"Библиотека Машиностроителя" www.lib-bkm.ru

ПРАКТИКА ЗАВОДОВ, ИНСТИТУТОВ, КБ

Исследование силы резания при высокоскоростном шлифовании

Д. С. Реченко

Силы резания при шлифовании являются результатом взаимодействия рабочей поверхности шлифовального круга с заготовкой. При этом силы резания, развиваемые отдельными зернами, снимающими микростружки, незначительны. Однако вследствие микрорезания большим количеством одновременно работающих зерен суммарные силы резания могут достигать значительных величин.

С повышением сил резания возрастают отжатия элементов технологической системы, увеличивается износ шлифовального круга и сокращается период его стойкости, а также повышается температура в зоне резания, увеличиваются микронеровности и сколы на лезвии затачиваемого инструмента и снижается точность деталей, обрабатываемых таким инструментом [1].

При шлифовании нормальная сила P_y всегда больше тангенциальной силы P_z , причем $P_y/P_z \approx$

 $\approx 1,0\div 3,0$ [2]. При заточке инструмента силы резания определяют качество лезвия, которое характеризуется остротой или радиусом ρ скругления режущей кромки (PK), а также наличием и размерами микросколов.

В экспериментах для измерения сил резания при высокоскоростном шлифовании использовали наклеенные на державку тензодатчики, сигнал с которых поступал на усилитель, а затем на осциллограф (рис. 1). Шлифование осуществляли алмазными головками типа AW AC4 100/80; тензодатчики тарировали с помощью аттестованных грузов.

По результатам исследований была составлена матрица эксперимента для определения силы P_z и радиуса ρ округления РК твердосплавной пластины ВК8 (см. таблицу).

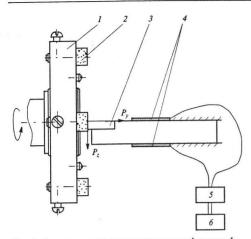
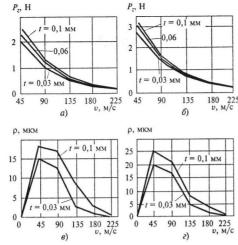


Рис. 1. Схема измерения сил резания при шлифовании: I — корпус шлифовального круга; 2 — шлифовальная головка; 3 — образец; 4 — тензодатчики; 5 — усилитель сигнала типа УТ4-1; 6 — осциллограф типа C1-68


№ опыта	t, MM	<i>s</i> _{пр} , м/мин	υ, м/с	P_z , H	р, мкм
1	0,03	3	45	2,0	15
2	0,10	3	45	2,5	18
3	0,03	9	45	2,7	20
4	0,10	9	45	3,2	25
5	0,03	3	230	0,13	0,1
6	0,10	3	230	0,6	0,7
7	0.03	9	230	0,18	0,7
8	0,10	9	230	0,2	1,0

Примечание. t — глубина резания; $s_{\rm np}$ — продольная подача; v — скорость резания.

Эксперимент состоял из восьми опытов. Для получения достоверных результатов каждый опыт повторяли 3 раза, после чего определяли средне-квадратичное значение.

Для наглядности полученных результатов построены графики зависимостей силы P_z резания и радиуса ρ скругления РК от скорости υ шлифования (рис. 2).

Из графиков видно, что увеличение скорости v вызывает обратно пропорциональное уменьшение силы резания P_z . Так, например, при шлифовании твердосплавной пластины (размерами 3×12 , 5×12 ,5 мм) при v=45 м/с; $s_{\rm np}=3$ м/мин; t=0,03 мм, сила $P_z=2$ Н, тогда как при увеличе-

Рис. 2. Зависимости силы P_z (a и b) и радиуса ρ скругления (b и c) от скорости v шлифования при $s_{n\rho}=3$ м/мин (a и b) и 9 м/мин (b и c)

нии скорости v до 225 м/с сила P_z снижается до 0,13 H, т. е. при увеличении скорости в 5 раз сила P_z снизилась в 15 раз (см. рис. 2, a).

Скорость v влияет также на радиус ρ : с ее увеличением значение ρ уменьшается, что особенно заметно при $v = 90 \div 135$ м/с (см. рис. 2, θ и ϵ).

Эмпирические зависимости получены по методике, представленной в работе [3]:

$$P_z = 2839t^{0.421}s_{\rm np}^{-0.051}v^{-1.498};$$

$$\rho = 210618t^{0.562}s_{\rm np}^{0.664}v^{-2.303};$$

Здесь t — в мм; $s_{\rm пp}$ — в м/мин; v — в м/с; P_z — в Н; ρ — в мкм.

Из этих зависимостей следует, что наибольшее влияние на составляющую P_z силы шлифования и радиус ρ скругления РК твердосплавного металлорежущего инструмента оказывает скорость шлифования v.

Список литературы

- 1. **Филимонов Л. Н.** Высокоскоростное шлифование Л.: Машиностроение, 1979. 248 с.
- 2. **Маслов Е. Н.** Теория шлифования материалов. М.: Машиностроение, 1974. 320.
- 3. **Кушнер В. С.** Решение задач механики и теплофизики с применением теории эксперимента и ABM: Учеб. пособие. Омск: ОмПИ, 1976. 80 с.

ISSN 0869-7566 CT//H. 2008. № 10