Сбой устройства ЧПУ — событие, заключающееся в кратковременном самоустраняющемся нарушении работоспособности устройства ЧПУ.

Индикатируемый сбой устройства ЧПУ — сбой, фиксирующийся на пульте в момент его возникновения, приводящий к останову станка, т.е. к прекращению обработки детали, информация о котором высвечивается на пульте оператора.

Неиндикатируемый сбой устройства ЧПУ — сбой, не обнаруживаемый на пульте в момент его возникновения.

Станочная система ЧПУ — комплекс узлов и агрегатов, взаимодействующих между собой.

Типовой элемент замены устройства чпу (ТЭЗ УЧПУ) — типовая минимальная составляющая часть устройства ЧПУ, которая при потере работоспособности может быть заменена аналогичной. Каждое устройство ЧПУ выдаст управляющее воздействие на исполнительные органы в соответствии с УП и информацией о положении управляемого объекта. Классификацию систем ЧПУ, применяемых в отечественном машиностроении, проводят по виду рабочих движений. Различают позиционные и контурные устройства ЧПУ.

Позиционные устройства ЧПУ — устройства, в которых рабочие органы могут перемещаться в заданные точки, а траектория перемещения от точки до точки задастся только прямолинейным движением. Позиционные устройства ЧПУ составляют группу устройств, имеющих один общий признак — позиционирование, т.е. обеспечение точности останова перемещаемых рабочих органов в точке с заданными координатами. Скорость перемещения в позиционных устройствах не программируется и обусловлена только динамикой приводов станка. Позиционными устройствами ЧПУ
оснащают сверлильные, координатно-расточные, токарные, фрезерные, шлифовальные и другие станки, работающие по прямоугольному циклу.

Контурные прямоугольные {коллинеарные) устройства ЧПУ — устройства, которые обеспечивают движение по одной координате. Так как в большинстве станков применяют прямоугольную систему координат, такие устройства получили название прямоугольных. В этих устройствах, так же, как и в позиционных, программируются конечные координаты перемещения, однако в УП задается скорость движения рабочего органа в соответствии с заданным режимом резания, и перемещение выполняется поочередно по каждой из координатных осей. Прямоугольные устройства ЧПУ применяют в станках фрезерной, токарной и шлифовальной групп.

Контурные (непрерывные) устройства ЧПУ — устройства, обеспечивающие перемещение рабочих органов из данной точки пространства по траектории, форма и конечные координаты которой заданы в УП. Контурными устройствами чпу оснащают станки фрезерной и токарной трупп, осуществляющих формообразование деталей сложной формы.

Устройства адаптивного (самоприспосабливающегося) управления ЧПУ — устройства, в которых обеспечивается автоматическое приспособление процесса обработки к изменяющимся условиям обработки по определенным критериям (скорость резания, подача, сила резания). Самоприспосабливающиеся устройства ЧПУ
имеют систему контроля и регулирования, позволяющую осуществлять защиту от перегрузок двигателей главного движения и приводов подач, что обеспечивает высокое качество обработки и защищает станочную систему от поломок. Адаптивными устройствами ЧПУ оснащают фрезерные, расточные и многоцелевые станки.

Оперативная система управления (ОСУ) — устройство ЧПУ на базе микро эвм с подготовкой УП у станка в режиме диалога оператора с устройством чпу. Оператор с помощью клавиатуры пульта устройства чпу вводит данные с чертежа детали в программу управления. Оперативными устройствами чпу оснащают токарные и фрезерные станки. Другим признаком, по которому устройства чпу могут быть классифицированы, является число потоков информации, циркулирующих в системе станок—устройство ЧПУ.

Система с разомкнутым контуром — устройство ЧПУ, в котором имеется только один поток информации. В таких системах отсутствуют измерительные устройства (датчики обратной связи), контролирующие перемещение рабочих органов. Точность воспроизведения движения рабочих органов с такой системой невысока и определяется точностью отработки команд двигателем привода подач и точностью кинематической цепи, передающей движение
рабочему органу.

Система с замкнутым контуром — устройство ЧПУ, в котором существуют два потока информации: один вводится в устройство управления через вводное устройство от программного носителя, а другой — в устройство ЧПУ от датчиков обратной связи, определяющих действительное положение рабочих органов. При наличии рассогласования между этими потоками устройство управления воздействует на приводы подач, последние перемещают
рабочие органы в нужном направлении, изменяя рассогласование до величины, близкой к нулю.

Различают устройства чпу с постоянной (класс NC) и переменной (класс CNC) структурой.

Устройство чпу класса nc основано на принципе вычислительного устройства, где все операции, составляющие алгоритм работы, выполняются параллельно с помощью отдельных цепей или устройств, реализующих ту или иную функцию (агрегатноблочное построение). Эти устройства называют также устройствами чпу с жесткой структурой. Базовые модели таких устройств (H22 и H33) содержат микроэлектронику и при их использовании вмешательство оператора в процесс обработки весьма ограничено.