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Preface

! A textbook on lasers and optical engincering should include all aspects of
lasers and optics; however, this is a large undertaking. The objective of this
book is to give an introduction to the subject on a level such that under-
i graduate students (mostly juniors/seniors), from disciplines like electrical
! enginecring, physics, and optical engineering, can use the book. To achieve
; this goal, a lot of basic background material, central to the subject, has been
b
|
i
}

covered in optics and laser physics. Students with an clementary knowledge
of freshman physics and with no formal courses in clectromagnetic theory
should be able to follow the book, although for some sections, knowiedge of
clectromagnetic theory, the Fourier transform, and lincar systems would be
highly beneficial.
} There are excellent books on optics, laser physics, and optical engincering.
; Actually, most of my knowledge was acquired through these. However, when
i I started teaching an undergraduate course in 1974, under the same heading
' as the title of this book, I had to use four books to cover the matenal I thought
: an electrical engineer needed for his introduction to the world of lasers and
! optical engineering. In my sabbatical year, 1980-1981, I started writing class
: notes for my students, so that they could get through the course by possibly
' buying only one book. Eventually, these notes grew with the help of my
' undergraduate and graduate students, and the final result is this book.
i It is a pleasure to thank Janet Tomkins for typing the class notes, over and
! over again. Without her patience and cfforts, this book would not have been
‘ possible. Also, I would like to thank many of my students who helped improve
the manuscript by criticizing, finding mistakes and correcting them, and
editing and writing projects reports which 1 have freely used.
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Chronology of Optical Discoveries*

T ———— - g

1637 Laws of refraction.

1666 Discovery of diffraction.

: Light dispersion by prism -— Newton.

! 1669 Double refraction.

1675 Determination of speed of light-—Roemer.

1690 Huygens’ wave theory.

1704 Newton’s Optics.

1720 Three-color copper plate printing.

1727 Light images with silver nitrate.

1758 Achromatic telescope.

1790 Ultraviolet rays discovered.

1800 Infrared rays discovered.

180t Discovery of interference of light waves.

1808 Discovery of polarization of light.

1814 Discovery of Fraunhofer black lines in the sun’s light spectrush.

1823 Faraday—laws of electromagnetism.
Discovery of silicon.

1827 Ohm’s law.

1828 Electromagnet.

1832 Principles of induction— Faraday.

1837 Electric motor— Davenport.

1838 Photography—Daguerre.

1842 Doppler effect discovered.

1864 Electromagnetic theory— Maxwell.

1866 Dynamite—Nobel.

1869 Angstrom.

1875 Telephone.

1885 Transformer.

* From R. Buckminster-Fuller, Critical Path, St. Martin’s Press, New York, 1981.
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Electromagnetic waves— Hertz.
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Electron discovered.

Quantum theory— Planck.

Special theory of relativity— Einstein.
General relativity theory—Einstein.
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Wave mechanics—De Broglie.
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Xerography-—Carlson.

Transistor—Bardeen, Brattain, and Shockley.

Solar cell.
Maser—Towne.
Laser demonstrated—Maiman.
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Introduction

Until recently, optics had not been considered as part of the electrical engi-
neering curriculum, even though the fundamental laws for clectromagnetic
waves, which include those in optics, are governed by Maxwell’s equations.
The main reason for this was the absence of coherent optical sources such
as klystrons or magnctrons for microwaves, or oscillators for lower fre-
quencies. However, the invention of the laser has changed this situation and,
as expected, there has been enormous activity in using the optical frequency
region for conventional electrical engineering applications, such as optical
communication, laser radar, and optical signal processing. These applications
are in addition to those traditionally belonging to optics, such as photography,
spectroscopes, microscopes, telescopes, etc., which generally use incoherent
light. The “optical revolution™ in electrical engincering is not only fucled by
the availability of the laser, but aiso by other technical developments such as
integrated optics, fiber-optics, acousto-optics, clectro- and magneto-optics,
Fourier optics, and a phenomenal need for parallel computation; hence optical
computing, systolic arrays, photodetector arrays and charge coupled device
(CCD), charge injection device (CID), focal plane arrays, GaAs technology,
very high speed integrated circuits, and the overall desire of society to perform
real-time signal processing with greater speed and higher bandwidth.

To understand the role played by optics in electrical engineering, often
referred to as photonics, opto-clectronics, clectro-optics, optronics, etc., we
consider two topics, optics and devices, shown in compact form as trees with
branches in Figs. 1 and 2. The optics tree root includes work by Maxwell,
Fresnel, and Fraunhofer as the fundamentals of physical optics or wave optics.
Abb¢ introduced the fundamental concepts of Fourier optics, augmented by
Zernicke in his applications to phase contrast microscopy. Fourier optics
was developed further by Maréchal, Tsujiuchi, O'Neill, and Lohman, who
successfully applied more of the conventional clectrical engineering tech-
niques in traditional one-dimensional time domains to two-dimensional space
domains.

Gabor also used the conoept of spatial-frequency multiplexing and demulti-
plexing in holography which, after the invention of the laser, was further
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Physical optica/Wave optics

Fig. 1. Optics tree.

refined by Leith, Cutrona, Palermo, Porcello, and Van der Lught and applied
to synthetic aperture radar, matched filtering, and pattern recognition. Inte-
grated optics, optical fiber propagation, and crystal optics are some of the
other branches of the optics tree. Note that the tree is still growing very rapidly
and, from the point of view of application, some of the branches (c.g., optical
fibers) might overshadow some of the other branches with respect to engineer-
ing applications in volume, mostly because of the eventual replacement of
most telephone lines by optical fibers. Nonlinear optics is also an important
branch which has important applications in phase conjugation.

For different applications such as optical communication, optical data
and signal processing, image processing, etc., we need to implement these
using different devices as depicted in the devices tree shown in Fig. 2. The
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Fig. 2. Devices tree.

important devices are acousto-optic, clectro-optic, or magneto-optic devices.
These devices can be used as real-time correlators, convolutors, or matched
filters, etc., or as optical matrix processors. For the conversion of light sigl}als.
we have spatial light modulators (SLMs) which include a host of devices,
such as liquid crystal valves, e-beam potassium dihydrogen phosphate (KDP),
Pockel’s readout optical modulator (PROM) photo-titus, strain-based SLM;
using ceramic ferroelectrics, SLMs using deformabie surface tubes, and ruti-
con and membrane light modulators. Of these, the acousto-optic devices have
so far, been, the most useful in actual applications because of their large
bandwidth operations.

For any application, of course, we need a light source and light detectors.
The source is usually a light emitting diode (LED) or a junction laser, or other
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lasers such as He-Ne or argon. Of course, the LED and junction lasers have
the advantage of compactness and higher efficiency. The detectors are photo-
detector, photodetector arrays, focal plane arrays, and sometimes photo-
multipliers and ordinary photographic film if electronic output is not needed.
For the electronic output case, the detectors also need amplifiers and other
conventional electronics for further processing and display. For the array
output, we also need CCDs or digital circuits to manipulate the large amount
of data coming from the arrays.

Because of the importance of acousto-optic devices and the potential for
integrating an acousto-optic device, SAW device, laser source, and photo-
detector array, CCD and digital circuits on a GaAs substrate, we also need

to consider all of these technologies separately (and together) for the system
level probiems.

Why Photonics?

Electronics deals with electrons and the manipulation of their flow to perform
a useful function. In photonics we use clever combinations of photons, and
their flow and conversion to electrons, in conjunction with the usual elec-
tronics. Examples of photonics used in everyday life are growing rapidly:
compact disc players, video recording machines, laser printers, laser-scanned
check-out counters in supermarkets, robot vision, laser processing of materials
in factories, laser diagnostics, and surgery in hospitals are some examples.
Fiber-optic telephone and cable TV cables, lasers for missile defense (Star
War), laser fusion, and laser ranging and guiding are other examples. Conven-
tional optical equipment like cameras, microscopes, telescopes, etc., are also
encountering photonic modifications, as the outputs of many of these devices
are detected by area photodetectors or scanned to obtain electronic images
which can be processed further.

Thus it is natural that at the present time an electrical engineer should have
some knowledge of optics. The main objective of this book is to provide this
basic knowledge of photonics to undergraduate students in a one- or two-
semester course. Unfortunately, to limit the size of the book, all the applica-
tions mentioned in this Introduction will not be covered adequately in this
book. However, it is hoped that once the reader understands the fundamentals

he will read reference books and articles for further details or for a particular
application.

Bird’s Eye View and Guide

The book is divided into four parts, excluding the Introduction. These are:

1. Geometrical Optics.
II. Wave Optics.
1. Lasers.
IV. Applications.

I

-

Introduction i

“Geometrical Optics™ deals with situations where the wave nature of light
is disregarded. This is gencrally true when aperture size is very large compared
to the wavelength of light. This part starts with Snell’s laws and its matrix
formulation. This is then used to develop lens formulas, concepts of image
formation, and optical instruments like microscopes and telescopes, although
practical details of these instruments are discussed in Part IV. At the begin-
ning, paraxial approximation is used for mathematical simplification. This
is later extended to the exact matrices and a discussion on aberration. This
part also includes a discussion on apertures and stops, radiometry, and
photometry.

In*“Wave Optics™, the wave nature of light is introduced through Maxwell's
cquations. Using elementary arguments of spherical waves and superposition
due to linearity, the diffraction formula is derived. This diffraction formula
forms the backbone for the discussion on Fresnel and Fraunhofer diffraction
and Fourier transforming properties of spatial signals, for which this part
might also be called “Fourier Optics.” Special emphasis is given to the con-
cept of spatial signals and their use in image processing and holograms.
Interference is considered as an extension to the diffraction formula and
the Fabry-Perot interferometer is extensively discussed. The final section in
this part, under the heading “Physical Optics,” includes discussions on the
following topics without any rigorous discussion: optical tunneling, reflection
and transmission coefficients, polarization, phase and group velocity, light
propagation in anisotropic solids, double refraction, polarizers, and electro-,
acousto- and magneto-optic interactions in matter.

The “Laser”™ part starts with a discussion on feedback oscillators leading
to the Fabry-Perot laser. Gaussian beam optics are considered in detail as
well as their use in laser cavity modes and their properties. The physics of light
amplification includes Einstein's cocfficients for stimulated and spontancous
emission, and the derivation of the threshold population inversion density.
The four-level laser is considered in detail, including power output and opti-
mum reflectivity of the output mirror. Other topics covered include mode
locking, Q-switching, and a detailed discussion on different lasers such as gas
lasers, solid state lasers, dye lasers, semiconductor lasers, and free electron
lasers.

The last part, “Applications”, discusses first the practical details of optical
instruments such as cameras and binoculars, including their iens design.
Fiber-optics and integrated optics are considered next, where guided waves
are introduced and their propertics and usefulness in different applications
are mentioned. The next section discusses optical signal processing devices
such as modulators, deflectors, and correlators, both for time and spatial
signals. Some applications of these arc also included in this optical signal
processing section including optical matrix processors. The section on laser
applications includes both industrial, military, and medical applications. The
final section, entitled “Recent Advances” discusses optical interconnection,
optical logic, and “Star War™.
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Guide

T have successfully used the following sections in a one-semester course, mostly
for electrical engineering upperclass undergraduates:

Part1 Sections 1.1-1.8.
Part I  Sections 2.1-2.12.
Part III  Sections 3.1-3.10.

The subdivisions naturally result in three quizzes. This lecture course has
generally been supplemented with laboratory demonstrations of diffraction,
interference, holograms, and lasers.

The rest of the book can be used easily as a second-semester undergraduate
course for students who are interested further.

References

Each part has a reference list at the end. These references were used by the
author in preparing this text. The reader will find further clarification or
detailed derivation and discussion of the topic in these references. At the end
of the book there are additional references which the author feels will be useful
to the reader. For new topics, such as optical matrix processors or optical
computing, the number of references are quite large. The author hopes that
these references will be helpful to the reader interested in a particular topic.

[1] J.W.Goodman, The optical data processing family tree, Optics News, 10, 25-28,
1984.

[2] P.Das, Optical Signal Processing, Springer-Verlag, 1990.
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PART I

Geometrical Optics

1.1. Fundamentals of Geometrical Optics

The subject of geometrical optics will be developed on the basis of Snell's laws.
It will be assumed that Snell's laws are experimental fact. However, as any
student of electromagnetic thcory knows, Snell’s laws can be derived from
Maxwell's equations. This derivation can be found in the book, Optical Signal
Processing by Das, which deals with other topics and applications relevant to
this subject but not covered in this book.

Snell’s Laws

(1) Law of Rectilinear Propagation. In homogencous media, light rays propa-
gate in straight lines.

Before we go further, it is worthwhile to define a “light ray”, which is
shown in Fig. 1.1.1. The line AB is the line of constant phase for a light wave,
or in three dimensions it will be a plane of constant phase. This plane is also
generally known as the wavefront. The line CD is the light ray which is normal
to this plane of constant phase with an arrow indicating in which direction
the wave is propagating. Actually, a ray belongs to a wavefront which is
infinite in size. A finite-sized wavefront will have many rays —this will be
discussed later in “Wave Optics™. In this section, we consider that the wgve-
front sizes are much larger than the wavelength.

1.1.1. Discussion of Waves

In general, a one-dimensional wave, E(x, t), is mathematically represented by
the form

E(x, t) = Aet= 0 (LLYy

in complex notation. Actually, we consider either

E(x,t) = Re[Ae"™ 9] = A cos(wt — kx), (1.1.2)
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Fig. 1.1.1. Relationship between a light ray and a constant phase wavefront.

or
E(x, t) = Im[ Ae/*™~**)] = A sin(wt — kx), (1..3)

the real or imaginary parts of the exponential. It is observed that the maximum
value of the wave amplitude is A. The expressions (1.1.1)~-(1.1.3) are all periodic
in both x and ¢, as shown in Fig. 1.1.2. For a fixed time, the wave motion, as
a function of the distance x, is shown in Fig. 1.1.2(a). (Figure 1.1.2(a) is
intentionally drawn at an angle to indicate that the direction of wave motion
is denoted by the x direction.) It is observed that the period is

LUVGHE etk 1= - car) (1.1.4)

b’ OrDA k’

where 4 is the wavelength and k is the propagation constant or wave number.
At a fixed point in space, the light wave goes through a periodic motion, as
shown in Fig. 1.1.2(b). It is found that the time period, T, is given by

2n 1 (x=cnt)
WBO T‘z,"j (1.1.5)
where w is calied the radian frequency and f is just the frequency. Thus
@ = 27f. ’ (1.1.6)

To describe the wave motion, we consider how the wavefront is moving
or, equivalently, how the planes of constant phase are moving. The plane of

A Cos (wt - Const)
90

fo— T—e1 xs Constont

Fig. 1.1.2, Plot of the one-dimensional wave equation: (a) {or ¢ = constant and (b) for
X = constant.
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1 constant phase is defined by
! wt — kx = const. (L

Thus the wavefronts are perpendicular to the x-axis for this case or lie in the
yz-plape. The velocity of a wave (strictly speaking, phase velocity not group
velocity) can be found as follows:

wAt — kAx =0,

or Ax VELOCATA
(1) = & FASE

At

= =p,=fA

const. phase

(The group velocity is a very important quantity, and will be shown later to

be given by TR
} o1 GRAMo (1.18)
3 If @ is a linear function of k, then v, = v, = independent of f or .. However,
{ if v, is a function of w or k, the phase veTocily may not be equal to the group
velocity.)
Using the relationship (1.1.7), we can casily rewrite (1.1.1) as
{ (X, f) = ACI‘M‘."
wit - kx> ) _
A‘J (v ) = fué‘ %r —p = Aphelt-xi®)
Ik (-~ e) o = Ae~Mus-e
s, =
ﬂQJ ‘L("‘ LY ¢ )) - J‘ ( L3ed a,t) - = Ao H38Ax-m l
w A ™ . )
RS ""(1‘ P (119)
All of these different forms are cquivalent and useful.
Let us now take a specific example. We know that a light wave travels with
: the velocity, v = 3 x 10® m/s. For green light, the wavelength is 1 = 6000
A = 0.6 um. Thus, for this light wave
)
f=3=5 x 10'* Hz
r A light wave is an electromagnectic wave, a term which includes ordinary alter-

nating current (a.c.) at 60 Hz, radio waves, TV-waves, microwaves, infrared
waves, light waves, X-rays, and y-rays. It is amazing that all the clectro-
magnetic waves
gives a synopsis of these waves with their frequency nnm their wavelengths.
and some applications.

Further mathematical details of wave motion can be found in Section 2.1.

1&'—1 'fc;io MA
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IR B -
Table 1.1.1 s
Name J i Source Applications L
3
Direct current o* battery power supplies, d.c. motor
Ultra low t Hz Ix10°m electronic submarine communication &
frequency
Powerline 50 Hz 6 x 10°m hydroturbine powerline — motors {
Audio 0-30 kHz electronic stereo
10 kHz — 30 km oscillator
Ultrasound 30--400 kHz electric uitrasound NDT,
oscillator burglar alarm i .. . .
Radiofrequency 500 kHz-1.5S MHz electronic AM radio 3 not refractive index in this figure.)
I MHz - 300 m oscillator
Radiofrequency/  2-1000 MHz electronic C.B., FM radio, TV, other
ultra high oscillator comm. systems space, ie,n, =1y v ¢
frequency "1'"( ‘)"‘-.__ (LL1D)
Microwave 1 GHz - 100 GHz TWT, magnetrons comm., satellite vy by
10 GHz tem q d
Near infrared 10M'-43 x 10'* 3000 ym glow bar infrared imaging an [ l
Infrared ~0.7 um IRASER robotic vision vy = [,
Visible 143 x 10'% 10 0.7 um lamp, laser optical signal processing . . . R : m
Optical 5.7 % 10'4 0.4 um fluorescence optical computing where ¢ is the ve,lo.c“y o“l‘h‘ n vm“m and is equal (0.3‘ x 10° /" (7 and
Ultraviolet 57 x 10" to 0dumy,  luser photolithography oy are the velocities of light in the incident and "’W4W“‘. respec-
10'¢ ~03 um fluorescence material processing, { tively.) Thus, when we say that the refractive index of flin gfau 1s 1.6, l? means
: luser fusion - that the light velocity in flint glass is 1.875 x 10® m/s. Table 1.1.2 gives the
X-ray 10'5-10'? 300A-03A  X-ray tubes lNDT, X-r;y imaging, values of the refractive index for some useful materials.
omography - . : function ot the
y-tuy 10'? -above 0.3 A-shorter  radioactive imaging and tomography l'll m" the refractive index is & v 0“ L] be light
source optical medium 1s dispersive. F or cxample, if white hight (remember white ligh
1SOTROPO => & wRo TS ' \,o&oxf\-\.oug 9 ouda ¢ ui(h‘l&(wbe«wﬁ 7Y, Table 1.1.2° '
'”Q&\A'\Q' ‘éqofoh“& . .
Refractive index (for sodium D
] 589 nm; gases at normal temperature
1.2, X
L.1.2. Snell’s Laws (continued) Material and ure)
(2) Law of Reflection. A light ray incident at an interface between two different Vacuum 10
homogeneous iso!rogic media is partially reflected and partially transmitted. M‘,cu 1000292
Thereflected ray lies in the plane of incidence und is determined by the incident Water 1.3336'
ray and the normal to the surface. As shown in Fig. 1.1.3, the angle of incidence, Fused quartz 1.46
U; (the angle the incident ray makes with the normal) is equal to the angle of Glass, spectacie crown ::,2’:
reflection, 6, (the angle between the reflected ray and the normal to the surface). :_Ilf": m :m:)m‘) 1.890
(3) Law of Refraction. The transmitted ray, or the refracted ray shown in Fig. C:r'bon disulphide 1.64
1.1.3, also lies in thc. plane of incidence and makes an angle, 8y, with respect Methylene iodide 1.74
to the normal n. This angle is also called the angle of refraction. The law of Diamond 242
refraction states that LE — Polystyrene 1.5
- . ceGeE
E. sin 6, = ny sin 6;, ‘ UM A RoE (1-110) Ethy! alcohol 136
where n, and n are the refractive indices of the incident and transmitted media, + For other materials, scc Handbook of Chemistry of Physics, CRC
respectively. Later, .it will be diacua'sed that thin'rcfracti've index of a media is 1 Note that the diclectric constunt of water at low frequencics (a few
related to the velocity of the wave in the following fashion (here we take free kilohertz) is 81 and not (1.33)2.
(8,6 apm o robet)
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air (n=1) spectacle crown
glass
(m74)
6a bc
9]
6

8 = 30°

8o = 19.0° (Aa = 4340 5 )

0c = 19.2° (Ac =6563 A )

Fig. 1.1.4. Dispersion in crown glass for two wavelengths.

is a mixture of all the different colors of light, each having different wavelengths
and frequencies) is incident on spectacle crown glass at an angle of 30°, then
the different colors will disperse or will be refracted at different angles, as
shown in Fig. 1.1.4.

We have also mentioned a word before, “isotropic™. This means that the
light velocity in the material is not dependent on the direction of propagation.
This is true only in an amorphous material. The crystalline media is, in general,
anisotropic and Snell’s laws become rather complex. This will be discussed in
Section 2.12.5.

Paraxial Approximation
If 0, and 0; are rather smalll then we can approximate

sinf, = 0, (1.1.12)

d 0 n\al‘ \ \
" sin Oy ~ 6. w&k_ﬁjﬁ!ﬁl_

(Remember that 6, and 6; must be in radians and not in a common
source of error for students.) The law of refractlon under paraxial approxima-
tion becomes

n6 = n 6, (1.1.13)

and this simplified version will be used often in this book. It is obvious why
we call it paraxial approximation—because 6, and &, are small and the light

rays more or less move parallel to the normal, which is defined as the optical
axis.

1.2. Matrix Formulation of Geometrical Optics 7

Some Interesting Points About Geometrical Optics

{1) Snell’s laws do not tell us how much light is reflected and how much is
refracted. It can be determined by starting from Maxwell’s equations and
solving for the proper boundary-value problem.

(i) If ny < n,, then we can definc 6, (the critical angle) for total mtcrnal
reflection. This 8. is given by

n, sin 0, = n; sin 90° = ny,
or

ANGOLD
cutico

. n . fn
sinf, ="' | or 6 =sin ‘( ').
n, n,

For 6, > 0, all the rays are reflected at the boundary.

1.2. Matrix Formulation of Geometrical Optics

Let us denote from now on the z-axis as the optical axis. Under paraxial

approximation, most ol the rays we will be interested in are at very small
angles to this optical axis. This is shown in Fig. 1.2.1, where a light ray
propagating through a homogeneous medium is shown. At point A on the

optical axis, the light ray can be completely specified by x, and 6,. x, is the -

vertical distance of the ray from the optical axis at A, and 0, is the ngE the

ray makes with the optical axis. Thus all the rays, lying in the plane of this

light ray and the optical axis, can be represented by a value of x and a value
of 8 for each point along the optical axis. For point B, the position of the same
light ray can be denoted by (x,, 8,). Thus the propagation of the Ilght ray
from point A to point B on the optical axis (a distance of D on the optical
axis) can be considered as the transformation of (x,, 8,) to (x;, 8,). This is
shown in Fig. 1.2.1(b), where (x,, 0,) is the input component vector X, and
(x3, ;) is the output vector X,. The space between the optical axis points A
and B is the optical system. However, using Snell’s first law thc rcunlmcar
propagation of light rays, we find that . |« 2“7“’& /

v
x;=1x,+8,D,

(1.2.1)
0,=0-x,+1-6,.

.-fr:'.s’z
Xy, X,.0
X, X8 [oprcar | X282
Z - SYSTEM -
Af——D——=B  0opTICAL AXIS
ta) ()

Fig. 1.2.1. (8) Schematics of a light ray propagation showing coordinatc systems. (b)
Equivalent system for a light ray propagation through a distance D.

h(

N
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volitde Joc wlan”
e 7N Z«nﬂz ‘o2
Remember that in paraxial approximation, sin § = tan 8 x 6. Equation(1.2.1)
can be rewritten in matrix form

X3 1 D\[x,
(02)'(0 1)(&)' (1:22)

X, = T(D)X,, (1.2.3)
where T(D) is the (2 x 2) matrix given b

or, symbolically,

MTuce
D . (1.2.4)
Tne

and is known as the translation matrix. It is important to note that the

determinant of the translation matrix is 1.

3‘] .

1.2.1. Some Properties of Matrices

A matrix M with a (2 x 2) array element is defined as

Mll M12
M= (Mn Mn). (1.2.5)
A column matrix has a (2 x 1) array and is also known as a vector. For
example,
x

X = (x:) (1.2.6)
A matrix equation between two vectors Y and X, denoted by

Y=MX, (1.2.7)
or

Y1) (Mn Mll)(xl)
- , (1.2.8)
(}'1 M; My /) \x,
really means the following two equations, describing the linear transforma-
tions between (y,, y,) and (x;, x,):
yi=Myx, + My;x,, (129)
Y2 = M3, x; + Mapx,.
The multiplication implied in (1.2.8) can be written, using the summation
convention (sum over the repeated indices),

2
y‘ = E‘ Muxj i= ], 2. (’.2.!0)

Let us consider the situation where there is another matrix equation between

Lo

PN L

1.2. Matrix Formulation of Geometrical Optics 9

Yand Z
Z=NY,

(zl)z(Nll Nu)()’:). (1.211)
Z3 Ny Ny J\»n .
It is obvious that Z and Y must be related by the matrix equation

Z=NY=NMX =QX, (1.2.12)

or

where
Q=NM, (1.2.13)

or

(Qn Qu) _(Nn Nn)(Mu Mn)

Q@ Q1 Ny Ny /\M,, My,

((NnMn + N My ) (NgM + anMn))
(N2 My + Npp My, ) (N My + Ny My,)

The equation for the multiplication of the two (2 x 2) matrices (1.2.10) can be

casily derived from (1.2.9), (1.2.11), and (1.2.12).
Note that

(1.2.14)

NM # MN, (1.2.15)

or, in other words, matrix multiplication is not commutative.
The transformations between Z, Y, and X need not be limited to three
matrices. We can have a final matrix M composed of six matrices multiplied

together !
M = M, M,M,M MM, (1.2.16)
Using (1.2.5), we define the determinant of a matrix M as '
detM = M, M;, - M; M,,. (1.2.17)

It can be easily shown that (from (1.2.13))
det Q@ = (det N){det M)

(1.2.18)
= (det M)(det N).
Also, since the determinant is a scalar quantity, the order of this product does

_not matter. This readily extends, for (1.2.16), to

det M = (det M, )(det M,)(det M,)(det M, )(det My)(det M), (1.2.19)

1.2.2. The Translational Matrix

Let us consider the propagation of a ray to a distance D, + D, from A to C
on the optical axis. As shown in Fig. 1.2.2, there are two ways we can make
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1.2.3. The Matrix for Refraction

Let us consider the refraction of a ray through an interface between two media

! - Dy --==n - in Fi
|€---D,--- & ! -— having refractive indices n, and n,, respectively. As shown in Fig. 1.2.3, the
A 8 c radius of curvature of the interface is R, with the origin “O” on the optical
axis. We are interested in finding the final “X,” as the ray passes through the
interface. This can be done through the refraction matrix, R{R), défined as
X, =R(R)X,, (1.223)
—— TO) T(Dy) ———— where we need to determine the clements of the R(R) matrix. As the refraction
does not change the position of the ray —only its angle— we immediatcly note
(0 ) that
Xy = X,. (1.2.29)
The angle of incidence, a,, can be written as
e e T (D' + Dl) —
@, =6, + 8,
(b) where 0, is the angle subtended by the optical axis and the radius drawn from
the origin to the point where the ray intersects the interface, P. Thus
Fig. 1.2.2. Propagation of a ray through distance D, + D;: (a) one equivalent system, ofj v o x
T(D,)T(D,) and (b) alternative system, T(D, + D,). xRy % = g% VQO N % => 0, = R' (1.2.25)
The angle of refraction, a,, is given by e T}?\\:"%W“‘] 2 i 2 ops
y >
the equivalent optical system for this case. In the first case, we can consider Q’L: f""/? 90“”¢) “( “%J ‘ c a; =0 — (—63) (1.2.26)
two optical systems in tandem to represent the propagation by the distance - =0, + 0,.
D, + D,. The equivalent optical system matrix is given by . . . .
, (Note that the angle of the refracted ray, as drawn, is negative.) Usn'ng Snell’s
I D \{1 D, law of refraction
T(D,)T(D,) (0 | )(0 i ) (1.2.20) na, = na,,
Second, we could use the translation by a distance (D, + D,). The system or
matrix in this case is given by n (0, + 8;) = ny(0y + 6,) -
£
I Dy+D ,
T(D, +Dz)=<0 ' ’). (1.221) N / n
| n, e H
It is easy to show that --.
l T, + D) = TOHTO,). | (1.222) { - cqep
i b O (upten) e i Co
as expected, because it should not matter whether we consider the propagation 3 -

axis, or through a propagation of distance D, and then through a distance D,.
A note on sign convention: if the ray is below the optical axis, the “x” is

negative. Also, 8 is positive if measured counterciockwise from the optical axis;
== _otherwise, it is negative.

: !
through empty or homogeneous space by a distance D, + D, on the optical % 0 h
Fig. 1.2.3. Schematics of equivalent matrix for refraction.
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CONVEX N “) /\
\ - \ R ()

CONCAVE

(a) (b)

Fig. 1.24. Sign convention for radius of curvature of refracting surfaces: (a) convex
surface and (b) concave surface.

or

P n
§; = —;;x, +;li0,, (1.2.27)

where P = (n, — n,)/R, and is defined as the power of the refractive surface
bend a ray or the bending power of the surface. Thus,

x;=1-x,+0-8,,

P
0= ——x, + f'10,,
n

2 n,
or ch
1 0 o
R(R) = ‘
( ) (—P/nz "l/"2>. WWMW(LZZS)

Therefore, the determinant of the refraction matrix is n,/n,. Again, we must
be carefu_l about the sign convention. Figure 1.2.4(a) shows a convex surface
where R is positive. Figure 1.2.4(b) is for negative R and for a concave surface.
'Notc,.m Fig. 1.2.4, that the direction of the optical axis points the direction
in which the light rays are propagating. A simple way to remember the sign

convention is: If the arrow on the radius (from the origin to the interface) and

the arrow on the optical axis arc in opposite directions, only the “R™ 13 positive.
t Is Interesting to note that if the interface is flat (that is, if its radius o

curvature is infinite), then the bending power is

n,

P(R—»oo)-n’—;—zo.

In that case, the refraction matrix is given by

1 0

Sign Conventions for Geometrical Optics

x (h.cight of .object measured from the optical axis)
x is negative if below the axis, and positive if above.

1.2. Matrix Formulation of Geometrical Optics 13

0 (angle of ray measured with reference to the optical axis)
0 is positive if measured counterclockwise from the optical
axis, and negative if measured clockwise.

R (radius of refractive surface)
R is positive if antiparallel with the ray, and negative if
parallel with the ray.

1.2.4. Matrix for a Simple Lens

A lens is an optical device, which we shall see later has many useful properties.
Two of these properties are the focusing of rays and the imaging of objects.
Using combinations of lens we can build equipment like binoculars, cameras,
microscopes, and telescopes. In general, a simple lens is a piece of glass with
two refractive surfaces having radii of curvature R, and R,, as shown in Fig.
1.2.5. The thickness of the lens at the optical axis is “d”. For a thin this
“d” is considered to be approximately zero. The equivalent system model for
the lens is shown in Fig. 1.2.5(b), where we need to find out the values of the
lens’ matrix “M™ elements. This M matrix represents the property of the ray,
from the point where it is incident on the front surface of the lens until it just

exits from the back surface of the lens. This propagation of the ray, X,
rough the lens consists of the following three distinct operations:
(i) refraction through the surface having a radius of curvature R;
(i) the translation of the ray through a distance “d™ on the optical axis;

(iti) the final refraction through the surface having a radius of curvature |R,|
where R, is negative.

If we denote the initial ray by X, and the intermediate rays by X, (r::fnction
through R,) and X, (translation by “d”), and the final ray by X, (refraction

,Aunodnd - Lowsduuna.
forduae /} wzfam,
Z LENS (SIMPLE)
AN -
L S} ( —

Ry, /I
2 /i

|

i

——a— M~ LENS MATRIX
(0}

(b)

Fig. 1.1.5. Lens formation using two refracting surfaces; (a) actual lens with coordinates
and (b) equivalent matrix representation.

R

X, - M X4
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through R;), we can write
X, = R(R,)X,,
X, = Td)X,, (1.2.29)
X4 = R(Ry)X,,

or
X4 = R(R3)X,
= R(R,)T(d)X,
= R(R;)T()R(R,)X,. (1.2.30)
Noting that the equivalent lens matrix, M, is defined by
X,=MX,, (1.2.31)
we obtain
M = R(R,;)T(d)R(R,), (1.2.32)
or

1 0 1 d 1 0
M= . 1.2.33
(—Pz/"s "z/"s)(o l)<_Px/"z "1/"2) ( )

Here n, is the refractive index of the incident media, n, is the refractive index
of the lens material, n, is the refractive index of the final media, and

n—-m
P, = .
1 R,

and (1.2.39)

n; - n:

Pz Rz .

By carrying out the matrix multiplication we obtain
1 - Pyd/n n,d/n

M= v 1 ) 1.2.35
(—(P,/n,m ~ Pudiny) = (Py/ny) (my/my)(1 = Pydjmy)) | 1239

The above expression gives the clements of the thick lens’ equivalent matrix.
For a fm*'ﬁens. d — 0, and this simplifies to

(1.2.36)

where

(1.237)

is generally known as the focal length, the only quantity which characterizes
the thinTens. Tts signilicance wi understood in the next section. However,
we not¢ that for a thin lens, if the refractive indices of the incident and the

.3

o e

by
g-;el:ﬂ‘l:) q:F =0
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LENTE

final media are same, i.e., n, = n, = |, then

ent "somries
(con mynty=2) 1
{
and P? ML"”‘
I P +P [Py 7,
foom S s M
or ' 2%
11 (rzﬁ—»n, n, n,)
f s Rl R’ om=m =4
or A N |

or
1 4. 1 1
gl ""(R. “R,)

1 )< P! )
= m\iry T iR
The last expression is generally known as the lens designer’s formula and is

obtained by noting that “R,” is negative. Also, for ny = n, = 1, the cqui-
valent matrix for a compound lens simplifies to

(1.2.39)

—P,(1 — Pyd/n))— P, 1 — Pyd/m,

An interesting case for (1.2.40) is when R, = R, = o0, but d # d That is,
for a flat piece for material with a refractive index of n,, the M matrix is given

1 d/ﬂz
M"(o 1 )

P 1 — Pd/n, dfn, |
Mit=d = P=( ) ( (1.240

1.3. Image Formation

The concept of image formation is a very important concept in op(ics..As
shown in Fig. 1.3.1, let us consider a point source of light, S, and an optical

SISTEMA-
Sl RE omce
|HMAG IVE
X || >
S 1

Fig. 1.3.1. General optical system showing the image formation of the source(s),
through the optical system having system matrix, M, and image, 1.

"SOTME " maMad
(M)m.’(_ll/f 0)=M(f),J (1.2.38)
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\

{0) (b)

Fig. 1.3.2. Perfect image formation in: (a) ellipsoidal and (b) parabolic mirror.

system, M. Let us refer to the image of the source S through the optical system
M by I. The condition of perfect image formation is that all the light rays

emanating Irom the source, either must converge to the point I after passing

through the optical system or appear to diverge from the imagc point, 1. If

the rays actually meet at the image point they are called real images, otherwise
they form virtual images. As we know that the point source radiates in ali
directions equaily, we immediately note that even an infinitely long lens
cannot form a perfect image because the rays going away from the lens will
never arrive at the image point. Of course, the paraxial approximation will
not hold in this case either.

The only optical systems which can form a perfect image are the mirrors

having the shape of conical surfaces. These are shown in Fig. 1.3.2. For
example, the source, §, placed at one of the focii of the elliptical mirror, will
form a perfect image at the point, /, the other focus of the cllipsoidal surface
as shown in Fig. 1.3.2(a). Similarly, the parabolic and hyperbolic mirrors can
form the perfect image.

For practical purposes, we define the so-called “approximate image”. If the

rays from the source, S, within a very small solid angle converge to the image

alter passing through the optical system, 7, then we say that a real image has
Tormed. Ttherays actually diverge buta r to diverge Irom the image point,
I, we say that a virtualimage has formed. ;lgure .33 shows the approximate

image Tormation. Note the large number of rays emanating from S that are
not even incident on the optical system.

_______ i
S M s .ll':':_-_ :- :- :-:-: -------- -
I I .M. ..... [ ——
Reql Virtuat
(0} Imoge Imoge (b)

Fig. 1.3.3. Practical and approximate image formation: (a) real image and (b) virtual
image.
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Sé %1
ne streey’

v 0 " 0 §
-— 1, 1, -—-.:
: {0) !
1 ]
]

S M

ane Hrea

()

Fig. 1.34. Schematics and coordinates for approximate imqe formation calculations:
(a) actual system and (b) equivalent system used for calculations.

In most practical cases, we will be intercited in the image of an object,
which is not a_point sourcé. Ho g ¥ points make an

object and, thus, once we know how to find the image of a point, we can easily
obtain the image of an extended object. However, before we proceed any

further, it is worthwhile to find the mathematical equivalent of .lhc. approxi-
mate image formation. In Fig. 1.3.4, we note that the source, ‘S, is situated at
a distance 2z, from the edge of the optical system and ata distance X, from
the optical axis. The optical system is M’, so let us consider (l}al the image [
is formed at a distance z, from the other edge of M’ and at a distance X%, Iror_n
the optical axis. Note that z, and x, arc known. What we want to ﬁ.nd out is
z,, called the image distgnoe, and x,, which is related to the size of the image.

Let us consider the b%]’ﬁm of rays X ,(x,, 8;), ..., all starting from S within
a very small solid angle. Note that all the rays have the same x value, x;.
However, the angles are different. These rays, first of all, go through a tran-
slation, of distance z,, then through the optical system matrix, M’.‘ apd finally
through the image distance z,, to form the image. If the rays arnving at the
image point, /, are denoted by

X, =MX,, (Lin

then
M = T(z;)M'T(z,) (1.3.2)

is the equivalent system matrix for the image formation, \_vhich includes the
optical system ard the image and object distances. Thus, in terms of the M
matrix clements,

xX; = M, x, + M0,

6, = My, x, + My,0,.
xl‘ _ M r‘nl x'\
M)! M?! 94

(1.33)
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Now, if M,, = 0, then we find that all the rays from x, will pass through x
COUNMNE irrespective ol al what angle they oneﬁilsa. Thus the condition lor image
formation is r———-
Ml1=0' CO“E{ ”E-\ . .4) -
Rl FOMAR, TMMAZ e
The solution of (1.3.4) gives the value of z,, the image distance, in terms of the
other constants of the system. The value o X, 1S oglamea from the equation
x; =M, x,. (1.3.5)
The lateral magnification is given by
IMGRANBIMELTS [ X
LAI-EM (/E I x x, 1t»
and the angular magnification is given by
NGEIARLE UENND | A6
" b | R me= Moy, (13.)
ANGOLARE i

If the object is located in a medium having a refractive index n,,and the image
is formed in a medium having a refractive index n,, then we know that

det M = det T(z,) x det M’ x det T(z;)

>
3

]
H - Mqy
. 72

“‘ : b
N g

Fig. 1.35. Image formation through a lens. u = object distance, v = image distance,
x, = size of the object, and x, = size of the image.

shown in Fig. 1.3.5. A ray is traced through the optical system, its different
values at different points on the optical axis are denoted by X, and X,,
respectively,

(1.3.6)

X; = TO)M(/)TWX,

(6 D D6 G-

‘» (%) 7|1 4|x (’l—v/f)(wuv/f“("l)
i(4) 2|0t @,‘C'—w) (- + VN6

(1.3.12)

(1.3.8) Using the image formation condition (1.3.4), we obtain
n n
=1x-2x]=t P
xnzx n; M12=0=“_.ﬁ,+”=0‘ “ £
or
n
MnMn_MuMn "n—l" (1.39)

2

or
11
L (1.3.13
u+v f‘ { ( )

As M, = 0, for the image formation condition, we obtain an important

relationship The lateral magnification, m, (in this case) is given bz L
< /m n a1 o
M ™ M,,M,,:i, mo=1-"=_" (13.14)
My = (13.10) S
m.m, = 1“- whereas the angular magnification, m,, is given by
n, -
In general, the object and image spaces are in air. In that case, n, = n, = 1, m =1~ ; 8'/-}:. (1.3.15)
or -
1 gm%w“t Pet As expected, the condition
m o= 1. (1.3.11) (13.16)
m, MMaGive
MM & H lz,: 0) is satisfied.

V ’ - i ial of great importance.
1.3.1. Image Formation by a Thin Lens in Air (mA =M, = 1) For the thift lens, the following special cases are of great impo

As the object and the image are in air, this example of image formation
simplifies significantly. The image distance, v, and the object distance, u, are

Case 1. u - oo or the object is far away from the lens. Then
v=f
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|

e
(a) (b)

Fig. 1.3.6. (a) All parallel rays passing through the lens converge in the focal plane.
(b) All rays from the sources situated at the focal plane become parallel rays after
passing through the lens.

This also means that all the rays parallel to the optical axis and incident on
the lens pass through the focus which is at a distance f from the lens (Fig.
1.3.6(a)).

Case I1. u = f or the object is at a distance f from the lens. Then
v = 00.

This is shown in Fig. 1.3.6(b).

Case H1. u = 2f. Then

3
i
|

Finally, in Fig. 1.3.7, the variation of the image distance and the lateral and
angular magnification are plotted as a function of the object distance. Note
that m, and m, are positive for the virtual image. This happens when the image
distance is negative, or the virtual image is formed on the same side of the lens
as that of the object.

It is also interesting to obtain the image formation through graphical
construction. Remember that the image will be formed at the point when two

different rays, emanating from the source and passing through the lens, cross

_each other. It is advantageous to consider the following four rays:
(i) x, =0and 6, = 0. Xz" Hy Ma \)‘1
My M 0

Then from (1.3.12), or for any matrix, 1
X, =0 and g, =0.

This is a very important ray. The ray identical to the optical axis always
passes undeviated through an optical system.
(ii) x, = any value, 8, = 0.

X3 -0, 01-—Xl

X, is at z = [ in the image space.

1.3. Image Formation pa
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Fig. 1.3.7. Image position and magnification for a lens with focal length, /. as a function
of object distance, u, positive only.

Any ray parallel to the optical axis passes through the focus in the image
space.

(iii) x, mQatz, = —f and 6, = any valuec. §; = 0.
Any ray passing through the focus in the object space emerges paraliel to
the optical axis in the image space.

(ivi x, =0atz=0,0,=0,.

Rays passing through the center of the lens emerge undeviated in thc mu.e

t m ;:mm,»to&y»r"‘y e u EEE+* CA EERLEr . )

In Fig. 1.3.8 several cases of image formation are illuslrated usmg the
above-mentioned four types of ray tracing. Different types of lenses, such as
biconvex, concavo-convex, biconcave, plano-concave, and plano-convex are
also illustrated in Fig. 1.3.9.
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Fig. 1.4.1. Schematics for an equivalent thin-lens formulation.

v
1

N

method is to use the arguments given in the previous section to calculate the /j °ﬂnm;)ﬁ
intermediate image position due to the first lens only. Then the calculations j

_a;e_r_cm.fguhsm&mmﬁmj;h%_ni@m LeTThe image ol %
the object S, due to the first lens only, be I,. position and magnification ‘
() ' of 1, can be obtained using the equations developed in the previous section.
1 Then, consider [, as the object for the image formation by the second lens.
Fig. 1.3.8. Image formation through ray tracing: (a) real image and (b) virtual image. 1 Again, using the same formulas, the final image [ is obtained. It 1s more
1 illustrative to take a numerical example. Let f, = Scm, f/; = 10cm, d = 12
] cm, u, = 15cm.
Convex  Convex Thenv, = 7.5andu, = 12 — 1.5 = 4.5.(Note: u; isnot 7.5 but 4.5cm.) The

final image distance v; = —90/11 cm. The total lateral magnification, m,, is
Bi-convex Bi-concove given by
v, v,) 15 90 10

momm = (-22) (-
1 2

T T x4s 0

Convex Concave
s
Plano - concave The second method is more general apd can also be applied to the qomb.i- ,/ 2 pETn )
nation of COMPOUNd lenses or any optical system. In this method, we obtain
¢ equivalent system mafnix including the image and object distances, as

1 discussed in Section 1.3, and we obtain the relevant quantities using the
approximate image formation conditions. The student should work out the
previous example by this method and obtain the same answers. The equivalent
system matrix will be given by

Piano -convex !

Fig. 1.3.9. Different types of lenses. (M) = T(v)M'T(u,),

where

1.4. Complex Systems » (M) = M(f)T)M(f,) (14.0
A . . ‘o 3 However, a variation of this second method is more interesting and often used.

CO:}P'Q‘ optical ‘%Etem is formed by two or more ?ﬁ‘l\rhenscs or by different This method can be called image formation, using the equivalent thin lens
gom mations of thick lenses, of which the equivalent system matrix is given $ formulation. ZQUUAS

y (1.2.35) and (1.3.40). First, let us consider one of the simplest complex The method is based on the fact that any optical system in conjunctiop JTH N

.sl?;tem” the two thifi lenses separated by a distance “d", as shown in Fig. 1.4.1. with two additional empty spaces can be shown to be an equivalent thin lens. Leps

¢ focal lengths of the lenses are f, and f;, respectively. There are two ways Consider the optical system, which can be very complex, consisting of many
we can discuss the image formation of this two-lens combination. The first thin and thick lenses having different materials with different refractive indices.
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Still, the equivalent matrix for this complex system can be written as
M, M
(M) = ( 11 12) ,
Mll Mll

where M\, M,,;, M,,,and M,, are arbitrary. However, if the complex system
is in air, that is, if both the image and object space is air, then

(14.2)

Because det M = (det M,) x det(M,) x det(M,),..., where M, and M,, etc.,
are the individual matrices. However, we know that the determinant of the
translational matrices is I, and that the determinant of the refraction or lens

matrix 1s the ratio of the initial refractive index and the ina refractive index.
Thus,

l -nltnz-t-nl—
det(M) 1T L (14.3)

Thus, in any general optical system matrix, only three elements are arbitrary.
To obtain the equivalent thin-lens formulation, consider the total system

shown in Fig. 1.4.2. This system consists of an em ty space of length D in front
of the complex system, and another empty space of lengt ind the
complex system. The total system matrix is given y
(My,) = (' D’)(M.. M\ (1 D) (HetdN,
o 0 1/\M,, M,,OI'MZ,4
- (Mu + D'M,, MnxD + M+ D'(My,D + M,,)
21 T Myb+ M, T

Remember that D and D’ have arbitrary values. Thus, we can choose the values

(1.4.9)

of D and D’ such that
J(M-y-)u =M, +DMy =1,

covn mone T2

©-D  z:0 Tim 222,40

i

&
_\-

{(Msys.) \ \ _ "
Syt

Fig. 1.4.2. An optical system and its cquivalent thin-lens system.
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and +
F(M.y.)n =My D+ My, =1, CONOIRONE _E&
or ——
(14.5)
and

Of course, the above equations are meaningless unless

M; #0 CONDITOLE (146)
(since f = 1/M,,).

Using the values of D and D’ obtained in (1.4.6), we obtain ( wihe JetH=4 )

& Awira l.’
= <A (1.4
where use of (1.4.2) has been made. Thus, with these chosen values of D and
D', we obtain —

(May-) = (

(14.8)

1 0
—\f l)' ¢ & Sfera

' = “s;;‘.'J

and is only valid where M,, # 0. _
This is a startling result in the sense that any complex optical s stem can
be made equivalent to a thin lens. The planes perpendicular to the optical axis

where

(1.49)

atz=Dand z =z, + D arc known as The principal planes. z,, is the width
"ol the BPYIcaT System with matrix M. Note that for image Tormation using this

€quivalent thin lens, the object distance must be measured from the D principal

plane and the image distance must be mcasurefi fronl (hjl? principal plane.
For an actual thin lens {Mh\& Hy=Mp=1 )

D=D=0

and the principal planes coincide with the physical position of the lens.
Tt is 1o be noted that we have derived equations (1.4.2)-(1.4.9) under the

assumption that the initial object and image spaces are a%r or, rather, vacum.
However, if they are n and n’, respectively, then the equations are modified as
follows:

det M = s,,
(1.4.10)
n
My D+ M = =

e

I 65 e
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or

ogul_'

(1.4.11)
My,

1 ]
M.y.-(_wn, n/".)- (14.12)

1.4.1. Image Formation Using an Equivalent Thin-Lens Formulation

(va1dA solo se M, #o)
Image formation calculations using this technique are easy to perform wtcn
we remember the formulas derived in Section 1.3.1, with the important re-
minder that the object and image distances are measured from the imaginary
principal planes. Let us consider two examples: (i) the thick lens, and (ii) the
two qt&)_\i{:-lcns combination. !

TH Lens
The equivalent matrix for the thick lens is given by (from (1.2.40))
1 — P,d/n, djn, )
. 1.4,
—Py{l - Pyd/n;) — P, 1| — P,d/n, (14.13)

Using (1.2.10) and setting (M, ,),, = I and (M,,,);; = 1, we find the principal
planes located at

! - W, —Pyd / . . .
i = 2 Pimor RULCRAA
u pd (1.4.14)
-
b 4 -t - SN nP’
B Puoco
My vher 1 P,P,d 1pe?asQ\mawewm
_f; 4 — s P=f:-P. +h - (1.4.15)

The equivalent system is shown in Fig. 1.4.3. This figure also illustrates how
the ray tracing can be performed using special rays.

(i} The parallel ray coming from infinity hits the D-plane at A. It emerges at
B on the D'-planc and passes through the focus. It is interesting to point
out that we need not know the exact path the ray takes between the
D-D'-plane.

(ii) The ray passing through the focus in the object space comes out parallel
to the optical axis from the D'-plane. Of course, it is at the same vertical
distance from the optical axis, both on the D-plane and the D’-plane. This
is true for all rays.

(iii) The ray incident on the intersection of the D-planc and the optical axis
emerges at the same angle, with respect to the optical axis on the D’-plane.

YRR NSV T BT T AT T T AW AT ATV AR T NS M

A 4 . R - .. '*a8 N . L Y S
“ - = ;.5.13 Trg-asomt.a [z
N -‘e Lew 1.4. Complcx Systems 27
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Fig. 1.4.3. A thick lens and its equivalent optical system.

(iv) The formuld 1/S + 1/8" = 1/f,, polds where S is the object distn'nce mea-
sured from D, and 37 is the image distance measured from D',

5+ Wdwig o de D | s
o | = (1.4.16)
$e Qe wiwiafive Qb M= T M= g -
/
and
mm, = 1.

The above discussion is somewhat modified if the image and object spaces are
not air. This can casily be derived by the reader.

Two ﬁk&“ Lenses Separated by a Distance, 4

For this case feda Ans L9

4 4
o= 6 Do 05 7 o)

- ( 1 —dif, d u?‘n‘é"

=LA —dif)) - Vfy —dif; +1

n4o |

0 bk COMAA}«_; ue ol m
8" Gk noth&. cpuisoluty *
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1 + 1 d Fuoo LQuivaten
Jo N LS
df, /
D= -, [ i e (1418
d
D=—"
S
Using the previous example of Fig. 1.4.1
u,=15cm, fi=5cm, f;=10cm, d=12cm,
we obtain
f.‘ = l6§ cm' 16‘,%
D=-2, —o (ke disg ¢ uriede
s
D= —40. - e, doi offee.’)

Object v ((owme ~ D)

t,e10 3
t |
(M)
|
! I
l . L]
| et © | " Q!
\\\\\\ T —a=e
1 t=—15¢cm " ‘*L#_\_"Q\J
O . T T
| T =T L) 3 ]
1 ™ |
! % ! N’.\\\\L
| | i
!
:-—-'..—-—i : E :r-Bcnw{ @
I ' | ] ] !
:‘————Zch——-;-——-ZOcm{ ~-—(I)
| J t ) !
|
S 3-a00m <o Lad
Fo e m = —§'2350/1 < e oot l
! h ua*~90/11 :
i |
I
bt————— S+ 35cm R —

Fig. 1.4.4. Image formation due to two thin lenses.
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1.5. The Telescoping System 2

: AJOTO !
Thus, S = u, — D = 15 — (~20) = 35, f*oq =D Ucow S
7 = AOTO
111 z
S fu §
=330 23402
S= i ! . 4
.., 350 9% ol douta o wiwa
. Up= S D=+ (40— oo ‘@i TR
toue u«wo’m
s 10 . » .
- R - N F ey .
me=—o= i ATTOLE MGG M ° ATERAC

As expected, the values agree with those derived previously. The image forma-
tion using ray tracing is also shown in Fig. 1.4.4.

1.5. The Telescoping System _” HZ 4= ©

If M,, = 0, then the equivalent thin-lens formulation that we have discussed

carlier oes not hold good. These systems are called telescopic systems. For
image-formation calculations in the telescopic system, we Eve to use the
method discussed in Section 1.3. Asshown in Fig. 1.5.1, the total optical system
matrix (including the object distance, z, the image distance, z’, and the tele-
scopic system matrix, M), is given by

(M), = T(z')MT(2) M, iz + Z'ﬂ, 1¢

()6 D10 o, et

- 1YP, M,, +2'P, + z/P,
0 P, ’

Moo M4 2n,

o) My

where

(1.5.1)

. ( ’ con  IPoTeSE BN
dot H)‘- 1 = | P=My=. | SISTEMA (152
r Mi 1 orrico “m Ar1a”
The last equality is obtained by noting that the determinant of the M matrix
is 1. For image formation

2 conbigwons PER LA
(,,) =0 — © M,2+zP,+P.v-0. FoMARLONE
S DELL' IMMAG INE
Object Telescopic imoge
: System 4
[ y S (M) TR, > SO .:

Fig. 1.5.1. A telescopic system.
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(1.5.3)

(H’z )mr: ? ?fﬂ‘

Also, for this case,

Thus,
Xy

X; \1/& 0 \|n — x2 =
g1"lo n)ig 0, = P.0,.

l:’rom which we obtain 0 & 0AN RIMENTO

=5 "L ATERALE" (159)
My ,‘1 e =1 =N
s} and

. n - .
m, - ;: — L:Ej ANGO(ARE " (155
An important quantity for the te escopic system is the longitudinal magnifica-

tion. This is given by INGRAN D ME NTO

" :W&IWB'U- "1.5.6)

~ 2 For a two fﬁ‘i‘?&lcns combination, the condition for a telescopic system is
{ 4 4 obtained from (1.4.18), and is given by’

"é + :5*21‘ F =0 — d=f, + f,. (1.5.7)

oo 3 For this important case, (1.4.17) becomes

=hLih N +fz)
M) = , 1.5.8
™ ( o -, 138
or
- A (1.5.9)
%- Y T —>
Hu

1.6. Some Comments About the Matrix Method

(1) Some of you have probably noticed that although any optical system is
three dimensional, we have only been concerned with two-dimensional sys-
tems; or, we have only considered the plane containing the ray and the optical
axis. This does not, however, restrict our calculations because, in general, the
optical axis is the axis of symmetry. Also, the rays from an object can be always
split up into rays having x and y components. Once they are resolved into x
and y components, they can be treated independently and thus the two-

1.6. Some Comments About the Matrix Method 31

TR

Equivaient Lens
(b)

Fig. 1.6.1. An optical mirror and its cquivalem system: (a) actual system and (b)
equivalent system, unfolded.

dimensional calculations become onc dimensional. The above statement can
be proved mathematically. See, for example, Klein and Furtak [1].

(2) If the optical system contains a mirror, for exampie, a Galilean tele-
scope, then the rays can also be calculated using the matrix approach. How-
cver, in this case, we consider that the image space has a refractive index

n = ~ 1, and that The oplical axis direction is in — z direction for the ima

space. For example, consider the imaging problem shown in Fig. 1.6.1. The
convex mirror has a radius of curvature, R. Thus, the equivalent matrix for
reflection is given by (1.2.28)

1 0 ' 1o e
,W“)"('% o J‘ R(R)=(_,, l). my=-4
' where® "

pr (M-M) pzh-1__2
F = R R
or
10
RR) (—‘/f 1)’
where
R
feq—_‘i'

Image formation using ray tracing is also illustrated in Fig. 1.6.1.
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Fig. 1.6.2. Real and virtual objects and images.

(3) The physical meaning of lateral magnification is obvious; however, the
meaning of angular Wcation may not be so. To clarify it, consider Fig.
1.6.2 which shows a bundle of rays with a solid angle, AQ, converging at the
image point. These rays originated at the object point having a solid angle AQ,

R m: = AII| x "l.2

and the image will appea#ﬁ‘righteri m, > 1

Actual
Optical System

Real Object Actual Image
Space y=eve Space vEeve

- 1 J Virtuat Object ) -
I \Space us-ve } !
1 |
l |
| fVirtua! image) |
| \Space ve-ve :
! |
T 1
ObjectD Object @ image M
Imoge @ I
E real real real
i Virtual
?Obpct@ ’Omcl ® imoge ®
|
Virtual E L
i Virtuot Virtual real
image @
Fig. 1.63

1.7. Apertures and Stops 3

(4) We have mentioned image space and object space. In general, the object
space is to the left-hand side of the lens and the image space is to the

right-hand side, il the rays are traveling Trom lelt to right. However, an image

can be to the left and, in the same way, the object can be to the right. Of course,
these are the virtual image and object, respectively. Actually, the object space
is the whole space with the positive direction to the left of the lens,; and the

negative direction to the right of the lens. Similarly, the image space 1s the

wholc s where the posilive direcli ight side of the lens, whereas

the neetivc side is to left side of the lens. Similar situations can anse with

respect to the principal planes and the position of the focus. Some interesting
cases are shown in Fig. 1.6.3.

1.7. Apertures and Stops

Up until now we have not discussed anything regarding the size of the lenses
used in optical systems. Although we have used paraxial approximation, we
have implied that the size of the lens is of infinitc dimension normal to the
optical axis. However, the lens diameter or lens aperture, as it is sometimes
called, is finite. There are two points to be considered in connection with this
inite lens size:

(i) the paraxial approximation may not hold well;

(ii) the rays emanating from an object may be partially or completely blocked
due to finite lens size or other restrictions such as a mechanical lens holder
or intentional aperture.

The effect of the first point is the so-called subject of aberration and will be
discussed later. The latter point is discussed in this section. It is to be noted

that there is a third effect, the diffraction effect, which will be discussed in
Part I1.

1.7.1. The Aperture Stop

To understand the aperture stop, let us first consider the simple case depicted
in Fig. 1.7.1. The same object is imaged by different lenses with identical focal
length, f, but having different diameters D, and D, (D, < D,). The light within
the solid angle, (Aa,)?, will be imaged by the first lens where

D,

2u

under paraxial approximation and for the object distance u. For the second
case,

Aa, = 7.y

D,
2u’

and as D, > D,, the image in the second case will be brighter. Thus, we see

Aa, = (1.72)
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Fig. L.7.1. Aperture stop for optical systems.
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that in this simple case the size of the lenses determines the aperture stop—
and the second lens has a larger aperture stop.

Now consider the situations in Fig. 1.7.1(c) and (d), where the same two
lenses are used but both Jenses have a mechanical aperture of diameter D,,
placed symmetrically on the optical axis as shown in the figure. For the first
lens, the maximum angle the ray from the source can have, with respect to the
optical axis and still passing through the aperture, is given by

D
Aag, = -2,
sy " (1.7.3)
Comparing Aa, and Aag,, we sce that if Dy > D, /2, then the brightness of the

image (note that the position of the image is not altered at all) will still be
determined by the angle Aa,, and the aperture stop will be the lens.

Py

o

1.7. Apertures and Stops 3§

Similarly, for the second lens
4D, ~

A, = 2 x 3’ (1.74)
and the aperture stop will be the mechanical aperture unless
D, > 32’. (1.7.5)

If we assume that the condition defined by (1.7.5) is satisfied, then we find that
the image brightness will be determined by the mechanical aperture and not
by the lens diameter.

In Fig. 1.7.1 we have discussed two simple cases. However, an optical
system can have many components. The particular component which physi-
cally limits the solid angle of rays passing through the system from an on-axis
object is called the aperture stop. Thus to calculate the aperture stop, evaluate
the “Aa” angle for each component. Remember that when calculating Aa for
a particular component, assume that the other components have infinite size.
Then the component which makes the lowest “Aa™ is called the aperture stop.

It is of interest to define the Aa angle again. From the on-axis source, let
us consider the rays which slowly make larger and larger angles with respect
to the optical axis. Then, for the ray that has the largest angle and still passes
through the optical component, this angle is called the “Aa™ angle.

Two other important quantitics are generally considered. These are the exit
pupil and the entrance pupil. The entrance pupil is the image of the aperture
stop in object space, whereas the exit pupil is the image of the aperture stop
in image space. The entrance pupil, in a sense, determines the amount of light
which will pass through the optical system unobstructed, whereas the exit
pupil determines where the light rays are expected to come out through the
optical system.

These concepts concerning aperture stop, entrance pupil, and ‘exit pupil are
somewhat confusing. The two exampies in the next section will help clarnfy
some of this confusion. One important word of caution —the aperture stop is
dependent on the position of the object. Thus, for some positions of the object,
one component can be the aperture stop, whereas for a different position of
the object a different element of the optical system can be the aperture stop.
Of course, when the aperture stop changes, the exit and entrance pupils will
change also.

Examples of Aperture Stop

Before we start discussing a new example, let us calculate the exit and entrance
pupils in Fig. 1.7.1, where f = 10 cm, D, = 5 cm, D, = 10 cm, D; = 10 cm,
and u = 20 cm.

First system: aperture stop = first lens,

entrance pupil = first lens,
exit pupil = first lens.
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Second system: aperture stop = mechanical aperture,
entrance pupil = mechanical aperture,
exit pupil = located at v = — 10 and of size 20 cm in
diameter.

The Matrix Method for Finding the Aperture Stop

Instead of calculating the angle Aa by geometrical arguments, we can use the
optical matrices developed previously. Consider the optical system shown in
Fig. 1.7.2, where we are interested in finding the Aa angle for element 4 which
is a mechanical aperture. The ray with the angle Aa will just touch the rim of
element 4 which has a radius p. We can calculate the optical system matrix
(M) from the source A to B which is the position of element 4. Then we know
that
X; = (M)x,,

= (o)

" where, for our case,

Also
n=(0)
Thus
p=M;, x0+ M, x,
0, = M3, x 0 + M,,Aa,
or

p
Ax= -, 1.7.6

® ©® o
1

LAY

T\

!
’

<[>e

Fig. 1.7.2. Optical system to demonstrate the matrix method cvaluation of aperture
stop.

1.7. Apertures and Stops »

So to determine the aperture stop, calculate Aa for each element of the system
by using the M, ; clement of the equivalent system matrix.

It should be mentioned that ordinary imaging by lenses can also be used
in place of the matrix method to determine the aperture stop. Depending on
the circumstances, this method may even give a better physical insight to the
situation.

Examples

Consider the optical system in Fig. 1.7.3 which consists of two lenses, one
having f =5 cm and D = 4 cm and the other one having f = 6 cm and
D = 6 cm. The object is located at a distance 10 cm from the first lens.

(i) Caiculate a, ,.
By inspection
a, =%=4 (117

or we can usc the matrix method. The total system matrix is simply T(10).
Thus,
Mll = 10,

p=2

therefore,

(ii) Calculate ay ;.
The image of the object through lens L, is at

v=10cm with m, = —1,
Thus, the equivalent source for lens L, is at y = 12 cm. Thus, °

3011
R T g

(Note that in determining a for the aperture the sign is not important)) Note

(1.7.8)

®
(D D=6cm
f=3cm f=6cm
Dsdcm
A
'-—!Ocm 22¢cm

Fig. 1.7.3. A two lens optical system.
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that we have to divide by the angular magnification factor. If we use the matrix
method, then the total matrix is given by

M= TQQM(f = 5)T(10)
()
-y -1 )

« -1
L2 ‘ *

1

Jaty o] =3

Thus,

Aperture stop: Comparing «, , and &, ; we find o, , < a,,. Thus, lens L, is the
aperture stop.

Entrance pupil: As lens L, is in the object space already, lens L, is again the
entrance pupil.

Exit pupil: The image of lens L, through lens L, is located at v = 8§ cm and

m, = §. Thus, the exit pupil is located at a distance 8§ cm from lens L, and
has a diameter 3§ cm.

1.7.2. The Field Stop

The aperture stop limits the illumination of an on-axis point image, whereas
the field stop does it for an off-axis source. As we shall see, the ficld stop is
dependent on the aperture stop.

Before we define the field stop it is advantageous to define chief and
marginal rays. Chief rays are those which emanate from off-axis sources and
pass through the center of the aperture stop. Alternatively, we can think of
the chief rays as all the rays which emanate from a source placed at the center
of the aperture stop. Marginal rays are those passing through the edges of the
aperture. The chief and marginal rays are illustrated in Fig. 1.7.4 for the

f:5
D=4

MR4  |=—10—|
S

| MR3
! ( F3!

'MR3 | mcn

|

f——22¢cm -]

Q-

Fig. 1.7.4. Chief and marginal rays in an optical system.
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optical system discussed in Fig. 1.7.3. It is obvious that all these rays do not
pass through all the components of the optical system. The chief ray, CF3,
and the marginal ray, MR4, fail to pass through the second lens.

The particular element in an optical system which limits the chief rays is
called the field stop. Thus, if the object is placed further off-axis, the angle
subtended by the chief rays at the center of the aperture stop will be larger,
and the field stop determines how far the off-axis object can be situated from
the optical axis and still have at least one ray which will pass through the
system. If we think for a while it becomes clear that the ficld stop is nothing
but the new aperture stop, when the object is placed at the center of the actual
aperture stop. Thus, to determine the ficld stop of an optical system, first
calculate the aperture stop and then recalculate this new aperture stop, the
field stop.

Similar to the definition of entrance and exit pupils, the entrance window
is the image of the ficld stop in object space. The exit window is defined as the
image of field stop in image space. If the entrance window is near the object,
then it determines how far the object cun be off-axis and how an image can
still be obtained. Thus, the entrance window is related to the field of view of
the optical system. However, the image of the off-axis object may not be as
bright as that for the on-axis object. It is quite possible that there is a gradual
loss of light as the object is moved off-axis. This gradual loss of light, or the
variation of brightness of the image point as the source is moved off-axis,
is known as vignetting. To an observer in the image space the exit window
tends to limit the area of the image, just as a window limits the view an
observer can see when he looks through it. This concept will be clearer if we
again consider the probiem discussed in connection with the aperture stop in
Fig. 1.7.3.

Example

To obtain the ficld stop, we place the object at the center of the aperture stop,
which in this case is the lens L, . Then

3
.= 22.

As there are no other clements, we obtain the trivial answer that the ficld stop
must be the lens L,. The exit window is also the lens L ,. The entrance window
is located at

110

U= with m, =

3
17 17

Thus the size of the window diameter is 30/17 cm and is located 110/17 cm in
front of the lens L, .

For this problem consider the off-axis object as shown in Fig. 1.7.4 which
traces some of the rays emanating from the object through the optical system.
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It is obvious that not all the rays incident on the aperture stop are incident
on the second lens. Thus, vignetting will occur for this optical system. To avoid
or minimize vignetting, one obvious solution is to increase the sizes of the
lenses, which might be expensive or impossible. However, there is a clever
solution to this problem, the use of a field lens.

The field lens is an extra lens which is only added to the optical system
to stop or to minimize vignetting. However, this lens does not change the
position of the original image. For example, in the previous problem, if we
add a so-called ficld lens between the two lenses, at the position of the inter-
mediate image plane, 10 cm from lens L, then the position of the final image
is unchanged. However, if the diameter of this field lens is also 5 cm and its
focal length is chosen properly, then it will stop vignetting. The best focal
length for the field lens is when it images the aperture stop onto the field stop

MR3
MR4
smscn

cF3
MR3

12/5

MR4

Field lens
t=60/11

(e)

o 3~

Optical

System

—_—— -

I
|
|
I
4
|
|

object plane

image plane
(b)

P(x=0)

Plx)

X2

X) X —
(c)

Fig. 1.7.5. (a) Modified opticat system shown in Fig. 1.7.4 1o stop vignetting using a

ficld lens. (b} A general optical system with an object and i image plane. (c) Plot of image
intensity as a function of the object position.
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which, in this case, is determined by the equation

! _!_+.,l._ or f wcm
Ttz i

Using this lens, the same rays are retraced through the optical system and, as
shown in Fig. 1.7.5, they all pass through lens L,.

1.7.3. Field of View

Let us consider an optical system, shown in Fig 1.7.5(b), where the object and
image planes are indicated. If a point source of 1 W power, radiating uniformly
in all directions, is placed on the optical axis in the image plane, then the total
power at the image point for this object, at x = 0, will be given by

Q
P(x=0)=>4—',

where Q2 is the solid angle subtended by the aperture stop and is given by

Q arca of the entrance pupil o
(distance between the point source and the entrance pupil)?’

Now, if we move the point source away from the optical axis but still in
the object plane, we obtain the total image power given by P(x) where x is
the position of the point source. Typically, P(x) will be equal to or less
than P(x = 0). This is s0 because for x large, marginal rays will start missing
the other clements in the optical system. A typical plot of P(x) versus x is
shown in Fig. 1.7.5(c). For a distance up to x = x,, P(x) = P(x, 7 0). For
X, £ X < X3, P(x) < P(x = 0) and for x > x,, P(x) =

So we sec that if the radius of the object is less than x,, the image will be
a true replica of the object in brightness. However, if the radius is between the
values x, and x,, vignetting occurs. We define x, as the radius of the field of
view. The ficld of view is related to the entrance window.

1.8. Radiometry and Photometry

1.8.1. Radiometry

To discuss the brightness of an image quantitatively, we need to define the
following quantities.

Radiant energy (E) is the total amount of energy radiated by an optical
source, or transferred or collected in an optical system. It is measured in units
of joule (J). Radiant energy density (D) is the optical energy per unit volume
and its unit is joule per cubic meter (J/m?®). Radiant power (P) is the amount
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of radiant energy transferred per unit time. The unit of radiant power is the
watt (W). Thus, if | W of laser power is incident on a material for 10 s, then
the total incident energy is 10 J.

In general, optical energy is not monochromatic. It often contains distri-
butions of wavelengths. To denote the energy or power contained by each
wavelength we define the spectral version of each quantity. The spectrai
energy, E(A) dA, denotes the amount of optical energy in a wavelength range
between A and 4 + dA. Thus,

o

E= E(A)dA. (1.8.1)

40

Similarly, i
D= D(A) di, (1.8.2)

JO

and R
P= P(A) dA. (1.8.3)

JO

Optical energy is generally emitted from surfaces having some finite area.
The radiant exitance (M) is the total power emitted per unit area. It has a unit
of watt per square meter (W/m?). Thus, for example, if a 1-W laser is emitted
through a window with an area of 1 cm?, the radiant exitance of the source
will be 10* W/m?. When the optical energy is incident on a surface we define
the radiant incidence (N) to denote the incident power per unit area. Note
that the element of area, d4, must be perpendicular to the direction of the
light propagation. Otherwise, a cos 6 factor must be included if the normal to
the area is not parallel to the direction of the light propagation. This is shown
in Fig. 1.8.1. Using vector notation, where the element of area, dA, is repre-
sented by a vector having magnitude d 4, and direction along its normal, then
we obtain the incident power to be given by

P= .[ N-dA. (1.8.4)

on

Fig. 1.8.1. Figure showing vector dA.
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Fig. 1.8.2. Calculation of solid angle.

The spectral version is given by
P(A) = J N(4)-dA. (1.8.5)

The integration in the above two equations has to be performed over the
whole surface on which light is incident. Irradiance (Q) is the total power
incident per unit area. Its unit is joule per square meter (J/m?).

Radiant intensity (/) is also a vector quantity and it represents the power
emitted by an entire source per unit solid angle in a particular direcfion. Its
unit is watt per steradian (W/sr). The solid angle is defined to be the ratio of
area under consideration divided by the square of the radius, as shown in Fig.
1.8.2. This is also equivalent to the area subtended by the cone on a sphere of
radius unity

a0 = ‘;’: . (1.8.6)

For some sources, light will be independent of direction and position. This is
generally known as the Lambert sources or Lambert emitters. For a spherical
uniform source placed at the center of a sphere, having radius R,, the total
emitted power is

E = J‘ M-dA = 4xRiM. (1.8.7)
Also
E,= J‘dﬂ = 4nl.

Thus, for this case | = RIM.
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Finally, radiance (L) is defined s the flux per unit solid angle per unit
projected area. Its unit is watt per square meter steradian (W/(m? sr)). Thus
we have the following relationships between radiance, intensity, and radiant

exitance:
1= [[an

v-[[ven

Let us consider a cavity or a completely enclosed source in an equilibrium
condition. Within this cavity the light is completely randomized, i.c., it propa-
gates uniformly in all directions. If a small hole is made in the cavity without
disturbing the equilibrium, then the radiance of the emitted energy can be
calculated.

IT D is the energy density inside the cavity, then in a small volume, dV, the
total amount of energy is D dV. Of this amount, only a portion is propagating
within a small solid angle, dQ. This amount is given by

an
Dde’;,

(1.8.8)

Blackbody Radiation

since the energy within the cavity is randomly propagating. As the light
propagates with a velocity, c, the power flowing for time At through an area
dA at an angle 6 with respect to the direction of propagation, is given by

1 d 1

—DdV 0 = --»t-D-cAt-dA-cos 0‘:‘3

dp’At an A

=2¢ 44 cos 0.4,
4n

Thus the radiance and radiant exitance in the cavity are given by

Dc Dc
L= P and M= 4" (1.8.9)

If the cavity is a blackbody at an isothermal temperature T then from
experimental results we obtain

8nhf
D(f)Af = »7'_’;31— ;me! - I, (1.8.10)

where D(f)is the energy density in the frequency range between fand f + Af;
h is the Planck constant, 6.626 x 107* J s; k is the Boltzmann constant,

" 1.381 x 10723 J/K; and T is the temperature of the blackbody in degrees

Kelvin.
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M(A)dA

Fig. 1.83. Blackbody exitance M(A) as a function of wavelength.

If the blackbody has a small hole then the exitance of that radiation is given
by

2an’hf3  Af
M(N)Af = B e/ W/m?, (1.8.11)
or
2rhe?l®

2
M) di AT dA W/m?,

The plot of M() is shown in Fig. 1.8.3 for a few temperatures. The total
exitance can be obtained by integrating (1.8.11), obtaining

M = 5672 x 1078 T* W/m2, (1.8.12)
The peak exitance occurs at A, given by
AnT = 2897.8 (um x degrees Kelvin), \ (1.8.13)

where the dimensions of 4,, are measured in microns.

1.8.2. Photometric Unit

A human observer has different sensitivities to differing wavelengths incident
on his eye. The actual sensitivity, of course, is dependent on the individual
observer; however, a standard luminosity curve, shown in Fig. 1.8.4, shows
the human eye response variation as a function of wavelength,

In photometry, which deals with human observers, a different set of units
has been in vogue. These are shown in Table 1.8.1.

The primary standard of the photometric system is the radiant exitance of
a blackbody radiator at 2043.5 K (the melting point of platinum). This radiant
exitance is 60 cd/cm? = 60 Im/cm? sr. To convert the units from photometry
to radiometry we note that at 4 = 55004, | W is equivalent to 680 Im where
¥, is given by the standard luminosity curve shown in Fig. 1.8.4. Thus

P (W) = 680 fm) v, dA Im.
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Table 1.8.2. Approximate luminance values of various sources.

1.0 Ty ] v ¥ ' Ty
L 4 Source Luminance, cd/m?
08 - Atomic fission bomb; 0.1 ms after firing ‘
- 1 90-1t diumeter ball 2x10" !
06 - Blackbody; 6500 K 3x10° " %
y. . J Sun; at surface 225 x 10°
A 04} N Sun; observed at zenity from the earth's i
surface 1.6 x 10° /i
I 1 High intensity carbon arc; 13.6-mm -
0.2 7 rotation —positive curbon 0,78 x 10° 10 1.50 x 10° g
- , , E Photoflash lamps 1.6 x 10* 10 4.0 x 10*
ded btk d S Blackbody; 4000 K 25 x 10°
500 600 700 High inloxlhy mercury short arc; type i
A{nm) SAHI000A, 30 atoms 24 % 10° :
Zenon short arc; 900-W direct current 1.8 x 10 }
Fig. 1.8.4. Standard luminosity curve. Zirconium concentrated arc; 3J00-W size 45 x 10” B
Tungsten filament incandescent lamp;
1200-W projection, 31.5 Im/W 33 x 107
Tungsten filament; 750-W, 26 Im/W 24 x 107
Some Examples Tungsten filament; gas filled, 29 Im/W 1.2 x 107
Typical examples of source and background brightness are shown in Tables Su::: ::m,::’: the earth's surfuce. 60 x 10°
182 and 183 Bllckbody; 2042 K 6.0 x 10°
Inside-frosted bulb; 60 W 1.2 x 10*
Aoetylene flame; Mees burner 1.05 x 10°
. . . . . Welsback mantle; bright spot 6.2 x 10*
Table 1.8.1. Radiometric and photometric units. Sodium arc lamp; 10,000-Im size 55 % 104 \ i
Physical Paychophysical Low-pressure mercury arc; 50-in. rectifier ' ;
tube 20 x 10* !
Energy radiant energy (E), J luminous energy, talbot T-12 bulb-fluorescent lamp; 1500-mA !
Energy demsity  radiant density (D), J/m? luminous density, talbot/m?* eoxtra high loading 1.7 x 10*
Power radiant flux (P), W luminous flux, Im Clear sky; average brightness 8.0 x 10°
Exitance radiant exitance (M), W/m?  luminous exitance, Im/m? T-17 bulb-fluorescent; 420-mA low :
I ity radiant i ity (1), W/Q luminous intensity, cd (Im/02) losding 43 x 10° ;
irradiance (Q), W/m? illuminance, Im/m? Tlluminating gas flame; fish-tail burner 40 x 10° .
radiance (L), W/m’ O luminance, Im/f1 m? Moon; cbeerved from the earth’s surface !
€1 = unit solid angle (steradian), od = caudle, Im = lumen. bright spot 2.5 x 10° ‘
Sky; overcast 20 x 10° ;
Clear glass neon tube; |5 mm, 60 mA 1.6 x 10° )
Clear glass blue tube; 15 mm, 60 mA 8.0 x 10? :
Self-luminous paint 00-0.17
1
PN ‘ ' ' !
1o W

Die e v gy eripm e e e U N S -
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Table 1.83. Approximate luminances of

backgrounds.
Source Luminance, cd/m?
Horizon sky
overcast, no moon 34 x10°°
clear, no moon 34 %107
overcast, moon 34 x 107
clear, moonlight 34 x 1072
deep twilight 34 x 107!
twilight 34
very dark day 34
overcast day 34 x 10?
clear day 34 x10°
clouds, sun-lighted 34 x 10*
Daylight fog
dull 34 x 10%t0 10 x 10?
typical 10 x 10% 10 34 x 10?
bright 34 x 10°10 17 x 10°
Ground
on sunny day 34 x 10?
on overcast day 34-100

snow, full sunlight 17 x 10?

1.9. Exact Matrices and Aberration

1.9.1. Exact Matrices

Until now we have considered only paraxial rays which are valid for 6 < 5°.
However, in practice, rays for which the paraxial condition does not hold are
also incident on an optical system. In this section we shall formulate the exact
translation and refraction matrices which are valid for all rays.

To obtain the exact matrices, it is convenient to redefine the rays as

X =(si:0). (19.1)

Of course, for the paraxial case, sin 8 2 6. Using this new definition we
immediately obtain the translation matrix, T(D), for free space propagation
through a distance D along the z-axis

T(D) = (l Dicos 0). (192)
0 1
Or, as shown in Fig. 1.9.1,
X; = x, + D *sin 6,,
s 6,
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Ly

X2

Fig. 1.9.1. Exact translation matrix formulation.

We also note that D = L, cos 8,. Thus, in terms of L, the translation matrix

becomes
1 L,
= ) 193
T (0 | ) (19.3)

To obtain the refraction matrix through a surface with radius of curvature
R, separating two media with refractive indices n, and n,, consider Fig. 1.9.2,
We note, as before, x, = x,. Using Snell's law we obtain

nysina, = n, sin a,, (1.9.4)
as
ay=y + 0,
and
o, =y + 06,

Equation (1.9.4) becomes '
n, sin(y, + 0,) = n, sin(y + 6,),
or

n n, .
sin 8, = tan W’T'- cos 8, — cos 0, tan ¥ + n' sin 0,.

2

2

Fig. 1.9.2. Exact refraction matrix formulation.
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As

sin y = %‘-, (19.5)

1

) P .
sinf; = —x, — + "L sin 6, (1.9.6)
where P is the bending power and is given by

ny;cos 8, —n, cos 0,

P= R, cosy (19.7)
o M cos(a; — ¢) — n, cos(a, ~ y)
R, cos ¢
- nICOSaz - Ill COSdl
n;R,
_ J/ni —nlsin®(¢ + 6,) — /n? — nlsin’(y + 6,)
v : 3 AW TR T )
Thus, we obtain
1 0
R(R,)-(__P/nz n./n,)' (1.9.8)

We note that P is more complex and of course, for the paraxial case, it reduces
to the value
n,—n
P2V
R

1

For calculations using paraxial approximations, the translation matrix and
the refraction matrix are all we need to calculate the equivalent matrix for
any optical system. However, as shown in Fig. 1.9.2, just knowing the ray
(x,, sin 8,) and the distance D, we cannot locate the point P using the T(D)
matrix only. We will have to modify the translational matrix to obtain the
point of incidence. Consider Fig. 1.9.3, where a ray (x,, sin 6,) is incident on
a refractive surface with radius R,. We are interested in finding the distance
L, = AP. As ED is parallcl to AC, and OC is perpendicular to AC,

L, = AP = ED - AB — PC
=(d + R,)cos 0, — x, sin 0, — \/R?;.OC"'_’.

OC=0D+DC=(d+R,)sin8, + BE
=(d + R,)sin 8, + x, cos 6,.
Thus
Ly =(d+ R,)cos 8, — x, sin @,

- VR + Rsind, + xycos )% (199a)
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Fig. 1.9.3. Point of incidence needed for nonparaxial ray tracing.

Thus, this value of L, must be substituted in the translation matrix in (1.9.3).
Also, note that for R, negative as shown in Fig. 1.9.4, L, is given by

L,=(D+ R,)cos 8, — x, sin 8,
+ JRIZ{(D + R,)sin 6, + x, cos 0, }
= (D ~ |R,])cos 8, — x, sin §,
+ IR {(D=[R,)sin 8, + x,cos0,}%.  (1.9.9b)
1.9.1.1. Example

We are interested in tracing the ray X, through a thick lens having radii of
curvature R, and R,. The rays X, - X,, as shown in Fig. 1.9.5, can be obtained

Ly

Ry

Fig. 1.9.4. The relationship between L, R,, and D is shown for the case of negative R,
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n
0‘ Rz,”
- [
X1 Xzl X3~ ~ Xe
X
P d a[Xs A
1 - ]
i D t - D 1
-==" R,

Fig. 1.95. Nonparaxial ray tracing for a lens.

as follows;
Xy =T(L)X,,
where
L, = (D + R,)cos 8, + x, sin ),
—JRI = {(D'+R,)sin 8, + x, cos §, )2,
X3 = R(R,)X,,
where P, in R(R,) is given by

py o S~ cont + )

nR,
and
. X3
sin wl R‘| ’
Xo=T(LJ)X,,
where

L, = (d — [R,]) cos 8y — x, sin 0,
+ VIR = {(d = [R,]) sin B, + x, cos B},
and d is related to the thickness of the lens, ¢, along the optical axis, by the
following equation:

d=1t—(L,cos 8, - D),
X, = R(Ry)X,,
where ‘
p \/l - n? sin®(¢; + 0,) — ncos(y, + 0,)
o Vo D TR R T e T
R,
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and

) x
siny, = Rt'
2

Note that R, is negative. Finally,
X 6= T(LJ ) X L]

where
L l?' - (L, cos 8, — d)
» cos 0, i

The calculations are somewhat tedious and a calculator or a computer
should be used.

1.9.2. Exact Matrices for Skew Rays

The meridional plane is defined as the plane which contains the point or line
object and the optical axis. In the last section we restricted ourselves to the
so-called meridional rays which lie in the meridional plane. All other rays, not
lying in this plane, are called skew rays. In this section we develop the exact
matrices for the skew rays.

A typical skew ray, SS, is shown in Fig. 1.9.6. The point S, has the
coordinates x, y, and z, where z is the optical axis and xz is the meridional
plane. x,, y,, and z, are the coordinates {or S, and the directional cosines of
the ray SS, are given by v, §, and & As y* + 8% + ¢? = 1, only two of these
quantities are independent. We note that

y = cos (, = sin 0. y (19.10)

Thus, the equation for the translational matrix for the xz-plane can be written

Fig. 1.9.6. Nonparaxial skew rays.

T e e A T
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X3 b Ly\[x,
(y)'(o l)(w)' (19.11)
Xzs'l';(L,)X|.

Here, L, is the distance S5, along the ray.
Similar equations can be written for the y component, T(L,), and the z
component, T,(L,). T,(L,) is given by

nea=(p &)

(29-6 90

where 2, is measured with V, as the origin.

As x,,y,,and z, are on the surface of the sphere having radius r,, we know
that

as

or

and

S, C=V,C,
or
xt+yi+-n)=ri (1.9.13)
Thaus the three quantities, x, y, and z, are not independent and only two of the
three matrices are necessary to determine the ray uniquely. However, when
performing numerical computations, it is best to determine x, y, and z inde-

pendently through the matrices, and check the accuracy of the calculation
through (1.9.13).

L, can be calculated by taking projections of OC along the ray and
subtracting the projections of OS and CS, along the ray. Thus,

Ly=(L+r)e—rcosa-r cosa,, (1.9.14)

where r denotes the distances OS, « denotes the angle between OS and SS,,
and «, is the angle between S, C and SS,. We also note that

cosa=y+2 6+, (19.15)
r r r
or

rcos a = xy 4+ yé + z¢.

To obtain cos a, in terms of known quantitics, we obtain the following
equations by considering the triangles $S,C and SV, C:

Li+2iricosa+ri=x 4y  + (L -2 + 2L, — r, + 1. (19.16)
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As
Ly ={eL+r)—(xy+yd+ 2} —r cosa,
=f—r cosa,, (19.17
where
B=e(L+r)~(xy+ yb+ ze).
We obtain by substitution in (1.9.16)

cos a, = :t’—_l—\/ﬂ’ —x =y —(z— LY +2z—Lyr,. (19.18)
1
Finally, we obtain

Liy=Bt /B —x*—y —(z—L¥+2z-L)y,. (19.19)

The three refraction matrices for the skew rays can also be written as

Dl )
(71) (—l’,,/nz n/ny )\, /) (1.9.20)
a)=(Ce y )(y') 19.21
(51) (—l’,/n2 n,/ny J\8, ) (1.9.21)
Z; | 0\/z,
(81 - Pm/m) - (——P,/n2 1)(81)' (1.9.22)

Again, only two matrices are needed as the third angle can be calculated from
the equation given by

i+l +el=1 (1.9.23)

1.9.3. Aberration

In Section 1.9.1 we mentioned that for a real lens, under practical circum-
stances, the paraxial approximation does not hold and this gives rise to
aberrations. If the object light is not monochromatic, then due to the disper-
sion of the lens media, the focal length of the lens, even in the paraxial
approximation, will be wavelength-dependent giving rise to chromatic disper-
sion.

The origin and different aspects of these aberrations can be better under-
stood in the following example. Let us consider a lens on which monochro-
matic light is incident, parallel to the optical axis as shown in Fig. 1.9.7. The
paraxial rays will converge to a focus at z = f. Theoretically, the size of the
focus tends to zero or a true point. Mathematically, it is represented by a delta
function, 8(z — f).* The value of f for a thin lens is given by the lens maker's

* Readers not familiar with the concept of the delta function are referred to the
Appendix A.
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Caustic surface

Fig. 1.9.7. Spherical aberration showing the caustic surface and the circle of least
confusion (LC). F is the paraxial focus and FM is the focus for the marginal rays.

formula which is repeated here, stressing the point that the refractive index is
a function of incident wavelength

1 1 1
7= o= 0fi

Note that although all the incident rays, being parallel to the axis, satisfy the
paraxial condition, the rays exiting from the lens may not be, especially the
rays near the edge of the lens.

For these nonparaxial rays, we must use the exact matrices derived in the
last section. Thus the discussion of aberration is rather a complex subject
which is best analyzed for individual lens systems by actual numerical com-
putation. However, there are certain important features of aberration which
can be understood by analytical reasoning and these are discussed below.

First of all, as the lens is symmetrical around the optical axis, each small
zone of the lens, defined by the distance from the optical axis, will bend the
rays by the same angle, even if we consider exact matrices. Thus, we can define,
for this example only, different effective focii of the lens zones, as shown in the
Fig. 1.9.7. For a lens with positive focal length, f, < f, < f; < fi <[ The
light cone from each zone focuscs to a point corresponding to the zone focal
length. We define the caustic surfuce as the envelope of the focii of these sets
of cones. Thus the image, in place of being a point at 6(z — f), is a circle
determined by the intersection of the caustic surface with plane z = " where
Ji < [’ < f. The circle having the smallest radius is called the circle of least
confusion and is shown in the Fig. 1.9.7.

Although we have discussed only parallel rays being focused by a lens, the
discussion above remains the same as long as the object is on the optical axis.
Because of the spherical symmetry, this aberration is called spherical aber-
ration. However, if the point source is off-axis, or the parallel rays incident on
the lens are not parallel to the optical axis, then we have a completely different
situation. This is shown in Fig. 1.9.8. Again, the different cones of light focus
to a point. However, these individual zone focii may not be in a straight line
as shown in the figure. This form of aberration is known as a coma.
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7 F-
Paraxial image Paraxial image
plane plane
(side view) (plan view)

Fig. 1.9.8. Aberration “coma” due to rays not parallel to the optical axis.

The spherical aberrations, coma and astigmatism, are ll)c aberration of a
point source. The spherical aberration is related to a point source on t.he
optical axis, whereas coma and astigmatism arise from an off-axis point
source. For an object of extended size, two other abcrfallons can be dis-
tinguished. These are called curvature of field and distortion. '

The subject of aberration can also be discussed from the following expan-

sion of sin 6: o 0
sin = 0 — 3 + 5!-—---. (1.9.24)

It can be shown that the presence of the second term, §°/3!, lead's to'the five
distinct types of aberrations mentioned before and are called third order or
Scidel aberrations. The fifth-order aberration due to the third term, 6%/5!, is
generally smaller in magnitude and is therefore negli‘giblc. ‘
To discuss aberration quantitatively, it is convenient to definc a guanmy
called optical path length. Optical path length along a ray from point A to
point B, as shown in Fig. 1.9.9, is defined as
B
L{(AB) = J n(r) dr. (1.9.25)
A Ray
For a straight line in a homogencous medium, for & propagation distance of
D, this becomes

L(AB-D)=n~D=:~D=cAt, (1.9.26)

whee ¢ is the velocity of light in a vacuum, v is the velocity of light in the
medium, and At is the time taken by the phasefront to move from A to B.

If we consider an imaging system as shown in Fig. 1.9.10 the aberration 'free
phasefront, Py, converging to the image point I, will be exactly spherical.

T NI prepu N
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~t

(a)

|- ol
| 1
A B
(b)

Fig. 1.9.9. Geometry for optical path-length definition: (a) arbitrary rays in .
i ' d
with n(r) and (b) a homogeneous medium, y rays in & medium

Howcv.er, because of the aberration present the actual phasefront, P, is some-
.what different. If we now trace a ray from the object, S,, to the aberration free
image, I,, then the aberration function, AB(p), is given by

AB(p) = L(SyQABI,) — L(SoVTl,) = — L(AB)
= —n'|AB. (1927

nge p is the udifﬂ distance of the point in the phasefront from the optical
axis. For an on-axis object, as shown in F ig. 1.9.10, the third-order aberration

n “2- P n

Pa
Q »
A
B
AR ¥
’L 0 v D °
- v
Refracting
Surface

Fig. 1.9.10. The actual and ideal phasefront after passing through a refractive surface.
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function can be shown to be given by

4
AB(p) = -:(g) o*, (1.9.28)

where v is the image distance, D is the distance of the phasefront (rom the
image point, and c is given by

6

where R is the radius of curvature of the refractive surface. For an off-axis
point the third-order aberration function can be shown to be given by (Klein
and Furtak [1])

. cfv
ABU‘ T q) 4<D
+ 20032 (2 cos? ¢ + 1], (1.9.29)
where the quantities ', r’, and ¢ are defined in Fig. 1.9.11 and

R+D-
b -— ‘_";)": R" T

4
) [r'* + 4bh'r'> cos @ + 4b*h">r' cos ¢

Until now we have discussed only one refractive surface. However, for a
complex optical system, we can define a composite aberration function, at the
exit pupil, as the optical path difference between the true phasefront and the

1 s’
(Exllpupn }
® .
P
h’A
CR ry - Axis
P
¢ predy ) [+ [
-
== @
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Fig. 1.9.11. Imaging of an off-axis point including third-order aberration, L' = D;
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Table 1.9.1, Components of sberration.

Spherical aberration ¢ q0r"*

Coma €3147"2 cos oh'.
Astigmatism €223 h' cos? ¢
Curvature of ficld Ca027'h"?
Distortion €137 cos gh”?

reference .pha§efront obtained for the paraxial or aberration-free situation.
The contributions of the individual refractive surfaces to AB(r') will be addi-

tive for AB(r’') « p. Thus, in the most general case, the aberration function
can be expanded as

4
AB = cygor'* + 31072 €O8 @ + €33,r' cos? h'?

+ 2032 4 ¢, 47" cos oh'?, (1.9.30)
i a
[
> /‘J'———’?

r ¢ "

¢ ¢ '

(a) Spherical aberration {b) Coma
a=Cuwor'* ’

a = Cany’’cosd

a [ ]
A
% " N¢ "
>
¢ ¢

(c) Astigmatism (d) Curvature of the field
8 * Canry*cos® 8 = Cyoay'*™h?

{e) Distortion
ar~ CH:V'COIOW’

Fig 1.9.12. Wavelfront distortions for the primary aberrations. (From F.G. Smith and
J.H. Thomson, Optics, Wiley, New York, 1971.)
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V' 4

&

(a) Spherical aberration (b) Coma

o lzlalefs e {7 e

(JOFIEMCNLICEL
(c) Astigmatiam, showing (d) Distortion, showing a
focal lines magnification which

increases or decreases
with distance off axis

Fig. 1.9.13. The effects of the various aberrations.

where the subscripts of the ¢ coefficients refer to the powers of r', cos ¢, and
h’, respectively. The form of the above equation can also be understood from
the symmetry arguments, since the aberration, which does not depend on ¢,
must be independent of the signs of A’ and r’. They must occur in the form
h'2, r'2 or '*r'? or r'4. Also as ¢ is the angle measured from the meridional
plane the aberration function must be symmetric with respect to ¢, and thus
only cos ¢ can occur.

From (1.9.30), we can identify the different components of aberfation as
given in Table 1.9.1. ‘

Figures 1.9.12 and 1.9.13 show the effect of these so-called primary aberra-
tions in connection with the propagation of a plane wave through the lens
and the ray aberrations around ideal point images. Figure 1.9.12(a) shows the
effect of the spherical aberration only and is plotted as a deviation from an
idealized planc wave. Actually, it is the plot of the equation given by

0’(", ¢b h') = C‘oo""-
The constant o surface is plotted as a function of ', ¢, and h’. Similarly, Fig.
1.9.12(b), (c), (d) and () present the situations for coma, astigmatism, curvature
of the field, and distortion. Figure 1.9.13(a) shows the effect of spherical
aberration on a point image. The imaging rays form a halo around the image
point.
In the following we shall discuss different aberrations separately.

1.9.4. Spherical Aberration

Spherical aberration is generally referred to cither as longitudinal spherical
aberration (LSA) or transverse spherical aberration (TSA). For a single lens,
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o =~
pe——
x
i

Fig. 1.9.14. Representation of the spherical aberration of a single lens. PF = paraxial

focus; ‘LSA = longitudinal spherical aberration; TSA = transverse spherical
aberration.

these quar‘ltiti‘es are defined in Fig. 1.9.14. Thus LSA is the distance between
the paraxial image and the marginal image, whereas TSA is the distance
between the paraxial image and the point in the paraxial image plane where

tl.)c marginal rays meet. We define a quantity, 4, called angular aberration,
given by

d
8= o [AB(] (1.9.31)

Then TSA for a single refractive surface is given by

4D
TSA = —-D§ = ;'Tcwo"'Jv (1.9.32)
and
4D?
LSA = o Caoor’. (1.9.33)

where D is the flistance between the image plane and the refractive surface
Plane. F(?r a thin lens with radii of curvature, R, and R,, and a refractive
index, n, it can be shown that

1 n+1 .,
Ca00 32f“n(n ;*l)[n;ls + 4(n + 1)PS

+03n+2)(n- 1P 4 h«f-»l} (1.9.39)

where S (the slope factor) and P (the position factor) are given by

R, +R
S=.2""1
R, R, (1.9.35)
and

P-l—zf.
v
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Fig. 1.9.15. LSA versus S for the seven lens combination of the same thickness and
refractive index with the following radii, and for r' = 1. (From A. Nussbaum and R A.
Phillips, Contemporary Optics for Scientists and Engineers, Prentice-Hall, Engelwood
Cliffs, NJ, 1976.)

r r, S
-10.00 =333 =200
[<¢] -500 —1.00

20.00 -6.67 —0.50
1000 -10.00 0.00
6.67  —20.00 0.50

5.00 4] 1.00 )
133 10.00 2.00
For a doubly convex symmetric lens, R, = —R, and S = 0. Thus, the shape

factor measures the deviation from symmetry. A plot of LSA versus S for P = 1
(i.c., for parallel rays) is shown in Fig. 1.9.15. It is found that, for the values
chosen, LSA is a minimum for é ~ 0.7; thus, properly choosing the values S,
and still keeping the focal length constant, we can minimize the spherical
aberration. This is known as “bending the lens™.

Thus far, we have considered only third-order theory. However, if we
extend the theory to fifth order, we find

LSA = ar'? + br#, (1.9.36)

where a and b are third- and fifth-order constants, respectively. By Choosing
the values of a and b properly we can also minimize the spherical aberration.
As the spherical aberration is dependent on the sign of the focal length of the
lens, we can reduce LSA by using a doublet, a positive and a negative lens
combination. If we wish to make LSA go to zero at r = r,,,,, then from (1.9.36)

R e

e e o g
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18.0

410.0

<0.10 -0.05
LSA

Fig. 19.16 LSA for the corrected doublet. (From A. Nussbaum and R.A. Phillips,

Contemporary Optics for Scientists and Engineers, Prentice-Hall, Engelwood Cliffs, NJ,
1976.)

we obtain
LSA = (—r2,.r* + r%),

-]

Thisis plotted in Fig. 1.9.16 for the doublet with the following specifications:

or

r t n’
61.070
4044 156178
-47.107 2022 170100
-127.098

It is observed that although LSA is zero at r =0 and r=r,,,, it has a
maximum at 7 = r_,/ﬁ.

1.9.5. Coma

Coma is an aberration for point objects off-axis. The rays converging to the
image point intersect the paraxial image plane in a cometlike spread image
whose length increascs as the square of the distance off-axis. Rays coming
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Object plane  Lens ¢ disphragm image piane

Fig. 1.9.17. Coma and comatic circle.

from a line across the aperture at ¢ = 90° do not contribute to coma. The
rays along the line ¢ = 90° do not focus at a point and spread around the
image point. The comatic image, in general, consists of many circular images
superposed. These circles are shifted successively further from the axis and
focused less sharply (see Fig. 1.9.13(b)).

To understand how the circles are produced out of a point source, due to
the off-axis rays passing through different zones of the lens, consider Fig.
1.9.17. In the object plane, we show the off-axis point object and the optical
axis. We also consider the lens to have an opaque diaphragm with two holes.
If the holes are at position 1-1, we obtain image | at the image plane; similarly
for2-2,3-3,and so on. Larger zones in the lens through which the light passes
produce larger comatic circles. The radius of the comatic circle is proportional
to the square of the radius of the lens zone. The distance from the center of
the comatic circle of the optic axis is proportional to the square of the radius
of the zone. Combining all these we obtain the comatic flare. Note that the
flare may point towards the axis or away from it depending on the type of the
lens.

It is customary to specify the magnitude of the coma as shown in Fif. 1.9.18.
The length of the comatic pattern along the meridional or tangential direction

6-30°

bt—Cs

...

Fig. 1.9.18. Comatic circle showing tangential coma, Cy, and sagital coma, Cy.
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Optical &

System ]

Fig. 1.9.19. Aplanatic optical system satisfying Abbé's sine condition.

is called tangential coma, Cy, and its half width (equal to R) s the sagital coma,
C,. The area of the comatic aberration is then defined as

A =C,GC;. (1937

Reducing spherical aberration automatically reduces coma. We can show
that coma is absent for a lens when the shape factor S (given by (1.9.35)) is

2 —n—N\fu-v
$= ( . _‘T_> (u+v) (19.38)

A lens or optical system which does not have any spherical aberration and
coma is called aplanatic. It can be shown that these systems obey Abbe’s sine
condition. For any refracting surface, the Abbe sine condition is given by

xn sin a = x'n’ sin a’, (1.9.39)

where the quantities x, n, a and x’, n’, «’ are defined in Fig. 1.9.19.

1.9.6. Astigmatism

Astigmatism is due to cylindrical wavefront aberration. Astigmatism increases
as the square of the distance off-axis and the square of the aperture readius,
r'. To understand astigmatism, imagine a narrow bundle of rays having a
circular cross section incident on the lens away from the optical axis. On the
lens surface, the ray boundaries will form an ellipse with the major axis
pointing towards the vertex of the refracting surface. The rays lying in the
major axis will come to a focus at point f;, called the tangential focus (see
Fig. 1.9.13(c)). Rays in the minor axis come to the sagital or radial focus
denoted by f;. Thus, if an off-axis object is imaged, two focused image planes
will result. Any radial line in the object will be focused as a radial in the L
plane, and any tangential line will be focused as a line in the f; plane. The
separation between these planes is called astigmatism. Note that a point object
isimaged as a line due to astigmatism. The distance between f; and Juiscalled
the astigmatic interval. Note that the optimum lies between f; and Ju where
a point object produces a circle of least confusion.
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Fig. 1.9.20. Radial line object of rotational symmetry (top), tangential line object
(center), and astigmatic images of a spoked wheel (bottom).

Figure 1.9.20 further illustrates the cffect of astigmatic aberration. An
object, like the spoke of a wheel containing radial lines only, will be sharply
imaged at f;. The circular object, just the wheel, will be imaged properly at
f1- However, a spoked wheel will be distorted in any plane.

Elimination of astigmatism requires that the tangential and sagital surfaces
be made to coincide. If this can be done, then the common surface is qcﬁned
by the Petzeval equation given by ’

n n n-n
_..+—;=~ .-

) (1.9.40)
r r R

where the quantities, n, n’, r, r’, are shown in Fig. 1.9.21 for the single refracting
surface.

R = radius of the refractive surface;

r’ = radius of the image curvature;

r = radius of the object curvature.

r

-
i
|
i

) \ .

Q — Q
L_ ¢ 3 S
p— P

fo-—a——; )

Fig. 1.9.21. Petzeval surface for a single refracting surface.
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Fig. 1.9.22. Curvature of a ficld.

1.9.7. Curvature of Field

Curvature of field results because of the failure of a lens to transform a plane
object into a plane image. Thus a flat object will give a curved image surface.
Curvature of field and astigmatism are closely related. Curvature of field is
symmetrical about the optical axis. However, both aberrations increase with
the off-axis distance of the object and with the aperture of the refracting
surface.

In many cases, the Petzeval surface is curved when astigmatism is removed.
To record sharp images under these conditions, the film must be curved to fit
the Petzeval surface. Figure 1.9.22 illustrates the curvature of ficld aberration
for an object shaped like a cross.

1.9.8. Distortion

In distortion, the transverse lincar magnification in the image varies with the
distance from the optic axis. Note that a point object is imaged as a point
image. However, an object shaped like a rectangular grid will look like Fig.
1.9.23(b) which illustrates pincushion distortion. Figure 1.9.23(c) shows barrel
distortion. The image in either case is sharp but distorted. Distortion often
results due to the limitation of ray bundles by stops or optical elements acting
as stops. This is illustrated in Fig. 1.9.24. Due to the placement of the stop
near the lens to reduce astigmatism and curvature of field, distortion is
introduced because the rays for large values of x and y are limited to an
off-center portion of the lens. The situation shown in the figure results in barrel
distortion. If we place a stop at an equal distance on the other side of the lens,

(@ (v) (c)

Fig. 1.9.23. Images of a square grid showing: (a) pincushion distortion, (b) barre!
distortion, and (c) is due to nonuniform magnifications.
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Stop

Fig. 1.9.24. Distortion resulting from mechanical stops.

7 N
N

Fig. 1.9.28. An optical system to correct distortion.

it will result in an equal amount of pincushion distortion. This gives us a clue
of how to correct for distortion— place symmetrical stops on both sides of the
lens. Another possibility is to use two identical lens groupings w_i(h an ir.is
diaphragm in the center—this is shown in Fig. 1.9.25. As wiil be discussed in

Section 4.2, many highly corrected camera lenses use this trick.
}

1.9.9. Chromatic Aberration

We have already discussed the fact that the refractive index of a malerjal i§ a
function of the light wavelength. A demonstration of this is shown in _an.
1.9.26, where argon laser is dispersed to a muiticolored beam by a prism.

All wavelength \

Argon laser light

blue

Fig. 1.9.26. Incident all wavelength argon light is dispersed by the prism.
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Fig. 1.9.27. Refractive index of quartz versus light wavelength showing dispersion in
quartz.

This is similar to the famous experiment performed by Newton to demonstrate
the multicolor nature of white light. A typical variation of the refractive index
with wavelength for glass is shown in Fig. 1.9.27. Table 1.9.2 lists the important
parameters for other materials. The table also lists a quantity called the Abbé
number or the dispersive power defined as

n(F) — n(C)]"! An T
y=[ 'r;(li)v:l:l =['.'<_ 1] . (1.9.41)

where F and C represent the blue and red lines of hydrogen at 2 = 0.4861 um
and 4 = 0.6563 um, respectively, and D is the sodium yellow line with
A =0.5893 um.

In the paraxial approximation, chromatic aberration can be corrected
using compound lenses consisting of two, three, or four lenses. Two lenses can
correct the chromatic aberration at two wavelengths, or if the refractive indices
of the lenses are linear functions of the wavelength, then for all colors. These
arc called achromatic lens-pair. Three lenses can correct for three colors and
this combination is known as apochromatic. Lenses corrected for four colors
using four lenses are referred to as superachromats.

To correct for two colors, a doublet is used consisting of two lenses, A and
B, in contact, having focal lengths f, and f;. The lenses A and B use materials

Table 1.9.2
Fraunhofer  Color  Wavelength Index Index
line {nm) (crown glass)  (flint glass)
C red 656.28 1.51418 1.69427
D yellow 589.59 1.51666 1.70100
F blue 486.13 1.52225 1.71748
1 4 187.94 73.29
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of refractive indices index n, and ng and Abbé numbers ¥, and V,, respectively.
Thus, we have

Pom ) mn, - 1)( ) =(ns - )A,, (1.9.42)

Ia Ry Raz
1 1 1
=_—=(mp—D{-—— - |=(ng— 1.9.43
PB fll ("l l)(RBl RBZ) ("B l)BH' ( )
1 i 1
= == . 1.9.44
P=P, +P f,.+fs / ( )

R,y R,z and Ry,, Ry, are radii of curvature for the lenses A and B, respec-
tively. Note that 4, and B, are constants and are independent of the wave-
length. Also, for a doublet R,, = —Ry,. Denoting the two colors to be
corrected as 1 and 2 (these are generally red and blue), for chromatic correction
we have

Ja—1s=0, (1.9.45)
or
P, — Py =0,
or
An A, + AngBy =0,
or
AnaApma — 1)  AnyBylng — 1) _
(na—1) (ng— 1) ’
or )
LR S (1.9.46)
fA VA fB VB ' ’

Equation (1.9.46) is the condition for the achromatic lens.
For the case of a spaced doublet, with a separation, d, between lenses, we
have

}a P=P,+ Py — P, Pyd. (1.9.47)
Differentiating (1.9.47) we obtain
AP = AP, + APy — d(P,AP, + P,APy). (1.9.48)
The condition for the correction of the chromatic correction is given by
AP =0, (1.9.49)

or
An A, A
AngA, + AngB, — d(~"‘ s ~'3’"~’”) =0,

fa fa
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or

; 1 1 d (1 1 nd
i Vo=V,
. e -2 )0 (19.50) A=
| V, £ ( )
Wa A% s\ Using (1.9.47) we have
Equation (1.9.50) is the condition for the spaced doublet. For ¥, = V,, this 2 d -1
simplifies to Rt 10m™.
+fa=2 1.9.51
Iatts ( ) Using (1.9.51), we finally obtain
Numerical Example d=10cm.
(a) Design a doublet with the following specifications: References
S =10cm. [1] M.V.Klein and T.E. Furtak, Optics, 2nd ed. Wiley, 1986.

{21 A. Nussbaum and R.A. Phillips, Contemporary Optics for Scientiest and En-
gineers, Prentice-Hall, 1976.

{3] F.A. Jenkins and H.E. White, Fundamentals of Optics, 3rd ed., McGraw-Hill,
1957.

[4] W.Brouwer, Matrix Methods in Optical Instrument Design, Benjamin, 1964.

[5] F.G.Smith and J.H. Thomson, Optics, Wiley, 1971.

[6] J.R. Meyer-Arendt, Introduction to Classical and Modern Optics, Prentice-Hall,

lens A—borasilicate glass
Vo =645, Ry, = R,, and n, = 1517
lens B—dense flint

V.=366, Ry =—R, and ny=1617.

“ Using (1.9.46) 1972.
x" 1 | (7] F.L. Pedrotti and L.S. Pedrotti, Introduction to Optics, Prentice-Hall, 1987.
' A foVa'
, or
¢ 1 VW
; — =2 (Vg — V) =13.12m™},
f. j-( | A)
1 1 1
, = - =2312m7, ‘
I S b '
) 2
===
A a— D R,
or
Ry, =447cm,
v 1 1 1
—=(ng— W — e —
7= (e )( 447 R.,)’ '
or
R.z = 9].2 cm.
{b) Design a separated doublet using two identical lenses with the following
specifications:
f=10cm,
fA = f!v

Ny, =Ny




PART 11

Physical Optics, Wave Optics,
and Fourier Optics

2.1. Fundamentals of Diffraction

When any of the dimensions or sizes of the components in an optical system
is on the order of wavelength, then the methods discussed under geometrical
optics do not give the proper solution to the problem. For this case, we must
start from Maxwell's equations, and derive the wave equation from which the
proper solution to this problem can be obtained.

It is of interest to point out the wide range of wavelengths in the eiec-
tromagnetic spectrum as discussed in Table 1.1.1. To observe the dramatic
effects of diffraction, for light we need dimensions on the order of 1 pm,
whereas for microwaves a few centimeters is all we need.

2.1.1. Maxwell’s Equations

B
VxE=——+,
X ot
VYxH= +ap+.l. (2.1.1)
ot
V-D=p,
V-B=0,

where ¢ represents time, E is the electric field vector and has units of V/m, H
is the magnetic ficld vector and has units of A/m, B is the magnetic induction
and has units of Wb/m?, D is the clectric induction and has units of C/m?, p

‘is the free charge density with units of C/m?, and J is the current density with-

units of A/m?.
In conjunction with the above four equations, we need the so-called con-
stitutive equations. These are

D =¢E,
B = puH, (2.1.2)
J = ok,
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where ¢ is the permittivity with units of F/m, p is the permeability with units
of H/m, and ¢ is the conductivity with units of mho/m. To simplify the

discussion we will assume that the medium is linear, isotropic, and insulating.
Then (2.1.2) can be rewritten as

D = go¢,E,
B = “0“1“0 (213)
J=0.

Here ¢, is the diclectric constant, & is the permittivity of the vacuum =
88542 x 107'? F/m, p, is the relative permeability of the medium, and
o =4n x 1077 H/m. _

Substituting (2.1.3) into (2.1.1) we obtain the wave equations in E and H

(2.1.9)

where it is assumed that no sources are present and
<

1 1
X — e T —mommy
vV 60“0 \/;:r”v v &,

¢ = 3 x 10°® m/s = the velocity of electromagnetic waves in a vacuum.

To study the clectromagnetic wave propagation in this media, we assume
time dependence in the form e/, This modifies (2.1.4) as

2

VIE+ " E=0, L @19

U=

w?
viH+ O H=0. 2.1.6)

If we look for a plane wave solution, then
E o e}(ml—l'l)‘

M o gl bon, @17

where k is the propagation vector and denotes the direction in which the plane
wave is propagating. In the Cartesian coordinate system

kor o Gk, + ik, + ik, + by + 62 = kex + kyy + Koz (2.18)

For the case k, = k, = 0, we scc that (2.1.7) represents the one-dimensional
plane waves discussed in Section 1.1.1.
Substituting(2.1.7)into(2.1.5) we obtain the relationship between w andk,

w 2

T

vl
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or
k=42, (2.1.9)
v
The + sign is associated with the forward-going wave and the — sign with

the backward-traveling wave.
Substituting (2.1.7) into (2.1.1), we also obtain

Es%(k x H),

2.1.10
H kxE ( )
kZ
and
1 FIEPR(k
= . = |-
P 2R,(I'ZxH) 57 (k)'

where P is known as the Poynting vector which denotes the direction in which
the energy is propagating and Z is called the characteristic impedance, given
by Z = ./ /e, and has units of ohms. Thus the electric field, the magnetic field,
and the propagation directions are mutually perpendicular to each other. For
propagation in the x direction with the E ficld in the y direction, the H ficld
must be in the z direction

E =i Eqef™*9,

H - il Hoel(.-k“.

E, M [
P nz= = il 2.1.12
Ho z ‘/; Zo\/; ( )

where Z, = 377 Q and E, is the magnitude of the clectric field.
The power density of this wave propagating in the x direction is given by
1E3 1

P(W/m?) = 27 = 2—H§Z. (2.1.13)

If we solve the wave equation in the spherical coordinate system, the solution
can be shown to be given by

(2.1.11

Eo= Aj—l;e""""'"ip (2.1.14)

and
kxE
==z

where i, is the unit vector, which can have only a 8 or a ¢ component, and A4
is a constant.

2.1. Fundamentals of Diffraction 17

Fig. 2.1.1. Spherical waves.

The dependence on the amplitude, as 1/r, can be understood from intuitive
arguments. As shown in Fig. 2.1.1, let us consider the waves starting from the
point source located at the origin. Then the wavefronts will be spheres, the
radius of the sphere being larger for larger values of r. However, since all the
wavefronts emanate from the same source at the origin, the power density
must decrease proportional to 1/r? to kecp the total power constant. Thus,
the electric field vector must be inversely proportional to r.

Using a similar argument, we can also obtain the cylindrical electro-
magnetic waves, shown in Fig. 2.1.2, to be given by

=1

|

Fig. 2.1.2. Cylindrical waves.
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E, 2 el —in
nJ/r

2

Heoe o Tr

It must be obvious by this time that the refractive index n is related to ¢, and
i, by the relationship

(2.1.15)

e}lm- lr).

. 2.1.16
o ( )

Usually, at optical frequencies,

Thus

x—. (2107

2.2. Radiation from a Source

We have found that a particular component of the clectric field, due to the

eclectromagnetic radiation from a unit source situated at the origin, can be
written as

1
E(r) = jir efwmin, (2.2.1)

wherer= /x? + y? + 2l and r = i,x + i,y + i,z. However, if the source is
located at(x’, y', z’) or atr’, then the electric field at the point r will be given by

1
E = Kot ~klr~¢'])
() PrETriN . 222

As shown in Fig. 2.2.1, we call the point r the position of the detector. Now
we ask ourselves what happens to the electric field at the detector point if we
have not one source but many sources, which can be discrete and/or con-

Sources

Origin

F_i(,. ?..ll. Schematics for the general radiation problem from a multitude of sources
distributed over a volume.
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Ny ) xy.2)
Source
Plane
~N Detector
Piane
z:=7's0 - 2:2
. 1
”
Origin

Fig. 2.2.2. Schematics for the radiation problem showing the source plane and the
detector plane.

tinuous and distributed over some volume. Remembering that Maxwell's
equations are linear, and that superposition should hold well for the solutions
to Maxwell’s equations we immediately obtain, for this case,

Eqyoc | || B2 ghonsnrn g3y, 2.23)
jAlr — 1|
where integration has to be performed over all the sources. The source of
the point (x’, y', z’) has an electric ficld strength which is proportional to
E(x’, y', 2'). In most optics problems, we simplify the above equation by noting
that most of the time our sources will all be situated in a single planc which
is perpendicular to the optical axis, the z-axis. Thus, for Fig. 2.2.2, the equation
becomes
E(x', y') R .
E(x,y,2)= || - Hot=ke=e'h gy’ gy, 224
(x5 2) ”jllr—r’le x" dy 229

where we have chosen the source plane as the plane z = 0.

2.3. The Diffraction Problem

In many problems in optics, not only do we need to consider the radiations
from the sources, but we need to know what happens to these radiations as
they pass through an obstacle like an aperture—this is shown in Fig. 2.3.1.
To solve this problem, we need to consider the effect of boundaries. The
technique for solving this boundary-value problem is rather involved. In place
of deriving the result we shall state the result, which is also known as Huygen's
approximation.

In Fig. 2.3.1 we calculate the electric field incident on the boundary frem
(2.2.4). To calculate the electric ficld at the detector plane, we assume that the
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| e
Pone Detector
Plane

Fig. 2.3.1. Schematics for the diffraction problem showing the source, the diffracting
aperture, and the detector.

boundary region is replaced by sources of the electric field having the same
‘magnitude as the incident electric field. That is, the electric field at the detector
plane z is given by

i
E A = E“ " " . Hot—kje=r']) ’ 4
(x, ,2) “’ e T Y O)jlll'—l"le dx’ dy

i .
= fj Em(x'. yl) TMT:-IJ| e"""""" " dx’ dy'. (231)
Remember that if there is an obstruction on the boundary (which we have
called the source planc), or any variation in amplitude or phase, due to a
different transparent material placed at the source plane, it is included in the
transmission function T(x', ', 0). The transmission function is defined to be
. e E ranelX’s Y, 0%)

T(x', y) £y, 0 (232
where E,o(x’, ', 0) is the transmitted electric field.

Our fundamental diffraction formula is (2.3.1), and the rest of this section
is based on the application of this diffraction cquation. However, before we
proceed any further it is of interest to note the diffcrent cascs. For example, if
the transmission function is such that we have only discrete sources (sec Fig.
2.3.2), then the problem is generally known as an interference problem. If the
transmission function is such that the equivalent sources are distributed, then
the problem is called a diffraction problem.

The diffraction integral, for most purposes, cannot be evaluated simply.
However, for most cases of practical importance, certain approximations can
be performed. These are generally known as the Fresncl and Fraunhofer
diffraction approximations and arc discussed in the next section. It should be
mentioned that (2.2.3),(2.2.4), and (2.3.1) should include an obliquity factor to
be more precise; however, this factor is negligible for most of the applications
considered here.
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———— ¥ Interference

(0)

)
|

Souvze Plone

Diffroction
(b)

Fig. 2.3.2- Diffraction due to: (a) discrete apertures Of sOurces and (b) continuous
apertures O SOUrces.

2 4. Different Regions of Diffraction

In the last section we derived the diffraction integral. As far as the use of this
integral is considered, we think of the equivalent system model shown in Fig.
2.4.1. The incident clectric field is Eno(x’, ¥'s 0) and the output electric field is
E(x, y, z), where they are related by (2.3.1). It is of interest to point out that
the diffraction formula can be derived from this system concept considering
that the optical system is linear as it represents a solution of the wave equation.
This derivation is given in Reference 7.

To simplify (2.3.1), we first consider the far-zone¢ approximation. That is,
we assume that the detector plane distance, D, on the optical axis, z, i$ much
greater than any valueof x', y', x,0ry which we shall be interested in. It turns
out that, for the most practical optical systems, this is a valid assumption

Z» X,y x, o1y

In that case
r—r={? +x—x)+0— yy e

1fx-x\ 1 y—y‘)’}
d&l + i(-»;—) + 2(-‘ - +..
>~ Z.
1 ~l
r=r z

(24.1)
1

Thus, the term 1/(ir - r}) in the diffraction intcgral can bc approxima(.ed
simply by 1/2. Weare tempted to replace the term kjr — ¥l in the exponential
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|  Source Detector
!

=0 :‘ D 2=D
(a)
EnmclX.y.2) Elx,y,2)
(b}
) rixy,0 ) fix,y,z)
L] 1 l
X,y X,y

{c}

Fig. 24.1. Equivalent system model for a diffraction problem: (a) actual problem,
(b) equivalent system, and (c) schematics and coordinate system for the Fresnel
approximation.

factor by kz also. However, this is a gross mistake because

2z x 10®

2n
kir—r| = —Ilr—r’ls 05

Ir—rl, (2.4.2)
when 4 = 0.5 um, e.g., Ir — r'| is multiplied by such a large factor that even a
minute error in computing |r — ¥} will be disastrous. Furthermore, it is in the

phase term and cannot be neglected. Thus, the far field approximation can be
written as

el= .
Etoy.n) =7 j. ,[ E(X', Y hewase™ "1 dx" dy. 243)

2A4.1. The Fresnel Approximation

The far-zone diffraction formula given by (2.4.3) is still a formidable integral
for most practical purposes. However, some further simplification can be
obtained for the phase term in the exponential. Using the notation in Fig.
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2.4.1(c) we obtain

v =)= {22 +(x —x)? +(y—y)P}*?

N L(x—x) +(y - y’)’)}
(T
! {(_x_:_—fﬂ)’ ‘;‘X: .y’lz.}z +... (2.44)
8 z

The Fresnel approximation is valid when (2.4.4) is approximated by the
following equation:

—_— ' z —_— ! 2
e —r| :.—‘z{l + ;((x *) t('y ' y‘))} (24.3)

z

Thus, in the Fresnel region, the diffraction integral in (2.4.3) simplifies to

e}(ﬂl-ll) s .
E(x,y.2) = Epum{x's y')e ARIO0 dx” dy’

jAz
e}(nﬂ —ks)
E

jA j J E\pas(x', y')e K0P 4 dy'. - (2.4.6)
JjAz

This is only valid when

—ik
exp {85’ [(x—x)?+(y— .V')zlz} ~ 1,

or
o {lx =X+ - yPP et
or
2» :;;{(x — x4y = V) YY)

In (24.7) we must consider the maximum possible value of {(x — x) +
(y — ¥')*}3, including all the nonzero source points on the source plane and
the region of interest in the detector planc.
For the reader who is familiar with linear system theory, it might be obvious
that (2.4.6) can be rewritten as
e}(o(—n) _ o
E(X, Y Z) = “"}1’2’" ) E(X'. yl)lunl .e Hnjdanxtry )v (248)

where » means two-dimensional convolution.

2.4.2. The Fraunhofer Approximation

The diffraction integral in (2.4.6) can be further simplified under a mo;f
restrictive condition on the distance of the detector plane. Again expanding
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the phase term,

X = x4 Oy = L L4

- %(xx' + '), (2.4.9)

we note that the first term is a constant as far as the integration variables x’
and y’ are concerned. In the Fraunhofer approximation, the second term is
considered negligible. Thus, under the Fraunhofer approximation, (2.4.6) can

\ om, x'o‘s“ {vv\/\—/
1 i Fresnel ., Frgunhotfer

il z=lm Zore 1.26 km Zone
Sourc: :

(a)

N

(]
-/
o
r

/ e°l*('.’ "

phose independent
of x ond y
(b)

(c) (d)

Fig. 24.2. (a) Regions of validity for different approximations, (b) wavefronts radiating

from a print source for different approximations, (c) x and y components of wavelength,
and (d) coordinates for the spatial frequency, f,.
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be rewritten as

Nost—kg) , ,
E(x. ¥, z) - e'l(slh)(xuy!). JI E".n'(xl' y:)eq(z.u.)(u +yy') dx' dy'.
(2.4.10)
The above equation is valid only when
e-—}(kﬂl)(x"*y") ~ 1,
or
n 2 2
}._z(x +yH«l,
or
n
% 1(x" + Y e (24.11)

1t is of interest to compare (2.4.7) and (2.4.11) numericalily, to get a clearer idea
about the limits of validity of different approximations. Consider 4 = 0.5 ym
and the maximum value of x, x', y, and y’ is on the order of | cm. Then

ZPesunhofer » 1.26 km,
ZFresncl » 1 m,
Zgar-gone > 0.1 M.

Figure 2.4.2 depicts the different regions of validity for this numerical cxample.
In nearly all practical cases dealing with optics, the Fresnel diffraction is quite
good, even though (2.4.7) is not strictly satisfied. In this book, we shall be
concerned only with Fresnel and Fraunhofer approximations. :

2.4.3. The Spatial Frequency

The Fraunhofer diffraction formula given by (2.4.10) can be rewritten as
el -Kn)
sy ) = = e J J E o, ¥ )3 dx’ dy',
(24.12)
where we have defined two new variables, f, and J,- These are given by

X

fi= i (24.13)

and
y

f’=,lz'

N
i

The dimensions of these new variables are (meter) ™! and they are called spatihl
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frequencies. These spatial frequencies in optics play a role very similar to the
frequency (time) in clectrical engineering, as will soon become evident.

However, we note that (1.1.9), which describes the many different forms of
an expression for a one-dimensional wave, can also be written as

E(x, f) = AeS?™N I, (2.4.14)

where we have written
1k
fo= 3= g (2.4.15)

Thus, we see that the spatial frequency of a one-dimensional wave is simply
the inverse of 4. Going to a three-dimensional wavefront we obtain, from
(2.1.7),

ﬂnxansAd”W*”mLf“ﬁ (2.4.16)
when
fo=2nk, f,= 2nk,. 2417

2
k,’.+k§+k3=k’=<2;).

Sometimes it is customary to define the quantities 4,, 4, and 4, as
2
M=f. P=x 02 (2.4.18)

We also know that

where, for example, 4, is the projection or component of 4 along the x
direction, as shown in Fig. 2.4.2(c). Thus (2.4.17) becomes

L=l = .. (2.4.19)

A,

If the k vector makes an angle (90 — 6,) with the x-axis, an angle (90 — 6,)
with the y-axis, and an anglc 0, with the z-axis, then

= s_‘_‘.‘_of and o= Sll'\_o!

, 1 5 ks (2.4.20)
and

sin? 6, + sin? 6, + cos?f, = 1. (2.4.21)

The situation where 8, = 0 is shown in Fig. 2.4.2(d) and is a very important
case and will be used often, later in this section.

Physically, spatial frequency means how many wavelengths can be inlm
for a wavefront. However, for (2.4.13) it is rather complex, and we note that
it depends on the position of the detector with respect to the source.

The reader familiar with Fourier transform theory immediately recognizes
that (2.4.12) describes the electric field at the detector plane, as the two-
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dimensional Fourier transform of the transmitted clectric ficld when spatial
frequencies f, and f,» defined by (2.4.13), are used

e}(cﬁ-ll)

E(x. ¥ z) = e"""“"’"”"{E.,.,,,(x', y’)}?-x/h
y

j).z =yjAs
where the symbol #{ } means the Fourier transform.

Because of (2.4.21) and also the fact that the Fresnel transformation becomes
equivalent to the Fraunhofer approximation (in conjunction with a lens), the
Fourier transform plays a very important role in the understanding and
applications of wave optics. As we shall see later, the concept of holography
also becomes easier to comprehend using this concept. That is one reason this
part of wave optics is also known as Fourier optics.

A point of historical note is worth mentioning. Although optics has been
a subject of scientific interest for a long time, this analogy between the
frequency in clectrical engineering and spatial frequency in optics has only
been utilized since the 1960s. So you can sce that Fourier optics is rather a
new subject.

2.44. Summary of Formulas

Realizing the importance of the Fourier transform we will review it in the next
section. However, before we do that, it is of convenience to rewrite all the
diffraction formulas and approximations in onc place.
The General Formula
el j‘ E o~ Mr-vi P
E(r) oc —— ry-ome 40
( ) ]" r ‘I‘ - l'|

The Far-Field Approximation

el“' ' ' - Jkle =1} 4 ’
E(xv ¥ Z) = )TE E(X W Yo O)lunle dx dy ’

where z » x, x’, y and y'.

The Fresnel Approximation

e}(w—h) , a
E(x’ y' 2) - jh jj‘ E(x“ y'. 0)""‘.e‘l“ﬂl)("l Peo-yy } dx' dy’

ot —ks)
= C-K s E(x' yl 0) . e-](./z.’(‘q,,.;)
i s
],1.2 ' irans
-k
el ) — KmjAsAx2 4y - ey
=z ¢ E(X's 7' Olrane®

.eﬂl-(l.x‘*f,y‘) dx' dy'
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¢jlu-ln
- — @ NwIAaNx24yd)
jAz
"FLEX, ', O)yppqqe ™A/ AH=2 451} ppzan (24.22)
y=y/As
The Fraunhofer Approximation
c;(.c-n)
E(x, y, 2) = e HeiAndxi+yt) .”’ E(x', y', 0)eXsksx'+30) g+ dyy
e}(uﬂ-—ll) .
= e—}(-/ll)(x +y )f{E(xl, yr‘ 0)}, /s
J y=ylAz
- GM(ZV{E(X', y'o o)}[ LEIPT (24.23)
/;,-;/Al

Note that in (2.4.22) and (2.4.23) there are some new forms of the diffraction
formulas which were not given previously and

e}(.l -kg)
= e e—l(llh)(x‘ +y7)

jza

2.5. The Fourier Transform

For a function, ¢(t), the Fourier transform® is defined as
F(N)= fw(t)e‘""’ dt = F{o()}. (2.5.1)

where @(f) is a square integrable function and goes to zero as t — + co. It is
actually a mapping of the ¢ function from the t-plane to the f-plane according
to t'he prescription defined by (2.5.1). In electrical engineering, ¢t is the time
variable and f is calied frequency. However, as we have discussed before, for
optics, ¢ will be replaced by cither x or y, the space variable, and f by f, or f,,
the spatial frequencies. An inverse Fourier transform formula, which can b’e
proven, is given by

o) = Jf(f)e""" df = F ' {F (o). 252
Let us consider the Fourier transform of the function

o) = 73000, (2.5.3)

which is a monochromatic or single-frequency time function. Using (2.5.1) we

. Noge that ‘for convenience we have interchanged the conventional definition of
Fourier and its inverse.
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MW

0i2'ﬂ,|
() B(f-1,)
Rect(t) Sinc
{b)
Cos(2wfy) % *t
Al Sinc*
)

Fig. 2.5.1. Some functions and their Fourier transforms: (a) exponential function and
its transform which is a delta function; (b) rectangular and sinc functions; and {c) cosine
and triangular functions.

obtain
+

F(f) = f{e"fllfnl} = j ® en-u-!ou dt

—an

= 8(f — fo)-
The last cquality resulting in a delta function is discussed further in the
Appendix. It is assumed that the reader is familiar with the concept of delta
functions. If not, please read the appendix discussing the delta function.
Figure 2.5.1(a) graphically illustrates (2.5.4). It is of interest to derive a few
other Fourier transforms of different functions.

olt) = {1 for = T/2<t < T/2,

(@254

i 2.5.5
@ 0 otherwise. ( )

This particular function is also known as a rectangular function, rect(T),
and is shown in Fig. 2.5.1(b). The Fourier transform of rect(T) can be

evaluated as follows:
+T/2

f(f)-j- e*jz:[l d'

-T2

- __‘l_“ [e+ju]T - e—}lIT]

i2nf
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| T T _sinafT

T 2 T T
= T sinc(f T) (2.5.6)
where the “sinc” function is defined as
. sin nx
sinc x = ———. 257
nx

1t is obvious that the sinc function goes to zero for

sinxx =0 or x=1m when m=12,....

For
x =0, sinc(x) = 1. (2.58)

The sinc function has maxima of minima at x values given by

tan nx = nX. (2.59)

The first maximum value is 1 at x = 0.
_ The function T sinc(f T) is plotted for different values of T in Fig. 25.2. 1
is observed that as T — oo the sinc function approaches the delta function.

(i) ot) = €% 0, (1),
,{‘P(')} = j.cp‘(t)e‘“"‘f‘!ov dt

=F(f- Soh (2.5.10)

where
F£,(N= F o))

Thus multiplying by e~/3*/o simply shifts the frequencics.

-~ 1 N
A
A
|

Fig. 2.8.2. Sinc function for different values of T.

1 ONISV3UONI

Table 2.8.1. Fourier transform theorems.

1
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Linearity theorem
# (g + Bh) =aF (g} + B (AY: that i
the sum of their individual transforms.

s, the transform of a sum of two functions is simply

_ Similarity theorem

If F {g(x. )} = G S} then
v (S
by =, GU W ]
Flotax. by =y (a b)
that is, a “stretching” of the coordinates in the space domain (x, ¥/
the coordinates in the frequency domain (. /,) plus 8 change in t
spoctrum.

. Shift theorem -
It # {g(x. M)} = GUu Sy} then
#lox—ay -} =Gl expl—j2n(fu0 + ;D))
in the space Jdomain introduces & lincar ph

) results in a contraction of
he overall amplitude of the

that is, translation of a function ase shift in the
frequency domain.

4. Parseval’s theorem

1.8 (g(x, )} = G Sy then
r r e, I dx dy=r j G S & &y

This theorem is generally interpretable as a statement of conservation encrgy.

5. Convolution theorem
1 & {gix, »n - G(J.. f,) and F {h(x, »} = H. fy

U 5 g& mhix — &y —m d¢ du} = G{fu [YHUn S}

), then

omain (an operation that will be found to arise

The convolution of two functions in the space d
tirely equivalent to the more simple ‘operation

frequently in the theory of lincar systems) is €n
of multiplying their individual transforms.

are given in Tables

other important functions
t formulas

The Fourier transform of
f. This also includes other importan

2.5.1 and 2.5.2 without proo
which are uscful.

2.5.1. Physical Interpretation of the Fourier Transform

Consider the Fourier transform of cos 2nf,t, shown in Fig. 2.5.1(c). It has two
quency components of this

components fo and —f, which are the only fre
waveform with infinite-time duration. However, consider the Fourier trans-

form of rect{AT)- cos 2nfot
F [rect(AT) x cos 2nfot] = AT} [sinc{(f — f)ATY + sinc{(f + JALYAR]
.called “single-frequency wave" is found to haye
which is sometimes called the carrier
onship between the time duration AT and

For a finitc duration, a 80
many frequencies centered around fo
frequency. The approximate relati
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Table 252
Function Fourier transform
&) 1
sgn() 2jw
u(t)=§ + §ognit)  x8(w) + l/jw
P(t) = Rect(l) sinc [
:t:.w,l :i(’u': — wg) + RI}w + W)
A sinc? (/)
sinc(x)
Area=|b|
in f
une fw ——
/ =
;‘\/-‘ x
) 0217
et The sinc function
A(x)
1
A(x) =
- X -
-1 1

Fig 2.53. Finite-time duration cosine function and its transform.
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the spread in frequency, Af (up to the half-power point shown in Fig. 2.5.3) is
given by
Af-AT =1, 2.5.11)

a very important relationship.
2.5.2. The Two-Dimensional Fourier Transform

The two-dimensional Fourier transform of a function ¢ with x and y as
variables is defined by

Flo(x, N1 =F(f. [,) = ” Q(x, y)e IVt IM dx dy.  (25.12)

wheref, and f, are the frequencics associated with the x and y components,
respectively.

In many examples, the function ¢(x, y) can be written as a product of two
functions

@(x, y) = @u(x)o,(y) 2.5.13)
where @, (x)is a function of x only and ¢,(y) is a function of y only. In that case
F{o(x, y)} = F.UJFU), (2.5.14)

where F,(f,) and F,(f,) are one-dimensional Fourier transforms defined by
Flox)} = F{f),

and
Flo,(n} = FU))

However, in many cases this separation of variables is not possible. An
example is the “circle” function shown in Fig. 254

1, r<ro, '
ofr) = {0' > (2.5.15)
cire (1)
y
-1
» ~

-

Fig. 2.54. Circle function and its transform.
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The Fourier transform of this function, and other functions which possess
circular symmetry, can be evaluated using Fourier—Bessel transforms.
By defining the following polar coordinate variabies, r and 0

r=Jx*+y, x=rcos b,
0 = tan~! (y/x) y =rsin®,
p=JIE+ S fi=pcosy 2319
v=tan'(f.f;h  Sy=psind,
in (2.5.12), we obtain

in ©
F(p, W)sj' dOf drr-@lr)e 2o, 2.5.17)
[

1]

The above equation can be written as
F(p,¥)=12n ‘[ re(r)Jo(2nrp) dr, (2.5.18)
/]

of the first kind. It is found that

where J, is the zeroth-order Bessel function
For the function ¢(r) defined in

the Fourier transform is a function of p only.
{2.5.15) we obtain

1
F(p) = 2n J. rJo(2nrp) dr. (2.5.19)
o
Using the integral formulas for Bessel functions, it can be shown that
J, (2
F(p) = ——‘(:f-). (2.5.20)

where J, is the first-order Bessel function of the first kind. A plot of the function

Ji(2mp) 7
P
"
( ~
N =
2
2 =~ -\ Y . 2
= Zy)oso 17
7
q

Fig. 2.55. Plot of eqn. (2.5.20).
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Table 2.5.3
p J,@npymp [ Q2nplinp)
0 1 1
08175 0.132 00175
1.3395 0.065 0.0042
1.8495 004 00016

F(f)is shown in Fig. 2.5.5. Itis of interest to note that this function behaves

similarly to the sinc function. Its zeros are located at
ip =1.220,2.233,3238.... (2.5.21)

The maximas and minimas are located at

2p = 0 (max), 1.635 (min), 2.679 (max), 3.699 (min). ...
Table 2.5.3.

(2.5.22)

These maximum and minimum values are tabulated in

2.6. Some Examples of Fraunhofer Diffraction

2.6.1. The One-Dimensional Rectangular Aperture®
aperture (in one dimension only)

lluminated with a uniform light
0. The

Consider the Fraunhofer diffraction of an

as shown in Fig. 2.6.1. The aperture is i
propagating paraliel to the z-axis and having an amplitude Eqjatz=

L_./z

“Ly/2 0 Ly

Fig. 26.1. One-dimensional rectangular aperture.

* One-dimensional problems are casier to handle mathematically. Unfortunately,
one cannot just neglect the other dimension in the diffraction formulas. If the second
dimension is just neglected, as we will often do for the sake of simplicity, the results
obtained will be dimensionally incorrect (compare (2.6.3) and (2.6.9).
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transmission function T(x') in this case is defined as

Toe') = {l for —L /2 s x' < L,/2,

0  otherwise, 261

or
T(x') = rect(L,).

The diffracted electric field in the Fraunholer approximation at z = D and
x = x is given by
E(x) = ao.ﬁb)f [EO T(x,)]}j,-x/h‘ (262)

where
e Hovi —4D)
Ueon® ™ 1D

J
Using the formulas discussed in the last section we obtain

E(x) = ¢oonmyEoLx sinc(f,- L)

L
= UgqumyEoLs $INC ()"i D.)

We shall see later that, for most practical purposes, the important quantity is
intensity due to the clectric field. This intensity is defined as

I(x, y. 2) = }{E(x, y, DE*(x, ¥, 2} (2.6.4)

where the * means complex conjugate. Thus, for the case of a rectangular
aperture

e-)(-/ADNx’Oy‘)_

(26.3)

2
I(x) = I?lo? L? sinc? (x;;)‘) (26.3)

1
B pou( D) Foon(D) = pr

I(x)are plotted as functions of x and £, in Fig. 2.6.2(a). The spot size Ax defined
by the half-power points is given by

1
Ax ~ i (42). (2.6.6)

So as L, tends to infinity, the spot size tends to zero. If we ponder over this
result, we realize that this is really startling! Because, intuitively, as L, in-
creases we expect a larger spot, not a smaller spot. This contradictory result
can easily be understood once we remember that the value of zin (2.6.3) must
satisfy the Fraunhofer approximation condition given by (24.11), which is
repeated here for the one-dimensional case

n , n
z» —i(x -X )'2‘.. -7 = j.L:. (26.7)
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Normatized intensity

10

fule ==
(ﬂ) xt, -~
= AD
Az
Ax = spot size = -

L

Ax —+—

L Fraunhoter region

L] . F
(b)

Fig. 2.6.2. (a) Diffracted eloctric field and intensity due to an aperturc. (b) Spot size
versus z.

If we put the value of z =z, in the equation for Ax we obtain
Axlyey, = nl,.

Thus we sec that the spot size really does not decrease but rather increases
with the increasing value of L,, as expected. This fact is shown in Fig. 2.6.2(b)
which plots the spot size versus z.

2.6.2. The Two-Dimensional Rectangular Aperture

Now consider the Fraunhofer diffraction of a two-dimensional aperture de-
fined by the following T(x', Yy )

L —L2sx L2 —L2sy> L/
y)= x 26.8
&) {0. otherwise. 268)
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1t is obvious that T(x’, y’) is separabie in the x’ and y' functions
T(x', y') = rect(L,) rect(L,).
Thus the diffracted E ficld at z = D is given by

E(x,y, D) = amm-f{so T(x', y')}[x-:/lb
Sy=ylAD

= Uoonp) Eo F [T(x)}F [T(y")] (2.6.9)

= QeommEol L, sinc(f, L )J[L, sinc(f,L,)].
The intensity is given by

Ej . L, (LX)
I(x, y) = )._’vl‘;ﬁ’ [L, sinc (’:D ) ‘L, sin ({;D’)] . {2.6.10)

A picture of the intensity as a function of x, y and £, and f, is shown in Fig.

et 000000000 -
'Y X

Fig. 2.6.3. Diffraction due to the two-dimensional aperture. (From M. Cagnet et al.,
Atlas of Optical Phenomenon, Springer-Verlag, New York, 1962).

2.6. Some Examples of Fraunhofer Diffraction 9

2.6.3. It is interesting to note that along the x- and y-axes the intensity is
strongest since one of the sinc functions has a value equal to 1.

2.6.3. One-Dimensional Aperture Centered at x = x,

Consider the problem shown in Fig. 2.6.4, where the origin of the aperture is
shifted from the origin of the coordinate system by a distance, x,. Again the
aperture is illuminated by a uniform electric field whose propagation vector
is paraliel to the optical axis. The transmission function T(x') for this case is
given by

(2.6.11)

, 1, xo— L/2<x <xg+ L,J2,
Tlx) = {0. otherwise.

Thus
T(x') = rect{l., ~ xq).
For this case the diffracted electric field is given by

E(I) = acon(D)EO‘f {l’CCl(L, - xo)}[,'x/h

xgtl 2

= acon(D)Eo J e#jluf,x' dx

xp—Lx/2

L2
- aeon(D)EOJ‘ PACCLIFLIRE D (2.6.12)

-L.2

where we have substituted x’ = x” + x,.
E(x) = g Eqe 2" =*L (sinc f,L,). (2.6.13)

(The above equation can aiso be obtained directly through the Fourier trans-

—
Eq x oLx/ZI

gl

|

Tix)

“Ly/2 xo ‘Lxs2

F..., SO—
Fig. 2.6.4. One-dimensional shifted aperture.
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form formulas.) Thus we obtain the important result that by shifting the
aperture, only an extra term of the form e /2*/=* shows up which is just a
phase term. Otherwise, the electric ficld is the same as if the aperture had not
been moved. The intensity is given by

2 2
I(x) = %[L, sinc (’%’b)] , (2.6.14)

which is exactly the same expression as that obtained for the casc when
the aperture was centered. Thus, if we measure intensity, the aperture shift is
not detectable. Again, this somewhat startling result is easily understood
by remembering that the expression is valid only in the Fraunhofer

approximation.

164 One-Dimensional Rectangular Aperture with Uniform
Light Shining at an Angle 8 with Respect to the Optical Axis

Consider the problem shown in Fig. 2.6.5, when the incident light makes an

angle 8 with respect to the z-axis. In this case, the Efieldatz = 0is givenby*

—
* Note that the E field is actually given by
E(x', Z) - E"’ﬂﬂl‘l‘llh' . ¢Ao«-k.l)'

wherek,-kcost(Zn/).)cosO.

T

(o)

m—e
—

() —t,

(b) —x

angle.

E(x'. 0) - Eoe"ﬂl(l‘l.ﬂ)"' (2.6‘5)

Fig 265 One-dimensional rectangular aperture with uniform light shining at an
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as discussed in Section 2.4.3. This arises because the plane of constant phase
is not in the x-plane but at an angie (90° — f)tothe x-axis. Thus the wavefront
along the x-axis has a phase variation given by the above equation. The

limiting case of 0 = 0 is the case which has been considered so far. Equation
(2.6.15) can also be written as
E(x',0)= Eoe""“"""', (2.6.16)

where
fro =Sin o/ (2.6.17)

Thus, the diffracted E field is given by*
E(x) = Coonir® (Eqe "= -rect(L,)]

= UpnrEo jrect(L,)e""“‘“""' dx’

= UooumyEo” s sinc[(f; — fxolLx): 2.6.18)

Thus the sinc function is only shifted by f,o in the frequency domain due to
the presence of the incident light at an angle. This frequency, f.0.caN bE called
the spatial carrier frequency, in analogy with the carrier frequency in radio
engineering terminology. Another important fact is that this spatial carrier
frequency can casily be changed in value by simply shining light at different
angles. This is a very important fact to understand, and as we shall see later
in Section 2.8, the concept of holography is based on this fact.

Again, the intensity is given by

2
109 = oo L} sine? (s = el @619

The electric field and intensity are plotted as functions of x and f, in Fig.
2.6.5(b)and (c). As expected, if the light is incident atan angle 6, the diffraction

pattern is centered at
x = (fro0) X (Az) = z sin 0.

Sometimes it is customary to write

L= s";a, (2.6.20)

where « is the angle subtended by the straight line joining the origin and the
detector. This is illustrated in Fig. 2.6.5(a). For this case (2.6.18) can be

rewritten as
sin 0 + si
E(x) = CuenitrEoLx sinc[(‘“‘ s ,s,'_*!,_“) L,} 2621)

———
* Note that the value of “k” in geq should be k, =k cos 0.
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which in the paraxial approximation becomes

E(x) = 0ongoEoLs sinc[({,-—} 9’) L,]. 2622)

Sign Convention for Fourier Optics

sin @
Jo= ~i——‘ (i=yorx).

fio is negative if 6, is measured clock wise with respect to the optical axis.

2.6.5. Some Discussion About the Free Space Propagation of Waves

Consider spherical waves emanating from a point source situated at the center
of the coordinate axes, as shown in Fig. 2.1.1. We know that the amplitude of
the wave at the point r is given by

E(l’) - e}(u—l-v)
= gllon-aaleyiean'?) (2.6.23)

For large values of z, the quantity |r| can be expanded into a series as follows:

2, 2\
jrl = (x? + y2 + )2 =z(l +" -i;y)
z

xt 4+ y?
w1+ 507+
( A )

x? 4 p?
~z4 - r—z-;'y— for z» xandy. (2.6.24)

Thus the clectric field at (x, y, z) becomes
E(x, y, 7) = ehonmhn). g Haskxt ey (2.6.25)

under the Fresnel approximation. Of course, the above equation can be
derived by inspection from the Fresnel diffraction formula given by (2.2.3) by
substituting E,ou(x’, ¥’ 2') = 8(x, ').

Similarly, in the Fraunhofer approximation, for this case

E(x, y,2) = X", (2.6.26)

This wave propagation in free space is illustrated in Fig. 2.4.2(b). It is observed
that in the Fraunhofer region the spherical wave behaves like a plane wave
whose phasefront is perpendicular to the z-axis. However, in the Fresnel
region, the wavefront has a curvature with radius z, and phase in the z-planc
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varies in a fashion which is parabolic in x and y. Thus the major difference
between the two wavefronts in the two regions is the presence of this curvature.

It is also now obvious that if we compare (24.22) and (2.4.23), it is found
that the difference between the diffraction integrals is the presence of the factor
o~ Ham=2+y™) This gives us a cluc as to how we can climinate this curvature
using a lens. In the next section we shall prove the important fact that a lens
changes the curvature of the wavefront or introduces a parabolic phase shift
on the z-plane. Thus, it will be shown that a lens can convert the Fresnel
approximation to a Fraunhofer-like diffraction integral.

2.7. Phase Transmission Functions and Lens

Up until now we have considered only the amplitude transmission function
for diffraction problems. For example, in all the cases considered before

T(x',y") = T, ¥l

However, in general,
T(x', y') = |T(x', y)le? 211

That is, the transmission function cannot only change the amplitude, but also
the phase of the incident electric field. A special case is the phase transmission
function where

Tx',y') = e,

and
IT(x, y) =1L

The best example of a phase transmission function is a transparent piece
of glass of thickness #(x’, y'), and having a fixed retractive index n. This is
illustrated in Fig. 2.7.1.

If the glass was not present, the phase of the wavefront would have changed
by

h
00=kh=21t'1

(by traveling a distance “k”). This is because at the point A the wave can be

Free Space

net }-————-’Eo

Ae—h—B
loss

G!
———-—l n }_——-——c— Eo olo¢

——h—e

Fig. 2.7.1. Transmission through a transparent glass.
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written as
ell.!—ln

and at point Bitis
¢;(.¢—u—m_

Thus the difference between the two phases is given by

Ps — @a = kh.
However, when the glass is present in the path, the phase difference is
%. -_— q’A' = k'h‘
where
k' = g ‘Bn = kn,
v c

where k is the free space propagation constant and k' is the propagation
constant associated with the medium having a refractive index n. Thus, the
phase difference introduced by the presence of the glass is

A = (Pn — @a) — (Ps — @a)

- hik' — k)= + (3_—_5)}1 27.2)

where A is the free space wavelength. Thus, we derive the important result that
the transmission function of the transparent glass is given by

T(xlv y’) - Cl“ = e-ﬂz-ll)(l"l).(!'"' (2'7'3)

where the thickness of the glass is a function of x and y, h(x, y).

In a sense a lens is nothing but a transparent piece of glass. However, the
thickness of this glass is a function of x, y. If we can derive an expression for
functional dependence on x and y, we can use {2.7.3)to obtain the transmission
function of the lens.

A typical lens is shown in Fig. 2.7.2 having radii of curvature R, and R;.
The thickness along the optical axis (the center of the lens) is denoted by {,.
Then

h(x, y) = to — t,(x, y) = t2(x, y); (274
where t,(x,y) and t,(x,y) are defined in the figure. From geometrical
considerations

t,(x, y) = R, — (R} = x? — y})""

xi + yl 12
-re-m (- )

xt+y
= Rl had Rl[‘ —*"Z'RT‘ + -.-]

2 2
x? + .
= X1V 4 higher-order terms.
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1, (x} 10

f ~ focol length

Fig. 2.7.2. Phase transmission function of a lens.

Paraxial approximation has been used in the above derivation. Similarly,

x? +y?
b=

(Note that R, is negative using our convention of geometrical optics.) Thus,

we obtain
(x‘+y‘)< 1 1 ) '
hx, y) = to — —5— \ig ¥ i) 215
) =to 2 Ryl IRyl . @13)

or the transmission function is given by

(n—1)2n

' v = ~J
T, y) = e

h(x', y")
—;(-—1)2" HrfA) (=1 HANAR D+ NR D2 +y1)}
., = e —}‘— ‘oe ' 3

- ¢-m¢+l(-/um'n'»' 2.7.6)

where f is the focal length of the lens, and the lens designer's formula (1.239)
has been used to derive the last expression. Thus we see that the lens has both
a constant phase term and a phase term which varies parabolically as a
function of x and y in the z-plane. This is illustrated in Fig. 2.7.3(a).

A constant phasc wavefront, after passing through a lens, is converted to
a spherical wave which converges to the focus. Whereas a spherical wave (see’
Fig. 2.7.3(b)) emanating from the focus becomes a plane wave after passing
through the lens.




-~

(o) (b)

Fig. 2.7.3. Wavefronts after passing through lenses: (a) parallel incident wavefront and
(b) diverging incident wavefront.

2.8. Fresnel Diffraction

In Fig. 2.4.2 we discussed the validity of different approximations in different
regions. For A = 0.5 um and (x'),.,, = | cm it was found that for Fraunhofer
diffraction to be valid the detector must be placed at

z>» 1.26 km. (2.8.1)

I am sure the reader will have wondered if z has to be that large; unless we
are shining a laser on a moon to do some optics experiment, in most of the
cases in the laboratory, Fraunhofer approximation does not hold in the usual
laboratory experiments. We might then wonder why we have spent so much
time in the last few sections on this approximation. Well, the reason will be
clear in this section where we first show that in conjunction with a lens, the
Fresnel diffraction formula becomes like that of Fraunhofer.

28.1. Fresnel Diffraction and Lens

Let us consider a situation where we have placed a lens with a focal length f
at the aperture, as shown in Fig. 2.8.1. Let us consider that the aperture has
a transmission function T(x’, y’) by itself. Then the total transmission func-
tion, T"(x, y), to be used in the formulas for the Fresnel diffraction formula, is
given by

T'(x, y) = T(x', y')e teog*Antx2 42 idn) (2.8.2)

VN

f

=L

Fig. 2.8.1. Fresnel diffraction with a lens.
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Substituting this transmission function in the Fresnel diffraction integral,
(2.4.22), we obtain

E(x,y,2) = (a,) ” Eine(x', y, O T(x', y)
x e feo. e‘J(R/lNl’*y’)(l/x-llI) . e—(.lllh)(x“y‘) (2.8.3)

X e*llt(f.:r"fyy') dx’ dy',
where
eltwt=kn
n= jzA
For z = f, we obtain  ~

E(x, y, f) = (dcon)e ™ *° ” E, (', y)T(x', y')et 2= *50 dx' dy’

= (Xopn)e 0 F {E, o (x', y)T(¥', y')} (2.8.4)

= 0, F {Eipe(x', y') T(X', y')},
where
¥y = e % = ant’"‘"‘v“"*").e'l’o.

The last expression is identical to the Fraunhofer diffraction formula, except
for the constant phase factor, e /#.

Thus we sce the important implication of the above result, in the sense that
we can obtain the Fourier transform of a known T(x’, y’), by using a lens and
without sacrificing the Fresnel approximation.

Let us apply this result in a very important case—to understand the
limitation of geometrical optics. To simplify the mathematics let us consider
a one-dimensional case. Consider the finite lens of size L,, as shown in Fig.
2.8.1. As parallel rays are incident on the lens, according to georetrical optics,
all the rays pass through the focus. Or the focus is really a delta function on
the z-axis of zero width.

However, if we use the diffraction integral equation (2.8.4) with

T(x') =rect(L,) and  E,(x',y) = Eo.

for this case, we find that
E(x, f) = (Eoa;) L, sinc (;if L,). (28.5)
or the in@sity is given by
1 f) = Iff‘z’, L2 sinc(f,L,), 286)
where
L=y
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A
N )Il b
"t ‘.o
(a)
I em / <
P/
(b)

(c)

Fig. 2_.8.2. Diﬂractioq limitation of ienses: (a) square lens; (b) picture of diffraction due
1o a circular obstruction; and (c) a circular lens. (From M. Cagnet et al., Atlas of Optical
Phenomenon, Springer-Verlag, New York, 1962)
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Remembering the discussions of the sinc function in Sections 2.5 and 2.6, it is
obvious that the so-called focus has diffraction bands, as shown in Fig. 2.8.2(a).
We can approximately define the size of the focus as spot width, given by

size of focus = tf. 28.7)
which is zero only when L, — o or the size of the lens is much much larger
than the wavelength. In other words, this lens can only resolve a dimension
on the order of spot size when the resolving power is related to

L
Zx o AL 288
”’ fl ( )

In most practical cases the lens is not square but circular. For this case, we
should use the Bessel-Fourier transform discussed in Section 2.5.2. The result

is
uar k[ L Jilkpr/2)
Er,/)= Eoe""""”e'”' 12f. ;%f [2 _ll(?p—’:;/ffﬂ]’ (28.9)

where r is measured in the xy-pianc and p is the radius of the lens. The intensity

distribution is given by
kp2[ . J (k2N T
I, f) = E},—:f [2 - l’(‘—ﬁ’:%?-?] .

For this case the spot size is given approximately by

size of focus = 1.22 (é—’{) (2.8.10)

Also, for a uniform light we obtain the circular ring pattern, as shown in Fig.
2.8.2, which follows the square of the J,(r) plot shown in Fig. 2.5.5.

28.2. Diffraction Grating

When we have not one aperture but many of them, in some periodic manner,
then we form what is known as a grating. The transmission function of a
one-dimensional amplitude grating is shown in Fig. 2.8.3(a). Each aperture in
the grating is of size L,, and there arc N of them. The separation between the
center of each is given by xo. We shall consider only the Fraunhofer diffraction
with the understanding that in laboratory experiments a lens is used, and the
intensity pattern studied is at the focal plane. The problem of this diffraction
grating can casily be formulated as a summation problem. For example, if
f(x") is the transmission function of one clement of the diffraction grating, as
shown in Fig. 2.8.3(a), then the total transmission function, T(x'), can be
written as

T(x') = f(x') + f(' = Xo) + f(x' = 2xo) + -+ flx" = (N = 1)xo)-
(2.8.11)
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Fig. 283, Diffraction grating with N identical clements.

The diffracted field due to each slit or each element of the diffracti i
; : raction gratin
is obtained and then summed to obtain the total electric field. Thus, *

E,. = Y E(due to each slit)
= Eg(x’ = 0) + Eg(x’ = Xo)
+ E““(X' = 2x°) + 0+ E,m(x' = (N — l)Xo). (2.8‘2)

Let us consider, for a specific case, that the slit is of size L in Fi
’ » .+ as sh ]
2.8.3(b). Then we know that s shown in Fig

Eulx’ = 0) = (@) EcF{ fx")}
= (a) Eo L, sinc(f,L,) (28.13)

However, all other terms in (2.8.12) can be written in terms of E,, (x' = 0) as
follows: "

Egulx’ = Xo) = e/3Vr"E ;,(x' = 0). (2.8.14)
This result is obtained from (2.5.10). Similarly,
Equ(x’ = 2xo) = /33 r%0E (x" = 0),
Eu(x’ = mxg) = M ?*/=%E ;(x" = 0),
Eu(x’ = (N — 1)xo) = eMN-VIuxoE L (x' = Q).
So the total diffracted ficld is given by
Ey = Eyu(x’ = 0) x {1 + eIWaTo 4 ..o 4 @3N (28.15)

where the first term denotes the diffraction due to a single slit and the term

2.8. Fresnel Diffraction 1"

under the bracket is known as the interference term. Interference will be
discussed in later sections with further detail. However, it should be pointed
out that these arise because of the interference of different diffracted wave-
fronts with phase differences. The interference term can be written as

interference term = 1 + &/ 7<% + 2o 4, @l
T Al
1 - N
- where y = e/
-7y

1 — ef?Nfxxe
T it o

_ sin Nnf, . xo
- RN~} x%0 LYxTO0N, 8.16
¢ { sin nf, Xo } 2819

So the total electric field at the detector plane due to the grating is given by

2= oo ciment. 10} x emorrire {%1"_&'&:@}. 817

single clement sin nf, X

It is of interest to study the properties of the most important term in the
interference part
sin Naf,xo

- 2.8.18
sin 1f, X ( )

N=
(i) For N = 1, of course, I, = 1.
(i) ForN=2,I; = 2 cos nf, Xo.

This is the well-known interference between two sources and will be dis-
cussed in detail later. A plot of I, and 12 is shown in Fig. 2.8.4. Remember
that I? will be related to the intensity of the light and can be rewritten as

2 — 4 cog [P0 = 4 cos?{ To0
I3 = 4 cos ( 1 ) 4 cos ( ).z)
- 2[1 + cos (2-'"-‘"«9>], (2.8.19)
Az

(iii) For N — very large.
We note that for N very large, only time Iy has a large value when the
denominator goes to zero. That is,

sin nf,xo = 0,
or

=" =4, (28.20)

Xo

where p is an integer.
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Fig. 2.84. Interference term plotted for N = 2.

Near a maximum we can write

hmuup-%gg%?,

f. = f, = very small = f,.

sin Nn(fl' + f,)xo
sin x(f; + /,)
- sin Nxf,x,o
sin nf;xo

sin Nnf,x
N 1 %0 ,e
“Nfixq as f; is small

I,hunrj;)-

= N sinc(Nf;xq). (2.8.21)

Thus pear a maxima, the interference term behaves like a sinc function. The
maxima occurs for values of x given by

Az
x=p- (2822)

A plot of I for large N is shown in Fig. 2.8.5 both as a function of f, and x.

2 8. Fresnel Diffraction 13

(INT)
A"= =Ax:h§‘ I e
d AHX m -
K .| i
% N - T
xs 0 x-é{; -
(a)

A PR3
(b)

Fig. 285.(a) The interference term when N is large. (b) The Rayleigh criterion.

It is observed that the diffraction consists of a set of infinite waveform peaks.
The spot size is independent of the diffraction order p, and is given by
spot size = —Az
po " Nxo'

or in the spatial frequency domain it is

M= gy

T Nxo
Thus, the spot size in this case is the same as if the whole aperture of size (Nxo)
is illuminated. Diffraction gratings can be used to determine different wave-
lengths of the composite incident light. The power to resolve this wavelength
is measured by the resolving power, R, given by

R = (2.8.23)

where a wavelength, 4, and an adjacent one, 4 + 52, are called resolved if the
diffraction spots by these two wavelengths obey the Rayleigh criterion. This
is shown in Fig. 2.8.5(b). Thus

Az - p(): + 0z pAz - pdiz

Nx, Xo Xo Xo
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L~o0 £y

Rl

Fig. 28.6. The interference term when N — oo,

for the pth-order spot, or

A
R = e Np (2.8.29)

and the resolution, 84, is given by

A
A=l
oN (2.8.25)

Thus for larger values of N and at higher diffraction orders, we obtain higher
resolution.

(iv) For N = .

Iy= L sin Nrgf,f_o

. S oxg (2.8.26)

Then near a maxima
Iy = Lt Y N sinc(Nf;x,)

N—=wo p

-zo(r-3)

as the sinc function behaves like the delta function for N — oo. This is an
interesting situation and is illustrated in Fig. 2.8.6.

One word of caution in the discussion of the interference term—it is not
the diffracted field. To obtain the diffracted field, we must multiply it with the
diflraction due to the single clement of the grating. Thus for L, = x,/5,
N = 50, the diffracted ficld is shown in Fig. 2.8.7. In the figure the interference

9Q 3
Xy X

*
x{—

Fig. 28.7. Complete diffracted intensity for N = 50 and L, = x,/5.
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and the diffraction due to single element terms are shown scparately for
clarification. It is obvious that for x, = qLx, the gth interference term will
disappear.

A Typical Example Worked Out

1t is of interest at this stage to work out a typical example that illustrates some
other points which have not so far been stressed.

A photographie plate, $ em x 5 cm, is illuminated with uniform light
(A = 8000 A) arriving at an angle of 5° with respect to the optical axis in the
y’-plane. The transmission function of the plate is uniform in the y’ direction
and its dependence in the x’ direction is shown in the following diagram:

WAAAP

(a) Write an expression for T'(x’) and its Fourier transform.

(b) Ifa 50-cm focal length lens is used, write an expression for the electric field
at the focal plane showing the x and y dependence.

(c) Plot the intensity at the focal planc as a function of y.

(d) Plot the electric field amplitude at the focal plane as a function of the x
component of spatial frequency.

(¢) What change in the light intensity pattern is expected if the photographic
plate breaks and its new size is I cm x 1 cm. ’

¢

(a) T(x') =4+ Lcos2n rl’(‘)o(whcrc x' is in microns)

= 4(1 + cos 2nf,ox ).
Changing x’ from microns to meters where

1 1 — 4 -1
fo=fExioem ™1™

F(T(x')} = 40(/,) + L[8(fx — fro) + 8USs + fr0)):
pY.C )]
_.¢‘J(uIAVNxNy’)§{E(x" ¥, 0)}I oy

®  Exy= o

= E(x’, ¥, 00} ; mujass
Oponl NIF{E(X’, y )}J);_ﬂlbl
E(x', y',0) = EqE(x")E(y'), (

where E, is the clectric field amplitude of the light incident on the photo-
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graphic plate.
E(x') = T(x') rect(L,),
E(y') = e/*Ve" -rect(L,),
where
L =L =5x102m fo= 5'-29 = 0{’}%, = 1.0895 x 10° m,
F{E(x)}

=L, {sinc(f,L,) + § sinc((fy — fuo)Lx) + § sincl(fy + S)L:3)
F{EW)
= L,{sinc(/, — o)L},
FEX',y.0)}
= EF{Ex)}F{EW))

L L
E(x, y) = Eqconn’ —12»’5 sinc {%’}1 - foL,}

x lz{sinc (33‘) + sinc {%’}—’ - f,oL,} + sinc {%35 + fro L,}].

©  10)wx LEsinc*(f,L, — foLy)

= (5 X 10_1)1 sincz {B—‘X—y‘l"o;“ — 1.0894 x 105 m} .

The intensity is plotted in the following figure.

1ty)
/ -
8rmicron
m Elx)
T T
-2 10" 7m u fuo® 10°Ym
\20/"\- Lx
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(d) E(X) o Li[‘inc(fxl‘x) + sinc{f, - f:o)Lx} + Sinc{(fx + fxo)}Lx]I‘

A plot of the clectric amplitude is shown in the figure.
(¢) The new electric ficld is the same as in section (b) except L, = L=
1 x 1072

2.83. Sinusoidal Gratings

2.8.3.1. Phase Gratings

Consider the transmission function whose amplitude is shown in Fig. 2.88. 1t
introduces sinusoidal phase variations. For example, if we make a sinusoidal
ruling on a piece of glass such that the thickness of the glass, t(x), is given by

t(x) = to — t, sin 28fs0X, (28.27)
then the transmission function will be given by
T(x') = e-l(llll)«o- . e}ﬂ-ll)hnin 28/ 0’
= e vogipiysinSxox’ (2.8.28)

where p is defined as the index of modulation. As shown in Fig. 288, f;o =
1/xo where x, is the period. If the transmission function is limited to width
L,,thenthe transmission function to be used in the diffraction integral i given
by

T(xl) = e—”oe)(ﬂlz)l"'fzo" rect(Lx)_ (28.29)
To obtain the Fourier transform of T(x') we note that
_ n , +w p .

e Horyein 2afxox’ = ' ;w J‘(i) el2mefx0x’, (2.8.30)

where J, represents the Bessel function of order g, and q is an integer. Using
the above expression, the diffracted electric field in the Fraunhofer approxima-
tion is given by

E(X, §) ™ XooniorLx 8INC( f,L,)-[ :f, J.(';)é(f. - qf.o)]. (2831

Fig. 288. Sinusoidal phase grating.
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where the convolution formula form Table 2.5.2 has been used. Thus,

E(x) = Gpuiny ..Z-.., .I,(g) sinc[(’i;) (x - qf,o/lz)]. (28.32)

or the intensity is given by

1 +o0 . L 2
I(x) = Th? {'z‘n J, (;) smc[(-l—zf)(x - qf,olz)]} (2.8.33)

A p!qt of ?he intensity for a phase grating is shown in Fig. 2.8.9(a). Readers
familiar with the frequency modulation of radio waves recognize the similarity

Normalized
intensity

0.2

4
___] vs. ._:_ for three values of +q
2

(b)
Fig. 289, Intensity plot for a sinusoidal phase grating,
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between that case and this phase grating in the spatial frequency domain,
Figure 2.8.9(b) shows the plot of J}(p/2) for three values of g.

283.2. Amplitude Grating

Of course, a similar amplitude modulation case is found if we consider the
transmission function as

T(x,y) = (; + 52’ cos 2nf,ox) rect(L,). (2.8.34)

The diffracted field in this case is given by

E(x) = E¢®oonip) {sinc (lz;) + ’2’ sinc [(i’:) (x + fxolz)]
(2.8.35)

[(’;Z) (x + f,ozz)]

(2.8.36)

where it has been assumed that the grating frequency f,, is much greater than
2/L,,so there is negligible overlap between the three sinc functions in (2.8.36).
A plot of the diffracted intensity is shown in Fig. 2.8.10.

2.8.4. Fresnel Diffraction Without Lens

Until now we have considered the problems which are in the Fraunhofer
regime, or using a lens, cah be made to appear like a Fraunhofer diffraction.
The probiem of Fresnel diffraction is quite complex and here we shall consider

Normalized
intensity
1.0

form— foAZ —sp—— fgAZ ——el e

Fig. 28.10. Cross section of the Fraunhofer diffraction pattern of a sinusoidal ampli-
tude grating.
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only one problem, the rectangular aperture. The diffracted li i
‘ , ed light f
(see (2.6.8) for dimensions) is given by ght for this case
el(u—u) +L,2
JZEZ N
Writing the above integrat as the product of two integrals, we have

eXwt=ks) (L2 Ln
E(x,y) = E, iz J' efM2snx-xp dx'J‘ P P I

L2
E(x,y) = E, j M AN 0-rY) gy gy (2.8.37)
i 8.

—La2 -L,2
Net ~kz)
=E, iz F(x)#(y), (2.8.38)
where
L2
J(x) = J XA o1 (2.8.39)
~L.2
Substituting
-= k( ‘
n o x — x'), (2.8.40)
we obtain
nz (% .
J(x) = \/; . X gy, (2.8.41)
where

(5

The integral #(x) can be written in terms of the F .
S(x) as follows: e Fresnel integrals C(x) and

xZ
Sx) = \/; {{Ca) = C )Y + j(Stna) - St)]}, (2842)

] ,"1

C(x) = L cos 5 dt, (2.8.43)
= . ntl

S(x) = J-o sin 5 dt. (2.8.44)

Defining

k(L
=~ E(—iz+y),

(2.8.45)
e 5 (5,
rz\ 2
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we finally obtain
JHt —kz)
E(xy) = Eo° 9 {[Clny) - Cr)] + j[S(n2) — S(ny)1}
x {[C(&;) — C(&,)] + j[SE,) — SEI} (2.8.46)

The intensity, I(x, y), is given by
E2
I(x,) = SH{[Cna) = C1)T + [Stna) = ST}

x {[C(&) — C(ENY* + [S(ny) — ST} (2847
The Fresnel integrals have a graphical interpretation in terms of the Cornu
spiral as shown in Fig. 2.8.11. Here C(x) and S(x) is plotted in the complex

plane. Note that
C@=~Cl-a)=} (2.8.48)

and
S@) = —S(-a)=14.

If we define the complex Fresnel integral as 4(x), given by

A(x) = C{x) + jS(x), (2.8.49)
y 's
2. N\
03 o 0
A 1ol
20
§%
V,
033 A —
]
08 L [¢) 0.9 .
/~6‘s/ —
A 2.0
," g
10, p \ o8
X X |
)
.3

Fig. 2.8.11, The Cornu spiral,
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[\
4
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jon pattern: (8} straight edge and () rectangular aperture. (From F.G. Smith and JH.

)
(b)

Fig. 2.8.12. Examples of the application of the Cornu spiral to determine the solution
to the complex Fresnel integral.

we see that

=
(-3
ej(u—n) -
E(x, y) = Eo % {A(E) — AC)} {AM) — A} (28.50) :3_
. . . . Outside of z
In terms of the Cornu spiral, A({,) is the distance from the origin to the point shadow g2
¢, in the Cornu spiral. Thus A(,) — A(&,) can casily be obtained as shown = @ -?
in Fig. 2.8.12. Using this graphical construction we casily obtain the results Boundary 5 3
for the straight edge and the rectangular aperture as shown in Fig. 28.13. of shadow '% d
Figure 2.8.14 also shows the transition from Fresnel to Fraunhofer diffraction 4, ]
. '_1 Inside of = Q
as z increases. shadow -
For z very small, {3, §,, 12, 1, are very large. For this we casily obtain R 5 %
. o £
E(x, y) = Eoe"™* rect| * rccl( Y], (2.8.51) =

L, L,

which is the geometrical projection of the aperture. Using the principle of
stationary phase, it can be shown that this result is not special for the
rectangular aperture but valid for any arbitrary aperture.
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Ps

P2 1

Py

I«<

w . N

(Rayleigh distance) !
[]

Fig. 2.8.14. Transition from Fresnel to Fraunhofer diffraction. A portion of s wave, W,
passes through a slit of width, d. Intensity distributions across the wave are shown for
planes P, (close to the slit), P, (just inside the Fresnel distance), and P, (beyond the
Fresnel distance).

2.9. Detection and Coherence

Two topics of great interest, which we have avoided until now, are the subjects
of the detection and coherence properties of light. Both these subjects need
to be discussed before we can understand the subject of the next topic,
interference.

2.9.1. Detection

All through this part of the book we have mentioned the detector plane. The
discussion on detectors for the whole electromagnetic spectrum is a subject
in itsoll. However, we will consider the relevant material for this book here.
For low frequencies (up to a few gigahertz), it is possible to have detectors of
electromagnetic energy which measure the clectric field  the oscilloscope is
one example. However, as we approach the optical region, nothing can re-
spond quickly enough, and what we measure is the intensity. That is the
reason, in the last few sections, that we have derived expressions for the
intensity where many of the phase terms are lost.

The following is a partial list of the detectors which are used in the optical
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region:

Eye,

Photographic film,

Photomultiplier tube,

Photodetector diodes and transistors,
Bolometers.

Each of these detectors has a bandwidth, Af, over which it can respond. This
bandwidth is related to the response time, T, of the detector by the relation

1
) A = T 29.1)
For example, the response time of the eye is about 100 ms, or it has a
bandwidth of approximately 10 Hz. Table 2.9.1 lists the response times and
bandwidths of other typical detectors. Since optical frequencics are in the
neighborhood of 10'4, it is obvious that the detectors cannot follow the
fast swing of the electric field. The detection is performed by some form of
nonlincarity (most of the time a square nonlinearity) in the detector which
measures the intensity. Let us consider that the detector output is proportional
to the square of the electric field. That is,

t T
output o¢ J |E? de 29.2)
T
(where T is the response time), or

T
output o ! J. E2 cos*(wt — kz2) dt,
TJlo

where the incident wave is considered to be propagating in the z direction and
T» 2n/w, or
2 2

E; E;
e + 5 cos(2wt — 2kz)

E} 1,
~ -2 (EE%) =1 293
3 2(FE )=1 (29.3)

output oc

The second harmonic term is negligible as the detector cannot respond at
that frequency and is filtered out. Thus, we soe that the detectors do messure
the intensity, and the output of the detectors is proportional to the square of
the electric fleld magnitude.

Let us also consider a situation where the light is modulated with some
information to be transmitted, for example, in an optical communication
system. In that case, the electric field can be written as

E(t) = Eom({t) cos(wt - kz), (294
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Table 2.9.1. Detectors and their properties.® Table 29.1 (continued)
Threshold/noise Threshold/notse
equivalent power oquivalent power
or D*® noise or D* noise
Responsivity amp equivalent power Frequency Responsivity amp syuivalenl power Frequency
Spectral response or volts/watt isin W/Hz'? D* response Spectral response or volts/watt isin W/H2" D* response
Type A in microns of incident power incm Hz'? W (in Hz) Type A in microns of incident power in cm Hz'? W (n Hz)
Thermal intermediate 3-§ 0.01-005 A/W 21 x 10" cm 7% 10°
bolometer 0.25-30 $x 107 %to 4x10%t0 175 to > 10* Hz"3 /W
125 V/IW 9 x 107* W/Hz'? low temperature ~ 3-6 0.04-0.4 A/W 21 x 10" cm 6 x 10°
fur infrared 50~ 5000 10° V/W 1 mW 20 Hz'? /W
calorimeter 0.25-35 007-0.1 V/W 1073100 W 00! 02 Lead sulfide -
pyroelectric 0.1-1000 15-2400 V/W ot 3Ix 107'%t0 107 2-10° ambient 1.8-28 0.5-4 A/W 7 x 10'° cm Hz"3/W 3508000
Ix10*V/ 5 x 10 * W/Hz"? intermediate 18-28 1 10A/W 40 x 10*®cm 100- 200
(2.5 x 10'°W) H2' /W
thermopile 0.2-35 4-55 V/W 3 x 10* cm Hz"YW $- 10 low temperature  1.8-33 110 A/W 10 x 10'% em 50 100
(10°* W/cm?) Hz" /W
Photomultiplier 0.25-09 0.0014-0.105 A/W 10%- 10° Lead-tin-telluride  5-18 (0.5-20) x 10'° cm 7 x 10* 10
(depends on Hz'3 /W 1.4 x 10*
photocathode) Mercury- 2-20 0.0002- 30 A/W (2-10) x 10'° cm S x 10°to
Phototube 0.185-1.1 0.0025-0.080 A/W 10° to cadmium- Hz' /W 1.6 x 10
(depends on 3.5 = 10! telluride
photocathode) photoconductive
Vacuum photodiode 0.16-1.1 0.0001-0.001 A/W 3 x 10° photovoltaic 8-12 5A/W 0. uW 10* 1o
(depends on 2 x10°
photocathode) photociectro- 2-12 0.001 V/W 0.1 uW 8 x 10*
Semiconductor magnetic
Germanium Silicon
photoconductive  0.5-1.8 0.15-18 A/W >10'! ¢m Hz'? /W 5 x 10%to photoconductive 0.18-1.13 0.1-0.6 A/W (1-1000) x 10% - 10'®
s x 10° 107'* W/Hz'"?
avalanche 08-18 0.2 A/W 10710 W/Hz? 2 x 10 avalanche 045-1.1 04- 80 A/W t nW "35 x 10" to
photon drag 4.22 1.2 x 10°* V/W >3 x 10° 2 x10°
copper doped 2-30 0.1-3A/W 2 x 10'° cm HzV¥/W 3.5 x 10%10 photovoltaic 0.185-1.15 008 0.65 A/W {0.7- 50) x 10% to0
10* 10 - 14 W/H2' 310
gallium doped 10-130 104 V/W 0.1 uW 10’ antimony doped  21-27 1-SA/W 21.5 % 10" cm >35x 10*
gold doped 1.5-11 0.1-0.6 A/W 0.15 0.7) x 10'°cm 38 x 10%0 Hz" /W
W' /W 3 x 100 ursenic doped 16-23.8 1 SA/W 225 % 101%cm >34 % 100
mercury doped 6-10.6 0.03-3 A/W (1-2) x 10'%cm 35 x 10%t0 Hz" /W
Hz'"/W 10° gallium doped 12-15.5 1 3A/W 215 x 10 cm >3.5 x 10*
zinc doped 28-31 0.1-0.5 A/W (1 2) x 10'°cm 315 % 10%t0 Hz'"3 /W
Hz"‘/w 3 x 107 s - -
Indium antimonide  1-5.5 1.5-2.5 A/W {2-30) x 10'°cm 2 x 10% to This table is from Lasers and Applications, p. 38, 1982,
Hlm/w lol
Far inlrared 505000 10° V/W 10 nW 10’
Indium -arsenide 1-38 06-1 A/W (0.5-60) x 10'° cm 10°-10'° where m(t) is the modulating function which has a bandwidth less than the
Hz'a/W bandwidth of the detector. For this case, we obtain the detector vutput as
Indium-gallium- 09-1.6% 0.7 A/W <10 ' W/Hz'? 9 x 10*
arsenide - output o |Eol*Im()i%. (29.9)
phosphide
Lead sclenide However, if the function m(t) itself, and not its squared magnitude, is to be
ambient 2-5 0.004-0.03 A/W 20.1 x 10° cm 70 x 10° recovered, then we use homodyne detection where part of the light carrier

Hz'Y /W

itself is also incident on the detector. Then the incident clectric field on the
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detector is given by

E(t) = E, cos(wt — kz) + E,m(t) cos(wt — k2). (2.9.6)
For this case, the output of the detector is given by
output oc |Eo|? + |E,|* + 2E,E,m(1). 29.7)

The first two terms are d.c. terms and can casily be filtered out.

Heterodyne detection is used when the two light frequencies are very near
one another. If one of the light frequencies is w, and the other is w,, and if
the difference between them is less than the bandwidth of the detector, i.c.,

W, — Wy < 2nhf,

then we can determine this difference frequency, w, — ,. The incident light
for this case is given by

E(t) = E, cos(w,t — kyz) + E; cos(wyt — k;2). (2.9.8)
The detector output will be given by
output oc |E, | + |E;|? + 2E, E; cos[(w; — w, )t — (k; — ky)z]  (299)

(where w; ~ w,, k; — k, = 0), and s0 the difference frequency can be observed.
A use of this technique is in the determination of frequency differences in
different modes of laser oscillations, which will be discussed in Part 111 of this
book.

A typical heterodyne receiver is shown in Fig. 2.9.1(a) and a homodyne
receiver is shown in Fig. 2.9.1(b). Note that the same source is used for the
homodyne case to maintain coherence. Because of this, homodyne detection
is also sometimes referred to as interferometric detection.

For both homodyne and heterodyne detection, it is important that the two
sources are perfectly alignod. A typical misalignment is shown in Fig. 29.2
where ¢ is the angle of misalignment. For a rectangular aperture it can be
shown that the detector output will be reduced by a factor, fg, given by

si g, sin ¥,

_ ' 29.10
fe=y7 >
where
g, = 450V _mdsin gy @9.11)
Ay Ay
.. s;n 1 Ypm _nd. g;!l Yn (29.12)
t 2

where d is the aperture size, 4, is the received light wavelength, and 4, is the
local oscillator or reference wavelength. Thus, for proper detection, the rela-
tive misalignment should be such that

. Ay
sin Y, < e (2.9.13)
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Fig. 29.1. Optical coherent detection schemes: (a) heterodyne detection and (b)
homodyne detection.

and
4;
nd’
If separate lenses are used to focus the received and reference lights on
the photodetector, then the diffraction effects might be different and this
should also be taken into account.
It is of interest to consider the signal to noise ratios for different schemes

of detection for the simple case of unmodulated light. For the intensity
detection case, the output signal power is given by

siny, < (2.9.14)

Py = ilR, = (R P,)’R,, (2.9.15)

where i, is the dgtector current, R, is the detector load resistance, Ry, is the
detector responsivity, and P, is the light power incident.
The shot noise component of the noise power output is given by

Py = 2igq(Af)R,,

. = 2R, P )q(AS )Ry,
where Af is the detector bandwidth.

(2.9.16)
'
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Fig. 2.9.2. Misalignment for coherent detection: (a) ficld pattern and (b) geometry.

We obtain for signal to noise ratio

S Py RpPy
- - L 29.17
(N )ln-uhy P, N 2qu ( )
For the heterodyne detection case

‘Pl = 2R%POPl RL' (2918)

where P, is the reference light power. The noise power for this is given by

29, Detection ana Luheren. 131

We obtain
) RoPoP
- = I (29.20)
(N)lﬂudyno ‘J(Af)(Po + Pl)
For Py » Py, We obtain
= . {29.21)
N)Icluodyno q(Af)
For the homodyne case
P = 4RL Py PR, (29.22)
and
S - 2R, Pe Py
- = ; 29.23)
(N>u~dyno Q(Af)(Po + Pl) (
2Rp Py
: for Py » P,. 29.24)
& qu [} () (

The reason Py is larger by a factor of 2 in the homodyne casc, is that the
reference and received light add coherently.

2.9.2. Coherency

Up until now we have implicitly assumed that the light waves are monochro-
matic having a single frequency only, or that the Fourier transform of the light
wave at a particular point in space is & delta function. The wave is given by

eloot i) o elindot- uh

and at a fixed point its time dependence is given by e/**/** and the Fourier

transform is 8(f — fo)-

This is graphically shown in Fig. 2.9.3. However, we notice immediately
that for light waves to have just one frequency, o, they must exist in perfect
phase coherence from ¢t = — 00 10 + 00, Because, if the duration is any smaller,
say To.thenthe mathematical representation of the wave form is actually given
by

E = e /3% rect[ T (29.25)

The frequency components are then given by

Tolsinc TolSf — Jo)}
with an approximate width given by

1
of = L.

which has been discussed in the preceding section (2.9.1). Thus, we sec that
even if the waveform is a single frequency, there is no way to prove it; because’
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Real part of wave

AVAW\WAWAWAS
J UV

Fig. 29.. Infinitely long duration light and its Fourier transform.

we have to wait an infinite time to check that it is truly a single frequency.
This concept is really related to Heisenberg’s uncertainty principle, as some
of the readers familiar with quantum mechanics will recognize.

But irrespective of this problem of measurement, electromagnetic waves at
lower frequencies can be generated which have very small bandwidths. For
example, some carrier frequencies of radio waves are kept constantly within
a few hertz. It is interesting to note if a frequency of a time waveform is Af,
then within a time period given by

1
.= Af
there is no detectable change in the amplitude or phase of the wave. All the
waveforms are in phase coherence. Thus, we call this time, T, the coherence
time and the wave can be assumed coherent over the time T,. We know that

if an electromagnetic wave travels with velocity v, then we can also define the
coherence length, given by

(2.9.26)

I, =T, (29.27)

Thus wavefronts within a length [, along the direction of propagation will be
in phase coherence. Now let us consider the case of white light, Its wavelength
ranges from 0.4 um to 0.8 um. Thus, the frequency span is approximately

A = x 10'%s,

2.10. Interference [RM

Fig. 2.9.4. Noisc-like incoherent light.

or the coherence time is
- 1; -! x lo—lS s,

and the coherence length in free space is
I, = (3 x 10° m/s)(} x 10713 )
I, =8x 107" m = 80 um.

Thus, we see that only for a length of 80 um, we can consider that the wave-
front of white light is in phase coherence.

We shall sec in Part 111 how light is generated by the transition of electrons
from one energy level to another. Because of its nature the light is ordinarily
very incoherent as discussed in connection with the whitc light illustration.
Even if we choose a particular color by filtering or using a source like sodium
light, it is found that the waveforms are continuous but have phasc discon-
tinuitics, as shown in Fig. 2.9.4. This makes the ordinary light more or less
incoherent and Af large.

However, as we shall see in Part 11 using lasers, we can generale light
waves which are approximately monochromatic with Af ~ 1 MHz.

The subject of coherency in optics is a complex subject. What we have done
is to give the reader a glimpse of it so that he can understand the rest of the
book. The serious reader should consult the references given at the end of this

part.

2.10. Interference

Historically, interference has probably played the most important role in
convincing people that light rays arc really waves. In this book, we have
assumed that light is an clectromagnetic wave, but it took scientists many
thoughtful experiments to arrive at this conclusion. We have already refesred
to interference in connection with diffraction gratings, and if we assume the
wave nature of light and if we have available a coherent light source, then it
is true that the subject of interference becomes a special case of diffraction
with discrete sources. However, even 50 years ago, scientists did not have
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, coherent sources, and still they designed experiments to convince everyone
. that light is really an clectromagnetic wave. Some of the experiments discussed
in the following sections cover this material.

2.10.1. Young’s Experiment

Let us consider an experiment where we have two pinholes and two separate

do emit absolutely phase coherent wavefronts, which can be represented by

eﬂ“"”)’

then, as discussed in Section 2.8.2 and (2.8.19), a detector in the detector plane
will detect, as a function of x,

I(x) = 144 cos? nf,h = 2[! + cos 2n ::;], (2.10.1)

where 1, is the normalization constant. However, for two incoherent sources,
the detector cannot respond to the difference frequencies w; — w,, and so the
only thing observable will be a constant amplitude. This is casily seen by
noting that the light from the two sources arriving, respectively, at the detector
plane are really

E
Ei(r) = f;::}' eHwri—hyje- ) (2.10.2)

and

r—n)
However, when these two electric fields are incident on the detector, which
cannot respond fast enough with respect to 2n/(w, — w, ), the output wiil
simply be
2 2
output oc ) Ezo

=l e @109

which is a constant and no interference is observed. To avoid this dilemma,

f

Fig. 2.10.1. Young's experiment with two scparate light sources.

sources of light, as shown in Fig. 2.10.1. Then we know that if both sources -
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- Mirror image
P 9 Biprism

o f'ﬁf;‘.“‘k'-;"f'o;i,:“ ‘w,.“) -\4,,,.“:4;‘? e e AT SRR (b) . L T P

Fig. 2.10.2. Different setup to perform Young's experiment: () Lioyd's mirror and (b)
Fresnel biprism.

Young used the same light source located on the optical axis for both pinholes,
as shown in Fig. 2.10.2. For this case, although the frequency w is not perfectly
coherent and fluctuating continuously, identical frequencies are incident on
the detectors through two different paths, and they can be detected since the
beat frequency is zero. For this case

_Eio

- eHot-tie-ud
fr—r|

E,
and
Eg
fr— 1|
The electric fields can be approximated as follows, if z » x, y, and x, y, x, ;!

E, = eHwt=Me-nh, (2.10.4)

E M-
Elo- zloe]uu,e (13 r.|'

F{q,m.e—n-—m_

E,o=
20 z

The output of the detector, although the source is not coherent, now is

Elo |, 2 EioEs

2
output oC gz—‘,g + .l +2 o ® cos k[Iry — ¢} — Ir, — ¢{], (2.10.5)
2

using the approximations

2 7 1(x + h/2y?
|r,—r1-[(x+:) +D‘] zD{l +2("§"+D’/ ) }

12 — 1

where h is the scparation between the pinholes and D is the distance between
the pinholes and the detector plane, we obtain

kxh

output oc A3 + A} + 24,4, cos(T). (2.106)
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Thus we see that, for an approximately monochromatic but incoherent source,
we will obtain the interference fringes. Of course, if there is more than one
wavelength presentin the light source, cach one will produceitsown fringes.

In the above discussion we have assumed that, over the path difference
between the two waves reaching the detector (in this case xh/D), the wave must
be coherent, or the condition is

xh
— . 2.10.7
5 < I, ( )

Actually, if we start moving the detector beyond the Xp,. given by
i.D
Xman = “p”

we will not observe the distinct fringes. Eventually, for X > Xmex the fringes
disappear completely. Thus, by measuring the quantity

lllll - Imln
=, 2.108
I-n - ’mlu ( )
we can determine the coherence length of the source. Because, for perfect
coherence of X < Xepexr

r—1
whereas, for no coherence or X > Xmax

y—0.

So the value of x when y = Ogivesaclucto the magnitude of I 1t is obvious
that the quantity y also gives an idea about the state of coherency.

A practical way to perform Young’s experiment is to use a Lloyd mirror
or Fresnel biprism arrangement—these are illustrated in Fig. 2.10.2.

2.10.2. Interference due to the Dielectric Layer

Two effective sources derived from the same physical source can be obtained
by double reflection from a diclectric slab, as shown in Fig. 2.10.3(a). The
dielectric slab has a refractive index of n and has paralicl surfaces separated
by a distance “d”. As we have seen previously, the important quantity to be
determined for an interference experiment is the phase difference between the
two equivalent sources of the path difference. The path difference is related
to the phase difference by the equation

A = phase diffcrence = Z; z: (path difference),ny, (2.109)

where the summation includes all the path differences in medium { with

refractive index n;.
For the sake of generality, consider Fig. 2.10.3(b) where the dielectric slab

has a refractive index n, and the surrounding medium has a refractive index
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Fig. 2.103. Interference duc to a dielectric slab: (a) wwo-reflection interference and (b)
geometry for a path-difference calculation. .

n,. The phase difference between the first reflected ray 1 and the second
reflected ray 2 is given by

A =2*[(4B + BONn,1 - 2, AD.
A A
At first glanoe we might think that in the above expression only the first term
should be there. However, for a ray incident at an angle i, the reflected beam
will be in the direction of AD. For this ray and the second ray at C the constant
phasefront is not AC but CD where € ADC = 90°. Now from the figure

BC=AB= -,
cos r
AC = 2dtanr,

AD = ACsini=2dtanr sin i, (2.10.10)

-
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and
BC+ AB= —~2‘i .
cosr
where r is the angle of refraction. Thus the phase shift becomes
A= 32-2«![-21- — n, tan r sin i].
A cosr

Using Snell's law n, sin r = n, sin i, we get

A 2_"24[3. _ m&nir]

i cosr cos r
2n 1 . 3
= TZdn, (E&“r)“ ~sin’r)

2n
-T'Zdﬂzcosr

or

A-é;dn, cos r. (2.10.11)

It is important to notice that the phase difference is independent of the
refractive index, n,. Now, if these two rays are made to interfere with the help
of a lens at the focal plane, they will produce constructive interference when

A = 2nm where m is any integer.

If parallel rays are incident, then at the focal plane we will obtain bright and
dark interference rings. The bright rings will occur for

f; nd cos r, = 2nm,

or
? nd /1 = sinl r,, = 2nm, (2.10.12)
where we have used n; = n.

Using paraxial approximation we obtain that the radius of the mth ring at
the focal plane is
Xp = [l = Jory,

where i, and r,, are the incident and refracted angles, respectively, for the
formation of the mth bright ring. From (2.10.12) we obtain

E;‘"‘"“ — 1) =m,
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or
1 ra mA (using binomial expansion),
2 Tang (USINEDIROMIEICYPANS
or
rlx 2(! - ;':;),
or

Am\"?
r,,-\/2<l ‘an) .
We notice that the maximum value of m, m,,,,, is obtained when r,,, = 0 or
m,,, = 2nd/A. Thus r, can be written as

r,-Jz(l - " )m.

ml‘ll

The mth radius is given by

12 12
(L ()
or
172
X, = Xy = f(";fl) . (2.10.13)

Here p is the number of bright rings counted from the center of the focal plane
and we have relabeled x,, as x,. The arca for the mth ring is given by

A(m) = nx2 = nf? (p:l).

Thus

af 2nd
d .

which is constant and independent of p or m. However, for higher values of

the radius, the bright rings are much nearer cach other. A drawing of the rings

is shown in Fig. 2.10.4(b). These rings arc also sometimes called Haidinger

interference fringes. A practical way of performing this experiment is shown
in Fig. 2.10.4(a).

Am+1)--Am = AA = (2.10.14)

2.10.3. Michaelson’s Interferometer

As shown in Fig. 2.10.5, Michaelson’s interferometer also forms Haidingor
fringes. However, in place of a dielectric slab, two highly silvered mirrors are
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 Focal plane the formulas derived in the previous section apply equally here, provided we
replace n by 1.

Michaclson's interferometer can be used to measure the coherence length
casily because, for large values of d > I, the rings will disappear. Thus, the
arguments given for the coherence and visibility of the rings discussed in
Section 2.10.1 also apply here.

Mmax-1

mmll‘2

2.10.4. Interference by Multiple Reflections and
the Fabry—Perot Interferometer

In Fig. 2.10.3 we considered only onc reflected beam. However, if two highly
silvered mirrors are used, as shown in Fig. 2.10.6, then multipie reflection takes
place. If all these beams are collected together by a lens, they give rise to
interference by multiple reflections. This multiple reflection interference forms
the basis for the Fabry—Perot interferometer. As shown in Fig. 2.10.6, let us

mm..'s

Slab V V I d Mmax
(a) (b)

Fig. 2.10.4. (a) Practical way of performing an interference ring experiment. (b) Inter-
ference rings.

used. The light from the source splits up equally at the half-silvered glass plate,
and after being reflected from the two mirrors is collected by the lens. A
compensator plate is used in one branch to compensate for the difference in
optical path lengths in the two paths.

'The difference between the distances of these mirrors and the half-silvered
mirror is equivalent to the “dielectric slab” for this interferometer. Thus, if
these distances are exactly equal, then the equivalent thickness is zero. Again,

1o
b

71 7epe"Ec0™
i 4 -oA
T T72ps €0l
d 1 :
l / gloss photogrophic plote
—— > P _,l . or detector orroy
el —_—
10 . ——
——
‘ ———— —

o

portially sivered loyers

(b)

Fig. 2.10.6. The Fabry-Perot interferometer: () Multiple reflected beam interference -

Fig. 2.10.5. Michaclson's interferometer. and (b) a typical Fabry-Perot setup.
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consider the incident beam with electric field E,. The angles of incidence and
refraction are i are r, respectively. This incident beam is first reflected at
interface 1, producing a reflected beam of amplitude p: Eq where p, is the
reflection coefficient between media 1 and 2. There is a transmitted beam also
of amplitude 1, E, where 1, is the transmission coefficient. This transmitted
beam in turn produces a reflected and transmitted beam when it arrives at
interface 2. The transmitted beam has an E ficld given by amplitude E,. The
reflected beam, after a reflection at the other surface, produces another trans-
mitted beam whose E value is E,. This process goes on to infinity. Thus the
total electric field transmitted, and if made to interfere, is given by

Eg=E, +E,+Ey+E +
=10, Eqe™ M0 4 1,1, Ege Hopleid 4 ...
=t o1 + plet + (pleT2 41 (21015)

Here §, is the phase difference between the incident E field and the E , beam
and A = (4n/2)nd cos r, p, and 1, are the complex reflection and transmission
coeflicients, respectively, between the media 2and 1, and A is given by (2.10.9).
E,,, can also be written as
t,1,Eqe ™Mo

ot = 1= ple i’
The total transmission coeflicient, T, is defined as
Evw
E,
If we write p} = (poe®)’ = pje’?, where p, is the magnitude and 0 is the
phase angle of the complex reflection coefficient p,, then

2 |t Tz"
T = “,_ ;‘;:e_n‘r (2.10.16)

[t 2,02
T= il_:"bzl?’“;“’l" (2.10.17)

The denominator of (2.10.17) can be written as
[T = pge™ 472012 = (1 — pfe~Ha-20)(| — p2g+ha-20)
=1+4p5 — pg(e!® 1" 4 ¢ 1o-2m)
= | + R} — 2R, cos 9,
where R, = p} and 6 = A — 20. Thus T can be written as

T= h—T—_""’_'»z_..»-. (2.10.18)
1+ R} — 2R, cosé’ o
The maximum value of T occurs when cos & = + 1. This maximum value,
Trne:- is given by 2
It,1,

Tm, = (-i*:‘—k“‘—)}.
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In terms of T, (2.10.18) can be written as
(=R
*1+ R? - 2R, cos &’
(1-R):
(1 = R,)? + 2R,(1 — cos d)
Toll = R)*
= {I = R,) + 4R, sin’ (52)
.T"!F', e
-1 ¥ Fsin24/2)

T=Ta. (2.10.19)

T= Tmu

where F = 4R, /(1 — R,)? and is called the contrast.
The minimum value of T can be written as

T (2.10.20)

Ton =y 4 p

or

T,
=T (2.10.21)
F Tmin

i = hand, for T, » Tin the
We notice that for T,,, = T, F = 0. On the other nd, for T,
value of F or contra:: is very high. This is illustrated in Fig. ?.10.7 ‘whcre for
two different values of F, T is plotted as a function of 4. It is obvious from
this figure why F is called contrast.

F=0

N

F>>|

|
|
‘.
|
i
]
1

2mw 2ima+ L Ing

Fig. 2.10.7. Plot of transmission versus & for the different values of contrast.
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Now let us consider the case where F is rather large. In this case, we would

like to show that the plot of T versus & has large values only near the maxima.
The maxima occurs when

)
sin= =0,
"2
or
5 = 2mn  where mis an integer.

Near the mth maximum we can write

sin’ ; = sin’ (6 ~ 22 nm)

(6 - 21:m)2
- .
2

Thus, near the mth maximum we can write

T T-II
PO o
1+ F{(6— 2am)/2)?

_ Taas/F
1/F + [~ 2am)2)*
From the above expression we potice that unless 4 is near 2nm the value of T

is negligibly smail because F » 1. A typical plot of T versus & is shown in Fig.

2.10.7. It is also observed that the shape of the curve near the maximum is
Lorentzian.

The half-transmission points, denoted by 5, and &_, are given by

(6—21:»1 CHE |
2 “F

(2.10.22)

or
& — 2rm + 1
2 JF
or
2
b, = m + —=,
JF
and

2

o mam— —=.
JF
Thus the half-width w is given by
4
wmd, —O = —ﬁ (2.10.23)

Remember that, in the plot of T in Fig. 2.10.7, the abscissa is 8.
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Fig. 2.108.(3) T versus 3 for two wavelengths and (b) the Rayleigh criterion.

The highly silvered mirrors discussed in Fig. 2.10.6(a) are used as a Fabry -
Perot interferometer, as shown in Fig. 2.10.6(b). If different wavelengths of
light are incident, then for different angles the maxima OCCurs for the same
value of m. Thus, we should plot Tasa function of 4nnd cos 7. This is shown
in Fig. 2.108 for two incident wavelengths. The maxima now occurs at

4rnd cos T = — 204 + 2nmi
(note that 20, being a constant, can be neglected). Thus,
4nnd cos r = 2mm for maxima.

To be an effective spectrometer, the interferometer should have large resolu-
tion. To find the resolution, using the discussion of the Rayleigh criterion in
Section 2.8.2, we obtain, for the unambiguous determination of SMA; =4 +
5A) from Fig. 2.10.8(b),

2rmi; — 2ami = wh.

The resolution, 32, is given by di = (A, — Mor

s=t (210.24)
2nm

The resolving power R is then given by

A 2mm nm\/ F

=, = = - 2.10.25

R .Y 2 2 { )
If A, is very large then the mth maxima of 2, can coincide with the (m + 1)th
maxima of 4,—We should avoid it for an unambiguous determination of 4;.
Thus the free spectral range A is defined when this coincidence takes place
with A, = 4, + A4 Thus,

2miA, + A = 2(m + DAy,

or '
ar=trat (2.10.26)
m m
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We define finesse, #, as
A m -~ 2n
¥ -3—1--2-\/17- " (2.1027)

Physically. finesse means how many wavelengths can be unambigously deter-
mined, .and is a kind of quality factor of the Fabry-- Perot interferometer.

Until now we have not discussed what happens at the focal plane of the
lens. Corresponding to the maxima of T, a bright ring is produced. Thus, we
sec a st of interference fringes at the focal plane. The radii of these bright
fringes in the focal plane can be derived in a fashion similar to that done for
the Haidinger fringes in Section 2.10.2, Using (2.10.13) we thus obtain

A 172
x, = f(’%") : (2.10.28)

where [ = focal length of the lens,
n = refraction index of the media between the plates,
d = separation between the mirrors, and
p = number of rings starting from the center.

Figure 2.10.9 illustrates these rings. It also compares the Haidinger fringes

and the Fabry-Perot fringes showing the sharpness of fringes for the fatter
case.

It can easily be shown that the half-width of these rings are given by

Ax f('?)m v P*tf‘ Jr

An 12 w PO
= f('d ) 5 e +1-p. (2.10.29)
10
T Mimgy - | F. P inter
Mrmon = 2
)
Mooy = 3 {
Mmox E
(s) (b)

Fig. 2.10.9. (a) Fabry-Perot interference fringes. (b) Difference between two beam
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Fig. 2.10.10. A scanning Fabry - Perot interferometer.

A very practical way of using the Fabry- Perot interferometer is in the form
of its scanning version—this is shown in Fig. 2.10.10. Here, instead of moving
the detector in the focal plane, either the d or n of the Fabry - Perot interfero-
meter is slowly varied. The separation d is generally varied by mounting the
mirrors on a piczoelectric plate. When voltage is applied to this piezoelectric
plate, the scparation between the plates changes. The refractive index can be
varied by pumping out the air between the plates and slowly letting the air in
through a leak valve. The refractive index is a function of the density of gases
between the plates which alters the cffective path difference.

The scanning Fabry-Perot interferometer is a very valuable tool. For
spectroscopic purposes, it competes with the diffraction grating discussed
carlier.

A Numerical Example

A Fabry-Perot interferometer is to be designed which can resolve two wave-
lengths 1 A apart. If the free spectral region has to be 1000 A, then calculate
the following quantities of the interferometer:

(a) the fincsse;

(b) the contrast,

(c) the reflection coefficient of the mirrors used;

(d) if a lens of focal length 30 cm is used to observe the rings, what is the
half-intensity width of the tenth bright ring if the mirrors are scparated by
t mm?

For this problem, the resolution is 64 = 1 A and the frec speciral range
is Al = 1000 A. Thus finesse, &, is given by & = A1/51 = 1000, As & =
(n/Z)ﬁ. F = 4.05 x 10%, Also & = n/(1 — R,), thus R, x 0997 = (po)* of
po % 0.9985. Using (2.10.28), we obtain x, o = 21.2132 mm and x,, = 22.2486
mm. Thus,

Ax = 10354 x 107* mm

= 1.0354 um.

Note that x, = 20.1246. Thus, if we consider Ax % (X0 — X9)/100, they
Ax ~ 1.0886 um.
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2.11. Holography

Holography was discovered by Dennis Gabor in 1947, in connection with
three-dimensional viewing of x-ray images. However, only recently, due to
the use of laser light and improvements performed by many researchers
(especially Leith and Upatnicks (1967)), has holography become very useful
and popular. To most people, holography is like three-dimensional photo-
graphy. However, other aspects of holography, such as the storage of optical
information, are probably more important from the scientific point of view.
Holography has been treated in many books and is still the subject of active
research. The purpose of this section is to introduce holography in terms of
the Fourier optics developed in this book and to discuss some applications.
For a thorough knowledge, the reader should refer to other books listed in
the References.

2.11.1. Photography

Before we start discussing holography, it is worthwhile to review photography.
In photography, in general, a light-sensitive, silver-compound-based film is
used. As discussed, in connection with detectors in Section 2.9.1, this film has
the property of recording the square of the incident light amplitude. Typical
information that we arc interested in recording can be written as

E(x, y) = d(x, y)e *o*? = d. @.11.1)

We will use arrows over quantities that are complex. For example, if we look
through a window we see a scenery of trees, birds, and mountains, etc. The
reason we can see this scenery is because an clectric ficld wavefront, defined
in (2.11.1), exists in the plane of the window and carries complete information
about the scenery. | want to stress the word complete. At a particular instant,
all the information about the outside scenery that can be obtained is present
in that two-dimensional clectric field distribution. It has both an amplitude
part and a phase part. The phase part carries some of the three-dimensional
aspects of the scenery. For example, if there is an object, A, behind an object,
B. and we look directly at B, we cannot see A (Fig. 2.11.1(a)). However, if we
move a little, as shown in Fig. 2.11.1(b), so that A is not obstructed by B,
we can sec A. This information, by looking from different lines of sight we
see different aspects of scenery, is part of the so-called three-dimensional
photography.

In ordinary photography, we place the film near the window (actuaily,
using a camera lens we project the clectric field at the window onto the film)
and record the square of the electric field. This is done by first exposing the
film to the incident radiation for a specified length of time. This radiation
generates a photochemical reaction which is proportional te the square of the
electric field. After exposure the film is chemically processed resulting in the
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(a) <Q---3----| 8 A

b <21

L\ SCENE WAVEFRONT

Fig. 211.1. Viewing of object (A) in the prescnce of obstruction (B).

transmission function of the film given by
t(x, y) = to + BIE?
=ty + pldd*]
=1, + i)’
=ty + Bld(x, y)I* (2.11.2)

where t, and f are constants determined by the film and processing used.
Then the transmission function of the exposed and developed film contains
the information |(@(x, y)|>. Of course, this film can be printed or viewed by
shining light through it to obtain a picture of the scenery.

Thus, we see that although our goal was to obtain the information
@(x, y)e~=7, or to recreate the wavefront itself, what we have obtained is
|(@(x, y)|* by using photography. We have lost the phase information. Thus,
if we took s picture in which a cat was behind a tree, photography will never
reveal it. To obtain this information, we must somehow be able to reproduce
the E field of the window itsell, with all its amplitude and phase variations.
That is, the whole wavefront has to be reconstructed. This wavefront recon-
struction can be performed using holograms.

How can we record the phase of a light beam? A clue to this question can
be found in the discussion on interference. As shown in Fig. 2.1 1.2(a), consider
two point sources denoted by A and B. If we record photographically at the
detector plane (in the Fraunhofer zone), we record for each point Aor B a
uniform light distribution. However, if both are present simultaneously, we
obtain interference fringes. In this case, the detected light intensity is given by

E(x) oc EX + E} + 2E,Eg cos ay, (2.1L3)

where «, is the phase difference between the two clectric fields at the detector
point. Thus, we sec that we can obtain the phase information with respect to
another source. For example, the period of the recording in the detector plane

.
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Fig 211.2. (a) The use of interference to obtain phase information. (b) The making of
a hologram.

gives information about the scparation between the two sources, and the
amplitude on the optical axis gives information about the phase difference
between the two.

By recording the square of the E ficld, in the presence of a reference source,
the phase information can be recorded. Of course, this discussion assumes
that both the sources are coherent. Thus, we see that in holography we need
coherent sources and a reference beam, as will be discussed in the next section.

2.11.2. The Making of a Hologram

.As shown in Fig. 2.11.2(b), we are interested in the imaging of the object which
is illuminated with a coherent source. The light rays carrying information
about the object has an electric field at the recording plate denoted by

E(x, y) = 3(x, y)e = = .

We shall denote this total electric field by @ for the sake of brevity. A reference
beam is also incident on the recording medium at the same time. This electric
field is denoted by - . .

E,y = A(x, y)e ¥ " = 4, (2.11.4)

As shown in the figure, the light shining on the object and the reference beam
come from the same laser source, to keep them coherent, and so they interfere
over larger areas. This has been performed in Fig. 2.11.2 by using a beam
splitter and a prism.

_One of the simplest cases arises when the reference beam is parallel and
uniform and is incident at an angle 0 on the recording medium. In this case*

A= AgeliVes, Q.11.5)

* Note the sign convention: fj, = sin 6/4 is again measured as discussed in Fourier
Optics, p. 67.
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where f, = sin 6/A. It is obvious that this reference beam has a more or less
single spatial frequency which is determined by the incident angic 0. This
reference beam frequency is called the carrier frequency in analogy with
radio-engineering terminology. The significance of this will be discussed in
detail later.

The total incident electric field on the recording plane is given by

E,=d+A,
and the transmission function of the recording film after proper processing will
be given by

1x, Y} = to + BIE W ER)
=t + BLAA* + AA® + GA* + d*4)

= 1o + BLIAI + |A1? + 21A(x, p)l1d(x, y)| cos@(x, y) — ¥lx, )]
(2.11.6)

Thus we see that although we have recorded the square of the electric field
magnitude, we have been able to keep the phase information of the object,
@(x, y), due to the presence of the reference beam which interferes with the
beam scattered by the object.

Remember that in photography, the recording process would have been
the same with the exception that the reference beam is absent. In photography,
we could have looked at this transparency and would have observed some
resemblance to the object—not so for the case of holograms. What we see in
holograms is a gibberish of different interference fringes which has absolutely
nG resemblance to the object at all. Thus in a hologram, the viewing or recon-
struction of the holographic field is a separate and essential process. .

2.11.3. Reconstruction of a Hologram

To view a hologram, another coherent source illuminates the hologram. For
the sake of simplicity, let us consider that the wavelengths of light for the
reference beam and the viewing beam are identical. The effect of these being
different will be discussed later.

If the viewing beam electric field at the hologram plane is denoted by B,
then we obtain the electric field of the light emergent from the hologram to
be given by
£, = toB + BLIdI + |A121B + pAA*B + pa*AB. (2117
The output light thus consists of five individual terms. Again, for simplicity,
let us consider that the viewing and the reference beams are identical in spatial
frequency, that is,

B =iy Bye!*Vex, (2.11.8)
For this viewing field we can write the output E field consisting of five terms
* EpymE, +Ey + Ey+ Ey+Ey, @119
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where
= Tnto Boe o,

7
TaBI8) Bye/Wior,

1 -
E, =iyl Agi*Byel2¥/=o",

E = i-ﬂllzol |§o|'a,
Ey =Bl Aol | Bold® - e /2eo,

tryy oy,

4

\h{e notice immediately that the five beams come out at three different angles
without any overlap, provided the spatial bandwidth of the field 4 is not too
large—these are shown in Fig. 2.11.3. We see that E,, E,, and E; come out
at an angle 0 with respect to the hologram, E, can be viewed directly, whereas
E 4 comes at an angle which is approximately 20. Beum 4, except for u constant
term BA,B,, is an exact reproduction of the electric field associated with the
ob]ec.t at the plane of the hologram when it was recorded. It contains all the
amplitude and phase information—all the possible information contained in

\'oi
i‘e.

Il )

Bllol* + lalf]
Q E, 8 Ee,

Ba"aB
Es

Fig. 2.11.3. View of a hologram and its different transmitted light components.
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it when the hologram was made. Thus we can see it, 83 if the object was entirely
recreated. Beam § has all the information about the object too. However, i

is a phase conjugate picture.

In the above discussion, a very important assumption was made. Beams 4

and 5 do not overlap nor do they overlap with beams 1,2, and 3. We can see
that if they do overlap, then while looking directly, for example, we will sec
not only @ but other E fieids as well. This scparation of beams, or the use of
the carrier frequency to make the beams come out in different directions, was
the contribution of Leith and Upatnieks in their classic paper. As we shall sec
later, the Gabor hologram did not have this separation and for that reason it
was of much poorer quality.

Let us assume that the spatial bandwidth associated with the object is Af,.
For simplification, let us consider one dimension only. This means that the
frequency components of {E,yy,..} arc limited between the frequency spread,

A/, Af,
-3 <f< PR

Thus we can associate with any object electric field a spatial bandwidth which
denotes how fast the spatial variation amplitudes and phases are. Figure

I __I_

af, fo
¢ Carnier
Signnl Recewver
(e)

F{roa)
ﬂ

b

= af, -\l 2af, = \ = af, b

) fo
Hoiogram (b)
Foo VR
| [ [T

| af, | - 2af, = - af, -
[ ] 'o 2'°

Fig. 2.11.4.(a) Signal and reference light in the spatial frequency planc. (b) Transmission
function of the hologram in the spatial frequency plane. -
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2.11.4(a) shows the signal and the reference (carrier) in the spatial freque
plane. Figure 2.11.4(b) shows the spatial frequency compon::ts of thg h:lf)):
gram transmission function. In the spatial frequency plane, we can plot E, to
E,, all of the output beams as shown in Fig. 2.11.4(c). Note that the din'erclnce
between (b) and (c) is that the horizontal axis is shifted by f,, the carrier
I'reqpency. This is due to the fact that we have reconstructed using a beam of
spatial frequency f, (same as the reference beam). We see for the beams not
to overlap, the following condition must be satisfied:

Jro > A (2.11.10)

2.11.4. The Gabor Hologram

For the case of the Gabor hologram, the reference beam is incident paraliel
to the optical axis. That is, for this case, f, = 0. Thus, in this case, there is no
angular separation. However, if we make Iiol » |d|, then beam 2 is negligible.
B.eams 1 and 3 are nothing but uniform beams. So, for this case, we can still
view the l.\ologram as shown in Fig. 2.11.5. [t is to be mentioned that beam §
forms a virtual image, whereas beam 4 forms a real image.

Object Film
——— A\
Scattered Directly
Source wave transmitted

()

Virtusl Real
/|
/
e »>
(\ Viewer
\
\
\ ) Hologram
Source Directly
transmitted
tight

(0)

Fig. 2.11.5. The Gabor hologram: (a) construction and (b) reconstruction.

| o Dol
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Fig. 2.11.6. Typical radio waveform.

2.11.5. Analogy with Radio and Information Storage

In radio engineering our interest is to transmit and receive signals. These
signals are functions of time, for example, it could be the music of an orchestra.
An illustrative signal is shown in Fig. 2.1 1.6. This signal has a bandwidth of
Af, for example, most radio signals have Af = 30 kHz. If we want to send this
radio signal directly via an clectric wire or through a medium by radiation,
we need & separate wire or medium for each signal. For example, we cannot
send the signals of two orchestras via the wire directly, because at the output
we reccive the sum of the two time signals and there is no way of separating
them. However, if we modulate this signal with different carrier [requencies
fi, J3 » A/, then even if we send them through the same wire or the same
medium we can scparate them by frequency filters after we mix them with
carrier frequencies again. Thus, this frequency multiplexing and demulti-
plexing is cssential to the operation of radio and TV.

Now let us look at holography. For this case, we have spatial frequéncies,
although two dimensional. We also have a bandwidth of the signal, the E ficld
due to the object, a. If we do not add any carrier frequency, we have a situation
somewhat similar to photography. However, if we multiplex with different
carrier frequencies, then we can store and view many objects or pictures by
the same hologram, just as if we were sending different audio signals through
the same wire.

To do this, let us consider the bandwidth of each picture to be Af,. Then
we can record one page or one picture with a carrier frequency, f,o. and the
next picture or page with a carrier frequency f,o + 24/,, and so on, as shown
in the figure. Notice all the pictures arc recorded on the same film. However,
when viewing it with different carrier lights, or with lights incident at different
angles, we see the different pictures without any overlap or distortion. Thus
we see that enormous amounts of information can be stored on one piece of
film. For example, it is possible to record, say, a whole book in just one square
of film, provided the resolution of the film is high enough. This is shown in
Fig. 2.11.7.
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Fig. 2.11.7. Multiplexing in holograms.

2.11.6. Some Comments About Holograms

() Ifin (2.11.7), B # Bye’**/>*, but has a different spatial frequency given by
B = Bye’*», then the output E field emerging from the hologram will be
arriving at angles 6_, 6,, and 0,, respectively, given by

i in §_ in0,
sn;'ﬂ. -t snr;. =fu-fo and s"}' = fo+ for

where A, is the wavelength of the viewing light.

(i) We have not discussed how bright the image is when viewed through
the holographic process. It turns out that the diffraction efficiency of thin film
holograms is not very large; thus, the image may not be bright. However, we
can increase the diffraction efficiency through the use of a thick-film hologram.
In thick-film holograms, the efficiency may be large enough so that no laser
light is needed; for viewing, a simple white light might be sufficient. Because
the different colors will be diffracted at different angies, and if the separation
between them is enough, we can view what is known as a white-light hologram.

(iii) Another form of the white-light hologram has also been discovered.
In this type, no thick film is used. However, the diffraction efficiency is
increased at the cost of the perspective in one direction. To make this holo-
gram, we first of all must make a hologram of the object. This hologram is
then illuminated with a viewing light, and another reference beam is used to
make a second hologram using the real image of the first hologram. This
second hologram, when viewed with white light, produces bright single-color
images at different angles.

(iv) Up until now we might have implied that there is no difference between
holographic recording film and that used in photography. From the photo-
chemical point of view, there is no difference. However, the photographic film
needs to record only a bandwidth of Af,, whereas the holographic film must
be able to record the carrier frequency. Thus, the holographic film needs to
be, in general, of much higher resolution. Because, usually, the higher resolu-
tion films need to be exposed for a longer time for the same intensity of incident
light, the light sources must be coherent over this recording time period. This
might be a restriction difficult to satisfy. However, we can use a high-power
laser source so that the exposure time is smailer.
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2.11.7. Hologram Using Point-Source References

Up until now we have considered only the holograms made using a ‘Iight beam
which was uniform and parallel. However, it is possible to use point sources
both for viewing and recording. This is illustrated in Fig. 2.1 1:8, yherc for
simplicity we have used the object to be a point source also. The mc?dcnt field
at the recording plane, using the Fresnel approximation (see Section 2.6.5),
can be written as

Egn=A+a,
where
A=A [x—x) +(y -yl (21111
- A2,
and

a = e S [(x = x)? + (3 = yoP):
llzo

The reference source and the object are situated at x,, y,, z, and x,, Yor Zor
respectively. The recording medium is situated at z = 0 and the recording
plane is designated by (x, y). It is assumed that the wavelength of the reference
and object beam is 4,. o

Let us assume that the viewing source has wavelength 4, and is §|tgated at
Xp. ¥, @nd z,. We want to find the conditions when a holographic image is
obtained. The viewing field is given by

B = By " [(x — x,)? +(y — y*). 2.11.12)
lzz’

Reference Source
(X¢ ¥e s2,)

N

Object Source
(Xo.¥0 Zo!

Viewing Source /'u.y)
(%o.¥p,2p}

10
recording

Fig. 2118, A hologram using a point source.
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The important term to consider in the output field is aA*B, this is given by
aA*B = AyByage™*[ ], (2.1.13)

where the terms in brackets are

[ 1=77& —x) +(y - y.)]

z,
1
s Gt Rt O
1
- 71,7,[(" -x ) +y—y)) (2.11.14)

If the holographic image is formed at x;, y,, and z;, then the above expression
from (2.11.13) must equal

Ecce” f‘;,[(" —x) +(y - n) (211.15)

Thus we obtain
1 1 ] 1
— =t —F
iz, Az, Az, Az,

or

Voh AT
2, [z,+1.z.tfz';] . (2.11.16)

Thg low‘Nc'r sign is for the virtual image and the upper sign is for the real image
which is inverted (i.c., mirror image). We also observe that

- 4,2, Z 4; 2,
x, x'l,z,+x'£,_x'l,z,' 1117
and
132| I, Az z
-yt - ‘.
M Y Alzg ypz’ yrll z, (2”]8)
The magnification is given by
Ax Ay
M=|"=|
Ax,| |Ay,
z, Azl
=] —2Ftle
2,;11 ) (2.11.19)

\r{hcre the same sign convention applies for the (positive) real and (negative)
virtual images.
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We can easily obtain the results obtained in earlier sections by considering
z, - o and z, = 0. Then
Ay

e (2.11.20)

Z; =

and

M=l
Thus, there is no change in the size of the image with respect to the object for
this case. However, the position of the object is moved if 4; # 4.

2.12. Physical Optics .

There are many topics of scientific and technological interest relating to
optical wave propagation which we will not be able to cover in this book.
However, they are of significant interest for the later sections of the book. In
this section, we simply give the results of these topics with no derivation and
a somewhat concise explanation.

2.12.1. Total Internal Reflection and Optical Tunneling

Let a wave be incident from a medium of higher refractive index to 8 medivm
of lower refractive index, i, n, > n, and 0, > 6, (Fig. 2.12.1). As the angle of
refraction is larger than the angle of incidence, if we go on increasing the angle
of incidence we then reach a point when (O = 90°. This happens for 0, = 0,,
given by

sinf, = "2,
n

0, = sin’ '(:’), (2.12.1)
1

or

N

’: N
NM>ne

Y
\

N2

Fig. 2.12.1. Geometry for total internal reflection.



e .

160 11. Physical Optics, Wave Optics, and Fourier Optics

As the transmitted angle cannot be greater than 90°, all the light will be
reflected for 8, > ,. The angle 8, is also known as the critical angle of total
internal reflection. This description of total internal reflection is only true
when the wavelront is infinite and the depth of the medium 2 is ulso infinite.
To understand these comments we note that the transmitted wave is propor-

tional to
ckan— Ko g el(ul"l, sin@x+K; M.l".

where
cos 6, = /1 —sin 6,

- _(9_1 \ o= 1020
1 nz) sin’ 6, \/ 1 sin? 0, 2.12.2)

Thus, for 6, > 6,, cos 6, = ja where

’sin2 0,
o = m — 1 = real. (2.12.3)

The transmitted wave for this case becomes
e--l;le}(ﬂ-llllnﬂx);

The wave amplitude decays as a function of z. Thus if medium 2 is not very

large, as shown in Fig. 2.12.2, we satisfy the condition for total internal

reflection at the upper boundary, but light will nevertheless be transmitted in

medium 3. This phenomenon is called optical tunneling and has some prac-

tical applications in fabricating narrowband optical filters.

On the other hand, even when medium 2 is infinite, if a finite wavefront is
incident, as shown in Fig. 2.12.3, almost all the light energy is reflected.
However, there is then a lateral beam displacement Az given by

1

Azx &E (2.12.4)

§ very sman

i
n>ne<ng \

Fig. 2.12.2. Optical tunneling,

214 Physcas Ipics ]

al

Fig. 2.12.3. Latcral displacement of total internally reflected beam.

for the case of paralicl polarization. This lateral displacement was expeni-
mentally verified by Goos and Hiinchen and is generally known as the Goos -
Hinchen effect.

2.12.2. Reflection and Transmission Coefficients

Snell's law only predicts the direction of propagation for the reflected and the
transmitted beams. It does not specify the magnitude of the reflected and
transmitted electric field vectors. Consider Fig. 2.124 where the incident,
reflected, and transmitted beams are given by

E = i,E‘oe""""‘"’, (2.12.5)
E, = |,E et %, (2.12.6)
E, = i,E e" ™" (2.12.7)

Here i,, i,, and i, are the unit vectors and K,, K,, and K, are the p.ropn;a(ion
vectors. We define the refiection coefficient, I', and transmission coefficient, 7,

Fig. 2.12.4. Wave vectors for reflection and transmission.
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as follows
E,
M=-2°, (2.128
Eo )
E
Tw= 2 (2.129)
EIO

Note that both I" and T are, in general, complex quantities. To solve forT
and T we note that

i\Eo = L,E,, + i Epp (2.12.10)

where we have assumed that the plane of incidence is the xz-plane. Thus
the unit vector {, is in the xz-plane but perpendicular to K. To solve this
general case, where the incident angles 0, and E, have components parallel
and perpendicular to the plane of incidence, we can write the boundary
conditions at the interface and solve for I and 7. However, it is convenient
and customary to subdivide the gencral case problem into two separate cases:
perpendicular polarization (E, , #0, E,, =0)and parallel polarization (E, , =0,
E, # 0).
For the perpendicular polarization we obtain

Z,sec§ — Z,sech nlcosQ.—n,cosa,

= - S |
L Z,secO + 2,3 n cos 0, + ny cos 6, (2.12.11)
where
Z| = J“‘j‘ - ?0‘
e, n
i (212.12
Z, = \/Pl Zo )
2 -
82 'Iz
n, sin 8, = n, sin 6,
2n, cos 6,
T =14F, m— 3700
' t  m cos8 +nycos 8’ (2.12.13)
For the parallel polarization case we obtain
=Z.cosO.—Z,cosO._n,cos0,—n,cos(), 21214
17 Z, cos 8, + Z,cos §, n, cos 0, + n, cos 0’ (2.12.14)
2n, cos 6,

n,cos 6, +nycosd’

For the general case, where both the parallel and perpendicular components
are present, we calculate separately, the parallel and perpendicular reflected

and transmitted components and add them vectorially to obtain the final
result,
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Let us consider the parallel case and try to find an incident angle for th@s
case when there is no reflection. Denoting the incident angle at which this
happens by 6y, we have

n, cos 6, = n; cos by. (2.12.16)
Using
n, sin 6, = n, sin ty, (212147
we easily obtain
sin? O = L (2.12.18)
n+nl g+
or -
tan 6, "2
anlfp= [~ =
M

This incident angle, 8y, for which the reflection coefficient is zero and the
transmission coefficient is unity, is called the Brewster angle. The Brewster
angle plays a very important role for lasers for which the cavity mirrgrs are
outside the amplifying media. To minimize losses, the Brewster angle is used
at both ends of the amplifying media. This is shown in Fig. 2.12.5 for a typical
laser.

Now we might ask the obvious question. Is there also an angle like the
Brewster angle for the perpendicular polarization case? For this problem, we
must have

r,=0,
or
n, cos 8§, — mycos th -0
n, cos 8, + n, cos O,
or

n, cos 8, = n, cos 0,. (2.12.19)

However, from Snell’s law
n, sin 6, = n, sin 0.

Thus

ni

cos? 8, = nj cos’ 0,
= ni(1 - sin’ 6,),

or

n? — n?sin? 0, = n} — n} sin? 6,,

C_ ——f e —— — — H—— laser output

Fig. 2.12.8, Laser with a Brewster angle plasma tube and an external mirror.
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C > -

laser output

Fig. 2.12.6. Laser with internal mirrors.

or

n, =n,. (2.12.20)
So there is no equivalent Brewster angle for the perpendicular polarization
case.

Note that the radiation coming out of the laser (shown in Fig. 2.12.5) which
uses the Bre\.vster angle is always polarized with paraliel polarization, because
the pcrpchlcular 'polarization has higher loss and is less likely to osciliate.
However, if the mirrors are inside the lasing media, as shown in Fig. 2.12.6,
the output of the laser is unpolarized. It is to be mentioned that egs. (2.12.11),

(2.12.13)~(2.12.15) are also known as the Fresnel equations for reflection and
transmission coeflicients.

2.12.3. Polarization

The polarization of the light wave is defined by the orientation of the electric
field. If the E ficld is always in one plane, it is called the plane wave. So far,
we have only considered plane polarized waves. As Maxwell’s equations are
linear, gnd any linear combinations of elementary solutions are possible, we
can casily construct the general elliptically polarized wave, as shown in Fig.

2: 12.7. For a z propagating elliptically polarized wave, the electric field is
given by

E, = E,q cos(wt — kz), (2.12.21)
E, = E,, sin(wt — kz). (2.12.22)
Thus, the x and y components have a phase difference of 90“. We note that,

€,

/| Tz
(o) {b)

Fig. 2.12.7. Polarization of an optical wave.
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if we observe the electric field vector in the plane transverse (o the direction
of propagation, the tip of the E field vector follows an elliptical contour given

by 2 2
E E
2 + A’) =1 21223
(Ex()) (Eyo ( )

For circular polarization
E,o=E,. (2.12.24)

In Section 2.12.5 we will discuss different polarizations and how they are
obtained when we consider light propagation through anisotropic media.

2.12.4. Phase Velocity, Group Velocity, and Ray Velocity

For a plane clectromagnetic wave propagating through an isotropic medium,
the phase velocity, v,, or the velocity with which the constant phase front

advances, is given by o

o= (2.1229)

v

If the medium is dispersive, i.c., ¢ = &(w), the phase velocity will, in general, be
a function of frequency.
Group velocity is given by
v, = Vyo(k). (2.12.26)

This group velocity describes the propagation for the envelope of a wave
consisting of a group of plane waves having frequencies in the range w and
 + dw. Note that group velocity is an important quantity because it repre-
sents how energy is transferred, i.c., how the information is propagated. Note
that, theoretically, a wave having a single frequency component w must exist
for all times, i.e., for ¢ from — o0 to +oc0. Thus we will never know whether, in
fact, it has existed or not. Because of the detection process, we change the wave
by a small amount, which in turn makes the wave to be represented by a group
of waves with finite width do.

It is interesting to note that if the relationship between o and k is nonlinear,
then

vy # V.

Actually, it is quite possible to envisage a case where the group velocity i
negative whereas the phase velocity is positive. However, for the isotropic
homogeneous case, the w versus k curve is lincar and

1 % (21227

v.-v,sﬁ n

The ray velocity, or energy velocity, V, is defined as

v, = v, COS ¥, V, = —-P—, (2.12.28)

“lv
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where P is the Poynting vector = §(E x H*) and u,, is the peak stored clec-
tromagnetic energy.
It can be shown that
v, = v, CO8 V¥, (2.12.29)

where y is the angle between k and P. For isotropic material, = 0. For a
lossless medium, v, and v, are identical.

2.12.5. Propagation in Anisotropic Media

An anisotropic medium is characterized by a diclectric tensor defined as
follows:

Dx Exx B:y Exs Ex

D,|=l¢,. ¢, &,||lE, | (2.12.30)
Dl cll cl’ Kll El

The dielectric tensor is symmetric. Thus

&y = &

and there are only six independent elements. The axcs we have chosen for x,
y, and z are not unique. We can choose a new set of axes, represented by x',
y’,and z'. In this coordinate system, the symmetrical real dielectric matrix can

always be made to be diagonal. Thus, in this new system, denoted here by x,
y, and z again for simplicity from now on, eqn. (2.12.30) simplifies to

D, e, 0 O\[E,
D |=|0 ¢ OHE,L (2.12.31)
D, 0 0 E*f\E

Note that the axes in the crystal, along which the diclectric matrix becomes
diagonal, is called the principal axes.

In any direction of propagation, i,, in general, there are two refractive
indices, n, and n,, corresponding to two different phase and group velocitics.
The displacement vectors, D, and D,, are orthogonal to each other. To obtain
n,, n3, Dy, Dy, E,, E;, Hy, H; and all other properties of these two propa-
gating waves, we use the method of index ellipsvid. The cquation of the index
cllipsoid is given by

2 2 2
QIR AN S (2.12.32)
€ & &
where
£=" =2 and =", 2.1233)
& €& o

Equation (2.12.32) is plotted in Fig. 2.12.8. To obtain the values of n, and n,
for a particular direction of propagation i,, find the plane passing through the
origin of the ellipsoid and which is perpendicular to ;. The intersection of this
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' ' index eNlipsoid

Fig. 2.12.8. Index ellipsoid and calculation of two refractive indices for waves with wave
vector k.

i ipsoid gi i ' { this

lane and the index ellipsoid give us an cllipse. The two major axes O
Ellipse correspond to 2n, and 2n;, respectively. The corresponding D, and D,
are parallel to these major axes of the ellipse. To calculate E, and E,, we use

lationshi
the relati p D = nigg(E - bl E)): (2.12.34)

The magnetic field vector, H, can then be obtained from

H="ixE (2.12.35)
uc

The phase velocity and group velocity are not collincar. Actually, they are
iven b .

’ ’ vy = b, €08 V. (2.12.36)

where  is the angle between i, and P. Group velocity is in a direction normal

to the E field as shown in Fig. 2.12.9.

/ Tangential plane

——= Portion of
index eltipsoid

Fig. 2129, The K field, D field, and V, for @ wave with wave vector k.
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2.12.6. Doublerizers

Let us considerint light on an anisotropic crystal, as
shown in the Firansmitted wave vector, can have two
values given by ¢ we have, in general, two transmitted
beams given by

6,,)sin 6,,, (2.1237)
6,,)8in 6,,. (2.12.38)

Note that n, ane direction of propagation itself. Thus,
in general, the uot hold good. For a biaxial crystal, we
have to solve nuand (2.12.38) to obtain §,, and 6,,. This
is done using thin the plane of incidence, as shown in
Fig. 2.12.11.

For a uniaxi becomes somewhat simpler. For this
case
! = nl, (2.12.39)

»

and
= n3, (2.12.40)

where n, and n, ordinary and extraordinary refractive
index, respectivd positive uniaxial; otherwise, ifn, > n,,
it is called negae-vector surface corresponding to n, is
a sphere, whereing n, is a spheriod. Some wave-vector
surface cross seg. 2.12.12. Because the ordinary wave-
vector surface iistant value of refractive index n,, and
the transmittedlled the ordinary ray and it obeys the

Fig. 2.12.10. refraction at the boundary of a crystal.

[ , L
K T
N—— 7=
E (a)

(b)

(c)

Fig. 2.12.12. Wave vectors for double refraction in uniaxial crystals. (a) The opl.ic u?s
parallel to the boundary and paratlel to the plane of incidence. (b} The optic axis
perpendicular to the boundary and paraliel to the plane of incidence. (c) The optic axis
parallel to the boundary and perpendicular to the plane of incidence.
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2.12.6. Double Refraction and Polarizers

Let us consider the problem of incident light on an anisotropic crystal, as
shown in the Fig. 2.12.10. As k,, the transmitted wave vector, can have two
values given by the wave-vector surface we have, in general, two transmitted
beams given by

sin @ = n,(6,,) sin 6,,, (2.1237)
sin 8 = n,(0,) sin 6,,. (2.12.38)

Note that n, and n;, are functions of the direction of propagation itself. Thus,
in general, the usual Snell’s law does not hold good. For a biaxial crystal, we
have to solve numerically egs. (2.12.37) and (2.12.38) to obtain §,; and 6,,. This
is done using the wave-vector surface in the plane of incidence, as shown in
Fig. 2.12.11.
For a uniaxial crystal the problem becomes somewhat simpler. For this
case
€ =€ =n (2.12.39)

and
e, = n3, (2.12.40)

where n, and n, are defined to be the ordinary and extraordinary refractive
index, respectively. If n, < n,, it is called positive uniaxial; otherwise, if n, > n,,
it is called negative uniaxial. The wave-vector surface corresponding to n, is
a sphere, whereas the one corresponding n, is a spheriod. Some wave-vector
surface cross sections are shown in Fig. 2.12.12. Because the ordinary wave-
vector surface is a sphere, it has a constant value of refractive index n,, and
the transmitted ray for this case is called the ordinary ray and it obeys the

Fig. 2.12.10. Wave vectors for double refraction at the boundary of a crystal.

(a)

(b)

(c)

Fig. 2.12.12. Wave vectors for double refraction in uniaxial crystals. (a) The optic axis

parallel to the boundary and paraliel 10 the plane of incidence. (b) The optic axis ,

perpendicular to the boundary and parallel to the planc of incidence. (¢} The optic axis
puralle! to the boundary and perpendicular to the plane of incidence.

169
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E

o

FI@. ;llll Refraction of an unpolarized beam propagating through a negative
uniaxial crystal and incident on an air interface.

normal Snell's law. However, the extraordinary ray can be obtained numeri-
cally. Some cases of double refraction for uniaxial crystals are shown in
Fig. 2.12.12. It is to be noted that the two refracted beams are polarized
orthogonal to each other, as discussed previously. This property and the fact
that n,(6,) % ny(6,) is used to make practical polarizers.

Let us consider the case of a negative uniaxial crystal through which an
unpolarized beam is propagating and is incident on an air interface, as shown
in Fig. 2.12.13. We note that the total internal reflection for the ordinary ray
takes place beyond the critical angle, 6,,, given by

n,sin @, = 1. (2.1241)
However, the critical angle for the extraordinary ray, 0...islargerthan(_, as

n sinf, =1 and n,>n,. (2.12.42)

Thus, if the incident light has its angle of incidence, 6, between 0., and 0_,, the
ordinary ray will be totally reflected whereas part of the extraordinary ray will
!)e ?ransmitted. The transmitted wave is thus plane polarized even though the
incident light is unpolarized. Using this property we can fabricate polarizers
such as the Glan prism and the Nicol prism.

. The Glan prism consists of two identical calcite prisms mounted as shown
in Fig. 2.12.14. The space between the two prisms contains cither air or a
transparent material, such that the ordinary ray suffers total internal reflec-
tion. The output consists of only the extraordinary ray which is lincarly

Air space

Fig. 2.12.14, Configuration for the Glan prism.
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Canada balsam cement

Wl

Fig. 2.12.15. (a) Separation of the extraordinary and ordinary rays at the boundary of
acrystalin the case of internal refraction. (b) Construction of the Glan polarizing prism.
(c) The Nicol prism.

=

EI

=

polarized. Note that the prisms have their optic axes parallel to the corner
edges. The Nicol prism, shown in Fig. 2.12.15, is in the form of a rhomb and
the principle of operation is very similar to the Glan prism.

The Glan and Nicol prisms use total internal reflection of the ordinary ray
as the main function of the polarizer, whereas the Wallaston, Rochon, and
Sevarmont prisms usc the separation between the extraordinary and ordinary
rays. Because angles of refraction are different for the two rays, as shown in
Fig. 2.12.16(a), (b) and (c), the extraordinary and ordinary rays will exit the
prisms separately and thus can be used as polarizers.

Finally, in Fig. 2.12.17, the most general problem of double refraction is
shown, where light is incident from media | to media 2 where both media are
anisotropic. In general, there will be two refracted and two reflected beams,
the directions of which can be determined using the wave-vector surfaces for
the two media. However, to calculate the amount of light reflected or refracted
in the individual beams, we need to apply the boundary conditions discussed
carlier.

For light which does not propagate along the optic axis, there are two fixed
polarizations of light which do propagate. As discussed before, these polari-
zations are determinated by the axes of the ellipse, formed by the normal to
the direction of propagation and the index ellipsoid. However, if the propa-
gation direction is along the optical axis, then the ellipse is really a circle, as
shown in Fig 2.12.18, and thus all the polarizations are possible. Thus, if a
narrow unpolarized light beam is incident normally on a planc paraliel
crystalline plate with the normal along the optic axis, then the light ray inside

|

lir;
(a) (b) (c)

Fig. 2.12.16. Threc types of prisms for sepurating unpolarized light into two divergent
orthogonally polarized beams: () the Wolluston prism, (b) the Rochon prism, and (¢)
the Sevarmont prism. All prisms shown urc made with uniaxial positive materisl
(quartz).
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refracted
beams

Solid 1

Solid 2

%fracled
beams

Fig. 212.17. Double refraction and reflection for two anisotropic solids.

the li)lne forms a ho!low cone and emerges as a hollow cylinder. The light at
each point on the cyl_mde.r is linearly polarized. Note that the cone and cylinder
;;:efc(:m ats l“t:he h;il;eculon of the group velocity or ray is different from the
\ p velocity. This formation of i i
direction Of the P e o n of cone and cylinder is known

212.7. The Electro-Optic Effect

The application of an electric field chan, i i
. ges the diclectric tensor of a material,
howevef small. Thc' ele.ctro-opnc effect is, in general, defined through the
change in the refractive index rather than through the change in the diclectric
:ommbmt; lz;haustc h:l' ;he usefulness of the index-ellipsoid method in solving
' us the change in the index ellipsoid, due to an appli i
field, is generally written as Ppled clectre

1
A(?)u = rygEy + RypE,Ey  hiipg— X3z, (21243)

4

KX

e
s |
2
Wit

Fig. 212.18. Index ellipsoid.
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where r,, is the linear (Pockels) electro-optic cocflicient and R, is the
quadratic (Kerr) electro-optic coefficient. Note that the summation conven-

ed indices is used in {2.12.43). The summation convention

tion for the repeat
means that any time two of the same variables occur in the subscript twice, it
tal, the Pockels

must be summed over X, y, and z. Fora centrosymmetric crys
coeflicients go to zero. Thus, for an isotropic material, there is only the Kerr

effect.
The index ellipsoid, given by (2.12.32), can be written as

2 2 2
X+ Yo+ fo=1 (2.1244)
y H

x

In the presence of the electro-optic effect, the above equation is modified to
1 1 1 1 1 1
2 21 _ 21 -
e[eo(@) e L), LR
i 1 1 1
en[a(z), * ORE [a().* ().
1) (1 ,
+y2|A -,) + A(~, =1 (2.1245)
n y n y

It is customary to rewrite (2.12.45) as

1 1 1 1 1 1
2 2 - 21
"‘[:f*“(?).]“*[;z*A(nf)z]*’“[nz“‘(z*),]
1 1
+2x,x,A(—1-,) +2x.x,A(7> +2x,x,A(—3) =1, (2.12.46)
N"/a n/s n“Je

where x =+ X, ¥~ X3, 2= X3 XX 1, yy =2, 223, yz -4, zx =5, and
xy 6. In this notation, (2.12.43) can be rewritten as

1
A(n ,) = ryE) + RipgE,Ee: (2.12.47)
i

The Pockels coefficients are uniquely determined by the point group sym-

metry of the crystal.
It is of interest to consider some typical examples. For K

ing only the linear term, (2.12.47) becomes

H,PO,, consider-

aam,) (o o 0

A(l/n*), 0 0 O E

A(1/n?)s 0o 0 O 1

Ay (ra O O f:: : (2.1248)
A(1/n?)s 0 r, O

A(l/"z)o 0 0 re
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We have observed that the index-ellipsoid equation (2.12.44), defined with the
principle axes as the coordinate axes, becomes (2.12.46) under the influence of
the electro-optic effect. Thus the new principle axes must be obtained to solve
the problem.

Let us consider an example where an electric field is applied in the z

direction (Ey = E,) for KH, PO,. For this case, the index ellipsoid equation
becomes

LY B
5+ 3 +-3+2Exy=1 (2.12.49)
ns  nd Al

Note that KH, PO, is positive uniaxial.
The new directions for the major axes are given by
X y R
X' o 4+ = x CO8 45° + y sin 45°,
N A ’
Y=~ X = xsin45° — ycos 45 (2.12.50)
NIV ' o

2 =z

Note that the new principle axes, x’ and y’, arc at an angle of 45° with respect
to the crystal axes. In the new system of axes, (X '), the index-cllipsoid equation
is given by

1 1 z'?
2 E )+ y? 5~ reE = 12,
x (n(’, + 7oy .) y (nf, T3 x) + o = b (2.12.51)

or
X
el (2.12.52)

Let us consider the problem where light with polarization in the x direction,
and propagating in the z direction, is incident on a plate of KH, PO, having
thickness I as shown in Fig. 2.12.19. We are interested in the output light. The
input light can be decomposed into two components given by

E = Ei, + E,i,, (2.12.53)

|

X -
(—L

KHaPO,

— t—of

Fig. 2.12.19. Configuration for electro-optic effect.

——fp
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where
E,- - \»;"eﬂu“iulfh.ll' (2]254)
2
and
E. = 4 e wictny ) (2.12.55)

y

S
where A is the input amplitude.

Note that | |
=5 + 1oy, (2.12.56)
n, ng
or
ni
e R Mo~ resE,, (2.12.57)
provided
resE, « ngl.
Similarly, ,
W§M+?mg‘ (2.12.58)

The phase difference between E(z = I) and E(z = ) is given by

r=?u,—mqgl
(2.12.59)
=7 naresV,
[4
where V = E_ lis the applied voltage across the crystal. If we define the voltage

required to change the phase by n as V,, often referred to as the half-wave
voltage, then

v="\ (2.12.60)
W Ngles
Thus (2.12.59) can be rewritten as
ny
= 2.12.61
r v ¢ )

2.12.8. The Acousto-Optic Effect

Acoustic, elastic, or ultrasonic waves propagating through a solid or a fluid
cause periodic perturbations of the refractive index. Light propagating (hrou;h
this periodic grating is diffracted. To analyze properly the acousto-optic
interaction in solids, we must start with the index cllipsoid and include {ts
perturbation due to the sonic field, to obtain finally the change in the refractive
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Uitrasound

———

|

i1

VAN

Ligh

Transducer
2

Fig. 212.20. Acousto-optic interaction in an isotropic solid.

index. This situation is very similar to the onc mentioned under the electro-
optic effect and will be discussed later.

Before we consider the more complex case, let us first consider the simple
case shown in Fig. 2.12.20, where the ultrasound is propagating in the z
direction and the material is isotropic. Thus, for this case, we can write the
ultrasonically induced change in the refractive index, An(x, t), as

An(x, 1) = Angsin(@,t — K,z + 8, (2.12.62)

where & is a constant phase difference and Any, the change in refractive index,
is given by
n%
Any = 2 ps, (2.12.63)

and K, is the wave vector of ultrasound, w, is the radian frequency of ultra-
sound, p is the relevant photoelastic constant, and § is the compressional
strain.

If we consider the width of the ultrasonic beam, L, rather small, then we
can consider that the effect of the ultrasonic beam is to form a very thin
equivalent phase grating whose phase dependence is given by

Aplx, 1) = i’: (AnoL) sin(w,t — K,x + 8) (2.12.64)

If the incident light is represented by an electric field, E,, given by
E = Eoc"""""’. (2.12.65)

then the output light is given by ‘
E,. = Elte>!

- Eoc""'“""""""‘- (2.12.66)

2.12. Physical Optics m

Equation (2.12.66) can be expanded in Besxc! functions given by
s 3 (2" An(,l,) pAvtmdKntd), (21267
=u \Ao
thus E,,, can be written as

‘o
Eon = Eo T (2,: Ang L) ghenteoe s el PLELL RS ot

o\

-El+E2+E3+
-V E, (2.12:68)

where
E, = EoJ, (2; AnoL) et gt o MK aken), (2.12.69)

For E, we note that its amplitude is proportional to the incident electric field,
as well as to the qth-order Bessel function. The frequency of the qth-order
diffracted light is given by

wy = w + 4, (2.12.70)

and the wave vector is given by
K.-I,K.+i,qK,=i,K,. (2.12.71)
From the wave vector diagram, shown in Fig. 2.12.21, we obtain

K, sin 6, = qkK,.

or

sinf, = ¢ (i') (2.12.72)

Note that in (2.12.72) we have assumed w, « @, SO that |K | ~ Kl The
polarization of the light is also maintained at diffraction. It is of intcrest to
consider the first-order diffraction given by

E,, = EoJi (2; AnoL) GHin rotg= Ml stz viusinbuisl (2.1273)

Fig, 2.12.21. Wave vectof matching for acousto-optic interaction.
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The ratio of intensities between the zeroth order and the first order are given
by
I, J,((2x/Ag)AnoL)
B T 21274
To ™ Jo(@n/io)AnoL) 1274

Thus for

2
4: Angl. « |,

I, (2= 2
n= o)
pLEH 2
- (1; 7""‘)
L 1
-t (—-) (npis®). (2.12.75)
Ao

Noting that the acoustic power, pa. is given by
pa = tpvls?, (2.12.76)

where p is the density, we obtain

I 2 L 6 22Pa
i~ " (1;) "oP" v

L 2 nb 2
- (21:’)(1;) (7‘:{5 )m- 2.1277)
The total acoustic pOWeT, Py, is given by '
Pis = Pa(LH), (2.12.78)

where H is the other dimension of the transducer. Thus, (2.12.78) can be

rewritten as
1 1 2 L "°P2 Prot
P ’(ﬁ)(‘&»‘f Y

L\(p
= (27%) ('ﬁ) (;;-‘) M,, (2.12.79)
where M, is defined as a figure of merit
n*p’

In the thin grating approximation discussed above, light is diffracted in
different orders, as expected from a phase grating. However, as the grating is
moving with the velocity of sound, there is also a Doppler shift in the frequency
of light for each order. Thin grating diffraction is also known as Raman- Nath
diffraction. If the interaction length, L, is large, then we can consider it to

en2 Phyomw. Opticc. .79
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’A o ’uﬁ.o
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Fig 212.22 Acousto-optic interaction with incident and diffracted light beams. The
horizontal lines scparated by the acoustic wavelength 4, represent the moving sound
beam.

consist of many thin gratings. For this thick grating case, there is multiple
diffraction at every plane and only that one which is phasc matched can be
diffracted. Thisis also understood from Fig. 2.1 2.22(a) where the phase grating
is shown. Note that this grating is moving with a much slower velocity
compared to light. 1f we consider the incident wavefront ABand the diffracted
waveform CD, then the optical path difference AC — BD is given by

AC — BD = x(cos 8, — cos 6,). (2.12.81)
For constructive interference, the path difference must be an integer multiple
of Aor

x(cos 6, — cos 0,) = mA = "':°, (2.1282)
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Fig. 2.12.23. Bragg diffraction geometry.

where m is an integer. The above equation can be satisfied for all values of x
if the fotlowing condition is satisfied:

6, =6, (2.12.83)

We also note that the diffraction from planes parallel to the acoustic phase-
front and separated by A, must add up. Thus, the path difference (40 + OB)
in Fig. 2.12.22(b) must equal A/n. Thus,

24, 8in Oy = -An" -, (2.12.84)

where 6 is the Bragg angle. Thus, in the Bragg diffraction case, as shown in
Fig. 2.12.23, light is incident at the Bragg angle, and only the first order of
light is diffracted out at the Bragg angle also. The dividing region between the
Raman-Nath and the Bragg regimes is determined by a quantity Q defined as

Q=2n (i;‘) no. (2.12.85)

For Q « I and 6§, = 0, we obtain the Raman - Nath regime; for Q » | and

0, = 0y, we obtain the Bragg regime. In the Bragg regime, the diffracted light
intensity is given by

1,(L) = I, sin? ["(A:"’“}. (2.12.86)

where I, is the incident power. Thus, with Bragg diffraction, it is possible to
diffract 100% of the incident light in the first order.

Bragy diffraction can also be understood from the phonon photon inter-
action picture. The electromagnetic wave with angular frequency w and wave
vector K can be considered as consisting of photons, with energy and mo-
mentum given by

energy = Aw = hf, (2.12.87)
momentum = AK = :l.. (2.12.88)

where h is the Planck constant.
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Similarly, for the acoustic wave, we have phonons with energy and mo-
mentum given by
energy = hw, = hf,, (2.12.89)

momentum = hK, = (2.12.90)

L

If we considers acousto-optic interaction as photon-phonon interaction, then
due to the conservation of energy, we have

hw, = hw, - ho,, (2.1291)

or

Simfo— L (2.1292)

Note that, in general, f, « f,, f;. Similarly, to satisfy the momentum conser-
vation law, we have

hK, = hK, — AK,, (2.12.93)

* K, =K, - K, (2.12.94)
Note that 2 m (f4] 2

(K| - 2 n; Kl = 2 n,( : i »-') > 1, n,; (2.12.95)

IK,| = 2wk (2.12.96)

;;)
where n, and n, are the refractive indices corresponding to the incident and
diffracted wave, and v, is the velocity of sound. Thus (2.12.94) becomes

nly, = ngly, - f-:o I, . (2.1297)

If we choose the angle between the normal to iy and iy as 6, and similarly
for ix, a8 0, as shown in Fig. 2.12.24, we have, equating the paraliel and normal
components, ;

n, sin 0, = n, sin 6, — 1'0- °, (2.12.98)

n, cos O = ngcon by, (21299

Note that K,, K, and K, have to be coplanar.
Solving for sin 0, and sin 0, from (2.12.98) und (2.12.99), we obtain

1 A f, v, \?
sin 0"2.;. :f[l + (%f) (n? —n})]. (2.12.100)
; I Af Y :] 212101
sln0¢-2~n‘v~v; [|_<lof) (n} —n3)i. (2.12.101)
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Fig. 2.12.24. Wave vector constructi ibi
- 2 ‘ ion, describing Bragg diffraction, i iti
uniaxial crystal when the incident optical wave is extraordinarily polm:iz:t!fl postive

For the isotropic case, when n; = n,, we have
sin 0, = sin 6, = sin 6, =
| “= 50 (2.12.102)

where 4, = 4,/n is the wavelen ight i i
. gth of the light i
diagram for this case is shown in Fig, 2.123.25.I " the materia iscll The vecor

INCIDENT

OPTICAL BEAM  DIFFRACTED

OPTICAL BEAM

| e Sl

L
8
ACOUSTIC

\ WAVE

TRANSDUCER

Fig. 2.12.25. Normal Bragg diffraction geometry.
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So far we have not discussed how to calculate exactly the value of (An). To
calculate this we note that, similar to the electro-optic effect, any elastic
deformation causes change in the dielectric tensor. To a first approximation,
the change in the index cllipsoid is denoted as

|
A(”z)u = Pwsn-

where p, are called the Pockel clasto-optic coefficients and S,, arc the strain
components. For example,inan isotropic solid for compressional wave propa-
gation along the x direction we have

(2.12.103)

i
A(“z> = p“S‘x‘ + l’nsn}'2 + an‘z’, (2.12.104)
where S, is the compressional wave and p,, and p,, are the Pockel coeffi-
cients.* For thiscase, if the incident lightis polarized in the x direction, then

3

Anx —";p..s.. (2.12.105)

For y- or z-polarized light
3

An = _"e P25

5 (2.12.106)

In general, however, in an anisotropic solid, the analysis is quite complex.

2.129. Optical Activity and Magneto-Optics

Many crystals (¢.8., quartz) have the property that they can change the planc
of polarization for an incident linearly polarized light. Thisis known as optical
activity. Optical activity can be physically explained by considering that, in
an optically active crystal, right circulasly polarized light and left circularly
polarized light have different refractive indices ny and ny, respectively. For a
thickness of the crystal, I, the polarization is rotated by an angle, 6, given by

0 =(ng — n.)’;.l = 6l, {2.12.107)

where & is called the specific rotary power. The optical activity of a crystal
corresponds to an cffective diclectric tensor given by

£yy jer2 O
e=¢| —JE12 En 0
0 0 €33

(2.12.108)

SRR

* Notethat compressed notation, discussed in connection with (2.12.47), has been used.
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For this case e
’l.'\/l“ + & (2.12.109)
n=Je, -, (2.12.110)
and
5= 12" . (2.12.111)
nyA

where n, is the ordinary index of refraction.

Application of a magnetic field to material causes a change in the dielectric
tensor and this in turn causes a change in the clectromagnetic wave propuaga-
tion. Basically, magneto-optics can be divided into three parts:

Faraday effect,
Voigt effect,
Kerr effect.

Application of a magnetic field to a crystal sometimes makes it optically
active. This is generally known as the Fara

day effect. For the applicd magnetic
induction, B, und the crystal thickness, I, the amount of rotation of the plane
of polarization, 6, is

0= VB (2.12.112)
where V is a constant known as the Verdet consta

nt and depends on the
material used. For this case,

the specific rotary power is given by

= VB (2.12.113)
The Faraday effect can casily be explained by the model of the movement of
the electronic charge with the resultant change in the displacement vector.

If we include the effect of absorption in the medium, then a lincarly
polarized light, after propagating a distance I, will be elliptically polarized.
This is generally known as the Voigt effect.

The Kerr effect refers to magneto-optic cffects in reflection. This can be
subdivided into three categories depending on the magnetic field directions,
as shown in Fig. 2.12.26. These are:

Polar Kerr effect,
Longitudinal Kerr effect,
Equatorial Kerr effect.

The polar Kerr effect corresponds to the situation where the magnetic field H
isin the crystal plane and in the plane of incidence, whereas for the ¢quatorial
Kerr effect, H is perpendicular to the plane of incidence.
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PART I11

Lasers )

3.1. Introduction

Of all the light sources, the laser was discovered most recently, in 1960;
however, it is probably the most important one. The word laser is an acronym
for the following words:

Light Amplification by Stimulated Emission and Radiation.

Thus, as defined, the laser is an amplifier, but it is really an oscillator, as we
shall soon see; however, it is obvious why we do not replace the word amplifi-
cation by oscillation. As any good taxpayer knows, the Defense Department
is not going to fund any research program whose title is LOSER.

Actually, the MASER. (M stands for microwave) was discovered by Townes
und this was followed by the discovery of the laser. It was Muiman who, in
1960, first demonstrated experimentally a working laser using a ruby rod.
Since then nearly every clement in the periodic table has been found to
lase. If the emitted radiation is infared, then a luser is sometimes called an
IRASER. (v

There are several ways in which we can classify the different types of laser.
First of all, it can be according to what material or element is responsible for
the light amplification; thus, for example, He - Ne laser, the ruby laser, and the
Y AG laser. Some of these important lasers are listed in Table 3.1.1. The highest
power that can be achieved is also an important quantity. Of course, for this
Quantity, the numbers change continuously as new research is performed to
improve system performance. We also consider whether the laser operates in
pulse mode or in a continuous (CW) fashion. Efficiency of the laser is also an
important parameter. Of course, some of these lasers are especially suited for
some specific application; these arc also mentioned in Table 3.1.1. For exam-
ple, both the CO; and the Nd- YAG lasers, being the highest power-output
lasers, appear to be promising candidates for a possible laser fusion project.

It is of interest to point out that although peak power can be very high,
because of the short duration of the pulse and the low-repetition rate, the
total average power per second can be rather modest. For example, for a peak
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Table 3.1.1.
Gas lasers
Gas used Wavelength range Excitation Comments
He-Ne 3.39 um Electri
. ectrical Pul
0.6328 um (0.543 um) uised
1.15 ym
CO, 10.6 ym (9.17-10.91 um)  Electrical highest CW/pulsed
. 9.6 um efficiency and power
Ar 0.4880 um Electrical cw
458
N 514
itrogen 0.337 um High
¢ power Pulsed
Far infrared 40 yum-1.2 mm
iltarems aases CO, pumped CW and pulsed
Kr* 0.675 um Electrical
0.647 um
. 0.58 um
(] 202 um Electrical
ge—(s:ed 24 visible lines
e 0.442 um Electrical
0.325 um o
Other lasers
Type Wavelength range Excitation Comments
:I:l;{ YAG (:(’;6 um Optical flash lamp Pulsed
: 06 um Optical flash lam Pulsed
‘ 0.53 (using doubler) P ’ and W
Junction lasers
GaAs 0.8 um Electri
o 00 lectrical CW/pulsed
InAs 31um
GalnAsP LS um
Organic dye 0.217-0.96 um i d /pulsed
o Y ent m Optical laser pump CW{r shf:u;ml pulse
Excimer laser vt ~10
KrF 0.248 um i i
Koo 0232 Electrical/optical Pulsed
ArF 0.193 um
XeF 0.351 um
XeCl 0.308 um
Arf
K3
Metal vapor laser
gold and copper  0.628 um UV-IR Electrical Ccw
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Table 3.1.1 (continued)

Other lasers
Type Wavelength range Excitation Comments
‘S Froc-clectron laser Infrared - ultraviolet High energy electron Wavelength continuously
i beam in a magnetic vanable
; field '
i Glass doped with  1.064 um cw Pulsed, very high peak
P Neodymium power
Aloxandrite 730-780 Optical Continuously tunable
Ti: Sapphire solid state laser
I 1.3 um Chemical cw
k. HF 26-3.5 ym Chemical cw
' HQ 35-4.1 ym Chemical Ccw
DF 3.5-4.1 ym Chemicsl Ccw
g HBr 40-4.7 ym Chemcal Ccw
k CO 49-58 um Chemical CwW
CO, 10-11 Chemical cw
X-Ray 150 A-200 A Nuclear

power of 10'* W, a pulse duration of 1 ns, and a repetition rate of onc per
second the average power is only 100 W. Some of the numbers which have
been achicved for the highest power are astounding. For example, a pulse
power of the order of ~ 10'2 W, using an Nd-glass laser, has been reported,
and higher levels are projected. For the CO, laser, a CW power of hundreds
of kilowatts has been reported, and even higher power is rumored (they are
still classified for possible use as laser weapons).

Lasers or light oscillators need an active medium which can amplify light;
this amplifier, using a suitable cavity for fecdback, becomes an oscillator! This
will be discussed in detail in the next and later sections. Here we want to point
out that, in a strict sense, an amplifier is nothing but an energy converter from
one form of energy to another. For example, consider an ordinary transistor
or an integrated circuit amplificr as shown in Fig. 3.1.1. Say it can amplify
input power from 10 mW to 1000 mW at radio frequency: Wherec is this extra
power coming from? As any student of clectronics knows, this power comes
from the power supply which is d.c. power. Thus, the amplifier in a sense is
converting d.c. power to r.f. power. The same happens in a laser amplificr, that
is, every laser must have what we call a pump; this pump power through the

10OmwW 100mW
1I0KC

Fig. 3.1.1. Electronic amplificr.
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laser fs c9nvcrtcd to light energy. For example, a typical He Ne laser uses
electric discharge as its pump, which comes from the d.c. or r.f power supply.

It turns out that there are different pumps or energy sources from which the
laser can be built, These are:

(1) electrical (d.c. or r.f),

(2) chemical,

(3) optical,

(4) thermal,

(5) nuclear,

(6) accelerator or electron-beam pumped.

Most of the common lasers are pumped either electrically or optically. A large
number have been reported to be pumped chemically, and some are pumped
thermal!y; nuclear pumping has also been achieved. The newest pumping
mccha.msm is by acceleration of the electrons through the accelerators-—
sometimes called electron-beam pumped.

Bc.fore we go to the next section, to discuss some of the properties of
amph‘ﬁers and oscillators, we should mention something about spontancous
are.stllmulated emission. All sources of light, except the laser, emit spontaneous
emission only. This is like noise in electrical engineering terminology — highly
ﬂyctuatmg in amplitude, and if not in amplitude, certainly in phase; whereas
stimulated emission is phase coherent—like that coming out of an electronic
generator or oscillator.

3.2. Amplifier and Oscillator

As any s.tudem' of electronics knows, an amplifier can always be made to
oscnll.atc if a suitable feedback is provided; this is shown in Fig. 3.2.1. The
amplifier has a gain of A, thus

EOlll
E_

=A, 3.2.1

Em

En

—~1 B

( FEEDBACK
Fig. 3.2.1. Feedback oscillator.
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where £/, is the input to the amplifier and £, is the output. However, £, is
given by
E;n = Eln + /’Euul’ (322)

where E,, is the actual input and § is the feedback factor, denoting the fraction

of E,,, fed back to the input. Thus
E,= AE:n = A(E,, - ”Enul)'
or
Eou - A
E. "1 Ap (3.2.3)

We define the condition for oscillation as
Af =1, (3.24)

because in that case the effective gain goes to infinity, or we need not apply
any input. A small noise signal will start and grow until a steady state situation
arises. Although we have found the condition for oscillation we need to know
how the frequency is determined and how much output power is produced.
The oscillation frequency is determined from (3.2.4). Ali the frequencies which
satisfy this equation can oscillate. However, both A and § are functions of
frequency, thus by proper choice of their frequency dependence we can select
the frequency of oscillation.

For output power determination, we need to consider the nonlincarity of
the amplifier. As shown in Fig. 3.2.2, any physical amplifier must eventually
saturate. Thus, as the amplitude increases, the gain decreases. Initiaily, if the
value of Af is greater than 1, the amplitude of oscillation goes on increasing;
however, at a particular value of output power, (3.2.4) will again be satisfied.
That wili be the output power of the oscillator because at that value of the
output a steady state is reached. .

The reason for discussing this electronic oscillator is that a very similar
situation also happens for the case of a light oscillator or laser. However, since
in general, the high-frequency wave cannot be confined in electric wircs,
different kinds of feedback mechanisms are nceded. As the frequency is raised
to the microwave region, we use cavities for microwave generators, as shown

£ our

Eln

Fig. 3.2.2, Saturation of an amplifier.
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Fig. 3.2.3. (a) Microwave cavity and (b) open cavity.

in Fig. 3.2.3(a). These cavities are completely enclosed metal boxes in which
a standing wave can be produced. In general, the dimensions of the cavity are
of the order of a wavelength and thus, for f = 30 GHz, the dimensions are of
the order of 1 cm. For masers, we also use this kind of cavity.

As we try to increase the {requency, f, of the clectromagnetic wave oscilla-
tors from microwave to light, we realize that, using the closed cavity argument,
we must have a cavity whose dimensions should be of the order of 1 ym, which
is ncarly impossible to fabricate or use. At the beginning of laser research, this
was an important hurdle; however, scientists realized that there is no necessity
for a closed cavity. We can use an open cavity which, for the case of lasers, is
nothing other than two mirrors; and, actually, all lasers do use this form of
cavity, as shown in Fig. 3.2.3(b). The lasing medium acting as the light
amplifier is placed inside the cavity. As in the case of an ordinary electronic
amplifier, if the condition Af = 1 is satisfied, then the laser can start from
noise and oscillate at the proper frequency. The frequency and shape of the
output beam is mostly dependent on this cavity. We are going to study the
properties of the open laser cavity structure in the next few sections and then
discuss the light amplifier. As we shall see, most of the properties of the laser
output are related to the cavity structure. Thus if we are interested in the use
of lusers for engineering applications, then these sections are most important.
However, [or a complete understanding of the laser itself, the physical process
of light amplification has to be mastered.

Before we get involved in the cavity properties, we shall consider, in the
next section, the simplest laser, the Fabry- Perot laser.

3.3. The Fabry—Perot Laser

The Fabry-Perot laser is a Fabry-Perot interferometer which includes an
active medium between the two mirrors; of course, the active medium should
be able to amplify light. Let this amplifier, which is a distributed amplifier
rather than the discrete amplifier discussed in the last section, have an amplifi-
cation constant, y. This means that if the electric ficld at x = 0 is E(x = ),
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then the electric field at x = x is given by
E(x) = E(0)e™. (33.1)

In the absence of any active medium, there will be losses due to scattering,
absorbtion, etc., by the medium itsell and for other reasons. Generally, all
these losses can be lumped together and denoted by a loss factor, a. Thus, due
to these loss mechanisms only, we shall have

E(x) = E(O)e™*" 332

Thus, due to the loss and gain mechanisms in the medium, the wave will
propagate with a propagation constant given by

k' = ko + Ak + jy — ja, (3.3.3)

where kg is the propagation constant in the absence of the loss or gin
mechanism. The reason y and « appear with a “j” preceding is that ordinarily
the wave propagation is given by

E(x, t) oc e}t hox,
However, in the presence of the loss or gain mechanism it should be given by
E(x, t) = e e/ teN bon)

or
E(x, 1) = et hatir-jub] (3.3.49)

The reason the Ak term appears in (3.3.3) is due to what is known as causality;
that is, any physical process, if started at ¢ = 0, cannot have an effect at any
time t < 0. This physical restriction can be shown to impose a condition on
the real and imaginary parts of the propagation constant. The condition is
that the real and imaginary parts must be related by Hitbert transformy; or
the term Ak must appear if a or y is nonzero. For further details the reader
is referred to reference [2]. In any case, the reader must have recognized, by
this time, that the real part of k’ determines the wavelength, and the imaginary
part denotes the amplification or attenuation of the wave. Thus, in general,

for complex k,
k =k, + jk, (3.3.5)

where k, = 2xn/A and k,, is the amplification factor if positive, or the attenu-
ation factor for negative values.

Let us consider the input-output relations for the Fabry-Perot laser
shown in Fig. 3.3.1. Let the incident light on the back side of mirror 1 be E.*
The transmitted beam will be ¢, E, where the 's are the transmission coefli-
cients and the r's are the reflection coeflicients, as discussed in Section 2.10.4.
This beam, when it arrives at mirror 2, is given by f,E,e"*L, as shown
schematically in Fig. 3.3.1(b). Here L is the length of the optical cavity. The

* Note that we consider, for this case, the incident angle to be zero {ie., r = 0 for the
Fabry Perot interferometer discussed in Section 2.10.4),
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Fig. :L:!.l. A Fabry-Perot laser: (a) laser cavity dimensions and (b) reflected and
transmitted beam components.

first beam transmitted from the output mirror, mirror 2, is given by
E,=t,t Ee L, (3.3.6)

Part of this beam will be reflected from mirror 2, then reflected from mirror 1,

apd then transmitted through mirror 2 again. This second transmitted beam
will be given by

E; = (1,0, E,e ™ *L)(r,ryeM2L), (337
Similarly, there will‘ be a third beam, and a fourth beam, and so on to infinity.
The output transmitted beam can be written as

Equ=E, +E;+ Ey 4+
=t ME[L+ 8+ 52+ -],
where
B=rreit <y, ’ (3.38)

Eoi _ Gty
ol s (339)
This equ?(ion' is s:imilar to (3.2.3), derived for the discrete amplifier case. Here
the amplifier is distributed and the feedback is built into the device,
Thus, the condition for oscillation will be given hy

rirpe Mt = g, (3.3.10)
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This is a complex equation. Both the real and imaginary parts
r rzezuy-c)e—nukout) = |-e %

(where p is any integer), must be individually satisfied. Equating the real part
we obtain®
rrpe? ol =, (3.3.11)

As we shall see later, in a laser the amplification factor, y, will be dependent
on how hard the laser medium is pumped. Eventually, as the pump power is
slowly increased, a value of y will be reached, called y,,, the threshold value
when the laser starts oscillating. This y,, will be given by

rorpetreTol o
or

Z}L Inrr,. (3.3.12)
Thus the value of y must be at least y,,, the threshold value for oscillations to
start. If the value is larger, the waves grow and the amplifier reaches saturation
due to some kind of nonlincarity. This lowers the value of y and eventually
an equilibrium value is reached at y,,,.

Equating the imaginary parts of (3.3.10), we obtain

e MrotAMIL _ - 2pn (3.3.13)

Yo =& —

where pis an integer. The wavelength corresponding to p, called 4, is given by

2r 2pn
PN = (ko + AK), = 5L (3'.3.14)
or *
2L
l’ = 'I, .
The corresponding frequencies will be given by
v v v
L= 1_' = (ﬁ) p fo= TR (3.3.15)

where v is the velocity of light in the lasing medium. Thus we see that the laser
cannot oscillate at all frequencies in order to satisfy the condition for oscilla-
tion. It can only oscillate at some discrete frequencies-—at multiples of (v/2L).
For a cavity of | m long, we obtain

v
fo=5; = 150 MHz,

* Here the reflection coeflicients have been assumed to be real and are denoted by r
and not p.

|
|
|
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Fig. 3.3.2. Oscillation frequencies for a Fabry-Perot laser: (a) possible longitudinal

mo@cs; (b) possible modes; and (c) actual modes including a frequency-dependent gain
variable,

if the rcfractive index of the media, n, ~1; these frequencies are shown
schematically in Fig. 3.3.2(a). As we have taken only a one-dimensional case
we sec only these so-called longitudinal modes. However, when we conside;
the three-dimensional case, we see that we really have three mode numbers
m, n, an.d p. and the frequencies will be denoted bY funp» and Fig. 3.3.2(a) wili
be modified as shown in Fig, 3.3.2(b). These are other modes and are generally
known as transverse modes. We see from (3.3.15) that the laser can oscillate
at any o}' these infinite frequencies. However, at what exact frequency or
frcqucnf:lcs it does oscillate will be determined by the frequency characteristics
of the light amplifier. For example, a typical case is shown in Fig. 3.3.2(¢c)
where the gnvclopc is the frequency variation of the gain constunt “y™. For all
the rpodgs in which y » y,,. they can oscillate. It iy of interest to note that the
longitudinal mode numbers are very high, For exaumple, for

L=1lm,

v=3x 10® m/s,

8
=i
A=05x10"° and f=6x 10",
L=/
p =fp/fo.

= 150 MHz,
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or
p=dxI0®

This is quite different from the case in microwave cavities where, to restrict
oscillation to one mode only, we generally choose p = 1, 2, etc., or very low
values of p. A price we pay for using the open cavity is that we, in general, get
multimode oscillation, unless some other techniques are used to obtain a
single mode. The techniques for the suppression of undesired modes will be
discussed in later sections.

As discussed in Section 2.10.4, the transmission function, T, of a high-
contrast Fabry—-Perot interferometer, on which light is incident mostly par-
allel to the axis, is given by

T,
T

where § = ((4n/A)nd) and p is an integer. The expression for the contrast, F,
is modified due to the presence of scattering losses and is given by

4R,

F'("-Rl)z.

where R, = |y,7,¢7 34| Actually, the diffruction losses are to be included in
R, and will be discussed later.
Equation (3.3.15a) can be rewritten as

T,
T(f)= - ™
U= v R, - oy
If this is plotted in Fig. 3.3.2(d) as a function of frequency, it peaks around pf,

where p is the longitudinal mode number. The width of the lines, 4/, is given
by

(3.3.15b)

Jo ‘
af = 5. 3.3.15¢)

where & = (u/2)\/l;‘ = finnesse. Thus we see that the laser cavity not only
determines the resonant frequencies in which a luser can oscillate but also the
bandwidth of the oscillations.

3.4. Laser Cavity

In the previous section we considered a simple laser cavity consisting of two
parallel plane mirrors. However, in general, the mirrors can be curved having
radii of curvature R, and R, as shown in Fig. 3.4.1(a). Actually, in between
the mirrors we can have lenses, prisms, and other mirrors, as shown in Fig.
3.4.1(b). These prisms and mirrors, etc,, are in the propagation path; however,
in most cases, the feedback is given by the two end mirrors.

The properties of the cavity consisting of two mirrors should be studied

AT 2D O\
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(a)

Output Mirror /

Fig. 34.1. Laser cavity: (a) simple and (b) with lenses, prisms, etc.

(b}

using the diffraction integral. This will be done in u later section. However,
simple geometrical optics arguments, using the matrix method developed
earlicr in Part I, give important insight. Thus this will be discussed in the next
section,

34.1. Cavity Stability Using Geometrical Optics

Consider a wavefront reflecting back and forth between two mirrors. This
wavefront can be represented by a ray, as discussed in Section 1 1. If the ray
remains within a finite transverse dimension of the cavity, as it bounces back
and forth, we say the cavity is stable. However, if the beam “walks away” after
many bounces or is not confined within a finite transverse direction, as shown
in Fig. 3.4.2, we call it an unstable cavity. In general, stable cavities are
preferred for laser construction because we, of course, huve a finite amount of
active medium. However, unstable cavities are of great interest in connection
with very high gain lasing mediums, like that of the CO, laser, and will be
discussed later.

To study the stability of the cavity using geometrical optics, we need to
know the position of the ray from the optical axis as it bounces between the
mirrors. In place of going back and forth between the mirrors, it is more
convenient to “unfold” these beams, as shown in Fig. 3.4.3. We are interested
only in the value of x as the rays bounce, in a sense it does not matter between
the actual case and the equivalent case shown in Fig. 3.4.3. The propagation
from one mirror to the other can be represented by the translational matrix
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Fig. 3.4.2. Stabic and unstable cavity.

T(L). Similarly, reflection by the mirrors, for the equivalent case, can be
represented by the two lenses having focal lengths given by

and 34.1)
fi = 2

(Note that for reflection we usc an effective dielectric constam,vus n= - 1in
the lens designer's formula.) The infinite set of lenses is a periodic set with ll'.lc
unit cell, given by Fig. 3.4.4, repeating. 1t consists of a lens of focal length 2/,
a lens of focal length f, at a distance L from that lens, and another lens of
focal length 2f; located at a distance L from the lens having focal length f,.

po— x

| o |

Fig. 3.4.3. Beam unfolding.
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fi f2 f, t2
fl.% 'z';!
Xin X out

o
v

Fig. 3.4.4. Lens equivalent and unit cell.

21, 2

This unit cell is symmetrical and that is the reason it is chosen in this fashion.
Of course, other unit cells are equivalent and can be chosen.
The equivalent system matrix for the unit cell is given by

M = MQLYTLM(f,) T(LYM(2f,)

“(cm D6 DCin D6 gy 9) s

Remember that in the above equivalent system we use the column matrix for

G)

However, in this case, it is convenient to represent a somewhat different one
whose elements have the same dimensions. This one is

(is)

Defining the equivalent matrix, M,,,,, as

() () (32, .

we can casily obtain, after some algebraic manipulation,

29,9, -1 2y, )
M., -< , 344
" \201(019: - 1) 29,9, - 1 G494

where
L L
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Notice that all the elements of the matrix M., are dimensionless. Rewriting
(3.4.3) in symbeolic form as

xoul = Moulxlm (346)
we sce that the ray X,,, after passing through the nth unit cell, becomes
Xy = M) X (34.7)

We are interested in the value of x, as n gets very large; however, ordinary
matrix multiplication for such a large number of times is rather difficult to
carry out. In place of that, it is advantageous to definc an cigenray X,
corresponding to a eigenvalue 4, given by the following equation:*

i, 0
(Munn)xr = (0 ‘.,) x'- {348)

Because for the eigenray we sec that (3.4.7) simplifies to

4, 0\ L0
-l =|" X,.
x5 2). %=(5 g)*
Of course, we have to decompose the input ray, X,,, into the cigenray compo-

nents to complete the solution, as will be discussed later. However, it is of
interest to study the equation further as follows:

299, 1 -4 29, )(x')-() 349
(20.(910: - 1) 2,0, -1-3)\Lg) =" (349)
or
(29,92 — | — Yx, + 2¢9,(L6,) = 0,
and (3.4.10)

29.(g:92 — Dx, + (29,9, - | — A(LG,) = 0.
The above equations are only satisfied when the determinant of the matrix on
the left-hand side of (3.4.9) is zero. From this condition we obtain, after some
algebraic manipulation, the second-order equation in 4, given by
A2—-24(29,9,-D+1=0 (3.4.11)

Thus e

A =29:9: - V) /49,0:(9,9: — 1) (3.4.12)
However, for 0 < g,¢, < 1, the quantity under the square root sign becomes
imaginary and can be written as

Ay =290, — 1) £ )/149,02(1 — @192 (3.4.13)
Defining cos «, = (29,9, — 1) we obtain
sin a, = \/4g,9,(1 — 9,9,). (3.4.14)

* Note that 4 in this section denotes the cigenvalue and not the wavelength of light.
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Substituting these in (3.4.13) we get
Ay = eth (34.15)

where
a, = cos"'(2g,9, — 1). (3.4.16)

Using the two eigenvalues obtained above we derive the corresponding eigen-
rays from (3.4.8). It can bc shown that these eigenrays represent a complete
set. Thus, the input ray can be written as

Xin = C, ( :;:) +C, ( :;‘). (34.17)

where C, and C, are constants and

X4 X2
(Larl) and (Laﬂ)

represent the two eigenrays. Thus,
4y OY Ay O
= . 341
wma(y el e o

Xy = (‘l)‘:l Xey + (‘2)‘:2"'2

or

=CeMx,, + Ce™x,, for 0<g,9,s1. (3.4.19)

We thus see that, for the value of g, g, between 0 and 1, the ray will be confined
to a finite transverse dimension. Thus the cavity is stable under the condition

0<g,g;<1. (3.4.20)

If this condition is not satisfied, the cigenvalues are real and they continue to
grow as n increases. This is shown in Fig. 3.4.5.

Using the condition given by (3.4.20) we can draw a stability diagram as a
function of g, and g,. This is shown in Fig. 3.4.6, where the shaded region
denotes stability of the cavity. The boundaries of the stable region are given by

l-ov
g2=0,
g1 =1

The last equation defines two hyperbolas. Some purticular values of R, and
R, arc denoted in the diagram and tabulated in Table 3.4.1.

Itis of interest to consider the Fabry - Perot cavity for which R, = Ry = o
o1y, = ¢, = |, we can see that the Fabry - Perot cavity is on the boundary of
the stability diagram. Physically, it means that for only one set of rays, with
8 = 0, the cavity is stable; for all other rays, it is unstable. Of course, this is

34 Laser Cavity 203

T

0<gige=<t

o
//\
—

Fig. 3.4.5. Ray diagram of a stable and unstable cavity.

obvious from the ray diagram of the cavity shown in Fig. 3.4.2. Thus fqr a
low-gain active medium, the Fabry- Perot laser is nearly impossible to al.lg‘,n.
because only under perfect conditions does it lase. However, fgr other cavities
in the stable region, alignment of the laser cavity is much easier. Thus, mrly
all the lasers use cavitics which are in the stable region, with some exceptions
which will be discussed in the next section. '

[+

L=R,=R, \
-1

- -1
L=2R,-2R,

/

Fig. 3.4.6. Stability diagram.
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Table 3.4.1. Different resonutor structures.
(From A.E. Siegman, An Introduction 1o
Lasers and Masers, McGraw-Hill, New York,
1971)

1. Plane parallel,
R, = R; = 0,
==L
conll = |,

0 -0

2. Slightly concave,
R, = R, = large, | I
gi=6:51, ——
cos @ =t -9,
0= f26.

3. “Focal™ resonator.
(Focus of each
mirror on other mirror.)
R, =R, =2L, S T
g ™gy=- ’. L i
cos = —4,

6 = 3n/4.

4. Confocal resonator.
(Focal points
of mirrors coincide.)
Rij=mRy=L,
h=02=0,
cos = —~1,

0 =n

5. Near concentric,
LI2<(R,,R,)< L, 3
=g =~ l: A\ =t
cosf= -1+,
dzx+ /2.

6. Concentric (spherical),
Ry=R,=Lp2,
g1 =g=~1,
cosf =1,
0= 2n.

3.5. Gaussian Beam Optics

To solve the cavity problem using the diffraction integral is a very difficult
task. However, some solutions of this problem are casy to comprehend. We
will discuss the so-called simple Gaussian beam first. This will be shown later
to be a solution of the electric ficld both inside und outside the laser cavity.
Afterwards, we will show that other complex beams are also solutions of the
cavity problem.

Let us consider a beam, propagating in the +z direction and having
amplitude distribution in the x and y directions, as Gaussian with 4 waist
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bl
- 2Wlo)

Fig. 3.5.1. Gaussiun beam.

w(z = 0) denoted by w(0). This is given by the following equation, and shown
in Fig. 3.5.1:

E(x,y) = \/ i a):m" (e iiato), (3s.0)

Remember that up until now we have only considered a beam with rec-
tangular cross section (Section 2.6.1) and circular cross section (Section 2.8.1).
It was found that those cases produced diffraction rings in the far-ficld
approximation.

The factor \/(-Z/u)(l/w(O)) in front of the integral is introduced for the
purpose of normalization. That is,

JI [E{> dy dx = 1 (352
as can be proved easily.® Then (3.5.1) can be rewritten as
2 1 ‘Ik x? + y’ j
= [~—e ) 5.3
E(x, y,0) \ﬁ w0 2 40) (3.5.3)
where we have defined a new complex variable given by
10)n
q0) =gz =0)= j* .(1—)-—. (3.5.4)

Let us consider the Fresnel diffraction of the beam at z = z from the Gaussian
shape given by (3.5.1) at z = 0. It is given by
+
E(x,y,z) = j_:; el Ra) '”. E(x', y', 0)e M=V +t=y 1) gy gy,
- (3.5.5)

This integral has been evaluated in Reference 1. It can be written as

! 2 1 . kx? +y2 Jiwt-ks) - win)}

* For a known power of P watts, the E field must be multiplied by \/ 2ZP where Z is
the characteristic impedance and is given by (2 1.12).

|
i
I
|
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...l...,. = - l.‘,_ o ’ ‘.1_ . l l

z 2%112
w(z) = w(O){l + () } , (3.5.7)
Zx

2 2
R =2+, =700 - tan_,(z)
z 2,

In terms of R(z) and w(z), the expression for E(x, y, z) can be written as

1 21 x? + y? kx4 y?
l‘: A = . . _—— — Jlwe Az w(l)}‘
(x. y. 2) JjAz \/n w(z) exp[ w(z) ]exp[ ]2 R(z) ¢
(3.5.8)

Let us compare the above equation with the equation for a spherical wavefront

originating from x = y = z = 0. In the Fresnel approximation, it is given by
the equation

—.’ 2 .-._HR

where, of course, z & R, the distance from the origin to the wavefront. Thus
we see that the Gaussian beam has a phase term which is very similar to the
spherical wavefront. The radius of curvature of the wavefront is however,
given by

1 k 2 2
E(x,y,2) = i exp[ Xty Je"“’""’, (3.5.9)

2

Rz =z+ z;‘. (3.5.10)

We also observe that the Gaussian beam shape is preserved with the new waist
size, which is a function of z and is given by

z 2)112
w(z) = w(()){l + (—) } . (3.5.11)
Zr

In the above two equations, we have defined a quantity, 2y, called the Rayleigh
distance, which is given by
; nw?(0)
R = P
Equation (3.5.8) is graphically illustrated in Fig. 3.5.2. We see that as the
distance increases, the curvature of the wavefront and the waist size increase.

If we plot w(z) as a function of z (shown in Fig. 3.5.3), we observe that, up to
a distance of z ~ z,,

w(zg) = \/2w(0). (3.5.12)
Thus, up to a distance z = z, the Gaussian waist size, also called the spot size,
is approximately constant. However, beyond z,, for z » z,,
w02z Az |

R T w0
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Fig. 3.5.2. Propagation of a Gaussian beam.

and

R(z) = z.
This is expected from the Fraunhofer diffraction of an opening with an
approximate radius w(0).

From (3.5.7) we note that ¢{z) is a complex constant which is similar (o R
in (3.5.10). However, its real part is related to the curvature of the wavefront,
and the imaginary part to the Gaussian waist size. As z changes, by noting
the change in g(z), we can determine the properties of these spherical Gaussian
waves. If we are given a particular wavefront with g(z), we can always use
(3.5.6) to retrace it backward or forward to get its waist; this is illustrated in
Fig. 3.54.

Let us now consider a spherical Gaussian wavefront propagating back and
forth between the cavity illustrated in Fig. 1.5.5. If the wavefront exactly
matches its radius of curvature with that of the mirror at z = —z, and again
at z = z,, where

z,+z=1L, (3.5.13)

we see that the wavefront will be bouncing back and forth without any
distortion. Thus we will have a stable situation. This condition will only be
satisfied when ’
2
Ry=z,+ ", (3.5.14)
22

or

wiz)

W) wio) X V2

I

4

Fig. 3.5.3. Waist size versus 1.
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—z —

Fig. 3.5.4. Tracing backward or forward from waist size.

The two equations (3.5.13) and (3.5.14) can be solved to obtain the three
unknowns, z,, z,, and z,. Remember that we did not know where the origin

of the z.-axis is or where the Gaussian beam has the minimum waist size. By
algebraic manipulation, we obtain

- ) 2 0 2
2= 01031 -0100) _ (n0?(0)

e e\ 2 ) C319

g1(1 — g,)
F A TR S A L
Y g~ + 20,0, L (3:5.16)
g:(1 —g,)

2y = —“—-—_L =

P tg—2g L

It is of interest to obtain the waist size on the cavity mirrors. These are
/ B 11
wl(z-zl)-{.llé 8 } ,
T Ng(l —g,9,)

A N U 6517
T Vel —g,42))

9."'%‘ ; q,'l--kz

Fig. 3.5.5. Laser cavity problem using Gaussian optics.
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Fig. 3.5.6. Unstable cavity.

These will be the spot sizes of the laser at the two mirrors, if the laser lases
with this particular wavefront. We shalil see later that this is the only mode,
the (0, 0) mode, in which a laser often can lase. The meaning of the symbol
(0, 0) will be given later.

From (3.5.17) we sec immediately that for the laser to be stabic, the spot size
must be finite; also, the right-hand side of (3.5.15) can never be imaginary.
Thus, we obtain the same stability condition as we obtained before

0<ymasl (A5.18)

We also note here, however, that the spot size is determined by ¢, and g,,
and most of the time it is rather small. For example, for R, = R, = 2 m and
L = 1 m, the spot size for 1 = 0.5 um is w = 428 um. )

This is sometimes not acceptable for enegineering applications, and for that
reason people sometimes use unstable cavitics. We might ask how we are
going to get lasing started in a finite lasing medium using an unstable cavity.
Well, if the laser amplifier has a very high gain, then it is quile possible that
in a few passes the gain of the beam is enough to offset the losses. In that case,
we can use an unstable cavity. A typical case is shown in Fig. 3.5.6. 1t is found
that for this case the beum size is not determined by the radii of the mirrors.
More about unstable resonators can be found in Section 1.6.2.

3.5.1. Gaussian Optics Including Lenses

A Gaussian wave is completely characterized by the quantity ¢, which is a
complex quantity. The real part is related to the radius of curvature of the
wavefront and the imaginary part to the spot size. For an optical system whose
matrix is given by M, as shown in Fig. 3.5.7(a), we note that

Xy = M x, + M0,

0, =M, x, + M;,0,.
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X Optical System X2
vt —— e S S
M
My, My
M=
MZ! Mn
(a)

<]>

h

4

N

\K/\Hl
J NTT]

(c)

Fig. }.5.7. {a) An optical system matrix; (b) a plane wave incident on a lens; and (c) a
spherical wavefront with radius of curvature Jincident on the lens with focal length f.

Thus, the radius of curvature, R 2 is defined as

Ry =22 o Mux, + M0,
6 Myx, + M,,0,’

or
Rym 2 2 71
2 My R, ¥ My, (3.5.19)

Thus, (3.5.19) gives the relationship between an input wave of radius of
curvature R, and the output wave with radius of curvature R,. For example,
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for a simple lens with focal length f

wen-( L )

Thus, for this case,
R, = - ,f‘.._. = f,R' -
PR [-R,

As shown in Fig. 3.5.7(b), if the input R, = o, i.¢., the planc wave, then

Ry=-f.
or the output wavefront will have a curvature such that it focuses at the focal
point. Or as shown in Fig. 3.5.7(c), if R, = f, then

R; = o0;

or if the source is at the focal point, the incident wavefront on the lens has
R, = f, and the output wavefront is planc or has a radius of curvature which
is infinity.

This gives us a clue as to the desired relationship between g, and q,, as
follows:

“Mua + M,
M q, + My,
Although no formal proof of the above equation exists as yet, it is always
found to be true. If we use the simple lens matrix again, and consider the
propagation of a Gaussian wavefront, then we have

g =
? J-a
lfq, = q(0) = jz,, then it can easily be shown that the spot size is not minimum
at z = f, but at z, given by

9 (3.5.20)

z -,._.f___.”...
"1+ (f/zu),'

3.6. Solution of the Cavity Problem

In the previous section, we showed that the Gaussian beam is a solution of
the laser cavity problem, if certain conditions defined by (3.5.16) are met. In
this section, we shall formulate the problem in general and discuss other
solutions. For a wavefront, having an electric field E(x, y, z) as a solution of
the clectromagnetic wave equation inside the cavily, its wavefronts must
match the shape of the mirror as the ray bounces back and forth. Actually,
what we require is that the shape of the wavefront remains unchanged as it
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propagates through a distance z. Because, if the shape remains unchanged,
then we can always place two mirrors of the same shape as that of the
wave(ront to reflect the rays exactly without any disturbance and then obtain

a stable situation. In other words, the electric field must satisfy the following
integral equation:

E(x,y,z2)= j;:z e M '[J.E(x’, Y, o)e-lu/umx-x';l+1y~y')‘] dx’ dy'. (3.6.1)

Here the functional dependence of E on x, y, and z is unknown, und any
function satisfying the above equation will be a solution. The above equation
represents a basic integral transformation. It cah be shown that its solutions
are given by

. 2
il ,2) = \/ 2%t nl )

x H \_/Zx H \/Zy e‘l(kll)’«xl*y‘)/q(xi)e-/n+;(un4lw(x)
"\w(z)) "\ ) !
mn=0,12.... (362

The H,(x) is known us mth-order Hermite polynomial. The reader familiar
with the simple harmonic problem in quantum mechanics has seen these same
Hermite polynomials. Some of these Hermite polynomials are listed in Table
3.6.1 and are plotted in Fig. 3.6.1. In general, the nth-order polynomial has
(n + 1) number of maxima and minima. Figure 3.6.1 also shows the square of
the clectric field as a function of x. It is observed that the (0, 0) mode is the
onc we have discussed in the previous section. However, other modes have
complex shapes; for example, the (3, 2) mode has four lumps in the x direction
und three lumps in the y direction. Also, the outermost lumps are a little bigger
than the other lumps; corresponding to the plots in Fig. 3.6.1, the spot shapes
are shown in Fig. 3.6.2. The spot shapes are an equipower contour of the laser
beam, in the plane transverse to the direction of propagation. These are
obtained, for example, in the x direction only by taking a cross section of the
plots of | H,(x)e *'| in Fig. 3.6.1. It is amazing that all these shapes can actually
be observed from a laser if it is adjusted properly.

Table 3.6.1. Hermite polynomials.

Ho(x) = 1

Hy(x) = 2x

My(x) = dx? - 2

Hy(x) = 822 -- 12x

Ho(x) = 16x* ~ 48x? + 12

Hy(x) = 32x3 — 160x® + 120x

Hy(x) = 64x®* — 480x* + 720x? -- 120

3.6. Solution of the Cavity Problem 213

/
VAR
Woo | T / \ I/

7 7
N\ MA
o |

e | A AN A

n=0 ns ne2
(@) (b) (<)

Fig. 3.6.1. Hermite polynomials. Different orders of: (a) Hermite polynor.nials plotted
as a function of x; (b) Gaussian—Hermite polynomials plotted as a funqnon of x; and
{c) the magnitude of Gaussian—Hermite polynomials plotted as a function of x.

The Gaussian nature of the beam for all the laser modes is evident from
(3.6.2). This also explains why we can get lasing action with a finite open cavity
in the transverse direction. Because, by climinating the outer edges of the
mirrors, as the electric field is already very small, the perturbation produced
by it will be negligible. The equation is valid for an infinite size radius and, in
practice, the limits of the integral should be replaced by the sizes of the mirrors.
However, for the particular case of two plane parallel mirrors and for the sizes
of the mirrors given by the Fresnel numbers, N, defined as

N = (3.6.3)

numerical solution has been performed. Here 2a is the mirror diameter, and
N represents the number of Fresnel zones on the mirror as viewed from the
center of the next mirror. It is found that, because of the finite size of the
mirrors, a diffraction loss must be included. This diffraction loss as a function
of the Fresnel number is shown in Fig. 3.6.3. This diffraction loss must be
included in the calculation of the linewidth of laser oscillation, as discussed in
Section 3.3.
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Fig. 3.6.2. Equienergy plots of laser beams having different transverse mode numbers
(m, n).
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3.6.1. Frequency of Oscillation

The phase term in (3.6.2) is somewhat different from that in (3.5.7) and is
dependent on the mode number. We can use the same arguments now to
determine the cavity frequencies, as we did in Section 3.3 in (3.3.14). That is,
the round trip phase difference between the wavefronts has to be multiples of
2n. In this case, it becomes

kzy —(n+m+ O)(zy) — kz, + (0 + m + L)yY(z,) = pn,

or
ki.mpn +(m4+m+ DiY(z;) ¢iz,))
or
fonp = zi[" reme VOV (364
or

;‘un’-zL[p+(n+m+ l)W(lz) w‘z )]

3.6. Solution of the Cavity Problem 218

Plone
00« circulor 100~
I » mireors
-~ 3
™~
\ . I

Loss/bounce, %

=)

[
& L
©
E I
& L
"
g
P
o
| Plone
circulor
mirrors

-

O’WIAI n el o

0. 1 0
Fresnel number N = o¥/L A

Froasnel number N = a®/L )

Fig. 3.6.3. Diffraction loss as a function of the Fresnel number. (From A.E. Sicgman,
An Introduction to Lasers and Masers, McGraw-Hill, New York, 1971}

After some algebraic manipulation it can be shown that

[¥(z3) — ¥(z,)] = cos™* + [/9142) (3.6.5)

Thus we see that for each longitudinal mode denoted by the number p, we
can have a series of transverse modes denoted by the subscripts m and #. Each
of these transverse modes has a particular beam shape and a particular
frequency—some of these are shown in Fig. 3.6.4.

It is to be mentioned that (3.6.1) is a lincar equation; thus a linear combina-
tion of individual modes is also a solution to the problem. For example, we
cun have a shape like that in Fig. 3.6.5, given by the combination of (1, 0) and
(0, 1) modes having two different frequencies.

Some other forms of solution have also been found. For example, the
solution written in polar coordinates in Gaussiun- Laguerre form is given by

000 j 2 p! <\/2r) (Zrz)
092 J1 + by nll 4 a2\ olz2)) P \wr(z)
y Cf)s 10 ¢ HA2Niatang = RE P AP LY vty (3.6.6)
sin [0

where p and [ are different sets of integer indices, L} is the associated Laguerre
polynomial, 8y, = 1for | = Q0 but §,, = 0 for! # 0. Some of these shapes of the
beam in the transverse direction are shown in Fig. 3.6.6.

This concludes the discussion on laser cavities. It is interesting to point out
that, without ever knowing how a laser amplificr works, we have been able to
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% i
R - —*tmagt [0+ (nemsy)cos'e /9 g predict the mode shapes and the possible frequencies of the laser beam. In the
;b,' T 7‘\ i[ ] next section, we discuss the unstable resonators.
i, r. W |
;j;
," ,g' ? ? ? f ? f ! ’ 3.6.2. Unstable Resonators
“ R 1 |' i Stable resonators are useful for making lasers using lasing matenal with a very i
¥ Ll i small gain constant. However, as discussed before, the beam size is limited |
¥ 9 q+! and thus the active region has a very small volume. This translates into rather

low-power lasers. Also, to obtain single-mode lasers with stable resonators,
we must use small apertures to increase the losses for the higher order modes.
However, the positioning and adjustment of the aperture is rather difficult.

As mentioned before, if the gain constant is high we can use an unstable
resonator. Consider the unstable resonator shown in Fig. 3.6.7, consisting of
two mirrors with radii of curvature given by R, and R;. To analyze it using
geometrical optics, consider the two points P, and P, which are the virtual
sources for the waves impinging on the mirrors M, and M,, respectively, this
is shown in Fig. 3.6.8. If the separation between the two mirrors is denoted
by d, consider the distance between P, and the mirror M|, a,d; similarly, for
the point P,, it is a,d. Note that a, and «, are dimensionless. Consider the
wuve cmanating from P, and incident on M,. Upon reflection, it appears as
if it is radiating from P,. Thus P, and P, must satisfy the object and image
relationship of mirror M, given by

1 ! 2

e

b

-
',
3

,,-
£

Complex modes

Fig. 3.6.5. Complex mode shape of a laser beam.

e e e e 6.7
(@ +0)d a,d R, (367
TRANSVERSE MODE CONTROL Similarly, for mirror M, we have
1 1 2 '
e e e T e 6.8
(a; + hd a,d R, (3.68)
Solving (3.6.7) and (3.6.8) we obtain
V1 - Vg, -1+ g, (3.69)

a N Ty s
' 2~ 1/g, - Vg,

K1\

Fig. 3.6.6. Circular mode shapes of laser beams. (From A.E. Si
- .E. Siegman, An Introd,
to Lasers and Masers, McGraw-Hill, New York, 1971) 8 n Introduction

Fig, 3.6.7. Unstable resonator with two virtual point sources, P, and P,.
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(b)

Fig. 3.6.8. A gcometrical optics approach to understand the loss mechanism in an

unstable resonator: (a) wavefronts for the virtual point source P,;

for the virtual point source P,. and (b) wavefronts

and
J1=1/gig, ~ 1 + 174
oy = > 77 2
=g = 1)y, (3.6.10)
where
d
01“‘-’,(;- (3.6.11)
and
d
ga=1l~ (3.6.12)

2

To calculate the equivalent reflection losses, even for perfectly reflecting
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mirrors, we note that at cach reflection part of the beam is completcly lost, as
shown in Fig. 3.6.8. Denoting the fraction of power reflected by M, and M,
as I', and I'; we obtain
solid angle of M, with pyigigg! P,
solid angic of wave originating at M,
nad/an(a, + 1)2d?
T nat/Anald?

2
(3.6.13)

where a, and a, are the radii of the mirror apertures. I', is similarly given by

_ nal/4n(a, + 1)2d?

r,= - — .6.
! naljdnadd? G614

Thus the fraction of power which reflects back after a round trip, I, is given by
2
M=nr,= [(; . +u;")?:f+"'f)] : (3.6.15)
Thus the condition for oscillation for the unstable laser will be given by
GIr>1t, (3.6.16)
where G is the single pass gain and is given by
G = yd, (3.6.17)

where y is the lasing gain constant. We note that G has to be quite large for

this case if the laser is going Lo operate with an unstable laser. It is of interest

to note that I" is not dependent on the size of the mirrors. This is because we
]

LAk A\

(%, P,')

:l'
|

‘ g) P;)
f‘\ (1-n*

91927 Ar

Fig. 3.6.9. Output beam shape for a laser with an unstable laser cavity with two beam
slicers and absorbing walls.
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have not included the diffraction losses wh
consider this diffraction, we need to solve th
as no analytical solution exists.

Equation (3.6.15) can also be written as

VARV
r=+!=V1-We
L+ /T 1ga, ooty

28142 > 0org,y, <0.1y,y, > 0, then alposilive
must be less than 1. For #1142 <0, a negative sign

ich are, in general, small. To
e integral equation numerically

A; the resonator is unstable
sign must be chosen as I”
must be chosen.

Thus from (3.6.18) we obtain

1+ :
gy = 4 il g,9,>0,
_ (-
T il g9, <0. (3.6.19)

For T constant, (3.6.19) plots a hyperbola. Thus we can draw equiloss dia-
grams for a fixed value of I", as shown in Fig. 3.6.9. For a cavity with a power
loss. (?f 30%, T =0.7and g,9, = 1.032 or - 0.182. In Fig. 3.6.9, note that the
posmye branch corresponds to the first and third quadrants, whereas the
negative branch corresponds to the second and fourth quadran‘ts

The advantgge of the unstable resonator is that the output bean; has a large
aperture. It might appear that the output has a hole in the middle and thﬁs
difficult to focus; in practice, this hole is of very little consequence. A different
arrangement for a laser with an unstable resonator is shown in.F ig- 3 6?(‘)
Here it is assumed that the walls of the lasing material container are p.erfcc.:lly.

Beam silicer

Fig. 3.6.10. Equiloss diagrams for an unstable laser cavity,

s
ts

3.7. Photon, Sumulated, und Spontaneous Emission

(a) {b)

Fig. 3.6.11. (a) Axicon and (b} waxicon.

absorbing. Two mirrors or beam slicers arc used for the output beams. It is
to be noted that a CO, lasing medium has a very high gain and, in general,
most of the practical CO, lasers do use unstable resonator configuration.

Special mirrors such as waxicons are used to convert the ring mode out-
put of an unstable resonator to a ncar-Gaussian resonator. Waxicons are
W-shaped axicons and are shown in Fig. 3.6.11. Axicons are mirrors and they
produce a particular axial distribution of light on reflection.

3.7. Photon, Stimulated, and Spontaneous Emission,
and the Einstein Relationship

For a laser to operate, we need a laser cavity and an active medium which
acts as a light amplifier. We discussed, in Section 3.3, that light amplification
is distributed in nature. Thus we define an amplification constant, y, which
represents the growth of the electric field as the wave travels through the lasing
medium given by

E(x) = E(0)e"*, (3.7.1)

where E(0) is the electric field at x = 0. Similarly, we can write the correspond-
ing intensity given by
I(x) = 1{0)e*", : 312

where 1(0) is the intensity at x = 0. Thus our objective is to derive an expres-
sion for this “y” in terms of physical parameters. However, before we do that,
we want to discuss certain aspects of light and its interaction with matter,
which is quite different from that which we have considered thus far in this
book. It is expected that the reader is familiar with quantum mechanics and
its applications to atomic spectra. We will review it very briefly in this section.

Up until now, we have considered clectromagnetic waves as waves. How-
cver, it turns out that these waves can sometimes be better described by a wave
packet or photon. This photon has energy given by

E=how =K (3.1.3)

where h is the Planck constant = 6.626 x 1073* J s and A = h/2n. This dual
nature of electromagnetic waves, especially for the high-frequency range, is
rather complex and somewhat puzzling. However, it is based on experimental
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data, and it is impossible to explain certain experiments (for exumple, photo-
clectric emission) without the photon-like aspects of light waves.

Light is generated when an electron drops from an energy level £; to a
lower energy level E, in matter. The generated photon obeys the conservation
of energy given by

hf = E, - E,. (3.74)

Sometimes a photon is absorbed such that the electron transfers from & L o
E,. Itis customary to denote the energy levels in units of electronvolts (eV).
One electronvolt denotes the energy gained by a single electron when it
accelerates through a one-volt potential difference. As the electronic charge is
1.6 x 107'® C and a coulomb-volt is equivalent to a joule, one electronvolt
is 1.6 x 107'* J. Thus when an electron jumps from E, (=20 ¢V) to E,
(=19 eV) it will generate a photon with A = 1.24 um and [ = 2.418 x 10'*
Hz.

Let us consider a two-level system. The two energy levels are given as
E; and E,. Actually, the medium will have many other energy levels. How-
ever, for simplicity, let us consider that the only interaction with photons
takes place through these two levels. In the equilibrium condition, when this
medium is not pumped or energized, the number of clectron transitions
upward must be equal to the number of transitions downward. Thus no net
photons are generated or lost. However, if we somehow increase the number
of electrons in the E, level beyond the equilibrium value, then there will be
an extra supply of electrons in the E, level which can make the transition to
the lower level. The rate at which this transition takes place will be given by

Ny N ~N; Ay, (3.7.5)

dt Lupont
where N, is the density of electrons in the upper level. The rate of change of
N, must be proportional to the number of electrons in level 2 and to a constant
A1y, which is inverse to the spontancous emission rate, Lupom- Remember that

any time a transition takes place, a photon is generated or emitted. Solving
(3.7.5), we obtain

Ny = Nyg + AN;(O)e ",

or (3.7.6)
AN, = AN,(0)e~"w=,

where N, is the equilibrium value of N;,and AN, = N, — N,, and AN,(0) is
the excess density at ¢ = 0.

The light from the spontaneous emission is noise-like and is incoherent,
This might seem a little puzzling because the light frequency is given by

E, -
fo= ,MLA..E! : (3.27)

However, this emitted light is really in bursts of decaying exponentials, accord-

3.7. Photon, Stimulated, and Spontaneous Emission 22}
S
¢ T
W= [
fo

Fig. 3.7.1. A decaying electric field und us Fourier transform.

ing to (3.7.6). Thus, the actual frequency of the light, although unl;rcd at
f = fo, will have a spread. The spread in frequency is found by taking the
Fourier transform of the decaying light, denoted by

E = Ejel?™vie e, (3.7.8)

The Fourier transform of (3.7.8) is given by
E ! -
T (0 - wo) i’

¥F{E} (3.79)

where
w, = 2nf,. (3.7.10)

This is plotted in Fig. 3.7.1, and we sce that the spontancous emission will
have a frequency spread, Af, given by
|

A= 3.7.11H

llponl

In contrast to spontancous emission, there is stimulated emission. The stimu-
lated emission is stimulated by the photons or light wave, uqd thus they are
phase coherent as compared to the spontancous one. .The_ sumglatcd rate is
also proportional to the number of photons s\nmmulalmg it. This number Qf
photons is also proportional to the intensity of light; the exact rclghonshm
between the two will be derived later. It was Einstein who ﬁrs'l polplcd out
from thermodynamical considerations that a particular ’rclauonshup exists
between these two rates in an enclosed black body which is kept at tempera-
ture T in equilibrium. o
It is an experimental fact that the blackbody radiation is given by*

8nhf? 1

AP T (3.7.12)

p(f) = e
where p(f) is the energy density of photons having frequency f, and k'is the
Boltzmann constant and is equal to 1.381 x 10°2? J/K. Let us consider a
medium which has two levels E, and E, and is placed in this black body as
:_Nole that we represent Boltzmann's constant and propagation constant by the same
letter k.
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Fig. 3.7.2. Two level systems in a black body.

shown in Fig. 3.7.2. Then, when equilibrium is reached the number of transi-

tions from £, to E, must be equal to that of E, to E;. The number of photons
generated will be given by

photons generated per unit time per unit volume = N Wy, + Ay)), (3.7.13)

where W;, is the stimulated transition rate from level E 2lolevel E,. The term

A3, is due to the spontaneous emission rate discussed earlier. Similarly, the
number of photons lost will be given by

photons lost per unit time per unit volume = MW, (3.7.14)

where W, is th_e transition rate from E, to E,. The spontaneous emission
term, of course, is absent in the photon absorption case.

As mentioned before, W,, and W,, must be pro i i
X portional to p(f) given b
(3.7.12). Thus we can define the so-called B coeflicients given by ¢ ’

Wy, = p())B,,,
and (3.7.15)
W, = p(f)By,.
Equating (3.7.13) and (3.7.14) and substituting from (3.7.15), we obtain
Ny p(f)By + Ay, 3716

It is also known from thermodynamic considerations that N, and N, are
related by the Boltzmann distribution function, and is given by

N,

N e VAT, (3.7.17)
Thus
N _pBy o MAT
Ny p(f)B;, + A, '
or

?szvnr - le C’
AT g A
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The left-hand side of the above equation is dependent on the temperatuse, 7,
whereas the right-hand side is independent of temperature. To satisfy this
equation at all temperatures, we must have

¢ 3

B,,=8B, = iyt A2 (3.7.18)
Thus we obtain for the stimulated emission rate, W, = W, = W,,.
CJ
u’l = 8"hf3Allp(.f)'
or (3.7.19)
W= Oy e
Y8 g PN

Then (3.7.18) is the well-known Einstein relationship between the 4 and B
coeflicients. To use the Einstein relationship for the case of lasers, we must
consider the finite linewidth of the energy levels. One reason for the linewidth
was already described in (3.7.11) where spontancous emission is considered.
This type of linewidth is also known as homogencous linewidth, as it occurs
uniformly in all atoms. However, there could be inhomogeneous linewidth
broadening, in which case the linewidths are different for different atoms. A
special case is for gases which are traveling with thermal velocity. Due to this
thermal motion, the emitted frequencies are Doppler broadened and thus are
different for different atoms.

Let us denote by g(f) the total linewidth broadening. Then (3.7.18) has to
be modified due to this linewidth broadening as follows:

e

T 8nhf3 1

spoat

1)
W plf)glf) (3.7.20)
This is because carlier we considered the position of E,, and E, was given by
a delta function. However, for the broudened case we must replace the delta
function by

o) - J\y(,/") dr. (3.7.21)

g(f) for the case of homogeneous broadening is 1/Af where Af is given by

(3.7.11). The Doppler inhomogeneous broadening due to thermal motion is

given by

2(in 2)'2
nl/IAf‘

where Af, = Zf(,\/ZkT/Mr:2 In 2 and M is the atomic mass. The energy density
(/) can casily be related to the intensity of the light beam. As shown in Fig.
3.7.3, the intensity of light is given by the cnergy per unit area per unit time.
As the photons move with a velocity, 1, in one second the number of photons

gf) = ¢ WD Sarh, (37.22)
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HH

x X+ Ax

Fig. 3.7.3. Relationship between photon density and intensity.

passing through the area, A4, will fil} up a cylinder with area 4 and length v as
shown. The volume of this cylinder is

V = Av,
thus the number of photons in this cylinder is given by
Avp(f)
Nw= 200
hf
g’he corresponding energy per unit area will be the intensity I(x) und is given
y

i

1= 220 i)

or
I(x
plf) = -;}»)». (3.7.23)
Using the above expression for p(f) we can rewrite (3.7.20) as*
W O
f thfjt,;,. gt ). (3.7.29)

3.8. Light Amplifier—Population Inversion

To ob‘luin an expression for y, we must relate the density of photons to the
mtcm_u(y. This can be done as follows: remember that photons travel with a
yclocn.y v, the velocity of light in the particular medium. Let us consider the
intensity qf the light beam to be /(x) at x = x and I(x + Ax)at x = x + Ax
as shown in Fig. 3.8.1. Let us consider the volume AxA, shown in the ﬁgurc.
where A is the cross section. We can write for small Ax ‘

ol
I(x + Ax) = I(x) + Ax' ; : . (38.1)

* Note that in (3.7.24) we have stressed the intensity ¢
only suppressing its x dependence. 7 dependence on the frequency, 4
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1 Pa e H{x) = e i
£ :3——' N,

X X+ dx

Fig. 3.8.1. Light intensity calculation.

The second term on the right-hand side arises because in the volume (44x)
some photons are generated. However, the number of photons generated per
unit time by the stimulated process (remember that stimulated emission is the
onc which gives rise to coherent laser output, not the spontancous emission
which is like noise to the system) is given by

photons generated = photons emitted — photons absorbed
-AAx N, W, ~ A Ax N, W,
= AAXW(N; ~ N,).
Thus the power generated in the AAx volume is given by
Abx- B -(N, = NOW,
as cach photon has an energy equal to Af. Thus,

2l(x) v*A;,0(/)
5 =H(N =N e 1(x), 3.8.2)
or
1{x) = I,e?r™, '(383)
where .
v’y(f)

Thus we observe that the amplification factor is proportional to (N; — N,).
Ordinarily, it is given by (3.7.17).

Ny N, = (¢ "' . 1)N,. (38.9)
For light frequencies and at room temperature
hf
KT = 40,

This makes N; — N, negative as N, is much smaller than N, . Thus, in general,
we do not have amplification but attenuation of light waves as they pass
through the medium. However, if we pump the medium, or energize it such
that N; > N, then we can have amplification. This inversion of the electron
density from the normal equilibrium condition is absolutely necessary for the
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lasing medium to lase and is known as a population inversion. In the situation

where a population inversion exists, we sometimes define an effective tempera-
ture, Ty, given by

_Nz = g~ WTm) (3.8.6)
1
I N; > N, due to pumping,
-} .
Tt = _l;f[ln Zz] ’ a7
1

Thus, in 4 sense, the population inversion corresponds to an effective negative
temperature if we insist on using (3.7.17).

Itis of interest to define the quantity, Ny, called the threshold population
inversion density. The quantity Ny denotes the minimum population inversion
density needed to start lasing action and then sustain it. Substituting (3.3.12)
into (3.8.4), we obtain

16nf? 1
Ny=(Ny— N = - ;fg('}’;"'<a ~aL In r,r,)‘ (3.8.7a)

In the expression for Ny, the scattering losses a and the reflection losses of
the cavity mirrors r, and r, appear. It is sometimes convenient to definc a
quantity called the cavity decay constant, te, which is related to the cavity
losses. This ¢, is the decay constant associated with the decay of an electric
field as it bounces back and forth between the mirrors and the lasing medium
is not pumped. Thus the electric field E(t) can be represented as

E(1) = Ege™"". (3.8.7b)

Let us denote by T, the time the electric field takes to make a round trip
through the cavity. Thus

2L
T= .

v
If we observe the output at any mirror, then we shall find the decaying pulses
of light coming out of the mirror every T secconds. If we start with a value E,,
for the electric field of the starting pulse, then we also know that, because of
scattering and reflection losses after a round trip, the electric field E(T) will
be given by

E(T) = Eqe™ 2"y, r,.

Equating the above equation and (3.8.7b) for the value of the electric field at
t = T we obtain

Eoe‘T/T. - Eoe--(ll‘--lnr.rn‘
or

1 1 !
T, - v[a - 2Lln r.r,J . (3.8.7¢)
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If the losses are small then we can rewrite the above expression as
E(T) = Ej[1 — 2L(a —~ Inrr;)...].

Defining the quantity, I, the fractional loss per round trip or per pass, we
obtain

- E(T 1
’o - FO Ef( ) = 2l (a - N In ’n"z)- (387(”
In terms of t, and /,, using (3.8.7a), Ny can be rewritten as

167/ ¥t puus
T ot

87 ¥ pom (I‘)
Me= o0 \L)

Of course, t. and I, are related by the following equation:

or

2L oL
T ey
Also, y,, is given by | |
Y = 2L = vl .

3.9. Different Types of Light Amplifiers and Quantum Efficiency

13 .

Until now we have considered only two energy levels in 8 medium w?nch
participate in the stimulated emission. However, the clectrons can sometimes
be pumped from ground level to a higher level. After some spontancous
cmission these clectrons may come to the upper lasing level, if it is §|ﬂcnnl
from the one to which the electrons were pumped; also, the lower lasing level
may or may not be the ground level. In any case, wc.shall always denote the
upper lasing energy level by E, and the lower lasing energy level by E,.
Therefore, depending on different circumstances we can have two-level, three-
level, or four-level lasers.

A Two-Level Laser

This is the simplest laser where E, is the ground level, and the eleclrops are
pumped directly to the E, level. For a two-level laser the quantum efficiency,
n, is 100%. n is defined as the

W K, E,

- W Ltk (39.1)
houme Ep—Eg

n
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Fig. 39.1. Energy diagram for different types of lasers: (a) a two-level laser; (b) a
three-level laser; and (c) 4 four-level laser. E, is the ground level and E,and E, are the
lasing levels. '

whc_rc E, is the pump level and E, is the ground level. Only the p- n junction
semiconductor laser can be considered as a two-level laser, and its properties
will be discussed in Part 1V.

A Three-Level Laser

In a three-level laser, E, ~ E,. However, E, # E;. As shown in Fig. 3.9.1(b),

Joump 18 higher than the lasing frequency f. Thus, n is less than 1009, and is
given by

E, - E,
E, - E,

The ruby laser, the first laser discovered by Maiman, is a three-level laser.

n 3.9.2)

A Four-Level Laser

In a four-level ]nscr. E, ¥ E,. Thus, as shown in Fig. 3.9.1(c), the quantum
cfficiency for this laser is even less than that of the three-level laser and is given
by
E,—E
"=k E
P 1]

We might wonder that if n is so bad for a four-leve] laser, why we consider
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it at all. Actually, as will be shown below, in general the four-level laser is
relatively easy to pump. Thus nearly all the known lasers are four-level lasers.
Let us consider that Ny is the threshold population inversion density. Then,

for a three-level laser, as the ground level is the same as the lower lasing level,
we find that

N, — N, = N,,
and

N, + Ny = N,

where N, is the total number of electrons participating in the lasing action.
Thus, N; = Ny/2 + Ny /2 at the threshold and, in general, for the laser to begin
working
No Ne Ny
N> "+ = . 393
1> 5 2 2 ( )
The last approximation holds because, in general, Ny » N,. However, in a
four-level laser, as £, » K,

Nl = Noe—(El.—‘-u)/.T z 0-

This, of course, assumes that (E, — Ky )kl » 1. For the four-level laser to
operate, the population density N, must be given by

Ny > Ny. (3.9.4)
Thus, we find that

(NT)J-Icvcl o NO

: = g very large quantity in general, (3.9.5)
(NY)A-lcul 2Nl’

Thus it is much easier to pump a four-levet faser than the three- or twotlevel
lasers. This is the reason for nearly all the lasers being of the four-level type.

3.10. Rate Dynamics of Four-Level Lasers

Let us consider the general four-level laser shown in Fig. 3.9.1(c). The lasing
energy levels are denoted by £, and E,. The other energy levels present
participate in pumping and spontaneous transitions. We are interested in the
rate of change of the electron density N, in level E,, and that of N, for E, only.

In the rate equation for N, we must consider the increase in the number of
clectrons by pumping. This pumping rate will be denoted by R;. R, includes
ali the electrons which arrive at £, by spontancous emission from the upper
levels. The decrease in the number of electrons has three components:

(i) The all-important stimulated transition to E, which produces the lasing
light given by (N, — N, )W,
(ii) The spontancous emission to the level E, given by N, /1, ...
(i) The spontancous emission to all other lower levels excluding E, and given
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by
N
‘t_z‘ .

Thus the rate equation for N, can be written as

dN. N. N
_‘_“_2_ +R; = (Ny~ N YW, — -2 =2 ) (3.10.1)
spont 2
We can argue similarly for the E, level, to obtain
dN, N N
]"—-R1+(N3—N1)W.+ LR (3.10.2)
spont i

In the above equation, the unwanted pumping rate, R,, to the level E, is
included. The second and third terms of this rate equation are the rates at
which electrons are arriving at E, from E, by stimulated and ‘spontancous
emission, respectively.

The final term denotes the spontancous emission to all lower levels from
E, and is characterized by the time constant t,. In equilibrium, the steady
state condition is ‘

dN, dN,
o = o = (). (3.10.3)
Or we obtain
Ry — Ny — Now, - M2 2o,
2
N.
Ry + (N, - Nw + 2 Mg
‘uml 'I
where
l »__l 1
‘Iz 'lpon( t2

In general, ¢, is much larger than tupons &Nd thus ¢} can be approximated as

12 = typon-

If the medium is pumped, but not lasing, then
W =0,
or
Rz - & o= 0,
5]
and 3.104)
R] + NZ hand NL = 0.
spont tl
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Solving for N, and N, from the above, we obtain
3
N, = R,1, + a2t (3.10.5)
’-pom
and
Nz = Rz”z

Thus, the population inversion density is given by

t
(N = N,) = Rz:;(n - ,) - Ryt

spomi.

~ Rt = (AN),, (3.10.6)

spont

where R is defined as the effective pumping rate. From (3.10.6) we observe that
to have any population inversion

£y S Lipou- (3.10.7)

This is a very important condition. If this is not satisfied then it does not matter
how hard we pump since we can never achieve a population inversion.
Physically, it means that the electrons coming to the E, level by spontaneous
emission must be removed at a rate faster than the arrival rate so that no
accumulation takes place. Otherwise, N, will increase at a faster rate than N,,
and no lasing action will take place.

Using (3.10.6) and assuming that the condition given by (3.10.7) holds, we
can write, in the general case,
(8N, Rt

(Ny = Ny)m oiVVO pomt_ (3.10.8)
U 0lpea W 1+ 0tV

t ty \¢
o= ’[|+<|-— ‘),‘].
lnpul ’-mt ‘I

This equation is obtained by solving for N, and N, from (3.10.1) and (3.10.2)
and taking the difference. In general, 15 = t,,,,, and

)
where

spOn

o=l

The amplification factor, y, is given by

‘.2
16mn?r ., I
_@N)clgty 1
16mn3f 2 . 1 + Wit

spont *spont

Y‘(Nz—Nn)

= T
=W (3.109)

i}
spont

where y, = (AN)oc?g(f)/16nn*f?1,,,,.. the gain constant in the absence of
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feedback (or the mirrors removed such that no lasing action takes place). We
know that

2
Wi = scn,‘,'i(ff;’h 1(f)

i)
L’
where I, is the saturation intensity, given by

8nf’n‘) {AN),
I, = = 0
.(?’3(77 hf : (3.10.11)

- ™ Doton

(3.10.10)

Thus, we obtain

Yo
YETYIL

We see that the gain constant is initially y, at the point when the feedback is

(3.10.12)

switched on. Then, as the oscillation starts, I increases and y decreases. Finally, ° ol

a steady state is reached when

Y= Ve ‘ (3.10.13)
This is shown schematically in Fig. 3.10.1. Thus, the intensity of the laser in
that case will be given by
1=1,<1‘2-— 1). (3.10.14)
Yin

To obtain laser power we note that in the equilibrium condition, the number
f’f clectrons making stimulated transitions to contribute to the lasing action
is Ny. Thus, the emitted power is given by

P,=Ny-hf-V-W, (3.10.15)

/1,—

Fig. 3.10.1, Amplifying gain constant as a function of light infinity.

3.10. Rate Dynamics of Four-Level Lasers 238

where V is the active volume of the lusing material. A quantity, called critical
florescense, P,, is defined as

Po= NV (3.10.16)

spomt

P, really means the amount of spontaneous light which is generated if the
lasing material is just at threshold and the laser is not lasing. Thus,

';:- Wit pom = ll.. (3.10.17)
From (3.10.8) we obtain
Witipon = )\%"”’“ -1 (3.10.18)
or
‘;:= %_ 1 (3.10.19)

where Ry = Nr/t, .., and physically means the threshold pumping rate. This
cquation gives us an expression for the lasing power inside the cavity in terms
of the pumping magnitude. The harder & laser is pumped, the more power is
obtained.

It is of interest to obtain expressions for I, P,, and W, in the steady state
condition in terms of the decay constant. Including the loss in the cavity, (3.8.2)

can be written as
i{(.x) = (Zy - ! )[(x)
ox .

[}
N . )
= hfNW, - ,}"], (3.10.19a)

<

In the steady state, N = Ny and 8//0x = 0. Thus we have
1

W= (3.10.19b)
= N'l"”', (3.10.19¢)
and
p MY (3.10.19d)

]

.

3.10.1. Optimum Output Power

Equation (3.10.19) gives us an expression for the total laser power inside the
cavity. However, the useful power outside, P,, is less than P, since only a
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fraction of P, is transmitted through the output mirror. To calculate this
output power we note that as far as the oscillation condition is concerned,
this output power is a loss to the cavity. Thus, if we increase the transmission
coeflicient of the output mirror, to increase Fo, we inherently reduce P,, since
P, is a decreasing function of the transmission coeflicient. Thus there exists
an optimum output mirror transmission coeflicient for obtaining maximum
output power. To derive this optimum condition, we note that

y= vo/(l + P‘). (3.10.20)
P,
Also under the stcady oscillation condition
P, e
}’o/(l +P:)-y'“_2L’ (3.10.21)
where [, the fractional loss per pass, is defined by (3.8.7d). We thus obtain
P = P.(%Z? - l). (3.10.22)

In i, we have two contributing terms, one due to the useful power output and
the other due to the jnherent losses. If we define T, as the useful mirror
transmission and /, as the inherent losses which are unavoidable, then

l=T+1,. (3.10.23)

Also the output power, Py, in this case will be given by

T
Py =P, e (3.10.24)
Using (3.10.22), we obtain
To 2y L )
= P20 (L ) 3.10.

P, '1:,+l.(T.,+l. 1 (3.10.25)

Thus, we see, as T, -+ 0, P, — 0. However, as T, tends to infinity, P, also
decreases. To obtain the optimum value of P, we write

oP,
57;; = Q. (3.10.26)

Solving (3.10.26) we obtain the optimum output mirror transmission, T,,,
given by

Tope= P, + /2y, L. (3.10.27)
The optimum power output is given by

P = P(V/ 2L — /1y (3.10.28)
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2= 12%

P, milliwatts

A

0 ] 10
T, percent

Fig. 3.10.2. Power output, P, versus mirror transmission T, for various values of /, for
an He-Ne laser. (From P. Laures, Phys. Lett., 10, 61, 1964))

It is to be noted that P, from (3.10.16), can be rewritten as

MY _ B (),
b e T \L) "
8rhf? (3.10.29)
- A, 10.
v¥g(f) |
i i i med constant, and
where A is the cross-sectional area of the lasmg.modc 33U M, ar
related to the spot size given by (3.5.17). Equation (3.10.25) is plotted in Fig.
3.10.2 for representative values for an He- Ne laser. As expected, a maximum
is obtained for the optimum value of T,

3.11. Properties of Laser Light

ight is both spatially and temporally coherent, whereas light from olh;r
::\::::gi:‘x;oslly i:c.oherzm. The small time bandwidth, Af, §nd the spm'al
bandwidth, Af,, achicvable with significant energy by the l.ascr hghl., are nearly
impossible to reproduce by thermal sources. In the‘ following, we discuss these
special aspects of laser light, as compared to the mc(?herem Ilghg ﬁ.'om other
sources with respect to directionality, monochromacity, and statistical pm
characteristics. The differences are so dramatic that although both laser light
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and light from other sources are the same electromagnetic waves, it would be
almost correct to say that there is a fundamental difference between them.

Intensity for a fixed bandwidth 4f.

A typical He- Ne laser output is 1 mW, whereas a high power pulsed laser
output is on the order of 10'* W, If the laser output has a wavelength, 1, and
a spread, A4, then

A
—Af'—/= -—%—, where f1 =
For 22 0.5 um, A1~ 107 um = 0.1 A, we have Af ~ 1.2 x 10° Hz. Each
photon at A = 0.5 um has energy ~4 x 10'® J. Thus, typical numbers for
photons emitted per second will be 0.25 x 10**¢ 1o 0.25 x 10?2 photons/s,
The number of photons emitted per unit Hertz will be approximately 2 x 104
to 2 x 10'°,

If we now compare the laser light with blackbody radiation from (1.8.11)
we obtain

2 !
thermal photon/s — Hz = AL AT 3 AA,

where the emission takes place from an area AA, and T is the blackbody
temperature. The Boltzmann factor for our case is given approximately by

739090 and is, in general, very small for ordinary temperatures. For T =
1000 K and A4 = | cm?, we obtain

thermal photon/s — Hz < 1.

Comparing this number with that obtained, even for a | mW laser, 2 x 103,

we see the enormous difference that exists between thermal light and laser
light.

Radiance

The angular spread, A9, of a typical laser beyond the Rayleigh distance is
approximately given by
a
Ao~ ",
d
where d is the aperture diameter. Thus
1
Af ~ d
The far-field solid angle, A

€2, into which the laser radiation is confined, can
be approximated as

2
AQ % (A9)? = (AAf,)* = ': .
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: 1
Thus the radiance of a laser source (1 mW) will be, for 4 = [ cm*,

-3
R - 10 w - 4 X '05 w/"-
laser AQ

As the thermal source radiates over a solid angle of 2z steradian, the radiance

will be given by Y,

Ripermat = Ii ;ﬁfli:’ -1

3
If we assume, for a thermal source, A2 ~ 10° A and T = 10® K, even then
~4 x 107'® W/sr.

Rllcmnl

This explains why even a | mW laser loka “brighter” than a thermal source
at T = 10® K by twenty orders of magnitude.

Brightness

The brightness of a source is given by the power output per stcn:\di:n_ o:; ::::
angle per hertz of bandwidth. For a laser with output power, P, the bnig

is given by 22 PA
Blaur = (P)/{<A>Af} = A’Af

Let us assume that we start with a thermal source of temprra:l:; :ml:;sa;::
filter it spatially as well as temporally to obtain an equivalent brig
the thermal source equal to the laser source. We obtain
hfA _PA .
Blhemul = (ehf/k‘f _ I)AZ - AzAf

To have identical brightness we nced a temperature T given by

_ ()
M _ | = VP y
or
W ! ~
K thf) kaf
In(l + P

Twm

Using P = 1073, Af = 10°, which is equivalent to A4 ~ 10 1 &, we obtain
T = 10" K.

This is also the reason why we should never look at a laser d?rcc(ly e\;c(:)r: ‘if ‘2(
has only 1 mW of power, as it will appear to you as a source with T ~ .
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Monochromacity and Coherence

The bandwidth, Af, of a good stable laser can be less than 1 kHz compared
to a thermal source which is of the order of 10'* Hz. To appreciate the
differences between these two numbers let us calculate the coherence time and
coherence length for both these sources. The coherence length of the laser is
~3 % 10** m. Thus using a laser source we can do an interference experiment
with path lengths ~ 300 km, whereas for white light this distance is only 3 um.
This is also the reason the laser light always has speckle pattern and its
intensity appears to fluctuate. Any reflection and scattering, even from far
away, can interferc and thus cause change in light intensity. For incoherent
light, in the case chosen as an example, any scatterer beyond 3 #m will not
cause any fluctuations of intensity. The coherence time of laser light is of the
order of milliseconds, whereas for thermal light it is ~ 1074 s,

3.12. Q-Switching and Mode Locking

3.12.1. Single-Mode and Multimode Lasers: Lamb Dip

In this section we will consider the eflect of homogeneous and inhomogencous
broadening on the laser output. We shall see that for the case of a homogene-
ously broadened linewidth, only one mode can oscillate whereas for the
inhomogencously broadened case, multimode oscillations will be common.

Let us consider a lasing medium situated inside a cavity. The pumping is
increased slowly from less than threshold to above threshold. The situations
are depicted in Fig. 3.12.1, where the gain curve versus the frequency of the
lasing medium is shown along with the discrete modes of the cavity. For
the much-below-threshold case, spontaneous emission is present. However,
because of the cavity, the cavity modes will add up in phase due to reflections
and will dominate. As the pumping is increased, the amplitude of the cavity
modes increases until the threshold is reached. Let us consider the case where
the threshold is increased suddenly to a large value such that qQuite a large
number of modes have gain. For each reflection, these modes grow expo-
neatially. For example, consider the mode with the highest round trip gain of
4. After 10 round trips, its intensity grows by a factor of 42° ~ 10!2 provided
the gain remains constant. For a different mode with gain constant 2 only, the
increase intensity is by a factor 22° ~ 10°. Thus we see that, because of this
exponential growth, the mode with the largest gain will dominate as time
passes. Also, as this mode increases, the gain of the other modes will start
decreasing because of the saturation effect. Eventually, in the stable condition,
the threshold condition will be maintained for a single mode and all other
modes will be in the spontancous noise level.

The above scenario of starting the oscillation of a laser is true for the
homogeneously broadened case; for the inhomogeneously broadened case,
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Fig. 3.12.1. Evolution of laser oscillation from spontancous emission: (a‘) initial, (b)
intermediate, and (c) final.

different modes can oscillate simultancously: -this can be understood by
considering Fig. 3.12.2. Below threshold the situation is the same as that
discussed previously in connection with Fig. 3.12.1. However, above thres-
hold, the gain of each mode is contributed by a group of atoms whose Dop-
pler frequency matches that of the mode frequency. For the ho_mogcncously
broadened case, all atoms match to a single {requency; for the mhompgcnc-
ously broadened case, different group of atoms contribute gain tg dnﬂgrenl
modes and thus all the modes with gains above the threshold level will oscnlla'te
with relative amplitudes determined by their gain constant - ‘.lhil is shown in
Fig. 3.12.2. We note that each mode will bring down the gain curve at that
frequency to the threshold value, keeping the other parts unaffected. In a sense,
cach mode will introduce a “hole” in the gain curve. Note that the output
power of the mode will be proportional to the corresponding area of the hqle.

If the inhomogeneous broadening is due to the Doppler effect of the moving




242 I} Lasers

0,0.q-1 0,0.q 0,0.9+1 0.0.q+2

]
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t
i

(m.nq’) (m,nqg'+1)
(c)

Fig. 3.12.2, Evolution of oxcillation with u Doppler broudened transition. (a) The top
curve shows the gain versus frequency. The bottom curve shows the amplitude versus
frequency of different modes. (b) Larger amplitude of different modes following the

8ain curve. (c) Gain curve with multimode oscillation. The dashed line corresponds to
threshold gain.

atoms, then another interesting phenomenon, the Lamb dip, occurs. Note that
for a wave traveling in the +z direction, the Doppler is opposite to that of
the wave traveling in the — z direction. For laser oscillation in a particular
mode, since the wave must bounce back and forth between the mirrors, it
forms a standing wave. The interaction takes place between two sets of atoms
with equal and opposite velocities— these introduce holes in the spectra, as
shown in Fig. 3.12.3. If only one mode is oscillating, and the cavity mode
frequency is shifted or tuned by changing the mirror sepuration, the output
will be given by Fig. 3.12.4 where there is a dip in the middle. Since the cavity
mode is near the edge, the power output is low corresponding to point (a); as
it approaches the center frequency, corresponding to point (b), the power
increases. However, when the mode is at the center, the two holes overlap;
and the power is less as the two holes merge, and the overall area decreases.
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Fig, 3.12.3. Holes in the spectra due to standing waves.

This dip in power is generally referred to as the Lamb dip, since it was
predicted by Lamb.

3.12.2. Mode Locking of Multimode Lasers

All of the practical lasers are inhomogencously broadened and thus, if Qpeciul
care is not taken to raise the threshold levei of all but one mode, mqltlmf)dc
oscillation takes place. The number of modes oscillating can be quite high.
For the case of an He—Ne laser, the linewidth Al may be approxlmatcli)-« (:)(2)
A corresponding to (Af Jpeypier ~ 1500 MHz Assuming a cavity length of 1
oM, (Af Juags = 150 MHz, and the number of modes excited will be 10. For the
case of multimode excitation, the output electric field, E,,,(t) will be given by

E ()= v E ,Ihlm*mh-‘.ﬂ'o.l' (3.12.1)

aul »
-{N 1)2

where E, is the amplitude for the nth mode, N is the total number of excited
modes, and ¢, is an arbitrary phase constant. There is no guarantee that ¢,
will be constant. If we can make it a constant by some means, then, tt'\c "“,’4"
arc locked. For this case of a mode-locked laser, assuming for simplicity
E, = E, = constant, we have

N+l

/2
E ()= E, ("Z‘ @30S0t ¢ MAS hat], (3.12.2)
—{N-1)2

where we have assumed ¢, = constant = 0,

Fig. 3.12.4. Lamb dip.
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‘ Equatﬁon (3.12.2) is similar to (2.8.16), discussed in connection with diffrac-
tion gratings, and can be written as

EOUI(‘) - Eoe“'fo‘ ‘ink{ [(Af)m,Nl]/Z}

i {[(A Dot 1/2) 123
The Plot of (3.12.3) for N large is very similar to the plotin Fig. 2.8.5; it has a
maxima at
1
t=p|-.
p (Af).mg' (3.124)
where p is an integer and a pulse width Ar given by
YR :
N Yot~ (8 oopere (3123

The maximum amplitude is NE,. Thus we sec that a mode-locked laser
produces very short pulses with a repetition rate of 1/(Af)poq,. For an He -
Ne laser, the pulse width is of the order of 0.6 ns. For an Nd-glass laser
(A Joppier ~ 3 x 10'2 (A1 ~ 300 A) Hz. For this case, Ar ~ 0.3 ps. For a dye
laser (Af)poppier ~ 3 x 10'* (A4 ~ 1000 A) with corresponding At ~ 30 fs.
Thgre are other techniques of reducing the pulse width even further to ~ 5fs
This will be discussed in a later section. .

We have not yet d.iscusscd how mode locking in a laser is petformed. To
understand this, consider the standing waves for all the modes. Including the
space dependence, (3.12.2) becomes

Eulz ) = E, Z Sin{[27(fo! + (Af Jmogent] sin kyz,  (3.12.6)

where
Jo + 1A )mose
k»=2n{~° ,n(vf),.a } (3.12.7)

Using trigonometric identities, we obtain
5 . . 2nv | . 2np
Eoulz, 1) = Eq ; sm[(q + n) 2d“] sin [(q + n) 2’:; z]‘

or

. E 2
Eo (z,0) = 2" Z: cos[(q + n)Z(r - :)] - ,;" y cos[(q + n):(t + z)]
» v

(3.12.8)
where

2d
a=Jo v (3.12.9)

N . 2

Gt

N R s S Y
Ao il
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Finally, we obtain

Epulz,t) = 7 cos - i

. R ¥4
b))
v

— COS - (3'2‘0)

y I S

v '—i x ‘+z)
WMa\' e

The above equation has two pulses, one propagating in the forward direc-
tion and one propagating in the backward direction. Thus, if we introduce a
shutter inside the cavity with shutter openings at times as shown in Fig. 3.12.5,
we will obtain mode locking. This shutter can be a simple acousto-optic or
clectro-optic modulator with a modulating frequency of (Af )., This form
of mode locking, achieved by forcing the longitudinal modes to maintain a
fixed-phase relationship, is called active mode locking. Mode locking can
be obtained without any shutters by using a saturable absorber inside the
cavity—this form of mode locking is called passive mode locking. Saturable
absorbers, mostly dyes in solvents, absorb the light passing through them for
low power, but pass light through with no attenuation for high power. Thus
a saturable absorber will act as a shutter. Since, in practice, the laser medium
itself acts as a saturable absorber for many cases, the laser can mode lock by

itself.

. x z
qn( z)sm Nﬁ(t + l—,)
1+

D__.

T Shutter

Lasing Medium

(a)

8hutter
Transmission

e 1/(A0) mose — —t

(b)

Fig. 3.12.5 Mode locking of a laser using a shutter inside the cavity: (a) configuration;
and (b) shutter transmission as a function of time.
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3.12.3. Q-Switching

Q-switching is a transient phenomena. This means we can obtain a very large
peak pulsed power fr_om a laser even if it can only deliver much lower CW
power. Q. or the quality factor of a resonant circuit, is a well-known attribute
in radio engineering, It is defined as
0 = 2n energy stored at resonance
e lost in » (3.12.11)
energy lost in a cycle

If an L-C circuit (Fig. 3.12.6) is used as the resonant system, then we have

0= wol 1
S (3.12.12)

where L, C, and R are the inductance, capacitance, and resistance in the circuit
and the resonance frequency is given by ,

w | — -
fo=?£=.2.’;(\/[,(‘)“. (3.12.13)
It can be shown that
0 - m_mﬁhalf wjdth

resonance frequency’ (12.14)

For an optical cavity, like a Fabry-Perot interfe i
por an o y interferometer, and using (2.173),

Q = resolving power = m";/F. (3.12.15)

@ is also related to the laser linewidth in a laser cavity and is given by (3.3.15¢)

0=# (3.12.16)

‘ To understand the Q-sw.itching of a laser, we note that a lasing medium
(.:n be pu.mped to a very high population inversion level or high gain when
the laser is not oscillating. This can be performed by removing a mirror or

Fig. 3.12.6. L-C equivalent circuit of a cavity.
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Fig. 3.12.7. Q-switched laser: (a) configuration of a Q-switched laser incorporating a
shutter; and (b) population inversion, output power, and shutter transmission ay a
function of time.

putting some extra loss mechanism in the cavity or, as it is called, by spoiling
Q or making it effectively very low. Note that if the laser oscillates in CW or
the Q is not spoiled, the high gain or population inversion density comes back
to the threshold value in the steady state situation. However, at the bcg‘mning.
when the Q of the cavity is just restored, the laser output corresponds to
the initial large population inversion density. If this continues, the output
decreases asymptotically to the steady state value. In Q-switching, this Q-
spoiling is done periodically to obtain giant pulses.

A typical Q-switched laser is shown in Fig. 3.12.7 where a shutter 18
introduced inside the cavity. This shutter might be an acousto-optic or an
electro-optic cell or a moving mirror which is mounted on a rotating shaft.
The moving mirror acts as one of the cavity mirrors and when they are aligned,
Q increases to a very high value. Figure 3.12.7 also shows the pumping of the
laser when Q is spoiled, and the optical output when Q 1s restored.

By including a saturable absorber, discussed in connection with mode
locking, we can also obtain Q-switching. We note that initially, the light
intensity is low, so the absorption is high and Q is low. However, us the
intensity builds up siowly, the absorption saturates, resulting in higher Q and
higher pulse power. The difference in operation between Q-switching and
mode locking is that the relaxation processes of the saturable absorber are
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much larger than 1/(Af) ., for Q-switching, whereas it must be less for the
mode locking. Similar arguments apply for the shutters, also. To obtain mode
locking, the shutter operating period must be 1/(Af )mode- Another way of
looking at Q-switching is to consider that large energy is stored by steady
pumping to the upper lasing level. This energy is released by the Q-switch in
a short time. The situation is very similar to charging a capacitor by a d.c.
voltage to a large value to store energy, and then discharging it through a
switch to obtain a large spark of current.

To analyze the Q-switching mechanism, we note that since the light pulse
duration is very small, we can neglect pumping and changes in population
during the pulse. We will also consider that the shutter is instantancous. The
rate of change of the number of photons, ¢, in the cavity during pulse is given

by
de ol 1
;,7'¢(7—,-—;> (3.1217)

where y is the exponential growth constant, v is the light velocity in the lasing
medium, and ¢, is the cavity decay constant. Equation (3.12.17) can by derived
by noting that

dl  dlI dz

— = = ypl, 12,

dt dzar " (3.12.18)

where I = intensity = I,e” = vgp. The factor L/I(L is the length of the active
medium and ! is the cavity length) comes in because the amplification takes
place only within the lasing medium.

Equation (3.12.17) can be written as

do y u
where T = tft,,

7 = l/uvt, is the threshold gain constant,
n is the population inversion,
and n, = N, Vis the total population inversion at threshold.

For every photon generated, an eloctron makes a transition from the upper
level to the lower level. Thus, the change in nis — 2 for cvery photon generated.
As the rate at which population difference is changing must be exactly equal
to the rate at which photons are increasing, we have

i g (3.12.20)

Equations (3.12.19) and (3.12.20) give the evolution of a giant pulse in Q-
switching. Dividing (3.12.19) by (3.12.20), we obtain

do _n
n=3 b (3.1221)
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Solving the above equation we obtain

Hamn" - - (3.1222)
o-p= i["' lnn‘ (n n.)].
where @, and n, are the initial values. As ¢, is negligible, we obtain
o= i[n, In E. —(n-— n,)]. (3.12.23)

We also note that for ¢ large, @ — 0. Thus, denoting by n, the final value of
the population inversion, we obtain

M exp {"':."_t}, (3.1224)
n, n,

The transcendental equation can be solved numgﬁmﬂy to obtain n; vefrsus.n,.
However, a meaningful quantity is the energy utilization factor or the ra(iuot:
of energy stored in the population inversion that Bets convcrtcdr toa as;f
pulse. This is given by (n, — n,)/n,. A plot of n,/n,-ly shpwn as a uncuonh“
(n, — n)/n,in Fig. 3.12.8. We note that the energy utilization factor approac!

100%, as n,/n, increases to a large value.
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Fig. 3.12.8. Energy utilization factor (n, — n,)/n, and the inversion remain A
gi:;lt pulse. (From W.C. Wagner and B.A. Lengyel, Evolution of the Giant Pulse in a
laser, J. Appl. Physics, 34, 1963.)
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The laser power output is given by

P=hfp= h-f[n‘ ln-"- -(n - n,)]. (3.12.29)
2 n,
To find the maximum power we apply the condition
dp =0, (3.12.2¢)
dn

from this we obtain the result that peak power occurs at n = n,. Thus peak
power occurs at the beginning of the pulse as expected.
Peak power is given by

hf n
Ppul = i?c ["l ln"’: - ("l -~ ”1)]~ (3!227)
As n, « nin usual practice we have
nhf
Pogur = T (3.12.28)

From (3.10.19d), we note that in the steady state CW operation, power is
given by

p"H (3.12.29)

tc
Thus, the peak power of the Q-switched laser can be one thousand fold more
or higher, since n, can be made very large compared to n, if the laser is not
lasing under a Q-spoiled situation.
The total energy E,,,, contained in the pulse is given by the multiplication
of maximum energy obtainable (n,hf72) and the energy utilization factor
Epy = "———‘ _ n"ﬂh'—f.

m 3 (3.12.30)

From (3.12.29) and (3.12.30) we can obtain an estimate of the pulse width, A¢,
by using the approximation

Pt~ E,,,
or

A= (3.12.31)

It is to be noted that there is a fundamental difference between the pulsed
mode of laser operation and the Q-switched mode. Q-switching can be incor-
porated in the pulse mode also. Figure 3.12.9 shows the fash lamp output,
cavity Q, population inversion, and laser output power versus time. Note that
for an ordinary pulsed mode, cavity Q will always be high and independent
of time. The laser output will also be a longer pulse with less peak power.
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Fig. 3.12.9. Time evolution of laser parameters during the formation of a Q-switch lhg
rotating reflector method. (From D.C. O’Shea ct al,, Introduction 1o Lasers and Their
Applications, Addison-Wesley, Reading, MA.)

Gain Switching and Relaxation Oscillation

Many lasers show intensity variation in the form of rela?(a(ign osc_illation
because of the fact that the laser field and the population inversion are
interdependent. To explain these oscillations we have to consider ‘thc finite
time to build up the population inversion and the time needed to build up the
oscillation from spontancous emission. For example, a CO, laser can be
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pumped very fast since the rate is of the order of 10* s due to collisions with

N, molecules. However, the spontaneous rate for the lasing frequency is only

0.357, Thus it takes a much longer time before the lasing output really builds

up. As the laser starts building up, the interplay between the laser field and

the population generates the relaxation oscillation.

Let us consider the time-dependent four-level laser equation given by

ﬂ=k— W,N-N, (3.12.32)
dt T

where 1 is the effective decay constant for the upper level excluding the

stimulated emission rate. We also know that the stimulated emission rate is

related to the number of photons, ¢, and is given by

W, = By, (3.12.33)

where Bis constant and is equal to y¥ L/l. The photon generation rate is given
by (3.12.19)

do @

- - . 31234
dr @BN ‘. (3.12.34)
In the steady state case
dN do
A 1} A2,
Qi = dr 0 (3.12.35)
The steady state solution is given by
1
Ny= . 3.12.36
°= B, (3.12.36)
and
RBt, — 1
00 == a3 (3.12.37)

The threshold pumping rate is obtained by substituting ¢, = 0 in (3.12.37).
Therefore

R= . A2
™ B (3.12.38)
Substituting the value for R, we obtain
r—1
- 312,
®o B (3.12.39)

where r = R/R,.

Note the difference between the case being considered now and the Q-
switching case. In the Q-switched case we neglected the pumping rate. To
obtain the relaxation oscillation, we consider small perturbations around the
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equilibrium value "
N(t) = Ny + N, (1), (3.12.40)

o(t) = @ + o, (1). (3.1241)

Note that N, (t) « N, and ¢, (1) « ¢g. Substituting (3.12.40) and (3:|2.4|) into
(3.12.32) and (3.12.34) and neglecting higher-order terms, we obtain

N | _ReiN, - ® (3.12.42)
dt {
oy _ppr - M (3.12.43)
dt R /
Eliminating N, from (3.12.42) and using (3.12.43) we obtain
o, de, ( ! ) - 31244
k. Y v (RB-— )@, =0, (3.1244)
at TRBl A
o d? d ]
"4 r ‘pl - l —0'
at teat ut(' )

where r = RBt_t. The solution of (3.12.44) is given by

@(t) oc €™ cos w,t, (3.12.49)
where
r
20

PR ’(')' (3.12.47)
Om = ttt(" - 2t) o

As the power output is proportional to ¢(t), we see that t.he Yaria(ion of
laser output intensity will be in the form of decaying osc:llatnon; or the
relaxation oscillation. A typical relaxation oscillation of an Nd laser is shown
in Fig. 3.12.10.

o« (3.12.46)

and

)

{ —

Light
ntensity
(srtetrary units)

Fig. 3.1210. A typical intensity relaxation oscillation in a laser.
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3.13. Lasers

If properly pumped, any matter, gas, liquid, or solid, is cupable of lasing. Thus
the subject of laser types is a vast one, and it is impossible to cover each and
every system. In this section we mention some important and practical ones.

These can be subdivided into four different categories: gas, solid, dye, and
semiconductor lasers.

3.13.1. The Gas Laser

Before we discuss individual laser systems, it is of interest to point out some
common features. For a gas laser to be practical there must be a container of
gas, generally made of glass, so that it is transparent to the desired radiation.
Il a large electric field is applied across this gas, as shown in Fig. 3.13.1, the
mobile electrons and ions accelerate and collide with gas molecules. If the
voltage is large enough, they produce ionized and excited molecules or atoms.
The excited atoms in turn emit light and this whole process is generally known
as a gas discharge. Magnetic ficlds are often used to confine the gases. Radio
frequency electric fields are also sometimes used to form the discharge or to
aid it in conjunction with a d.c. voltage.

The cavity mirrors can be either inside the gas container or outside. If they
are inside (the internal mirror arrangement), then the output light is generally
unpolarized. For the outside case, to minimize reflection loss, gas container

edges are cut at a Brewster angle. The Brewster angle, fy, is given by (see
Section 2.12.2)

0y = tan™! \/:2, (3.13.1)
|

Cathode §.

Ballast
resistor

Fig. 3.13.1. Simplified electrical circuit for a gas laser. A larger voltage is needed 1o
start the discharge than to maintain it, so a high-voltage pulse is applied to the gas

when the laser is turned on. The ballast resistor serves to limit the current once the
discharge is initiated.
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where n, and n, are the refractive indices of the glass and the gas mixlprc,
respectively. It is known that light incident at (hg I?rcwslcr aqglc, polarized
parallel to the plane of incidence, has a transmission coefficient of 1. The
passage of light through a glass container at the Brcwst.cr ?nglc does not
involve any transmission losses and thus the parallel polarization component
has a higher effective gain. Thus for the outside mirror arrangement, radiation
is plane polarized in general.

The He-Ne Laser

The He-Ne laser is the most popular laser, and was lhg first laser to be
demonstrated operating in CW mode. The energy-level dmgrum gl‘ helium
and ncon atoms is shown in Fig. 3.13.2. Note that actual laser emission takes
place through the ncon energy levels. Helium gas is present (o pro_vndc more
efficient excitation. In general, a 10 : | mixture of helium and neon is used. As
shown in Fig. 3.13.2, the transition from the 5s energy lcvgl to the 3p energy
level forms the well-known red light (1 = 0.633 um) emission. Two other

He +
—
19 I
18 |
Ne:*
2 47 (2p)* Intrared taser(3 38um)
3 - 3s p
—: - T 3
5 16 -:-28 Red laser(0.6328um)
g (2p’as) 2p :
o (2p’5s)‘ infrared 14
E 15 Laser m‘o
é (~1.15um)
b 4 -
g
w | —- §
2p*3p)*

13k (2p"3p)

12 | Dittusion to walls

1 F impact

»
Y 'S (2p)*
Helium Neon

Fig. 3.13.2. He-Ne energy levels. The dominant excitation paths for the red and
infrared laser transitions are shown.
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transitions (3.39 ym from Ss to 4p and 1.15 um from 4s to 3p) also produce
cflicient lasing action if infrared mirrors are used. In general, an He - Ne laser
is excited using clectric discharge as shown in Fig. 3.13.1. The electrons
produced in the discharge collide with helium atoms in the ground state, and
excite it to metastabic states like the 2's and 2°s energy levels. We note that
the 2's level of helium has very nearly the same energy as the 5s level of neon.
The same applies to the 2%s level of helium and the Ss level of neon. Thus, in
the collision of a 2's level excited helium atom and a ground level neon atom,
the helium atom loses energy going to the ground state, whereas the neon
atom is excited to the 5s level. This resonant collision and subsequent excita-
tion of the neon atom is far more efficient than the direct excitation of neon
atoms.

Both the 0.633 ym and 3.39 um transitions start from the same Ss level.
The 3.39 um transition has a higher gain and thus the laser tends to lase at
this frequency unless precautions are taken. This might be to ensure that the
cavity mirrors have a very small reflection coefficient at 3.9 #m. Sometimes,
small magnets are placed along the length of the laser cavity to create an
inhomogeneous magnetic field, which in turn broadens the 3.39 #m line more
than the 0.633 um line. Higher linewidth reduces the amplification factor.

In general, the output power of the He~Ne lasers is in the 0.5-5 mW range.
The larger the output, the larger the cavity length and thus the size of the laser.
Maximum power is less than 100 mW. Both the outside and inside mirror
arrangements are used to manufacture these lasers.

The lon Gas Lasers (Ar, Kr)

Helium, neon, argon, xenon, and krypton are noble gases and they have
clectronic states capable of laser transitions. However, except for neon, noble
gases are difficult to pump and thus are not of practical interest. However, if
these noble gases are first ionized by electron collisions, then they are easy to
pump. Actually, they form the highest power visible lasers producing tens of
watts. A typical ion laser tube is shown in Fig. 3.13.3. The cathode is coated
with a material which emits a large quantity of electrons which in turn produce
a very large discharge current (~ 1000 A/cm?). The current is confined by the
magnetic ficld to a small-diameter bore. This also helps to reduce the collision
between the ions/electrons and the glass container. Because of high current
density, intense heat is produced. Thus the material for the smali-diameter
bore is generally either graphite or beryllium oxide. The laser is also water-
cooled to dissipate some of the heat.

Typically, a trigger pulse is needed to initiate the discharge. Because the
clectrons are more mobile than ions, the ion concentration near the cathode
builds up which in turn tries to shut off the laser. To remedy this, the bore
material has staggered off-axis holes so that the ions can use this as a return
path to diffuse toward the anode.

The energy-level diagram of Ar* is shown in F ig. 3.13.4. An Ar* ion laser
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Brewster

Bore Brewster
window Water in

window

Cathode Anode

- Graphite or
- Deryllium oxide
== segment

Fig. 3.13.3. Construction of an ion laser tube. The water jgckct and magnet windings
surround the tube. The return path permits diffusion of ions back 10 lhc‘anodc u_)
equalize the pressure caused by a pileup of neutralized ions at lhg cathode. (From Q.(
O’Shea et al., Introduction to Lasers and Their Applications, Addison-Wesley, Reading,

MA)

can oscillate simultaneously in many frequencies with typical output powers,
as shown in Table 3.13.1. If a single frequency is needed, then cithcr'a prism
or a diffraction grating is used to select a particular line. The Kr* ions can
also lase in many frequencies with typical power outputs as shown in Table
3.13.1. Sometimes an Ar* and Kr* mixture is used as a lasing medium to
obtain nearly “white light”.

1/2 4p*s°®

3/2
1/2

1/2

3/2
5/2
7/2

4p*D°

5017.63

Fig. 3.13.4. Energy level of Ar* laser transitions. (From W.B. Bridges, Appl. Phys. Lett.,
4,1964)
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Table 3.13.1. Table for wavelengths
and power output for typical argon and
krypton ion lasers.
Laser  Wavelengthin A Power output
Ar? 5145 2w
5017 03w
4965 (RR
4880 jow
4765 LIW
47127 S0 mwW
4657 30 mwW
4579 600 mW
4545 10 mW
Kr* 6746
6471
5682
5308
5208
4825
4762
2619
The Metal Vapor Lasers

In a metal vapor laser, the solid metal is first vaporized and then brought into
the discharge tube to be ionized. The two most successful lasers of this kind
are the He Cd and He- Sc laser. In an He - Cd laser, metastable helium atoms
are used for the resonant transfer of energy to caudmium ions by collision, in
4 manner similar to that discussed in connection with the He - Ne laser - this
is shown in Fig. 3.13.5. An He-Cd laser oscillates in blue (0.442 um) and
ultraviolet (0.325 um). The energy-level diagram for an He -Se laser is shown
in Fig. 3.13.6. For this case helium ions, by collision with selenium atoms,
transfer energy to excite them to the upper lasing levels. An He- Se laser is
capable of lasing in 0.46 um-0.65 um.

The typical power range of these lasers is 5-25 mW. As mentioned before,
in thesc lasers the metal is heated to vapor and is eventually transported
towards the anode. Thus, when the metal is all used up, the laser ceases to
operate. To avoid this, either a return path is provided to recover the metal,
or a cathode, an anode, and a metal source are added to both ends of the tube.
In the latter case, the use of the cathode at one end and the anode at the other
end is alternated.

The CO, Laser

The CO, laser is a moiccular laser where the vibrational levels of one carbon
atom and two oxygen atoms, bonded by chemical means, are used. Except for
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Fig. 3.13.5. An He~CD laser. (From D.C. O'Shea et al., Introduction to Lasers and Their
Applications, Addison-Wesley, Reading, MA )

Helium Selenium
atom and atom and
ion Charge ion
transfer Muitiple ines

{(visidle)

2's
2'S B 1§

i

lon-electron
recombination
at wait

ground ground
state state

Y i i it He-Se laser. (From
Fig. 3.13.6. Encrgy-level diagram and important transitions for l?tc :

D‘.‘(;. O'Shea et al., Introduction to Lasers and Their Applications, Addison-Wesley,
Reading, MA))



- - .

‘.
W
4

260 i11. Lasers
18cm™
- )
vibrational | & "
energy
2,000 |- transfer
during
coliosion
- oo
€ c
s g §
o = I
2 oo L Pediative\Decay | Radiative | S
: Decay w w
L (010)
CO2Ground state(000) N2 ground
state(r-0)
(a) (b)

Fig. 3.13.7. (a) Some of the low-lying vibrational levels of the carbon dioxide (CO,)
molef:lfle. including the upper and lower levels for the 10.6-um and 9.6-um Iasczr
transitions. (b) Ground state (v = 0) and first excited state (r = 1) of the nitrogen
molecule, which plays an important role in the selective excitation of the (001) CO,

level. (From A. Yariv, Introduction to Optical Electronics, Holt, Rineh i
Now York. 1976} s, Holt, Rinchart and Winston,

Junction lasers, it has the highest overall efficiency. It can also produce millions
of watts CW and even higher amounts in pulsed mode. The energy-level
dlag(am for CO, is shown in Fig. 3.13.7. Each vibrational mode contains many
rotational levels with small energy separation. Thus they are denoted as a
band. The CO, laser can oscillate both at 10.6 um and at 9.6 um; however,
the strongest gainis at 10.6 um. As for the case of an He - Ne laser, the addition
of nitrogen and helium improves the output significantly.

The ‘ovcrall efficiency of CO, lasers can be as high as 30%,. The output
power is proportional to the length of the discharge tube - it can produce
approx!matcly 100 W/m of the discharge tube length. However, it takes
approximately 12 kV/m for discharge with CO, at atmospheric pressure. For
a lower pressure, the voltage needed is less, but it produces less power. To

solve this problem of a high-voltage supply, two approaches have been very
successful. These are:

(1) the Transverse Excitation Atmospheric (TEA) laser, and
(2) the gas dynamic laser.
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Fig. 3.13.8. TEA laser. The discharge occurs perpendicular to the laser cavity.

For a TEA laser, atmospheric pressurc is maintained in the discharge tube;
but the gas discharge is not maintained by applying an electric field in the
longitudinal direction but rather in the transverse direction, as shown in Fig.
3.13.8. Since the discharge takes place at a critical electric ficld, less voitage is
necessary for transverse excitation. The transverse directions are of the order
of 1 cm requiring only 0.12 kV. In general, the discharge is to be maintained
uniformly over the whole discharge length, and special care is taken in the
design of the anode and cathode. The TEA lasers arc the most important of
the commercially available CO, lasers.

The gas dynamic laser does not use an clectrical discharge. For this case,
the gas mixture is first heated, then compressed, and finally sent through a
nozzle into a region of reduced pressure. The thermodynamic cnergy stored
due to heat and compression is the source of pumping.

The principles of shock tube and rocket technology are applicable for the
design of these lasers. They produce enormous amounts of laser output.
However, they are bulky and are associated with a tremendous amount of
audible roar associated with the high-pressure gas exhaust. Depending on the
type of discharge and flow, CO, lasers can be of four basic types. These are:

(1) axial discharge with slow axial flow;

(2) axial discharge with fast axial flow;

(3) transverse electron-beam preionization with fast transverse gas flow; and
(4) transverse discharge with transverse fast flow.

A typical axial discharge with a slow axial flow CO, laser is shown in Fig.
3.13.9. It generally delivers 50-70 W/m and depends on the efficiency of heat
transfer from the gas to the cooling liquid that surrounds the lascs tube in
separate jacket or tube—typical tube lengths are 2-3 m. By combining
separate discharge tubes with electrical input and gas flow in parallel, power
output up to ~ 1 kW can be achieved. The lasers can be pulsed to obtain very
high peak power. The tube diameters are generally small, resulting in low-
order modes only.

For the case of the axial discharge with a fast axial flow CO, laser, the
gus mixture is blown through the luser tubes at high speed; also, the mixture
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0.05 kW/m

Fig. 3.13.9. Axial discharge—axial flow CO, laser schematic.

is recycled through a heat exchanger. The power output is of the order of
600 W/m. The tube diameter may be quite large; thus, unstable and higher-
order mode outputs are common— typical outputs are 0.5-10 kW CW,

The transverse electron beam preionization with a transverse gas flow type
CO, laser uses a lower voltage to sustain the discharge. This is possibie by
using an clectron beam (o ionize the gas. The clectron beam is generally
produced in a high vacuum by thermal emission from a large planar filament
cathode; this beam is then accelerated using a high voltage. The high-energy
electrons strike a thin metal foil separating the high vacuum of the electron
gun and the high-pressure laser cavity. Secondary electrons ejected from the
foil produce the actual ionization of the gas. This ionized gas can be main-
tained in discharge using a lower voltage which is also optimum for popula-
tion inversion. The power output of this laser is of the order of 10 kW/m and
a typical power output is 50 kW CW.

A typical transverse discharge with transverse fast low CO, laser is shown

Fig. 3.13.10. Transverse discharge—transverse fast flow CO, laser schematic,
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in Fig. 3.13.10. The gas flow rate is of the order of 60 m/s and the gas is
recirculated. No electron beam preionization is used. The discharge takes
place between a hollow water-cooled cathode and a water-cooled segment of
the anode individually connected to a ballast resistor. Because of the trans-
verse excitation, relatively low voltage sustains the discharge at quite high
current. Typical power output is 600 W/m. However, in general, the beam is
folded back and forth through the discharge region five to seven times to
achieve a power output of 2.5 kW for a 1.2 m mirror separation.

The Nitrogen Laser

The nitrogen laser is also a molecular laser and is an important source of
pulsed ultraviolet radiation at 4 = 0.3371 um. The lasing action is produced
by the transition of electron from state to state, as shown in Fig 3.13.11,
Unfortunately, the lifetime of the upper level is of the order of 5 ns, whereas
for the lower level it is in the microsecond range. Thus the laser can only lase
for 5 ns or less provided it is pumped in less than a few nanoseconds. This gas
discharge of the nitrogen laser is thus generally obtained by discharging a
large capacitor consisting of two parallel plates containing nitrogen. The gain
of the nitrogen laser is so high that it can oscillate without any feedback in
the superradiant fashion; that is, neither of the mirrors in the cavity are needed.
One mirror is generally used and the cutput side contains no mirror at all.
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Fig. 3.13.11. Encrgy-level diagram for N, showing the common laser transitions. (From
).T. Verdeyen, Laser Electronics, Prentice-Hall, Engelwood Cliffs, NJ, 1981.)
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Peak output power can be in the megawatt range. However, pulse widths are
in the nanosecond region with a repetition rate of a few hundred hertz,

The Excimer Laser

The excimer laser is also an important source of ultraviolet radiation, and
does not have the disadvantage of short duration due to fast lifetime in the
upper level. The excimer or excited state dimer is a bounded combination of
two atoms in an excited state. Denoting the excited states by an asterisk, the
common ones used are Ar?, Krf, X (noble gases), ArO*, KrO®, XeO* (rare
gas oxides), and ArF*, KrF*, XcF* (rare gas halides). Note that in general the
noble gases do not form a molecule; however, in the excited state, they can.
These excimers can act as either a pump like helium in an He-Ne laser or can
be the lasing level itself.

Excimer lasing action can be obtained by an electrical discharge or an
electron beam pumping. The electrical discharge is very similar to the case
for a nitrogen laser. For the case of electron beam pumping, clectrons are
accelerated to energies of the order of 1 McV. These high-energy electrons, in

a pulse mode, impinge on a high-pressure gas reaction chamber to excite the
excimers.

The Hydrogen Fluoride (HF) Chemical Laser

The HF laser's ingredients are molecular hydrogen and fluoride gas. In
general, these molecular species do not react at low temperatures without
some external excitation such as ultraviolet radiation, high-energy electron
injection, or electrical discharge. The chemical reaction produces hydrogen
fluoride in the vibrational excited state. The reaction is highly exothermic and
a large quantity of chemical energy is released. This excess energy is the
equivalent pumping energy for this chemical laser. It is to be noted that this
chemical energy is enormous compared to other forms of pumping energy.
This is apparent from the fact that the chemical energy stored in one gailon
of gasoline is enough to move a car at high speed to a distance of 100 km.
Some of the actual reactions that take place between atomic and molecular
hydrogen and fluorine are:

F+H,-HF(v <3 +H, AH = —31.7 kcal/mol,
H+F,-HF(v<9)+F, AH = —979 kcal/mol,

v denotes the vibrational levels of the HF molecule. It is to be noted that the
end product of the reaction also contains atomic hydrogen and fluoride. Thus,
once the reaction starts it continues until all the molecular H, and F; are
consumed, as in the burning of fuel. Chemical lasers have produced the highest
levels of total power in a pulsed condition---hundreds of kilo-joules in a
sub-microsecond pulse duration.
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HCI, DF, and carbon monoxide lasers. The DF and Hcl l‘ascr5 are very %imll?r
to the HF laser, except that hydrogen is replaced by its isotope deuterium in
DF, and fluorine is replaced by chlorine in the HCl laser. The CQ laser emits
in the range between 5-6 um. A mixture of cyanogen (C;N;), helium, and air
is passed through an electric discharge. The discharge produces the following

chemical reaction:

The vibrationally excited CO molecuies panicipate‘ in the lasmg action.
Helium simply aids in improving the eﬂ'ncicn.cy. A typnql DF laser is shown
in Fig. 3.13.12 where F;, is heated with a carrier gas (helium) and .thcn‘ paﬁ
through expansion nozzles, very similar to that in the gas dynamnc‘laser. .

chemical reaction takes place after this expansion and in the optical cavity

D, is injected. ‘

Whg;cmzical lajsers have many attractive features, some of which have almdy
been mentioned. These lasers produce the highest output power per unit
volume and per unit weight. In general, chemical reactions excite vibrational
levels and thus the output wavelength is always in thg infrared (1 pm to ‘I2
um). If one-shot large power is needed as, for example, ina star wars scenano,
chemical lasers can produce large amounts of destructive energy without any

electrical power.

Gas
inlets
Fe Eupn:\suon Brewster
He ~ ~- nozzle window
V
Laser
Heater output
0,
injection - — Output

Mirror

Brewster
window Heat -

exchanger

Gas
exhaust

Fig. 3.13.12. Schematic of a chemical laser. Onc of the chefpical reactants (’in lhlll case,
F,) is heated with a carrier gas (He) and allowed to cxpa{\d just before mixing with the
second reactant (D,). The reaction tukes place in the region between the two Brew'ncr
windows. (The enclosure around this area has been omitted for t.he sake of clamy)
The output beam is in a direction transverse to the gas flow, as in the gas dyn,mnc
tuser. (From D.C. O'Shea et al., Introduction to Lasers and Their Applications, Addison-

There are other chemical lasers which have been found useful. These are Wesley, Reading, MA)
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3.13.2. Solid State Lasers

Thf: first laser demonstrated by Maiman was a ruby laser. The other importamt
solid state lasers are a neodymium YAG laser and a neodymium- glass laser.

Because of the importance of semiconductor junction lasers, we shall discuss
them separately.

The Ruby Laser

Tht-: ruby.c‘onsists of a crystal of aluminum oxide with chromium (Cr**)ions
as impurities. Actually, the distinctive pink color of ruby comes from the
impurity atoms. The energy-level diagram of the ruby laser is shown in Fig.
3.13.13; the blue and green absorption bands of chromium ions are shown in
the ﬁgure. Because of the large crystal field present in the host aluminum oxide
lattice, th.e degenerate energy levels become split. The lasing action occurs by
the transition from this split level (2E) to the ground state. The lasing wave-
lengths are at 0.69430 um and 0.6927 um, although the first one dominates.
Thf: laser is generally pumped optically using a flash lamp  such as a xenon
helical flash lamp—a typical setup is shown in Fig. 3.13.14. Because of the
large amount of heat generated by the flash lamp, liquid coolants are often
u§cd. The flash lamp is excited by discharging a large capacitor charged with
high voltagc, since the flash lamp needs a large amount of current. Generally,
the operation 'is pulsed although CW operation is possible. '

The radiation from the flash lamp excites electrons to 4F, and 4F, (the
gre.cn.and blue absorption bands) electron states from which, by spomarzlcous
emission, the lasing 2E levels are populated. Because of this, it is important

that the flash lamp spectra match these absorpti i
ption bands for better effi .
Note that the ruby laser is a three-level laser. ey

Blue absorption

®

“F,

-_— 2‘.

Green absorption
4F'

Optical
pumping

@ 2E

2
* * RI =694.3nm
A, R2-692.7nm

R

®

I‘Tig. 3.13.13. Energy-level diagram of a tuby laser. (From D.C. O'Shea et al., Introduc-
tion to Lasers and Their Applications, Addison-Wesley, Reading, MA.)
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§ ) \§
End mirror .~
Output
W =
L ——
Charging ‘ | | Trigger puise

power supply IC ( | __U__U | generator

= Trigger
! transformer _L

Fig. 3.13.14. Schematic of a simple flashlamp-pumped laser. The trigger pulse generator
and transformer provide a high-voltage pulse sufficient to cause the xenon gas (Xe) in
the lamps to discharge. The ionized gas provides a low-resistance discharge path to
the storage capacitor (C). The inductor (L) shapes the current pulse, maintaining the
discharge. The discharge of the lamps optically pumps the laser rod (R).

The laser rod is, in general, placed inside the cavity with two external
mirrors. For this case, in general, the laser rod is positioned at the Brewster
angle to reduce reflection at the ends. This, however, makes the output light
polarized, as explained in Section 3.13.1. It is possible to usc a coating at the
end of the laser rod so that no external mirrors are needed. However, this is,
in general, not used, as the mirror coatings are subject to damage due to high
laser power.

Mirrors are also used to focus the radiation from the {lash lamp con-
centrated at the laser rod. A very practical arrangement is to use an elliptical
mirror with the cylindrical {lash lamp at one focus and the laser rod at the
other focus of the ellipse -—this is shown in Fig. 3.13.15.

The Neodymium-YAG Laser

The YAG (yttrium-aluminum - garnet, Y;Al;0,,) is a crystal in which Nd**
jons can be used as impurities; these Nd** ions are responsible for the lasing
action. The energy-level diagram is shown in Fig. 3.13.16. The laser emission
occurs at 1.0461 um when clectrons make a transition from the upper level
4Fy, to the lower level 41, ,,. Many other laser transitions are possible which
are not shown in Fig. 3.13.16—these range in wavelength from 0.94 um to 1.4
um. Note that since the lower level is not the ground state, and is ~250 meV
from the ground state, in general the lower level is nearly empty; thus the
Nd-YAG laser is a four-level laser. The operation of the laser is somewhat
similar to that discussed in connection with the ruby laser. There are absorp-
tion bands between 1.5 ¢V and 3 ¢V. The flash lamp excites electrons to these
absorption bands from which electrons populate the upper lasing level by
spontaneous emission. Because of the four-level nature, the Nd YAG laser is
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Fig.. 31318 Typical continuous solid state laser arrangement employing an eiliptic
cylinder housing for concentrating lamp light onto a laser. (From A. Yariv, Introduc-
tion to Optical Electronics, Holt, Rinehart and Winston, New York, 1976.)

very easy to operate in the CW mode. In many commercial operations, the
mﬂ:arcd emission of an Nd-YAG laser is frequency-doubled to the visible
region using a nonlinear interaction in a crystal.

The Nd-Glass Laser

The Nd** ions can alsq be placed in glass as a host material rather than in
the YAG crys_tal. A typical glass is rubidium potassium barium silicate; the
energy-level diagram of Nd** in this glass is shown in Fig. 3.13.17. As with

14,000 ( *Hy 2
—F,
12000F — ———— Fs:
‘F.'S 2
10,000
8000 |

8000F — T ‘e e

4000 + “hae
—Y

2000 s

Ol cmee— A'.z

Fig. 3.13.16. Energy level diagram of Nd®~ in YAG.
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Fig. 3.13.17. Energy-level diagram of Nd; in rubidium barium silicate glass.

the Nd-YAG laser many lasing wavelengths are possible. The glass being an
amorphous material rather than crystalline with fixed periodicity, the energy-
level splittings of each individual atom are not identical. This gives rise to a
large fluorescent linewidth for the glass. Thus, the glass laser will have a larger
threshold than that of the YAG laser. Many times YAG is used as the master
oscillator (laser) and Nd-glass lasers (without the feedback mirrors) are used
as light amplifiers.

The Nd-glass lasers have produced one of the highest peak pulsed powers
produced by any laser. This is possible because of the advantages Nd-glass
has over Nd-YAG. First of all, large volumes of glass can easily be fabricated
as there are no restrictions due to its crystalline nature and the glass laser can
casily be segmented with coolants in between. In general, glass disks with
Brewster angle ends are generally used as laser rods for the Nd-glass disk

laser amplifier. )

3.13.3. Dye Lasers

Dye lasers are liquid lasers where the active material is dye in a host medium
of a liquid solvent, such as ethylene glycol. The situation is very similar to
solid state lasers when Cr** or Nd3* is used in a solid host. The advantage
of a liquid host is that the concentration of the active ions can casily be
changed; the gas lasers have the same advantage. However, the concentration
of active ions, and thus the gain, can be much higher for liquid than for gas
because of larger concentration.

The dye laser has a unique property which the other lasers do not have, it
can be tuned over a broad range. For the case of gas or solid state lasers, the
linewidths are very small. Actually, we usually look for narrower linewidths
as this makes the threshold power for pumping much smalier; however, the
output of the laser can be tuned over the linewidth only. For the case of dye
lasers the lines are really bands and they extend not a few angstroms but rather
a thousand angstroms. Thus, dye lasers with an external tuning clement can
be tuned over a very broad range. However, we pay 2 price for this, the dye
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Fig. 3.13.18. Schematic representation of the energy levels of an organic dye molecule.
The heavy horizontal lines represent vibrational states and the lighter lines represent
the rotational fine structure. Excitation and laser emission arc represented by the

transitions A — b and B — a, respectively. (From A. Yariv, Introduction to Optical
Electronics, Holt, Rinehart and Winston, New York, 1976.)

laser has a very high threshold power and in general another laser, such as an
argon ion laser or a nitrogen laser, is needed to pump it.

The energy band diagram of a typical dye laser is shown in Fig, 3.13.18.
The organic dye molecule is known to have two excited states: singlet states
denoted by S,, 5,, and S; and triplet states denoted by T, and T,. In the singlet
state, the total spin of the excited molecule is zero whereas for the triplet state,
it is one. Because of the selection rules singlet—triplet transitions are forbidden.
The lasing action occurs, in general, by the transition from lower-lying S,
levels to different S, levels. For different dyes, the output wavelength range
and power is shown in Fig. 3.13.19, where an argon ion laser is used as a
pump. The most important dye is thodamine 6G which can be used between
0.57 um and 0.65 um with large CW power output. Table 3.13.2 shows the
list of organic dyes, their chemical structure, solvents, and range of lasing
wavelength.

The dye laser can be pumped by a flash lamp, un argon luser, or u nitrogen
laser; for the cases of a flash lamp or nitrogen laser, it is typically pulsed. Both
the ultraviolet lines or the visible lines of argon can be used as an eflective dye
laser pump. If the visible wavelengths are used, then the dye laser wavelength
range is 0.56 um and higher. For shorter wavelengths, ultraviolet pumping is
needed. For nitrogen laser pumping using the 0.377 um line to improve
efliciency, a two-step pumping is often used. Two dye molecules are used: one
for the lasing action, the other for the efficient absorption of the 0.377 um
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Table 3.13.2. Molecular structure, laser wavelength, and solvents for some laser
dyes. (From B.B. Snaveley, Flash lamp pumped dye lasers, Proc. IEEE, 57, 1969.)

Dye Structure Solvent Wavelength
. *
Acridine red (H,CINH NHICHy CI° EtOH Red
600--630 nm
H
i *
Puronin B (CH )N H{C,H), ©1°  MeOH Yellow
H,0
H
. +
Rhodamine 6G  C,H,HN NHCH, CI™ EtOH Yellow
e o, MeOH 570-610 nm
H,0
COOC.H
L DMSO
Polymethy)-
methacrylate
. +
Rhodamine B (C,HIN 0 NICH), CI°  EiOH Red
McOH 605-635 nm
Coon Polymethyl-
methacrylate
Na-fluorescein NaO 0 EtOH Groen
H,0 530-560 nm
COON»
2, 7-Dichloro- HO 0
e iy EtOH Green
Tesce C Ct 530- 560 nm
COOM

7-Hydroxy- 0
on H,0 Bl

coumarin : o
m (pH ~9) 450-470 nm

#Met'hylem- OM H,0 Blue
belliferone (pH~9) 450-470 nm

Esculin mon H,0 Blue
(pH~9) 450-470 am

L 0'.0 [o],] f|‘ H
He~$—$—E—d—cn,om
| OM H OH I
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Fig. 3.13.20. Schematic diagram of a laminar-flow dye laser. The dye-laser cavity is
formed by the reflector and the output coupier. The other reflector serves to fold the
cavity so that the dye-laser output is parallel to the input pump beam. Dye stream
flow is perpendicular to the page.

line. This dye fluoresces in the longer wavelength, which produces efficient
pumping of the lasing dye.

The gain of the dye lasing medium is very high. Thus, a small volume dye
solution is needed to sustain the lasing action in an external cavity, as shown
in Fig. 3.13.20. The small volume of dyc, however, cannot be scaled in a glass
for CW operation, because of the intense heat generation and consequent
expansion and inhomogeneity of the lasing medium. In general, the dye
solution is pumped through a nozzle which forms a steady stream and a sheet
of dye solution at the Rrewster angle. The pumped laser is focused to this dye
volume using a pump mirror. Between the two cavity mirrors is a wavelength
tuning element such as a prism, diffraction grating, or birefringent quartz filter.
By adjusting the angles of the prism or the diffraction grating and the optical
axis of the quartz filter using a micrometer, we can choose the desired wave-
length. The birefringent quartz filter uses one, two, or three quartz plates. The
respective linewidths are 30f), 100, and 30 A, respectively. The quartz plates
are at Brewster angles in the cavity and their thicknesses are in the ratio of
1 :2:4. The tuning is performed by rotating the plates together.

3.13.4. Semiconductor Lasers

3.13.4.1. The Junction Laser

The most important laser for communication and clectronics is the junction
or diode laser. This is also the smallest laser we can build - the active area
having dimensions of the order of microns. Because of its small size, as in
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the use of semiconductor diodes for its operation, the junction laser can be
integrated with an electronic circuit. The laser output can easily be coupled
to the fiber-optic cable, the lasing frequency can easily be modulated in both
amplitude and phase electronically, the output power can be adjusted any-
where from microwatts to hundreds of watts, both CW and pulsed, and the
wavelength range can be selected from infrared to visible. These are some of
the important properties for which the junction laser will probably become
the most used laser in the next decade. It will be used extensi vely in fiber-optics
communication and in integrated optical circuits or photonics. In the next

section we discuss the light emitting diode (LED) which acts as the light
amplifier for the laser diode.

The Light Emitting Diode (LED)

To generate light, electrons must make a transition from an upper-energy level
to a lower-energy level. For the case of semiconductors, the upper-energy level
is the conduction band and the lower-energy level is the valence band, as
shown in Fig. 3.13.21. The bandgap, E,, determincs approximately the wave-
length of radiation

. E,(ineV)
Alin pm) = =354

Thus every semiconductor can produce light of a wavelength given by
(3.13.2). Table 3.13.3 lists the bandgaps of different semiconductors, Note that
we can make a complex semiconductor by combining GaAs and GaP, for
example, to make GaAs,_,P,. These ternary compounds have a bandgap
which varies smoothly with x. This is very important because this control over
the bandgap gives us the opportunity to obtain the laser wavelength desired
for some special purpose. For example, most fiber-optic cable has the lowest
attenuation at 1.3 uym, and Gag 37In, 43A8, . Py ¢ (lattice matched to InP
substrate) is used to make laser light for this fiber-optic communication
system. We might ask why the most popular semiconductors like silicon and
germanium are not listed in Table 3.13.3. The main reason is that silicon and
germanium are indirect semiconductors and thus for momentum balance of
the electron transition, not only a photon but a phonon is also involved. Thus,

(3.13.2)
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Fig. 3.13.21. Energy-level diagram of a semiconductor.
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Table 3.13.3. Bandgap of semiconductors.
Bandgap in eV

at room temperature Type of gap

Silicon 1.12 ln_direct
GaAs 1.43 Dlrect
GaSb 0.72 Direct
InP 1.35 Direct
inAs 0.36 Dnec(
CdTe 1.50 Duect
PbSe 0.26 Dnrect
PbTe 0.32 grecl

1.43-199 rect
Ohss P 2-2.26 Indirect
AlGaAs 1.43-195 ln@irecl

1.95-2.16 Direct
Ga,ln, ,As 036 t4) Indirect
InAs,P,., 036 -1.3% ,
GaSb 0.72 Direct
Pb,..Sn,De -
InGaP 1.35-2.26 '
HgCdTe 0.15-1.50 Dugc!
GaP 2.26 lnd,recl
AlAs 216 Indirect
InSb 0.17 Dirgcl
AlSb 1.68 Indirect
AlP 245 Indirect
GaAs,_,Sb, 0.72-1.42
Ga,ln,_,As,P,_, 094-1.38
GalnAsSb 0.73-0.3
PbEuSeTe 0.19-0.46
InAsPSH 0.35-0.62 '

the transition probability is very low and it is nearly ipmmible to _gcl any
light emission from indirect semiconductors. The semiconductors !nsled in
Table 3.13.3 are all direct semiconductors and they can all generate light effi-
ciently. Figure 3.13.22 shows the E versus K diagram (E is the energy of the
electrons and K is its wave vector) for a direct and an indirect semiconductor.

There is some difference between the gencration of photons by electron
transition in gaseous atoms like He- Ne or argon and that in a semiconductor.
In a semiconductor, in general, the valence band is nearly full and the absence
of clectrons in the valence band is conveniently represented by holes. In a
semiconductor, an electron-hole pair recombine to generate a photon‘of
bandgap energy. In an intrinsic semiconductor, or the scmﬁoonductor wh.xch
does not have any impurities, the number of electrons, n, in the oonduc_uon
band is equal to the number of holes, p, in the valence band and they are given

by

2
Nnmpmn = 2(‘;;) (m m,)¥4e=Eo/T (3.13.3)

where m, is the electron effective mass and m, is the hole effective mass.
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Fig. 3.13.22 An E versus K diagram of semiconductors: (a) direct bandgap and (b)
indirect bandgap.

Impurities can be added to a semiconductor to change the ratio of electrons
and holes. Thus donor impurities, which can release extra clectrons, can be
added to the semiconductor to make it an n-type. This means that if N, is the

donor impurity density and the position of the donor level in the bandgap,
E,, such that

E. — E, « kT,
then
n
Ny’
where n, and p, represent the number of electrons and holes in the n-type

semiconductor, respectively. Similarly, acceptor impurities can be added to

the semiconductor to make it a p-type. For a p-type semiconductor, with N,
acceptor density, we have

n, = Ny and Pa

P4

(3.134)

i
£ N,
When a p-type semiconductor and an n-type semiconductor are brought in
contact with each other to form a junction diode, an electric field develops in
the junction region. In the equilibrium condition, the electron and hole com-
ponents of current must be individually zero. As there are more electrons in
the n region, initially they move to the p region, forming a depletion region
of donor atoms charged positively. This continues until the electric field, due
to these charged immobile impurities, reduces the flow of clectrons from n to
p to match those from p to n. Similar arguments hold for the holes, and a
depletion layer of acceptor impurities charged negatively forms in the p side.

This is shown in Fig, 3.13.23. The depletion widths and the electric ficld Eqin
the junction region are given approximately by

2€Vo N‘ 172
= U sl 019

n, and P,z N,. (3.13.3)
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Fig. 3.13.23. A p—n junction showing depietion region.

g = zi‘fe[__ﬁ-___]}m 3.13.7)
=0 q NN, + N,)

and

E, = _g Nax,o (3.138)

The above clementary discussion of a p—n junction can be better repre-
sented by introducing the concept of the Fermi level in the energy band
diagram. Above the Fermi level at absolute zero temperature all the energy
levels are empty whereas below it they are full. At room temperature, for
typical semiconductors of interest, most of the levels above thg Fern'n level
will be empty. Thus, for an intrinsic semiconductor, the Fem'n_ leve] is near
the middle of the gap and the number of electrons and holes is very small
For a heavily doped or degenerate n-type semiconductor, the Fermi level is
in the conduction band itself. Thus, there will be a large numtfer of electrons
and very few holes. For p-type semiconductors, the opposite is the case lnd
is shown in Fig. 3.13.24. When a p-n junction is formed under equnl@num
conditions, the Fermi levels line up as shown in Fig. 3.13.25, and give rise to
an clectric field at the junction and the formation of a depletion layer as
discussed earlier. o

1f a voltage, V, is applied to the p—n junction, the equilibrium is disturbed.

(b)

Fig. 313.24. Energy-level diagram of doped semiconductors: (a) an n-type aenncon
ductor and (b} a p-type semiconductor. Ey, and E,, denote the Fermi level position.
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Fig. 3.13.25. Energy level diagram of a p-n junction with a bias voliage V.

For a forward bias, i.e.,, a p side connected to the positive and an n side to the
negative, a large number of electrons and holes are injected into the depletion
region. The number of electrons injected into the p region is given by

An(0) = n e T, (3.13.9)

These extra carriers in the depletion region under bias are in a nonequilibrium
condition. For this case we can define two quasi-Fermi levels, E,c and E,,
for electrons and holes, respectively—these are shown for the forward bias
case in Fig. 3.13.26. The quasi-Fermi level, Egc, is related to the electron
concentration, n, by the following relationship:

n = pelfre-BIAT,

and
— B(E —Eev)/AT
p n' i

where E, is the intrinsic Fermi level.
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Fig. 3.13.26. Quasi Fermi levels in a p~n junction laser under forward bias.
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The injected carriers diffuse and recombine in the depletion region giving
rise to diode current. The distribution of electrons in the p region can be shown
to be given by

An(x) = n, + n(0)e */tx, (3.13.10)

where L, is the diffusion length = \/ D,z,, D, is the electron diffusion constant,
and 1, is the lifetime of electrons. The lifetime, 1,, represents the mean time
for an electron-hole recombination and thus generation of a photon. Thus,
the spontaneous transition probability per unit time, 4,,, for the junction
diode, is given by
A= l . (3.13.11)
rl

The excess electrons and holes recombine and diffuse in the depletion
region which is also referred to as the active region. For a p njunction diode
for electronic purposes we want t, to be as large as possible, so that excess
carriers are not lost by recombination. However, for a light emitting diode,
the requirements are just the opposite.

The I-V characteristics of the diode are given by

I = g4 (D’p,, + D"n,)(e WAT _ 1), (3.13.12)
L, L,
where 4 is the cross-sectional arca. The emitted spontaneous light has a
spectrum containing energies in the range £, < hf < Eyc — E,,.

To obtain stimulated emission and eventual laser action we must have a
population inversion. In the depletion region of a junction diode under
forward bias, population inversion exists. This is because a noncquilibrium
condition exists in the narrow region near the junction where the injection
takes place. This narrow region is called the active region, and is shown in
Fig. 3.13.26. We sec that in the active region the band of frequencices defined by

E.<hf< E,.-(- - EFV

sutisly the population inversion condition. The width of the active region, 1,
is approximately equal to L, + L,.

The Junction Laser

A typical GaAs junction laser is shown in Fig. 3.13.27, The active region and
the fundamental mode shape are also shown. The width of the mode, d, is
determined by the dielectric waveguide formed by the slightly different index
of refraction of the p and n semiconductors. In general, d » 1. However, as we
shall discuss shortly, d can be reduced drustically using a heterostructure.
The expression for the gain constant for the semiconductor laser can be
written as
CY(N; = N,)/(dlw)
W)= B 2, of).

Here N; and N, are the total number of electrons and holes, respectively, and

(3.13.13)
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Fig. 3.13.27. (a) Typical p-n junction laser made of GaAs. Two parallel (110) faces are
cleaved and serve as reflectors. (b) Schematic diagram showing the active layer and
the transverse (x) intensity distribution of the fundamental laser mode.

l'and w are the length and width of the active layer, respectively, If d < t, then
we should replace d by 1 in the above expression. ‘

.To c.alcul.ate (N; — N;) as a function of diode current is difficult. However,
a snmp!lﬁcatlon can be made if we assume N, = 0 at low enough temperatures.
Fo; thn§ case, equating the total number of electrons, injected in the depletion
region in time At, to the number of spontaneous emissions, we obtain

Ny _ I
W q’
where n, is the internal quantum efficiency. Thus, for the case Ny =0, we

obtain
“ClaUm (1
M= ot

(3.13.14)

(3.13.15)

where A = lw.
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Fig. 3.13.28. A heterojunction laser.

Using (3.13.15) and (3.13.16), we casily obtain the threshold current, I, for
the lasing action to be

272
o= LD 1 (o).
C'n, !

where we have used the expression g(f) = (Af)™".

We note that I, is proportional to d. Thus, reducing the mode confinement
distance contributes directly to the lowering of the threshold current and to
an increase in the power output. To achicve this reduction, the heterostructure
junction laser, shown in Fig. 3.13.28, is used. The active layer is a.thin GaAs
layer which is surrounded on one side by p — Ga, _, Al A, and on the other
side by n-Ga, _,Al, As. The difference in the refractive index between a p-GaAs
and a p-Ga,_,Al,As is much more than that between a p-GaAs and an
n-GaAs. Thus the mode confinement is severe and d = 1. Also, the active layer
thickness is smaller because of the larger difference in the potential barrier
across the junction, since the bandgap energy of GaAlAs is different from
GaAs. A typical situation is represented in Fig. 3.13.29 where the lowering of
d and t are illustrated.

The power emitted by the stimulated emission, P,, if the junction diode is
biased beyond the threshold condition, is given by

U= lonb

(3.13.16)

P, (3.13.17)
q
The output power can be written as
I— L)nh 1
p =YLk (/) Int/rr) (3.13.18)

a  a+(/HInQ/rry)
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FIg. 3.13.29. Schematic 'representalion of the band edges with forward bias, refractive
index changes, nqd optical field distribution in (a) « homostructure and (b) a double
heterostructure diode. (From H. Kressel and H. Nelson, RCA Review, 30, 1969.)

The power efficiency of a junction laser is given by

g Pl =W nllnr)

VST qV ad 4 in(ryry) (3.13.19)

As the applied voltage is approximately equal to (hf/q), and for [ » I,

n-~n. (3.13.20)

The internal quantum efficiency, n,, is very high (0.7 1 in GaAs). Thus the
junction laser is the most efficient laser.

. As fﬁscusscd so far, the p-n junction starts emitting light when population
inversion is achieved using a high-carrier injection in the forward bias region,
Thls fadiation is spontancous emission without feedback mirrors and these
Junctions are called LED (light emitting diodes). To make LED lasing, we
nced_ to increase the population inversion to the threshold value and add a set
pf mirrors. External mirrors are not needed, as the reflectivity of the diode-air
mterfgoc is very high because of the large difference in the refractive index. In
practice, the diodes are cleaved along crystalline planes; this guarantees the
paraliclism of the reflective surfaces without any further polishing of the
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Fig. 3.13.30. Irradiance versus wavelength for an LED and a semiconductor laser.

optical surfaces. Figure 3.13.30 shows the emission spectrum of a semicon-
ductor laser compared to that of an LED.

A typical junction laser cavity has a length of 300 um with an active region
of 3um wide. Because of the confinement of the light beam to such a small
region, the output light has a large beam divergence. Using the diffraction
formula, we easily obtain the half-angle of divergence, 8, given by

1]

0%3"\”‘2. (3'32‘)

where a is the width. Thus for A = 0.9 um and a = 3} um, & = 17". Compared
to other lasers this is quite large.

As discussed before, there ure two types of junction lasers: homojunc-
tion and heterojunction. Heterojunction lasers are also of two types: single
heterostructure and double heterostructure. In a single heterostructure laser,
p-Al,Ga, _,A, is used on n-GaAs substrate. The double heterostructure con-
sists of a p-GaAs sandwiched between a p- and an n-Al,Ga, _ ,As. This triple
structure is generally on an n-GaAs substrate with a p-GaAs layer on top for
contacts.

Double heterostructure lasers are also referred to as having a large optical
cavity (LOC) configuration. The optical cavity is much wider in the double
heterostructure, tens of micrometers compared to perhaps a few micrometers.
This reduces the danger of damage of the crystal from the radiation. This
feature also greatly reduces the diffraction of the beam as it leaves the end of
the crystal from an angle of about 2°.
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Fig. 3.13.31. Stripe geometry double heterostructure juncti : ide i i
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and (b) proton bombarded isolation. (s} oxide isolation

To improve semiconductor laser performance, structures more complex
than double heterostructure are often used. One example is the stripe geometry
laser shown in Fig. 3.13.31. Heterojunction with stripe geometry reduces the
current density and risk of damage due to large radiation fields in the chip.
Th‘c purpose of the stripe contact is to improve conduction of heat from the
active region. AlL,Ga,_,As compounds have poorer thermal conductivity than
(_iaA:& Limiting the active region to a narrow stripe allows lateral heat conduc-
tion in QaAs to drastically reduce the temperature rise in the active region

Iq Fig. 3.13.31(a), the oxide layer isolates all but the narrow stripe conlac(.
restricting the lasing area under the contacts only. In Fig. 3.13.31(b), the stripe'
geometry laser is fabricated by proton bombardment which produces high
resistivity regions. The lasing area is restricted to the unbombarded region.

The stripe widths are typically 5-30 um. The advantages of the stripe geo-
metry are many, these include:

)
- TYPICAL
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Fig. 1332, " 0 . . .
las.er outpu, Typical high-resolution spectrum with different longitudinal modes of &
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(8) reduction of the cross-sectional ares and hence the operating current. Note
that lower operating current nceds lower heat dissipation and thus room
temperature CW operation becomes easier;

(b) climination of the occurrence of more than one filament (localized high
optical intensity area);

(c) improved reliability by removing most of the junction parameter from the
surface; and

(d) improved response time.

Many times junction laser oscillates in multimode as shown in Fig. 3.13.32.
To calculate the mode separation, A4, we note that GaAs is highly dispersive.
Thus, to calculate A between the mth longitudinal mode and its neighbor,
we start with (3.3.14), rewritten below,

me2tn (3.1322)
A
where L is the length of the cavity and n is the refractive index.
Differentiating (3.13.22) with respect to 1 we obtain

dm 2Ln 2L dn

Thus we obtain Al as
12
M =i = (A/n)(dn/d)]’

It is assumed that m is quite large.
To obtain a stable single-mode lascr, we must make sure that no other
modes are excited. This can be done in the following ways: L

(3.13.24)

(1) coupled-cavity;

(2) frequency selective-feedback;
(3) injection locked; and

(4) geometry controlled.

The principle behind coupled-cavity lasers is if the laser light has to travel
through additional cavities, the only wavelengths that are positively rein-
forced (i.e., integral multiples of half wavelengths equal (0 cavity length),
both in the laser’s cavity and in the added cavities, are sustained. All other
wavelengths are suppressed. The coupling of cavitics can be achieved in many
configurations, four of which are shown in Fig. 3.13.33. Of these, the cleaved-
coupled-cavity (C*) is of special importance and will be discussed in detail
shortly.

In the external mirror approach, the mirror may be flat and paraliel to one
end facet, but often a slightly concave mirror is used to focus the energy back
into the laner’s cavity. The air spuce between the mirror and the luser, whose
length is fine tuned by temperature control of the position of the mirror with
a resistance heater, is the additional cavity. In the grooved-coupled cavity and
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Fig. 3.!3.3}. Coupled cavity single-frequency lasers: (a) cleaved coupled cavity; (b)
external mirror; (c) grown coupled cavity; and (d) integrated etalon interference.

integrated etalon interference, laser light resonates in two active cavities (both
laser segments above the threshold). In the latier, the curved segment acts as
an etalon between the two straight segments. Unlike temperature and current
contrf)l, to determine the wavelength in coupled-cavity lasers in a frequency
selective feedback approach, the wavelength selection is done by a grating -

three possible configurations are shown in Fig. 3.13.34. By proper tilting of
the externa{ grating we can select the wavelength. If the period of grating is
€qual to an integral multiple of half of the wavelength desired in the distributed
Brayy reﬂc.'cwr, the Bragg condition is satisfied and only that wavelength
resonates in the cavity. In distributed feedback, the grating is fabricated
directly under or above the laser diode’s cavity. The wavelength of the light
that resonates is the one reinforced by the period of grating. A low-power
Hg— Ne laser operating at 1.52 #m, by injecting a continuous wave emission of
asingle wa'vclcngth into the laser’s cavity, “locks" by stimulated emission only
one mode in the laser cavity, as shown in F ig. 3.13.35(a). The injection locked

i External grating YSERSILN !
W LSS 2 PG ‘w

el Biat ot 8 R o ’
:lbutod Bragg wﬂoctor; Distr guted feéijback
A B o a e eomto)

Fig. 3.13.34. Frequency selective feedback lasers: ( i istri
: (a) external grating; (b
Bragg reflector; and (c) distributed feedback. grating: (5 distributed

313, Lasers 287

Fig. 3.13.38. Single-frequency operation of the laser: (a) injection locked and (b) short
cavity.

lasers are bulky, but have fine stability and spectral purity, even under high
modulation frequencies. In short cavity lasers (Fig. 3.13.35(b)] and their hybrid
forms, the smaller cavity (about 50 um, about one-sixth the length of other
laser diodes) enables the reduction of the number of modes supported by the
cavity, and the spacing between adjacent modes is also increased. Thus, this
effect, when superimposed with the gain profile of the laser, invariably results

" in single-frequency operation.

3.13.4.2. The Cleaved-Coupled-Cavity Laser

Figure 3.13.33(a) shows a schematic diagram of a C? laser. 1t consists of two
standard Fabry-Perot cavities of 1.3 um wavelength and GalnAsP laser
diodes of 136 um and 121 gm length, respectively, which were self-aligned and
very closely coupled to form a two-cavity resonator. [t should be noted that
here all the workings and characteristics described for the 1.3 um laser are
cqually applicable to the 1.5-1.6 um laser. The active stripes are separated by
<5 um; the reflecting facets are formed by cleaving along perfectly pdrallel
crystallographic planes. Complete electrical isolation (> 50 k€2) between the
two individual F-P diodes results. ’

The basic working principle is illustrated schematically in Fig. 3.13.36. The
propagating mode in each active stripe can have a different effective refractive
index, Ny, even if they have the same shape, size, and material composition.
This is because N, is a function of the carrier density in the active stripe. This
can be varied by varying the injection current below threshold when the
junction voltage is not saturated. Thus thc mode spacing for active stripes |
and 2 will be different and given by (3.13.24) as

3
2Nc"l Ll '

A5
2N¢Ill LI .

Since the two cavities are coupled, those modes from each cavity that coincide
spectrally will be the enforced modes of the coupled-cavity resonator. The
spectral spacing A of these enforced modes will be significantly larger than
cither of the original mode spacings, depending on N, L, and N,,, L, as

Ad, =
(3.13.25)
Al ~
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Fig. 3.13.36. Basic working principle of direct frequency modulation in a C? laser:
(a) modes of cavity (laser); (b) modes of modulator (for two different currents), (c)
resultant modes of a C? laser; (d) gain profile of the laser medium; and (¢) resultant
laser spectrum.

given by
A, AL, ks

- AT - . (3.13.26}
Ay — A4zl 2Ny Ly — NogeaLal

A
if we assume Al =~ A4,.

Thus when the enforced modes are superimposed on the gain profile, the
adjacent enforced modes are suppressed with an enforced mode near the gain
maximum only being present. Now, if laser | is biased with an injection current
I, above the lasing threshold, it acts as a laser. Laser 2 is biased with some
current I, below the threshold, thus acting as an etalon. Under these condi-
tions, the situation is described by solid lines in Fig. 3.13.36. If I, is increased
to I3, keeping 1, the same, a change in the carrier density in the active region
2 will cause a decrease from N3 10 Ni,. This results in a shift of the modes
of laser 2 towards shorter wavelengths, as shown by the dashed lines in Fig.
3.13.36. As a result of such changes, the modes from laser 1 and etalon 2 that
originally coincided become misaligned, and the adjacent mode on the shorter
wavelength sides comes into play. Figure 3.13.37 shows the various spectra
obtained with different current levels applied to the modulator diode. This
new mechanism, which is called cavity-mode enhanced frequency modula-
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tion (CEM FM), results in a very large frequency-tuning rate (expressed in
MHz/mA) and a very wide frequency-tuning range, at least half of the spectral
width of the gain profile, i.c., > 150 A. The range can be further increased by
temperature control.

3.13.5. Free-Electron Lasers and Cyclotron Resonance Masers

The lasers we have discussed so far use a material in which electrons make
transitions {rom a higher-energy level to a lower-energy level to produce
stimulated emission. Electrons can also radiate when they are accelerated in
free space. The interaction of a proper electromagnetic ficld and a beam of
moving clectrons will accelerate the electrons in such a way that they will
radiate coherently. In both free-electron lasers and cyclotron resonance
masers, a magnetic field is used to accelerate the electrons. Free-electron lasers
generally work at wavelength regions ranging from mitlimeter to ultraviolent.
Cyclotron resonance masers are efficient in the region of centimeter to milli-
meter wavelengths,

3.13.5.1. Free-Electron Laser

The free-clectron laser (FEL) uses a totally new concept for generating coher-
ent radiation, and offers a variety of advantages over the conventional lasers
discussed so far in this chapter. In place of solid, liquid, or gas as the gain
medium, FELs use a high-energy electron beam in a magnetic field. A FEL is
shown schematically in Fig. 3.13.38. It consists of an accelerator to produce
the electron beam, a wiggler magnet to force the electrons to oscillate and
radiate, and an optical system to form the laser beam. The wiggler magnet
consists of a series of alternating magnetic poles which form a magnetic field
directed up and down along the length of the wiggler. As the electrons pass
through this magnetic ficld, they are deflected alternately left and right.
Because of this transverse motion, the clectrons emit radiation at the wiggler
frequency. Due to the relativistic effects, the radiation is strongly forward
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Fig. 3.13.38. Schematic of a frec-electron laser consisting of an r.f. electron accelera.or,
a laser cavity, and a wiggler magnet. (C.A. Brau, IEEE J, Quantum El, QF-21, 1985)
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directed and appears at a frequency which is Doppler shifted to a much shorter

wavelength. S _
It can be shown that the wavelength of light is given approximately by

A 4B\’ 3.1327)
A= 2}’[] * (2nmc) ’ G143

where A, is the wiggler wavelength, y is the ratio of the electron beam encrgy
to the electron rest encrgy (0.511 MeV), B is the rms wiggler magnetic ficld
strength, and m is the rest mass of the electron. .

The force on an clectron in the presence of a magnetic ficld is given by the
Y x B term where V is the velocity of the electron. This interaction causes a
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Fig. 3.13.39. Interaction of an electron with the clectromagnetic wave: (a) a full view;
(b) an expanded view showing one period of the magnet; and (c) a close-up view of the
radiation field and electron pulse. (From W.B. Colson, Physics of Quantum Electronics,
vol S{ed. S.F Jacobs), Addison-Wesley, Reading, MA, 1978)
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trapping wave* which causes electrons to bunch in the axial direction. The
trapping wave bunches the clectrons by decelerating some and accelerating
others. The V x Bforce involves the electron wiggle velocity, which is typically
much less than the axial velocty and the strength of the radiation magnetic
field.

When the coherent optical field from a laser (even the FEL itself) is super-
imposed on the electrons, the magnetic field of the optical beam interacts with
the clectrons. At resonance, when the laser wavelength satisfies (3.13.27), the
interaction becomes strong and the electrons are accelerated or decelerated
slightly by the optical field, depending on whether the electrons are oscillating
in phase or out of phase with the local magnetic ficld. As a result, the faster
electrons catch up with the slower ones and form bunches spaced at the optical
wavelength. The electrons then radiate coherently with respect to each other
and with respect to the optical field. The electron emission then adds coher-
ently to the optical beam and amplifies it as in a conventional laser. F gure
3.13.39 shows schematically the interaction of the electron, optical, and wig-
gler magnetic field.

3.13.5.2. Cyclotron—Resonance Masers

A beam of electrons traveling with velocity v injected in a magnetic field B (as
shown in Fig, 3.13.40) will gyrate with a frequency, w,, given by

B, 4B, w,
w, =170 2 9% _ Yo (3.13.28)

m myy Y

* Also called the pondermotive wave.

Annular gyrating electron beam
Output window

Cavity

Electron source Collector

Cathode

Anode Output radiation

Fig. 3.13.40. A cyclotron-resonance-maser oscillator, in schematic view. The electron
source is a magnetron injection gun. The cathode emits an annular beam that gyrates
about an applied magnetic field B, as it propagates through a cavity. The cavity
opcrates mn a transverse-clectric mode near its cutoff frequency. The spent electron

beam is coliected, and radiation is emitted through an output window. (From P.
Sprangle and T. Cofley, Physics Today, March 1984.)
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where w, is known as the cyclotron frequency and y is related to the transverse
velocity only. ‘

The heart of the cyclotron- resonance maser is a beam _of nearly mono-
energetic electrons injected in a magnetic field s'uch that. it gyrates at the
cyclotron-resonance frequency. An electromagnetic field yvnth frequency very
near the cyclotron-resonance frequency is also present in the structure, as
shown in Fig. 3.13.40. The electron source is generally a cathode.vyho:'e design
is very similar to that of a magnetron injection gun. Magngtron injection guns
can produce several amperes, and clectron encrgics as high as 100 keV. The
cathode emits an annular beam of electrons which propagates lhroqgh 'hf
clectromagnetic cavity. The cavity operates in the lr.amvgrsc clectric (TE)
mode near cutofl. The clectrons gyrate and radiate giving rise to the output.

Similar to the frec-clectron laser, clectron bunching takes place when
the radiation frequency slightly exceeds the gyrating frequency. Ngle t_ha(
high-frequency operation requires a large ra}io of transverse to longnlqdmal
velocity. This ratio is typically 1 : 3 and efliciency can be as high as 60f..

For a wavelength of 3 mm (94 GHz), v, demands thgt the magnetic ficld
strength be 34 kiloGauss. To obtain such a high magnetic ficld, we generally
need a superconducting magnetic field. Typical cyclotron maser outputs are

peak power ~ 1| MW,
pulse duration ~ 1-5 ms,
bandwidth ~ 5%,
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PART 1V

Applications

4.1. Introduction

There are too many applications of optics and lasers in engineering, and we
have already mentioned some of them in the course of this book. In this part,
we will consider some of these applications in detail. Section 4.2 considers
only conventional optical engineering, i.c., the camera, the microscope, the
telescope, etc. Fiber-optics and integrated optics are elaborated on in Section
4.3. This is followed by optical signal processing and the different industrial
and medical applications of lasers. The final section (4.6) includes three topics,
i.e., optical interconnection, optical computing, and Star War,

4.2. Optical Instruments

In this section we will discuss some commonly used optical instruments; these
are lens magnifers, telescopes, binoculars, compound microscopes, spectro-
meters and cameras. For each instrument, the operation is first explained using

geometrical optics; this is then followed by the effect of diffraction on the
operating limits of the instruments,

4.2.1. The Lens Magnifier
To understand a lens magnifier, we should consider the optics associnted with
u normal human eye. As shown in Fi

ig. 4.2.1, the focusing system consists of
a cornea, c, an adjustable iris, I, a lens, L, and the retina, R. The light incident
on the eye in refractod by the cornen which sopurates a Hyuid, M|, with a

refractive index of 1.34 from air. The lens consists of 8 material with varying
refractive index, the values being 1.42 at the center and 1.37 ar the edges. The
radii of curvature of the lens can be adjusted by tension which results in a
change in the focal length of the lens. The lens focuses the images on the retina,
The main body of the eye, between the retina and the lens contains a jelly-like
“vitreous humor”, M,, which has a refractive index of 1.34, The iris, I, adjusts

[ [ | | [
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M,

Retina

M,

Fig. 4.2.1. Focusing system of the eyc. Most of the refraction occurs ;th lhle ﬁfle su“r'f::ch
where the cornea, C, separates a liquid N,‘ {n = 1.34) from the air. . :dc:a.is r‘ocu”d
has a refractive index varying from 1.42 in the ccplcr to 1.37 :t l" b 5“.’ s focused
by tension at the edges. The main volume contains a jgl!y-h cd_w ‘e us humour”
(n = 1.34). The image is formed on the retina R. The iris, 1, adjusts pe
according to the available illumination.

rding to the intensity of illumination. For a normal eye.
g::):cr:'egtcl::in;ccc:nnolg be obtained for. diglgnccs shc_;rut-r.!haxll :: sp:ccnsl;nc:
value, D, and the value of D varies from individual to individual. oT e gm
purposes, the norminal value is taken to be D = 25cm. The an}guhyr r;:o u“ :m
of the eye is dependent on the photosensitive clcmenAl separation in ld ; re ]ar.
It turns out that this resolution also matches (hlc dl.ﬂracuon llm.IlC .mgul
resolution due to the iris. As the angular resoluuonins fixed, the lmc:r reso uS
tion of the eye is highest for objects situated at a dlstanoF D from t hi Fy::., :
this is the nearest object distance for a properly focused image on the retin ;;
If an object is brought any nearer, the eye cannot !'ocu_s it. H(;wcvcf, ustl:'ign
simple lens with focal length f, siluulf:d as shown in Fig. 422, we tfa'l: _mg
the effective object for the eye at a distance, D. Thus we have the followang

Fig. 4.2.2. Simple lens used as a magnifier. An objectat O close to the eye can be focused
by the eye as though it were at a more distant point O,
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relutionship:
1
2‘5']" 4.21)

where d is the distance of the actual obj ich i
ance ject from the lens which is very near
the eye. The magnification, M, of this simple lens magnifier is given byy

D D
M=2=f+ 1 4.22)
'_Tq obtain h.igh M, we need_ very short focal length lenses. Using a single lens
it is very dlmcult to obtain it, if the system is to be free of aberration A’
compound microscope is the solution for this problem, .

4.2.2. The Telescope

::: :;g:m?dty d':scussed telescopic systems in Section 1.4.2. The object of
Ben by Pe 18 to have angular magnification, p,, as large as possible, this is

/i

Pa = A 4.23)

A more.mex_mingful expression for the angular magnification can be obtained
by considering Fig. 4.2.3. The light from an object on the optical axis will have
wavefront ‘perpcndicular to the optical axis as shown by w,. An object at an
angle 6, with respect to the optical axis will have a wavefrot;lt denoted by w

Both t}.ne wavefronts w, and w, are shown as they enter the telescope at{d als;
they exit. Due to the angular magnification, the cxit angle is 0,. If the aperture

of the front element of the telescope is gi
pe is given by y,, th i
between w, and wy, /, is given by ¢ Y 1. theft the path diffrence

I= .6, 4.24)
]
i
| f
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Similarly, at the exit window of the telescope we obtain
l = yz()z- (4.2.5)

Note that the path differences must be the same as the light passes through
the telescope.* Thus, we must have

p=trn (4.2.6)
0, »
From (4.2.6), we obscrve that we need to have a large angular magnification,
¥, » y;. This can be achieved in various configurations using mirrors and
lenses, such as:

/
the astronomical telescope,
the Galilean telescope,
the Newtoniuan telescope,

the Cassegrain telescope,
the Gregorian telescope,
the Herschel telescope.

An astronomical telescope consists of two biconvex lenses with positive
focal lengths, as shown in Fig. 4.2.4(b). The first lens, f,, is generally called the
objective and the second lens, /3, is called the eyepiece. The scparation between
the lenses is given by

d=1fil+1f:| 42.7)

and the image is inverted.

In the Galilean telescope the objective is a biconvex lens with positive focal
length, whereas the eyepiece is a biconcave lens of negative focal Icng(p. For
this case

d=|fil -1/l . @xy)

and the magnification is positive.

The Newtonian telescope uses A concave mirror as the objective. The
reflected light from the mirror is reflected again by a flat mirror before it passes
through the objective lens. The situation is very similar to the astronomical
telescope. Note that a small portion of incident light is lost due to the
placement of the flat mirror. ‘

The Cassegrain telescope also uses a concave mirror as the objective.
However, its eyepiece is also a mirror, a convex mirror. The objective mirror
has a hole at the center through which the output light passes. The situation
here is very similar to the Galilean telescope.

The Gregorian telescope is similar to the Cassegrain telescope in structure
except a concave mirror i used as the eyepicce. Thus, for this case, the image
is inverted.

* For a discussion on path difference, see Sec. 2.10.2.
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(a) Galilean (b) Astronomical

(c) Newtonian (d) Cassegrain

=k /]

(e) Gregorian W {1} Herschel

Fig. 4.2.4. The reduction in width of a w. i i
' avefront in various types of telescope. Th
telescopes are all adjusted for direct viewing of the emergent beam; the emcrge:\)te .wav:

could instead be mad i
o ade convergent, so that a photographic plate could be placed at the

. Thc H.crscl.xel telescope uses a concave mirror and a lens; however, no
incident h;hl is lost in this case. This is possible by tilting the ci)ncave mi‘

such thgt it foguscs light outside the input aperture, as shown in Fig. 4.2 ::(c))r
Otherwise, this telescope is very similar to the Newtonian one an(i h : th.
advantage that no flat mirror is necded. e

To compare the relative advantages of the different telescopes, it is impor

tant to qotc that mirrors have no chromatic aberration and they r‘cﬂccl nez(:l .
all the light. However, the mirror has a disadvantage in terms of dislorliox);
becau'se of temperature and gravity. The mounting of mirrors needs to be
superior, compared to that of lenses, as the first-order cffect on the optical

p g 1 f l ca ofr l‘ it bCIId ;lll'l
a(h lcll th S Zero lor lhc cns. l or the SC Of (hc mifr
’ s l s
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If a graticuleis to be placed asa reference at the image position, the Galilean
and Cassegrain telescopes are unsuitable as they do not have a real image.
This is important for survey and position measurement equipment.

4.2.3. Binoculars

Binoculars are really two telescopes, on¢ for each eye. Typically, an astro-
nomical tclescope is used with the objective lens system corrected for chro-
matic aberration. The eyepiece also generally contains two lenses, the first onc
being used as a field lens to increase the field of view by reducing or climinating
vignetting.

To understand the design of binoculars, consider Fig. 4.2.5 where we desire
a maghnification of 20 (M). To obtain a ficld of view of 2.5, the output angle
must be 50°. To accommodate this large angle, the diameter of the eye lens
and the ficld lens must be about 15 mm diameter. This also determines the
focul length of the objective, as we have

0.75cm x 180
25 xn
The focal length of the eyepiece must be 0.85 cm. Note that as the size of the
eye-pupil is about 4 mm, the objective need only be 80 mm (D) in diameter.
The specification of this telescope will be noted as 20 x 40 or M x D.
Note that the separation between the cyepiece and the objective is ~18cm.
This being quite large for practical purpose, two prisms (as shown in Fig. 4.26)

= [y, = 1T cm. 4.29)

Eye relief

‘ ( ‘
e e

pupil
Eyepiece
Field lens+Eye lens

Objective lens
(Achromatic pair)

Fig. 4.2.5. Astronomical telescope, as used in the binocular telescope:

o, f
0, 1

field lens diameter

magnification M =

ficld of view 0, = h'
teld of view € = bjective focal length




LS

W e P
—‘- -

300 1V. Applications

Fig. 4.2.6. A pair of erecting prisms, as used in the binocular telescope.

are used to shorten the size of the binoculars. This also erects the image from
the inverted one expected from the astronomical telescope.

For small magnifications, a Galilean telescopic arrangement can be used
to obtain a direct image without inversion; this is customary for opera glasses.

Note that large magnification is not possible because of the length of the
telescope without prism folding.

4.2.4. Compound Microscopy

A compound microscope is capable of achieving very large magnification by
using a telescoping system in conjunction with a magnifying glass. Actually,
the magnifying glass and the objective of the telescope are combined together
followed by an eyepiece—this is shown schematically in Fig. 4.2.7. The objec-
tive lens system is the most important part of the microscope and this must

have as small an aberration as possible for large angles. The magnification is
given by

g D
M= . 4.2.10
LT @210
F ] 9
e ——f
Focal plane image
of objective

Eyepiece

Oﬁiective

Fig. 4.2.7. Geometry for calculating the magnification of a compound microscope.
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N
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1 4
o

i jecti il i i jective in which the object O and
Fig. 42.8. Microscope objectives. Oil immersion objective in w
vi‘r‘t.unl objective O’ are on the aplanatic surfaces of a sphere S. The wavefront curvature
is again reduced by a series of meniscus lenses M.

where f, is the focal length of the objective, f; is the focal length of the eyepiece,
¢ is the distance of the intermediate image from tt;o focal plane of the objective
ns, and D is the nearest distance of distinct vision. _

- The length, g, is generally known as the optical tube‘le_ngth o{ the_mlcro-
scope. For the highest magnification, many times lhe. onl.lmmcmon is used.
This is shown in Fig. 4.2.8 where the oil has a refractive index very near th.e
value of the first lens which has a very short focal length. Thc olpect; 0, is
placed just beyond the focal plane in oil and it forms the virtual image, o,
further away. The rays from the virtual image are collected by the meniscus
lens, M, whose first surface is on the sphere with O as thf.- center.

In a reflective objective compound microscope, the equivalent of the Casse-
grain telescope is used—this is shown in Fig. 4.2.9.

Fig. 4.2.9. Reflective objective compound microscope using the principle of the casse-
grain telescope.
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Fig. 4.2.10. Transmissive beam expanders.

4.2.5. Beam Expanders

In many laser applications, the small laser beam needs 1o be expanded to
larggr Q|amelgr. Thus, the requirement is just the opposite of a telescope, i ea
t}:: mf:ndent l.lgl'u must bc on the eyepiece and the output is lhrouz;‘ l.h'c‘
objective—this is shown in Fig. 4.2.10 for the astronomical and the Galilean
‘tclcshcopes. The advantage of the astronomical case is that by using a pinhole
;F l e‘focus. .thc laser bc'am can also be spatially filtered, if needed. The

}sadVAntagc is that for high-power lasers, the focused spot may give rise t
air brcakdf)wn and the transmission of large power through the'l! 5 .‘C y
nolee;]dc§lrable due to absorption losses. ¢ e may

eflective beam expanders are shown in Fig. 4.2.11. P i

cxpa.ndcrs may be built more compactly. In a%l cazst:sl t]:: (ocu‘t';‘)‘:xlt (l')‘:arrfmﬂg(‘:me
eter is related to the input diameter by the following'cquation: o

/;
w, '/: w,. d.2.11

4.2.6. Photographic Lens Systems

T:c design of lens systems for photographic purposes dates back to the 1850s.
when portr.axF and landscape lenses were developed for carly versions of th‘
;amcrai( It is interesting to note that the prototype of the modern camera :
TT]YI'CS nown a§ the “camera obscunta". did not utilize a lens system al :;ll.
is device consisted of u black box with a smail hole in one wall: light passi
through this hole formed an inverted image on the opposite wull.“ Tghc f:’u:::ug

* The first permanent photo
_ | graph was made by Joseph Nicéph iépee i
using such a camera; his subject was a rooftop scene in Chﬁloniuorrga?;éep‘:rmc'cué

AN

Fig. 4.2.11. Reflective beam expanders.
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obscura formed a surprisingly well-defined image over a wide angular field of
view, due o its high depth of focus. In addition, the absence of a lens made
the pinhole camera’s image practically distortion-free, and there was no
focusing system to limit the clarity of the final image. Instead, the quality of
the image was limited by diffraction effects; for maximum sharpness, the
pinhole diameter should be proportional to the distance from the image plane.
However, the camera obscura required extremely long exposure times, even
with the most sensitive films; as the art and science of photography became
more advanced, the need for distortion-free cumery lenses {(to extend the
versatility and speed of photography) became apparent.

The general requirement of a photographic lens is its ability to form a
uniformly sharp, distortion-free, real image of the obiject over the entire field
of view. Furthermore, we require that the image be flat and uniformly bright
over the whole image area. A good lens system should also permit relatively
short exposure times, on the order of a fraction of a second in medium sunlight
(or slightly longer under low illumination), which implies a large relative
aperture or f number. Under such requirements, a single positive lens element
makes a very poor camera lens, since it is generally not possible to correct for
the inherent abbreviations of a single lens. Instead, it is necessary to combine
several different lens elements to form a lens system in which aberrations may
be suitably corrected.

In view of the many possible lens combinations, and the rather strict
requirements of a photographic lens, it is not surprising that lens design
remains an active field of study. Many contemporary camera objectives are
based on a few well-known successful forms, although slight variations are
numerous. Because of the many exceptions and unusual designs, it has histor-
ically been difficult to classify camera lenses. In 1946, Kingslake dcvcl'oped a
classification system based on the number of components in a iens; his system
was implemented at the Eastman Kodak Company, and has sincg become an
industry standard (Table 4.2.1). More recently, researchers such as Hoogland
have proposed a revised classification bused on the degree of complexity
of a lens system. Any comprehensive attempt at classification is bound o
encounter its share of exceptions and borderline cases, however.

This section will present a review of scveral photographic lens systems
which form the basis of most modern camera lenses. Designs such as the
wide-angle, telephoto, and zoom lenses will be discussed, as well as the Cooke
triplet, double Gauss, Tessar, and Petzval portrait lenses. Finally, a summary
of recent developments in computer-aided lens design will be presented.

4.2.6.1. The Wide-Angle Lens

For a normal camera lens, the diagonal of the field of view is roughly equal
10 the focal length of the lens. Thus, the angular field of view, ¢, is defined as
the angle subtended at the lens by the diagonal of the film area (Fig. 4.2.12).
The angular field of view can be thought of as relating to the fraction of the
object scene included in the photo. Since the film diagonal is approximately
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Table 42.1. Lens classification system, .
Kodak Company, circa 1946 ystem. (Developed by R. Kingslake for the Eastman

Several common types of lenses are defined
components ¢ svcipes of enses ar and classified according to the number of

1. Singlet A single lens element.

2. Doublet Two lens elements.

3. Triplet Three lens elements.

4. Quadruplet Four lens elements.

5. Petzval Two thin, positive components, widely separated, designed 1o give
high aperture over a narrow field.

6. Telephoto A positive front member widely separated from a negative rear
Mber. such that the distance from the front vertex to the focal plane
is much less than the focal length.

;. ;:;ened telephoto A u:lep!loto lens with the negative member in front (wide-angie view).

X miens Lens with a continuously variable focal length, in which the image is
. held constantly in focus by mechanical means.
9. Special types Viewfinders, mirror systems, etc,

(From R. Kingslake, A classification of photographic lens types, J. Opt. Soc. Amer 36, 1946)

cqual to the focal length of the lens, the angula iew i

between 40° ,nd 60° for a standard lens of f:cal Ircxl:':lt: g(‘;riseswn::ncommonly
. As th.e object moves closer to the camera (object distance decr.eascs), the
1mage distance must increase for a fixed focal length lens system. This, in turn
decreases the field of view. In the opposite situation, the image :iistancc'
decreas‘xes and alarger angle of view is required. If the film size (i.e., the diagonal
of the image space) is kept constant, then the angular field of 'view may be

Angular field
of view

Fig. 4.2.12. Angular field of view for a sim : i
ple lens: ¥ = view angle, f = focal |
the lens. (From E. Hecht and A. Zajac, Optics, Addison-Wesley, Reading, M,:nl‘;“;: )r

‘ ﬁ(\\ i
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Fig. 42.13. Wide angle lenses: (a) variation of double Gauss, the 35-mm Summaron
{/2.8; (b} variation of double Gauss, the 35-mm Summicron {/2.0;, and (c) inverted
telephoto design, the 35-mm Skoparex [/3.4. (From H.H. Brandt, The Photographic
Lens, The Focal Press, New York, 1960.)

increased by reducing the effective focal length of the lens. Thus, wide-angle
lenses may be designed with focal lengths ranging from 40 mm down to as
low as 6 mm their corresponding ficld of view is increased to between 70° and
80°. Special purpose wide-angle systems have even been designed whose field
of view goes beyond 180¢, although some distortion is unavoidable in these
systems.

Typically, a wide-angle lens may be derived from several other common
lens types, such as the Tessar or Gauss designs (Fig. 4.2.13). Such designs help
to overcome the more prevalent problems of wide-angle lenses, such as distor-
tion at high ficlds of view and loss of illumination and sharpness towards the
edges of the image. For ultra-wide-angle lenses (y > 90°), vignetting is also a
persistent problem. However, suitable designs based on common Icns‘ types,
as discussed previously, have made it possible virtually to climinate aberra-
tions, and result in high-quality, professional camera lenses. )

Another common practice for achieving wide-angle effects is the use of an
inverted telephoto design, as shown in Fig. 4.2.13. These designs are char-
acterized by a strongly negative lens group followed by a smaller positive lens
group. The design has the advantage of a long-back focal length; however, for
¥ > 100°, barrel distortion is an incvitable result. Such distortion provides a
more uniformly illuminated image, by concentrating light in the usuaily
weaker edges of the image. A major design consideration is pupil aberration,
since the location of the entrance pupil differs from the paraxial location at
large field angles. This difficulty has been overcome, with some degree of
success, by using computer-aided lens design techniques.

Wide-angle lenses are capable of taking in a greater object field from a
given viewpoint than standard camera lenses. Thus, they are indispensable
whenever an object must be fully recorded in a single photograph and it is
impossible to use a viewpoint sufficiently far away. These lenses have found
applications in architectural photography (photographs in narrow streets or
of room interiors) as well as aerial photography and photogrammetry.




306 IV. Applications

4.2.6.2. The Telepboto Lens

Itis well known that if a single lens is used to observe an object which is very
far away (i.e., the object distance, u, tends to infinity), then the image distance,
v, will be approximately equal to the focal length of the lens, f. The lateral
magnification is then given by

/

v
mo=— -
u u

So, if a larger image is desired without changing the distance between the
object and the camera, one solution is to use a lens of long focal length. This
tends to be impractical, however, since a long focal length implies that the lens
must be positioned far away from the film.

An alternative way to achieve the same effect is through the use of a
telephoto lens. Basically, the telephoto lens consists of a converging [ront
component placed some distance in front of a diverging rear component (Fig.
4.2.14). As can be seen from the figure, for this configuration the principle
planes H (and H’) are located distances D (and D’) from the first (and second)
lens clements (here depicted as single lenses). The image distance, v, iS now
measured from H’; s0, as H’ moves far away,

v =|D’| + (a = distance to film).

This is in contrast to the single lens case, where a is the focal length of the
single lens. Using this new expression for v gives a lateral magnification of
D +a
HEE

m, s —_ m

So, if | D' is greater than the scparation between the front and rear clements,
the lenses may be mounted close to the film while still achieving the desired
image magnification. This makes for a much more convenient and compact
camera system. Typically, a is of the order of 50 mm, while |D’| is approx-
imately equal to 500 mm; a telephoto lens commonly has a focal length greater
than 80 mm.

Modern telephoto lenses employ two separated sets of compound lenses,
each independently corrected for aberrations. Early telephoto designs allowed
the user to vary the separation between the converging and diverging ele-
ments, thereby adjusting the power of the lens. Aithough such attachments
had been abandoned in favor of the fixed-focus telephoto lens, recent advances
in lens production technology have renewed interest in the so-called “tele-
photo zoom lens” design (see Section 4.26.3).

It is important to distinguish between the true telephoto lens design and
the more conventional long-focus lens, sometimes called the tele-Gauss design,
While both are designed for the photography of distant objects, a long-focus
lens is simply a variation on the design of a common Gauss lens which
produces larger images. Here, the front-half of a Gauss symmetrical derivative
is placed in front of a simple converging lens; an aperture stop or variable
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\
Film

/"'\
<<
Film

(c)

Fig. 4.2.14. The telephoto lens: (a) single camera lens; (b) basic telephoto deu;:,d ::d
(c) the 180-mm Tele Xenar {/5.5. (From M.V. Klein and T.E. Furtak, Optics, 2 "
Wiley, New York, 1986.)

is often placed between the two (Fig. 4.2.15). I’ is alsp interesting to
:xl:)ltl::(:ll;at : reven?wd telephoto lens may be used to achncvc wndc-unglf: cffects
(sec Section 4.2.6.1). In connection with lhis. application, note .that smcef l:c
focgl length of a telephoto lens is at least twice as long as the dnagop:ll of t ‘ :
image field, the field of view for a telephoto lens drops off mplI ly wnh
increasing focal length, often decreasing to only a few degrees at focal lengths

mm. .

grc:t:]ru?l;?ty“:)r?own as the “telephoto effect” is dcfmcd as the ratio off!he
focal length of the combined system to the approximate focal length of an
ordinary lens used at the same camera extcnsmn.‘Modem tclcphol'o Icpscs
have telephoto effects of two to three, which is sulﬁcn_ent f9r most app!ncalnqns.
An carly design problem for telephoto systems was high pincushion distortion,
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¢ b | — A
. 1 P oy
' ' Focusing b4
Pant K::\':l l::l:.y
A ' Fig. 4.2.1. The long focal length or tele-Gauss lens; the 135-mm Tele Travenar {/3.5. 7 -~ y N e~
' /
‘ since both the converging and diverging components tended o produce this \ ~ WN
- type of distortion. Although such problems were considered to be unavoidable Foe St
' for some time, in 1926 Lee succeeded in producing a distortion-frec telephoto \ , \\-)/ U \ / \T\ / i\
lens by separating the components of the diverging lens and utilizing the \ \ o
astigmatism in both surfaces to correct the pincushion distortion (Fig, 4.2.16). M——— \'AV—/ ‘°:“
Contemporary telephoto lenses arc distortion-free over a wide range, and of Combined Combined  Viewtin
very high quality. \
: Simple Zoom Lens
1 4.2.6.3. The Zoom Lens Fig. 42.17. The zoom lens: (a) standard construction of a zoom lens; and (b) ':f ;‘;n‘:-l
I If a lens system consists of two elements (or groups of elements) it is possible zoom lens, the 36-82-mm Voigtlander Zoomar /2.8. (From H.H. Brands, T o-

to change the focal length of the system by varying the separation between
the elements. If two elements of focal lengths f, and f, are separated by a
distance, d, then the total focal length, £, of the combination is given by

b1 1 d

FTRYE A

Thus the total focal length becomes shorter as the distance between the
elements is reduced. The displacement of lens groups along the optic axis is
referred to as “zooming”, and lens systems of this type are called zoom lenses,
Such lenses are useful if it is desired to image an object plane of variable size
into a constant size image.

A zoom lens design consists of three basic parts, the focusing, zoom, and
relay elements (Fig. 4.2.17). The focusing part is a single group of lenses which
performs focusing of the incident light and presents a fixed virtual object
position to the zoom part. The zooming part or “zoom kernel” consists of two
lens groups which may be mechanically displaced along the optic axis. The
kernel changes the lateral magnification when zooming; behind the zoom

graphic Lens, The Focal Press, New York, 1960.)

4

ic film. Thus, as shown in Fig. 4.2.17, there are a total of five lens
::‘:t::f‘:s:li: a zoom lens design. The variab!c foa_l lgngth property mak‘c‘:
possible the continuous adjustment of imagc‘uu, within certain limits, whi
maintaining a given distance between the object and the image.

In practice, the focusing part and zoom kernel, together with the first grou|;
of the relay part, constitute an afocal zoom attachment to the rear ;rp‘t;gc;
the relay part. Zoom lenses are classified based on the form of this
attachment, which now consists of only four lens groups. Two of these groups
must have positive powers, the other two negative powers. 1.'hus. there are
four basic types of zoom lenses, which differ from one another in the arrange-
ment of their positive and negative powers (Table 4.2.2).

Table 4.2.2. Basic types of zoom lenses.

. Five-group zoom lenses
kernel, the image size remains constant for transfer to the film. It is the relay “4+——+"typs Vignetting behavior is the best of all the five-group zoom types; low
part, usually composed of two lens groups, which transfers the image to the sensitivily to misalignment. ) .
“4 —+ —~"type Poor vignetting behavior, difficult to correct aberrations over a wide zoom
. ran .
i 1 “—++-"type Poor :‘;neujn; behavior; low sgnsilivily to misalignment; not casily
] adapted to wide-angle behavior.

“— 4+ —+"typs  Good vignetting behavior; difficult to correct aberrations.

Four-group zoom lens . '
4+ - +"type Some vignetting, may be readily corrected; poor :l?enl(m e:nam
“— 4+ ="type Poor vignetting behavior; aberrations may be readily corrected.

iy

Fig. 4.2.16. Distortion-free telephoto lens design by Lee (1/5.0).
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Itis also possible to design simpler zoom lenses, with a more limited z00m
range, using a total of four lens groups rather than five. This design may be
characterized by an afocal zoom attachment consisting of only three lens
groups. This is done by combining either the focusing part or front group of
the relay part with the zoom kernel, effectively reducing the size of a normal
five-group zoom lens by one group (Fig. 4.2.17). In this new design, the afocal
attachment may once again be classified by the arrangement of positive and
negative powers. Only two of the possible combinations have come to be of
practical significance; these are summarized in Table 422

Any two of the three lens groups must be movable, while the third remains
fixed; this leads to three subclassifications for each possible arrangement of
positive and negative powers. These subclassifications are, however, fairly
similar in their basic principles, and will not be treated in detail here.

The design of a zoom lens is much more difficult than the design of fixed
focus lenses. In particular, the behavior of a zoom lens is sensitive to the
mechanical mechanism used to translate lens groups, including the possible
tilting or misalignment of individual lens elements. Most of the conventional
aberrations may be well corrected in the zoom kernel; modern lens designs
have even proposed the use of aspheric lenses to improve overall performance.
Some degree of vignetting is generally acceptable, provided that it remains
constant throughout the zoom range.

It is also desirable to design a close focusing capability into a zoom lens.
For general photography applications, a zoom lens must be able to maintain
an image in focus for a range of object distances, at any zoom position.
Typically, the lens is focused by moving the front or focusing part, as discussed
previously. However, aberration correction in the focusing part is complicated
by two conflicting requirements. F irst, it is desirable to have large entrance
pupil diameter at the longest focal length position of the lens. Second, a larger
field of view is required at the shortest focal length position. As a compromise
between these two objectives, the minimum focal distance for such lenses has
been on the order of 2 m.

This difficulty was first addressed in 1972, with the introduction of a
telephoto zoom lens (also known as a “telezoom lens”) with macro focusing
capability. The similarities in general design between a telephoto and zoom
lens (Figs. 4.2.14 and 4.2.1 7) suggest that it may be advantageous to combine
features of both into a single lens. In addition, this new lens has the capability
of moving the zooming group along a mechanical track which is separate from
the means used to achieve the zooming effect. Now, the zooming group can
be used to achieve close focusing at distances of less than 2 m; the focusing
group is used only to focus at distances greater than this. The new close
focusing or “macro™ mode greatly expanded the capabilities of the telezoom
lens. Of course, since the zooming group was used for close focusing, no
zooming effect was possible in the macro mode. Still, lateral magnifications
on the order of 0.5 x could be achieved with this design.

Although zoom lens designs may become quite complex (Fig. 4.2.18), lens
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ZOOMJ_ _

=

(b)

Fig. 4.2.18. The telezoom lens: (a) the Vivitar 90 180-mm lelezzo&))r-n win‘\ :nncn')n m::::
conti i ; he Vivitar 100- mm telezoo

fi ntinuous close focusing, f/4.5; and (b) t a "

::ct‘; mode for continuous close focusing, /4.0. (From E. Belenzl;zo et al, Con

tinuous close focusing telephoto zoom lenses, Proc. OSA/SPIE, 237, )

systems have been produced which are well corrected for aberrations, and
mounting mechanisms have been developed to minimize the effects of melch-
anical displacement. In addition to their use as camera lcnsc;. .zoortm ens
systems have also found applications in motion picture and television c?mcra
systems.

4.2.64. Basic Lens Configurations
A. The Double Gauss

One of the most common photographic lens configurations in use today is
based on a telescope objective designed by K.F. Gauss, the fa:nous Gcrrpan
mathematician and astronomer. The so-called “dqublc Gauss lcns\.was irst
implemented by P. Rudolph at the Carl Zeiss (“o. n H.l%. Thcse dcslg‘n? ow:;
their enduring popularity at least in part to their anastigmatic properties, an

the fact that they can be well corrected for most other types of aberrations as
Wcl'I'Lhc basic double Gauss design consists of two outer positive clgmcn'ls an:if
two inner negative clements; the space bc!wgen the two clements in ca?ch ha '
of the lens takes the form of a diverging meniscus (Fig. 4.2.19). Bo(b halves o
the lens are usually spaced symmetrically about a central stop or dlaphragr:.
The two inner clements are often replaced by ccmcnteq glassgs to render t lt-.
lens achromatic. With slight modifications, all aberrations (with the possible
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Fig. 4.2.19. The double Gauss lens.

exception of coma) may be well corrected. Variations on this design are

numerous, and it h i . i
design. it has rapidly become one of the mainstays of modern optical

B. The Cooke Triplet and Tessar

AAthhcr important basic lens form is the Taylor -Cooke triplet, originally
esigned in 1894 by Mr. H. Dennis Taylor for the optical firm of T. Cooke
and Sons, York, !England. This lens is asymmetrical, in contrast to thc; double
Gat_xgs, and t':onmtu of three lens elements. The front and rear elements are
positive, while a negative element is placed between them: the three com-
p:ncnls are scparated by air spaces (Fig. 4.2.20). A lens stop is located near
t' c cen.lral clement, between it and the rear positive element. This com
tively simple construction is not only casy to manufacture, but ma bcpauli
con:;;ctcg fo; most aberrations (including coma). ' Yoo we

e Cooke triplet constitutes an inexpensive anastigmatic len i
p'crformanoe has been improved in recent years by spgliTting up st:: s\:frli.ol\::
single lens ele{nents and replacing them with cemented components. Thus
numerous derivatives of the Cooke triplet have appeared, and havc. found,
gpplngauon both as photographic and projection lenses. One important varia-
tion is the Tessar lens, developed by the Carl Zeiss Co., in which the back
positive component is replaced by a cemented doublet (Fig. 4.2.21),
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Fig. 4.2.20. The Taylor-Cooke triplet.
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Fig. 4.2.21. The tessar.

C. The Petzval Portrait Lens

One of the oldest photographic lenses still in use today is the Petzval portrait
lens, first designed in 1840 by Professor J. Petzval of Vienna for the firm of
Voigtlander and Son.* This unsymmetric design consists of four clements,
combined into two independently achromatic pairs, separated by a large air
space (Fig. 4.2.22). A lens stop is positioned between the two lens pairs. The
front component is composed of two cemented lens elements, while the rear
component contains two uncemented clements.

Since the lens is fairly long, the astigmatic surfaces (i.c. the image field) could
be flattened over an area large enough for portrait photography. Because
it was relatively fast for its time (on the order of f/4) it soon became a
standard photographic lens. The design posessed high vignetting, however,
which limited the field of view to about 20" in practice. Eventually, it was
replaced in cameras by higher speed anastigmats, although it is still used
almost exclusively as a motion picture and slide projection lens.

4.2.6.5. Computer-Aided Leas Design )

The lens design process has historically been a complex, time-consuming task,
involving a large amount of numerical calculations in order to arrive at an

* The Petzval lens was also the first mathematicaily calculated lens design; prior to
the 1840s, lens systems were designed on a purely empirical basis.

_ ‘l@__

Fig. 42.22. The Petzeval portrait lens.
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optimal design. Over the past twenty years, developments in computer pro-
gramming and technology have made computer-assisted lens design both a
productive and economical alternative. This section presents a brief review of
some recent developments in the field, and their impact on modern optical
design.

First, consider the lens design process itselfl. The Practical purpose of optical
design is the development of a procedure which, if properly implemented, will
lead to a working, economical solution to some design problem. Thus, the
design process consists of identifying a need, determining the feasible technical
solutions (subject to such constraints as cost limits, available materials, and
time limitations), and then using some optimization process to select the “best™
of the allowed solutions. Clearly, the design process is as much an art as it is
a science; the digital computer can serve as a useful design tool, however,
subject to certain inherent limitations,

Originally, large computers operating in high-fevel languages such as
FORTRAN were favored for design purposes because of their high speed.
Such systems, however, tend not to be very user-friendly. A recent trend is the
use of small microcomputers, or desk-top computers, to perform design func-
tions. Although these machines are slower than larger computers, this is more
than compensated for by their highly interactive, user-friendly format. Micro-
computers have also become much less expensive in recent years. However,
perhaps the single most important feature of microcomputer optical design is
the introduction of interactive computer graphics.

Since a wide range of desk-top computers are available (IBM, Apple,
Hewlett-Packard, etc.) the focus has shifted to computer software for lens
design. A functional program should be high speed (about 300 ray traces per
second), comprehensive, versatile, user-friendly, and well documented. In this
way, the high accuracy, memory, and graphics capabilities of a given system
may be fully exploited. Numerous optical design software packages are avail-
uble, among them Code V, OSLO, Accos V, and others,

(a)

b3

v'

4.3. Fiber-Optics and Integrated Optics

4.3.1. Introduction

Until now we have mostly considered light propagation in free space or in a
homogeneous medium, where diffraction plays the most im portant role. How-
ever, we can have guided optical waves. Guided wave propagation, in contrast
to free space propagation, deals with propagation in an inhomogeneous
medium, specially fabricated so that most of the light energy is transported
along a prescribed path nearly unattenuated. If the guiding medium is in the
shupe of u fiber or cable, we call it fiber-optic, whereas if the guiding medium

is planar, like the surface of a substrate, we generally refer to it as integrated
optics.

(b)

Fig. 4.3.1. (a) Optical processor for real-time spectrum analysis; (b) photograph of (lhc
opgl-ical .proceuor; (c) photograph of translational stage assembly needed for acousto
optic interaction. (From P. Das and . Schumer, Ferroeleciric, 10, 1976.)
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Fig. 4.3.1 (continued)

" To undlcrstand u.|c bfasic concepts bghind integrated optics, let us consider
cexample §hqwn in Fig. 4.3.1. It consists of a real-time r.f, spectrum analyzer
using the principle of Bragg diffraction in an acousto-optic device. Fi yu
4.3.1(3? shows the implementation using a gas He Ne¢ laser, a bunch c.)f lc?)scr:
tq colllma_lc the beam, an acousto-optic device, a spatial filter to se arat
different diffraction orders, and a photodetector array, the output of w:ich i:
conncc‘ted to an amplifier. A picture of a typical implementation of this (in th
author's Iabora!qry in 1972) is shown in Fig. 43.1(b). It is obvious lhate
:gﬁg;;;c: t‘o oll;:u?ary electronic equipment, the optical implementation i;
o ;Ium rsome because of t.hc mechanical structures needed for the
s, elc. owever, an clegant solution of this problem is the use ofintegrated
optics, and this implementation is shown in Fig. 4.3.2. In this figure, the%vholc
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Fig. 43.2. Artist’s view of a futuristic system on a single GaAs wafer using different
signal processing devices.

device is on a GaAs substrate. GaAs is a piezoelectric semiconducting matenial
and has unique properties. As discussed in Section 3.13.4, the laser can be
fabricated on GaAs using some of its derivatives, such as GaAlAs. The light
is guided onto the substrate on which lenses also can be formed. The acousto-
optic device itself can also be fabricated directly onto it, as the photodetector
array and the amplifier needed for its output. Thus, we see that this integrated
optics implementation makes the optical implementation of the r.f. spectrum
analyzer mechanically rugged, easy to mass produce (because of planar con-
figuration), and the size is reduced to very small dimensions. The situation is
very similar to the ordinary clectronics of the past, where discrete elements
like resistors, capacitors, inductors, and transistors were used to build elec-
tronic circuits, rather than integrated circuits. Actually, the words “integrated
optics” were coined because of this similarity.

Fiber-optics have many applications. However, the communications usc is
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probably the most important one. Fiber-optics communication is like cable
television rather than free-space radio or television. We might wonder why
fiber-optics has become so important in communications. In the following,
we will discuss some of the advantages of using a fiber-optic cable.

(1) Wide bandwidth. The higher the bandwidth of a channel, the more
information can be communicated using that channel. A telephone cover-
sation takes approximately 4 kHz of bandwidth. If one million people want
to talk through the telephone over a long distance, we need a million channels
which can handle 4 kHz each, or one fiber-optic channel which can handle a
4 GHz bandwidth. In general, only a fraction of the carrier center frequency
can be used as a useful bandwidth; thus, if the carrier is | MHz, we might
be able to use a 100 kHz bandwidth. As the center frequency of light is
~ 10" kHz, the achievable bandwidth is enormous, ~ 10'? or more. Thus 4
single, properly designed, fiber-optic cable can, in principle, replace all the
telephone, microwave, and satellite channels between New York and Los
Angeles.

(2) Smaller size and lighter cables, Most of the electronic cables used for
telephones, etc., are made of copper. Compared (o these copper cables, fiber-
optic cables (made of glass fibers) are much lighter weight-wise and much
smaller in diameter. This is of great importance in an aircraft or a submarine,
where the changeover from copper cable to fiber-optic cable nchieves signif-
icunt weight reduction, in nddition 1o a significant reduction of spuce. Also,
copper is significantly more expensive than sand {the basic ingredient of fiber-
oplic cables).

{3) Fiber-optic cables have nearly negligible cross talk when a bundle is
formed, and they are highly immune to r.f. interference, Optical fibers do not
pick up clectromagnetic interference (caused by lightning and other electrical
noise generators, such as electric motors, relays, etc.), as they do not act as
antennas for these disturbances. Because of this, optical fibers also provide
greater security through an almost total immunity to wire tapping. As light
1s mostly confined to the optical fiber and does not radiate outside the cable,
there is no way to eavesdrop without actually tapping directly into the fiber.

{4) Fiber-optic cables can be laid throughout chemical plants, coal mines,
etc., where explosive gases exist, without the fear of causing fire. This is
because, even if the fiber-optic cable is damaged, no spark is produced. Also,
fiber-optic cables, being made of glass in contrast to metal, have a higher
tolerance to temperature extremes as well as corrosive gases and liquids. Thus,
a longer lifespan for fiber-optics cables is predicted.

(5) Transmission losses are, in general, lower in fiber-optic cables, as com-
pared to coaxial cables. Thus, in a telephone communications system, longer
distances between repealters are possible. Repeaters are needed to boost the
signal strength by using amplifiers to take care of the transmission loss. A
lesser number of repeaters means greater reliability and ease of maintenance,
Overall, fiber-optic systems have the potential to be significantly cheaper than
coaxial cable telephone systems.
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Because of these advantages, fiber-optic systems are beiqg used mcrea::‘nif:)i
in telephone systems, cable television, computer links, military Igom:\l o
tion needs, etc. There are other sophisticated uses of fiber-optic ca es; "
example tilcy can be used as sensors for temperature, prlesmln:e. art\)d {:)t;l}:cc)se.

: iti scopes have also been built.
very sensitive hydrophones and gyroscopes ‘

::r?sorsycan be used in the most hazardous atmospheres such as nuclear
reactors, pit furnances, power stations, etc.

43.2. Guided Light

Light can be guiacd in a fiber-optic cable or on a pla:ar s;i;s;ra{c;g:;:::g
i a sl ideandisu orin
a planar substrate is also called a slab wavegui '
(o):(‘ilc‘: al;‘ccausc of its simplicity, we will discuss the slab waveguide first.

4.3.2.1. The Slab Waveguide

A typical slab waveguide is shown in Fig. 43.3. lI;or the gu'i;i‘ier:‘glg: l;i?:je n| ;
i d ny. if ny = ny, '
t have a value higher than both n, and n,. 1 ' hen
::Tlllid a symmetric guide. To understand guiding ina slmplc fashnoq, conls(;:l::
the total internal reflection for the case of a symmetrical guide. A rayr : inc
on the face of the guide at an angle 8 and refracts at an angle @,. Thus

sin = n sint).

i - t

The refracted light is incident on the n, L interface ut an angl)c 9"(‘)'\ n(h. Le
us denote the critical angle for the total internal reflection by 8. The

n, sin ), = n,. (4.3.1)
If 90 — 6, is larger than 6,, then the ray will go through tol-fnl internal lzﬂ:t:;
tion. This will continue whenever the ray meets lthc n, n, |n.lcrfa-cc an \
ray .will be trapped or guided. Thus, all the incident rays with cone angies
extending from 0 to & will be confined if

n, sin(90 — 0) = n,,

Ny

€~ O-— >

—_—————Remm = X

Fig. 4.3.3. Ray diagram showing the guiding of waves, duc to total internal reflection.




.;'.IIII. H:;*,\ e

4
i

320 IV. Applications

or g
sin 8 = /n? — . 4.32)

In general, the difference between n, and n, is small. So we can approximate
this angle to be

6~ ./n—ni (4.3.3)

this @ is also known as the numerical aperture.

To properly solve the slab waveguide problem, we should solve the Max-
well equations with the appropriate boundary conditions. The complete deri-
vation of this problem, although straightforward, is beyond the scope of this
book. In the following we discuss only the important results.

Light propagates in different discrete modes within the waveguide. These
modes can be divided into transverse electric (TE) or transverse magnetic
(TM). The TE mode means that there is no electric field component in the
direction of propagation (i.c., E, = 0). Similarly, for TM, H, = 0. For a sym-
metric waveguide, the modes can be further subdivided into even and odd
modes. The electric field for the TE even mode is given by

E, = A cos a, xe /5, Ix| < d,
e R N ) 4.34)
ay
where
wl
a, = ?nf - K3, 4.3.5)
, @ 2
az - K' - ‘c", ”2, (43.6)

and K, is the propagation constant, A4 is the constant representing the field
strength, and d is the width of the guide.

Note that there is a finite electric ficld in the medium n, although there is
total internal reflection. However, this clectric ficld decays cxponentially as

we move away from the interface. a,, a,, and K, are determined from the
characteristic equation given by

tan a,d = 2. 4.37)

ay

Similar results are also obtained for the odd modes whose electric field is given
by

E, = A sin a, xe /%, Ix| < d. (4.3.8)
It is customary to define a quantity, R, given by
wid?
R= —c,—(n} - n}). 4.3.9)
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For R < n/2, only two modes can propagate, one cven and one odd. For a
multimode slab waveguide

R » 2n,
o A A
B 4.3.10)
d» ol NA ,

where NA is the numerical aperture. ‘ . ‘

Note that the propagation constant, K ,, is a function of w. Thus, in genera!,
the waves are dispersive. It can be shown that for a length, L, of the mgltl-
mode guide, the difference in propagation delays (between the low- and high-
frequency light waves) is given by

Atr, = rlcl(nl - ny), (4.3.11)

where the material dispersion has been neglected. Figprc 4.3.4 plots the electric
field variation for the first four TE modes as a function of x.

4.3.2.2. Fiber-Optic Cables

i i indri i basic types: the
Fiber-optic cables are cylindrical waveguides. There are two t
graded Ii)ndcx fiber and the stepped index fiber. For the step index fiber, the
refractive index has an abrupt discontinuity at the interface between the core

TE.
TE
EVANESCENT )
FIELD
-d
-d T +d X +d X
TEs *TE’
X

I

Fig. 434. TE modes in a diclectric slab waveguide as a function of x.
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Fig. 43.5. (a) Refractive index profile for a step index fiber. (b) Refractive index profile
for a gradient index fiber.

and the cladding given by
n = n“ r S a,

="z, r>a,

n, < n,, 4.3.12)

this is shown in Fig. 4.3.5(a). For the graded index fiber whose refractive index
profile is shown in Fig. 4.3.5(b), we have

rl
nir) = no<l - fb“')' 4.3.13)

where b'is & constant. Although other functional dependence is possible, the
p_ara.bohc variation is the most common one. In the graded index, the refrac-
tive index gradually decreases as a function of the radius. It can be shown that

the modes in the gradient index fiber, with refractive index variation given by
(4.3.13), can be written as

2 i
Epu(x, y,2) = E  ge " X020y _ {(%)l/ x} H, {(’:’) " y} e Kmat (43 14)

where
k.. k l 1 bl | l”z
=k, —_ _.(m +n+ l) ,

K w
0 E”o- 4.3.15)

ko = propagation constant for the (m, n) mode,

Lt

o Y
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and K is the ficld strength for the (m, n) mode, and m, n represent the mode
numbers and can be any integer. Note the similarity between (4.3.14) and
(3.6.2) which represents the laser modes.

Note that for the graded index fiber, we do not have a total internal
reflection in a particular interface. What happens is that the rays bend con-
tinuously until the x component of the propagation constant is reversed. In
a different way, we can consider that the light is periodically focused along
the fiber as it propagates. The electric field decays in a Gaussian fashion, as a
function of radius, with the effective spot size given by

A
413.16
wz\/ﬂb. (4.3.16)

Note that, theoretically, the gradient index fiber must extend to infinity along
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Fig. 4.3.6. (a) Plot of the number of propagating modes versus the fiber ¥ number. (b)
Normalized intensity plots for several LP modes for frequencies far away from cutoff
and near cutofl. (From T. Okoshi, Optical Fibers, Academic Press, New York, 1982)
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Near cut-off
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Fig. 4.3.6 (continued)
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r. However, for practical purposes, the radius ro needs to be a few multiples
of w. For a fixed ry it can be shown that the maximum mode number, m,,,
which can be guided is given by

2

Ing, +1="5. @3.17
w

The step index fiber is similar to the slab waveguide; however, it can
propagate the hybrid modes (EH and HE) over and above the TE and TM
modes. Figure 4.3.6 shows different propagating modes as a functionof V = R,
where R is defined by (4.3.9). Thus, for a single-mode fiber, we propagate only
the HE, , mode; this is true if ¥ < 2.405. The r dependence of the electric field
for the HE,, mode is given by

Jola,r)
E’-AJo(“na)’ r<a
Kol (4.3.18)

" Kola,0)’
where o, and a, are defined in (4.3.5) and (4.3.6) and K, represents the modified
Bessel function of order 0 and represents the alternating clectric field as a
function of r. Figure 4.3.6 shows the normalized intensity plots of the three
modes including HE, ,. Note that the lincarly polarized (LP) modes are lincar
combinations of the EH and HE modes for the weakly guiding case, ic.,
n, = n,.

The approximate total number of modes that can exist in a step index fiber
is given by

N="0. (4.3.19)
]

4.3.3. Integrated Optics

4.3.3.1. Guide, Couplers, and Lenses

Planar waveguides were discussed in the last section; however, for device
purposes, channel waveguides are more important. In channel waveguides
guiding takes place in two dimensions, as shown in Fig. 4.3.7. All four sides
of the channel must be surrounded by the refractive index of a lower value
than that of the channel. In Fig. 4.3.7 four possibie types are shown, they are:

(a) the embossed or rib waveguide;

(b) the ridge waveguide,

(c) the embedded strip waveguide; and
(d) the stripline guide. '

The exact analysis of these channel guides is very complex. However, simpli-
fied approximate analysis predicts results very similar to the guides discussed
in Section 4.3.2. Figure 4.3.8(a) shows the intensity pictures for the first six
modes of a square channel with parameters as shown in Fig. 4.3.8(b).
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Fig. 4.3.7. Channel waveguides: (a) rib waveguide; (b) ridge waveguide; (c) embossed
strip waveguide; and (d) stripline waveguide.

If the source is also on the substrate, like that shown in Fig. 4.3.2, then we
can directly couple light to the waveguide. Light from an external light source
can be coupled to optical waveguides using the following couplers:

(a) the prism coupler;

(b) the grating coupler;

(c) the tapered filter coupler; and
{d) the butt coupling.

The prism coupling configuration is shown in Fig. 4.3.9, where the prism of
higher refractive index is placed on the waveguide with small airgap. The
incident light gets total-internally reflected at the interface. However, the
cvanescent field at the interface couples light to the guide. The coupling
efliciency can be as high as 100% if we have a proper beam profile and airgap
width,

For a grating coupler as shown in Fig. 4.3.10, the diffracted light couples
energy to the waveguide provided the diffracted K vector matches the K vector
ofany mode of the waveguide. From a practical point of view, grating couplers
are convenient and their coupling efficiencies can be designed to be quite high.
The output tapered film coupler is shown in Fig. 4.3.11. The length of the
tapered part is generally of the order of tens of wavelengths. The film is made
of the waveguide material itself. For light propagating in the fitm, because of
the taper at some point, the ray hits the film substrate interface at less than
the critical angle and thus refracts out. An input coupler can also be fabricated
similarly.

Butt coupling is achieved by directly placing the laser at the edge of the
waveguide. Conceptually, this is the simplest one although it requires proper
mechanical polishing and gluing for efficient coupling.

4.3. Fiber-Opnies and Integrated Optics m
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Fig. 4.3.8. Intensity pictures for the first six modes for a square channel wavc;mdc: (a)
intensity pictures and (b) parameters for the square channel waveguide. wro.m JE.
Goell, Rectangular Dielectric Waveguides, in Iniroduction to Integrated Optics (ed.
M K. Barnowski), Pienum Press, New York, 1973))
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Fig. 4.3.9. Prism coupler.




AT S A T i et o

B3

T SN

el AP

328 IV Applications

[
\\k':'_”.&m
FILM

SUBSTRATE

Fig. 43.10. Grating coupler.

The planar optical elements needed for signal processing are lenses, mir-
rors, and beam-splitters. Waveguide lenses can be fabricated using three
techniques, and they are known as:

(i) the Lunenberg lens;
(i) the geodesic lens; and
(iii) the grating lens.

A Lunenburg lens is a sphere having a refractive index profile given by

nir)= /2 - 2. (4.3.20)

For an incident plane wave, the focus is at the rim of the sphere, as shown
in Fig. 4.3.12(a). By modifying the profile, we can focus at any distance away
from the rim, as shown in Fig. 4.3.12(b). For integrated optics, the lens is
fabricated by sputtering a material of higher refractive index on the waveguide
surface. The index profile is obtained by using a properly shaped mask
through which one makes vaccum deposition by sputtering.

The geodesic lens is very similar to the Lunenburg lens. However, for this
case, the path length variation along the radial direction is obtained by a
depression formed on the substrate, before a waveguide is fabricated. For a
depression, with dimensions shown in Fig.4.3.13, the focal length is given by

Ro

Unfortunately, the lens has strong spherical and other aberrations, and
to correct them, we form an aspheric surface which corrects them. Using
this aspheric surface and diamond turning technique to fabricate them suc-

tim
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substrate

Fig. 43.11. Tapered film coupler.

4.3. Fiber-Optics and Integrated Optics kP,

(8)

(b)

Fig. 4.3.12. Lunenburg lens. (a) Focus at the rim of the sphere. Radial refractive index
profile n{r) oc \/2 -, {b) Focus outside the sphere.

cessfully near diffraction limited focusing has been obtained on LiNbO,
wagxil:;ﬁ;sicnscs are formed using chirp gratings on the wavcguidc substraet:.
A particular case is shown in Fig. 4.3.14, where permanent gratings are foan .
We can use ultrasonic gratings which are clectromcally com.rollable ysing a
surface acoustic wave (SAW). If we need a totally reflecting mirror, we can use
a large number of gratings, called the distributed Bragg reflector.

—— Re ——

et
PLANE WAVE .
GEODESIC LENS ' Fcosw

— v [

Fig. 4.3.13. Cross section of geodesic thin-film waveguide lens.
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Fig. 43.14. Grating lens using chirp grating,

4.3.3.2. Modulators, Deflectors, and Directional Couplers

Modulators and deflectors using clectro-optic effects ure very similar to
those discussed in Section 4.4.2 in connection with regular optics. Of course,
with integrated optics, there are practical advantages such as planar structure,
ease of fabrication, compact devices with no adjustment, etc. However, the
analysis is rather complex because of the two-dimensional variation of the
electric field and the light wave, A typical deflector is shown in Fig. 4.3.18,
where clectrodes are deposited so that the electric field can be applied to form
an electro-optic prism. The three-clectrode system forms two prisms in series,
doubling the deflection. Note that the clectric fields in the two prisms are of
opposite polarity.

An clectro-optic modulator is shown in F ig. 4.3.16, where application of
the voltage across the electrodes causes the refractive index to change within
the guide and thus modulates the light. The directional coupler is a versatile
device and has been used extensively in microwave technology. It is equally
important in integrated optics and can be used as the basic building block for
modulators, switches, filters, multiplexers, and demultiplexers. Basically, the
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Fig. 4.3.15. Thin film electro-optic prism defector,
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Fig. 4.3.16. Electro-optic modulator for a guided wave.

ide in integrated optics is leaky and if another waveguide is near it,
x\:v:\/g:r::’:c;:llzzlz betwee‘r: the two couplgs gives rise to coupled-mode equa-
tions which form the basis for understandlpg ll?cse devices. b L For
Figure 4.3.17 shows the schematic of a clyectnonal coupler of lcng‘;x Li o
the purpose of analysis, consider the section between x and : *l.\ A .loc‘gr ”
propagates {rom input ports 1 and 2 to output ;?o‘l'(s Jand 4, an lr it cl .
ficids und intensities are denoted by E, and |E} whgre t varics rm;\ : h
The directional coupler is characterized by the scattering cocflicients §; whic
obey the following equations:

Ey=S5,,E, + $;,E;, 4.3.22)
E, =S, E, + S;.E,. (43.23)

X X+Ax /@
%
/'
}

E—w ] — &
B [ ] — &

(b)

Fig. 4.3.17. Directional coupler using evanescent field coupling: (a) schematic and (b)
small section of the coupler.
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The conservation of energy demands that

513883 + 8,458, = 0. 4.3.29)
We also note that
_ dE, d%E, (Ax)?
Ey=E(x+Ax)=E, + o Ax+ d—x; Syt (432)

as E,(x) = E,.

Similarly,
_ dEz dzEz (Ax)z
E‘ = E; + 7{; Ax + "a‘xz ' 2!* + . (4326)
Substituting these equations into (4.3.22) and (4.3.23) we obtain
dE, Si3—1 . S5  AxdlE,
x = oax Bt acke oy g .2
and
dEz SI‘ bt l s“ Ax ‘IIEI
il v E; + Ax E, ~ 2N dxt (4.3.28)
We also know that for Ax — 0, S, , and S34 can be written as
Sy, = e/ 4 x| 4 K, Ax, (4.3.29)
Sr1e =M% x| 4 jK,Ax, (4.3.30)

vnfherc K, and K, are propagation constants of the two guides, reapectively.
From (4.3.24), and noting that §,, » Sts & 1, we obtain

Sie = —5% = jaAx, 4.3.3))

where a is defined as the coupling coeflicient per unit length and depends on
the overlap of the two evanescent fields.

U.smg the values Sy derived above and using (4.3.27) and (4.3.28), we finally
obtain the coupled-mode equations for this distributed system

dE, o

o JK\E| + jakE,, 4.332)
dE, )

e = KBy + jaE,. (4.333)

Tg splvc these equations, we eliminate E 1 from (4.3.33) by differentiation to
obtain

d’E, dE, 2
dx¥ T JK, + K,) dx + (@ — K, K )E; = 0. 4.3.39

Assuming « 10 be real, we obtain

E; = MK KNI 4 gin %8 + B cos x0], (4.3.35)
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2 2 2 3
0= {az ‘ (,’_‘_l.;f 4) }" - [az + (Az") ]" L @4336)

Similarly, E, is given by

where

E, = Ky 2" K E, + MK K201 _ 4 cos Ox + B sin Ox].  (4.3.37)
o
If the boundary conditions are given by
E\0) =1, (4.3.38)
E,(0) =0, (4.3.39)
we have
B« (4.3.40)
and
A= ’;‘. (4.3.41)
For this case, we obtain
E, = X+ Kka2ix [cos Ox + ;‘-(1—2_;—)-& sin Ox], (4.3.42)
and
E, = jeNiokam g S0 0% (4.3.43)
The coupler efficiency, n, for a length, L, of the coupler is given by
]
E, (L)} sin? L
n(L) = E:(O) =al- o (4.3.44)

Thus the maximum power transfer amount is given by a?/6% and it occurs for
L6 = (n + })x. Note that for AK = 0 and al = (n + §)=, full power transfer
occurs and np = 1.

AK can be changed by applying the clectric field to one of the guides, as
shown in Fig. 4.3.18; this arrangement can thus be used as a switch or
modulator. An interesting case arises when the coupling is between a TE mode
and a TM mode; and this only happens in the presence of the clectro-optic
effect. However, for this case, AK is never zero. We can apply a periodic electric
field to simulate the cffect, as if AK were zero. This is true for the device shown
in Fig. 4.3.19 provided
2n
'A »
where Kyy and Kpy are the propagation constants of the TE mode and the
TM mode, respectively, and A is the period of the applied electric field. The
device in Fig. 4.3.19 can also be called a mode converter.

(4.3.45)

Kep— Ky =

|
|
i
|



14 IV. Applications

—

@V

Fig. 43.18. Electro-optic switch or modulator using directional coupler.
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Fig. 4.3.19. Electro-optic mode converter.

. The main element of the electro-optic A/D converter i

lntgrfcromc.tric modulator shown in Fig. 4.3/.20. im plcmcr::cgl:nr:\‘:ci}:ncz :::i:c;
optics fashion using LiNbO, as the substrate. The input light is dli;vidcd
equally between two guides and then recombined again forming an interfero-
meter. In one path two metal plates are added, so that the velocity of the

guided wave can be changed by applyi i
dec ; plying the electric field due to th -
optic interaction. The output light intensity is given by © the electro

I=lcost(® 4+ ¥
o €08 (2 + 2>- (4.3.46)
; —
LIGHT | L ianT
[]
! s
,'L‘Y L‘NbO;]’

Fig. 4.3.20. Schematic drawin i i
; g of an integrated optical Mach- Zender interf
modulator fabricated from single-mode channel waveguides in LiNbO,, ererometer
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where I, is the incident light intensity, ¢ is the phaseshift caused by the
electro-optic effect, and y is any phaseshift present due to an imbalance
between the two arms of the interferometer. Note that if the light from the
two branches is not in phase, then the two recombined lights form a second-
order mode and cannot propagate through the output guide. From Section
2.12.7, we have
An 4
Q= 2nL I‘ =R V‘,

4.347)

where L is the length of the modulator metal strip and ¥ is the applied voltage.
Equation (4.3.46) can be rewritten as

L\ I v
-0 0 - . 4.3.48
(I 2) 3 cos[Zn V. + 2¢] (4.3.48)

Thus the frequency of the periodic variation of the output, measured with
reference to half of the input intensity, is proportional to the applied voltage.
This fact is used to form the A/D converter. For details see reference [32].

4.3.4. Fiber-Optic Cables

In this Section we discuss some practical aspects of fiber-optic cables; these
are attenuation, dispersion, and pulse propagation.
The main loss mechanisms for optical fibers are:

the intrinsic material absorption loss;

the Rayleigh scattering loss;

the waveguide scattering loss; and

the microbending loss. )

As most of the fibers are made of high-silica glass, they have a very high
absorption rate, due to direct photon absorption to create an clectron-hole pair
at an approximate encrgy bandgap of 8.9 ¢V, corresponding to 4 = 0.14 um.
On the other hand, in the infrared region, the absorption is due to molecular
vibration. A typical loss curve is shown in Fig. 4.3.21, where we note that
above 1.5 um the intrinsic loss is less than 0.5 db/km. In general, the intrinsic
loss is very small in the wavelength region of 0.8-1.5 um. In this region,
however, the vibrations of the dopants and other impurities (i.c, OH™, Fel*,
Cu?*, etc.) give rise to losses which are highly dependent on the particular
fiber. In Fig. 4.3.21, OH " absorption is shown to be predominant at ~14¢V.

Rayleigh scattering loss arises due to thermal vibration and compositional
variations. It can be shown that

3 : r S
oy = ’;%‘ [(..2 —1)BKT + 2n (g:) AC’JU], (4.3.49)

where a, is the Rayleigh scattering loss cocflicient, § is the isothermal com-
pressibility, C is the dopant concentration, and AC? is the mean squared
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Fig. 43.21. Typical loss curve for high-silica glass.

;luctut_ltion of C over volum.e év. In general, ay is dependent on the manu-
racturgng process ‘and a typical one is shown in Fig. 4.3.21. Due to manu-
‘::tunn% v?nabnhty and imperfections, there is always a loss term due to
waveguide lormation and microbends in the fibe i
i can be sigaifeany meo T ibers. However, with proper care
From the point of view of optical si i i
_ _ gnal processing, the bandwidth limita.
;lon atl\d its effect on p_ulsc Propagation is more important. The main reason
(::d pulse broa'ndemng is d\ge to modal dispersion (only when multimode is
u ) and ba.snc mlte_na.l dispersion, or chromatic dispersion. Modal disper-
glgcn_ can easnly. be eliminated using single-mode fibers and, as discussed in
tion 4.2, this can be done over a very large ~10° GHz bandwidth if

material dispersion is neglected. It is conveni i
constant B By on i DBl venient to expand the propagation

- dp 1 d?
B, E) = g, + (a;).o(w = wo) + 3 dia? “o(w — w,)?
148
6o, = w0l + e

= o + Bu(@ = w0) + 3 By(w = !

1 L]
+ spa(‘” —w)® + I"z,Elz, (4.3.50)
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it is assumed that wy is the center frequency. The constant term, f,, introduces
a simple phaseshift, the second term, §,, causes the pulse delay, and the third
term, B,, causes pulse distortion. The last term is the nonlinear interaction
term due to the Kerr effect discussed in Section 2.12.7, and n, is related to the
Kerr coefficient.
The group velocity, v (w), is given by
1

- = By + Balw — wy) + §Bi(w — we). (4.3.51)

v,(w)
If the length of the fiber is L, then neglecting the contribution of the third term
in (4.3.50), the delay time ¢, is given by

ty(w) = L (4.3.52)

v(w)

If the spectral width is Aw, then the uncertainty in time delay, 1, is given by

Aty = LB, Aw. (4.3.53)
Defining the chromatic dispersion, D, as
1 dty
= 4.3.
D Ldi’ (4.3.54)
we have
2nc
D= ’17( By, (4.3.55)
where D has units of ps/nm-km. Equation (4.3.53) can also be written as
2ncL
Aty = LDdA = ’;‘, B, di. (4.3.56)

A typical D versus 4 curve for two optical fibers is shown in F;g 4322. To
obtain the minimum pulse width, 1,,, at the input, which can be transmitted
for a length, L, we note that the output pulse width is given by

1
Tout = Tia + At. =T, + Lpl f ’ (4357)

where we approximated 1, ~ 1/Aw. Diflerentiating (4.3.57) with respect to 1,,,,
and equating to zero, we obtain the minimum transmitted pulse, t,,, given by

Toin = 23/ L %« A /LID| (4.3.58)

for
T = /L, (4.3.59)

In (4.3.58) the absolute value of D is used, as D can be positive or negative.
A typical value of D at 2 = 1.55 um is 10 ps/nm-km, which predicts

Toia & 14./L(in km) ps. (4.3.60)
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Fig. 43.22. Chromatic dispersion curve of optical fiber.

From Fig. 4.3.22 we note that D is zero at 1.3 pum. It can be shown that the
puise propagation for this case gives risc to pulse distortion in the form of
ringing. The shortest propagated pulse for this case can be shown to be given
by

Toie = 3(BL)'7, 4.3.61)
Using the value of D’ = dD/dA = 0.08 ps/nm?-km for a typical fiber, it is
estimated that*

Toin = 1.2(L (in km))'? ps, (4.3.62)

Comparing (4.1.60) and (4.3.62) it is obvious that it is desirable to use
fiber-optic cable at 4 = 1.3 #m where D(4) = 0; however, attcnuation is mini-
mum at 4 = 1.55 yum. So we have a somewhat ideal fiber, from the pulse
propagation point of view, if the chromatic dispersion curve can be somehow
modified to resemble fiber 2 shown in Fig. 4.3.22. There are two ways this can
be done. The simplest approach is fiber concatenation or the use of two fibers
with D(J) equal, but opposite in sign. This can be done by using different
doping. It is known that GeO, doping shifts A, to longer wavelengths whereas
BeO, shifts it to a shorter wavelength. The second approach is to have a
doubly clad fiber with a refractive index varistion as shown in Fig. 4.3.23(n).
The figure also shows the predicted chromatic dispersion for the values given
in the figure.

The nonlinear term in (4.3.50) causes what is known as self-phase modula-

* Note that D’ is related to Bs.
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Fig. 4.3.23. (a) Chromatic dispersion curve of a double clad fiber wit
|hl:wn in the ineet. (b) Schematic drawing of an optlu! pulse compressor. The dis-
persive delay line consists of gratings G, and G, and mirrors M,, M,, and M,. The
compressed pulse is deflected out by mirror M. (From A.N. Johnson et al., Appl. Phys.
Lett., 44, 1984.)
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tion. The Kerr effect can be written as

A” = ian:... = ﬁzl, (4.3.63)

where [ is the intensity. A typical value is ny ~ 3.2 x 107 cm?/W, and for |
W of propagating power An ~ 1019, Although this change in refractive index
is very small, it causes frequency chirp in the pulse spectrum.

This phenomenon has been used successfully in forming femto-second
pulses by using puise compression. The light pulse, generally from a mode-
locked dye laser in the pico-second range, is passed through a fiber-optic cable
to have the frequency spectrum chirped. This chirped pulse is sent through a

diffraction grating to obtain pulse compression. A typical setup is shown in
Fig. 4.3.23(b).

4.3.5. Applications

The largest application of fiber-optics and integrated optics is in communica-
tions systems. A block diagram of a fiber-optic communication system is
shown in Fig. 4.3.24. The source consists of either an LED or a semiconductor
laser; for a coherent system, however, we must use a laser. The transmitter
consists of modulators, different multiplexing switches, and amplifiers. Differ-
ent modulators have been discussed in other parts of this book. The modula-
tion scheme can be either analog (amplitude or frequency) or digital (pulse
code modulation). The digital systems are of more use. The main element of
the receiver is the detector, in conjunction with other electronics, to decode
the modulated data.

Further details of fiber-optic communications are shown in Fig. 4.3.25. This
system uses a broadband single-mode fiber, and double star network archi-
tecture for local distribution. There are many other possible distribution,
networking, and switching schemes. There is a broadband switch at the local
central office and a second switch at a remote clectronics terminal; in this
terminal, the distribution of the selected channels to the subscriber is made.

Any fiber-optic system must use a light source, and there are two options.
In one case, the use of a light source for each local network; the other
alternative being the use of a high-power laser in a central station, splitting
the power N ways as shown in Fig. 4.3.26. This figure shows a local distribu-
tion network architecture, using centrally located shared lasers and external
modulators to create a two-way transmission system with no lasers at the

interference
noise
- —— -
Source Transmitter Channel Receiver Destination

Fig. 43.24. Block diagram of a communication system.
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inal. The high-power laser sources, s, and s,, are split m ways
:;t::::r t<:eor::;;ler. Then e::l;: channel is modulated externally by the modula-
M,.

mr’si‘ge:g::?n.:wo?way communication we need two ghan.nels, denoted la's
upstream and downstream channels. Wavelength mulnplcxfmg and demulti-
plexing are used to distinguish the two channels. The optical dcl:ctorshn:e
denoted by D,,. Typically, it is projected that m can be 100- 1000 and can have
single-mode fibers with 100 GHz/km bandwu!th distance pltoduct. heoretical
The main advantage of a coherent transmission system is the theoretica
high-sensitivity detection, limited by photo.electron statistics or qhem:::n:n
noise. Another advantage is the inherent multifrequency apn}nlny. t od: " t; y
to do optical frequency division multiplexing. In a low-loss single-m iber
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Fig. 43.26. Local distribution network architecture usin; f:enlnlly Iocal:d sll\:::
lasers and external modulators to create & two-way transmission sysicm with no s
at the network termination. (From S.S. Cheng et al, A distributed star netw
architecture for inter office applications, J. Liyhtwave Tech., LT-4, 1986.)
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_Flg. 43.27. Typiql coherent optical fiber transmission system illustrating the use of
integrable waveguide components,

in the 1.55 um wavelength band there is Ad ~ 120 x 10-% m available. This
corresponds to a bandwidth of 15,000 GHz. A coherent transmission system
however, needs a more elaborate receiver including a local oscillator whosc’
phase, .frequency, and polarization must be controlled. Integrated optics is
wgll _smted for fabricating this receiver. A typical coherent optical fiber trans-
mission system block diagram, illustrating the integrable waveguide com-
ponents, ls‘shown in Fig. 4.3.27. A particular receiver using LiNbO, substrate
18 shown in Fig. 4.3.28. The receiver performs the functions of polariza-

Signat

Locat

Polarization Oncilimo
i

Controtier

Opticet Combiners

Frequency
Transistor
Output
Optical Fibers

y Cryatal

Fig. 4.3.28. A LiNbO, integrated optic coherent receiver device which performs the
funf:nons of polarization correction, optical frequency tracking, and signal and local
oscillator combining. (From W.A, Stallard et al, Nove! LiNbO, integrated-optic
component for coherent optical heterodyne detection, Electron, Lett, 21, 1985)
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Fig. 43.29. An clectro-optic frequency shifter. (From H.F. Taylor, Application of
guided-wave optics in signal processing and sensing, Proc. I[EEE., 75, 1987.)

tion correction, optical frequency tracking, and signal and local oscillator
combining.

Other integrated optics functional subsystems have been built; and here
we discuss just one of them. A frequency shifter is a uselul system both
for coherent transmission and for optical fiber gyroscopes. Both electro-optic
or acousto-optic cffects can be used for this purpose. Figure 4.3.29 shows
an electro-optic frequency shifter. This uses the mode conversion of a TE
mode to a TM mode by the periodic metal fingers across which proper volt-
ages arc applied. The fingers produce an clectro-optic grating whose period
matches the TE -TM beat length. Thus, part of the light coupled into the TE
mode emerges in the TM mode, shifted by the frequency of the electro-
optic modulating voltage. An acousto-optic [requency shifter is shown in Fig.
4.3.30. It uses two surface acoustic wave (SAW) interdigital transducers. The

s

Ti LiNDO)
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N /
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L MODE
Jrooesic N rinen
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Fig. 43.30. An acousto-optic frequency shifter for use with single-mode fibers. (From
H.F. Taylor, Application of guided-wave optics in signal processing and sensing, Proc.
IEEE., 78, 1987)
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SAW is an Flds(ic wave which is mostly confined to the surface and is thus
ideal for gt{nded-wave acousto-optic interaction. The single-mode input and
output optical fibers have relative frequency shifts of difference frequency

— X h . .
ﬁ{; nsdfuz:e ; ere f, and f; are the frequencies of the input voltages to the SAW

4.4. Optical Signal Processing

4.4.1. Introduction

Optical signal processing involves devices or systems which improv.

performance of a signal. The signal to be processed is, in general, ‘:leoct:icl ?:
nature, 'thus. the natural question arises as to why we want to do optical signal
processing— because the electrical signal has first to be converted to an optical
sngnal beforg processing. To answer this question, we note that very cfficient
high bandwidth and high time-bandwidth product modulators are avail-
able through acousto-optic or electro-optic interaction or through the direct

modulation of the lasers, especially the junction laser: i
the following points: J er; but more important are

. (i) For digital processing we need a very fast A/D converter
signals. At present, A/D converters, beyond the safmpling rates fg; :mk:ﬁ
n}cgahert_z. are not casily available at a reasonable price. Even for analo
signals, hlg.h bandwidth requirements can casily be met by acousto-optic of
electro-optic devices which are very difficult to accommodate by technologies
qthcr th.an optical. Thus, the instantaneous power spectra of an clcctr?cal
signal with bandwidths exceeding | GHz can, at present, be performed easil
and' _probabl.y only by acousto-optic devices. ' !
(i) The sngngl to be processed is not always electrical. With the increasin
use of ﬁbe.r-optnc communication cables in the near future, there will probabl8
be more sngngls on the optical carrier. In this case, we are better off proct:ssiny
the .slgna.ls directly by optical signal processing, than by first converting lhg
f)ptlcal §xgnal back to an electrical signal by a detector and then processing
:lh A tiplca! examplc might be the data from the ultrasonic detectors all over
ca:, ls: marine which are brought to the optical processor through fiber-optic
(iii) The more obvious case is that the si i is § i i
suc(h ;);s'a: optical lan "ansp“ence;lgnal itself is in the optical domain,
V) Inherent parallelism with optical signal processing is
bl'ggest.assct of optical signal processing, lmagins trying lg con‘::ct:?r:yellet
trical §lgnal toa million discrete points simultancously. This can easily be
done in optn.cs if a junction laser, placed at the focal point of a lcn)sl is
moduh?ted wntl_l the electrical signal. Note that this is the fundamental rca.v;on
for t'hc Interest in and importance of optical signal processors. Another exam-
ple is the correlation or matched filtering of images in parallel. '
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We might ask: With all the advantages of optical signal processing, how
come, at present, it is not used in abundance? For example, except for synthetic
aperture radar, no other product has been a commercial success. The reason
for this is that the technology was not available before. Just as for optical
communication to be a success, we had to wait for the excellent quality
fiber-optic cable (with low dispersion, attenutation and mechanical strength)
and the high-quality efficient heterojunction laser which can be modulated at
a very high rate. At present, acousto-optic and electro-optic device technology
has seen enormous progress in making optical signal processing more useful;
an example being the success of the Bragg cell real-time power spectrum
analyzer. The heterojunction laser with the intracavity modulator to frequency
(wavelength) modulate the laser, and other devices are maturing fast, making
optical signal processing more viable today.

There are many proposals being made to explore the advantages of optical
devices, such as a very fast optical A/D converter, optical logic and its use in
building a computer, use of an optical source or modulator in conjunction
with holographic lenses for IC interconnection, systolic processors, etc.

One of the main disadvantages of optical signal processing, as compared
to digital processing, is the inaccuracy and dynamic range limitation asso-
ciated with any analog signal process. Residue arithmetic architecture solves

these problems at the cost of introducing noncomplexity. One other possibility
is to use binary arithmetic in optical processors, such as in optical systolic

arrays, or the digital multiplication analog convolution (DMAC) algorithrh.\‘

The heart of the DMAC algorithm is the fact that when two binary numbers
are multiplied, the result can be viewed as a convolution of two binary
bit-streams and a carry propagation operation. Some of these hybrid tech-
niques, where the high degree of parallclism and the high speed of optical
processing is cleverly combined with the accuracy and flexibility of digital
processing, will be the success stories of the future. .

Another disadvantage of using optical components for electrical signal
processing is the packaging difficulty, due to the clumsiness and size associated
with optical devices. An example is shown in Fig. 4.3.1, which is an illustration
of the setup used by the author and his students (in 1972) to demonstrate the
real-time acousto-optic convolver operation using SAW delay lines. However,
due to the emergence and advances in integrated optics, not only the whole
setup shown in Fig. 4.3.1, but other functions as well can be incorporated in
a small portion of a wafer, as shown in Fig. 4.3.2.

In real life, the desired electrical signal is always contaminated with random
noise or deterministic unwanted disturbance, which might be intentional or
unintentional. The objective of a signal processing device is to reduce or
climinate (as much as possible) these undesired components from the input,
so that the best estimate of the information contained in the signal can be
made. [deally, a signal processor should have unlimited bandwidth and time-
bandwidth products; however, due to physical constraints, this is never pos-
sible. Thus, to perform real-time signal processing, with faster speed and
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Fig. 4.4.1. Block diagram for a signal processor,

higher bandwidth, has been an important goal for electrical engineers, and
has been so for many years. Recently, the revolution caused by the availability
of high-speed integrated circuits, optoelectronics, and SAW devices has made
this hitherto elusive goal come within the realm of technological feasibility,

A signal processor performs the improvement of the desired signal. As
shown in Fig. 44.1, the signal power is denoted by S, the power of the
undesired signal, disturbance, or interferer by I, and the noise power by N.
A typical signal processor will improve the ratio S/(N + 1) at the output
compared to the input. Note that the signal and the interferer can be deter-
ministic or random, whereas noise is always random. For two-dimensional
signals, it is possible that we are looking for the presence or absence of a
pattern or a character. In many of these problems, the solution is a filter which
can be designed either in the time-domain or in the frequency domain, using
various devices such as fiber-optic cables, SAW delay lines, or CCDs. Which
devices to choose will depend on the frequency region in which we are
operating.

In this section, we will discuss various signal processing devices and their
applications. These applications include filtering, matched filtering, the Van
der Lugt filter, etc.; some other applications are very important and should
also be considered. A good example is synthetic aperture radar, for which
we refer the reader to the reference section. To understand the material of
this section the reader should be familiar with certain mathematical concepts.
In the following we review only the linear systems concepts without any
derivation.

Let us consider a so-called black box with input (1) and output g(r) as
shown in Fig. 44.2. The output g(t) can be represented by a functional
onc-to-one mapping represented by L

g@®) = L[ f(n)]. @41

For a linear system

LN + 4] = A LLUAT + A,LLAT]. @42)

where A, and 4, are complex numbers and f, and /1 are any two functions
which statisfy (4.4.1). Also, most of the time, we shall deal with time-invariant
systems. This means that if the input is shifted by {o, the output shifts only by
to without any other change. The output is also causal. This implies that we
cannnot have an output before the input is actually applied.
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ot < L{t(1))

1 BLACK
—_— e

’ BOX

Fig. 4.4.2. Input and output of & lincur system.

It is to be mentioned that there will be some systems which we Yvnll congldcr
where we deal with f(x), where x is not time pu( some other physical va;ubl;
like position. For those systems, this cagsahty. of course, does not holl an
is meaningless. Let us define the most important furilcuoni the impulse :T;
sponse, h(t), of a time-invariant linear system. For an input 3(t), the outpu
h(t). Thus,

h(t) = L{d(0)]). (4.4.3)
We prove immediately that for any input f(¢) the output is given by
g(e) = J*w f(t)h{t — 1) dt. (444)

The quantity on the right-hand side is also the definition of convolution of
the two functions f and h, and is denoted symbolically by

foh= Jw f(Oh(t — t)dt = hs f. (4.4.5)

Let us define G(f), H(f), and F(f) as the Fourier. tran;form of g} h(t),
and f{r), respoctively; then we have the following relationship:

G(f) = F(S)H(S). ' (4.4.6)

Note that H(f) is the frequency response of the linear system, which is often
alled a filter. . '

¢ For signal processing purposes, the matched filter is very important. For

an input, f(¢), in conjunction with white noise to the ma(c!\ed filter the output

signal to noise ratio is maximum. This happens when the impulse response of
the matched filter is given by

h(t)oc f*(t, — 1), 4.4.7)

where ¢, is a constant delay needed to satisfy causality. In the frequency

domain, we have HUY o Fo(fpeltoto, “as)

The output of the matched filter is given by

glto) o JWn fOf*(ty + 1) dt, (4.49)
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and
G(f) o F(f)F*(f)e/* V%, (4.4.10)

Equation (4.4.9) is also known as a correlation. In gener i
‘ ) al, a correlat
between two functions f(¢) and h(t) is defined as 8 wen

S h(zo)-f JOh*(ty + 1) dt. (44.11)

As discussed earlier, femto-second optical pulses a i i
techmiqus (o P T p p re gencrated using this

4.4.2. Optical Signal Processing Devices

For an optical signal processing system, we need two types of device —optical
and nonoptical. The nonoptical device might be a photodetector, a CCD, a
SAW, or a regular digital or analog IC. The optical device might consist 'of
modulators, convolvers, correlators, deflectors, filters, and A/D converters,

over and above the lens systems discussed carlier. The modulators, convolvcrs.
correlators, and filters can be divided into two major categories depending or;
whether they deal with spatial or time signals. In this section, we will discuss
some of these devices using either electro-, acousto-, or magneto-optic effects.

4.4.2.1. Modulators
Time Modulators

The l?lock diagram of a modulator is shown in Fig. 44.3. A uniform light of
ampl,tude A and l'n.:que.ncy w, is incident on the modulator with modulating
:)unctlon J(¢). If the light is to be amplitude modulated, then the outputis given
Y
A o f(t)eHor-Kin

light input

'

Moduiator

light output

U{})
electrical input

Fig. 443, Block diagram of a light modulator (time).
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modulated light
Laser —
output
f(t)
electrical
input

Fig. 44.4. Direct laser modulator block diagram.

where a is a constant. If the light is to be frequency modulated, then the output
is given by

Aehwin- Ko (44.12)

where
w(t) = w; + af(1).

It is to be mentioned that K, is also modulated as the w versus K relationship
has to be maintained in a linear homogeneous medium. Note that we can also
have polarization modulation. However, as we will see shortly, polarization
modulation can easily be converted to amplitude modulation. There are two
fundamental weys for time modulation, and one is shown in Fig. 4.4.3. In the
second one, the source itself, mostly the laser, is modulated by f(1) to produce
the modulated light, as shown in Fig. 4.4.4. The best example of this is the
modulation of a junction laser by different mechanisms. Thus, basically, there

are four types of modulator: i

(i) the electro-optic modulator,

(ii) the acousto-optic modulator,
(iii) the magneto-optic modulator, and
(iv) the laser modulator.

The Electro-Optic Modulator

Electro-optic modulators can be subdivided into the following five categories,
the first four of which are considered later:

(1) the longitudinal electro-optic amplitude modulator;
(2) the longitudinal electro-optic phase modulator;

(3) the transverse electro-optic amplitude modulator;
(4) the transverse clectro-optic phase modulator; and
(5) the traveling wave modulator.

For the longitudinal cases, the direction of light propagation and the
applied modulating voltage are the same, and to increase the modulation
index by increasing the length of the crystal we also need a higher applied
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field. For the transverse cases, the modulating field and the propagation
direction are perpendicular to each other, and thus we can increase the
modulation index by increasing the length of the crystal without changing the
modulating voltage. This is a distinct advantage and in practical intcgrated
optic devices this mode of operation is in general, chosen. Traveling wave

modulators are used to circumvent the bandwidth limitation imposed by the
transit time effect.

The Longitudinal Electro-Optic Amplitude Modulator

A typical electro-optic amplitude modulator is shown in Fig. 44.5, and con-
sists of a polarizer (if the input beam is not already linearly polarized), an
clectro-optic material (such as KDP across which the modulating voltage is
applied), a quarter-wave plate, and a cross polarizer. The electro-optic crystal
causes birefringence which is dependent on the applied voltage across it due
to the electro-optic effect. To be specific, let us consider the x'- and y'-axes,
as shown in Fig. 44.5, to be the new induced principal axes of the index
ellipsoid. Then, as discussed in Section 2.1 2, the x and y polarized components

of light are given by
A nV
E ()= 3 (exp(-—j2 V.) + l). (4.4.13)

E,u)af;-(exp(-j; L’)- 1). (4.4.14)

where V, is the half-wave voltage, and it is assumed that the input wave to the
clectro-optic crystal is given by

E =i, 4 cos(wt - K2). (4.4.15)
Thus, in general, the input linearly polarized light becomes elliptically polar-

“Fast" "Slow
axis axis
(1o x’y Ntoy")

0=

Input _——Q)‘— "Quarter wave”  Output

polarizer (F-nr2y polarizer
(i1 1o x) retardation (Noy)
plate

Fig. 4.4.8. Longitudinal electro-optic amplitude modulator.
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Fig. 4.4.6. Transmission characteristics of the electro-optic modulator shown in Fig.
445.

ized. If we now use just the cross polarizer, without the retardation plate, the
output light intensity, I, is given by

4
PRTRRY
lo-A sin (2 V.)

nV
= si . 4.4.16)
_lism’<2 l’,,)' (i

where /, is the input intensity. The plot of (4.4. !6)‘is shqwn in Fig. f.4.6. wherg
the advantage of using a fixed retardation of n/2 is depicted. If we include this
bias then (4.4.16) modifies to

I . ,n =V
l—l-—sm [4+2V_]

4

- %[1 + sin "(V:]' 4.4.17)
For a small modulating voltage, V « V,, we can approximate as follows:

batliam VJ 44.18

1 + . (4.4.18)

L= 2[ v,

Thus under the condition
V«i,

we obtain the amplitude modulation.
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Fig. 4.4.7. Longitudinal electro-optic phase modulator.

The Longitudinal Electro-Optic Phase Modulator

The phase modulator shown in Fig. 4.4.7 is very similar to the amplitude
modulator discussed previously, except no cross-polarizer is needed at the
output. Also, the input light polarization is made parallel to one principal axis
of the electro-optically induced index ellipsoid. For this case, the refractive

index and thus the phase of light is modulated by the modulating voltage. For
an input electric field given by

E,(0) = A cos wt, (4.4.19)
and the modulating field given by
E, = E_ sin w,t, (4.4.20)
we have at the output of the crystal
E.(I) = A cos [a)t - (»:_—,(no - {'23 rE,, sin w,,t)]. (4.4.21)
Equation (4.4.21) can be rewritten as
E. ()= A cosfwt + &, + & sin w,t], 4.4.22)
where J, is a constant phase and 8, the phase modulation index, is given by
an3rE, |
& __91__
TV,
=37 (4.4.23)

The Transverse Electro-Optic Amplitude and Phase Modulators

A transverse electro-optic amplitude modulator is shown in Fig. 44.8 where
the same crystal (KDP) is used as in Fig. 44.7. The polarization of the input
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Direction
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polarization {1 to input
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Fig. 4.4.8. Transverse clectro-optic amplitude modulator.

light is in the (x’-z)-planc and at an angle of 45° with respect to the x’-axis.
The light propagation direction is in the y’ direction. The phase retardation,
I, for this case is given by

{ 3 (V.
M= a‘:‘[("o -n) - "29’(';)]

=T, - ’.‘:'- ((") (4.4.29)

where d is the transverse direction of the electro-optic crystal and T, ois a
constant. Thus, for this case, (4.4.18) can be written as

I, 1 nV, (1

i x 2[1 + Vv, (d)] (4.4.25)
Thus we see that by increasing / compared to d we can increase the modulagion
index. Note also that in (4.4.25) we have assumed that I, replaces the bias
phase retardation. .

A transverse clectro-optic phase modulator is shown in Fig. 4.4.9. With
respect to amplitude modulation, for this case, we can obtain an increase in
the modulation index by increasing I. Equation (4.4.23) is modified, for this
case, as
- mrE . nV_ |

s A T2vd

(4.4.26)

Electro-Optic Deflectors

Light can be deflected using either an electro-optic or an acousto-optic effect
or a combination of both. Electro-optic deflectors can be divided into two
major categories: .

(1) digital light deflectors; and

(2) analog deflectors.

Digital light deflectors usc an electro-optic switch and a polarization dis-
criminator. Analog deflection can be obtained by prism deflectors, refractive
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Fig. 4.4.9. Transverse electro-optic phase modulator.

index gradient deflectors, and analog deflectors using frequency shifting.
Many of these deflectors can be cascaded to improve total performance. In
the following we only discuss a simple analog prism deflector.

An Analog Prism Deflector

As shown in Fig. 4.4.10 the incident beam is deflected by an angle, 8, which
is dependent on the refractive index of the prism. If the refractive index is
changed, this angle, 8, will change and this is the fundamental principle of
electro-optic prism deflectors. If the refractive index changes from n, by an
amount An, then using Snell's law we can show that the change in the
deflection angle, A9, is given by

a6 = A1~ L) (4.4.27)

nyw

where n, is the refractive index of the outside medium, w is the width of the
incident light beam, and L, and L, are the distances through which the edges

%/
%__EL—%
e o~

Fig. 44.10. Analog prism deflector.
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of the light beam traverse the prism. To calculate the number qf resolvable
spots, Ny, we note that the diffraction limited divergence, 6, is given by

al

= - ’
n,w

(4.4.28)

where a is a factor greater than onc and depends on the beam intensity
distribution over w. Thus, for this case, we have
A0 An(L, - L,)
= e , 4.4.29)
M O al (

where N, is maximum when a = 1 and L, — L, = [ is the prism'bne length.
Note that although N, is independent of the prism angle, r, it cannot be
increased beyond the total internal reflection angle, 2 sin ™ n,/n.

Acousto-Optic Devices

An acousto-optic modulator configuration is shown in Fig. 4.4.11. For an
input of f(f)e’*, where w, is the center frequency of the ultrasound trans-
ducer, an acoustic wave propagates through the crystal given by

z -
s(oc flt — = |erwaKam), (4.4.30)
vl
OUTPUT
END VIEW ,
! |
| |
I
H t )/vv» AN
b 3
——
-
e 8
I
> 86, .- ACOUSTIC WAVE
DIFFRACTION ANGULAR
SPREAD (,, _ A
PIEZOELECTRIC [»] e
TRANSDUCER
FREQUENCY 1, INPUT
LASER
= OPTICAL CONVERGENCE
BEAM 6&- 0

ANGLE (u.-_o_ )
"t
Fig. 4.4.11. Acousto-optic modulator.
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As discussed in Section 2.12, this produces a moving phase grating in the solid.
In the Bragg region, light incident at 6,, is diffracted such that

L.
4 m sin? n'—‘ngps . (4.4.31)

Thus I, is proportional to the modulating signal f(t — z/v,). For a finite width
of the optical beam, D, ultrasound will take, 7,, the transit time, given by

D
T, =—. (4.4.32)

Thus the modulation bandwidth is proportional to 1 /t, and D. For a higher
bandwidth we need to make D small, using a lens as shown in Fig. 44.11.
However, this causes an angular spread of the incident angle, A@, given by
D
Afy ~ —, 4.4.33
o7 ( )
where f; is the focal length of the lens used. Similarly, for the acoustic beam

of width L (the interaction length), there is a apread in the acoustic wave
incident angle given by

(4.4.39)

To obey the momentum conservation for proper Bragg diffraction we should
have

A8, = AG,. (4.4.35)

A typical acousto-optic deflector is shown in Fig. 44.12. The number of
resolvable spots, N, is given by the ratio of the maximum deflection angle, Af,

Al

\

T —a

!

electrical
input

Fig. 4.4.12. Acousto-optic deflector.
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divided by the angular spread of the optical beam, 50

Ab D
- - = -, .4.
N 50 Af i (4.4.36)
As
A0 = l‘t{’ 4.4.37)
we have
N =t,Af,, (4.4.38)

where A/, is the transducer bandwidth. Thus the resolvable number of spots
is given by the time—bandwidth product of the delay line; unfortunately, t,
or D cannot be increased indefinitely. Considering acoustic diffraction, the
maximum value of D is given by

LZ
D=~ 27" 4.4.39)
or we obtain
no\}
N<g n Ao (4.4.40)

Magneto-Optic Devices: The Modulator and Deflector

A typical setup using Faraday rotation for a magneto-optic device is shown
in Fig. 4.4.13. This sctup can be used for the modulation, deflection, and
switching of light. Linearly polarized light is incident on the magneto-optic
material, in goneral, the bismuth-substituted iron garnets. The propagation
direction is either parallel or anti-parallel to the direction of the applied
magnetic field. The Faraday rotation angle, 8! is reversed to — 6! when the
direction of magnetization is reversed. (! is the length of the magneto-optic
device), Assuming negligible reflection loss, the output intensity, I, to the
analyzer is given by '

1, = I,e™ sin*(§ + 0), (4.4.41)

Polariser

Fig. 4.4.13. Configuration of Faraday effect devices.
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Fig. 4.4.14, (a) Tn'mmif'ed intensity versus magnitude of the Faraduy rotation (201)
fora mugneto-opl.lc switch. (b) Change in transmitted intensity versus magnitude of
the Faraday rotation ( £ 6I) for a magneto-optic modulator.

where I, is the incident light intensity, § is the angle between the polarizer and
the analyzer, and « is the absorption coeflicient.

oFor the case of the modulator (Fig. 4.4.14(a)) we choose £ to be equal to
45°. For this case, the difference in transmitted intensities, A, becomes

Al =1, — I, = Ie™ sin 201, (4.4.42)

For 0! < 15°, ‘Al is I.inearly proportional to 0 with 1,2% accuracy. For the
case of the switch (Fig, 4.4. 14(b)) we choose § = 01, For this, we have

l# -0,

I_ = [ye™* sin? 201, (@443

. The schematic diagram of a Faraday-effect light modulator is shown in
Fig. 4.4_.15. It consists of a magnetic material with strip domains parallel to
the y direction. The magnetization is alternately in the +z or —z direction
Light propagates in the z direction. The thickness along the z direction is l
and thus there is a Faraday rotation angle of either + 0l or — 61, The domains

v
e fecum e
L -
, M
E'.(-M) E'.(+M)
y
z
) I" Y
- X
’a:", 'l

rd ’ / "
In-a n-1ne0 n<t n-3 l

Fig. 44.15. Schematic diagram of the Faraday-effect light deflector.
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are of equal width, d, along the x direction. The alignment of the domains 1s
maintained by applying a magnetic field, H, along the y direction.

To understand the operation of a deflector, we note that the deflector acts
like a periodic phase grating, and thus incident light is diffracted similarly to
the Raman-Nath case of electro-optic diffraction. However, the phase grating
is a square one, rather than sinusoidal. To change the angle of deflection, we
need to change the domain width, d. This can be changed by changing the
in-plane magnetic field. For example, in a 25 um YIG, we can change d from
30 um to 3 um by changing the magnetic field from 0 to 30 Oe.

It is of interest to consider some practical aspects of magneto-optic devices.
For a modulator, the change in the magnetization is achieved by an induction
coil. The rotation of the plane-of-polarization of a light beam is controlled by
the current in the coil; in general, a bias magnetic field is also needed for proper
operation. Because of the inductance of the coil and the hysteresis losses, the
devices are only suitable at low frequencies. However, with proper design and
miniaturization, high-frequency operation (bandwidth of ~200 MHz) has
been achieved. Magneto-optics can be combined with integrated optics to
obtain modulators, switches, etc.

It is to be mentioned that there are other uses for magneto-optics; some of
these are:

(4) magnetic displays;
{b) memories; and
(c) spatial light modulators.

Spatial light modulators are discussed in the next section. Magnetic displays
are generally obtained by combining magneto-optics with magnetic bubble
technology; a typical case is shown in Fig. 44.16. The epitaxial garnet: film
represents the bubble propagation and is in the form of a folded shift rcglstcr,
The pattern to be displayed is loaded into the shift register which forms an
equivalent pattern of bubbles on the substrate. The output intensity is spatially
modulated in the form of a bubble pattern.

Polariser

Light source Substrate

Epitaxial garnet
fitm

Analyser

o Magnetic bubbte
=3 Propagating circuitry

Fig. 44.16. Schematic representation of a magneto-optic bubble display.
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In mass memories using magneto-optics, the magnetization state, whether
parallel or anti-parallel, is read by using the Faraday effect. Because of this
optical reading, no mechanical contact is needed. Not only that, information
can be read out in parallel. Information can also be written optically using
thermomagnetic writing, and is binary coded with parallel and antiparallel
magnetization. A laser beam is used to heat the substrate while it is written,
and is modulated and the location is chosen by deflecting the laser pulse. In
one method, the laser heating pulse raises the temperature of the storage film
beyond the Curie temperature.

4.4.2.2. Convolvers and Correlators: The Time Sigoal

For signal shaping and signal processing purposcs, linear filters are commonly
used. Basically, we need a black box with a specific input-output relationship.
The mapping between input and output, for a linear time-invariant system,
can be represented by the convolution of the input with the system’s impulse
response. A convolver can be built in two fundamental ways:

(1) using two-terminal devices; and
(2) using three-terminal devices.

As shown in Fig. 44.17, we can use a two-terminal device whose impulse glt)
is engraved, essentially, in the geometry of the device. Because device dimen-
sions are finite, g(r) is time limited (e, g(t) = 0 unless t € [0, T] for some
T > 0). Then if an input f(r) is fed into the device, the output will be the
convolution of the two signals f(r) and g(1). Note that, in general, the impulse
response is fixed unless special care is taken, such as implementing tunable
tap weights in a tapped-delay line transversal filter. For correlation we choose
the impulse response to be g(T — t) where T is a constant time delay.

The design of filters with specified impulse response can be implemented
using fiber-optic devices. A typical fiber-optic transversal filter is shown in
Fig. 4.4.18. The fiber-optic cable forms the delay line for light propagating
through it. The taps are formed by the tapping pin which induces microbends
from which some fraction of light leaks through. In Fig. 4.4.18 the individual
tapweights can be adjusted by using different masks or another spatial light
modulator.

Alternatively, a convolver can be implemented as a three-terminal device,
as shown in Fig. 4.4.19. It is this latter method that will be the focus of our
attention in this section. This convolver is, by construction, trivially pro-
grammable because a function f(¢) can be convolved with any g(1) applied 10

Wt () g(1)

D — o(t) ————

Fig. 44.17. A two-terminal convolver,
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Fig. 4.4.18. Schematic diagram of a code generator/matched filter using the macrobend
optical fiber tapped delay linc. (From S.A. Newton et al. Appl. Phys. Lett., 43, 1983 )

the other input. Now, however, both signals must be of finite duration if true
convolution is to be obtained.
By definition, the convolution of two signals f(r) and g(1) is given by

Seg= f ) Syt ~ 1) dr. (4.4.44)

For time-limited signals, (i.c., S(t) and g() vanish for ¢ ¢ [0, T7) the convolu-
tion integral reduces to

T
Sog= f J(0glt — vy dr. (4.4.45)
(1]

{
i Convolver ot

HY) * g(v

Fig. 4.4.19. A three-terminal convolver,
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Fig. 4.4.20. A time-integrating convolver.

. The limits of integration depend upon the degree of overlap of the two
signals. Thus, the convolution of two functions consists of two distinct steps:

(a) !r\ultiplication of the signals, one of which is inverted and shifted; and
(b) integration of the product.

When iptegration is done over space, we have what is called a space-
mtggratmg convolver (SIC). However, before we discuss SICs, let us consider
a d'lffcrt.:nt implementation. In Fig. 4.4.20 we have an implementation called
a hm?-m(egn;lting convolver (TIC). (If correlation is performed, it is called a
time-integrating correlator.) Notice that this structure only gives the desired

output at one particular point in time. Specifically, the output of the integrator
is given by

x(tg) = ff(l)g(to -~ 1) dt. (4.4.46)

For the simple case of both f(t) and (1) being identical rectangular pulses,

"

Fig. 4.4.21. Output of a TIC in a single point, A.
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Fig. 44.22. Acousto-optic TIC.

the output is the point A shown in Fig. 4.4.21. As will be seen below, the SIC
gives the full convolution, not just one point of it. Thus, in a sense, an SIC is
a multitude of TICs. Indeed, Nyquist’s sampling thcorem tells us that the
number of TICs necessary would be at least the time-bandwidth (TB) product
of the SIC. Note that the TB product of a TIC can be made very large by
increasing its integration time; whereas, in SICs the device length limits the
integration time to about 10 us—it is common to have an integration time of
seconds in a TIC. Thus the TB product for a TIC could be as large as 10°.

The device discussed in Fig. 4.4.20 can became more useful if, in place of
only a single point, a large number of points is obtained, although not large
enough to represent the full convolution. For example, for signals with a TB
product of 10°, maybe 10° delays and integrations can be performed simulta-
neously. As shown in Fig. 4.4.22, this is implemented by a single acousto-optic
delay line and an array of semiconductor photodiode integrators. ;

Returning now to the SIC, the first step (i.c., step (a)) is performed using
the nonlinear interaction of two oppositely traveling waves which have been
properly modulated by the functions to be convolved (see Fig. 4.4.23). An rf
input of u,(t)e’ is applied to one input trunsducer, and u,(t)e’* is applied
to the other. The two generated waves can be represented as

u(e = e ™0 and  uy(t — Heker

/. TRANSDUCER \

NON-LINEAR MEDIUM
u(ne ! e
" e J{Wt-kX) Hwt k) o -

us(t- e wa(tr De

Ed E-——dg

Fig 4.4.23. Spuce integrating convolver structure.
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at any time ¢ and any point x inside the medium. Here & is the propagation
constant of the wave and v is the velocity. These two waves, when overlapping,
interact, and for a second-order nonlinearity produce the following three
second harmonic signals:

(i) Kuf (t— {)eu“”"‘-";
(i) Kud(t + §)e2hwr+rn.
(iii) 2Ku(t — $uy(e + §e=,

In the above, K is a constant representing the strength of the nonlinearity.
The third term contains the product of two envelope functions, and hence is
the term which we are looking for. By detecting only the second harmonic
term, the second-order nonlinearity is emphasized. The first two terms are
oscillatory functions of x and since the interaction length is much larger than
the wavelength their integrated effect is very small. Note that there is a built-in
time compression factor of two in the output because the waves are counter-
propagating.

To clarify the difference between TICs and SICs, F ig. 4.4.24 shows a typical
SIC, a TIC, and their outputs for various waveforms. For the efficient and
useful operation of a convolver, we need u low insertion loss, a high TB
product, and a large dynamic range. The insertion loss depends on the type
of nonlinearity, while the TB product is inversely proportional to the wave
velocity. Thus a slow propagation velocity is an important criterion, and this
is the main reason ultrasound is so attractive for this purpose. The bandwidth
is generally determined by the transducers and the dynamic range is deter-
mined by the type of nonlinearity and by the device noise.

A typical SIC is shown in Fig. 4.4.25 where a SAW is used, the lens performs
the integration or summation. Note that as the output of the detector is
proportional to the square of the electric field, multiplication is performed at
the detector. The output is obtained as a modulation of the carrier frequency
at 2w,; thus, a filter is needed to block other components. A typical TIC is
shown in Fig. 4.4.22 where the multiplication is done by the acousto-optic
cell. Note that the time modulation of a laser can be performed by directly
modulating the laser or using a modulator (i.e., acousto-optic, electro-optic,
etc.).

The subject of real-time acousto-optic convolvers and correlators is too
extensive to be covered in this book. Here we list many possible implementa-
tions (the reader should consult the References for further details):

(i) An SIC with one acousto-optic cell and one transparency, cither in
contact or imaged through a lens with regular detection. This is also
called a storage convolver.

(ii) An SIC with two cells but otherwise the same as (i) above.

(it)) An SIC with one cell using heterodyne detection.
(iv) An SIC with two cells using heterodyne detection.
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Fig. 4.4.24. Comparison of space integrating convolver and time inu;n“n. convolver:
(a) SIC and its parameters; (b) TIC and its parameters; (c) outputs for 5-us input pull'ug
and (d) outputs for 20-us input pulses. (From A. Chatterjee et al., IEEE Trans. Sonics
and Ultrasonics, SU-32, 745, 1985.)
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Fig. 4.4.28. Acousto-optic SIC.

(v) Fourier plane heterodyne processing.
{vi) A TIC with two cells-- heterodyne, multiplicative, coherent.
(vii) A TIC with two cells—heterodyne, additive, coherent.
(viii) A SIC triple product convolver.
(ix) A TIC with one cell—incoherent.
(x) A TIC with one cell—incoherent, interferometric.
(xi) A TIC with one cell— Fourier plane, interferometric, incoherent.
(xit) A TIC plus complex architectures.
(xiii) Two-dimensional—incoherent.
(xiv) A TIC—two and one beam correlator.
(xv) Two-dimensional —2 cell, coherent.
(xvi) A memory correlator.

4.4.2.3. Spatial Light Modulators

For many optical signal processing systems we need a so-calied real-time
transferency; and using spatial light modulators, we will try to achieve this
‘g‘ia;:‘hc basic block diagram of the spatial light modulator is shown in Fig.

The input light amplitude is, in general, a function of x and y. The modu-
lating ttunction, J(x, y), can be cither electric or another light with the ampli-
tude distribution f{(x, y). The output light has thc amplitude distribution
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Fig. 4.4.26. Block diagram of a spatial light modulator.

E(x, y) x f(x, y). There are many different ways we can fabricate a spatial light
modulator; these are:

(1) a liquid crystal light valve (LCLV);

(2) an clectron-becam-addressed spatial light modulator (SLM) using electro-
optic effects: the Ardenne tube, the Titus tube, and the Pockels effect tube;

{3) a photo-Titus;

(4) a Pockels readout optical modulator (PROM);

(5) an SLM using ceramic ferroclectrics: strain based, scattering mode; |

(6) an clastometer-based SLM: G.E. light valve, gamma-Ruticon devices,
membrane light modulator; and .

(7) an iron-garnet magneto-optic SLM: LIGHT-MOD.

In the following we review the properties of a liquid crystal light valve, a
PROM, and a LIGHT-MOD only.

A Liguid Crystal Light Valve

A typical liquid crystal light valve (LCLV) is shown in Fig. 4.4.27, and the
heart of the device is a thin layer (~ 2 um) nematic liquid crystal. To under-
stand the operation of this it is of interest to review the different electro-optic
cffects exhibited by liquid crystals; these arc optical birefringence, the twisted
nematic effect, and dynamic scattering. In the twisted nematic effect the
polarization of light passing through the liquid crystal (whose molecules are
oriented properly) is rotated. The molecules can be oriented at any angle by
the electrodes and for the operation shown in Fig. 4.4.28 the orientation is at
an angle of 45°. The lincarly polarized light is rotated by 45° and then, after
reflection by the mirror, re-enters the liquid crystal layer to have a 90° rotation
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Flg. 44.27. Liquid crystal light valve: (a) schematic and (b) picture of an actual device,

(From G.R. Knight, Optical Information Processi (ed. S.H. Lee), Springer-
New York, 1981.) "  Springer-Verleg
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Fig. 4.4.28. Operation of an LCLV: (a) off-state and (b) on-state.

in the polarization. An analyzer or a cross-polarizer is used to block this light.
The application of an electric field also introduces birefringence to the liquid
crystal—the amount of birefringence being dependent on the applied electric
field. Because of the birefringence, as shown in Fig. 4.4.28(b), the output light
after one pass is now clliptically polarized, and upon reflection and another
passage through the liquid crystal layer a certain portion of the light will be
transmitted through the analyzer. The application of an electric field rotates
to the so-called homeotropic alignment, i.c., the long axis of the molecules
perpendicular to the clectrodes. The applied voltage changes the amount of
transmission as shown in Fig. 4.4.29.

Returning to Fig. 4.4.27, the writing light writes the function, f(x, y), on the
photoconductor, CdS, through a transparent electrode. Note that whenever
the writing light is incident, the photoconductor conducts and a voltage
appeurs ucross the liquid crystal. The liquid crystul layer is between two inert
insulating layers of SiO;. One of these luyers is sputtered on(o the dielectric
mirror which reflects the input light to be spatially modulated. There is a
CdTe light-blocking layer so that the input light does not disturb the photo-
conductor. This is needed because the dielectric layer cannot completely
reflect the input light; this also enables simultaneous reading and writing. The
other SiO, layer is on the glass plate which is first coated with an indium—tin
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Fig. 4.4.29. Transmission characteristics of an LCLV as a function of applied voltage.
(From A.D. Jacobson et al., Information Display, 12, 1975.)

oxide electrode. Note that no d.c. current flows through the structure and an
a.c. voltage (~5 V) in the audiofrequency range is necded for its operation.
The input-output relationship for the device is shown in Fig. 4.4.30 and
the modulation transfer function (MTF) is shown in Fig. 44.31. The response
time is typically 15 ms for a 2 um-thick liquid crystal.

In place of a photoconducting layer, we can have an electrode pattern to
which voltage can be applied at will, possibly using a microprocessor. A typical
device of this nature is shown in Fig. 4.4.32 where the liquid crystals dynamic
scattering eflect is used. A typical electrode structure is 40 segments of 9°
wedges and 20 concentric ringsin a 2.5-cm diameter, as shown in Fig. 4.4.33.
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Fig. 4.4.30. Input-output relationship for an LCLV. (From A.D. Jacobson et al,
Information Display, 12, 1975.)
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Fig. 4.4.31. Modulation transfer function of an LCLV. (From A.D. Jacobson et al,

Information Display, 12, 1975.)
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Fig. 44.32. Forty-segment electrode structure for a voltage controllable LCLV. (From
R. Aldrich et al., JEEE Trans., ED-20, 1973))

A Pockels Readout Optical Modulator

The heart of a Pockels readout optical modulator (PROM) is a thin slice qf
bismuth-silicon oxide (Bi, ;SiO,,) crystal developed by ITEK. This crystal is
clectro-optic and photoconductive when illuminated with blue light and has
sufficient resistivity to store a charge up to 12 hours. The half-wave vol.ugc‘ is
Vo =3900Vatis=6330A A typical reflection-mode device is shown in ‘an.
4.4.34 and it consists of two transparent, thin clectrode layers (indium oxide),
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Fig. 44.33. A ring-shape liquid crystal light valve with annular rings.

two insulating layers of parolyne, and the crystal; the typical thicknesses of
cach layer are also shown in the figure. The crystal thickness ranges from
200 um to 1000 um. In the reflection mode in the front surface, a dichoric
layer is added between the crystal and the insulator. This reflector reflects red
light while transmitting blue light. The operation of the PROM can be
explained by considering a typical operation cycle, as shown in Fig. 4.4.35,

For the crasure cycle, first, a voltage V, is applied across the electrodes,
followed by a xenon flash. The mobile electrons generated by the flash cancel
the electric field developed inside the crystal and the voltage ¥, appeurs across
the insulators only. After erasure, the voltage across the device is reversed
producing a voltage ~ 2V, across the crystal; as shown in Fig. 4.4.35; the input
image is used to expose the device in blue light. Wherever the blue light is
incident, the mobile carriers are generated which, in turn, cancels the electric
field inside the crystal; thus the image forms an equivalue clectric field image
inside the crystal. This image is read out using vertically polarized red light
and a crossed analyzer. In the reflection mode, the voltage needed is V,/2 as
the red light traverses the crystal thickness twice.

An Iron—Garnet Magneto-Optic Spatial Light Modulator

The spatial light modulator (SLM) discussed so far uses an electro-optic effect,
whereas the LIGHT-MOD (Litton iron garnet H-triggered magneto-optic
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Fig. 4.4.35. PROM operation (a)-(c) showing priming cycle, {d) write in exposure, and
(c) reflective readout. (From P. Vohl et al., /EEE Trans., ED-20, 1973)

device) uses a magneto-optic effect. It uses a bismuth-substituted transparent
iron-garnet film grown on a nonmagnetic substrate. The direction of the
uniaxial isotropy is oriented perpendicular to the plane of the film, such
that it is in the magnetically saturation region. The substrate material is
gadolinium - gallium- garnet and the iron-garnet film is grown on this sub-
strate by liquid phase epitaxy. Typical thicknesses of this grown layer being
5-25 um. Using photolithography, a matrix of cells is formed with a typical
cell size of 50 x 50, as shown in the SEM picture (Fig. 4.4.36). Using two
levels of conductor deposition, and patterning with a transparent clectrode
deposited between the two conductor levels, X - Y current derivatives are
formed such that the random selection of a cell is possible. When both the X
and Y lines near a cell are activated, the magnetic action in the cell is reversed
in a few nanoseconds. The current itself in either the X or Y line is not enough
to switch this magnetization. To understand the device performance consider
Fig. 4.4.37 where two cells are shown in opposite magnetization. The polariza-
tion of the light incident on the left cell is rotated clockwise due to the Faraday
effect, whereas for the right cell it is rotated counterclockwise. The analyzer
blocks the light for the right cell but transmits light for the left cell.

A matrix of size 512 x 512 with associated drive circuits has been built with
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Fig. 4.4.36. An SEM picture of a LIGHT-MOD clement.
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Fig. 44.37. Operation of LIGHT-MOD as a light valve. (From W.E. Ross et al,
Two-dimensional magneto-optic spatial light modulator for signal processing, Optical
Engineering, 22, no. 4, 1983)
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Fig. 4438, Parallel devices. (From W.E. Ross et al., Two-dimensional magneto-optic
spatial light modulator for signal processing, Optical Engineering, 22, no. 4, 1983.)
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contrast ratios as high as 50: 1 for white light and 1000 : 1 for coherent light
and with a total switching time of ~ 100 us. Note that the operation described
so far is strictly binary, i.c., cither light passes or it is blocked. However, using
multiple cells, n, for a single pixel, as shown in Fig. 4.4.38, we can achieve a
gray scale of 2” at the expense of a reduction in the resolution by a factor of n.

4.4.3. Optical Matrix Processor

Although all signals from a physical process are analog, for signal processing
purposcs they can be represented as analog, discrete, or digital signals. For
the case of discrete time signals, the time axis is discrete but the values at
discrete times are analog. For the case of imaging, and multidimensional
signals, the spatial coordinates are discrete. If the discrete signals are repre-
sented as a column matrix, the processing of signals can be identified as
different matrix operations, such as multiplication, inversion, etc. In this
format of signal representation, matrix processors become synonymous with
signal processors. Matrix processors can be implemented as digital array
processing or analog matrix processing. Recently, there has been enormous
activity in both areas with significant improvements in performance. For the
digital case, the innovation of systolic array architecture is a real break-
through. For the analog case, the optical matrix processor (OMP) using either
acousto-optic interaction or the programmable two-dimensional mask prom-
ises to be capable of handling a 1000 x 1000 matrix in parallel. For digital
processors we need a fast, highly accurate A/D converter for processing
images. Excluding this disadvantage, digital processors are well suited for
image processing, and have been extensively discussed in the literature. In this
section, we shall confine ourselves to optical matrix processors.

A typical matrix processor will be able to perform matrix multiplications
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as shown below:
Y = AX, (4.4.47)

N
y = ; ayx,  i=row, j=column,
=1

" a,y 4y; 04,3\ [X,
Ya|=|a 822 ar3)t{Xa2j,
Y3 a3, Gy a3/ \Xy

Vi =08,X, +4a,X; +4,,X,,
Y2 =03,.%, +83;X3 + dayXy,
Yy=ay, Xy +ayX; + dyXy.

The inputs are X and A while the output is Y. For simplicity, we have taken
Atobea3 x 3 matrix, and Y and X a | x 3 matrix. We note that the basic
functions needed to perform (4.4.47) are addition and multiplication. The
ability of optical devices to perform these basic functions in parallel, makes
optical matrix processors unsurpassed paraliel computing machines. Note
that we are talking about ~ 10° to ~ 10® operations in parallel and sometimes
in a few microseconds. Let us consider some basic adders and multipliers. A
two-dimensional adder consists of a single lens, as shown in Fig 4.4.39(a). The
output at the focus is given by

output = ¥ f(m, n).

The parallel adder can be symbolically represented by Fig. 4.4.39(b) which is
a composite of single adders, as shown in Fig. 4.4.39(c). Thus the adder has
M x N inputs where M and N represent the maximum dimensions 'pf the
signais. Note that this operation is completed in the time it takes light to travel
to the focus ~ 1072 s for a length of 30 cm. Thus, if the photodetector or the
next processing element is fast enough, a different set of f(m, n) can be loaded
at the input, giving us the time needed per addition, in the 107'* s range for
m, n = 1000. The maximum number m or n which can be handled is limited
by the aperture size of the lens and the diffraction limitation and, for an ideal
lens, is given by

L, L2

"E AT

where L, is the one-dimensional aperture, Ax is the resolvable spot, and f is
the focal length. Note that by using a cylindrical lens, cither in the x direction
or in the y direction, we can perform one-dimensional summing, as shown in
Fig. 4.4.40. Thus the adder of Fig. 4.4.39(b) can be split up, consisting of M
and N input adders followed by one M input adder. Note that these optical
adders have the great advantage of simultancous input connection by the basic
nature of wave propagation, and they will be discussed later in connection




1(1.1) t(1,2) t(m.n)

~—> X f(m,n)

mn) . m,n
—————

(¢)

Fig. 4.4.39. Single lens used as an ad

der: (a fi ion; i
and (c) equivalent single adder. (a) configuration; (b) equivalent parallel adders;

Fig. 44.40. Cylindrical lens as a one-dimensional adder.
378

4.4. Optical Signal Processing 9

/CCD-phmode(ociov
1 array

Source plane Imaging

Lens Output

image
Plane

Fig. 4.441. A hybrid adder using a lens for imaging and a CCD detector for summing.

with their applications to the VLSI interconnect problem. Actually, a different
but somewhat more complex implementation is to use this interconnect
capability of optics in only one dimension or in two dimensions, as shown in
Fig. 4.4.41. Note that for this case we need N clock cycles of charge coupled
devices (CCD) cell transfer for the adder shown in Fig. 44.41 and thus the
system is basically much slower.

Next, let us consider the basic two-dimensional multiplicr, as shown in Fig.
4.4.42. The input, f{m, n), is imaged onto the transparency with the transmis-
sion function given by h(m, n) and with the output given by

g(m, n) = f(m, nh(m, n). (4.4.48)

Again, the equivalent structure, shown in Fig. 4.4.42(b), has 2MN input and
MN output processed in one equivaient clock cycle. Following the discus-
sion of the adder, we can make one-dimensional multipliers using 4 one-
dimensional mask. If h(m, n) is fixed, we have a permanent transparency.
However, for parallel computation we should be able to change it in real-time,
and thus we need spatial light modulators (SLMs). Note that, even for an SLM
with a write-read cycle of 1 ms, for M, N = 10, we are performing a single
multiplication in 1 ns, as the whole operation is in parallel.

Now we are in a position to discuss the different implementations of the
matrix multiplication given by (4.4.48). Using single multipliers and adders
the matrix multiplier will be equivalent to that given by Fig. 4.4.43. It will
consist of 32 multipliers and 3 three input adders. (Note the problem of inter-
connection.) The OMP is shown in Fig. 4.4.44 and was originally proposed by
Goodman.® Note that the first lens images the point sources, x inputs as line
images solving the interconnection problem. The X inputs are fod in paraliet
to the laser or light emitting diodes (LEDs) in parallel. The 4 matrix forms
the transmission function of the mask placed at the image plane of the lens

* A different and more complex OMP was first proposed by Louie et al. {48]. This
will be discussed later.
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or a fixed mask, this processor is ideal for i i

. . performing transforms of input
;lgnu.lu. Table 4.4.1 shows the h(m, n) values of some of the fixed masks neeg:d
or different transforms. Let us take the example of the Fourier transform. It

= f{(m,n) h(m,n)
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Fig. 4.4.43. Implementation of a matrix multiplier using one-dimensional adders and
multipliers.

can be performed using Fourier Matrix which is complex. We immediately
encounter a problem - we must be able to handle complex values and, this is
very difficult to implement. A simpler approach, to be discussed latet, is to
process the real and imaginary parts separately.

The OMP discussed above, will be referred to as a space multiplexed OMP,
as all the quantities are handled at discrete points in space. A time and a space
multiplexed version of Fig. 4.4.44 is shown in Fig. 4.4.45. Here the source
consists of a single LED or a laser whose output can be amplitude modulated
in time. For example, an acousto-optic or electro-optic modulator can be used
for this purpose or, if a junction laser is used, it can be directly modulated by
modulating its current. The input signal, x,, is applied to the diode in time
sequence. This time the lens L, only spreads the light for the mask which is
one-dimensional, and its transmission function is proportional to one column
of the A matrix; the lens L is only an imaging lens this time. To perform the
addition, the charges are stored in the photodetector until all the columns of
the A matrix and all the input vector clements, x,, have been processed. After
this is done, the output from the photodctector can be obtained cither serially
(us shown in the figure) or in paraliel, if parallel output from the diodes is
available. Note that in the space multiplexed case, the whole matrix multi-
plication is performed in one clock cycle, whereas for the time-space multi-
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Table 4.4.1
<
g Transform Mask
; Cosine cos{2namn)
(o] Fourier exp{ -j2xmn)
-
5 Laplace exp[ —-mn]
@ . Hankel 2nJo(2nmn)
w
O - LJd
o > > T
-
2 imaging |
maging lens

a 0ing Linear Array

Mask Photo-detect

Light

Source \

g programmable masks. A two-dimensional fixed mask and no detector integration is

8 Ly * L2
2
- /-_\
LI'J X| A Y:
3 Xa Ay Ys
X3 A Y,
- < Fig. 4.4.45. Optical matrix processor using programmable masks. Programmable mask
T f with linear array clements and integration of photodetectors are needed.
: ; ~ ’
<< 4

plexed version we need N clock cycles if the A matrixis N x N. The advantage

<
& g
E ~—— g of a time-space multiplexed OMP is that it needs only a one-dimensional
8 3 SLM and thus the acousto-optic SLM can be used.
5 g g A third implementation of an OMP, the time-frequency multiplexed ver-
x 53 sion, is shown in Fig. 4.4.46. This one also uses a one-dimensional SLM like
2 52 an acousto-optic modulator. However, a whole column of matrix A is applied
- ‘g’ g to the input of the modulator, at the same time using the principle of frequency
2 multiplexing. The delay time, T, of the acousto-optic modulator delay line is
\ -§ g given by
&2 !
= T=, (4.4.49)
t 3 v
€ “ 3 where [ is the length of the delay line over which the acousto-optic interaction
~ fg takes place, and v is the velocity of the ultrasound in the delay line medium.

1f the bandwidth of the transducer is Af, then the time-bandwidth (TB)

product is given by
TB = TAf. (4.4.50)
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Ultrasonic
Delay Line
Modulated >
Laser ﬁ‘ f
> i P Array
Ly f L2
X Ay Y,
X2 Ay Y,
x: Aa Ya

Fig. 4.4.46. A time-frequency multiplexed OMP using acousto-optic device.

Note the typical values of T ~ 10 us, Af ~ 100 MHz and TB ~ 1000, although
Af ~ 1 GHz and TB ~ 10,000 have been reported.

The input vector, x, is applied to the diode source in the time multiplexed
fashion. The lens, L, illuminates the ultrasonic delay line. The diffracted light
from the delay line is focused by L, on the linear array of photodetectors or
photosensitive CCDs placed at the focal plane of L,. The number of elements
in thelinear array is equal to the TB product. To perform the matrix operation,
in one instance, one complete row of the 4 matrix is frequency multiplexed
and used as the input to the delay line transducer. At the same time, the
appropriate [ X] clement is used to modulate the light source. The product
elements like 4, X, are collected at the ith photodetector. The process is
repeated until all elements of [X] and all rows of [A] are used up, while
the photodetector integrates the output light. At the end of this operation,
the output [Y] can be obtained from the photodetector outputs in parallel
or serially if a CCD is used. For example, if T = 10 us and Af = 100 MHz =
400 — 300 MHz (350 MHz being the center frequency of the delay line) we
need a 1000 element photodetector linear array. The OMP can process a
1000 x 1000 matrix in (1000 x 10 us) = 10 ms, which is also the integration
time for the detectors. The laser is modulated with (X] with each X, lasting
for 10 us. The A, elements are used to modulate the center frequency f; where
/i =300 MHz + i x 1000 kHz, i = 1, ..., 1000,

Another implementation of an OMP, which is a variation of the time - space
multiplexed version, is shown in Fig. 4.4.47. Historically, this was the first one
proposed and implemented. In this case, input is time multiplexed and applied
to the diode. The light from the diode is spread by a lens to fall onto the
two-dimensional mask. The output from the mask is imaged onto the two-
dimensional photodetector array with CCDs to perform the addition of
proper terms.

Linear
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Fig. 4.4.47. OMP implementation with mask and CCD photodetectors.

It will be obvious to the reader that there are other implementations which
are also feasible. Basically, we are using the interconnect property of light
(spreading by the lens L), the multiplication property of u.hght be_nm (!he
mask), the summing property of light (focusing by a lens), the time multiplexing
for input and output vectors, the frequency multiplexing for the masks (the
acousto-optic delay line), the summing property of photodf:lec(ors, apd the
serial-parallel operation of the CCDs. Instead of discussing other imple-
mentations, we note the following:

(1) Laser light wavelength can be controlled by applying voll{xge to the
coupled-cavity laser diodes. Thus we think of wavelength multiplexing as
similar to frequency multiplexing. . '

(2) The masks we have discussed can be any SLM discussed in Section ?.4.2.3‘
The acousto-optic modulator, at the present time, appears to have an edge,
with reference to overall performance. ,

(3) In place of matrix multiplication, we can perform highcr-order tensor
muitiplication by considering multiple paraliel OMPs, like those shown
in Figs. 4.4.44-4.447.

4.4.4. Fourier Optics and Spatial Filtering

In Section 2.8 we discussed that the diffraction problem, using the Fresnel
approximation, behaves like the result of the Fraunhofer approximation if a
lens is used and the detector plane is at the focal plane. In the Fraunhofer
approximation, the electric field at the source plane is proportional to the
two-dimensional Fourier transform of the electric ficld at the detector plane.
This Fourier transformation property of the lens is the heart of Fourier optics
and the combination of lenses and appropriate masks can be used to filter
spatially images or optical signals, and thus important optical processing
functions such as matched filtering, low-pass filtering, high-pass filtering,
removal of narrowband noise, etc., can be performed. In this section we will
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discuss some of these applications. However, before we do that, it is of
importance to discuss rigorously the Fourier transforming property of the
lens.

4.4.4.1. The Lens as a Fourier Transformer
An optical system, in general, consists of two basic ciements, these are:

(i) propagation through free space or a medium with known refractive index;
and

(i) clements with known transmission functions such as lenses, transparencies,
etc.

Free-space propagation in Fresnel approximation is equivalent to a linear
system with the following transfer function and impulse response:

h(x, y) = jllz e MrgAnANRT4pY) o o BuXT +yY) (4.4.51)

H/(f..],) = ePte~mharis 1, (4.4.52)

this is symbolically represented as shown in Fig. 4.4.48. The transmission
function, T(x, y), acts as a multiplier and is represented in Fig. 4.4.49; for
example, for a thin lens with a focal length £, T(x, y) is given by

T(x, y) o e HRIA=2+yYy c—ll,(x“r’),

where x (4.4.53)
v=(5)

Let us consider the problem shown in Fig. 4.4.50(a), where the electric field at
plane 1, E(x,, y,), is known. Plane 1 is situated at the focal plane of the lens

E(x".y") E(x.y)
rd L
i

y

Z jz
- 2 o
E(x"y') E(xy) * h(x.y)
—— h{x,y) ——

Fig. 4.4.48. Lincar system equivalent for frec-space propagation.
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E(x,y.0) = E(x'.y’) E(x.y) - E{(x,y,0*)

E(x.y)

Flg, 4.4.49. Lincar system equivalent for transmission mask.

E(xiy1) E(xa.y2)
Q i
| PONEPSEEE, S
| S |
Ly :
(a)

E(xiy1) 2=t Elxa.ya)
e c— Z"
o 10n’ oy
(b)

Fig. 4.4.50. Lons as a Fourier transformer: (a) basic configuration and (b) lincar system
with equivalent block diugram.
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: P(x.y) :
' |
' !
: [

I
S — f -l

E(X|Y\) f E(X:y:)
(a)
E(xsy) E(xay2)
R R o 2= z=1 pmeee e —

P(x, y)e 1Bix"  vh

(b)

Fig. 44.51. Fourier transformer property of a lens including pupil function.

L,. We are interested in the output, i.c., the electric field at plane 2 which is
also at the other focal plane of the lens. Using our cquivalent diagrams, the
two-dimensional system becomes as shown in F ig. 4.4.50(b). Thus, the output,
E(xy, y,), is given by*

E(x,, y;) = [{E(x,, yl),,/l,uhrb}e—n,ufnh] o e

= F[E(x,, yl)],_.,,,',., (4.4.54)
Sy=bynarin
where we have neglected some constant terms. If the lens pupil function is
given by P(x, y), as shown in Fig. 4.4.51, then we have*

E(xy, y2) = [{E(x,, y,) » et 470)L P(x, y)emtbrixterh] , gltyiatrh

= F[E(x), y)P(x; + X1, y, + YI)];,- (4.4.55)

where
r=t* g 5, =P
n n

The above Fourier transformer property of a lens is fundamental to the
discussion of image processing.

4.4.4.2. The Fourier Transformation and F| iltering of
8 Two-Dimensional Spatial Signal

To obtain the Fourier transformation of the signal, for example, the letter A
shown in Fig. 4.4.52, we make a transparency of the signal whose transmission
function is proportional to the signal. Thus T'(x’, y’) is also given by Fig.4.4.52.

* For derivation of these formulas see Sec. 2.8.1 and Reference 61.
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~

r— 3

Fig. 44.52. A typical spatial two-dimensional signal.

This transparency is placed in the source plane with i.ncidenl Parallel light, as
shown in Fig. 4.4.53. The lens is assumed to be a thin lcqs with focal length
1. The electric field at the focal plane is related to the Fourier transform of the
transparency, as shown in the following equation:

M=k

= Eg e e MM E LT (! y)) oy (4.4.56)
E(x,y,f)=E, I € { ;:_’//:,/

Here E,, is the incident electric field. Thus if the intensity, I(x, y, f), is recorded
at the focal plane, it is given by

E(’) ) 2 X 57

I(x,y,f) = F{TX, ')}y eane] (44.57)

>, %N I;T;[ { Jezay

Thus we see that the intensity gives us the square of the Fourier_ transform of

the mask, whereas the electric field is proportional to the.Fopncr lqnsfonn

multiplied by the phase factor e **//%x*+") 15 some applications, this phase

factor is not important. However, in the configuration shown in Fig. 4.4.54,

an exact relationship between the mask and its Fourier transform, except a

/—\T(x'.v')

Spatial frequency plane

——

- - - —t = . -

Fig. 4.4.53. Spatial Fourier transformation using a lens.
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spatial

frequency

T(xy) plane

. el

- g

- f [

R —

Fig. 4.4.54. Exact Fourier transform configuration.

scalar multiplicative constant, can be obtained. For this case, the mask with
the transmission function, T(x’, y'), is placed at the front focal plane and the
detector planc is the other focal plane of the lens. For this case, it can be shown

that the electric field at the focal plane (also called the Fourier plane) is given
by

E( el -2k
. = e .._A__,,f T l' ' .
x y) ]24[ { (X y )}f:-;’/:;
eHwt=280)
= 2 el (4.4.58)
where
WUaf)) = FAT, )}y eanss- (4.4.59)

Sy=yiAf
The general-purpose spatial filter is the structure shown in Fig. 4.4.55, where
another mask H(x', y’) is placed at the Fourier plane (z = 2f,) for filtering
purposes (f, and f, are the focal lengths of the two lenses L, and L,,
respectively). To understand this spatial filter, we note that if H(x', y) =1,

H{x'.y')
Tx"y'") /
——i l
|
— !
— }
|
—r |
- I
; " X " — [ —
i t ! ,
npu | Spatial output
plane | Frequency plane plane
|
=0 2=t z2=21, Z2-21y 412 Z-2(t +1y)

Fig. 4.4.55, General-purpose spatial filter using two-lens Fourier transformations.
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then the electric field E(x, y) at the output plane (i.c, z = 2(f, + f,) is given
by
E(X. y) « f[r(f.ufy)] = [’(T(‘\'", .V")/,-./U.]/,-m/,~ (4460)

Iy=yAfy [y my1Af)
If f, = f = f, then
E(x,y) o T(—x, —y) (4.4.61)

Thus at the output plane the electric field proportional to the electric field at
the input plane (i.e. E;T(x", y")) is obtained, except it is inverted. Thus, if we
denote the axis in the output plane as shown in Fig. 4.4.56, the input signal is
reproduced exactly at the output plane both in magnitude and phase, except
for a multiplicative scalar constant. By using the change in axes, the seccond
lens performs inverse Fourier transformation. For H(x’, y’) # 1, the output is
given by
E(x, y)oc F "1, ) H(x', y))

= g1 x'y P
=[G )]
= JJ. T(x', y'Yhix — ',y — y')dx' dy'. (4.4.62)

The last expression is obtained using the convolution theorem. The full
meaning of (4.4.62) becomes clearer if we take a few specific examples where
we have chosen f, = f; = f for simplicity.

(a) The low-pass filter:

1 forix’|{<L,, IylsL,,
Doy = * 4.4.63
Hix', y') {0 otherwise. ( ' )
This is the case for the low-pass filter with cutoff frequencies given by
l‘n
S = 0y
(4.4.64)
LI
Jo = iy
- /v
/1/ \
z=0 "
input plane oulput plane

z2=2(t+13)

Fig. 4.4.56. Redefined axes of the output planc.
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H(t.t)

“feu +fc,
H(t..1,) fu

“tey * ey
fy ——

Fig. 44.57. Transmission function H(f,, f,) to be placed at the Fourier plane for
low-pass filter characteristics.

This is shown in Fig. 4.4.57. Thus, if T(x, y) is given by
T(x) = (1 + cos 2nf,x),
the filter output will be
E(x, y) o {

If T(x, y) is given by Fig. 4.4.57, and if /,, and f,, —+ 0, then the output will be
uniform light parallel to the optical axis without the letter A. This low-pass
filter is also useful to remove unwanted spatial frequency components, if the
desired light output is to be parallel to the optical axis only. As shown in Fig.
4.4.58, the low-pass filter passes the components near the zero frequency only.

— |\
=\

Fig. 4.4.58. Pinhole at the Fourier plane as low-pass filter characteristics.

T(x) i foe > fon
) otherwise.

e

o= t
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H(t.1)

3 . .
f, —o
H(l..f,)

~fey +fc, '
t ] >

Fig. 4.4.59. Transmission function H(/,, /,) for a high-pass filter.

(b) The high-pass filter:
0 forix'| < L,a, M€ L,
H(x', y') == { rix’| a2 vl yid

4.4.65
1 otherwise. ( )

This is the case for the high-pass filter and it will remove the d.c. and low-
frequency components. Again the cutoff frequencics are given by f,, and f,
in (4.4.64), and the spatial frequency domain characteristics of the filter are
shown in Fig. 4.4.59. A very useful application of the high-pass filter is to
remove the d.c. component of an overexposed transparency, whose typical x
component of the transmission function is shown in Fig. 4.4.60(a). Using the
high-pass filter shown in Fig. 4.4.59, which is actually nothing but a black dot
at the center of the frequency plane, the filtered output removes the d.c.
components as shown in Fig. 44.60(b) in which is plotted the electric field
distribution.

{c) The band-pass filter:

1 forlx' — xol S Lypy 1y —yol S L,/2,

HE,y') = {0 otherwise. (44.66)

The spatial frequency response is shown in Fig. 4.4.61 and the upper and lower
cutoff frequencics are given by

L,
Ll - /.l :t 21/'
LV
2i

(4.4.67)
Jo=Jut
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T(x})

(a)
E(x)

LE

A SN S

4
(b)
Fig. 4.4.60. Example of high-pass filtering: (a) a signal and (b) a high-pass filtered signal.

where

Xo Yo
i and So e (4.4.68)
The scparation of different signais in the detector plane can be performed using
proper band-pass filters.

Jox

(d) It is of interest to discuss a situation where the prescribed filtering
function to be implemented is given in the frequency domain, i.e,, G(f,, £,). To
design this specific filter, first of all let us assume that G(/,,/,) is real so that

H(tty)
-1 .E'_
/ M
fou —— X
H(t.h)
-1 L,
A At
'w — fy

Fig. 4.4.61. Transmission function H(f,, £,) for a bandpass spatial filter.
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we have to design a transmission mask, H{(x’, y’), given by

. x'y
H(x',y') G(Af'/v)' (4.4.69)

In general, G( /. J,) can be complex. However, for this case, we can fabricate

a mask using the holographic technique provided g(x, y), defined below, is
available either as a transmitted light through a transmission mask or a
distribution of light generated some other way

gtx. y) = F{G( [ f)}- (4.4.70)

This holographic technique of fabricating a complex G(f,./,) is gencrally
known as the Van der Lugt filter and will be discussed in the next section.
It turns out that the holographic filter implements not only G(f,.f,) but
also G*(/,, f,), and the two can be separated in the output plane by the angular
separation.

If the holographic filter is used in the frequency plane of Fig. 4.4.55 with
an input (T(x’, y’), we obtain, at the output, either convolution or cross-
correlation.

convolution output oc & ! {1(f,. £,}G(/,./,)}

= II T(x', y')glx — x', y — y')dx' dy'. (4.4.71)

cross-correlation output oc & ' {1(£,, /,)G*(/.. /,)}
= IJ. T(x', y)(x' —x, y' — pydx' dy’. (4.4.72)

Equation (4.4.72) becomes the equation for correlation or matched filtering if
g{x, y) = T(x, y). For this case, thc matched filter output or the correlator
output is given by

output oc ‘”‘ T, y')T(x" ~ x, y' ~ y)dx' dy’. (4.4.73)

4.4.5. Some Examples of Matched Filtering or Correlation

Matched filtering or correlation is probably the most important tool for signal
processing; it is used for both time signals and two-dimensional spatial signals.
In this section some specific examples are illustrated, first for time signals, and
then for spatial signals.

Time Signals

Figure 4.4.62 shows the signal f(¢) and its autocorrelation or matched filtered
output for some one-dimensional signals consisting of rectangular pulses of
duration T. Let us denote these signals by the binary notation using only |
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f(t) 1y D uy

0 T 27 3T

0 T 2T 3T 4T 5T 57 +5T +
S — /\/\ BYAVIR
o (2N-1)T -(2N-1)T 77 *eN-IT

Fig. 44.62. Exampiles of autocorrelation.

and 0. Thus the signal (b) of Fig. 4.4.62 becomes
I 01,
Note that the maximum of correlation occurs at values of
t=0, +2T, +4T, ...

and the minimum occurs at
t=1T +3T, +5T

Denoting these digital signals by X,, the correlation can be written as

-k
Cy= ‘; X,X,,,‘. (4.4.74)

where n corresponds to the total duration of the signal nT. If the signal values,
X, are allowed to have only +1 and — | values, then it is possible to have
some signals with interesting correlation properties.

In many cases we want, in (4.4.74), C, to be as small as possible for K % 0
and to peak up at K = 0. The best known codes with this property are the
Barker codes. These codes have the property that

[Ckl<1  forall K #0. (4.4.75)
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There are only six Barker codes with maximum n = 13. No Barker code with
n > 13 has been found. The known Barker codes are:

n Barker code

2 1 -1
3 11 -1
111 ~t
4 {II—II
s 111 ~1t
7 [ T S R iy
1 Pl =1 =1 -1 1 =t =1 —t
3 I B TS R Y [ I RO

The autocorrelation of some Barker codes is shown in Fig. 4.4.63. By inter-
changing +1 and — 1, we also obtain Barker codes. For this casc, however,
the phases of Cy for K # 0 changes by 180°. From Fig. 4.4.63(c) we note that
the correlation peak is thirteen times larger than the sidelobes.

To implement these matched filters, we can use convolvers and correlators,
as discussed in Section 4.4.2.2. Figures 4.4.64 and 4.4.65 show some examples
using an SAW convolver which uses acousto-optic interaction. F igure 4.4.64
shows autoconvolution characteristics for a one-pulse, a two-pulse, and a
five-pulse input. In Fig. 4.4.64(a) the top trace is the input, the second trace is
the convolution output, and the third trace shows the delayed output when
the convolver is used with one input only. In Fig. 4.4.64(b) and (c) the top
trace is the input and the second trace is the autoconvolution. Note that in
Fig. 44.64(c) the output has been demodulated. Figure 4.4.65 shows the
autocorrelation function of a 13-bit biphase Barker code. [

|
Spatial Siguals

Two-dimensional matched filtering is a simple extension of one-dimensional
matched filtering or correlation, as discussed in the previous section. The
major difference is the fact that for spatial signals, no causality is to be satisfied
and thus it is somewhat simpler; however, the pattern recognition problem is
much more difficuit. The difficulty is understood if we consider the application
of pattern recognition in robot vision, say, in recognizing hammers. If all the
hammers to be recognized by the robot are exactly the same size and oriented
in exactly the same way, then the problem is the same as that of two-
dimensional matched filtering. But if the robot is to recognize hammers which
are similar but may be of different sizes and oriented in any way, then simple
two-dimensional matched filtering is not enough to solve the problem, because
we need to recognize a class of two-dimensional signals and this class contains
a very large or nearly infinite number of two-dimensional signals. Thus we
need to consider the scale and rotation invariant matched filtering or recogni-
tion problem. In this section we consider only simple two-dimensional matched
filtering problems and we refer the reader 1o the References for the more
complex cases.
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b

(c)
Fig. 4.4.63. Autocorrelation of the 3-, 7-, and 13-bit Barker codes.

The use of pattern recognition by matched filtering is shown in Fig. 4.4.66.
Figure 4.4.66(a) shows the signal corresponding to an aerial image and Fig.
4.4.66(c) shows the corresponding matched filter, using the reference image
shown in Fig. 4.4.66(b). The matched filtering was performed using the SLM
photo-potassium didenterium phosphate (DK DP) mentioned in Section 4.4.2.3,

Fig. 4.4.64. Experimental pictures of an acousto-optic convolver. (a) Autoconvolution »
of a single pulse (r.f. modulated). Top trace—input; middle trace---convolution; bot-
tom trace—delayed input. (b) Autoconvolution of a two pulse (r . modulated). Top
trace—input; middle trace—convolution; bottom trace—-delayed input. (c) Auto-
convolution of five pulses. Top trace—-input; bottom trace —convolution.




Fig. 4.4.65. Autocorrelation function of 13-bit biphase Barker code using a SAW

convolver. Top trace shows the Barker code superimposed on the biphase waveform.

Fig. 4.4.66. Renl-(ime. optical pattern recognition on aerial imagery using the photo-
DKDP SLM as the input transducer: (a) input image; (b) reference pattern; and (c)
output correlation pattern. (From. D. Casasent and T. Luu, Appl. Optics, 18, 1979))

400
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PROFESSOR
ASSOCIATE PROFESSOR
PROFESSOR AND HEAD

SECRETARY TO HEAD
PROFESSOR

(8)

]

(b) '

Fig. 4.4.67. Real-time and optical character recognition of text: (a) input and (b) optical
output plane showing the correlation of the input paragraph with the key word
PROFESSOR. (From D. Casasent and T. Luu, Appl. Optics, 18, 1979

Another example is shown in Fig. 4.4.67 where rcal-time optical charac-
ter recognition is demonstrated. The objective is to recognize the word
“PROFESSOR". The auto- and cross-corrclation for this case is performed
in real-time also using the SLM photo-DKDP.

An example of the binary correlation experiment where a magneto-optic
SLM is used is shown in Fig. 4.4.68. The text shown in Fig. 4.4.68(a) was
recorded on &8 LIGHT-MOD (see Section 4.4.2.3) and was used as the input
10 a Van der Lugt correlator. The reference image was “garnet™ and its
Fourier transform hologram is shown in Fig. 4.4.68(b). This was recorded in
a high-resolution photographic plate, and to improve the signal-to-noise ratio
of the correlation peak and to reduce the cross-correlation peaks, high spatial
frequency enhancement was used. The result is shown in Fig. 4.4.68(c), where
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Y

~17% CHIP HAS
AN EPITA- Tnl GARNET
FILM MHI(H HAS BEEM
SYRUCTUREDD YO FORM
SEPMRATE MESHS, THE
MACNETIL GHRNEY CAN
Bf MACNET] 40 IN A
DIRECTION NuFmeL YO
THE FILM., SWITCHING
OfF THE POLMRITY OF
THE CARNET MESAS

(1)
(9)

Fig. 4.4.68. Optical binary correlation experiment using the MOP. (From D. Psaltis
et al, Optical image correlation with a binary spatial light modulator, Optical En-
gineering, 3, no. 6, 1984.)
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the four correlation peaks corresponding 1o the four positions of the word
“garnet” are clearly seen.

Holographic Applications: The Van der Lugt Filter

Holography plays a very important role in optical signal processing. For
matched filtering in the frequency domain, generally holographically recorded
masks are used. This is the so-called Van der Lugt filter. To do matched
filtering in the frequency domain we need the transmission function of a fitm
given by

Xy
T(x,y)oc H ( i Af)’ (4.4.76)
where
H(f. 1)) = Flh(x, y)} 44.77)

and h(x, y) is the reference signal with which we need to perform the matched
filtering. Note that H(/,./,). being a Fourier transform of a real function
h(x, y), can be complex and in general is given by

H(fuf,)) = Alf,, [,)e 1# =15, (4.4.78)

where A(f,, f,) is the amplitude function and ¥(f,, f,) is the phase function.
As an ordinary film only records magnitude, we must use the holographic
technique, discussed in Section 2.11, to record both amplitude and phase
or a complex quantity. This was pointed out by Van der Lugt and these filters
are generally known as Van der Lugt filters.

To fabricate the filter we usc the setup shown in Fig. 4.4.69, which is the
same sctup as for holography except an extra lens, L,, has been included. The
plate with transmission function on h(x, y) is placed at one focal plane of the
lens, L,, whereas the photographic film is placed at the other focal plane. On
this film there is also an incident reference light coming in at an angle 0, as

Fig. 44.69. A holographic filter recording setup.
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shown in the figure. The total electric field incident on the film is given by

1 Xy
= =J2xfoy .
Eg(x, y) = yoe + il f" ( Y f)' | (4.4.79)
where
Jom= su; 0 and Yo = constant.

The intensity of light incident on the film is given by
La(x, ) = |E g (x, .V)Iz = Eqx, Y)E:,.(X, »

x Y ? Yo f X V) i2esoy-ai)
H (U’U)I * (Af‘1f>"

+ ZT;-H. (1'}’ %)e'lulfo’"/z,. (4480)

The transmission function of the film, ¢(x, y), is given by

=%+ 1t

1 Yo -
t(x, 2 S AHIE + O He 28y -R12)
{x y)ocyo+l,f,] | ¢

+ gu'e'“'fo"'m. (4.4381)

If this fabricated mask is now inserted in plane B of Fig. 4.4.70, then the output
clectric field at the plane B is given by

Bx o 0 4 L 1HG + 10, e
y Y ).f Ffﬂ AZ]‘Z
+ Ar}z H*Ge 134w, (4.4.82)

A 8 c

i ! '

| ' '

| ! '

l 1 D

| ! b
— ! '

| f sl —

* Ly * Lz

o(x.y) GH

Fig. 44.70. A Van der lugt filter.
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This electric field is Fourier transformed using lens L, to obtain the final
clectric ficld at the plane C given by

[
E(x, y) o %59(x. ) + 2 (A, ) B A*(x, y)} o gy, ¥)

+ }; [h(x, Y)» g(x, y) o 8x, y + foif)]

+ Z;[h‘(x. Wislgtx, y)edx, y — foif)). (4.4.83)

The third term gives the convolution of h(x, y) and g(x, y) centered at the
coordinates x =0 and y = —fLAf

third term = z;[h egedlx, y + fuA)]

= z; ”h(x =Xy + oM = y)gx', y)dx' dy'. (4.4.84)
The fourth term gives the cross correlation centered at x = 0, y = [, Af
fourth term = z‘;[h‘ sged(x.y — ful)]

- Ejjg(x,‘ y‘)h‘(x’ -\, y’ -y + folf) dx’ dy'. (4.4.85)

In the output plane the light intensity appears centered at x = 0, y = 0, ¥ =0,
y=~foi and x = 0, y = +f,Af. If the maximum width of h and ¢ are given
by W, and W,, respectively, then the widths of various terms in (4.4.83) are

Width

firstterm = y3g - W,,

|
second term = pfz[{hE]h}og—oZW,, + W,
third term = ﬁ}[hma(x,. it o)1= Wy + W,

fourth term = :}[{h‘By} 2505,y ~ folf) = Wi + W,

We see from Fig. 4.4.71 that for clear separation of the different terms we must
have

fo> ;f(a;v,, + w,) (4.4.86)
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Fig. 4.4.71. Boundaries for different output beams in the Van der Lugt filter output
plane,

or
IW, w

sinld>" My W (4.4.87)
27 f

There are different alternatives to Fig. 4.4.69 for making the Van der Lugt
filter; two of these are shown in Figs. 4.4.72 and 4.4.73. The first one is based
on a Mach Zender interferometer whereas the second one is based on a
Rayleigh interferometer.

Computer Generated Holograms

As discussed in Section 2.11, holograms are in general made using the beam
iluminating the actual object and a reference beam. Synthetic holograms,
computer holograms, or computer generated holograms (CGH) are made
without using the interference of the reference and object beams on a photo-
graphic plate. The actual desired transmittance of the hologram is numerically
culculated point by point using equations to model the interfering beams,
and then the calculated output from the digital computer is used to form the
hologram. The computer output can be directly plotted on a paper in a larger
scale which is then photoreduced to form the actual hologrum. The output
cun also be displayed on a cathode ray tube (CRT) and a hologram made from
this CRT display. There are two important differences between ordinary
holograms and CGHs. As the object wavefront is just a mathematical descrip-

4.4. Optical Signal Processing 407

Beam splitter
Z P

Mirror
L
Desired
impuise response Beam sphitter
La
M
Mirror Film

M.

+—— —g— —

Fig. 44.72. A Van der Lugt filter based on the Mach-Zender interferometer.

tion for the CGH, it is quite possible to make a hologram of objects which
are not physically realizable. The ordinary hologram is restricted to the
transmission function given by (2.11.6). For ordinary hologram fabrication,
the major concern is the coherence of the source, the reference beam, and the
intensity of the object wavefront. For CGHs the major probliem is the conver-
sion of the complex-valued transmission function 1o a real nonnegative func-
tion, i.e., coding. This coded hologram must be abie 1o retrieve the complex
wavefront by optical means.

The quality of the CGH is generally stated quantitatively as the number of
resolvable positions available in a given hologram. This in turn depends on
the smallest distance that can be resolved und the largest distance over which
this resolution can be obtained. Often this is referred to as the space Bandwidth

Reference
point

Film

/
Desired
impuise
response

Fig. 4.4.73. A Van der Lugt filter hased on the Rayleigh interferometer.
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product. The higher the space bandwidth product of the computer output
device (¢.g., the plotter), the better is the quality of the CGH. In this respect,
the CGH is very similar to masks for VLSI circuit fabrication. The technology
associated with IC mask-making is applicable directly to fabricating a CGH.
For example, E-beam (electron beam) lithography has been developed for
making masks suitable for submicron VLSI circuits. The same E-beam litho-
graphy machine can be used to fabricate very high quality CGHs.

4.5. Laser Applications

4.5.1. Lower Power Laser Applications

Since the discovery of lasers in 1960, there have been innumerable applications
of lasers in industry with commercial success. In this section, we will discuss
some of these applications and point out some fundamental advantages of
lasers for specific applications. Before we consider the applications, it is of
interest to list most of the commercially successful lasers in 1986 with most of
their important parameters. Although thousands of types of lasers have been
operated in laboratory conditions, approximately only 30 types of laser are
manufactured regularly. These are listed in Table 4.5.1* which includes the
name and type of laser, the wavelength and, if applicable, wavelength range,
power output, nature of output, whether pulsed or CW, and if pulsed, duration
of pulse, peak energy and repetition rate, price, lasing medium (whether gas,
solid, or liquid) and structure, input pumping energy requirements, efficiency,
type of cooling, approximate lifetime, beam diameter, beam divergence, typical
applications, and special comments.

4.5.2. Material Processing with Lasers

The interaction of high-power laser beams with materials has been used
successfully in the following three categories of materials processing;

(1) Using localized heating of materials. These include heat treatment, weld-
ing, material removal, alloying, cladding, glazing, annealing, slicing, dicing,
ctc.

(2) Using a photo-chemical reaction and/or localized heating. These in-
clude laser-assisted chemical vapor phase deposition (CVPD), liquid phase
epitaxy (LPE), sputtering, isotrope separation, etc.

(3) Laser fusion. Although laser fusing is basically localized heating, it will be
treated separately because of its importance.

* This chart is taken from Lasers and Applications, Laser Applications Chart, pub-
lished in July 1986.
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Tabie 4.8.1. Guide to commercial lusers. (From Lusers and Applications (1982), reprinted with
permission of “Lasers and Optronics™.)

Type of laser Wavelength Power Nature of output Price
Excimer: 193 nm Upto SO W 5-25 ns pulses, to $30.000 to
1. Argon fluoride averge S00 mJ at $200.000
11000 Hz
2. Krypton fluoride 248 nm Upto 100 W 2-50 ns pulses, to $30.000 to
average 1Jat1-500 Hz $200.000
3 Xenon chioride 308 nm Upto 150 W 1-80 ns pulses, to $30,000 10
average 1.5) a1 500 Hz $200.000
4. Xenon fluoride 351 nm Up to W0 W 1 -30 ns puises, 10 $30,000 to0
average S00 mJ at | -500 Hz $200.000
Dye laser pumped by:  Tunuble from 005 15 W 3 50 ns pulses at 34,000 to
Sa.  Nitrogen, excimer, 3OO nm o average 0 10kH: $100,000
Nd: YAG 1000 nm
5b.  Flash lamp Tunable from 0.25-50 W 0.2-4 us pulses, $6,000 10
340 nm to average 0.05-50 ) at $50.000
. 940 nm 0.03-350 Hz
S¢.  lon laser Tunable from To2 W CW or picosecond $8,000 to
400 nm to pulses from mode- $50,000
1000 nm locked systems
6. Nitrogen 337 nm 1-330 mW 0.3-10 ns pulses at $1,500 to
average 1-1000 Hz $30,000
(0.001-10 mJ)
lon: Sevoral lines 2mW Lo 20 W CW (can he $3,000 0
7. Argon 351-528 am modelocked) 330,000
(main lines
at 488 and
514.5 nm) ’
8. Krypton Several lines SmWto6 W CW (can be $10,000 to0
350800 nm (10--20%, of modelocked) | $50,000
{main line at argon output
647.1 am) in same tube)
9. Argon kryplon Several lines 0% 6W «w $12,000 10
450-670 nm $30,000
10. Helium-cadmium 4420r325nm 2-S0mW a1 442 CW $3,000 to
nm; 1.5 10 $10,000
mWat3125nam
11.  Helium-neon 543,594,604,  0.1-50 mW a CwW $140 10
633, 1152, 633 am; to 13 $16,000
1523, and mW at 1182
3391 nm ut 3391 nm,
=1 mW on
other lines
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Table 4.5.1 (continued) Table 4.8.1 (continued)
Type of laser Medium and structure Energy requirements Efficiency Type of laser Weight Cooling Lifetime Beam diameter
Excimer: Gas mixture containing 110 0r 220 V todrive pulsed  Up to 1% Excimer: 50-500 kg Air or water 100 S x 10*shots 2 x 4dmmto

1. Argon fluoride argon and fluorine high-voltage discharge t.  Argon fluoride per 8“7"‘" ) 25 x 30 mm

2 Krypton fluoride Gas mixture containing 110 0r 220 V todrive pulsed  Up to 2% 2, Krypton fluoride 50-500 kg Air or water 10 to 107 shots per Similar 10 ArF

krypton and fluorine high-voltage discharge gas fill , )

3 Xenon chloride Gas mixture containing 110 0r 220 V to drive pulsed  Up 10 2.5% k) Xenon chloride 50--1000 kg Air or water 10% 10 2 x 107 shots Similar 1o ArF

xenon and chlorine high-voltage discharge per wvﬁ" o
4. Xenon fluoride Gas mixture containing  1100r220 V todrive pulsed  Up 1o 2%, 4. Xenon Nluoride 50-500 kg  Air or water 10* 1o 10 shots per Similar to ArF
xenon and fluorine high-voltage discharge gas fill
Dye laser pumped by: Dye in liquid solvent 110 or 220 V, plus pumping 5-25% Dye laser pumped by:  3.2-100 kg Air, dye-solvent  Dye-limited (hours to 2-10 mm
5a.  Nitrogen, excimer, pulses from other laser conversion Sa.  Nitrogen, excimer, flow a month or two)
Nd: YAG of pump Nd:YAG
light Sb.  Flash lamp 30-110kg Water, dye- 10* to 10* shots per $- 20 mm

5b.  Flash lamp Dye in liquid solvent 110 or 220 V 10 drive 0.2-1% solvent flow ﬂuh l_lmp
pulsed power supply for overall S5c. lon laser 50-200 kg Water, dye- Dye-limited (hours to 0.6-1.0 mm
flash lamp solvent flow a week or s0)

Sc.  lon laser Dye in liquid solvent 110 or'220 V. 1 W or more 10- 20%, . 6. Nitrogen 23-60kg Air Thousands of hours; 2 x Immio
(optical) from A or Kr conversion clean after 10° 6 x 30 mm
pump laser ?f :ump shots

ight
: — forced 1,000 h to Syears 0.6 -20 mm
6. Nitrogen Flowing nitrogen gasin 110 V for pulsed high- Upto 0.1% 7 lo';rgon 10-300 kg w:::r orior oursie Y
channcl or sealed voltage discharge or 12-V 8: Krypton 10-300 kg Water or forced  10* 10 10* hours 0.6 2.0 mm
tube battery pack air
lon: Argon gas in sealed 110, 220, or 440 V to drive 0.01-0.1% 9, Argon-krypton 60--100 kg Water 10° hours plus 2 mm

7 Argon tube high-voltage d.c. supply . . . ixible:

R - - 4,000 h bie; 03-1.2 mm

8. Krypton Krypton gas in sealed 110, 220, or 440 V 10 drive 0.001-0.05% 10, Helium-cadmium 10-20kg Air 2.0(1)0;:31:“

tube high-voltage d.c., supply ultraviolet
9. Argon-krypton Argon-krypton gas 220 or 440 V to drive high- 0.005-0.02%, '
mixturein sealed tube voltage d.c. supply 1. Helium -ncon 15-100kg  Air $x10°1010°hours 0830 mm
10. Helium-cadmium Ionized cadmium 110 V 10 operate heater and ~ 0.01-0.1% .
vapor mixed with high-voltage d.c. supply
helium in sealed tube
11.  Helium-neon Helium-neon mixture 110 or 220 V at 20- 100 W 0.01-0.1%,

in scaled tube

for high-voltage d.c.
supply
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Table 4.5.1 (continued) Table 4.5.1 (continued)
T Beam Type of laser Wavelength Power Nature of output Price
ype of laser divergence Special notes Typical applications
Excimer: A - 12.  Ruby 694 nm Puises of 0.03 100 Pulse rates $15.000 to
xcimer: . 2-6 mrad in Requires regulur replenish-  R&D, spectroscopy, photo- 1, durations from 00! 4 Hz $70,000
;. :rgon ﬂultlmded rect. beam ment of dangerous gases chemistry, medicine 10 ns 1o 10 ms
. rypton fluoride Similar to ArF  Similar to ArF
Rfﬁ'ﬂ:ﬂ:ﬁyﬁi‘:ﬁ": hoto- Semiconductor diode:  750-905 nm 1-40 mW, average CW or pulsed $20 10
3. Xenonchioride  Similar to ArF  Similar to ArF R&D, spectroscopy, photo- 13a. GuAls df""‘:“";"“' or €W $6.000
o ‘ pendent
;{':d"l'::‘:’ dye pumping, 13b.  Phasc-coupled 790- 850 nm 100 mW to | W CW or puised $150 to
4. Xenon flouride Similar to ArF  Similar (0 ArF R&D, spectroscapy, photo- GaAlAs arrays (composition- CW, 1 W10 IFOW with durations $5,000
: ‘o dependent) peak power in 1 ns 200 us
chemistry, dye pumping, 1se mod
medicine pulse mode
Dye'laser pumM by: 0.3-6 mrad Pump laser usually R&D, spectroscopy, fuores- 13c. InGaAsP 1100—1600'.@ 1-10 mW CW or pulsed $1,000 to
Sa.  Nitrogen, excimer, scparate, chunge dyes to cence studies, medicine {composition- $7.000
s Nd:YAG span tuning range dependent)
b. Flash lamp 0.5-Smrad  Lincar or coaxial flash R&D, spectroscopy, luores 14 Neodymium-doped 1064 um (132 To 600 W average  Pulscs, 001-150) 38,000 10
se |'"fP' used cence studics, medicine YAG (pulsed) um is lower- at pulse rates to $125,000
c.  lon laser 1-2 mrad Requires external pump R&D, spectroscopy, fluores- powered 50 kHz
lase.r, ring or linear cence studies, medicine alternative)
cavity 14b. Diode-pumped 1.064 um (132 05-10mW CW orpulsed,can  $3,000 to
6. Nitrogen 03to3Ix? Nearly superradiani; some  Dye pumping, nonlinear neodymium-doped pm is lower- be Mmkd $13.000
mrad require nitrogen supply spectroscopy, Raman YAG PI‘: '”m: ) or @-switched
. alternative
scatt
o ‘ N ering t4c. Neodymium-doped 1064 um (132  0.04-600 W cw $3,000 1o
, on: 0.4-1.0 mrad Slqgle- or multiline output  Recording, spectroscopy, YAG (CW) um is lower- $95,000
. Argon in visible or ultraviolet dye pumping, repro- powered
M Krypt . . graphics, medicine alternative)
. rypton 0.4-1.5 mrad Slr}gle- oglmululmc output  Multicolor light shows and 15. Neodymium-doped 1.06 ym Puises of 0.1 -100)  Pulsed ut1 0.1 2 $10,000 to
in visible or ultraviolet displays, dye pumping glass Hz  $125,000
9. Argon-krypton 2 mrad Generally built for multi- Multicolor light shows and - !
line visible emission displays 16.  F-center “‘Ldl ;g s JmS 1-100 mW C\lN T::od:‘ of n:‘;(l)&])
. . and 2.3-3. oc
10. Helium-cadmium 04-1.9 mrad Tubes built either for Recording, reprographics, um few p.eop:econ.j,
visible or ultraviolet spectroscopy, micro-
output lithography, medicine {7a. Hydrogen fluoride 26-3 um (many 001-150 WCWor CWor50-200ns $10,000 to
11. Heli . ' (chemical) discrete lines) 2-600 mJ puises pulses at 0.5-20 $90,000
. elium-neon 0.6-6.0 mrad Most tubes single-line Construction, recording, Hz
cmission; a few are line- holography, repro- 17b. Deuterium fluoride 36-4um(many 001-100WCWor CWor50-200ns  $10,000 to
tunable in visible graphics, measurement (chemical) discrete lines) 2 600 m) pulses puises a1 0.5 20 $90,000

Hz
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Table 4.5.1 (continued)

Table 4.5.1 (continued)

4.5. Laser Applications 415

Type of laser Medium and structure Energy requirements Efficiency Type of laser Weight Cooling Lifetime Beam diameter
12.  Ruby Synthetic ruby crystal with 110,220, 0r 440 V for  0.1-0.5% 12. Ruby 30-700 kg Water About 10® shots 1.5-25 mm
chromium impurity flash lamp power per flash lamp
supply Semiconductor diode: 1 gm or less Air, heat sink 10* t0 107 hours Not meaningful
Semiconductor diode: p- n junction in semicon- 10 500 mA at about 1 20% 13a.  GaAlus {package-
13a.  GuAlAs ducting GaAs or GuAlAs 2V dependent)
13b.  Phase-coupled GaAlAs Multiple quantum well semi- 0.3-3A CW, 1.6-50  20- 40*; 13b.  Phuse-coupled 1-5gm Air, heat sink 10407 x 104 Not meaningful
arrays conductor junction in A pulsed GaAlAs arrays hours
GuAlAs 13¢.  InGaAsP 1 gm or less Air, heut nink To 10 hours Not meaningful
t3¢.  InGaAspP p njunction in quaternury 20 200mA at 1.5V 1204, (package-
semiconductor dependent)
14a. Neodymium-doped YAG Synthetic crystal of yttrium - 110 or 440 V to drive  0.1-2.0°, 14a. Neodymium-doped 30-700 kg Water About 10° shots 1-10 mm
(pulsed) aluminum--garnet, doped fash tamp power overall YAG (pulsed) per flash lamp
with neodymium supply 14b. Diode-pumped negligible Air 10* hours plus t 2mm typ.
14b. Diode-pumped neodymium-  YAG crystal doped with 110 0r 220 V for s K, neodymium-doped (package- {depends on
doped YAG neodymium, selectively diode power overall YAG dependent) diode laser)
driven by diode laser supply. lower 14¢c. Neodymium-doped 30-700 kg Water Arc lamps last 0.7 8 mm
voltage possible YAG (CW) about 200
14c. Neodymium-doped YAG YAG crystal doped with 110 or 220 V for flash  0.1-3.0°, hours
(CW) neodymium lamp power supply overall 15. Neodymium-doped 100- 500 kg Water About 10*shots 3. 25 mm
15.  Neodymium-doped glass Glass doped with 220 V to drive flash 1 5% glass per flash lamp (some rect.)
neodymium lamp power supply 16. F-center 1Skg Liquid nitrogen Thousand of 1.35 mm
16.  F-center F.centers (impurities) in 1O or220V,1-2W  To 10% hours
alkali halide crystals (:‘;:llu.vu'l‘)g om lon conversion 17a. Hydrogen fluoride 150--2000 kg Flowing gas or Needs maint. 2 40 mm
: pump of pump . 50-100
laser light (chemical) water every
hours
17a. Hydrogen fluoride Low-pressure gas containing 110 or 220 V to drive  0.1-1.0% 17b. Deuterium floride 150--2000 kg Flowing gas or Needs maint. 2-40 mm
(chemical) chemically produced pulsed or CW (chemical) water every 50-100 |
hydrogen fluoride high-voltage hours
dinchurge B U A SO
17b. Deuterium Nuoride

(chemical)

Low-pressure gas containing
chemically produced
deuterium fluoride

1O 05 220 V 10 drive
pulsed or CW
high-voliage
discharge

0.1-141,
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Table 4.8.1 (continued)
Beam
Type of laser divergence Special notes Typical applications
12. Ruby 0.2-10 mrad Pulsclengthscanbecon-  R&D, holography, materials
trolled; double pulsing working
for holography
Semiconductor diode:  About 10 x 35° Modulated directly by Printing, recording, reading,
13a.  GaAlAs drive current, sold optical communications
without power supply
13b.  Phase-coupled S x 10° to 10-1000 stripes in array,  Optical pumping, illumins-
GaAlAs arrays 10 x 35° phase coupled, tion, rangefinding, fiber
addressed in parallel sensors
13c.  InGaAsP 10 x 30° to Modulated directly by Fiber-optic communications
20 x 40° drive current, sold
without power supply
14a. Neodymium-doped 0.3-20 mrad Can Q-switch or mode- R&D, materials working,
YAG (pulsed) lock, divergence rises rangefinding, medicine,
with output power dye pump
14b. Diode-pumped 0.5-2.0 mrad Highly efficient, compact,  Fiber communications (1.32
neodymium-doped typ. single mode output um), R&D, holography,
YAG stable to 10 kH2 inser radar
14¢c. Neodymium-doped 2-25 mrad Can Q-switch or R&D, materials working,
YAG (CW) modelock medicine, inspection
15.  Neodymium-doped 3-10 mrad Can Q-switch or R&D, materials working
glass modelock
16. F-center 1.6 mrad Pump laser requirements  R&D, spectroscopy, non-
dependent on wave- linear fiber studies
length region
17a. Hydrogen fluoride 1-15 mrad Operatesononcormany  Atmospheric research, other
(chemical) lines, needs vacuum R&D
pump, exhaust is toxic
17b. Deuterium fluoride 1-15 mrad Similar to HF, exhaust is R&D

(chemical)

toxic

4.5. Laser Applications 417
Table 4.5.1 (continued)
Type of laser Wavelength Power Nature of output Price
Carbon dioxide: 9-1l umor 10.6 um 20W o 5kW CW or long pulses  $15,000 to
18a.  Axial gas flow $300,000
I18b.  Transversc gasflow  9-11 umor 106 um S00 W 10 I1SkW CW or long pulses  $80.000 to
$500,000
18c.  Sealed-tube 9-1l umor 106 um 3 100 W Generally CW $5.000 10
$135.000
184. Pulsed, TEA 9-11 umor 106 um 0.03-150) 50 ns to 100 us $5,000 to
pulses pulses at $125,000
0.1-1000 Hz
t8¢. Waveguide 9-1l ymor 106 um 0.1-50 W CW or pulsed $3,000 10
$25.000
Type of luser Medium and structure Energy requirements Efficiency
Curbon dioxide: Flowing gas mixture 110, 220, or 440 V 5-15%
18a.  Axial gas flow containing CO, and
other gases
18b.  Transverse gas flow Flowing gus mixtuse 110, 220, or 440 V 51589,
containing CO, and
other gascs
18¢c.  Secaled-tube Gas mixture containing 1ov S8,
CO, in sealed tube
18d.  Pulsed, TEA Gas mixture containing 110 0r 220 V 10 dnive t-10°,
CO, at near-atmospheric pulsed high-voltage
pressure discharge
18¢. Waveguide Gas mixture containing 110 V 10 drive power About 5%,

CO, in a waveguide tube

supply
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Table 4.5.1 (continued)
Type of luser Weight Cooling Lifetime Beam diameter
Carbon dioxide: 100 kg to Air, water/glycol  Thousandsof  3-25mm
18a.  Axial gas flow several tons hours
18b.  Transverse gas flow 100 kg to Air, water/glycol  Thousands of 10-50 mm
several tons hours
18c.  Sealed-tube To 50 kg Water or air 10* hours 3-4mm
i8d.  Pulsed, TEA 35-1000 kg Water or air 10® or more 5-100 mm
shots
18¢.  Waveguide 5-20kg Air To 10* houss 1-10 mm
Beam
Type of luser divergence Special notes Typical applications
Carbon Dioxide: 1-3 mrad Needs gas supply and Materials working,
18a.  Axial gas flow vacuum system, gus surgery (low power)
can be recirculated
i8b.  Transverse gas flow 1--3 mrad Needs gas supply and Materials working
vacuum system, gas
can be recirculated
18c.  Sealed-tube 1-2 mrad Can {ill with isotopic R&D, surgery, Jow-power
gases 10 select apecific materials working
wavelengths
18d4.  Pulsed, TEA 0.5-10 mrad Single- or multiline R&D, materials working,
output, discharge photochemistry, laser
transverse to beam radar, remote sensing
18¢. Waveguide 4-10 mrad Single- or multiline Materials working,

output, gas flow
typically rapid

surgery, laser radar,
other R&D

Table 4.5.1 (continued)

Other Commerical Lascrs
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Type Wavelength Comments
19. Fluorine 157 nm F, in excimer laser, used in R&D
20. Krypton chloride 222 am Similar to other excimer lasers
21, Copper vapor 510 and 578 nm  Requires heating to vaporize copper, used for dye
pump and forensics
22, Xenon 540 nm Pulsed output, used for electronic production
applications
23 Gold vapor 628 nm Similar to copper vapor, used mostly in medical R&D
24.  Alexandrite 730-780 nm Continuously tunable flash lamp-pumped solidstate
laser
25. GSGG 745-835 nm Nd and/ur Cr doped crystal of gallium - scandium
gadohmium garnet
26.  Perkovskite 780850 nm Cr doped crystal of potassium zinc fluoride, used in
R&D
27. Erbium: YLF 8500r1730 nm  Erbium-doped yttrium -lithium fluonide, similar to
Nd: YAG
28.  lodine 1.3 um High-power R&D ool
29. FErbium : Glass 1.54 um Erbium-doped glass, used in “cyesafe” rangefinders
30. Holmium 2.06 um Ho : YLF; similar to Nd : YAG; some interest in
rangefinding
31.  Lead-salt semi- 3-30 um Tens of mW, requires cryogenics, several diodes noeded
conductor diode for full range
32. Carbon monoxide 5-7 um CW or pulsed, single- or multiline operation
33. Far infrared 30-1000 um Organic vapors pumped by CO, laser, used in R&D

45.2.1. Processing Using Localized Heating i

The basic setup for material processing using localized heating is shown in
Fig. 4.5.1. The laser beam is focused using a lens on a workpiece which might
be a piece of steel, aluminum, or a semiconductor. Let us consider the approxi-
mate diameter of the focus to be 2a and the depth of the heated material to
be z. Using the energy balance we obtain .

u=(T+ L+ L )pnaz, (4.5.1)

where u is the laser energy, c is the energy required to raise 1 kg by 1 = ¢, /p,
c, is the specific heat, p is the density of the material, L, is the latent heat of
fusion, and L, is the latent heat of vaporization.

In equation (4.5.1) the possibility of melting and vaporization has been
included. For constant uniform incident irradiance, the depth of penetration
is approximately given by

2= 2, ok, (4.5.2)

where k is the thermal conductivity of the material and ¢ is the pulse length
in seconds. If the thickness of the material to be processed is less than z,,, z is
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Laser beam

Lens

Wo}piece

2a /

Fig. 4.5.1. Laser beam focused on a workpiece.

equal to the thickness. Note that
u=Pt, (4.5.3)
where P is the power of the laser pulse.

In many cases the laser pulse will be moving at a speed v. For this case we
have

‘~2a 454
~ vv ( . )
and
2a
“=;P- (4.5.5)

Equation (4.5.1) is quite approximate as it ignores lateral heat transfer; also,
it assumes uniform heating throughout the heated material. To obtain more
accurate results we should use the basic heat transfer equations given by

F = —kVT, (4.5.6)
and
10T A
2 — ;o
viT K ot K 4.5.7)

where F is the heat flux and 4 is the internal heat generation in watts per
cubic meter. Note that if laser energy is only absorbed, then A =0. It is of
interest to note some results related to the solution of equations (4.5.6) and
(4.5.7) for the following three cases.

Constant Beam

A semi-infinite solid is irradiated with a constant irradiance /,. The tempera-
ture, T(z, ¢), as a function of depth z and time ¢ from the start of irradiation
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U [ (kP s 2 ( z )] 4
=-°1™ ahidh _ N 5.8
T )= [(n) e 2erfc Jai 458)

erfc(x) = 1 — erf(x) = complimentary error function,

is given by

where

erf(x) = error function

2 [* _,
- e " ds.
N J

The surface temperature, T,(t) = T(0, ), is given by
Iy {4kt \'?
() = -9( ') : (4.59)
k\ n

In most cases, there is a reflection of laser light duc to different refractive
indices. For normal incidence, the reflection coefficient, R, is given by

=M (4.5.10)

where n, is the refractive index of the material to be processed, and n, is the
refractive index of the incident medium. For the case of good electrical
conductors such as aluminum and steel

~ 1° 45.11
" \/27mf' (_5 )

. . [
where o is the electrical conductivity, u is the magnetic permeability, and f is
the frequency of laser light. Including reflection we have

I,=0 - RYI, 4.5.12)

where 1, is the incident radiance.

Gaussian Beam

For an incident Gaussian laser beam with peak absorbed irradiance I, and
spot width w, we have

172
T = !‘;‘f” J 2'* tan ! (i",’) . (45.13)

For a circular beam with radius a, the temperature at the center of the spot
is given by

1/2 2+ 2
T(z,t) = 2’:!(:;’)‘ [i erfc(\/ik‘) - ierfv:\/z ““a ] (4.5.14)

Circular Beam
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where i erfc = l/\/ne"" — erfc(x), and P is the tolal power absorbed at the
surface. The surface temperature at the center of the beam is given by

P\/Ntl[ 1 1 ( a2> a a
1; = Yo} - — . ol
0=""q T exp| — 4, Jaka erfc(\/“.’“)]. (4.5.15)

For t — oo, the steady state temperature is given by

T(z, ) = [z + a?) - 2] T:". (4.5.16)

where
Tnas = Maximum surface temperature possible

P
——— 4.5.17)

rak
The results discussed above are very useful for estimating the laser param-
etcrs_ needed for a particular job. For example, using (4.5.9), we can estimate
the time 1, to reach the melting temperature T, at the surface to be given by

t —..’_'_ l_‘T"' ’
m= ik Io . (4.5.18)

!, 18 of the order of one microsecond for typical welding situations using CO,
lasers with I =~ 10° W/cm?2,
The volume V of melted material can be estimated from (4.5.1) to be

u

V= p(CT, + L) 4.5.19)

Similarly, the time ¢, to reach the vaporization temperature 7, is given by

Lo kT)\?
v = 3k —’o_ . (4.5.20)

After vapgriza(ion occurs, a layer of vapor forms, and it begins to move into
?hc matt{rlal. this is shown schematically in Fig. 4.5.2. If the problem at hand
is material removal, (4.5.1) can be used to estimate the time t, required to

remove the material to a depth of z. Assuming the speed of the vapor phase-
front 1o be given by v, we have

du

P= &= pra*o(CT, + L) 4.5.21)

or

I P 1
T G P 2
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Fig. 4.5.2. Vapor front propagation.

t, is given by

=", (4.5.23)
In the following we discuss some specific applications.

Heat Treating

Heat treating is a process which consists of heating metals and certain other
materials for some time to harden them. In general, many tools and auto-
mobile parts are heat trcated. To obtain proper hardening, the workpicce
surface is raised to a temperature above the transformation temperature. The
cooling rate due to sclf-quenching by heat conduction into the bulk magerial
is high enough to perform hardening successfully.

1t is of interest to consider the relative merits and disadvantages of laser
processing compared to conventional processes. For laser processing, the
efficiency of the process is very high, requiring a low amount of total energy
input to the workpiece, and thus a negligible amount of distortion results. The
depth of hardening is relatively shallow. This is desirable, as for the casc of
metals other desirable properties of the bulk are retained. In many cases, it is
desirable to treat only a portion of a larger item. This is casily done using laser
processing. However, if the whole piece is to be hardened, then laser processing
has a low-arca coverage rate, thus limiting the production rate. For this
situation, a defocused laser beam is often scanned across the surface to increase
the coverage. In general, CO, lasers are used for laser processing, however,
the reflectance of metals is high at 10.6 um. This is generally avoided by
applying an absorptive coating on the workpiece surface. Commonly used
absorption coatings are black spray paint, graphite, and zinc phosphate. An
excellent example of laser hardening is an automobile piston whose ring
grooves are hardened without any distortion to the rest of the workpiece.
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Welding

For laser welding, both CW and pulsed lasers can be used. The CO, laser is
the most used one; however, Nd-YAG and ruby lasers are also used. The
main advantage of laser welding is that distortion of the workpiece is very
small. This is due to the fact that the total amount of input is very small
compared to conventional welding. Also, because of rapid cooling, the heat
affected zone is relatively small. Laser welding has other advantages also;
these are precisely located welds, welding at difficult-to-reach places, casily
automated welding, narrow cosmetically good welding, and high-strength
welding of dissimilar metals. The main disadvantages of laser welding are an
extremely hard weld bead in hardened materials, and problems such as hot
and cold cracking due to rapid heating and cooling,

CW laser welding is mostly performed by CW CO, lasers and melting is
generally by thermal conduction up to about a 1-kW power CO, laser.
However at higher levels, especially at the multi-kilowatt level, an interesting
phenomenon called “keyhole” takes place. In this phenomenon, a hole is
produced in the material and this allows the laser beam to penetrate further
into the part. It is believed that, at high-power inputs, the vapor pressure of
the molten material is very high. It is high enough to overcome the surface
tension of the molten material and push it out of the way to form a hole, this
is shown in Fig. 4.5.3. The laser beam is nearly completely absorbed in this
hole, and once the beam moves, the molten material flows back into the hole.
Keyholing allows the penetration depth to reach several centimeters rather
than a few millimeters, as expected without keyholing.

Cover gases such as He, Ar, and N, are often used with laser welding for
protection against oxidation. However, because of the presence of gas and its
interaction with the metal vapor plasma, it causes lower penetration depth
and loss of laser radiation.

Solid weld

Fig. 4.5.3. Schematic of “keyholing.”
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The most common lasers used for pulsed laser welding are the Nd -YAG
and the Nd. glass lasers because they are ideally suited for welding wires to
terminals and other electronic components, Generally, low-repetition rate
laser pulses are used, and high-repetition rate laser pulses are used for high-
speed spot welding or seam welding, which is suitable for electronic packages
such as capacitors and the hermetic sealing of components.

One example of laser welding is the welding of the curved contour under
the bodies of automobiles, which is done by controlling the laser beams by
computer-controlled beum deflectors while the automobile is moving. Another
example is the welding between the main gear and the synchronizing gear in
an automobile transmission. For this case the tolerable distortion in the
synchronizing gear is the important point.

Laser Cutting

Nearly all materials can be cut by high-power CO, lasers; this includes steel
(~ 1 ¢m thick), composites, glass, quartz, plastics, ceramics, paper, wood, etc.
The main advatnage of laser cutting is the ease of automation; for example,
2.5-cm-thick plastic sign letters can easily be cut by using laser cutting with a
1-kW CO, laser. For CW cutting, in general, assist gases are used which are
generally under pressure and often directed by a nouzle.

Pulsed laser cutting is used to minimize microcracking for materials like
ceramics and either an Nd- YAG laser or a CO, laser is used. Pulsed laser
cutting is ideal for aircraft engine parts where low machinable superalloy
materials like waspalloy and hastetloy-X are used. A laser, in combination
with a four- to six-axes numerical control system, is an essential tool for
cutting thousands of slots and holes in aircraft combustion parts. ,

Some other examples of laser cutting are the stripping of insulation ftom
clectrical wires and cables using a CQ, laser, cutting of glass and quartz tubes,
cutting with intricate patterns such as in the clothing and packuging industries,
and sheet metal cutting,

Drilling and Perforating

The main advantages of laser drilling in its high reproducibility, it is very rupid,
und has no tool contact; and also, drilling can be performed 1n materials of
low machinability.

Laser hole piercing in metals has already been mentioned in connection
with the laser cutting of turbine engine parts, and it is ideal where numerous
holes must be precisely located. Holes are drilled routinely in ceramic materials
for electrical connections. An interesting example of laser perforation is the
piercing of three holes in a baby bottle nipple, one at the top for the liquid
and the other two for air inlets; the laser output split into three beams does
this job in a fast and efficient manner. A similar application is the drilling of
two precision holes for an acrosol valve. Laser dritling is also used to pierce
holes in the plastic upholstery that covers the walls of passenger cabins in
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modern airplanes. Laser drilling of diamond dies used in the extension of wire
is an other important application.

Scribing

$cribing of aluminum and silicon substrates is very important in the electronics
industry, as here the material is not cut completely; rather a line of easy
fracture is laid down cither by a laser or a diamond stylus. Computer-
controlled scribing with a laser is noncontactable and can be accurately
controlled without any damage to the surface.

Micromachining

Extremely small objects can be machined with a focused laser, and an impor-
tant case is the restoration of printed and integrated circuits. Another example
is the precision trimming of metal thin-film resistors. The thin-film resistor
initially has a lower resistance and is adjusted to the required value by
vaporizing part of the film and thus raising the clectrical resistance.

45.2.2. Processing Using a Photo—Chemical Reaction
and/or Localized Heating

Isotope Separation

Isotopes of elements contain the same number of electrons and protons;
however, nuclei have different numbers of neutrons. For example, the nuclear
fuel uranium has two principal isotopes, U?3% and U??%, U??® contains three
more neutrons and thus is a little heavier than U?*%. Natural uranium con-
tains less than 1% U?3? and to be useful for nuciear power generation or for
the production of atomic bombs, at least 3%, U??" is required. Thus, the
isotope enrichment of uranium is a very important problem and, in general,
this anichmcnt is performed using gascon diffusion which is very expensive
and time-consuming. Laser-assisted isotope separation depends on the unique
property that a photon of precise energy can excite the U?** atoms without
exciting the U2?% atoms. This precise energy photon is obtained by tuning a
dye’ laser to a precisc wavelength with a very narrow linewidth. The selectively
.cxc!ted atoms can be ionized using another short wavelength light. The
ionized U?*3 atoms can be separated easily from the ncutral U?*® atoms using
electrostatic fields.

The pr?nciple of isotope separation is not limited to atoms only. Uranium
hexafluoride molecules (UF ) can also be selectively excited and ionized using

a tunable infrared laser, which selectively acts on the molecular vibrational
levels of the molecules.

4.5.2.3. Laser Fusion

Ij‘usion refers to releasing enormous amounts of energy through the fusion of
lighter elements into heavier elements. Two particular examples are the energy

4.5. Lascr Applications 427

source of the sun and the thermonuclear explosion of a hydrogen bomb. The
idea behind laser fusion is to have this thermonuclear reaction under control.
A necessary requirement of laser fusion is the enormous pressure and tempera-
ture of the fuel pellet, which consists of frozen heavy water (D,0) and extra
heavy water. The pellet is irradiated with very high energy laser pulses causing
rapid heating of the pellet. This in turn causes ablation or the rapid vaporiza-
tion of the pellet surface, accompanied by a compressional wave which propa-
gates toward the center of the peliet squeezing it to a very densc core. In the
presence of very high compression the core reaches a very high temperature
(~10® K) which is necessary to start the thermonuclear reaction. At this
high temperature the deuterium and tritium atoms overcome the electro-
static repulsion of charged nuclear particles and undergo the following fusion
reaction:

JH? + H? = JHe* + g’ (14 MeV)

This fusion produces a helium atom and a neutron with a kinetic energy of
14 MeV. It has been estimated that for a chain reaction to continuc, s0 that
useful energy can be extracted from this fusion, the high temperature must be
maintained for about 1 ps with a core density of the order of 10* times that
of the uncompressed pelict. To fulfill these conditions, an enormous amount
of laser pulse energy is needed.

The initial design of lasers, in demonstrating the feasibility of laser fusion
power, uses Nd-YAG and Nd-glass lasers in the Argus laser system at the
Lawrence Radiation Laboratory. The Argus system consists of a master
oscillator, Nd-YAG lasers, followed by a series of Nd-glass disc amplifiers.
Two simultaneous pulses of 10'? W, using two sets of amplificrs, are incident
on the pellet from opposite directions. The Argus system has su fully
demonstrated yields of millions of neutrons although the break-even condi-
tion has not been reached. This break-cven condition refers to the, condition
when the thermonuclear encrgy generated is cqual to the input laser energy.
The next generation system, called Shiva, is similar to Argus except that it will
deliver 20 simultancous puises to the pellct. Twenty amplifier chains will be
used to radiate the peliet from 20 symmetrically arrayed directions. The total
output of the Shiva system is of the order of 10* J with a peak power ~ 10' w.

The next generation of laser fusion systems is expected 1o use excimer lasers
(there are many reasons for this), and some of these are:

(1) The Nd-YAG laser wavelength, 1.06 um, is not optimum for laser fusion
experiments. It was found that above 0.6 um absorption by the pellet is
inefficient, whereas below 300 A two-photon absorption in the amplifier
discs causes large losses. Thus the ideal range is from 0.3 ym to 0.6 uym,
the range of excimer lasers.

(2) Solid state lasers cannot be cooled fast enough to produce the fast-
repetition rate needed for practical power generation.

(3) Flash lamps and discs needed for Nd glass amplifiers are expensive and
have practical maintenance problems.
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(1) luser diagnostics,
(2) photomedicine,
(3) laser surgery.
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These areas span a range of uses from the stimulated production of vitamin
D to the delicate, vision-correcting, cornca surgical procedure.

4.5.3.1. Laser Diagnostics

The first step in any medical treatment procedure is the diagnosis; therefore,
we will begin by discussing the field of laser diagnostics. The laser’s use as a
diagnostic tool spans the range from displaying medical data in a clearer and
more comprehensive form than is otherwise available, to the collection and
analysis of medical information on both microscopic and macroscopic scales.

In the area of medical displays, holography has been a revolutionary
breakthrough in that it allows medical personnel to sec a three-dimensional
presentation of data which previously was displayed in an often ambiguous
two-dimensional form. For medical applications, the holographic process
must be fast (because a patient’s effective treatment may rely on the speed of
diagnosis), accurate (for obvious reasons), and casy to use (so that medical
technicians can use the instrument efficiently). In order to meet the first two
criteria, holograms are generated from the raw medical data by a computer.
This is often the only way to obtain such a view without causing further
surgical trauma to the patient. In order that the hologram be casy to use, white
light holograms are utilized for their simple reconstruction propertics. Figure
4.5.5 shows the method in which these holograms are created.

In this figure, the transparencies (Tr) are created by the computer so that
the holographic images are reproduced correctly from the data. The rest of
the optical system is simply used to direct the coherent illumination and
reference beams onto the holographic plate (H). Typically, a 40-mW He-Ne
laser is used as the coherent source.
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Fig. 4.}.4. Schematic drawing of a laser fusion power plant. The contorted beam path
is designed to admit the laser beam, yet block x-ray and neutron emission from

the reaction. (Courtesy of Lawrence Livermore Radiation Laboratory, University of
California.)

It is of interest to speculate what a laser fusion power generation system
will look like, and this is shown schematically in Fig. 4.5.4. The pellets will be
fed to the fusion chamber where many synchronized laser beams will be
focused to generate high-energy neutrons. These high-energy neutrons will
raise the temperature of a fluid which will be circulated through the energy
converter. Note that the laser input power must come from the energy con-
verter, and basically the power generated will come from the pellets through

e
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thermonuclear reactions sustained by the laser pulses. %___ﬁ |
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4.5.3. The Medical Applications of Lasers i
The .dcvclopmenl 9!’ laser and optical technology in recent years has made ,” A\
. possible vast and diverse advancements in the fields of medicine and biology. B?’ ) Ly M

Some of the more wetl-known applications have been in the area of laser
surgery, but this is only a small portion of the techniques in which the laser
is being utilized. The range of the role of optical engineering in medicine can
be broken down into three general categories:

Fig. 4.5.8, Creation of a medical holographic display. (From Z. Antaloczy et al., 4ppl.
Optics, 24, 1985.)
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Fig. 4.5.6. Holographic display of the electric ficld contour of a patient’s chest. (From
Z. Antaloczy et al., Appl. Optics, 24, 1985.)

An example of how holographic displays are being used is the contour line
display of electric fields (see Fig. 4.5.6). To visualize an electric ficld mapping
is a difficult task at best, but the new three-dimensional display of this
information has greatly simplified this matter. This technique is chiefly used
in the diagnosis of heart ailments, but may, in the future, expand in its
applications to replace the roles of the CAT and the NMR imaging technigues
of today's medicine.

Another important area in laser diagnostics is in optical sensing; one
example is in the use of optical flow meters to measure blood vessel fluid flow.
These meters are also known as laser Doppler velocimeters, since they employ
the detection of a Doppler shift in the light reflected off particles in the blood
flow. The light used is typically that of an He— Ne laser (wavelength = 632.8
nm), and the Doppler shift, which is on the order of 1.5 kHz, and is measured
using heterodyne detection. Figure 4.5.7 shows the use of this method in the
measurement of the blood flow velocity in the retina.

Most people are aware that fiber-optic sensors are being widely used in
today's medicine. In the area of diagnostics, fiber-optic bundles are used to
view areas (which would otherwise be difficult or impossible to see) before and
during surgery. In this role as an “on-the-spot camera™, the fiber-optic bundle
has decreased the need for a great deal of exploratory surgery (see Fig. 4.5.8).
A catheter containing the fiber-optic endoscope is inserted through a small
incision or body opening and threaded to the point of concern in the body.
The fiber-optic bundle contains fibers for both illumination and viewing of
the area in question. The view from the endoscope is typically shown on a
television monitor with no time delay.
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Fig. 4.5.7. Usc of a laser Doppler velocimeter.

Another important area of laser diagnostics is spectral analysis, and this
analysis can be subdivided into two areas of application:

(1) spectral analysis;
(2) absorption and fluorescence spectra.

The accuracy and precision of laser methods of spectroscopy over previous
methods in these areas is an improvement of approximately ten orders of

magnitude!
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Fig. 4.58. A fiber-optic endoscope. (From G.). Jako, 1EEE Spectrum, March 1985.)
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Laser spectroscopy offers great sclectivity and high spectral resolution.
Even more important, in a sense, is the fact that laser spectroscopy is a simpler
method as compared to the previous methods. In laser spectroscopy, the
sample need not be separated into components or different chemical “species”
in order to analyze its chemical content. The entire sample is heated to
luminescence and the resulting spectrum is analyzed for the various chemical
spectra present. Due to this technique’s incredible accuracy, it has been
employed to search for minute quantitics of toxins and to classify the use of
biochemicals in the body—even on the cellular level!

Another type of spectroscopy which is often employed with living human
tissues is absorption and fluorescence spectra. Laser light at an appropriate
frequency is delivered to a specific area. The illuminated arca then fluoresces
at other frequencies which produces a spectrum which can then be analyzed.

For example, this technique is used in lung cancer detection. A chemical (a
haematoporphyrin derivative or Hpd) which concentrates in cancer cells is
introduced into the patient. The suspect areas are illuminated by 400 nm
light—the absorption region of Hpd—and cancer cells which now contain
the chemical fluoresce—in the 600--700 nm region - reveal the presence of
cancer.

Another type of fluoroscopic diagnosis, which can now be done using laser
technology, is the study of chromosomes in the diagnosis of hereditary discases.
This process is called laser microfluorometry and is used to analyze cells and
their contents. Low-intensity, tunable lasers and Raman scattering allow
cellular structures as small as 0.3 um and cellular processes as fast as 0.2 ns
to be recorded.

4.8.1.2. Photomedicine

The areas of photomedicine, phototherapy, and photochemistry have just
recently caught the attention of the general public. These techniques are
becoming particularly attractive to the medical profession since they allow
extremely efficient selective destruction of cancers. In the most common
treatment, Hpd is introduced into the body as would be done for fluoroscopic
diagnosis, except now the purpose is quite different. Suspect areas are then
illuminated with light in the range of 628-632 nm delivering approximately
50 MW/cm?. A resulting photochemical reaction kills the Hpd-tainted cells.

For this purpose, a power output (CW or pulsed) of 2 5 W is needed. Even
50, the treatment is only effective for small tumors since the light only pene-
trates living tissue up to about 0.5 cm. Typically, argon dye lasers have been
used to fill this need; however, argon dye lasers are plagued by poor efficiency
and an even more pragmatic consideration, high price. The problems, more
specifically, are the 0.02% efficiency, the necessary water-cooling, the high
maintenance requirement, the need for a 440 V three-phase power source, and
the $75,000 120,000 price tag.

As an alternative to the argon dye laser, gold metal vapor lasers are being
used. This type can be air-cooled and powered by a normal 110 V single phase
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supply, and the price of $39,000-- 58,000 and 0.5°% emciem_y make fhls laser
much more affordable to many hospitals. Although a considerable improve-
ment over the argon laser, this laser is still distant from the 20% efficient,
reliable, air-cooled, $10,000 -30,000 priced, semiconductor laser that many
medical technicians term as the ideal. ‘ .

Another type of photomedicine is the stimulation of production of various
therapeutic chemicals. Two of these arc vitamin D and thf: hormone prosta-
glandin. The process works by using coherent light at vanous f'rcquem.:lcs_. to
cither excite the necessary molecules to speced the desired reaction, or'mhlblll
the reactions which may lead to impurities in the desired product. Using this
technique over conventional methods, yiclds grew by over 125%,! Even 5o, the
process is not attractive economically, as yet. )

Another area of photomedicine that borders on laser surgery is the lgser
treatment of port wine stains (PWS). A port wine stain is a defect charactepzed
by a blotchy, darkened arca of the skin. To deal with this problem effectively,
the blood vessels in the PWS must be coagulated with as little damage to the
surrounding tissue as possible. Considerable research has been dpne on tl_xe
absorption and scattering coefficients of the tissues involvefi. and is shown in
Fig. 4.5.9. Research has helped to optimize the treatment with respect to laser
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Fig. 4.5.9. Absorption (A) and scattering (S) curves for blood (bl), dermis (d), and
epidermis (¢) as a function or wavelength. (From C.T. Lahaye et al., Physical Medicine
and Biology, 30, 1985.)
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power, wavelength, pulse duration, and beam radius. As might be expected
from Fig. 4.5.9 4 wavelength of 415 nm gives the best ratio of damage of blood
to damage of skin. The optimum pulse duration and power are approximately
1 ms and 4 W, respectively, which is enough to raise the blood vessel to the
coagulation temperature of 70°C.

Although the pulsed argon laser is most widely used in the trecatment of
PWS, it does not have the optimal characteristics. Its shutter time is not short
enough and its wavelength is too long (500 nm). One aiternative being con-
sidered is a CW laser which is moved at a constant controlled velocity to
expose the affected area to the proper amount of radiation. Another possibility
is the krypton laser which produces the optimal wavelength but insuflicient
power (about 1 W) to be optimal.

Our last entry under the heading of photomedicine is also related somewhat
to the surgical aspect of lasers, the area of laser-assisted genetic engincering.
It has been found that certain wavelengths in short but powerful pulses, as
supplied by a nitrogen laser, are capable of selectively breaking or completing
peptide bonds in cell structures including DNA and RNA. This technique will
enable genetic researchers to perform microsurgery in effect directly on our

DNA strands, perhaps preventing the spread of hereditary discases and the
genetically interwoven retroviruses.

4.5.3.3. Laser Surgery

The last area of lasers in medicine is laser surgery. The techniques to be
described are sometimes mentioned under the heading of photodestruction,
since laser surgery usually is based on some sort of selective destruction of
cells. All laser surgery has two common traits. First, laser surgery is a very
sterile process since it does not require that the “scalpel”, the laser, come into
contact with tissue. Second, laser surgery characteristically has very little
bleeding associated with it since the laser can be tuned to coagulate blood
vessels as incisions are made.

This capacity of photocoagulation has its own place as a surgical technique.
To some cxtent, this has been mentioned in reference to the PWS therapy.
Another example is the use of photocoagulation in the prevention of blindness
due to proliferative diabetic retinopathy. This condition causes small blood
vessels to burst on the retina which causes scarring. Photocoagulation is used
to halt the hemorrhaging and case the scarring. In this cuse the patient's own
cye must be taken into account when tuning the laser since the cornea and
lens will alter the beam.

A rather new and exciting areca which has emerged in laser surgery is that
of laser angioplasty. This technique is used to clear blood vessels which have
become blocked by atherosclerotic plague (ASP). The ASP absorbs blue-
green light (wavelength ~ 532 nm). This light is produced by cither a frequency-
doubled Nd : YAG laser or an argon laser at a power level of 3-4 W. The light
is delivered to the blockage via a fiber-optic catheter (sec Fig. 4.5.10). Depend-
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Fig. 4.5.10. Fiber-optic catheter.

ing on the type of plague, the appropriate illumination time ranges from3s
10 40 s or until the blood vessel is cleared. N

The main advantages of laser surgery lic in its accuracy gnd vcuanlny.‘A
surgeon can use a laser to make a large caulcrized. incision of 10 excise
cancerous cells nearly one at a time. The laser's versatility and wide range of
medical applications has been shown. The accuracy of lasc.r surgery stems
from the fact that the surgeon can position the laser with a microscope if need
be, then step back and illuminate the region for the appropriate amount qf
time and power. Following are four short examples which demonstrate this

of accuracy.

lYPZ leading csyluse of sterility in women is the blockage of one or both
oviducts. The surgery was quite risky due to the delicate nature ofthe o ans.
However, treatment is simpler and much more successful using a technique
similar to that of laser angioplasty.

The removal of cancerous tumors is a large peroentage of surgery today.
Difficulties arise when some of the tumor is located in a delicate area, the
tumor is too small to see, or some of the excised tumor cells are inadvertently
transplanted to a different location during surgery. With the accuracy o! the
laser, delicate surgery becomes more routine although ocrtan.ﬂy more time-
consuming. The use of & microscope and/or fiber-otpic c-blc'm conjunction
with the laser makes it easier to identify and destroy all the discased cells.

In a similar manner, brain and spinal cord surgery arc much safer aqd
cffective than was the case before the advent of laser surgery. Often tumors in
these arcas are inoperable due to the vital arcas involved. Lascrs arc muking
such surge ssible and successful. .

Surgeiy?vi;::in the human eye with lasers is also being widely exploited due
{0 the case of access through the eye’s own optical channel. One such surgery
is the posterior capsulotomy or tearing of the membrane on the back side of
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Fig. 4.5.11. The posterior capsulotomy.

Table 4.5.2
Laser type Applications

Argon Eye surgery
Brain surgery
Removal of birthmarks
Photocoagulation
Angioplasty
Photochemical treatments

ArF Eye surgery
Angioplasty

ArF excimer Radial keratomy

(eye surgery)

Carbon dioxide  Oviduct surgery
Brain surgery
Removal of precancerous
lesions
Spinal surgery
Cancer removal

Gold vapor Photochemical treatments

(Hpd)

He-Ne Doppler velocimeters
Trophic ulcer treatment
Holographs

Nitrogen Genetic engineering
DNA analysis

Nd: YAG Brain surgery
Spinal surgery
Photocoagulation
Cataract (cye) surgery

XeCl excimer Angioplasty
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Fig. 4.5.13. Future operating rooms. (From G.J. Jako, 1EEE Spectrum, March 1985.)
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the lens (the posterior capsule). This is done using an Nd : YAG laser pulse
of high intensity focused to a small spot size (10- 50 um) on the back of the
lens. The resulting high electric field (irradiance ~ 100° W/cm?) sparks and
ruptures the membrane (see Fig. 4.5.11). Another interesting eye surgery is the
radial keratomy used to correct nearsightedness and astigmatism. Simply
stated, the technique places small incisions on the cornea to alter its shape.
The laser which behaves best here is the pulsed ArF excimer laser (wavelength =
193 nm) using a pulse energy of 250 mJ and a pulse length of 14 ns. The
incisions in the cornea (which itself is only 600 um thick) can be made as small
as 20 um wide while the depth is limited by controlling the number of pulses
(which remove about 1 um every four pulses).

Thus, in conclusion, the versatility and benefits of laser medicine are
breaking ground in new areas of medicine and medical research. Also, laser
medicine is rewriting the standards of safety and accuracy over previous
medical procedures. Table 4.5.2 shows the more common lasers used in
medicine and their typical uses. Figures 4.5.12 and 4.5.13 show the form laser
medicine may take in the future.

4.6. Recent Advances

The technological advances in the field of photonics have becn explosive
recently, and many new breakthroughs are bound to happen in the near future.
Some of the interesting advances discussed briefly in this section are: optical
interconnection of integrated circuits, optical computing, and high-power
laser applications for the nuclear intercontinental ballistic missile (ICBM)
defense system, the so-called “Star War”. Unfortunately, discussion of these
topics in depth is beyond the scope of this book. However, it is felt by the
author that this section will encourage and entice young readers to read
further, and get a feeling of the excitement the frontiers of science and tech-
nology can provide. Some of the topics not discussed are phase conjuga-
tion, neural networks, associative memories and their implementation, femto-
second pulses (gencration and application), squeezed light, etc.

4.6.1. Optical Interconnections for Integrated Circuits

The parallelism inherent with optics and its many uses were discussed in
Section 4.2 in connection with optical matrix processors (OMPs). In this
section, we discuss the application of optics for the interconnection of different
logic elements, input-output, etc., for integrated circuits, especially gate-array
technology.

In digital circuits, the basic elements are the logic gates, hundreds and
thousands of them, identical in nature. The reason one integrated circuit (1C),
consisting of these gates, acts as a memory, rather than as a shift register, is
how these logic elements are interconnected. Thus it is possible to fabricate a
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large number of gates in a wafer, sometimes 50,000 in a single chip with many
chips in a wafer. However, these wafers are isolated—and are not conngcted
to one another. Depending on the need or the desire of the consumer, inter-
connections are made using metal interconnects by fabricating one, two, or
three layers with customized masks. This is the essence of the gate-array
technology, or customized IC as it is sometimes called. We note the following
important points:

(1) The major cost of gate-array technology in making custom ICs is in the
metal interconnect process. Thus, if a simpler process can be developed
for this part of the processing, enormous savings can be achicved.

(2) If in place of metal interconnects, which are fixed and rigid, some adapt-
ible interconnection is used, then it is conceivable to have the same IC
perform as different subsystems. For example, we think of time divis?on
multiplexing in an interconnect and thus in an IC. In this case, we th.mk
of the same chip used in a system being used as a controller for sometime
and switched as a memory other times.

For the optical interconnect, we nced a light source and detectors on the
chip itself, and the simplest example is the case of clock distribution in many
parts of the circuit. We think of connecting the clocks to different parts of the
chip by different ways, as shown in Fig. 4.6.1. In Fig. 4.6.1(a), the pulsed laser
or LED is connected by an optical fiber to the detectors in the chip. In another
case, we use integrated optical waveguides, and this might be the case for Fig.
4.6.1(b). A much simpler solution is shown in Fig. 4.6.1(c) where it i auumc.d
that no other optical interconnection is made. If another interconnection is
made, then we can use holographic lenses, as shown in Fig. 4.6.2. The clock
distribution is ideally suited, as the pulsed laser itself performs the job Pf the
clock.

For interchip data communication, we need both the source and the
detectors. If we use the hybrid GaAs and the silicon approach, then we have
a situation as is shown in Fig. 4.6.3. Again, a particular holographic lens
connects to a particular set of detectors; thus, by changing holograms, different
functions can be performed by the chip. A variation of this scheme is shown
in Fig. 4.6.4 where time multiplexing is possible. The modulators shown in the
figure can be acousto-optic or electro-optic as discussed in Section 442

One disadvantage in many of these schemes is that the IC is no longer
planar due to the holographic lenses. However, with proper packaging and
remembering that each chip might contain a million gates, we might be willing
to sacrifice the planar advantages.

4.6.2. Optical Computing

Since the first digital computer implementation, in the carly 1940s there has
been a revolution in the storage capacity, speed, size, and cost of digital
computers; however, the need for larger memory and faster speed is still with




|
!
i
[
.
]

440 1V, Applications

SOURCE

FIBERS

(a)

Fig. 4.6.1. (a) pistribution of the clock by means of fibers. (b) Distribution of the clock
by meuns of integrated optical waveguides. (c) Unfocused broadcast of the clock to
the chip. (From J.W. Goodman et al.,, Proc. I[EEE, 72, 1984.)

é SOURCE

Fig. 4.6.2. Focused optical distribution of the clock usi i
] using a holo, h i
clement. (From J.W. Goodman et al. Proc. [EEE, 72, 1984.) s raphic optica
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Fig. 4.63. Hybrid GaAs/Si approach to data communication. (From J.W. Goodman
et al,, Proc. IEEE, 72, 1984))

us. This need is more acute for a widc varicty of applications, requiring high-
speed processing of large amounts of data, such as two- or three-dimensional
images or signals. It appears that optical computing might be useful in
satisfying this need for the following reasons:

(1) The inherent paralielism of optics discussed in the other chapters of this
book. (One particular distinction in this case being the usc of a two-
dimensional array of information to be processed in one clock cyle, ruther
than process one bit of information in cach clock cycle.)

(2) The advantages of optical interconnection discussed before.

(3) Optical logic clements being intrinsically faster than semiconductor logic.

In the following we discuss these advantages in detail as some proposed and
implemented optical logic elements. ;

PROGRAMMABLE OPTICAL MASK

UNIFORM
LIGHT

OPTICAL wmeeunoe OEFLECTORS

AND MODULATORS

Fig. 4.6.4. Optical interconnections using integrated optical modulators. (From JW.

Goodman et al, Proc. IEEE, 72, 1984)
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The heart of any computer consists of many, muny logic elements. These
logic functions have been performed, historically, starting with mechanical
switches, vacuum tubes such as diodes, triodes, tetrodes, and pentodes, followed
by transistor switches culminating in today's integrated circuits where, for
example, we can store million bits of information and then retrieve them
through one packaged IC using a silicon chip of a size much less than 1 cm?,
It appears that, due to the interconnection problems discussed in the last
section, we are very near the end of the switching time, speed, power, and
energy achievable through semiconductor logic whose input and output are
electrical. The question is, if we use input and output optical logic, can we
perform the so-called optical logic with comparable or better characteristics
than in the semiconductor logic? The answer to this question is an emphatic
yes, although just as electrical logic started with vacuum tubes, optical logic
started with somewhat bulky devices, and only recently is it approaching
maturity. In the following we discuss briefly most of these devices and, for the
sake of completeness, ending again with semiconductor devices, but this time
optical logic.

In the optical community, an optical logic device is also known as a bistable
optical device. A bistable optical device exhibits two stutes of transmission,
and the device can be switched between these two states by a change in the
optical input level. Many optical logic functions can be performed using these
bistable optical devices.

Optical bistability can be demonstrated in many ways, as listed below, and
will be discussed in order.

(1) An intrinsic device.
A Fabry-Perot ctalon with a nonlincar medium such as a saturable
absorber, Kerr effect.

(2) A hybrid device.
Same as (1) with an external electrical feedback. Uses an electro-optic
effect.

(3) A nonlinear interface device.

(4) A waveguide nonlincar device.

(5) A self-focusing nonlinear device.

(6) A semiconductor nonlinearity due to exciton absorption.

(7) A two-dimensional semiconductor/multiple quantum well (MQW),

(8) A self-clectro-optic effect device (SEED).

(9) A semiconductor laser.

Although there are many ways we can achieve this bistability, one of the
simplest is shown in Fig. 4.6.5. It consists of a Fabry - Perot resonator contain-
ing an optical material which is nonlinear. This nonlinearity can be due to a
saturable absorption or nonlinear refractive index, which can cither decrease
or increase with light intensity. A typical light input -output relationship for
a bistable optical device is shown in Fig. 4.6.6. For a saturable absorber,
initially the power output is small and follows curve A. Note that for this case,

=y
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Fig. 46.5. An optical bistable device with & Fabry - Perot etalon.

the Fabry-Perot resonator is detuned slightly. However, at onc point near
the saturation level, the resonator is tuncd and the light output increases
dramatically. The resonator transmission characteristics will show the typical
hysteresis.

Similar arguments also hold true for the nonlinear refractive index due to
the Kerr effect. These are intrinsic devices, and in the carly stages they were
bulky and needed very large power levels to achicve bistability. High power
levels can be avoided using a hybrid system where external feedback is used,
as shown in Fig. 4.6.7; here the electro-optic effect is used to clunqe lhe
refractive index. The voltage applied to the electro-optic crystal, placed inside
the Fabry-Perot cavity, is obtained by first detecting a part of the output and
then amplifying it. This makes the cffective nonlinearity much larger than the
intrinsic nonlincarity. An integrated version of Fig. 4.6.7, using integrated
optics is shown in Fig. 4.6.8 with the experimental input-output charactetistics.
Small diclectric mirrors, bonded directly to the cleaved ends of the LiNbO,
substrate, form the cavity. Typical switching speeds obtained with this device
are ~ 50 ns with a switching energy of ~0.5 pJ.

Nonlinear interface devices usc an interface between the two diclectric
materials, one of which shows optical nonlinearity such as the Kerr effect. A
typical device configuration is shown in Fig. 4.6.9 where total internal reflec-

POWER OUT
e

POWER IN

Fig. 46.6. Input-output charactcristics showing bistability.




. N

444  1V. Applications
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Fig. 4.6.7. Hybrid bistable device using electronic feedback.

tion is used. A low-intensity light beam incident on the interface at an angie
less than the critical angle, is total internally reflected. However, there is an
cvanescent field, as discussed in Section 2.12, which causes the change in the
refractive index and in turn reduces the critical angle. This makes the evanescent
field larger and it thus has an effective positive feedback. This continues until
it switches, such that some light is transmitted as shown in the figure.

A waveguide nonlinear interface device is shown in Fig. 4.6.10, where if the
light is guided, then the output is larger, whereas, if the light is unguided, the
output is very small. If cither the core or the cladding of the waveguide is made
of a material with a nonlinear refractive index, then we have a device where,
beyond a critical intensity, switching takes place.

Self-focusing due to nonlinearity can also be used as a bistable device. A
simplc case is shown in Fig. 4.6.11 where the nonlincar medium is self-focusing
beyond a critical input power. Without self-focusing most of the output light
is blocked (shown by a solid line), whereas the self-focused light output is much
larger.

Semiconductors also provide optical nonlinearity. The best examples are
GaAs, CdS, and InSb. The nonlinear refractive index in GaAs and CdS is due
to exciton absorption. At a high intensity of proper radiation, the exciton
absorption saturates, resulting in a decrease in the absorption coeflicient and
a change in the refractive index. Unfortunately, due to a low-binding energy
of the excitons, they are mostly thermally ionized at room temperature. Thus
the optical nonlincarity can only be experimentally tested at a lower tempera-
ture of ~ 120 K. However, the binding energy of the excitons can be increased
significantly by two-dimensional semiconductor or multiple quantum wells.
If the clectrons are confined to a very thin layer, the thickness of layer being
of the order of a few de Broglic wavelengths, then the clectron motion becomes
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Fig. 4.68. Integrated hybrid bistable device: (u) basic configuration anq (b) expen'-
mental input-output characteristics. (From P.W. Smith, Bistable optical devices,
NATO ASI Series E, Applied Sciences, No. 79, 1984.)
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Fig. 4.6.10. A waveguide nonlincar interface device.

NONLINEAR MEDIUM

Fig. 4.6.11. A bistable device using self-focusing duc to nonlinearity.

quantized in one direction and thus becomes two dimensional. These layers
~20-50 A, are generally known as quantum wells and if many of them arc‘
Present, as in the case of GaAs-GaAlAs, they are known as multiple quantum
wells. These thin layers are generally grown by molecular beam epitaxy (MBE)
or n.lctal organic chemical vapor deposit (MOCVD). These two-dimensional
sgmnconductors have many other interesting and useful properties such as
hngh-cleglron mobility transistors (HEMT), better junction lasers, etc.
qu higher exciton binding energy in two-dimensional semiconductors we
obmn optical nonlinearity and thus bistability at room temperature. Two
particular experimental demonstrations discussed below are of importance
.ln the first case, a Fabry-Perot cavity is used with an MQW of totai
thickness 1 pm, using 63 alternating layers of GaAs and Gay 43Al, 3,As 0f 76
A and 81 A thick, respectively. The total cavity length is 125 um due to the
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Fig. 4.6.12. Detuning characteristics of the optical logic device using a Fabry - Perot
etalon and MQW. (From J.L. Jewell et al, Appl. Phys. Lett., 44, 1984)

presence of the buffer layers. The device can be used to perform logic functions
such as NOR, NAND, XOR, OR AND, and XOR, all optically. The basic
idea is that the medium nonlinearity relaxes in time, 14, which for a particular
casc is ~ 1 ns. If pulses of duration much shorter (~7 ps) than 1, arc used,
then the cavity can be detuned in the manner as shown in Fig. 4.6.12, depend-
ing on whether one or two pulses have passed through the system. Switching
energics less than 3 pJ has been achieved.

Pico-joule, sub-nanonsecond all-otpical switching has also been demon-
strated using the CdS etalon. The large optical nonlinearity in CdS is;due to
the sharp absorption resonance of the L, bound exciton which saturates at
very low intensities. Using a 13 um-thick CdS platelet in a Fabry - Perot cavity,
a switching energy of ~8 pJ has been demonstrated. The switching time is
expected to be very fast as the excitons decay radioactively in ~0.5 ns.

The second device, called a self-clectro-optic effect device (SEED), uses
electro-optic effects in MQW. The basic structure is shown in Fig. 4.6.13 and
it uses the property that the electric field shifts the exciton and the fundamental
absorption edge to longer wavelengths. Duc to MQW, this absorption shift
is very large, of the order of 1% at room temperature for an electric field of
~10% V/cm, without dissociating the excitons because of confinement. The
structure consists of a superlattice (SL) buffer and contact layers transparent
to the incident light. A hole is etched through the opaque GaAs substrate.
F,xpcl;imenu have been successfully performed with switching encrgies of ~4
(8 JF7) o

Similar to the SEED device, the device shown in Fig. 4.6.14 uses silicon
and its electro-optic effects. However, for this case, the intrinsic nonlinearity
is due to the generated concentration of electron hole pairs and thermal
cffects.
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Finally, we come to the discussion of using the junction laser as a switching
ficvnoe. Before we do that, let us consider the development of the transistor;
its use was mostly analog (as amplifiers and oscillators) and the push was for
more power, higher gain, lincarity, and dynamic range. Only later, was the
use of transistors as logic clements developed, where the push was towards
fgstcr-switching and lower-switching power. A similarity exists between tran-
sistors and p-n junction lasers. Note that the p-n junction laser consists of
un optical amplifier with a Fabry - Perot ctalon for feedback. Until now, the
push hus. bclen to obtain higher powers of a laser output for fiber-optic
communications or general light sources. However, as for the case of the
transistor, the light amplifier can be used to perform switching. This has

Ao=1.08 um

Fig. 4.6.14. A bistable device using generated carrier nonlinearity.

peen demonstratéu with vaious lasei awplifier., ..., Ga... . 085 . and
GalnAsP at 1.52 um. An interesting situation ariscs if we consider polarization
bistability. It is known that InGaAsP lasers, operating near a polarization
transition temperature, switch from a pure TMq, mode at low-injection
currents to a pure TEy mode at high-injection currents. Thus, switching
between these two stable modes can be caused by short current pulses, and
using these devices, high-speed optical logic functions and the operation of
flip-flops have been demonstrated.

It is of interest to consider some of the fundamental limits on switching
time and energy. For any nonreversible switching operation, for thermo-
dynamic considerations, 8 minimum cnergy of the order of KT (~4 x 107°
f} at room temperature) is needed; for quantum mechanical considerations, it
can be shown that a switching operation must dissipate at least h/t of the
encrgy, where h is the Planck constant. These and other limits are shown in
Fig. 4.6.15.
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Fig. 4.6.15. Switching power versus switching speed for different devices and some
fundamental limits. (From P.W. Smith, Bell. Sys. Tech. J., 61, 1982))
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4.6.3. Star War

Star War refers to the strategic defense system to be used as a shield or thwart
in a situation where a nuclear attack by intercontinental ballistic missiles
(ICBMs) may take place; it is also known as the Strategic Defense Initiative
(SDI). This system, if implemented, will be a massive, elaborate, and powerful
use of the laser by the military (note that there are also many other applica-
tions of lasers and optics by the military); some have already been mentioned,
such as laser isotope scparation for nuclear fuel, the laser guided bomb, use
in surveillance, etc. Of course, there are many others which we have not
claborated on in this book, i.c., laser radar.

The fundamental behind the Star War Shield is rather simple; the use of
powerful lasers to destroy a missile before it reaches its target. We already
know that very high-power lasers can be built using chemical pumping
(chemical lasers) or accelerators (free-electron lasers). Lasers can casily be
directed to intercept a missile, provided its whereabouts are known. We have
already discussed how a high-power laser can melt, and even evaporate, metals
and other materials. Thus, if high enough power is used, it is not difficult to
envisage how a laser beam can make a missile inoperative, either destroying
it or making the control system inoperable.

We might ask, Why laser? The answer is simple, laser light travels with the
speed of light. When a missile is launched, there are only a few minutes in
which the missile must be detected and destroyed. It is very difficult, if not
impossible, to use anything but laser light to perform this. A typical scenario
for how SDI works is shown in Fig. 4.6.16. Note that the detection, inter-
ception, and destruction of a missile all have to be done in space; thus. massive
space technology will also be involved in this system. It is important that
missiles are destroyed in the booster stage, so that the multiple warheads have

How SDI would work: a five minute process
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Fig. 4.6.16. A possible scenario for the functioning of STl
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Fig. 4.6.17. Artist's schematic of a ground-based free clectron laser defense system.

nou separated; this way all the warheads can be deslroyed‘in one shot. A'lsc.).
the velocity of the missile is minimal in the initial launching stage and it is
casy to detect, due to the presence of rocket exhausts, stfch as huge flames, etc.

The laser used to destroy or kill a missile can be either groupd-based or
space-based. A typical ground-based free-ciectron Iasef system is shown in
Fig. 4.6.17. Note that we need pin-point control of the mirrors, as well as good
high-power mirrors, so that the laser itself is not dgstroyed. The ground-based
luser generates an output beam potentially suﬂiqcnt to destroy tens of hun-
dreds of targets per second, and this beam is directed to 2 geosynchyonous
sateibite, 50,000 km above the carth; this satellite has relay mirrors which can
direct the lethal beam to the fighting mirror. The laser beam.' propagating
through the atmosphere, has to be compensated fqr by adaptive optics fqr
atmospheric distortions. One possible implementation of th.c relay mirror is
the use of many small mirrors acting in a phased-array fashion, which sends
the beum to the fighting mirror, which might be located 1000 km from Earth.
The fighting mirror is easily controlled in order to direct the beam to the target
to be destroyed. Many more satellites are needed for comxpand, cquol.
communication, and surveillance. The space-based system is very similar
except the laser itself is in space. Hydrogen and fluorine gases arc propo;ed
for this chemical laser which will get its pumping energy from ;hc combustion
of hydrogen and fuorine, very much like that of a rqcket engine.

Up unitil now we have mentioned only the potential of thu (_icfcme system.
However, many, many fundamental questions, as to its fmlbl!lly at a reason-
able cost, have not been answered. There are experts who belicve this system
to be definitely implementable, and thus a way out of the evefnual n.uclear
destruction of the earth. Other experts belicve that it is impossible tollmple-
ment and thus wastage of resources and the possibility of accelerating the
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'nuclear holocaust as some of these high powered lasers can also be turned
into offensive weapons.
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APPENDIX

Delta Function

Delta function, also known as Impulse function, is of great in.lport.ance to our
studies. Untortunately, a rigorous treatment of this function is quite _complcx,
requiring a familiarity with “generalized functions™ or “dnsmpuuon fung
tions.” In this section we concentrate mostly on some propertics and their

applications. .
pl;)elta function can be defined as a limiting process for the following

functions;

l 1 .
i 8(t) = Lt ——=e™"*" — Gaussian.
0 “ N

sin(¢/b) .

(i) ) = bl_-:; = sinc.

1 : .
5(t) = Lt — " — chirp. ‘
(iii) 0] L .

These three functions are shown in Fig. A.1. Figure f\.2 also shows a sequence
of constant area Gaussian functions where b is vane‘d.
The most important propertics of the delta function are

0 I " J08 ~ t0)dt = St

= J”m S)dlte — ) de.
(ii) olat) = l:”6(1).
i) £ o} = 50

u(t) in the step function,
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aberration function
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absorption loss, optical fiber 335
accelerator 290

acceptor 275

achromatic doublet 70
acousto-optic

Bragg 179

convolver 364
corrclator 364

deflector 336

devices 335

figure of merit 178
frequency shifter 343
interaction 175

matrix processor 383
modulator 335, 383
Raman-Nath 178

A/D converter 335

adder 377

amplification factor 193, 227,233
amplifier 190

amplitude modulator 350
anisotropic medium 166, 181, 183
aperture 33

aperture stop 33
apochromatic 70

argon ion laser 256
astigmatism 66
astronomical telescope 297

attenuation factor 193
autocorrelation 398
axicon 221

bandgap 275
bandwidth

spatial 113, 153

time 125

barrel distortion 68

beam expander

reflective 302

transmissive 302

Bessel function 94, 109, 117,177
binoculars 299

bistability, optical 442
blackbody 44 -
biackbody radiation 223 !
Bragg ungle

anisotropic 182

isotropic 180

Bragg diffraction 179
Brewster angle 163
brightness 239

Boltzmann distribution function 224,

228

broadening

Doppler 225
homogencous 225

candic 46

capsulotomy 436
carrier frequency 150
Cassegrain telescope 297
catheter, fiber-optic 435
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Caviry modes 115. 21,
cavity Q 246

channel waveguide 326
chemical laser 264
chiefray 38

chromatic dispersion 69, 337
circle of least confusion 66
cleaved coupled cavity 287
CO, laser 258
code-generator 361
coherence 131

length 133, 136

time 132

coherent receiver 342
coma 64
communication, fiber-optic 341
compound microscope 300
computer-aided design 313
computer generated hologram 406
contrast 143
convolution 91, 347, 359
convolution theorem 91
convolver 364

Cooke triplet 312

cornu spiral 121
correlation 347, 360
correlator

acousto-optic 364
space-integrating 362
time-integrating 362
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coupled cavity 285
coupler

directional 334

grating 328
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critical angle 7, 160
cross-correlation 405
crown glass 70
crystal optics 168
curvature of field 68
cut-off frequency 391
cutting, laser 425
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cylindrical wave 77

deflector

acousto-oplic 355
clectro-optic 353
magneto-optic 357
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delta function representation 459
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depiction  2/0

detector 124
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intensity 125
diagnostics, laser 429
diclectric constant 75
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diffraction 79

Bragg 179

far field 82

Fraunhofer 83,95

Fresnel 82, 106
diffraction grating 109
diffraction integral 80
diffusion length 279
diode laser 273
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dispersion 70
dispersion constants 70
distortion 68
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Doppler broadening 225
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Doppler velocimeter 431
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double refraction 168
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exact matrices 48
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exponential notation 2
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Fabry--Perot etalon 442
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Fabry Perot laser 192
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femto-second optical pulse 348
Fermi level 277

fiber-optic. See optical fiber
fiber-optic communication 341
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field of view 40

field stop 38

figure of merit 178

filter
matched 347
optical 160

spatial 392, 397, 403
finnesse 146, 197

flash lamp 267

flint glass 70
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Fourier—Bessel transform 94
Fourier integral 88
Fourier matrix 381
Fourier optics 87

Fourier transform 88, 106, 392
two-dimensional 93
free-electron laser 290
free spectral range 145
frequency 2

spatial 85, 392
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Fresnel equations 164
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Herschel telescope 298
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hole 273
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white light 156
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holographic display, medical 429
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mode converter 134
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numerical aperture 321
slab waveguide 319
intensity detection 125
interference 80, 133
Haidenger 139
multiple beam 141
two-beam 134, 136
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Mach - Zender 334
Micheison 139
scanning 147
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intrinsic semiconductor 275
IRASER 187
irradiance 43
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switch 358
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medical application 428
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clectro-optic 350
magneto-optic 157
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modulator, spatial light 366
molecular gas laser 258
monochromaticity 240
multimode laser 243
multimode optical fiber 325
multiplexing
hologram 155
multiplier 378

Nd:glass laser 268
Nd:YAG laser 267
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Newtonian telescope 297
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nitrogen laser 263
noise 129

numerical aperture 321

oil immersion 301
open cavity 192
aoperating room 437
oplic axis 164
optical bistability 443
optical computing 439
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chromatic dispersion 338
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group velocity 317
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multimode 325
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pulse compression 340
sell-phase modulation 338
single mode 3258
stepped index 323
optical fiber communication
341
optical filter 160
optical interconnection 438
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optical matrix processor 376
optical path difference 136
optical tunneling 160
optical waveguide 314
optimum power output 236
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oscillator 191
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p-njunction 276 6

p-type semiconductor 276
paraxial approximation 6
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perforating, laser 425
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phase modulator 352
phase transmission function 103, 107,
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photocoagulation 434
photodestruction 434
photodiode 125
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photographic film 149
photography 148
photomedicine 432
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photomultiplier 125
photon 181, 221
photonics  xvii
pinchushion distortion 68
pinhole camera 303
plane wave 75

Pockel coefficient 173, 183
Pockel's readout optical modulator

(PROM) 371

point source 15, 157, 217
polarization 168

circular 165
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linear 164, 183
polarizers 170
pondermotive wave 290
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inversion 227, 233
threshold 228, 235
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prism 69
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Nichol 170

Rochon 171
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prism deflector 354

prism refraction 69
programmable mask 366, 382
PROM 371

pulse compression 340
pump for laser 228, 230, 232
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entrance 35

exit 35

pupil function 388

Q-switch 246
quantum efficiency 229
quantum well 442
quasi-Fermi level 278

radiance 44
radiance, laser 239
radiant energy 41
density 41
radiant exitance 42
radiant intensity 43
radio 15§
radiometry 41
Raman Nath acousto-optic
interaction 178
ray |
ray tracing 21
ray velocity 165
Rayleigh criterion 113, 145
Rayleigh distance 206
Raylcigh interferometer 407
real image 21
real object 21
reconstruction, hologram
151

rectilinear propagation 1
reflection 4,171
reflection coefficient 141, 162
refraction 4
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resolution 145

resolving power 145
resonator 197

stable 198

unstable 198, 217

rib waveguide 326

ridge waveguide 326
robot vision 397
ROCHON prism 171
ruby laser 266

saturable absorber 242, 245
scattering loss 33§
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semiconductor 274
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diffusion length 279
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junction 276
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quasi-Fermi level 278
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sensor, fiber optic 430
shift theorem 91

shot noise 129
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signal processing 344

signal processor 346

signal to noisc ratio 131
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slab waveguide 319

SLM 366
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solid angle 43 !
space-integrating correlator 362
spatial filter 392
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spatial light modulator (SLM) 366
LIGHT-MOD 372
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magneto-optic 372
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spatial matched filter 347, 403
specific rotary power 184
spectral energy 42
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spectroscopy, laser 432
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spot width 206

spread of electromagnetic wave 76
square law 131

stability diagram 203

STAR war 450

stepped index fiber 323
stimulated emission 76
Strategic Defense Initiative 450
superachromat 70

surgery, laser 434

system matrix 24

TEA laser 261

tele-Gauss lens 308
telezoom lens 311
telephoto lens 306
telescope 296
astronomical 297
Cassegrain 297
Galilean 297

Georgian 297

Herschel 29X
Newtonian 297
telescopic system 29
Tessar lens 312

thermal light 238

thermal motion 225
thermal photon 238

thick film hologram 156
thin lens equation 18
third-order aberration 59
threshold population inversion 228
time-integrating correlator 362
total internal reflection 159
transducer, ultrasound 183
translation matrix 8
transmission coefficient 162
transmission function 80
amplitude 95,119
grating 109

hologram 151

lens 108

phase 117

transverse electro-optic modulator

transverse modes, laser 196, 212
tunneling 161

ultrasound 176
transducer 182
uniaxial medium 168

Van der Lugt filter 403
Verdet constant 184
vignetting 40

virtual image 21, 31
virtual object 21, 32
Voigt effect 184
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wave equation 75
wave front reconstruction 149
wave optics 74
waveguide
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wave momentum 181
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