
TEAMFL
Y

Team-Fly®

C#
Professional Projects

This page intentionally left blank

Geetanjali Arora
Balasubramaniam

Aiaswamy
Nitin Pandey
WITH

C#
Professional Projects

Publisher:
Stacy L. Hiquet

Marketing Manager:
Heather Buzzingham

Managing Editor:
Sandy Doell

Editorial Assistant:
Margaret Bauer

Book Production Services:
Argosy

Cover Design:
Mike Tanamachi

©2002 by Premier Press, Inc.All rights reserved. No part of this book may
be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information stor-
age or retrieval system without written permission from Premier Press,
except for the inclusion of brief quotations in a review.

The Premier Press logo, top edge printing, and related trade dress
are trademarks of Premier Press, Inc. and may not be used with-
out written permission. All other trademarks are the property of
their respective owners.

Important: Premier Press cannot provide software support. Please contact the
appropriate sof tware manufacturer ’s technical support line or Web site for
assistance.

Premier Press and the author have attempted throughout this book to dis-
tinguish proprietary trademarks from descriptive terms by following the cap-
italization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from
sources believed to be reliable.However, because of the possibility of human
or mechanical error by our sources, Premier Press, or others, the Publisher
does not guarantee the accuracy, adequacy, or completeness of any informa-
tion and is not responsible for any errors or omissions or the results obtained
from use of such information. Readers should be particularly aware of the
fact that the Internet is an ever-changing entity. Some facts may have
changed since this book went to press.

ISBN: 1-931841-30-6

Library of Congress Catalog Card Number: 2001096998

Printed in the United States of America

02 03 04 05 06 RI 10 9 8 7 6 5 4 3 2 1

About NIIT

NIIT is a global IT solutions corporation with a presence in 38 countries. With its
unique business model and technology-creation capabilities, NIIT delivers software
and learning solutions to more than 1,000 clients across the world.

The success of NIIT’s training solutions lies in its unique approach to education.
NIIT’s Knowledge Solutions Business conceives, researches, and develops all of its
course material. A rigorous instructional design methodology is followed to create
engaging and compelling course content.

NIIT trains over 200,000 executives and learners each year in information technology
a reas using stand-up tra i n i n g, video-aided instru c t i on , c omputer-based tra i n i n g
(CBT), and Internet-based training (IBT). NIIT has been featured in the Guinness
Book of World Records for the largest number of learners trained in one year!

NIIT has developed over 10,000 hours of instructor-led training (ILT) and over 3,000
hours of Internet-based training and computer-based training. IDC ranked NIIT
among the Top 15 IT training providers globally for the year 2000. Through the inno-
vative use of training methods and its commitment to research and development, NIIT
has been in the forefront of computer education and training for the past 20 years.

Quality has been the prime focus at NIIT. Most of the processes are ISO-9001 certi-
fied. It was the 12th company in the world to be assessed at Level 5 of SEI-CMM.
NIIT’s Content (Learning Material) Development facility is the first in the world to
be assessed at this highest maturity level. NIIT has strategic partnerships with compa-
nies such as Computer Associates, IBM, Microsoft, Oracle, and Sun Microsystems.

This page intentionally left blank

About the Authors

Geetanjali Arora is an instructional designer who has worked with the NIIT for
almost two years.She has done several projects with the NIIT that include instructor-
led training (ILT),computer-based training (CBT),and Web-based training (WBT).
She has written on both technical and non-technical subjects. At the NIIT,
Geentanjali’s responsibilities include scripting, construction, planning, and schedul-
ing. She has also provided training on NexGen and Dreamweaver.

Balasubramaniam Aiaswamy is a technical trainer and writer, an instructional
designer, a subject matter expert (SME), and an ID reviewer with NIIT’s Knowledge
Solutions Business division, which develops and reviews instructor-led training (ILT)
products for various software and technologies.These technologies include Microsoft
Visual InterDev 6.0, Microsoft Site Server 3.0 Commerce Edition, Microsoft Win-
dows CE, Java 2 Micro Edition (J2ME), networking concepts, the installation and
administration of a Layer 3 network, and Web security. He is both an MCSD and an
MCP in Windows NT. Balasubramaniam has experience in teaching career programs
at NIIT’s Career Education Group division. He has taught various technical subject
areas including networking essentials, SQL Server 7.0, Microsoft Windows NT
Server 4.0, Microsoft Visual Basic 6.0, Microsoft Visual C++ 4.0, Windows 32 API
programming, HTML, Java, Unix, C, and C++. He has also set up and managed labs
for students and administered Novell 3.11 and UNIX (SCO)–based networks.

Nitin Pandey works with NIIT as a subject matter expert (SME) for learning con-
tent developed on Microsoft technologies. Nitin has been involved in the develop-
ment of WBTs and seminars for NIIT Online Ltd. and Microsoft. Nitin provides
technical support to the development teams, develops sample applications, and pro-
vides technical reviews of learning content.

This page intentionally left blank

Contents at a Glance

Introduction. xxxi

Part I Introduction to C# . 1

1 Overview of the .NET Framework 3
2 C# Basics . 17

Part II Handling Data . 41

3 Components of C# . 43
4 More about Components . 67
5 Attributes and Properties. 83
6 Threads . 93

Part III Professional Project 1:
Creating a Customer Maintenance Project. . 109

7 Project Case Study . 113
8 Windows Forms and Controls. 141
9 Validations and Exception Handling 175

10 Database Interaction Using ADO.NET 197
11 Crystal Reports. 239
12 Deploying a Windows Application 259

Part IV Professional Project 2: Creating the
Employee Records System (ERS) Project. . . 293

13 Project Case Study and Design . 297
14 Implementing the Business Logic 311

Part V Professional Project 3:
Creating a Creative Learning Project 329

15 Project Case Study and Design . 333
16 Implementing the Programming Logic 349
17 Interacting with a Microsoft Word

Document and Event Viewer . 365

Part VI Professional Project 4:
Creating an Airline Reservation Portal. 395

18 Project Case Study and Design . 399
19 Basics of ASP.NET Web Applications. 429
20 Designing the Application. 453
21 Implementing the Business Logic 483
22 Creating the Customer Transaction Portal. 521
23 Debugging and Testing the Application. 537
24 Administering the Application . 551
25 Securing the Application . 567
26 Deploying the Application . 581

Part VII Professional Project 5:
Creating a Web Portal for a Bookstore 593

27 Project Case Study and Design . 597
28 Exploring ASP.NET Web Services 619
29 Developing Web Services . 641
30 Developing Web Service Clients 667

Part VIII Professional Project 6:
Creating a Mobile Application 713

31 Project Case Study and Design . 717
32 Basics of Mobile Applications . 727
33 Implementing the Business Logic 763

Part IX Beyond the Labs . 793

34 Advanced C# Concepts. 795

Part X Appendixes . 829

A Unsafe Code. 831
B Introduction to Visual Basic .NET 843
C Visual Studio.NET Integrated

Development Environment . 877

Index . 897

x Contents at a Glance

TEAMFL
Y

Team-Fly®

Contents

Introduction. xxxi
Goal of the Book . xxxi
How to Use this Book . xxxii

PART I INTRODUCTION TO C# 1

Chapter 1 Overview of the .NET Framework 3

Introduction to the .NET Framework . 4
Common Language Runtime (CLR) . 6
Class Library . 10
Assembly . 10
Versioning . 14

An Overview of .NET Framework Base Classes 14
Exceptions . 15
Threads . 15
Delegates . 15

Summary . 16

Chapter 2 C# Basics . 17

Introduction to C# . 18
Variables . 18

Initializing Variables. 19
Variable Modifiers . 19
Variable Data Types . 20
Types of Variables . 20
Variable Scope . 22
Types of Data Type Casting . 22

Arrays . 24

Strings . 26
Initializing Strings . 26
Working with Strings. 26

Statements and Expressions. 28
Types of Statements. 28
Expressions . 36

Summary . 39

PART II HANDLING DATA . 41

Chapter 3 Components of C# . 43

Classes . 44
Declaring Classes. 44
Inheritance. 45
Constructors . 48
Destructors . 50

Methods . 51
Declaring a Method. 51
Calling a Method. 52
Passing Parameters to Methods . 52
Method Modifiers . 54
Overloading a Method. 55

Namespaces. 56
Declaring Namespaces . 57
Accessing Namespaces . 58
Aliases . 58

Structs . 59
Enumerations . 61
Interfaces . 62

xii Contents

Writing, Compiling, and Executing a C# Program. 64
Writing a C# Program . 64
Compiling a C# Program. 65
Executing a C# Program . 66

Summary . 66

Chapter 4 More about Components 67

Arrays . 68
Single-Dimensional Arrays. 68
Multidimensional Arrays . 68
Methods in Arrays . 70

Collections . 71
Creating Collections. 72
Working with Collections. 73

Indexers . 76
Boxing and Unboxing . 77
Preprocessor Directives . 79

#region and #endregion . 79
#define and #undef . 79
#if, #endif, #else, and #elif. 80
#error and #warning . 81

Summary . 82

Chapter 5 Attributes and Properties 83

Attributes . 84
Declaring Attributes. 84
Attribute Class. 85
Attribute Parameters . 86
Default Attributes . 86

Contents xiii

Properties . 88
Declaring Properties. 88
Accessors . 89
Types of Properties. 91

Summary . 91

Chapter 6 Threads . 93

Introduction to Threads. 94
Creating Threads . 95
Aborting Threads. 97
Joining Threads . 98
Suspending Threads. 99
Making Threads Sleep . 100
Thread States. 102
Thread Priorities . 102
Synchronization . 104

Summary. 106

PART III PROFESSIONAL PROJECT 1 109

Project 1 Creating a Customer Maintenance Project. . 111

Project 1 Overview . 112

Chapter 7 Project Case Study 113

Case Study . 114
Project Life Cycle . 115

Analyzing Requirements. 116
High-Level Design . 117
Primary and Foreign Keys . 123
Referential Integrity . 124
Normalization . 126

xiv Contents

Designing a Database. 127
Designing the Windows Forms
Used in Customer Maintenance Project 130
Low-Level Design . 132
Construction . 137
Integration and Testing . 138
User Acceptance Testing. 138
Implementation . 138
Operations and Maintenance . 138

Summary. 138

Chapter 8 Windows Forms and Controls. 141

Introduction to Visual Studio .NET Projects. 142
Creating a New Project . 143
Console Application . 145
Windows Applications . 147

Creating a Windows Application
for the Customer Maintenance Project. 164

Creating an Interface for Form1 . 165
Creating an Interface for WorkerForm 167
Creating an Interface for CustomerForm 168
Creating an Interface for ReportsForm 170
Creating an Interface for JobDetailsForm 172

Summary. 172

Chapter 9 Validations and Exception Handling 175

Performing Validations . 176
Identifying the Validation Mechanism 177
Using the ErrorProvider Control . 183

Handling Exceptions. 186
Using the try and catch Statements 187
Using the Debug and Trace Classes . 189

Contents xv

Debugging the Customer Management Application 190
Using the Debugging Features of Visual Studio .NET 190
Using the Task List . 193

Summary. 195

Chapter 10 Database Interaction Using ADO.NET 197

Connecting Windows Forms to a Data Source
Using ADO.NET . 198

Creating Form1 . 198
Connecting WorkerForm to the Workers Table 200
Connecting CustomerForm to the tblCustomer Table 211
Connecting the JobDetails Form
to the tblJobDetails Table . 223

Summary. 237

Chapter 11 Crystal Reports . 239

Introduction to the Crystal Reports Designer Tool. 240
Creating the Reports Form . 241

Creating Crystal Reports . 241
Creating the Windows Forms Viewer Control 248

Creating the Monthly Customer Visit Report 251
Creating the Monthly Balancing and Alignment Report 254
Creating the Monthly Worker Report . 256
Summary. 257

Chapter 12 Deploying a Windows Application. 259

Introduction to Deploying a Windows Application 260
Deployment Projects Available in Visual Studio .NET 261
Deployment Project Editors . 279

Summary. 291

xvi Contents

PART IV PROFESSIONAL PROJECT 2 293

Project 2 Creating the Employee
Records System (ERS) Project. 295

Project 2 Overview . 296

Chapter 13 Project Case Study and Design 297

Case Study . 298
Project Life Cycle . 298

Analyzing Requirements. 298
High-Level Design . 299
Low-Level Design . 308

Summary. 309

Chapter 14 Implementing the Business Logic. 311

Populating the TreeView Control . 312
Displaying Employee Codes in the TreeView Control 313
Event Handling . 316
Displaying Employee Details in the ListView Control 318

Summary. 327

PART V PROFESSIONAL PROJECT 3 329

Project 3 Creating a Creative Learning Project 331

Project 3 Overview . 332

Contents xvii

Chapter 15 Project Case Study and Design 333

Case Study . 334
Project Life Cycle . 335

Analyzing Requirements. 335
High-Level Design . 336
Low-Level Design . 345

Summary. 347

Chapter 16 Implementing the Programming Logic 349

Adding the Programming Logic to the Application 350
Adding Code to the Form Load() Method 351
Adding Code to the OK Button . 353
Adding Code to the Exit Button . 363

Summary. 364

Chapter 17 Interacting with a Microsoft Word
Document and Event Viewer 365

Interacting with a Microsoft Word Document. 366
The Created Event . 366
Adding Code to the Created Event. 367

Overview of XML. 371
The XmlReader Class. 372
The XmlWriter Class. 373
Displaying Data in an XML Document 373
Displaying an Error Message in the Event Log. 377
Displaying Event Entries from Event Viewer 383
Displaying Data from the Summary.xml
Document in a Message Box . 385

Summary. 394

xviii Contents

PART VI PROFESSIONAL PROJECT 4 395

Project 4 Creating an Airline Reservation Portal. 397

Project 4 Overview . 398

Chapter 18 Project Case Study and Design 399

Airline Profile . 400
Role of a Business Manager . 401
Role of a Network Administrator . 402
Role of a Line-of-Business Executive 402

Project Requirements. 403
Creation and Deletion of User Accounts. 403
Addition of Flight Details . 404
Reservations. 404
Cancellations . 405
Query of Status . 405
Confirmation of Tickets. 405
Creation of Reports . 406
Launch of Frequent Flier Programs 406
Summarizing the Tasks. 407

Project Design. 407
Database Design . 408
Web Forms Design. 415
Enabling Security with the Directory Structure. 425

Summary. 427

Chapter 19 Basics of ASP.NET Web Applications 429

Getting Started with ASP.NET. 430
Prerequisites for ASP.NET Applications. 431
New Features in ASP.NET. 431
Types of ASP.NET Applications . 433

Contents xix

Exploring ASP.NET Web Applications. 434
Introducing Web Forms . 434
Web Form Server Controls. 436

Configuring ASP.NET Applications . 442
Configuring Security for ASP.NET Applications 442
Deploying ASP.NET Applications . 443

Creating a Sample ASP.NET Application 443
Creating a New Project . 444
Adding Controls to the Project. 444
Coding the Application . 446

Summary. 452

Chapter 20 Designing the Application 453

Creating the Database Schema . 454
Creating Database Tables . 455
Managing Primary Keys and Relationships. 460
Viewing the Database Schema . 464

Designing Application Forms . 465
Standardizing the Interface of the Application 465
Common Forms in the Application 465
Forms for Network Administrators. 470
Forms for Business Managers . 473
Forms for Line-of-Business Executives. 478

Summary. 481

Chapter 21 Implementing the Business Logic. 483

Coding the Logon and Logoff Functionality 484
The Default.aspx Form. 484
The Logoff.aspx Form . 489

xx Contents

TEAMFL
Y

Team-Fly®

Coding the Forms for Network Administrators 490
The ManageUsers.aspx Form . 490
The ManageDatabases.aspx Form. 495
The ChangePassword.aspx Form . 498
Restricting Access to Web Forms . 498

Coding the Forms for Business Managers 500
The AddFl.aspx Form . 500
The RequestID.aspx Form . 503
The Reports.aspx Form . 504
The FreqFl.aspx Form . 506

Coding the Forms for LOB Executives 508
The CreateRes.aspx Form. 508
The CancelRes.aspx Form . 514
The QueryStat.aspx Form . 516
The ConfirmRes.aspx Form . 518

Summary. 519

Chapter 22 Creating the Customer Transaction Portal . . 521

Designing the Form . 522
The View New Flights Option. 525
The View Ticket Status Option . 526
The View Flight Status Option . 528
The Confirm Reservation Option. 529

Testing the Application . 533
Summary. 536

Contents xxi

Chapter 23 Debugging and Testing the Application. 537

Locating Errors in Programs . 538
Watch Window . 540
Locals Window . 540
Call Stack Window . 540
Autos Window. 541
Command Window . 541

Testing the Application . 542
Summary. 549

Chapter 24 Administering the Application 551

Managing the Databases . 552
Backing Up the SkyShark Airlines Databases 553
Exporting Data from Databases . 555
Examining Database Logs . 557
Scheduling Database Maintenance Tasks 558

Managing Internet Information Server 560
Configuring IIS Error Pages. 560
Managing Web Server Log Files . 563

Summary. 565

Chapter 25 Securing the Application 567

Security in ASP.NET Applications . 568
Authentication Mechanisms. 568
Securing a Web Site with IIS and ASP.NET 570

Enabling Authentication in SkyShark Airlines. 571
Configuring IIS Authentication . 571
Configuring Authentication in ASP.NET. 573
Securing SQL Server . 576

Summary. 578

xxii Contents

Chapter 26 Deploying the Application 581

Deployment Scenarios. 582
Deployment Editors. 584

Deploying the SkyShark Airlines Application 586
Creating a Deployment Project. 587
Adding the Output of SkySharkDeploy
to the Deployment Project . 589
Deploying the Project to a Web Server
on Another Computer . 591

Summary. 591

PART VII PROFESSIONAL PROJECT 5 593

Project 5 Creating a Web Portal for a Bookstore 595

Project 5 Overview . 596

Chapter 27 Project Case Study and Design 597

Organization Profile . 598
Project Requirements. 599

Querying for Information about All Books. 600
Querying for Information about Books Based on Criteria. . . 601
Ordering a Book on the Web Site. 602

Project Design. 602
Database Design . 603
Database Schema . 608
Web Forms Design. 611
Flowcharts for the Web Forms Modules. 616

Summary. 618

Contents xxiii

Chapter 28 Exploring ASP.NET Web Services 619

Introduction to ASP.NET Web Services 621
Web Service Architecture . 623
Working of a Web Service . 624

Technologies Used in Web Services . 625
XML in a Web Service. 626
WSDL in a Web Service . 626
SOAP in a Web Service . 627
UDDI in a Web Service. 628

Web Services in the .NET Framework 628
Creating a Simple Web Service in the .NET Framework 632

The Default Code Generated for a Web Service. 633
Creating a Web Method
in the SampleWebService Web Service. 635
Testing the SampleWebService Web Service. 638

Summary. 640

Chapter 29 Developing Web Services. 641

Creating a Web Service for Deepthoughts Publications 642
Creating the SearchAll() Web Method 645
Creating the SrchISBN() Web Method 647
Creating the AcceptDetails() Web Method 650
Creating the GenerateOrder() Web Method 653
Testing the Web Service. 662
Securing a Web Service . 664

Summary. 665

xxiv Contents

Chapter 30 Developing Web Service Clients. 667

Creating a Web Service Client Application
for Bookers Paradise . 668

Creating the Web Forms
for the Bookers Paradise Web Site . 668
Adding Code to the Web Forms. 680

Summary. 711

PART VIII PROFESSIONAL PROJECT 6 713

Project 6 Creating a Mobile Application 715

Project 6 Overview . 716

Chapter 31 Project Case Study and Design 717

Case Study . 718
Project Life Cycle . 719

Analyzing Requirements. 719
High-Level Design . 720
Low-Level Design . 723

Summary. 726

Chapter 32 Basics of Mobile Applications 727

Overview of Mobile Applications . 728
The Microsoft Mobile Internet Toolkit. 729
Overview of WAP . 732
The WAP Architecture . 733
Overview of WML . 735

Contents xxv

Creating a Simple Mobile Web Application
by Using the Mobile Internet Toolkit. 736

The Mobile Web Form . 737
The Design of the MobileTimeRetriever Application 739
Creating the Interface for the Mobile Web Forms. 751
Adding Code to the MobileTimeRetriever Application 754

Summary. 761

Chapter 33 Implementing the Business Logic. 763

Creating the Forms Required
for the MobileCallStatus Application . 764

The Default Code Generated by Visual Studio .NET
for a Mobile Application . 765
Creating the frmLogon Form . 767
Creating the frmSelectOption Form 769
Creating the frmPending Form. 771
Creating the frmUnattended Form . 772

Adding the Business Logic
to the MobileCallStatus Application . 774

Adding Code to the Submit Button
in the frmLogon Form . 775
Adding Code to the Query Button
in the frmSelectOption Form . 779
Adding Code to the Mark checked as complete
Button in the frmPending Form . 782
Adding Code to the Back Button
in the frmPending Form . 785
Adding Code to the Accept checked call(s) Button
in the frmUnattended Form . 786
Adding Code to the Back Button
in the frmUnattended Form . 788

Testing the MobileCallStatus Application in an Emulator 788
Summary. 791

xxvi Contents

PART IX BEYOND THE LABS 793

Chapter 34 Advanced C# Concepts 795

COM+ . 796
What Is COM? . 796
Windows DNA . 802
Microsoft Transaction Server (MTS) 804
COM+. 805
.NET Interoperability . 809
COM Interoperability . 810

Messaging. 818
Benefits of Message Queues. 819
Limitations . 819
Key Messaging Terms. 820
System.Messaging Namespace . 822

Summary. 826

PART X APPENDIXES . 829

Appendix A Unsafe Code . 831

Pointers. 832
Declaring Pointers . 834
Types of Code . 835
Implementing Pointers. 836
Using Pointers with Managed Code 837
Working with Pointers . 837
Compiling Unsafe Code. 840

Summary. 841

Appendix B Introduction to Visual Basic .NET. 843

Introduction to the Languages of Visual Studio .NET. 844
Visual C# .NET. 845

Contents xxvii

Visual Basic .NET . 845
Visual C++ .NET. 845

Overview of Visual Basic .NET. 846
Features of an Object-Oriented Programming Language 849

Abstraction . 849
Encapsulation. 850
Inheritance. 850
Polymorphism . 851

Components of Visual Basic .NET . 852
Variables . 852
Constants. 857
Operators. 857
Arrays . 858
Collections. 861
Procedures . 862
Arguments. 864
Functions. 864

Creating a Simple Visual C# .NET Windows Application. 865
Creating a Simple Application in Visual Basic .NET 868

Adding Code to the Submit Button 872
Adding Code to the Exit Button . 873

Summary. 875

Appendix C Visual Studio .NET Integrated
Development Environment 877

Introduction to Visual Studio .NET IDE 878

xxviii Contents

Menu Bar. 879
Toolbars. 880
Visual Studio .NET IDE Windows 882
Toolbox . 888
The Task List Window . 890
Managing Windows. 891

Customizing Visual Studio .NET IDE 892
The Options Dialog Box . 892
The Customize Dialog Box . 894

Summary. 895

Index . 897

Contents xxix

This page intentionally left blank

TEAMFL
Y

Team-Fly®

Introduction

This book provides readers with the knowledge of Visual C# concepts. In addi-
tion to the concepts explained in the chapters, the book provides readers with sev-
eral projects that enable them to create Windows applications, Web services, Web
applications, and mobile Web applications.The book aims for providing the read-
ers with extensive knowledge of C# so that they are able to develop live projects
using C#. The book is aimed at readers with a basic knowledge of programming.

Goal of the Book
This book includes overview sections that contain chapters covering the basic
concepts of C#. These chapters enable readers to refresh basic programming con-
cepts and understand how these concepts can be applied in C#.

Using the concepts covered in the overview sections, several professional projects
have been created in the Professional Projects section. These projects provide
readers a hands-on approach to learning Visual C#. The professional projects
form a major part of the book, covering both simple and complex concepts of the
language. Each professional project focuses on a specific C# concept and includes
the case study for the project. The case study of the project gives the readers an
idea of the real-life situations where these projects can be applied.

In creating the projects, the simple-to-complex approach has been followed. The
book starts with creating simple Windows applications and moves on to creating
Web applications, Web services, and finally mobile Web applications.

In addition to the overview and the Professional Projects sections, the book
includes the Beyond the Labs and Appendixes section.The Beyond the Labs sec-
tion includes a chapter on the advanced C# concepts that have not been covered
in the earlier sections. This section introduces the concepts of messaging and
COM+. Readers can take a step forward towards understanding these concepts in
detail and applying them to their applications. The Appendixes section includes
appendixes that act as a quick reference for C#.

xxxii Introduction

How to Use this Book
This book has been organized to facilitate a better grasp of content covered in the
book. The various conventions used in the book include the following:

◆ Analysis. The book incorporates an analysis of code, explaining what it
does and why, line by line.

◆ Tips. Tips have been used to provide special advice or unusual shortcuts
with the software.

◆ Notes. Notes give additional information that may be of interest to the
reader, but is not essential to performing the task at hand.

◆ Cautions. Cautions are used to warn users of possible disastrous results
if they perform a task incorrectly.

◆ New term definitions. All new terms have been italicized and then
defined as a part of the text.

PART II n t roduction to C#

This page intentionally left blank

Chapter 1
Overview of the
.NET Framework

Microsoft has released the Visual C# language and its framework—called the
.NET Framework—with the aim of providing programmers with complete

support for developing applications. This chapter introduces you to the .NET
Framework and its components. These components include the CLR (common
language runtime) and the .NET base class library. In addition, this chapter intro-
duces you to CTS (common type system), CLS (common language specification),
garbage collector, and assembly. Subsequently, the chapter details some of the base
classes of C#, such as Delegate, Exception, and Thread, included in the .NET
Framework.

Introduction to the .NET Framework
The .NET Framework is a new API (application programming interface) that helps
programmers to write applications for the Windows platform. In addition, .NET
enables you to write programs or applications for a distributed environment. To
do so, .NET helps you to create Web services and Web applications. You will learn
about Web services and Web applications later in this chapter.

The .NET Framework not only helps you write new programs, but also provides
you with the ability to improve the existing programs. The .NET Framework is
well designed for communicating with existing COM (Component Object Model)
components, making the applications written in .NET languages backward-
compatible with existing programs.

The .NET Framework provides a complete development framework. The .NET
Framework helps you write complex applications by providing you with prede-
fined classes and methods in the .NET base class library and also manages the
execution of the applications that you write.

.NET provides you with a library of classes, which contains several base classes
called .NET base classes. These classes, in turn, define several functions that you
can use to write your applications. In addition,.NET provides the .NET Runtime
environment called the CLR to execute the code written for the Windows plat-
form. You will learn about the .NET class library and the .NET Runtime envi-
ronment in detail later in this chapter.

4 Part I INTRODUCTION TO C#

.NET offers an application development environment called Visual Studio .NET
that consists of several programming languages, such as Visual Basic .NET, Visual
C#, Visual FoxPro, and Visual C++ .NET. These programming languages com-
bine the features of the existing languages with several new features to provide a
powerful development framework. Following are some of the features of the
.NET Framework.

◆ Interoperability with other environments. The need for a new develop-
ment environment was primarily because the applications developed in
existing environments were not platform-independent. For example,
applications that you develop for the Windows platform are not compat-
ible with the applications designed for the UNIX environment. With the
evolution of the .NET Framework, you can develop applications that
can run on the Internet, making them accessible across various plat-
forms. These applications are called Web applications and are fully sup-
ported by the .NET Framework.

Interoperability across environments, which is the strongest feature of
.NET applications, is a result of .NET’s support for MSIL (Microsoft
intermediate language). At the time of compilation, all the managed code
written for the .NET platform is converted to MSIL, which is a set of
CPU-independent instructions. When you run the code written for the
Windows platform in any other environment, for example UNIX, the
compiler compiles the MSIL code to one that UNIX understands,
enabling the application to run.

◆ Support for developing language-independent applications. In addi-
tion to developing applications that can interoperate with those in
a different environment, you can develop applications that are language-
independent. Visual Studio .NET provides a common development
environment for all languages in the .NET series. This implies that
if you develop an application by using any language of the .NET
family, the code can be easily translated and used by any other .NET
language. For example, a Visual C++ .NET application can be easily
converted to a Visual Basic .NET or Visual C# application, and likewise
the opposite.

◆ Support for OOPs (object-oriented programming). OOPs is not a new
concept for C++ programmers. Code in a OOP-based language is writ-
ten using classes and objects. This not only helps you to write code eas-
ily, but also helps reuse your code. As discussed earlier, .NET has a

O V E RVIEW OF THE .NET FRAMEWORK Chapter 1 5

library of classes that contains methods that you can use to develop your
applications. In addition, .NET also supports inheritance, which means
that you can derive new classes from existing or base classes, and thus
make the base class methods available to the new classes.

◆ Support for Web applications. Creating Web pages using scripting lan-
guages such as ASP (Active Server Pages) has not been an easy task for
programmers worldwide. Therefore, to make coding simpler for the pro-
grammers, .NET provides the ASP.NET technology. The applications
that use the ASP.NET technology to create Web pages are called Web
applications.

Using ASP.NET, you can create new ASP.NET pages or convert existing
ASP pages to ASP.NET pages. ASP.NET also enables you to add high-
level functionality to your Web pages by allowing you to create pages in
any of the .NET programming languages. For example, using ASP.NET,
you can create dynamic Web pages that allow you to access data from an
underlying database.

◆ Support for Web services. .NET helps you to create Web services that
you can use to create applications for different platforms that access data
through the Internet. To do so, the methods of an instance of a class are
called across the Internet and can then be used by applications running
on various platforms. In addition, Web services help you to access the
functionality of a remote server, such as calling a method from a remote
server, creating an instance of a class on a remote server, and performing
operations on the remote server. Web services use HTTP, which simpli-
fies your task of accessing a remote server. HTTP helps in transferring
messages written using XML between client and server.

As you can see, .NET is set to change the style of programming. The components
of .NET that make it a user-friendly development environment are discussed in
the following sections.

Common Language Runtime (CLR)
Among the most important components of .NET is the .NET Runtime, com-
monly called the CLR. As the name suggests, the CLR is a common run-time

6 Part I INTRODUCTION TO C#

environment for the code written in .NET languages.The code in .NET is man-
aged by the CLR and is, therefore, called managed code. Managed code contains
the information about the code, such as the classes, methods, and variables
defined in the code. This information contained in managed code is called meta-
data. The CLR uses metadata to provide safe execution of the program code.

In addition to executing code, the CLR manages memory and threads and helps
in the security and interoperability of the code with other languages. Besides pro-
viding safe execution of the program, managed code aims at targeting CLR ser-
vices.These CLR services include locating and loading classes and interoperating
with the existing DLL (Dynamic Link Library) code and COM objects.

The CLR has also enabled programmers to achieve interoperability across appli-
cations written in any of the .NET languages. Because the CLR is the common
runtime environment for all .NET applications, all the code in .NET is converted
to MSIL and is executed in a similar fashion. As discussed earlier, this code is
called managed code. Managed code in .NET is developed using the CTS or
CLS classes. The following section discusses CLS and CTS in detail.

Common Type System (CTS)
As discussed earlier, .NET aims at providing interoperability between applica-
tions. To create interoperable applications, you need a set of standard data types
that would be used across applications. In addition, you require a set of guidelines
to create user-defined classes and objects for the .NET Framework. These stan-
dard data types and the set of guidelines are contained in CTS. To ensure inter-
operability across applications, CTS includes only those data types and features
that are compatible across languages.

C onsider an example of an applica t i on of which a part is created using C++. Su b-
s e q u e n t ly, to provide a visual interf a c e, you need to re c reate the entire applica t i on
in Visual Basic. This means that you need to re c reate all the classes that you have
used in the C++ applica t i on . This is because C++ and Visual Basic are not inter-
o p e ra b l e . The CTS fe a t u re for the .NET Fra m ew o rk simplifies such tedious tasks.
If you create a class in any of the languages in the .NET Fra m ew o rk , you can use
the same class in another language that is supported by the .NET Fra m ew o rk .
Fi g u re 1-1 displays the language intero p e ra b i l i ty fe a t u re of the .NET Fra m ew o rk .

O V E RVIEW OF THE .NET FRAMEWORK Chapter 1 7

By now, you know that interoperability provided by CTS is a desired feature of all
programmers. Following are some of the benefits of the interoperability offered by
CTS.

◆ Inherit a class from a class you created in another language.

◆ Create an object of a class created in another language. You can also
access the methods of the object that you have created.

◆ Pass an object or a reference of an object as a parameter to the methods
of the class that you have written in another language.

◆ Debug an application that contains the objects of classes written in dif-
ferent languages. The debugger of the .NET Framework also enables
you to switch between source code of the applications you have written
in different .NET languages.

Common Language Specification (CLS)
In addition to CTS, another feature that ensures language interoperability in the
.NET Framework is CLS. CLS is defined as a set of rules that a .NET language
should follow to allow you to create applications that are interoperable with other
languages. However, to achieve interoperability across languages, you can only use
objects with features listed in the CLS. These features are called CLS-compliant
features.

For example, C# supports u i n t 3 2, w h i ch is a 32-bit unsigned i n t e g e r data type that
is not CLS-com p l i a n t . The u i n t 3 2 data type is not supported by Visual Basic

8 Part I INTRODUCTION TO C#

FIGURE 1-1 Language interoperability feature of the .NET Framework

TEAMFL
Y

Team-Fly®

. N ET. If you use the u i n t 3 2 data type in a C# cl a s s , the class might not be inter-
o p e rable with Visual Basic .NET applica t i on s .O n ly a CLS-compliant code is fully
i n t e ro p e rable across languages. Although you can use the non-CLS fe a t u re in a
. N ET language cl a s s , the class might not be available to other .NET languages.

CLS works closely with CTS and MSIL to ensure language interoperability. You
can also call CLS as a subset of CTS and MSIL, because CLS does not include
all the features of CTS and MSIL. A compiler might not support some of the fea-
tures of CTS and MSIL and still be CLS-compliant. Following are some of the
features of CLS:

◆ Global methods and variables are not allowed in a CLS-compliant
language.

◆ Some data types, such as unsigned data types, are not allowed in a CLS-
compliant language.

◆ Unique names should be used in a CLS-compliant language. Even if the
language is case-sensitive, you must use distinct names for different vari-
ables. Languages that are case-insensitive should be able to differentiate
between the names.

◆ Any exception that you want to handle must be derived from the base
class Exception.

◆ Pointers are not supported by a CLS-compliant language.

Garbage Collector
Consider a situation in which you write extensive code for an application, such as
that for an airline reservation system. In the application, you define a large num-
ber of variables of different data types, but you do not remove the variables from
the system memory. In such a case, variables that are not required occupy mem-
ory space, resulting in reduced application performance to the extent that the
application might even stop running.

The garbage collection feature of CLR enables automatic management of system
memory. If a variable is not referenced for a long period of time by any applica-
tion, the garbage collector automatically releases the memory assigned to the vari-
able. This memory clean-up process ensures that there is no unnecessary wastage
of system memory and, therefore, prevents memory leakage from the application.

In .NET, the CLR handles the process of garbage collection. To understand the
garbage collection system, first look at the mechanism of allocating memory to an

O V E RVIEW OF THE .NET FRAMEWORK Chapter 1 9

application. When you create an application, some memory space is allocated to
it.Therefore, all the variables, classes, objects,and other resources that you declare
in the application are added to this memory space.This process is called heap allo-
cation to an application. When you go on adding data to this heap, there comes a
time when the memory allocated to your application becomes full and you cannot
add more data to it. This is the time when the garbage collector becomes active.

The garbage collector scans the entire heap and deallocates memory to resources
that are no longer in use, thereby creating free spaces in the heap. You can now
add more objects to the memory.

Class Library
As discussed earl i e r, . N ET provides you with seve ral base cl a s s e s . These base
classes are available as a libra ry of classes ca lled the .NET base class libra ry, w h i ch
is an API similar to MFCs (M i c rosoft Foundation Classes) used with Visual C++ 6.0.

In addition to the base classes, the class library includes interfaces, value types,
enumerations, and methods that allow you to perform a wide variety of tasks to
make programming easier. Further, the classes contained in the .NET class library
have a user-friendly name. This helps you to easily identify the classes that you
need to use in your program. For example, if you need to create a thread, you use
the Thread class. Similarly, to create an exception, you use the Exception class. You
will learn about these classes later in this chapter.

A class library provides classes that help you create interoperable applications.
This implies that the classes defined in the class library can be used to create a
Visual C++ .NET, Visual Basic .NET, or C# application. In addition, the meth-
ods defined in the classes can also be used by any other .NET programming
language.

Assembly
An assembly is a logical structure that contains complied code for the .NET
Framework. An assembly can be stored in one file or multiple files and can be .dll
or .exe files.You may also include files using COM objects, resource files, or meta-
data in an assembly. As discussed earlier, metadata stores information about man-
aged code in .NET. Similarly, metadata in an assembly contains information
about the assembly. Therefore, assemblies are self-describing.

10 Part I INTRODUCTION TO C#

Before developing applications for the .NET platform, programmers used to cre-
ate applications by using DLLs. Assemblies offer you several advantages over .dll
files. Assemblies contain types, resources, and metadata. Whatever resources you
might require for your application, you can simply include them in the assembly.
For example, you may include the namespaces containing the classes that you
require for your application. This makes developing an application easier for you.

In addition, while working with assemblies, you need not worry about registering
your assembly and managing and versioning of your application. Registering your
application with the operating system is as simple as copying assembly files to
your application directory.

Another important advantage of using assemblies is that they can be either shared
or private. The following section will discuss shared and private assemblies in
detail.

Private Assembly
As the name suggests, a private assembly is available only to the application for
which you create it. When you create a private assembly, you need to provide the
assembly along with the executable application. You create a private assembly
when you do not need the assembly for another application. For example, if you
create an assembly for a skills inventory system of the employees of an organiza-
tion, you might not require the assembly for another application, such as the hard-
ware inventory system of the organization.

Private assemblies offer you several advantages, such as:

◆ Registering the assembly. You need not register your assembly. To use a
private assembly, you only need to copy it to the directory or subdirec-
tory of your application.

◆ Securing the application. A private assembly makes your application
safe to use because no other application can access the resources of the
private assembly. This implies that no other application can make
changes to the private assembly, giving the application full control over
the assembly. You do not require security permissions for a private
assembly, as these permissions are contained in the application’s
directory.

O V E RVIEW OF THE .NET FRAMEWORK Chapter 1 11

◆ Applying naming conventions to the resources. Because the resources
in the private assembly are only accessible to your application, you need
not worry about the naming convention of these resources. Even if two
namespaces in different private assemblies have the same name, it does
not affect the performance of any of the application.

Shared Assembly
Consider a situation in which you need to create an application for different
processes of the HR system, such as payroll generation, leave processing, and
employee appraisal system. All these processes need to use the Employee class. In
such a scenario, it is preferable to reuse the same class in all the listed systems
instead of creating a class for each application. Therefore, you can create an
assembly that you can use in multiple applications. Such an assembly is called a
shared assembly. You can also use a shared assembly in all .NET languages if the
assembly is created according to the CLS standards discussed earlier.

Multiple applica t i ons use shared assemblies; t h e re f o re, the assemblies cannot be
s t o red with a specific applica t i on . Sh a red assemblies are stored in the assembly
ca ch e, w h i ch is a special dire c t o ry in the file sys t e m . To store a shared assembly in
the assembly ca ch e, you can use .NET utilities, s u ch as G a c u t i l . e x e and R e g a s m . e x e.

Working with shared assemblies is not as simple as working with private assem-
blies. Because the resources in the shared assembly can be accessed across appli-
cations, you need to be careful with the versioning and naming convention of
these resources. Shared assemblies are given a strong name, which is a unique name
that applications need to specify to access the shared assembly. However, version-
ing problems can be solved by accessing the resources with the correct version
number.

The following features make assembly an important component of .NET
applications:

◆ Self-describing

◆ Side-by-side

◆ Version dependency

◆ Application domain

◆ Zero-impact installation

These features are discussed in detail in the following subsections.

12 Part I INTRODUCTION TO C#

Self-Describing
An assembly is self-describing because it consists of metadata that stores infor-
mation about the assembly, such as the data type of the variables and the meth-
ods declared in the assembly. This implies that you need not register an assembly
with the registry in the operating system.

Side-by-Side
The side-by-side feature of an assembly enables you to install multiple versions of
the same assembly in an application. Consider a situation in which you need to
work with an application for the airline reservation system. The airline company
needs to coordinate with different locations of the airline worldwide.

In this case, you need to create and refer to the two versions of the assembly at a
time.The side-by-side feature of an assembly enables you to use both versions of
the assembly in the same application without resulting in any conflict in the
application.

Version Dependency
An assembly manifest is used to maintain versions of the resources in an assembly.
The manifest is a part of the assembly that contains metadata. When you refer an
assembly from an application, the version of the referenced assembly is stored in
the manifest of the application. This enables you to identify the version number
of a referenced assembly that you have used during application development, thus
taking care of the versioning problems of the assembly.

Application Domain
The application domain feature of an assembly enables you to execute multiple
applications that are independent of each other. These applications are executed
as a part of the same process. Because each application is independent of the
other, any error in one application does not affect other applications that are a part
of the same process.

Zero-Impact Installation
As discussed earl i e r, to install an assembly, you do not need to register the assem-
b ly with the operating sys t e m . You can simply use c o p y or x c o p y c ommands to
i n s t a ll an assembly. This is ca lled the ze ro-impact install a t i on fe a t u re of assemblies.

O V E RVIEW OF THE .NET FRAMEWORK Chapter 1 13

Versioning
A well-known fact about the software industry is the regular change in the
requirements of users. In such a dynamic scenario, new and improved versions of
applications need to be developed. At numerous instances, when you upgrade an
application, it may result in errors in the existing application. This can happen
because the component that you upgrade might not be compatible with the ear-
lier versions of the application. Problems in maintaining versions may also lead to
problems in maintaining and debugging an application. An assembly includes fea-
tures such as side-by-side and version dependency, which enable you to install
multiple versions of the same assembly simultaneously.

You looked at the components of the .NET Framework, class library being one of
them. Now look at some of the .NET base classes contained in the class library.

An Overview of .NET Framework
Base Classes

As discussed earlier, .NET provides you with several predefined base classes in the
.NET class library. These classes contain methods that help you to create appli-

14 Part I INTRODUCTION TO C#

Every version of an assembly has the following four parts:

<Application name> <Major version>.<Minor version>.<Build>.<Revision>

Here, Major version is the main version number of the application, Minor version is
a part of the version of the application, and Build and Revision numbers are gener-
ally based on the system date. If you specify “*” in place of Build and Revision, they
are automatically generated based on the system date. Build is the number of days
since 01/01/00, and Revision is the number of seconds since midnight, based on the
system time.

For example, if the version name of an application is ABC 1.2.90.2670, then ABC is
the application name. The number 1 refers to the Major version, 2 is the Minor ver-
sion, and 90 is the Build. The Build value of 90 refers to the 90th day after 01/01/00,
and 2670 is the number of seconds since the midnight of the 90th day after 01/01/00.

NOTE

cations easily. Working with these classes is simple because of their user-friendly
names.

The .NET class library consists of numerous base classes. However, in this chap-
ter, you will be introduced to some of the most frequently used classes. You will
learn more about these classes in the subsequent chapters.

Exceptions
Just as in C++, the .NET Framework is designed to handle exceptions. An excep-
tion is the erroneous execution of an application that results in an unpredicted
output. When an exception is generated in a .NET application, an object of the
Exception class, a .NET base class, is thrown. This object contains information
about the error that is generated and the way that the .NET Framework handles
the error. For example, the object might contain information about the message
to be displayed when the compiler encounters an error or the details of the area
within the code where the error was detected.

You can handle exceptions in the .NET Framework by using try{}, catch{}, and
finally{} statements.These statements are similar to the statements that you use
in C++ for handling exceptions.

Threads
A thread is single executable sequence of code. It is good practice to execute dif-
ferent sections of the application code, which are independent and parallel to each
other. You can execute the code in sections by creating threads for each section
and executing them simultaneously. For example, until an application prints data
on a printer, you can use another thread to read from a file.This process is known
as multithreading. To use the concept of multithreading in your application, you
need to derive your class from the Thread class, which is another .NET base class.

Delegates
Delegate is yet another type of special class that consists only of method defini-
tions. Delegates are objects that allow you to pass methods as parameters to
another method. Just as with a class, you need to instantiate a delegate. The
instance of the delegate is created from the Delegate class of the .NET base class
library.

O V E RVIEW OF THE .NET FRAMEWORK Chapter 1 15

In C#, events are special types of delegates that are assigned to trap an event. Any
activity performed by a system is known as an event. For example, when you press
a key or move the mouse pointer, an event is generated. To create an event-driven
application, you need to trap the events generated by the system and perform the
necessary action. For example, you need to trap the action following a key press or
a click of a mouse. To do this, C# provides you with the Event delegate.

Summary
In this chapter, you were introduced to the .NET Framework.The .NET Frame-
work is a new API provided by Microsoft to help programmers develop applica-
tions for the distributed environment. In addition, .NET enables you to write
applications for the Windows platform. Next, you learned about some of the com-
ponents of the .NET Framework that make it a user-friendly development envi-
ronment. These components include the CLR and the .NET class library.

The CLR is the run-time environment for the code written in .NET languages.
The CLR includes CLS and CTS, which help you to achieve interoperability of
the applications created for the .NET Framework. CTS is a set of guidelines and
standard data types that you can use to create user-defined classes and objects for
the .NET Framework. CLS is defined as a set of rules that a .NET language
should follow to create applications that are interoperable with other languages.

In this chapter, you also learned about a class library. Visual Studio .NET is a
development environment that provides you with several base classes containing
methods. These base classes are contained in a library of classes called the .NET
base class library, which is an API. Finally, you learned about some of the base
classes in the class library, such as Exception, Thread, and Delegate.

16 Part I INTRODUCTION TO C#

Chapter 2
C# Basics

In this chapter, you will learn about the basics of C#. This chapter will discuss
variables and data type casting. You will also learn about arrays and strings

used in C#. Finally, you will be introduced to the statements and expressions used
in C#.

Introduction to C#
C# is an advanced version of C and C++ and is designed specially for the .NET
environment. C#, pronounced C sharp, is a new object-oriented language used by
programmers worldwide to develop applications that run on the .NET platform.
However, C# is not a part of the .NET environment. C# is a part of Microsoft
Visual Studio .NET 7.0.The other languages included in the Visual Studio pack-
age are Visual C++ and Visual Basic. Visual Studio 7.0 also includes scripting lan-
guages, such as VBScript and JScript. You can use all these languages to create
applications that run in the .NET environment. C# is a significant step in the
evolution of programming languages, and C# is an ideal solution for high-level
business applications. Using C#, you can create a wide range of projects that can
be used to build a complete client/server application.

C# builds on the features of C, C++, Visual Basic (VB), and Java to provide a
complete environment for developing applications.C# merges the power of C, the
object-oriented features of C++, and the graphical interface of VB. In addition,
the programs in both C# and Java compile to a byte code.

Now look at the basic components of a C# application.

Variables
Variables are storage locations for values in C#. A variable has a variable name and
a data type associated with it. The data type represents the type of values that can

18 Part I INTRODUCTION TO C#

TEAMFL
Y

Team-Fly®

be stored in the variable. Variables can store characters, character strings, numeric
values, or memory addresses.

Initializing Variables
To use a variable, you first need to declare it. In C#, you can declare a variable by
using the following syntax:

<modifiers> <data type> <variable1, variable2,..........>;

Here, modifiers are the access modifiers that are used to define the accessibility
level of a variable. C# supports five types of access modifiers: public, protected
internal, protected, internal, and private. Data type is the type of the variable.

To use a variable in an application, you need to assign a value to it. You can assign
a value to a variable by using the assignment operator (=). To assign a value 10 to
the integer variable x, you use the following statement:

public int x = 10;

In C#, you cannot use a variable without initializing it. You can assign a well-
defined initial value to a variable. Such a variable is called an initially assigned
variable. C# also supports an initially unassigned variable that does not have a
well-defined initial value assigned to it. However, you need to assign a well-
defined value to an initially unassigned variable before using it.

Variable Modifiers
Variable modifiers are used to define the features of a variable. Variable modifiers
specify the accessibility levels of a variable. For example, a variable modifier
decides whether a variable can be used or modified outside the class in which it is
declared. The variable modifiers that are supported by C# are listed in Table 2-1.

C# BASICS Chapter 2 19

Ta ble 2-1 The Va r i a ble Modifiers in C#

Va r i a ble Modifier D e s c r i p t i o n

internal An internal variable is accessed from the current program in which
it is declared.

private A private variable is accessed from the type that contains it.

protected A protected variable is accessed from the containing class or the
types derived from the containing class.

public A public variable can be accessed from anywhere.

read-only A read-only variable is assigned a value when the variable is declared
initially. If you do not assign a value to a read-only variable when it is
first declared, the variable takes the default value of that type. As the
name indicates, you cannot change the value of a read-only variable.

static A static variable is accessed directly from the class and not from the
instance of the class.

You can specify the variable modifier while declaring a variable.

Variable Data Types
The data type of a variable defines the type of the variable. Figure 2-1 displays the
data types in C#.

Types of Variables
There are seven types of variables in C#. These are as follows:

◆ Static variables. A static variable has a static modifier. You can access a
static variable directly from the class to which it belongs. You do not
need to create an instance of a class to access a static variable. A static
variable becomes active when the program in which it is declared is
loaded and becomes inactive when the program terminates.

◆ Instance variables. An instance variable is declared without the static
modifier.

20 Part I INTRODUCTION TO C#

◆ Array elements. An array element stores the starting address of an array
in memory. To access an array element, you need to create an instance of
the array.

◆ Value parameters. A value parameter is a variable declared without a ref
or out modifier. When you call a method that contains the value para-
meter, the parameter becomes active. It takes the value of the argument
that you specify in the method. When the method is returned, the value
parameter becomes inactive.

◆ Reference parameters. A reference parameter has a ref modifier. A ref-
erence parameter is initialized with the value of the underlying variable.
A reference parameter stores the location of the argument that is speci-
fied when the method is declared.

◆ Output parameters. An output parameter is a variable declared with the
out modifier. The out modifier allows you to pass a variable, which is not
initialized, to a method. The variable then takes the value from the
method to which it is passed.

C# BASICS Chapter 2 21

FIGURE 2-1 Variable data types

◆ Local variables. A local variable is declared within a method. A local
variable is not initialized automatically and becomes active when the
program that contains the local variable is executed. It becomes inactive
when the execution of the immediate code, which contains the local
variable, ceases.

Variable Scope
A scope of a variable defines the region of the code from where you can access a
variable. To know more about the various scopes of a variable, refer to Table 2-2.

Ta ble 2-2 Scopes of a Va r i a ble

Va r i a ble Scope D e s c r i p t i o n

Block You can access the variable only within the code in which it is declared.

Procedure You can access the variable only within the procedure for which it is
declared.

Namespace You can access the variable from anywhere within the namespace.

C# supports several data types, as discussed. There may be instances where you
need to convert one data type to another. To do this, C# provides you with data
type casting statements.

Types of Data Type Casting
Data type casting in C# can be of two types:

◆ Implicit conversion

◆ Explicit conversion

C# allows you to initialize variables by using the value or reference type.However,
a value type can be casted only to another value type. Similarly, a reference type
can be casted only to another reference type. When a data type is converted
to another data type without any loss of data, this technique is called implicit
conversion.

For example, you can implicitly convert an integer type data type to a long data
type without any loss of data.

22 Part I INTRODUCTION TO C#

int x = 100;

long y;

y = x;

Fi g u re 2-2 shows the implicit data type conve r s i ons that are perm i s s i b l e .

To convert a long data type to an integer data type, you use the explicit data con-
version statements. In addition to all implicit data conversion statements, explicit
data conversion statements also include all numeric data type conversions that
cannot be implicitly converted. C# provides you with the cast operator to perform
explicit data conversion.

int x;

long y = 100;

x = (int) y;

The long data type y is converted to integer x explicitly. An explicit data conver-
sion might lead to some loss of information or may even result in an exception
being thrown.

Figure 2-3 shows explicit data type conversions.

C# BASICS Chapter 2 23

FIGURE 2-2 Implicit data type conversion

In addition to the data type conve r s i on statements, C# provides you with box i n g
and unboxing data conve r s i on tech n i q u e s . You can use b ox i n g to conve rt a value
type to an object typ e .B oxing can be of the type implicit or explicit data conve r s i on .

When you try to convert a value type to an object type, C# creates an instance of
the object type. The value stored in the data type is then written to the instance
of the object that is created.

Conversely, unboxing converts an object type to a value type. Unboxing is an
explicit data type conversion technique. To convert an object type to a value type
by using unboxing, you first need to create a value type by using boxing. The con-
cept of boxing and unboxing is explained in detail in Chapter 4, “More about
Components.”

As you have seen earlier, C# uses variables to store values. To store multiple vari-
ables as a single data structure, you can use an array.

Arrays
An array is a data structure that acts as a pointer to an address in memory. An
array stores a number of variables and has an index attached to it.The index of an

FIGURE 2-3 Explicit data type conversion

array is used to access the elements of the array. The elements of an array are the
variables that are stored in the array. An array can store only the elements of
the same data type. For example, an integer array can store only the variables
of the integer type. Unlike C++, an array in C# is an object and, therefore, has
methods and properties associated with it.

To access the elements in an array, you use indices. An array can have a single
index or multiple indices attached to it. The number of indices on each element
of an array defines the rank of the array. For example, if an array has one index
attached to its elements, the rank of the array is one. Such an array is called a
single-dimensional array. Similarly, if an array has more than one index, it is called
a multidimensional array. You will learn more about multidimensional arrays in
Chapter 4, in the section “Multidimensional Arrays.”

To use an array in a program code, you need to declare and initialize it. In C#, you
initialize an array by using the new keyword. To initialize an integer array with 20
elements, you use the following statement:

int [] Integer = new int [20];

C# allows you to specify the size of an array dynamically. Therefore, you can
declare an array and initialize it at run time. When you declare an array without
initializing it, C# creates a null reference to the array. You can then specify the
amount of memory required by using the new keyword. C# allocates the required
memory to the array at run time. For example, you can declare an array Integer

and then specify the size of the array as 20 by using the new keyword.

int [] Integer;

Integer = new int [20];

When the array is initialized with the value 20, you can access any elements of the
array. The elements of an array are accessed by their indices.The index of an array
in C# starts from zero. Therefore, the first element of an array has an index zero.
To assign a value 100 to the last element of the array Integer, use the following
statement:

Integer [19] = 100;

Similar to integers, you can use arrays to store character values. An array of char-
acter values is called a string. Strings will now be discussed in detail.

C# BASICS Chapter 2 25

Strings
C# provides you with a String type. In C and C++, an array of characters is called
a string. String is not a class in C and C++, therefore, working with strings is a
problem in C and C++. Simple operations, such as comparing or adding two
strings, require a lot of programming. To provide the programmers with a solu-
tion to this problem, C# created a String class.

Initializing Strings
You can initialize a string by using the string keyword. To initialize a string,
string1, use the following statement:

string string1 = “Hello World”;

The previous sample code declares a string, string1, and initializes it with a value
“Hello World”.

The assignment of a value to a string takes place by the reference type. When you
declare a string, an object of the String class is created and placed on the heap.
This object of the String class has the reference to the memory location where the
string is stored.

Working with Strings
The String class in C# is in the System namespace. String is a class and has sev-
eral methods associated with it. You can use these methods to perform operations
on strings. The commonly used methods in the String class are as follows:

◆ Compare(). The Compare() method is used to compare two strings.

◆ Format(). You can use the Format() method to format the values in a
string. The Format() method allows you to specify formatting for each
value in a string.

◆ Trim(). The Trim() method in C# deletes the extra spaces in a string.
The Trim() method can be used to delete both the leading and trailing
spaces.

◆ ToUpper(). To change the capitalization of the elements in a string, you
can use the ToLower() or ToUpper() methods. The ToLower() method

26 Part I INTRODUCTION TO C#

converts the elements of the string to lowercase. Similarly, you can con-
vert the string to uppercase by using the ToUpper() method.

◆ Split(). Working with large strings can be a problem. Therefore, the
System.String class provides the Split() method that can be used to
break a string into several small strings. You can specify a character from
where the string should be split. The Split() method breaks the string
into substrings at each instance of the given character. The substrings
created by the Split() method are stored in the form of an array.

◆ IndexOf(). The IndexOf() method is used to locate a character or sub-
string in the main string. The IndexOf() method returns the index of the
first instance of the specified character in a string. Similarly, to locate the
last occurrence of a character or substring, you can use the LastIndexOf()
method.

◆ IndexOfAny(). If you need to know the index of the first occurrence of
any one of a set of characters in a string, you can use the IndexOfAny()
method. Similarly, the LastIndexOfAny() method is used to locate the
index of the last occurrence of any one of a set of characters in a string.

◆ Replace(). To replace all occurrences of a character or a substring in a
string by another character or substring, you use the Replace() method.

Simple operations on a string, such as adding or concatenating two strings, can be
performed using a (+) operator. You do not require a method for concatenating
two strings. For example, to add string1 and string2, you first need to initialize
the two strings. You can then use the (+) operator to add the two strings and ini-
tialize their value to another string, string3. The code sample that follows displays
this.

string string1 = ‘John ‘;

string string2 = ‘Floyd’;

string string3 = string1 + string2;

The value of string3 in the previous sample is John Floyd.

You have learned about performing simple operations on a string. Now look at the
various statements and expressions provided by C#. You can use these statements
and expressions to perform specific operations on variables.

C# BASICS Chapter 2 27

Statements and Expressions
Statements in C# are similar to those in C and C++. Statements in C# can be of
two types:

◆ Simple

◆ Embedded

Simple statements include all variable declaration statements and labeled state-
ments. However, all other statements that are embedded and are a part of another
statement are called embedded statements. All statements in C# are enclosed within
curly braces {}.

Types of Statements
C# supports simple statements and embedded statements, such as selection, itera-
tion, and jump statements. Look at these statements in detail.

Simple Statements
Simple statements include all declaration and labeled statements. Simple state-
ments also include statements that are used to call methods.

Declaration Statements
A declaration statement is used to declare a variable or a constant. You can use a
single statement to declare more than one variable or constant. The following is
an example of an initializing statement.

public int i, y;

i = 45;

y = 37;

Similarly, you use declaration statements to declare constants. Constants are data
types whose value cannot be changed after being declared. The const keyword is
used to declare a constant. Consider the following code sample:

const char x = a;

The previous code declares a constant x of the type character and assigns a value
a to it.The value of the constant x cannot be changed throughout the lifetime of x.

28 Part I INTRODUCTION TO C#

TEAMFL
Y

Team-Fly®

Labeled Statements
In addition to declaring variables and constants, you can declare labels in C#. A
labeled statement is a simple statement that is used to declare a label.The syntax of
a labeled statement is as follows:

<label1> : <statement1>

Here, label1 is the name of a label and statement1 specifies the statements to be
executed when the control reaches the label. You use a goto statement to refer to
a label.

Method Call Statements
A method call statement is also a type of a simple statement. A method call state-
ment is used to call a method that is already created. The following code sample
is an example of a method call statement:

public int x;

x = 100;

MessageBox.Show (x);

The previous code calls the Show method of the class MessageBox.

Selection Statements
C# also provides you with selection statements. In cases where the program has to
execute one block of statements out of all the available blocks of statements, selec-
tion statements are used. In such a case, the program code needs to select the
block of statements to be executed, which are therefore called selection state-
ments. The selection of the statements to be executed is based on the value
returned by evaluating an expression that follows the selection statement. The
selection statements are of two types:

◆ if-statement

◆ switch-statement

if-statement
The if-statement is a decision-making statement that selects a specific set of state-
ments to execute.The selection of the set of statements is based on a Boolean value

C# BASICS Chapter 2 29

that is returned by evaluating a given expression. The syntax of an if-statement is
as follows:

if (Boolean-expression) statement1

The Boolean expression returns a value of either true or false. If the Boolean
expression evaluates to true, the statement following the Boolean expression is
executed. After the execution of statement1, the control passes to the end of the
if-statement. If the result of the Boolean expression is false, the statements in the
else block are executed.

Look at the following example of an if-else statement:

int x;

if (x >= 0)

{

MessageBox.Show(“x is a positive number.”);

}

e l s e

{

MessageBox.Show(“x is a negative number.”);

}

The previous code tests for the value of x, and if the Boolean expression evaluates
to true, the message “x is a positive number.” is displayed.However, if the value
of the Boolean expression (x >= 0) is false, the message “x is a negative num-
ber.” is displayed.

If an else statement is not provided in the if-statement, the control is transferred
to the end of the if-statement when the result of the Boolean expression is false.

switch-statement
Similar to the if-statement, the switch-statement is a type of a selection statement.
However, a switch-statement is used when there are multiple block statements
from which to choose. The syntax of a switch-statement is as follows:

- - - - - - - - - - - - - -

switch (expression)

{

case constant-expression:

statement

30 Part I INTRODUCTION TO C#

jump-statement

[default:

statement

jump-statement]

}

- - - - - - - - - - - - - -

The switch statement is written with a switch keyword, followed by an expression
to be evaluated.The switch statement evaluates an expression, and the set of state-
ments to be executed is selected.The selection is based on the result of the expres-
sion. The different sets of statements to be executed are considered as different
cases. The case keyword is used to define different cases. The result of the state-
ment is matched to the available cases, and the set of statements to be executed is
selected. The following is an example of a switch-statement:

int x;

switch (x)

{

case 1:

MessageBox.Show(“x is a positive number.”);

b r e a k ;

case 2:

MessageBox.Show(“x is a negative number.”);

b r e a k ;

d e f a u l t :

MessageBox.Show(“x is equal to 0.”);

b r e a k ;

}

As shown in the preceding code, you can also include a default case. The default

case is executed if the result of the expression does not match any of the available
cases. A break statement is used to pass the control out of the case.

In C and C++, a fall-through condition can occur. In a fall-through condition, if
you omit any of the break statements, the program executes two cases. However,
in C#, a fall-through condition is omitted because the compiler throws an error
for each case that does not end with a break statement.The following code in C#
generates an error:

int x;

switch (x)

C# BASICS Chapter 2 31

{

case 1:

MessageBox.Show(“x is a positive number.”);

b r e a k ;

case 2:

MessageBox.Show(“x is a negative number.”);

d e f a u l t :

MessageBox.Show(“x is equal to 0.”);

b r e a k ;

}

If you need to execute two cases, you need to provide an explicit goto statement.
The syntax for such a code is given as follows:

switch (expression)

{

case 1 :

statement

goto case2;

case 2 :

statement

goto default;

[default:

statement

jump-statement]

}

In this case, the compiler first executes case1, then case2, and then the default
case.

In addition to the selection statements, types of statements also include iteration
statements.

Iteration Statements
The iteration statements are used to execute a set of statements repeatedly until a
condition is met. The types of iteration statements are as follows:

◆ for loop

◆ foreach loop

32 Part I INTRODUCTION TO C#

◆ while loop

◆ do-while loop

for Loop
The for loop in C# is similar to the for loop in C and C++. The for loop is used
to execute a given set of statements until a given expression in the for loop returns
true. The syntax of a for loop is as follows:

for (initializer; condition; iterator)

{

- - - - - - - - - - - - - - - - - - -

}

Here, initializer is an expression that is evaluated before the control enters the
loop. The condition specifies the condition that is evaluated before every iteration
is completed.The iterator is the expression that is evaluated after every iteration.
The statements in the for loop are continuously executed until the expression
returns false.

If you want to transfer the control of execution to the end of the for loop when
the control is within the loop, you can use a break statement explicitly. In such a
case, the statements within the for loop are not executed even if the condition
evaluated is true. Therefore, the iteration stops.

However, if you need to end a particular iteration, you can use a continue state-
ment.The control of execution passes to the end of the statements within the for
loop, which ends only the running iteration.

foreach Loop
The foreach loop is introduced in C#.However, it did not exist in C and C++.The
foreach loop in C# iterates the statements in the foreach loop for each element in
an array or collection. The following example will help you to understand the
foreach loop.

int [] Integer = {15,89,1000,6}

foreach (int x in Integer)

{

Console.WriteLine (x)

}

C# BASICS Chapter 2 33

Here, in is a keyword for the foreach loop.

34 Part I INTRODUCTION TO C#

The value of the variable in the foreach loop cannot change during the execution of
the foreach loop.

TIP

while Loop
The while loop is similar to a for loop because it evaluates a condition and exe-
cutes the statements within the while loop until the condition returns false. The
while loop in C# is similar to the while loop in C and C++. If the condition that
is evaluated results in false the first time, the while loop is not executed.The syn-
tax of a while loop is similar to that of the for loop, except that the while loop
takes only one parameter. The code sample that follows is an example of the while
loop that is not executed.

int x = 20;

while (x < 10)

{

Console.WriteLine (x);

x + + ;

}

When the code evaluates the condition for the first time, the result is false.
Therefore, the control does not enter the loop.

do-while Loop
The d o - w h i l e l o o p is another form of itera t i on statements in which the con d i t i on
is evaluated for the first time after the statements in the d o - w h i l e loop are exe-
c u t e d .This implies that the d o - w h i l e l o o p, in con t rast to the w h i l e l o o p, is exe c u t e d
at least on c e . The foll owing code executes the statements in the d o - w h i l e loop on c e
b e f o re it ch e cks for the value of x a n d , t h e re f o re, d i s p l ays the value of x on c e .

int x = 20;

do {

Console.WriteLine (x);

} while (x < 10)

Jump Statements
Jump statements are also a type of statement in C#.The jump statements are used
to pass the control of the execution unconditionally to another line in the pro-
gram. The line of code to which the control is transferred is called the target of
the jump statement. The commonly used jump statements in C# are:

◆ goto statement

◆ return statement

◆ break statement

◆ continue statement

The jump statements in C# are similar to those in C and C++.

goto Statement
The goto statement is used to jump unconditionally to another line in a program.
You need to specify the line to which the code jumps using a label. The syntax of
the goto statement uses the goto keyword, such as:

goto Label1;

where Label1 specifies the line to which the code passes the control.

C# BASICS Chapter 2 35

The goto statement cannot be used in the following cases:

• Jumping into a block of code

• Exiting a finally block

• Jumping outside a class

TIP

return Statement
A return statement is another jump statement that is used to end a method of a
class. After a method ends, the execution control is transferred to the calling
method. If the method that includes the return statement has a return type, the

method must a return a value of the return type. The syntax of the return state-
ment is as follows:

return expression;

Here, return is a keyword that you use to write a return statement.

If the method is of the type void, the return statement does not take an expres-
sion.Constructors or destructors also do not require an expression with the return
statement.

break Statement
As you have seen, you can use a return statement to end a method. Similarly, to
end a loop, you use the break statement. It is used to exit from a loop, such as for,
foreach, do, and do-while loop. The break statement passes the control out of the
loop. The break statement is written using the break keyword.

b r e a k ;

For nested loops, the break statement passes the control to the end of the inner-
most loop.

continue Statement
Similar to a break statement, the continue statement is also used with loops. The
continue statement is used to end only the current iteration and not the entire
loop. The execution again starts for the next iteration. The continue keyword is
used to specify a continue statement.

c o n t i n u e ;

A continue statement cannot be used to exit a finally block. You will learn about
the finally block in Chapter 6, “Threads.”

Having learned about statements, you need to understand expressions. Expres-
sions are also used to perform operations on variables.

Expressions
Expressions in C# are similar to that of C++. Expressions are defined as a sequence
of operands and operators that are used to perform operations. An expression can

36 Part I INTRODUCTION TO C#

be of the following types: values, variables, classes, namespaces, indexers, and
methods.

Operators
Operators are used to write expressions. Operators specify the kind of operation
that is to be performed on the operands. The types of operators supported by C#
are displayed in Table 2-3.

Table 2-3 The Types of Operators in C#

Types of Operators D e s c r i p t i o n

Unary operators Unary operators perform operations on a single operand. For
example, the ++ and -- operators are unary operators. Unary oper-
ators can either precede or succeed the operand.Unary operators
are used with numeric data t ypes.

Binary operators Binary operators perform operations on two operands. For exam-
ple, +, -, +=, -=,*, and / are binary operators. Binary operators are
written between the two operands.Binary operators are also used
with numeric operators.

Ternary operators Ternary operators have three operands. C# supports only one
ternary operator, ? :.The ? : operator is equivalent to an if-else
statement.

Now look at the syntax of the ? : operator.

condition ? true value : false value

Here, condition is the condition of the if-else statement. It is a Boolean expres-
sion. If the condition evaluates to true, the true value is returned. Otherwise, the
false value is returned.

The unary, binary, and ternary operators are further classified according to the
operations they perform. Look at the operators supported by C# in detail.

The arithmetic operators are used to perform arithmetic operations. C# supports +,
-, *, /, and %. These operators are similar to the operators in C++.

The increment and decrement operator increases or decreases the value of a variable
by one. The increment operator is ++, and the decrement operator is --.

C# BASICS Chapter 2 37

The assignment operator performs an arithmetic operation and assigns the result to
a variable.The commonly used assignment operators are =, +=, -=, *=, /=, %=, &=,
|=, <<=, >>=, and ^=.

The logical operators supported by C# are &, |, ^, ~, &&, ||, true, false, and !.

The relational operators are also called comparison operators. These operators are
used to compare two numeric values. An example of relational operators are ==,
<, >, <=, >=, and !=.

The bit shifting operators are << and >>. These operators are used to shift the bit
to the left and right respectively.

The conditional operator is the ternary operator ? :, as discussed in the preceding
table. The ternary operator ? : is used for the if-else construct.

Each type of variable in C# has a specific range.If an operation results in the over-
flow of the range, C# provides checked and unchecked operators. These operators
are used to manage the overflow situation. When an operation is performed on
the variable marked as checked, CLR (common language runtime) checks for over-
flow. If the value overflows, C# throws an exception. If you do not want an over-
flow check, mark the variable as unchecked. No exception is raised in this case even
if an overflow occurs and may result in the loss of data.

You can use the is operator in C# to match the object with the type specified. You
use the is and typeof operators to know the type of objects at run time.

C# provides the sizeof operator to find the size of the variable in bytes. The vari-
able whose size is to be found is passed as a parameter to the sizeof operator.

Operator Overloading
C++ programmers are familiar with the concept of operator overloading. As seen
earlier, all operators in C# perform a specified set of operations. However, if you
want user-defined implementations, you use operator overloading. Many of the
available operators in C# can be overloaded. For operator overloading, it is essen-
tial that one or both operands in the expression are of the struct type or a user-
defined class. To declare an operator overload, use the operator keyword. The
syntax of an operator overload is:

operator operator1

38 Part I INTRODUCTION TO C#

TEAMFL
Y

Team-Fly®

Summary
In this chapter, you learned about the basics of C#. You learned that C# is an
object-oriented language that is derived from C and C++. C# is designed to cre-
ate high-level applications that work on the .NET environment. Next, you
learned that variables are storage locations for values in C#. Variables can store
characters, character strings, numeric values, or memory addresses. Then you
learned that an array is a data structure that acts as a pointer to an address in a
memory. An array stores a number of variables and has an index attached to it. C#
provides a String class to work with strings. String is a class in C#. Therefore, it
has several methods associated with it.

Finally, you learned about the data conversion statements in C#, along with other
statements and expressions. The commonly used statements in C# are of the fol-
lowing types: simple, selection, iteration, and jump. Expressions in C# are a
sequence of operators and operands that are used to perform operations.

C# BASICS Chapter 2 39

This page intentionally left blank

PART IIHandling Data

This page intentionally left blank

Chapter 3
Components
of C#

In this chapter, you will learn about the basic components of the C# language,
such as classes, namespaces, structs, enumerations, and interfaces. You will also

learn about the methods used with classes. Finally, you will learn to write, com-
pile, and execute a simple program in C# by using the Main() method.

Classes
The most important component of C# is a class. A class is defined as a data struc-
ture used to create objects. The instance of a class is called an object. An object
contains data and has methods associated with it. The data and methods associ-
ated with a class are called the members of the class. A class is used to define the
data contained in objects. However, classes do not contain data themselves. To use
a class in a program, you first need to declare the class.

Declaring Classes
To declare a class, you use the class keyword. A class is declared using the class
declaration statement as shown:

<modifiers> class <class name>

{

- - - - - - - - - - - - - - - - - -

}

Here, modifiers specify the accessibility information about the class. A class mod-
ifier defines the scope of the class. C# supports several class modifiers, such as new,
public, private, protected, internal, sealed, and abstract. Take a look at Table
3-1 to learn more about class modifiers.

44 Part II HANDLING DATA

Table 3-1 The Class Modifiers in C#

Class Modifier D e s c r i p t i o n

new A new class modifier is used with nested classes. It is used to hide an
inherited class by the same name as the base class.

public A public class modifier is used to define classes that can be accessed
from any program code.

private A private class modifier is used to define classes that can be accessed
from a containing type. A private modifier is typically used with a
class that contains static methods.

protected A protected class modifier is used to define classes that can be
accessed from a containing type or the types derived from the con-
taining types.

internal An internal class modifier is used to define classes that can be
accessed from the current assembly.

sealed A sealed class modifier is used to prevent a class being derived from
a base class.

abstract An abstract class modifier is used to define a base class of other
classes.However, you cannot create instances of an abstract class.
An abstract class supports inheritance.However, if you inherit
from an abstract class, you need to implement all its abstract methods.
An abstract class cannot be a sealed class, as you cannot derive a
sealed class.

After declaring a class, you can use it in a C# project. C# allows you to use the
class that you define in other applications.In addition, you can derive a class from
an existing class. This concept is called inheritance. Inheritance will now be dis-
cussed in detail.

Inheritance
The concept of inheritance is familiar to C and C++ programmers. Inheritance
allows a class to be derived from another class known as the base class. The class

COMPONENTS OF C # Chapter 3 45

that you derive is called the derived class. Inheritance allows you to reuse the data
and methods of a class by the derived class. However, the constructors and
destructors of the base class are not implicitly inherited. You will learn about the
methods, constructors, and destructors used with classes later in this chapter.

In C#, you cannot derive a class from multiple classes. This is known as single
inheritance. However, you can derive any number of classes from a single class. In
addition, a base class of other classes can, in turn, be derived from another class.
In C#, the Object class is the base class of all classes. The Object class lies in the
System namespace. Here is the syntax of inheriting a derived class from a base
class.

class <derived class> : <base class>

In the previous code, a colon (:) is used to indicate that a class is derived from an
existing class. For example,

class Class1 : Class2

Here, Class2 is the base class of Class1, and therefore, Class1 inherits all mem-
bers of Class2.

The following example will help you to understand the concept of inheritance.

class Employee

{

public void EmployeeName()

{

- - - - - - - - - - - - -

}

}

class Salary : Employee

{

public void CalculateSalary()

{

- - - - - - - - - - -

}

}

46 Part II HANDLING DATA

class Bonus

{

static void Main()

{

Salary salary1 = new Salary;

s a l a r y 1 . E m p l o y e e N a m e () ;

s a l a r y 1 . C a l c u l a t e S a l a r y () ;

}

}

This code declares two classes, Employee and Salary. The Salary class is inherited
from the Employee class and, therefore, inherits the method declared by the base
class. An instance of the derived class is created to access the members of the base
class.

As discussed earlier, the derived class implicitly inherits all the members of the
base class. However, you can hide any method of the base class so that the derived
class cannot access the method. To do so, you declare another method by a signa-
ture that is same as that of the base class method. When a compiler finds such a
method, it generates a warning. To suppress this warning, you use the new key-
word. This makes the base class method inaccessible to the derived class.

In the above case, if you need to declare a method with the name EmployeeName()
in the Salary class, you need to include the new keyword in the method declara-
tion statement. The next example uses the new keyword.

class Salary : Employee

{

new public void EmployeeName()

{

- - - - - - - - - - -

}

}

Inheritance allows a derived class to inherit the methods of the base class. How-
ever, the constructors and destructors of the base class are not implicitly inherited.
The next section looks at the constructors and destructors in detail.

COMPONENTS OF C # Chapter 3 47

Constructors
A constructor is a default method that is called when an object is initialized from
a class. Each class has a constructor with a name that is the same as that of the
class. A constructor does not return a value.However, unlike methods, you do not
call a constructor. It is automatically called when you create an object of a class.

It is not necessary to declare a constructor for a class. If you do not explicitly
declare a constructor, C# automatically creates a default constructor for a class
with the same name as that of the class.The following is an example of declaring
a constructor:

<modifier> <constructor name>

{

- - - - - - - - - - - -

}

Constructor modifiers include public, private, protected, and internal. Inside
the block of the constructor are the statements that are used to initialize the class
that contains the constructor.

To initialize the data members of a class, you can declare a constructor for the
class and pass parameters to it.The parameters in this case are the initial values of
the data members. To understand the concept of passing parameters to construc-
tors, look at the following example:

public class Employee

{

public Employee()

{

string Name = ‘John’;

}

public Employee (string EmployeeName)

{

Name = EmployeeName;

}

}

In the previous code, the constructor with the name Employee() is declared in the
class Employee. The constructor takes EmployeeName as the parameter and initial-
izes the value of Name with EmployeeName. Therefore, when you create an instance
of the Employee class,the object gets initialized.This prevents any other class from
accessing the objects of the Employee class before initializing the object.

48 Part II HANDLING DATA

TEAMFL
Y

Team-Fly®

After declaring a constructor, you need to use it to instantiate an object of the
class. You use the new keyword to instantiate the object of the class.

Employee employee1 = new Employee (‘Smith’);

When you pass a value as a parameter, the new value overwrites the initial value.
Therefore, the name of the employee is changed to Smith. However, if you do not
want to change the default value, you can instantiate the constructor without pass-
ing a parameter to it, as shown in the following example:

Employee employee1 = new Employee();

As already discussed, if you do not explicitly declare a constructor, C# creates a
default constructor. In this case, C# calls the default constructor of the direct base
class.The base keyword is used to call the default base class constructor from the
derived class. You can also use the this keyword if you want to call any other con-
structor of the base class.

Therefore, if you derive a class Salary from the class Employee, you can call the
constructor of the Employee class from the Salary class.

class Employee

{

public Employee ()

{

- - - - - - - - - - - - - -

}

}

class Salary : Employee

{

public Salary : base ()

{

- - - - - - - - - - - - - -

}

}

As you know, it is essential to initialize an instance of a class whenever the
instance is created. Similarly, it is also essential to destroy the instance of the class
when it goes out of scope. To do this, C# contains destructors that are called when
an instance of a class is destroyed.

COMPONENTS OF C # Chapter 3 49

Destructors
Destructors are not extensively used in C#. To destroy resources from memory, C#
uses the garbage collection mechanism. You have learned about this mechanism
in Chapter 1, “Overview of the .NET Framework,” in the section “Garbage
Collector.”

Similar to naming a constructor, the destructor takes the same name as that of the
class. You can declare a destructor by using the destructor declaration statement.
These statements include a tilde (~) sign followed by the name of the class.

public class Employee

{

~ Employee ()

{

- - - - - - - - - - - - - - - - -

}

}

In the previous code, Employee() is the destructor of the Employee class. You can
include the statements required to uninitialize variables of the class in the body of
the destructor.

You cannot explicitly call a destructor. It is automatically invoked when an
instance of a class is not used by any program. In addition, if destructors of the
base and derived classes are to be invoked, the derived class destructor is invoked
first, followed by the base class constructor.

In addition to the garbage coll e c t i on sys t e m , C# provides you with the
Finalize(), Dispose(), and Close() methods.These methods are used to clean up
the memory after a resource is destroyed.

Finalize() Method
To destroy data members when they are not needed, you can create the Finalize()
method. This method is automatically called when the class instance is deleted.
The Finalize() method cleans the memory before the garbage collection system
dereferences the object. You cannot call the Finalize() method because it gets
automatically invoked when you call the destructor of the class.

Similar to a destructor declaration statement, you can declare the Finalize()
method by using the tilde (~) sign followed by the name of the containing class.

50 Part II HANDLING DATA

The Finalize() method does not return any value. In addition, you cannot pass
parameters to the Finalize() method and directly override it.

Before C# calls the Finalize() method, it waits for some time after the object
instance is no longer used by any program code.This unnecessarily blocks mem-
ory and destroys resources in longer time duration. To tackle this problem, C#
provides you with the Dispose() and Close() methods.

Dispose() and Close() Methods
In C#, you can explicitly call the Dispose() and Close() methods to destroy the
resources immediately after the class instance is deleted. These methods are not
implicitly invoked. Therefore, if you forget to call the Dispose() or Close() meth-
ods, the resources remain in memory until the garbage collection system cleans
the memory. To solve this problem, you can use the Dispose() and Close() meth-
ods with the Finalize() method. If the Dispose() or Close() method is not
explicitly called, the Finalize() method will clean the memory before the garbage
collection system is invoked.

Having learned about the Finalize(), Dispose(), and Close() methods, you can
take a look at the methods used with classes in detail.

Methods
A method is a logical section of code that can be used to perform a specific oper-
ation. An object or a class can call a method to implement the functionality of the
method. A method has a return type or can be of the type void.

Declaring a Method
The syntax of method declaration is as shown here:

< modifier> <return type> <method name> (parameter1, parameter2,)

{

s t a t e m e n t s

}

Here, modifier is the access modifier and return type specifies the data type of
the value that is returned by the method. The list of parameters that the method
takes is specified in the parentheses following the method name.

COMPONENTS OF C # Chapter 3 51

Calling a Method
After a method is declared, you can call the method to be used by any class or an
object. To call a method, you use the following syntax:

object1.method1 (parameter1, parameter2,...);

Here, object1 is the instance of the class that calls the method, method1 is the
name of the method, and the parameter list is specified within parentheses.

Passing Parameters to Methods
While calling a method, you can pass a list of parameters to the method. The
types of parameters that can be passed to a method are:

◆ Value parameters

◆ Reference parameters

◆ Output parameter

◆ Parameter arrays

The parameters that are passed by value to a method are called value parameters.
When a variable is passed by value, the method changes the value of the variable
in a copy. However, the actual value remains unchanged. Therefore, the value
parameters are not affected by the changes that are made to the variables in the
method. By default, all variables are passed as value parameters.

The value of variables that are passed by reference, known as reference parameters,
changes when you modify the variable in a method. When a variable is passed by
reference, the variable passes only a reference to the method and not the actual
value. Therefore, changes made by the method are made to the original variable
and not to its copy. C# overwrites the changes to the original value of the vari-
able. The ref keyword is used to pass a variable to a method by reference.

The syntax of a method to which you pass a parameter by reference is:

object1.method1 (parameter1, ref parameter2,...);

Here, parameter1 is passed by value. However, parameter2 is passed by reference.
Therefore, the value of parameter1 will not be affected by the changes made to it
during method execution. However, if changes are made to parameter2 in the
method body, the changes will get reflected to its original value.

52 Part II HANDLING DATA

In general, methods return a single value. In C#, you can write methods that
return multiple values. To do so, you pass a parameter to the method as an output
parameter. An output parameter is passed to a method by using the out keyword.

object1.method1 (out parameter1);

Here, parameter1 is passed to method1 as an output parameter.

In C#, it is essential that you initialize a variable before using it.Therefore, when
you pass an output parameter, it already has some value. C# overwrites this value
with the value returned by the method. This is a waste and can be avoided by
using the out keyword. A variable prefixed with the out keyword is an exception,
as you can pass it to a method without initializing it.The output parameter is ini-
tialized by the value returned by the method. A variable can store an output value
only if you pass the variable to the method by reference.

In addition to variables, you can pass arrays as a parameter to a method.However,
only a one-dimensional array can be passed to a method. You use the params key-
word to specify a parameter array.

The syntax of passing a parameter array is:

object1.method1 (parameter1, params data type[] parameter2);

In the previous syntax, parameter2 is a one-dimensional array, and its type is spec-
ified by the data type.

When you declare a parameter array along with other parameters, you must
include the parameter array as the last element in the list. In addition, you cannot
include a parameter array with a reference or an output parameter. Therefore, the
following code will generate an error:

object1.method1 (params data type[] parameter1, ref parameter2);

COMPONENTS OF C # Chapter 3 53

In contrast to variables, strings do not change even when passed by reference. When
you make a change to the value of a string, C# creates a new string.

TIP

Method Modifiers
Similar to classes, methods in C# also have modifiers. Following are some of the
commonly used method modifiers.

◆ static. A static method cannot be called by any particular instance of a
class. To call a static method, you need to specify the name of the con-
tainer class.

◆ new. A new method in C# is used to suppress the compiler’s warning
when you try to hide a method of a base class with the same name as the
derived class method.

◆ public. Similar to the public modifier of a class, if you declare a method
as public, it can be accessed from any location.The method can also be
called from outside the class that declares it.

◆ private. A method declared as private is private to the class that
declares it. This implies that a private method cannot be called from
outside the class that contains the method.

◆ protected. A protected method modifier is similar to a protected class
modifier. A method declared as protected can be called from the derived
classes of the class that contains the method, in addition to the class that
declares the method.

◆ internal. An internal method can be called from anywhere in the
assembly.

◆ extern. An extern method in C# has an unlimited scope. You can use a
method declared as extern even in a different language.

◆ virtual. A derived class of a class that contains a method can override a
virtual method. You can also implement a virtual method dynamically.
However, the method that will get invoked will be decided at run time.
A virtual modifier cannot be used with static, override, and abstract

modifiers.

◆ abstract. An abstract method is a special type of a virtual method. An
abstract method can define a method. However, you cannot implement
an abstract method. You can only declare an abstract method in an
abstract class.

◆ override. The override method is used to override an inherited abstract
or virtual method.

54 Part II HANDLING DATA

◆ sealed. A sealed method is used with an override method to override
an inherited virtual method. However, a class inherited from the class
containing this method cannot override a sealed method.

Overloading a Method
Method overloading in C# is similar to method overloading in C++. Overloading
a method allows you to declare more than one method with the same name in the
same class. However, it is required that all methods with the same name take a
different number of parameters or have different parameter types. The methods
with the same name are called overloaded methods.

Defining Overloaded Methods
Method ove rloading is useful when you need to perf o rm the same opera t i on on dif-
fe rent para m e t e r s . For example, you can ove rload a method A d d () to add two i n t e-
g e r numbers and two s t r i n g s. Lo ok at ove rloading a method with this example:

public int Add (int x, int y)

{

int z = x + y;

return z;

}

public string Add (string string1, string string2)

{

string string3 = string1 + string2;

return string3;

}

You will notice that both the methods have the same name, Add(). However, the
first Add() method is used to add two integers, x and y, and return an integer z.
The second Add() method adds two strings, string1 and string2, and returns a
string type string3.

Calling Overloaded Methods
After declaring a method, you need to call the method. When you call an over-
loaded method, the C# compiler needs to identify the method that is called. The
C# compiler identifies the method based on the type of parameters passed in the
method call statement.

COMPONENTS OF C # Chapter 3 55

- - - - - - - - - - - -

object1.Add (25, 50)

- - - - - - - - - - - - -

Because the type of parameters passed to the Add() method in the previous state-
ment are integers, the C# compiler calls the first Add() method.

Default Parameters
Methods are useful if you want certain parameters of a method not to be explic-
itly initialized.These parameters then take default values as specified in the body
of the method.This feature is provided by the default parameters of C++. C# does
not support default parameters. However, to overcome this problem, you can
overload methods.

In the previous example, you can create overloads of the method Add() to pass
default values to it. The code for the Add() method in the previous section does
not specify any value for either x or y. However, you can modify the code as shown
following to pass a default value to the method.

public int Add (int x)

{

int z = x + 100;

return z;

}

The previous code always adds 100 to the value of integer x that is passed as a
parameter when the Add() method is called by any class.

You have learned about classes and the methods used with classes. However, when
you create an instance of a user-defined class, there may be more than one class
with the same name. Therefore, to avoid this confusion, C# provides you with
namespaces.

Namespaces
Namespaces are containers that are used to logically group similar classes that have
related functionality. You can also use namespaces to group similar data types.
Therefore, when you refer a data type or a class, their names are automatically

56 Part II HANDLING DATA

prefixed with the name of the namespace. This helps the compiler to understand
which class is being referred in your code.

In C#, you need to declare each class in a namespace. However, if you do not
explicitly declare a class in a namespace, C# automatically places the class in the
default namespace.The default namespace is automatically created with the same
name as that of the project. A namespace in C# can have more than one class.

Declaring Namespaces
C# provides you with several classes that you can use in your program code. Most
of these classes are a part of the System namespace. You can also declare name-
spaces in the program code and then add classes to them. A namespace is declared
using the namespace keyword. While declaring a namespace, you do not need to
prefix the namespace declaration with an access modifier. All namespaces in C#
are implicitly public, as they can be used across all programs.

namespace Employee

{

class Employee

}

You can place the Employee class in the Employee namespace. In addition, you can
include other namespaces, classes, structs, enumerations, and interfaces in a
namespace. You will learn about structs and enumerations later in this chapter.

C# allows the use of nested namespaces.Therefore, to refer to a namespace within
another namespace, you use periods (.) to separate the names of the namespaces.
For example,

namespace Employee

{

namespace Salary

{

class Salary

}

}

To refer to the Salary class, you need to refer to it as Employee.Salary.Salary.

COMPONENTS OF C # Chapter 3 57

Accessing Namespaces
After declaring a namespace, you can access the namespace with the using direc-
tive. Therefore, to access the namespace Employee, use the following statement:

using Employee;

Additionally, as you have seen earlier, C# allows the use of nested namespaces. It
will, however, be tedious to write the complete name of a class repeatedly in the
code. To simplify this task,you can declare the class with the using keyword in the
beginning of the code, such as:

using Employee.Salary;

In this case, each time you use the class Salary, the compiler can discern that the
class Salary within the Salary namespace is being referred.

However, there may be cases when two namespaces contain classes with the same
name. To refer to these classes, you need to write the full name in the code. To
avoid writing full names in such cases, you can create an alias.

Aliases
C# all ows you to create aliases of a class or a namespace with the u s i n g k ey w o rd .
Al i a s e s a re short names assigned to classes and namespaces. The syntax of an alias is:

using <alias> = <class>

In the previous example, you can create an alias for the class Salary, such as:

using aliasSalary = Employee.Salary

Now, each time you need to refer to the Salary namespace, you can use the alias
name, such as:

a l i a s S a l a r y . S a l a r y . C a l c u l a t e S a l a r y ()

58 Part II HANDLING DATA

You can have two classes with the same name in different namespaces. However, a
namespace cannot contain two classes with the same name.

TIP

TEAMFL
Y

Team-Fly®

Here, CalculateSalary() is a method in the Salary class.

You have learned about classes and namespaces. The next section offers some
information about structs. Structs are data structures similar to classes and are
important components of C#.

Structs
Structs are data structures that contain constructors, constants, variables, meth-
ods, indexers, properties, operators, and nested types. However, unlike classes,
which are reference types, structs are value types.This implies that structs do not
require allocation of heap. In addition, a variable declared of the type struct
directly contains data, in contrast to a class variable that contains only a reference
to the data.

Similar to declaring a class, you can also declare a struct in C#. Structs are
declared using the struct keyword.

<modifier> struct <struct name>

{

- - - - - - - - - - - -

}

Modifiers used with structs are similar to those used with classes. Struct modifiers
include new, public, private, protected, and internal. However, you cannot use
the abstract and sealed modifiers with structs. Structs are implicitly sealed, as
they do not support inheritance.

Structs are used to group similar data. This data can then be easily copied from
one struct to another. Consider the following example:

public struct Employee

{

public int Empid;

public string Empname;

public string Empemail;

public string Empsalary;

}

COMPONENTS OF C # Chapter 3 59

The previous struct includes variables that are used to store employee informa-
tion. Once a struct is declared, the variables in the struct are initialized to default
values. However, to copy these values from one struct to another, you need first to
initialize the struct with the new keyword. The new keyword is used to call the
default constructor of the struct, resulting in initializing the variables declared in
the struct.

Employee emp1;

Employee emp2;

emp1= new Employee ();

emp1.EmployeeName = ‘Steve’

emp1.Employeeemail = ‘steve@hotmail.com’

emp1.EmployeeSalary = $1000;

Now, to copy these values from emp1 to emp2, you can use the assignment operator
(=) as follows:

emp2 = emp1;

As you can see, a single statement can copy the entire value of one struct to
another. However, if you want to use classes to perform this task, you need to cre-
ate a method. All data is copied from one struct to another; therefore, it is advis-
able that you create structs to store small amounts of data.

Structs in C# are different from structs in C and C++. Unlike C and C++, all data
members of structs in C# are private by default.In addition, structs in C# are very
similar to classes and can perform most of the things that classes do. However,
some differences between structs and classes still exist.

As discussed earlier, structs do not require heap allocation. Instead, structs are
stored on stacks of memory. This is how structs differ from classes. Figure 3-1 lists
the key differences between structs and classes.

Another important component of C# is enumerations. Similar to classes and
structs, enumerations are used to store values. The next section looks at enumer-
ations in detail.

60 Part II HANDLING DATA

Enumerations
Enumerations are data structures that store values with user-friendly names. This
set of user-friendly named constants is called an enumerator list. The default data
type of an enumerator list is an integer. Each enumerator has an integer base-
type called the underlying-type. This underlying-type of the enumerator list must
contain all the values that might be present in an instance of an enumerator. To
use an enumerator in your code, you first need to declare the enumerator. Enu-
merators are declared using the enum keyword.

<modifier> enum <enumeration name>

{

- - - - - - - - - - - - - - -

}

The modifiers used with enumerations are new, public, private, protected, and
internal. However, enumerations cannot be of the type abstract or sealed. Look
at the following example to understand enumerations.

public enum months

{January, February, March, April, May, June, July, August, September, October,

November, December};

COMPONENTS OF C # Chapter 3 61

FIGURE 3-1 Differences between structs and classes

The previous code creates an enumeration with the name months and declares all
the possible values for months. The first element of the enumeration takes a default
value of 0 and the successive elements take the previous value plus 1.

You can also specify user-defined values for the elements of an enumeration. For
example,

public enum months

{January = 1, February, March, April, May, June, July, August, September, October,

November, December};

In this case, the values of January, February, and March are 1, 2, and 3, respectively.
In this chapter, you have learned about inheritance in classes. To implement
inheritance, C# supports interfaces.

Interfaces
Interfaces are components used to declare a set of methods. However, the data
members of an interface are not implemented. As discussed earlier, C# allows you
to group related data by using structs. However, to group related methods, prop-
erties, indexers, and events, you use interfaces. Interfaces contain only method
declarations; therefore, you cannot create an instance of an interface. However,
you need to declare an interface by using the interface keyword.

interface <interface name>

{

- - - - - - - - - - - - - - - - -

}

Interface declarations do not include a modifier because all interfaces are public

by default. Interfaces cannot be abstract, sealed, virtual, or static. However,
you can use the new modifier with nested interfaces. The new modifier is used
when you need to hide an inherited namespace by the same name as the base
namespace.

In situations where you want the members of a class to exhibit certain features,
you can group these members in an interface. The class can then implement the
interface. The classes in C# can also implement multiple interfaces. Implement-
ing an interface implies that a class is derived from the interface and the class

62 Part II HANDLING DATA

implements all the members of that interface. Consider the following example of
the Employee class that implements two interfaces:

interface Employee

{

- - - - - - - - - - - -

}

interface Salary

{

- - - - - - - - - - - -

}

class Employee: Employee, Salary

{

- - - - - - - - - - - -

}

Therefore, the class Employee implements all the methods declared in the inter-
faces Employee and Salary.

Similar to classes, interfaces can also be inherited. These interfaces are called
explicit base interfaces. C# does not support multiple inheritance of classes. How-
ever, you can achieve multiple inheritance in C# by using interfaces.

In the previous example, if the interface Salary was inherited from Employee, the
interface declaration statement would be:

interface Salary: Employee

{

- - - - - - - - - - - -

}

COMPONENTS OF C # Chapter 3 63

In C#, if a class implements an interface, the class also implicitly implements its base
interfaces.

TIP

By now, you have learned about the basic components of C# that you can use to
write programs in C#. The next sections look at writing a simple program in C#
and then compiling and executing it.

Writing, Compiling, and Executing
a C# Program

Writing a C# Program
Writing a program in C# involves writing the Main() method. Before writing a
program, you need to select the template from the available templates for C#. C#
provides you with a variety of templates, as shown in Figure 3-2.

The execution of a C# program starts with the execution of the Main() method.
Therefore, you need to write the Main() method for each program in C#. The
Main() method is of the type static and returns a value of the type void or int.

If the Main() method is of the type void, it does not return a value. However, a
Main() method of the type integer returns an integer type variable. The follow-
ing is the syntax of a Main() method.

<modifier> static <data type> Main ()

Here, modifier is the access modifier of the Main() method and the data type is
void or integer.

64 Part II HANDLING DATA

FIGURE 3-2 Templates for writing a C# program

The modifier of the Main() method is explicitly written as public. However, it
would not make a difference if any other modifier is specified.

The next code is an example of writing a simple program in C#.

using System;

class Class1

{

public static void Main()

{

Console.WriteLine (“This is a sample program in C#”);

}

}

The code uses the using statement to enable you to use the System namespace in
the program code.The class keyword is then used to declare a class by the name
Class1. Inside the class declaration is the static method Main() of the type void.
The Console.WriteLine statement is used to display the text given in double
quotes (“ ”) in the Console window.

Compiling a C# Program
Once you have written a program, you can compile the program by using the
Build command in the Build menu. The compilation of the program is shown in
Figure 3-3.

COMPONENTS OF C # Chapter 3 65

FIGURE 3-3 Compiling a C# program

Executing a C# Program
After compiling the C# program, you need to execute the program. For executing
a program, click the Start command in the Debug menu.

An example of executing a C# program is shown in Figure 3-4.

Summary
In this chapter, you learned about the components of C#. These components
include classes, namespaces, structs, enumerations, and interfaces. A class is
defined as a data structure used to create objects. The instance of a class is called
an object. Next, you learned about the methods used in classes. A method is a log-
ical section of code that can be used to perform a specific operation. A method
has a return type or can be of the type void.

Another important component of C# is a namespace, which is a container used to
logically group similar classes. C# also includes structs, which are data structures
containing constructors, constants, variables, methods, indexers, properties, oper-
ators, and nested types. You also leaned about enumerations, which are data struc-
tures that store values with user-friendly names. You also learned about interfaces,
which are components used to declare a set of methods. However, the data mem-
bers of the interface are not implemented. Finally, you learned to write, execute,
and compile a simple program in C#.

66 Part II HANDLING DATA

FIGURE 3-4 Executing a C# program

Chapter 4
More about
Components

In Chapter 3, “Components of C#,” you learned about some of the components
of C#, such as classes, namespaces, and interfaces. In Chapter 4, you will learn

about other components provided by C#. These components include arrays, col-
lections, and indexers. This chapter will also cover data conversion by using box-
ing and unboxing. Finally, you will look at the preprocessor directives in C#.

Arrays
We introduced the concept of arrays in Chapter 2, “C# Basics,” in the section
“Arrays.”This section will look at arrays in detail. An array is a data structure used
to store a number of variables and has one or more indices attached to it. Based
on the number of indices associated with arrays, arrays are classified as single-
dimensional arrays and multidimensional arrays.

Single-Dimensional Arrays
A single-dimensional array has an index attached to its elements. You can initial-
ize a single-dimensional array as follows:

<data type> [] <array1> = new <data type> [size];

Here, data type is the type of data stored in the array, and size defines the num-
ber of elements in the array.

Multidimensional Arrays
A multidimensional array has more than one index associated with its elements.
C# supports two types of multidimensional arrays:

◆ Rectangular array

◆ Orthogonal or jagged array

A rectangular array has an equal number of columns in each row. An array of rank
two is called a two-dimensional array. Therefore, a two-dimensional rectangular

68 Part II HANDLING DATA

TEAMFL
Y

Team-Fly®

array will have two columns in each row. Look at the following statement that
declares a two-dimensional rectangular array of three rows.

int [,] Integer = { {2,3}, {3,4}, {4,5} };

The dimension of an array is not specified while declaring an array. However, the
dimension of an array is defined by the number of commas (,) in an array decla-
ration statement. Look at the following example to declare a three-dimensional
array with three rows.

int [, ,] Integer = { {1,2,3}, {2,3,4}, {3,4,5} };

In C#, you can initialize an array by using a for loop.

int [,] Integer = new int [5,10];

for (int x = 0; x < 5; x++)

{

for (int y = 0; y < 10; y++)

Integer [x,y] = x*y;

}

The previous code creates a two-dimensional array with five rows and 10
columns. The variables x and y denote the number of rows and columns, respec-
tively, in the array Integer. The values of x and y change in a for loop. The ele-
ments of the array are initialized by the product of the values of the variables x
and y.

As discussed earlier, C# also supports orthogonal or jagged arrays. An orthogonal
array can have a different number of columns in each row. Therefore, while declar-
ing a jagged array, you specify only the number of rows in the array. Just as in a
rectangular array, you do not use commas to declare an orthogonal array. Instead,
the dimension of a jagged array is specified by the number of square brackets ([]).

int [] [] Integer = new int [2] [];

Integer [0] = new int [2];

Integer [1] = new int [5];

This code declares a two-dimensional array with two rows.The first row contains
two columns and the second row contains five columns.

MORE ABOUT COMPONENTS Chapter 4 69

After declaring an array, you need to perform operations on the array. To do this,
C# provides you with several methods. Some of the commonly used methods in
arrays are discussed in the next section.

Methods in Arrays
An array in C# is an object and, therefore, has its own methods. Now look at some
of the common methods used with arrays.

The Length property is used to determine the size or number of elements in an
array. To find out the number of elements in the one-dimensional array Integer,
you use the following statement:

int I = Integer.Length;

In this code, the Length property derives the size of the array Integer, which is
then stored in the integer variable I.

Similarly, to determine the size of a multidimensional array, you use the
GetLength() method.The GetLength() method returns the number of elements in
a specified dimension of a multidimensional array. The dimension of the array is
specified as a parameter to the GetLength() method.

int I = Integer.GetLength (1);

Here, the GetLength() method is used to find out the size of the second dimen-
sion of the multidimensional array Integer. The number of elements in the sec-
ond dimension of the array are then stored in the integer variable I.

You can use the Reverse() method to reverse the order of the elements of an array.
The Reverse() method is a static method, so the elements of an array that need
to be reversed are sent as a parameter to the Reverse() method.

Array.Reverse (Integer);

This code reverses the order of the elements of the array. The name of the array
is passed as a parameter to the method.

The elements of an array can be sorted using the Sort() method. Similar to the
Reverse() method, the name of the array to be sorted is sent as a parameter to the
method Sort(). The Sort() method arranges the elements of an array in ascend-
ing order. The elements of the array Integer can be sorted as:

70 Part II HANDLING DATA

Array.Sort (Integer);

Consider an example of an array that stores the marks of students. This data is
sorted to know the maximum and minimum marks obtained by the students.

int [] Marks = {70,62,53,44,75,68};

int I = Marks.Length;

Array.Sort (Marks);

for (int x = 0; x < I; x++)

{

Console.WriteLine (x);

}

This code initializes an integer array with the values as specified in the program
code.The code then calculates the size of the one-dimensional array Integer and
stores its value in the variable I. The size of the array is determined using the
Length property. The Sort() method is then used to sort the elements of Integer.
The sorted elements are displayed in the Console window by using the Write-
Line() method of the Console class.

The output of the previous code is:

4 4 , 5 3 , 6 2 , 6 8 , 7 0 , 7 5

In this section, you learned about arrays. An array is a special type of collection in
C#. The next section will look at collections in C#.

Collections
A collection is defined as a group of objects that you can access using the foreach
loop. For example, look at the following code:

foreach (string str1 in collection1)

{

Console.WriteLine (str1):

}

In this code, collection1 is a collection, and the foreach loop is used to access
objects of collection1.

MORE ABOUT COMPONENTS Chapter 4 71

Creating Collections
All collections in C# are implemented by the System.Collections.IEnumerable
interface. You have learned about interfaces in Chapter 3 in the section “Inter-
faces.” Interfaces are components used to declare a set of methods that are never
implemented. There are several predefined interfaces provided by C#. One of
these predefined interfaces is the IEnumerable interface that has a GetEnumerator()
method. This method returns an object of the type enumerator. Therefore, every
collection has one or more enumerator objects associated with it. These objects are
used to access data from the associated collection. You can use the enumerator
object only to read data from a collection, not to modify the collection.

To access the elements of a collection, you create an object that implements the
IEnumerable interface. To initialize this object, the MoveNext() method is called.
This method is used to move across the elements of the collection. When the
MoveNext() method is called for the first time, it moves the enumerator object to
the first element of the collection.

Once the enumerator object is initialized with the first element of the collection,
you can then move across the elements of the collection by calling the MoveNext()
method. The value referred by the enumerator object can be read by the Current
property. This property returns only a reference to the elements of the collection.
Therefore, to get the actual value of the element, you can type cast the reference
to the type of the element. To find out more about collections, consider the fol-
lowing code sample.

public interface IEnumerable

{

IEnumerator GetEnumerator ();

}

public interface IEnumerator

{

bool MoveNext();

object Current

{

get;

}

void Reset();

}

72 Part II HANDLING DATA

This code declares the GetEnumerator() method of the IEnumerable interface.
Next, the MoveNext() method of the IEnumerator interface, which returns a
Boolean type variable, is called.The Current property of the type object is used to
read the current element of the collection. You use the get property to read the
elements of a collection. You can use the Reset() method to reset the value of the
enumerator object.

Working with Collections
After creating a collection, you can work with it.To do this, you can use the inter-
faces provided by C#. Figure 4-1 lists some of the interfaces that you can use to
work with collections.

Each of these interfaces is present in the System.Collections namespace. These
interfaces have several classes and methods associated with them. The ArrayList

class will be discussed in detail.

ArrayList is an important class present in the System.Collections namespace that
you can use to create a dynamically increasing array. The ArrayList class imple-
ments the IList interface. When you create an object of the ArrayList class, C#

MORE ABOUT COMPONENTS Chapter 4 73

FIGURE 4-1 Interfaces used with collections

allocates memory to this object. You can specify the initial size of the ArrayList
object while creating the instance of the ArrayList class by using the new keyword.
You can then add elements to this object. However, if you add more elements to
the ArrayList than its capacity (the number of elements that an object of
ArrayList can hold), C# automatically allocates more memory to the ArrayList
object. Consider the following example to learn about the ArrayList class.

using System;

using System.Collections;

public class ArrayList1

{

public static void Main()

{

ArrayList list1 = new ArrayList();

l i s t 1 . A d d (“ T h i s ”) ;

l i s t 1 . A d d (“ i s ”) ;

l i s t 1 . A d d (“ a ”) ;

l i s t 1 . A d d (“ s a m p l e ”) ;

l i s t 1 . A d d (“ A r r a y L i s t . ”) ;

}

}

This code creates an object of the ArrayList class with the name list1 and then
adds elements to this object by using the Add() method.

Some of the methods present in the interfaces used with collections are discussed
in the following list.

ICollection Interface:

◆ CopyTo(). The CopyTo() method is used to copy the elements of the
ICollection interface to a specified array. You can also specify the starting
index from which you want to copy the elements.

IDictionary Interface:

◆ Add(). The Add() method is used to add an element to the IDictionary
interface. You can specify the key and value of the element that is added.

74 Part II HANDLING DATA

◆ Remove(). The Remove() method is used to delete an element from the
IDictionary interface. You need to specify the key of the element to be
deleted.

◆ Clear(). The Clear() method is used to delete all the elements from the
IDictionary interface.

◆ GetEnumerator(). The GetEnumerator() method is used to return an
IDictionaryEnumerator object for the IDictionary interface.

◆ Contains(). The Contains() method is used to locate a particular ele-
ment in the IDictionary interface. You need to specify the key of the ele-
ment to be located.

IList Interface:

◆ Add(). The Add() method of the IList interface is used to add elements
to the IList interface.

◆ Remove(). The Remove() method is used to delete the first occurrence
of the object from the IList interface.

◆ RemoveAt(). The RemoveAt() method is used to delete the element
present at the index value that you specify.

◆ Clear(). The Clear() method is used to delete all the elements from the
IList interface.

◆ Insert(). The Insert() method is used to insert an element at the speci-
fied index in the IList interface.

◆ IndexOf(). The IndexOf() method is used to find the index value of the
specified element.

ICloneable Interface:

◆ Clone(). The Clone() method is used to create clones of an existing
instance of a class.

Having learned about arrays and collections, you need to learn about indexers.
Indexers are members that allow you to access objects as if they were the elements
of an array.

MORE ABOUT COMPONENTS Chapter 4 75

Indexers
There may be instances where you need to access the elements of a class as an
array. You can do this by using indexers provided by C#. To be able to use index-
ers in classes, you first need to declare an indexer. Indexers are declared as follows:

<modifier> <type> this [parameter-list]

Here, modifier is the indexer modifier and type defines the return type of the
indexer. The this keyword is used as a name of the indexer. Indexers do not have
an explicit name. The parameter-list in the square brackets defines the data type
of the object that has the elements to be accessed.

76 Part II HANDLING DATA

In the indexer declaration statement, you can specify any data type as the index of
the elements to be accessed.

TIP

For example, consider the following sample code:

public int this [int x]

This code declares a public indexer with the return type as integer. Here, the data
type of the object is of the integer type.

C# allows you to define both read-only and write-only indexers.To read and write
data to an indexer, you use the get and set properties, respectively. The get and
set properties do not take any parameter. However, the get property returns the
elements of the type as specified in the indexer declaration statement. The set

property is used to assign values to indexer elements.Consider the following code:

class Class1

{

int variable1, variable2;

public int this [int x]

s e t

{

switch (x)

{

case 0:

variable1 = 10;

b r e a k ;

case 1:

variable2 = 20;

b r e a k ;

}

}

g e t

{

switch (x)

{

case 0:

return variable1;

case 1:

return variable2;

}

}

}

In this code, the switch statements are used to read and write data to the indexer.

In this section, you learned about arrays, collections, and indexers that are used to
store and access variables and objects. However, you also need to learn about type
casting variables into objects and vice versa. To do this, C# provides you with the
techniques of boxing and unboxing.

Boxing and Unboxing
Boxing is a data type conversion technique that is used to implicitly convert a
value type to either an object type or a reference type. When you convert a value
type to an object type, C# creates an instance of the object type and then copies
the value type to that instance.

Consider the following example of an implicit data conversion by using boxing.

class Class1

{

public static void Main ()

MORE ABOUT COMPONENTS Chapter 4 77

{

string string1 = “New String”;

object obj1 = string1;

Console.WriteLine (obj1);

}

}

This code initializes a string type variable with the value “New String” and then
creates an instance obj1 of the type object. The value of string1 is now copied to
the new instance of object and is displayed in the Console window.

In addition to implicit data conversion by using boxing, you can use boxing to
explicitly convert data. Look at the following example of an explicit data conver-
sion by using boxing.

string string1 = “New String”;

object obj1 = (object) string1;

This code uses the cast operator to explicitly convert string1 to an object.

Similar to boxing, unboxing is also a data type conversion technique. Unboxing is
used to explicitly convert an object type to a value type.The technique of unbox-
ing is opposite to that of boxing. However, to unbox a reference type, it is essen-
tial that you first box the value type. Unboxing can be only of the explicit
conversion type. Consider the following example to understand unboxing.

string string1 = “New String”;

object obj1 = string1;

string string2 =(string) obj1;

While unboxing from one type to another, you need to take care that the resul-
tant variable has enough space to store the initial type. For example, if you try to
unbox as byte variable type from an integer variable type, it may result in an error.
In this case, you box a 32-bit integer type value to an 8-bit sbyte type value. Sub-
sequently, you unbox a smaller value to a larger value. Therefore, the following
code generates an error in C#.

int x = 100;

object y = (object) x;

sbyte z = (sbyte) y;

78 Part II HANDLING DATA

TEAMFL
Y

Team-Fly®

In addition to data conversion statements, C# provides you with certain com-
mands that influence the compilation of your code. These commands are called
preprocessor directives.

Preprocessor Directives
In C#, preprocessor directives are commands that are not executed. However, these
commands influence the process of compilation of code. For example, if you do
not want the compiler to execute certain part of the code, you can mark the code
by using the preprocessor directive. To declare a preprocessor directive, use a #
sign, such as:

preprocessor name

Some of the commonly used preprocessor directives provided by C# are discussed
in the following sections.

#region and #endregion
C# provides you with the #region preprocessor directive that you can use to define
a set of statements to be executed as a block. The #endregion directive marks the
end of such a set of statements. For example:

#region Region1

string EmpName, EmpAddress;

int Empcode, Empphone;

e n d r e g i o n

Here, Region1 is the name given to the set of statements marked by the #region
preprocessor directive.

#define and #undef
The #define and #undef preprocessor directives are used to define and remove the
definition of a symbol, respectively. These preprocessor directives are similar to a
variable declaration statement. However, the symbols created by these directives

MORE ABOUT COMPONENTS Chapter 4 79

do not exist. You can use the #define and #undef directives to declare symbols.
However, you cannot create symbols by using these declarations. For example:

#define symbol1

and

#undef symbol1

The first line of code defines a symbol with the name symbol1, and the second line
of code deletes the definition of symbol1.

#if, #endif, #else, and #elif
As discussed earlier, preprocessor directives can be used to prevent a compiler
from executing certain sections of code. Similarly, you can also use certain pre-
processor directives to conditionally compile certain sections of code. To do this,
C# provides you with the #if, #endif, #else, and #elif preprocessor directives.
These directives are commonly called conditional preprocessor directives.

The syntax of an #if-#endif command is as follows:

#if symbol1

- - - - - - - - - - - - - - - - -

e n d i f

Here, symbol1 is a symbol declared by the #define preprocessor directive. The
statements in the #if loop are executed if the symbol following the #if keyword
has been previously declared using the #define command. If symbol1 has not been
previously declared, the compiler reaches the end of #endif statement.

You can also direct the compiler to execute a set of statements if the symbol is not
defined.This can be done using the #elif and #else preprocessor directives.Look
at the following example.

#define Symbol1

class Class1

{

#if Symbol1

Console.WriteLine (“Symbol1 exists”)

80 Part II HANDLING DATA

#error and #warning
The #error and #warning preprocessor directives are used to raise an error and a
warning, respectively. If the compiler encounters the #warning preprocessor direc-
tive, it issues a warning to the programmer by displaying the text in the #warning
statement. The compiler then resumes with compilation of the code. However, if
the compiler comes across an #error preprocessor directive, it generates an error
and stops executing the code. The #error and #warning preprocessor directives are
generally used with the conditional preprocessor directives discussed previously.

Look at the following example to have better understanding of the preprocessor
directives used in C#.

#define Symbol1

using System;

public class Class1

{

public static void Main()

{

#if Symbol1

Console.WriteLine(“Symbol1 is defined”);

e l s e

#warning Symbol1 is not defined

e n d i f

}

}

The output of the previous code is shown in Figure 4-2.

#else

Console.WriteLine (“Symbol1 does not exist”)

e n d i f

}

MORE ABOUT COMPONENTS Chapter 4 81

You can also use nested #if-#elif loops.

TIP

Summary
In this chapter, you learned about arrays and collections. An array is a data struc-
ture used to store a number of variables and has one or more indices attached to
it. A collection is defined as a group of objects that you can access using the for-
each loop. An array is a special type of collection in C#. Next, you learned about
indexers, which are members that allow you to access objects as if they were the
elements of an array.

This chapter also covered techniques to type cast variables into objects and vice
versa. To do this, you used the techniques of boxing and unboxing. Boxing is used
to convert a value type to a reference type. Unboxing does the opposite, by con-
verting a reference type to a value type. Finally, you learned about preprocessor
directives in C#. These directives are commands that are not executed by the C#
compiler. However, these commands affect the process of code compilation.

82 Part II HANDLING DATA

FIGURE 4-2 Ouput of the previous code

Chapter 5
Attributes
and Properties

In Chapter 3, “Components of C#,” you learned about classes and the methods
implemented with classes. In this chapter, you will learn about attributes and

properties that are used to store extra information about classes.

Attributes
Attributes are used to store additional information about methods and classes. You
have extensively used attributes in the previous chapters. For example, the class
and method modifiers that store accessibility information about classes and meth-
ods, respectively, are attributes placed on these entities. Attributes are elements
used with methods, classes, assemblies, and Web services. Attributes can also be
used with arguments of a method.

Attributes are similar to preprocessor directives, as the attributes are not compiled
during the execution of a program. However, attributes are useful because they
provide you with additional information about resources in a program. You can
retrieve this information at run time and can then document the information for
future use. To retrieve the information stored in attributes, you need to create
instances of the Attribute class. You will learn about the Attribute class later in
this chapter.

Declaring Attributes
Attributes are declared using an attribute declaration statement, such as:

[attribute name (attribute parameters)]

This statement includes the name of the attribute, followed by the list of para-
meters in parentheses. You can also define an attribute that does not take any
parameter. The attribute declaration statement is immediately followed by the
declaration of the entities for which the attribute is defined.

All attributes in C# are derived from the Attribute class. The Attribute class is
global to the .NET Framework.This implies that if you declare an attribute, it can

84 Part II HANDLING DATA

be used by any class defined in the .NET Framework. The next section will dis-
cuss the Attribute class in detail.

Attribute Class
You can define an attribute class to store user-defined attributes. The attribute
class that you declare also contains information about the entities on which you
can place the attributes defined in the class. All attribute classes are derived from
the abstract class Attribute. The Attribute class is contained in the System name-
space.

Once an attribute is declared in the attribute class, you can place the attribute on
any entity. An attribute class can be of the following types:

◆ Single-use attribute class. The attributes declared in a single-use
attribute class cannot be placed more than once on the same entity.

[color (“Green”)]

class Car

{

- - - - - - - - - - - - - -

}

◆ Multiuse attribute class. The attributes declared in a multiuse attribute
class can be placed more than once on the same entity. The following
example shows that two values of the attribute color can be placed on
the class Car.

[color (“Green”), color (“Blue”)]

class Car

{

- - - - - - - - - - - - - -

}

As discussed earlier, you can create attributes that take parameters. To perform
this task, you need to define a parameter list in the default constructor of the
attribute class. The attribute class takes two types of parameters. These parame-
ters will now be described in detail.

ATTRIBUTES AND PROPERTIES Chapter 5 85

Attribute Parameters
The parameters used with attributes include the following:

◆ Positional parameters. Parameters that are declared in the public con-
structor of the attribute class are called positional parameters. A positional
parameter of an attribute consists of an attribute argument expression
and is used with the required parameters.

◆ Named parameters. Parameters that are declared in the non-static,
public read-write field or property of an attribute class are called named
parameters. They are used to read and write values to an attribute. You
use named parameters to define optional parameters of an attribute class.

86 Part II HANDLING DATA

If you need to declare both positional and named parameters for the same attribute
class, the positional parameters are followed by the named parameters.

TIP

You can also specify the data types of both positional and named parameters. The
attribute parameter types supported by C# are int, short, long, byte, char, string,
bool, double, float, object, type, and enum. You have learned about these data
types in Chapter 2, “C# Basics,” in the section “Variable Data Types.”

Until now, you have seen that you can define custom attributes and the custom
attribute class. However, C# also contains certain default attributes, as discussed
in the next section.

Default Attributes
The C# compiler explicitly recognizes the default parameters provided by C# and
compiles the program code accordingly. Following are some of the most com-
monly used default attributes.

◆ Obsolete attribute. As the name suggests, the Obsolete attribute is used
to mark an element that you should no longer use in any program code.
The Obsolete attribute is the alias defined for the ObsoleteAttribute
class in the System namespace. To prevent a programmer from using the
code marked obsolete, you can generate an error or a warning by passing

the error or warning as a parameter to the Obsolete attribute. For
example:

[Obsolete (“Do not use this method in the code”), true]

Here, the first parameter contains the error or warning message to be
displayed. The second parameter of the type bool specifies whether an
error or a warning will be generated. The value of true specifies that the
compiler will generate an error and stop the execution of the program.
However, if the value of this parameter is false, the compiler only gen-
erates a warning.

◆ Conditional attribute. The Conditional attribute is used to conditionally
compile a set of statements marked with the Conditional attribute. You
can also mark a method with the Conditional attribute. The method or
set of statements will then be compiled only if a symbol is defined. Con-
sider the following example:

[Conditional (“Symbol1”)]

public void Method1()

{

- - - - - - - - - - - -

}

In this code, the call to the function Method1 will only be made if Symbol1
is defined. Symbol1 can be defined using the #define preprocessor direc-
tive. You have learned about the preprocessor directives available in C#
in Chapter 4, “More about Components,” in the section “Preprocessor
Directives.”

◆ AttributeUsage attribute. The AttributeUsage attribute is used with the
attribute class. This attribute takes parameters that store information
about the attribute class. To know more about the AttributeUsage
attribute, consider the following example:

[AttributeUsage (AttributeTargets.Class | AttributeTargets.Structs,

AllowMultiple = true, Inherited = true)]

public class Attribute1 : Attribute

{

- - - - - - - - - - -

}

ATTRIBUTES AND PROPERTIES Chapter 5 87

The first parameter of the AttributeUsage attribute is AttributeTargets,
which defines the list of entities for which you can declare the attribute.
The AttributeTargets parameter can take more than one value and is of
the type enum. You can also use AttributeTargets.All to make the
attribute applicable to all the entities specified in your program code.

The second parameter of the AttributeUsage attribute is the bool type
parameter named AllowMultiple. If this parameter is set to false, the
attribute class is a single-use attribute class. The true value of this para-
meter indicates that the class is a multi-use attribute class.

The third parameter of the AttributeUsage attribute is another bool type
parameter named Inherited. The Inherited parameter specifies whether
the attribute can be used by the derived classes of the base class for
which the attribute is defined. To make the attribute accessible to the
derived classes, the value of this parameter is set to true. However, the
default value of the Inherited parameter is false, which prevents the use
of the attribute by the derived classes.

The next section will discuss properties, which are used to access an attribute of
an element.

Properties
You have seen that you can declare attributes for all the elements in your program
code. However, to access an object or a class, you need to declare a property mem-
ber for that object. Just like attributes, properties also store information about
objects. In previous discussions, you have been using properties with almost every
object that you defined. For example, the name of an object is its property. How-
ever, properties cannot be used to define storage locations.

Declaring Properties
Properties are declared using the property declaration statement, such as:

<modifier> <type> <property name>

{

- - - - - - - - - - - -

}

88 Part II HANDLING DATA

TEAMFL
Y

Team-Fly®

The property modifier includes access modifiers, such as public, private,
protected, and internal. In addition, the property modifier includes the new, sta-
tic, override, abstract, and sealed modifiers. You can use more than one modi-
fier in a property declaration statement. Because a property is not a variable, you
cannot pass a property as a ref or an out parameter.

The property declaration statement also includes the type of the property, fol-
lowed by its name of the property. Inside the block of the property declaration
statement, you include the accessor declaration statements. These statements are
executable statements that define the actions to be performed while reading and
writing values to an attribute.

Each property that you declare has accessors associated with it. These accessors
define statements that enable you to read and write values to a property. The
accessors used with properties will now be discussed in detail.

Accessors
The accessors used with properties are the get and set accessors. These accessors
are followed by a block of statements to be executed when the accessor is invoked.

◆ get accessor. The get accessor is a method used to read values to a prop-
erty. The get accessor does not take any parameter, but it returns a value
of the data type specified in the property declaration statement. In the
body of the get accessor, you need to include a return or a throw state-
ment. This prevents the control of execution from going out of the body
of the get accessor. The expression that follows the get accessor in the
definition of the property must be of a specific type. You should be able
to implicitly convert this type into the data type specified in the property
declaration statement.

◆ set accessor. The set accessor is a method used to write values to a
property. The set accessor takes a single implicit parameter named value
but does not return any value. Therefore, the set accessor is a void
method with a parameter that specifies the value to be written. The
return statement in the set accessor is not followed by any expression.

ATTRIBUTES AND PROPERTIES Chapter 5 89

To understand the get and set accessors, look at the following example:

public class Car

{

string color:

public string Color1

{

g e t

{

return color;

}

s e t

{

color = value;

}

}

}

This code declares a property Color1 for the class Car. The property declaration
statement contains the get and set accessors. When you need to read data from
the property, the get accessor is implicitly invoked. The get accessor returns a
variable color of the same data type as that of the property. The variable color
stores the value read by using the get accessor.

When you need to write a value to a property, the set accessor is invoked.The set
accessor takes a parameter named value that specifies the value to be written to
the variable color. To write the value Green to the property, you simply need to
write the following statement:

Car car1 = new Car();

car1.color = “Green”;

Based on the type of accessors defined in the property declaration statement,
properties are classified as follows.

◆ read-only property. The property definition of a read-only property
contains only the get accessor.

◆ write-only property. The property definition of a write-only property
contains only the set accessor.

◆ read-write property. The property definition of a read-write property
contains both the get and set accessors.

90 Part II HANDLING DATA

In addition to this classification, properties are classified based on the modifier
specified in the property declaration statement. As discussed earlier, property
modifiers include access modifiers and the new, static, override, abstract, and
sealed modifiers.

Types of Properties
C# supports the following properties based on the type of modifier used in the
property declaration statement.

◆ Static property. A property that is declared with a static modifier is a
static property. A static property cannot be referred by a specific instance
of a class. You cannot use the abstract, override, and virtual modifiers
with a static property.

◆ Instance property. A property that is not declared with an explicit sta-
tic modifier is an instance property. An instance property is referred by a
specific instance of a class and is also known as a non-static property.

Summary
In this chapter, you learned about attributes and properties. Attributes are ele-
ments used with methods and classes to store additional information about them.
Attributes can also be used with the arguments of a method. To retrieve the infor-
mation stored in attributes, you need to create instances of the Attribute class. All
attribute classes are derived from the abstract class Attribute in the System name-
space.

Next, you learned about the default attributes provided by C#. These default
attributes include the Obsolete, Conditional, and AttributeUsage attributes. The
C# compiler explicitly identifies the default parameters provided by C# and com-
piles the program code accordingly.

Finally, you learned about properties that are used to access an attribute of an ele-
ment. Each property that you declare has accessors associated with it. These
accessors define statements that enable you to read and write values to a property.
The accessors used with properties are the get and set accessors.

ATTRIBUTES AND PROPERTIES Chapter 5 91

This page intentionally left blank

Chapter 6
Threads

In this chapter, you will be introduced to threads. In addition, you will learn to
create and work with threads. This chapter introduces you to the Thread class,

which is a .NET base class.This class helps you to create and manipulate threads
in applications. This chapter also discusses the states and priorities of threads.
Finally, the chapter introduces you to the synchronization of variables across
threads.

Introduction to Threads
Threads are a well-known concept to C and C++ programmers. A thread is a basic
unit of the execution of a program. In other words, a thread is the smallest unit to
which the operating system allocates processor time. A thread decides the
sequence of execution of a program and is very useful for executing complex appli-
cations or even multiple applications simultaneously. In addition, you can have a
single application containing multiple threads. When the C# compiler executes a
multithreaded application, several threads are executed simultaneously. This
makes the execution of a complex application less time-consuming.

In a multithreaded application, you can execute multiple activities simultaneously.
For example, consider a situation in which you execute a print command for print-
ing 100 pages. Printing 100 pages takes a substantial amount of time. Therefore,
you can have two threads working simultaneously on the system. One thread can
be used for printing and the other thread can be used to perform any other activ-
ity, such as working in a Word document or a spreadsheet.

All the applications that you create involve one or more threads. However, there
are some situations in which threads can be used very effectively. Following are
examples of some of these situations.

◆ As discussed earlier, you use threads to perform operations that can be
time-consuming. In such cases, you can create two threads, a worker
thread and a user thread. The worker thread performs time-consuming
operations, and the user thread manages user interactions. For example,
you can create a worker thread to print 100 pages while the user thread
enables you to work in a Word document.

94 Part II HANDLING DATA

◆ You can also use threads to transfer data over the network. For example,
you need to transfer volumes of data from one branch office to another.
In this case, you can create a thread to connect to the server in the other
branch.

◆ You also use threads when you need to execute an application that per-
forms more than one operation. For example, when a data entry operator
enters data into a database, this data should be updated automatically in
the master database. In this case, you can have a worker thread and a
user thread. The user thread accepts the input from the user while the
worker thread updates the records in the master database.

You have seen that using threads in your application allows you to perform mul-
tiple activities simultaneously. However, extensive use of threads in a single appli-
cation may even deteriorate the performance of your application. To understand
this, let us look at the process of execution of threads. Executing threads requires
the use of several operating system resources.These resources execute a thread for
a very short period of time, known as the time slice of the thread. After executing
the thread for this time slice, the Windows operating system chooses another
thread to execute.This process of executing multiple threads for a given time slice
is called preemptive multitasking. If you have multiple threads in a single applica-
tion, the operating system spends time switching between various threads after a
time slice, which may in turn reduce the performance of the application.

By now, you know that your application can have as many threads as required.The
next section looks at creating threads for your application.

Creating Threads
A thread that you create is an instance of the Thread class. The Thread class is a
class in the .NET Framework class library and is located in the System.Threading
namespace. Therefore, to create an instance of the Thread class, you first need to
import the System.Threading namespace. You can then create the object of the
Thread class that represents a thread. You can continue to add threads to your
application by simply creating multiple instances of the object of the Thread class.

To create a thread, you need to declare an instance of the Thread class and provide
it with the details of the method with which the execution of the thread starts. To
do so, you can use the public void delegate named ThreadStart() of the Sys-
tem.Threading namespace. You have learned about delegates in Chapter 1,
“Overview of the .NET Framework,” in the section “Delegates.”

THREADS Chapter 6 95

Consider the following example.

using System;

using System.Threading;

class Class1

{

public void Method1()

{

Console.WriteLine(“Method1 is the starting point of execution of the thread”);

}

public static void Main()

{

Class1 newClass = new Class1();

Thread Thread1 = new Thread(new ThreadStart(newClass.Method1));

}

}

Here, an instance of the Thread class, Thread1, is created. The ThreadStart() del-
egate specifies the name of the method, Method1, with which the execution of
Thread1 starts. Method1 is a public void function defined in Class1. However, cre-
ating an instance of the Thread class does not make the thread functional. To start
the thread, you need to call the Start() method. The following code shows the
syntax for calling the Start() method.

T h r e a d 1 . S t a r t () ;

96 Part II HANDLING DATA

Because the threads that you define can be used across applications, it is advisable
that you give a relevant name to your thread.This enables other programmers to
reuse the functionality provided by your thread. To give a relevant name to your
thread, you can change the value of the Name property of the thread.

TIP

The following code defines a worker thread for updating the records in the mas-
ter database. It will give the thread a meaningful name, such as Update Records
Thread.

Thread Thread1 = new Thread(new ThreadStart(newClass.Method1));

Thread1.Name = “Update Records Thread”;

The previous code snippet creates an instance of the Thread class with the name
Thread1 and then assigns a name Update Records Thread to the thread.

In addition to the Name property that is used to give a meaningful name to a
thread, you can use properties to know the status of the executing threads.These
properties are defined in the Thread class of the System.Threading namespace.

◆ IsAlive property. The IsAlive property is used to specify that the execu-
tion of a thread is complete or the thread is still working. The IsAlive

property returns a Boolean value of true for the thread that is working
and false for the thread that is not executing.

◆ ThreadState property. The ThreadState property indicates the execution
status of a thread. In other words, it returns a value specifying whether
the execution of the thread has started or not. You will learn about the
states of a thread later in this chapter.

Aborting Threads
You have learned how to create and execute a thread. However, sometimes you
may need to stop a running thread. Consider the same old example in which you
executed a print command for 100 pages. In this case, a thread is executed to print
the required pages. If you need to print some other urgent page, you need to stop
the previous print command or, in other words, abort the thread that is printing
100 pages. This section discusses aborting a running thread.

C# provides you with a base cl a s s , the T h r e a d cl a s s , that you can use to perf o rm
s eve ral opera t i ons with thre a d s . The T h r e a d class contains seve ral pre d e f i n e d
methods that enable you to work with thre a d s . To abort a thre a d , you use the
A b o r t () method of the T h r e a d cl a s s . The A b o r t () method has the foll owing syn t a x :

T h r e a d 1 . A b o r t () ;

Here, Thread1 is the instance of the Thread class. The Abort() method does not
take any parameters. When you call the Abort() method, the C# compiler might
not kill the thread instantaneously. To understand why the C# compiler takes time
to kill the thread, you first need to understand how the Abort() method is
executed.

THREADS Chapter 6 97

When you call the Abort() method of the Thread class, the method throws the
ThreadAbortException exception. In addition to the base class that is used to
handle threads, C# provides base classes to generate exceptions. The Thread-

AbortException is an exception of the ThreadAbortException class. C# provides
you with no mechanism to handle this exception. In other words, if you try to
abort the thread that is being executed inside the try block, the C# compiler first
executes any associated finally blocks before aborting the thread.

As you have seen, .NET provides you with a mechanism for safer killing of
threads compared with the earlier environments that killed the targeted thread
instantly. Having learned about creating and aborting threads, the next section
will continue the discussion about working with threads.It will discuss the Join()
method that allows you to wait for a thread to finish execution or to be killed by
the Abort() method.

Joining Threads
C# allows you to wait for a thread to terminate before the C# compiler proceeds
with the execution of the other thread. To do so, the Thread class contains a Join()
method, which takes the following syntax:

T h r e a d 1 . J o i n () ;

The previous statement calls the Join() method of the Thread class to wait for
Thread1 to terminate. If you do not know the time the thread takes to terminate,
you can also specify the maximum time for which you want the C# compiler to
wait before proceeding with the execution of the next thread. If the maximum
time limit is not specified, the compiler waits for the thread to terminate on its
own.

The Join() method is often used with the Abort() method. As explained earlier,
when you call the Abort() method, the thread is not terminated instantly if it is in
the middle of the try block. This implies that you need to wait for the finally
statements to be executed before the thread terminates. However, you might not
know the time the C# compiler takes to execute the finally block, and you are
not ready to wait for a long period of time. Therefore, you can call the Abort()
method followed by the Join() method to terminate the thread.

98 Part II HANDLING DATA

TEAMFL
Y

Team-Fly®

You have learned how to abort and join a thread. In some cases, you might only
need to stop or suspend the execution of a thread for a specified time. The fol-
lowing section discusses suspending threads.

Suspending Threads
You have learned about aborting threads. When a thread is aborted, you cannot
resume the execution of the thread. However, when you suspend a thread, you can
resume its execution whenever required.To suspend the execution of a thread, you
use the Suspend() method. The Suspend() method is another method of the
Thread class and does not take any parameters. The syntax of the Suspend()
method is:

T h r e a d 1 . S u s p e n d () ;

The Suspend() method does not kill the thread permanently. It just stops the exe-
cution of the thread until it is resumed. Therefore, when you need to restart the
execution of a thread, you can call another method of the Thread class,
the Resume() method. The Resume() method starts executing the thread from the
point at which the execution was suspended. The syntax of the Resume() method
is shown in the following code.

T h r e a d 1 . R e s u m e () ;

THREADS Chapter 6 99

You can only resume the execution of a suspended thread.

TIP

Similar to the Abort() method, the Suspend() method does not instantly stop the
execution of the targeted thread. It waits for the thread to reach a safe point before
suspending it.

You can also call the Suspend() and Resume() methods from an executing thread.
Therefore, a thread can call the Suspend() method to suspend itself or another
thread.

For example, if thread1 suspends itself, another thread needs to call the Resume()
method to restart its execution. However, if thread1 suspends another thread,such

as thread2, the execution of thread2 is not resumed until thread1 calls the
Resume() method on thread2.

In addition to the Suspend() method, you can block the execution of a thread by
calling the Sleep() method of the Thread class.

Making Threads Sleep
The Thread class contains another method, called the Sleep() method, to stop the
execution of a thread for a specified time. You can specify the time for which you
want to stop the execution of a thread by passing the time as a parameter to the
Sleep() method. The time is specified in milliseconds. Consider the following
example that puts the thread to sleep for 2 seconds.

T h r e a d . S l e e p (2 0 0 0) ;

As you can see in the previous code, the Sleep() method is called by the class itself
and not the instance of the class.

You may wonder how the Sleep() method is different from the Suspend()
method. Both of these methods are used to stop the execution of a thread for some
time. You have seen that the Suspend() method does not instantly stop the execu-
tion of the thread. It waits for the thread to reach a safe point before stopping its
execution. However, if you need to block the execution of a thread immediately,
you can do this by calling the Sleep() method instead of the Suspend() method.

Figure 6-1 shows the difference between the Sleep() and Suspend() methods.

100 Part II HANDLING DATA

FIGURE 6-1 Differences between the Suspend() and Sleep() methods

Until now, you have learned about various methods that can be used with threads.
To understand more about these operations, here is a simple thread with opera-
tions performed on it.

using System;

using System.Threading;

class Class1

{

public void Method1()

{

Console.WriteLine(“Method1 is the starting point of execution of the thread”);

}

public static void Main()

{

Class1 newClass = new Class1();

Thread Thread1 = new Thread(new ThreadStart(newClass.Method1));

Thread1.Name = “Sample Thread”;

Thread1.Start ();

Console.WriteLine (“The execution of Sample Thread has started.”);

T h r e a d 1 . A b o r t () ;

}

}

The previous code imports the System and System.Threading namespaces in your
program code. The code then creates a class with the name Class1 and declares a
method Method1 in the class.This method is specified as the starting point of exe-
cution of a thread named Sample Thread, which is an instance of the Thread class.
Next, an instance of the ThreadStart delegate is created that takes Method1 as the
parameter. The instance of the Thread class is used to call the methods of the
Thread class that perform operations on Sample Thread.

The output of the previous code is shown in Figure 6-2.

THREADS Chapter 6 101

When you call the methods of the Thread class, the state of the thread changes.
For example, before you start a thread, the thread is not running. After you call
the Start() method, the state of the thread changes to Running. This state changes
further when you call the Suspend() or Abort() methods. In other words, when-
ever you perform an action on the thread, its state changes. The next section dis-
cusses the various states of a thread in detail.

Thread States
The change in the state of a thread results from the action performed on the
thread. In other words, when you call a method of the Thread class, it changes the
state of the thread. Figure 6-3 shows the effect of various methods of the Thread
class on the states of a thread.

You have seen that you can suspend, sleep, or abort a running thread. However, if
you do not want any other user to change the state of your thread, you can set the
priority of your thread to Highest. The following section discusses thread priori-
ties in detail.

Thread Priorities
The thread priorities define the sequence of executing various threads on a sys-
tem. For example, if you have two threads running on a system, the thread with
higher priority is executed first. C# allows you to set different priorities for dif-
ferent threads running simultaneously on your system.

102 Part II HANDLING DATA

FIGURE 6-2 Output of the previous code

The priority levels supported by C# are as follows:

◆ Highest. A thread with the Highest priority is executed first. When the
C# compiler finds the thread with the Highest priority, it stops executing
all other threads until the thread with the Highest priority is executed.

◆ AboveNormal. A thread with the AboveNormal priority is executed before
any other threads except the thread with the Highest priority.

◆ Normal. A thread with the Normal priority is third in the priority list. This
thread is given a time slice according to the process of preemptive multi-
tasking.

◆ BelowNormal and Lowest. A thread with the BelowNormal or Lowest prior-
ity is executed only if the operating system does not encounter any other
thread with a higher priority. You normally assign these priority levels to
threads whose execution is not important to the system.

All of the priority levels mentioned here are a part of an enumeration object
known as ThreadPriorityEnumeration.

You can see that the priority levels can be set to define the sequence of execution
of threads. However, the priority levels that you set are only applicable to the

THREADS Chapter 6 103

FIGURE 6-3 Effect of methods on the states of a thread

threads of a single process. For example, if you have a multithreaded application
with five threads, the sequence in which these threads will be executed is affected
by the priority levels. A thread with a higher priority does not affect the execution
of threads of another application running on the system.

You can change the priority of a thread by specifying the value in the ThreadPri-
ority property of the thread. To understand the syntax of the ThreadPriority
property, look at the following example:

Thread Thread1 = new Thread(new ThreadStart(newClass.Method1));

Thread1.Priority = ThreadPriority.Highest;

The previous code sets the priority of Thread1 as Highest. This stops the execu-
tion of all the threads with a lower priority level until Thread1 is executed.

104 Part II HANDLING DATA

You should be very careful while setting priorities because specifying a priority level
of Highest stops the execution of all the threads running on a system.

CAUTION

You have seen that by specifying the priority level of threads, you can set the
sequence of executing multiple threads on your system. In addition to setting the
priority levels, you need to synchronize multiple threads.This ensures smooth and
bug-free execution of multiple threads simultaneously. The next section will help
you understand the concept of synchronization so that the operating system does
not encounter any problems while executing multithreaded applications.

Synchronization
As the name suggests, synchronization helps you to synchronize the use of vari-
ables and objects accessed by multiple threads running on your system. In simpler
words, synchronization ensures that a variable can be accessed by only one thread
at a time. Therefore, by preventing multiple threads from accessing a single vari-
able, you can ensure bug-free execution of the threads on your system.

To understand the need for synchronization, consider a scenario in which two
threads with the same priority, thread1 and thread2, are running simultaneously
on a system. When the first thread is executed in its time slice, it may write some
value to a public variable, variable1. However, in the next time slice, the other

thread might try to read or write a value to variable1. This situation can result in
an error if the process of writing a value to variable1 is not completed in the first
time slice. When another thread reads this variable, it may read the wrong value,
resulting in an error. This situation can be avoided by synchronizing the use of
variable1 by only one thread.

C# provides you with the lock keyword to synchronize the use of variables and
objects. The lock statement takes the name of the object or variable to be locked
as a parameter by the lock keyword. The name of the variable is enclosed in
parentheses as shown in the following example:

lock (variable1)

{

- - - - - - - - - - - -

}

Here, variable1 is the name of the variable to be locked by a thread. The state-
ments to be executed after placing a lock on variable1 are enclosed in curly braces
following the lock statement. The lock statement locks the variable so that no
other thread can access it for the time the lock is placed on the variable. To do
this, the lock statement places an object known as mutual exclusion lock or mutex
on the variable. No other thread is given access to a variable for the time mutex is
placed on the variable.

Therefore, if thread1 places a lock or mutex on variable1, the operating system
puts thread2 on sleep for the time mutex is placed on variable1.

By now, you know that synchronization is essential to prevent bugs in your mul-
tithreaded application. However, excessive synchronization might reduce the per-
formance of your application. Now, look at the problems associated with the use
of excessive synchronization.

◆ When you place a lock on an object, no other thread is allowed to access
this object. Therefore, any other thread that needs access to this object
waits for the other thread to release the lock. If there are several threads
waiting for the thread to release the lock, the overall performance of the
application is affected. The performance of the application can be bal-
anced to some extent by placing locks effectively. The lock on the object
is placed for the time the compiler executes the statements in the lock
block. Therefore, if you write minimum code in the lock statement, you
can minimize the effect of placing a lock on a variable by an application.

THREADS Chapter 6 105

◆ Placing and releasing a lock on an object is a resource-intensive activity
and adds to the overhead cost of the application.

◆ Another critical problem that occurs while synchronizing objects is dead-
locking. Consider a situation in which two different objects are locked by
two different threads. Now, each thread wants to access the objects
locked by the other. If thread1 wants to access object1 that is locked by
thread2, thread1 enters the sleep mode for the time thread2 releases the
lock on object1. However, this never happens, because thread2 itself
enters the sleep mode while trying to access object2, which is held by
thread1. Both the threads go to sleep while waiting for the other to
release its lock. This situation results in a deadlock because even the
operating system cannot release the lock on the objects. The locks on
object1 and object2 can only be released by thread2 and thread1, respec-
tively. Therefore, the application hangs.

106 Part II HANDLING DATA

Despite the problems that are discussed here, locks are required on objects in a
multithreaded environment.Therefore, you need to be careful while synchronizing
the objects in applications.

TIP

Summary
In this chapter, you learned that a thread is a basic unit of execution of a program.
In other words, a thread is the smallest unit to which the operating system allo-
cates processor time.Threads allow you to execute multiple applications simulta-
neously and make the execution of a complex application simple and less time
consuming. Therefore, you can create threads for your application. A thread that
you create is an instance of the Thread class.The Thread class is a .NET base class
located in the System.Threading namespace. You can then create the object of the
Thread class that represents a thread.

In addition to creating threads, you learned about performing operations on
threads that include aborting, sleeping, suspending, and resuming threads. In this
chapter, you also learned about various states and priorities of threads.The change
in the state of a thread is a result of the action performed on the thread. The

thread priorities supported by C# are Highest, AboveNormal, Normal, BelowNormal,
and Lowest. All of these priority levels are a part of an enumeration object known
as ThreadPriorityEnumeration. Finally, you learned about synchronization, which
ensures that a variable can be accessed by only one thread at a time. By prevent-
ing multiple threads from accessing a single variable, you can ensure bug-free exe-
cution of the threads on your system.

THREADS Chapter 6 107

This page intentionally left blank

TEAMFL
Y

Team-Fly®

PARTIIIP rofessional Project 1

This page intentionally left blank

Project 1
C reating a
C u s t o m e r
M a i n t e n a n c e
P ro j e c t

P roject 1 Overv i e w
Now that you have looked at the basics of C#, you can move on to developing
projects by using C#. Beginning with this chapter, you will learn more about
using C# and its features through projects. These projects will help you to get
a better understanding of the features of C#, which will enable you to apply
these features in real-life projects.

In this project, you will learn to create a customer maintenance system for
CarKare, Inc. This involves creating a Windows application that contains
Windows forms. In addition, you will learn to connect these Windows forms
to an underlying database such that the Windows forms display data from the
SQL database. Finally, you will learn to create crystal reports that provide you
with an analysis of the customer data and the data of the job done by a worker
in a month.

You will learn to create the Windows application throughout this project. In
the next chapter, I will discuss the case study and design of the Windows
application.

Chapter 7
Project
Case Study

You have looked at the basics of C#; you will now move on to developing pro-
jects by using C#. Beginning with this chapter, you will learn more about

using C# and its features through projects. These projects will help you to get a
better understanding of the features of C#, which will enable you to apply these
features in real-life projects.

The first project will be to develop a Customer Maintenance project. This chap-
ter covers the case study and design of the project.

Case Study
CareKar, Inc. is a car maintenance company in Atlanta. The workers of the com-
pany get their total compensation as a fixed salary added to allowances that are
based on the work they do in a month. In addition, the company gives discounts
to their regular customers. Don Burton, the accounts manager of the company,
finds it difficult to calculate the gross salary of a worker at the end of a month.
Therefore, Don has decided to track the work done by a worker on a daily basis.
This would enable him to calculate the allowances given to workers at the end of
a month. In addition, he has also decided to track the visits of a customer on a
monthly basis. This data would enable him to calculate the discount to be given
to a customer.

As a solution to Don’s problem, the company has decided to create databases that
store information about workers, customers, work done by each worker, and con-
sumable products. Based on the data in the databases, the company will then gen-
erate reports to analyze the data.The analysis of the data in the crystal reports will
enable Don to find the work done by a worker in a month and, therefore, calcu-
late the worker’s gross monthly salary. You will learn to create the Windows forms
and crystal reports in the following chapters.

This project covers the creation of a Windows application for CareKar, Inc.How-
ever, before proceeding with the actual creation of the project, you must first
understand the stages of a project. The following sections discuss the various
stages in the development of a project in detail.

114 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

Project Life Cycle
The development life cycle of a project involves three phases:

◆ Project initiation

◆ Project execution

◆ Project deployment

Project development actually starts when the need to develop or significantly
change an existing system is identified. In this case, the need is to store, organize,
and analyze the data.

After the business need is identified, the different approaches to meet it are
reviewed for feasibility and appropriateness. An effective approach would be to
create databases to store the data.The data in the databases can then be analyzed
by displaying selective data or by grouping the data in a crystal report. I’ll now dis-
cuss the phases of a project life cycle in detail.

In the project initiation phase, a comprehensive list of tasks to be performed is pre-
pared, and responsibilities, depending upon individual skills, are assigned to team
members. I will be discussing the tasks that need to be performed when I proceed
with the coding of the application.

In the project execution phase, the development team develops the application.This
phase consists of the following stages:

◆ Analyzing requirements

◆ Creating high-level design

◆ Creating low-level design

◆ Constructing

◆ Integration and testing

◆ User acceptance testing

The final stage in the project life cycle is the project deployment phase. In this stage,
the application is deployed at the client location, and support is provided to the
client for a specified period. In addition, any bugs identified in the application are
debugged. This phase consists of the following two stages:

◆ Implementation

◆ Operation and maintenance

PROJECT CASE STUDY Chapter 7 115

The following sections discuss each of these stages in detail. To start with, I will
discuss the stages of the project execution phase.

Analyzing Requirements
Analyzing requirements is the process of determining and documenting a cus-
tomer’s needs and constraints. Subsequently, based on these requirements, you
create a plan for developing the application. The process of analyzing require-
ments often starts with a problem statement given by a customer or the customer’s
representative. Analysts organize all the information gathered from the customer
and analyze the customer’s needs. Finally, they prepare a written description of the
customer’s problem and define a possible solution.

In this case, the problem statement, as stated by Don Burton, is “CareKar, Inc.
needs to analyze data on jobs done by a worker and visits made by a customer.”
On analyzing the problem statement, the analysts defined the following list of
problems faced by CareKar, Inc.

◆ The company needs to create databases to store and organize data.

◆ The company needs to analyze the data.

◆ Based on the analysis of the data, the company needs to find means to
serve its customers better and more efficiently.

◆ Based on the analysis of the data, the company needs to calculate the
gross salary of an individual worker.

As a solution to the problems faced by the customer, the analysts proposed that a
Windows application with the following features be developed for CareKar, Inc.

◆ The application communicates with the databases and displays the data
in the databases in the Windows forms.

◆ The application includes a means to create crystal reports that are used
for analysis of the data.

◆ The application is then deployed at the client site.

116 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

High-Level Design
The second stage in the project execution phase is to develop a high-level design.
In the high-level design phase, the external characteristics of the system, such as
interfaces, are designed. In addition, in this phase, the operating environment and
various subsystems and their input and output are decided. In this stage, features
that require user input or approval from the client are documented, and client
approval is obtained for the same. These documents include the functional spec-
ifications document of the application, which is presented in a simple language to
the client. The functional specifications include the description of the databases,
forms, and reports that will be included in the application. This application will
be called Customer Maintenance Project.

This project includes Windows forms that display data from an underlying data-
base, CMS (Customer Maintenance System). The following section discusses the
database design.

Database Design
The first step in the development of a project is to design a robust database.
Before you design a database, it’s a good idea to recapitulate the concepts related
to a database.

Why do you need a database? A database is a repository of data,a place where you
can store data and extract it whenever required. You can store and extract data
from a database in various ways. One of the ways is by using SQL (structured query
language) statements. The following section discusses some of the basic SQL
statements used to create and modify the data in a database.

The SQL Statements
SQL is an ANSI (American National Standards Institute) standard for accessing
database systems. SQL statements can be used to retrieve and update data in a
database. SQL works with databases such as Microsoft Access, DB2 (Database 2),
Informix, Microsoft SQL Ser ver, Oracle, Sybase, and many others.

Databases contain tables, which contain the data in the form of rows and
columns. Table 7-1 shows an example of how data is stored in tables.

PROJECT CASE STUDY Chapter 7 117

Table 7-1 D i s p l aying Data in a Sales Ta bl e

C i t y S a l e s D a t e

New York 23600 Jul-14-2002

Atlanta 16400 Jul-12-2002

Seattle 17300 Jul-11-2002

Chicago 19700 Jul-14-2002

San Francisco 24200 Jul-14-2002

In this table, City, Sales, and Date are table columns. The rows contain five
records each about sales at five cities on a particular date.

You can extract this data from the database by using SQL query statements. The
next section will revise basic SQL query statements.

The Select Statement
A database can be queried using SQL Select statements. Here is an example of a
simple SQL Select statement.

Select * from Sales

This statement extracts all the records from the Sales table.The syntax of an SQL
Select statement is as follows:

Select [select-list] from [table name]

You can further modify the Select statement to extract data from the table based
on a condition by using the where keyword. For example, consider that you need
to only view the sales on July 14, 2002. The following SQL statement provides
the required output.

select city, sales from Sales where date = ‘jul-14-2002’

The syntax for the Select statement where you extract data based on a condition
is as follows:

Select [select-list] from [table name] where [search condition]

The search operators that you can use with the where keyword are described in
Table 7-2.

118 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

TEAMFL
Y

Team-Fly®

Table 7-2 O p e r a t o rs Used in a Search Condition

O p e r a t o r D e s c r i p t i o n

= Equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

<> Not equal

Between Between an inclusive range

Like Search for a pattern in a column

Table 7-3 shows the Students table that contains information about students.

Table 7-3 The Students Ta bl e

F i rs t N a m e L a s t N a m e E m a i l A dd r e s s D O B C i t y

Sandra Lewis slewis@aol.com Jan-04-1971 Atlanta

Elaine Thorn ethorn@yahoo.com Oct-27-1979 Chicago

George Thomas gthomas@freemail.com Aug-25-1976 Atlanta

Simon Watson swatson@fastmail.com Mar-18-1978 Memphis

Larry Gates lgates@mymail.com Jun-12-1981 Atlanta

Michael Brown mbrown@aol.com Feb-02-1972 Memphis

Sarah Judd sjudd@zipmail.com Oct-04-1982 Chicago

Joshua Johnson jjohnson@slowmail.com Apr-24-1977 Detroit

Daniel Allison dallison@aol.com Dec-07-1975 Chicago

Nicholas Harvey nharvey@buzz.com Mar-13-1979 Detroit

Laura Hansen lhansen@hotmail.com Sep-12-1973 Memphis

Now, I’ll create some SQL statements that will refresh your memory. To select
only the students who live in Chicago, modify the Select statement, as follows:

Select * from Students where city = ‘Chicago’

PROJECT CASE STUDY Chapter 7 119

Table 7-4 displays the result of the previous query.

Table 7-4 Students Who Live in Chicag o

F i rs t N a m e L a s t N a m e E m a i l A dd r e s s D O B C i t y

Daniel Allison dallison@aol.com Dec-07-1975 Chicago

Elaine Thorn ethorn@yahoo.com Oct-27-1979 Chicago

Sarah Judd sjudd@zipmail.com Oct-04-1982 Chicago

Consider the following SQL statement. The statement returns all rows with last
names ending with n.

Select * from Students where LastName like ‘%n’

Table 7-5 displays the result of the previous query.

Table 7-5 Students Whose Last Name Ends With N

F i rs t N a m e L a s t N a m e E m a i l A dd r e s s D O B C i t y

Daniel Allison dallison@aol.com Dec-07-1975 Chicago

Elaine Thorn ethorn@yahoo.com Oct-27-1979 Chicago

Joshua Johnson jjohnson@slowmail.com Apr-24-1977 Detroit

Laura Hansen lhansen@hotmail.com Sep-12-1973 Memphis

Michael Brown mbrown@aol.com Feb-02-1972 Memphis

Simon Watson swatson@fastmail.com Mar-18-1978 Memphis

To alphabetically sort names of all students between Joshua and Michael, use the
following SQL statement.

Select * from Students where FirstName between ‘Joshua’ and ‘Michael’

The result of the previous statement is displayed in Table 7-6.

120 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

Table 7-6 Students Whose First Name Is between Joshua and Mich a e l

F i rs t N a m e L a s t N a m e E m a i l A dd r e s s D O B C i t y

Joshua Johnson jjohnson@slowmail.com Apr-24-1977 Detroit

Larry Gates lgates@mymail.com Jun-12-1981 Atlanta

Laura Hansen lhansen@hotmail.com Sep-12-1973 Memphis

Michael Brown mbrown@aol.com Feb-02-1972 Memphis

Similarly, you can also display only specific columns. For example, to extract only
FirstName, LastName, and City, you can use the following Select statement.

Select FirstName, LastName, City from Students

The result of the above SQL statement is shown in Table 7-7.

Table 7-7 List of First Names, Last Names, and Cities

F i rs t N a m e L a s t N a m e C i t y

Daniel Allison Chicago

Elaine Thorn Chicago

George Thomas Atlanta

Joshua Johnson Detroit

Larry Gates Atlanta

Laura Hansen Memphis

Michael Brown Memphis

Nicholas Harvey Detroit

Sandra Lewis Atlanta

Sarah Judd Chicago

Simon Watson Memphis

PROJECT CASE STUDY Chapter 7 121

The Insert Statement
The Insert statement inserts a new row in a table. For example, to insert a new
record in the Students table, you can use the following SQL statement.

Insert into Students values (‘Sarah’, ‘Lee’, ‘slee@yahoo.com’, ‘Mar-22-1977’,

‘ D e t r o i t ’)

The preceding SQL statement inserts a new record in the Students table with the
values mentioned in the SQL statement.

You can also insert data into specific columns. For example, to add only first and
last names, you can use the following Insert statement.

Insert into students (FirstName, LastName)

values (‘Jessica’, ‘Parker’)

The Update Statement
The Update statement modifies the data in a table. For example, consider that
Laura Hansen has changed her last name to Brown. The following update state-
ment can help you make the change:

Update Students set LastName = ‘Brown’ where FirstName = ‘Laura’ and LastName =

‘ H a n s e n ’

The Delete Statement
The Delete statement removes some or all rows from a table. For example, in the
Students table, to delete the records of all students in Detroit, you use the follow-
ing SQL statement:

Delete from Students where City = ‘Detroit’

The Create Statement
The Create statement can be used to create a database, a table in a database, and
indexes in a table.For example, the following Create statement can be used to cre-
ate a database containing customers.

122 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

Create database Customers

The statement to create a table is slightly different from the Select statement.
Consider a situation where you want to create a table named Customers with five
columns: cust_no, cust_name, cust_addr, cust_phone, and cust_email. To create
the table Customers, you need to use the following SQL statement:

Create table Customers

(cust_no char(4),

cust_name char(25),

cust_addr varchar(50),

cust_phone char(12),

cust_email char(20))

The first step toward creating a database is to create the design of a database. The
following section discusses the fundamentals of a database design.

Primary and Foreign Keys
To access data stored in a table, you need a way to identify each row stored in the
table. For example, consider that George Thomas has changed his e-mail address
to georget@aol.com and you need to update the same in the Students table. You
can execute the following SQL statement to update the information:

Update Students set EmailAddress = ‘georget@aol.com’

where FirstName = ‘George’ and LastName = ‘Thomas’

In this case, the FirstName and LastName columns identify the rows uniquely in the
Students table. However, this is not the best way to identify a row because more
than one person could have the same combination of the first name and the last
name. Therefore, the identifier must uniquely identify all data in the table. In the
case of the Students table, you can create another column, StudentID, that will be
unique for every row. Such a unique identifier is called a primary key.

Consider the Customers table discussed earlier. It has five columns: cust_no,
cust_name, cust_addr, cust_phone, and cust_email. In this table, cust_no is the best
column to be set as the primary key. This is because this key is unique for each

PROJECT CASE STUDY Chapter 7 123

record and can, therefore, identify each row uniquely. You can make a column a
primary key when creating the table in the following manner:

Create table Customers

(cust_no char(4) primary key,

cust_name char(25),

cust_addr varchar(50),

cust_phone char(12),

cust_email char(20))

A foreign key is a column or a combination of columns that creates a link between
two tables. Adding the primary key column of one table to another table creates
a relationship between the tables. This primary key column becomes the foreign
key in the other table.

Consider the Orders table with the columns order_no, order_price, order_quan-
tity, and order_date. To process an order, a customer who ordered the goods must
be tracked. To do this, you need to add the cust_no column to the Orders table.
The cust_no column,which is the primary key in the Customers table, becomes the
foreign key in the Orders table. You can create a foreign key at the time of creat-
ing the table in the following manner:

Create table Orders

(order_no char(4) primary key,

order_price int,

order_quantity int,

order_date datetime,

cust_no char(4) not null

references Customers (cust_no))

Referential Integrity
You learned that foreign keys are used to establish relationships. However, you
may be wondering why you need to establish these relationships.To appreciate the
need for creating relationships between tables, consider the following scenario.
Table 7-8 displays the records in the Orders table and Table 7-9 displays the
records in the Customers table.

124 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

Table 7-8 The Orders Ta bl e

c u s t _ n o c u s t _ n a m e c u s t _ a dd r c u s t _ p h o n e c u s t _ e m a i l

C001 Lee, Lynn & #106, Crosswood St., 901-458-4233 lee@lla.com
Associates Memphis, TN

C023 Korex copiers #286 Central Avenue, 901-362-7615 webmaster@korex.com
Memphis, TN

C035 Sellmart #2136 S White Station 901-497-5256 liz@sellmart.com
Memphis, TN

C017 Plasco & Sons #1176 South Central 901-362-2661 bcroft@aol.com
Avenue, Memphis, TN

C034 Plex Cables, Inc. #1054 Poplar Avenue, 901-497-0763 sales@plexcables.com
Memphis, TN

Table 7-9 The Customers Ta bl e

o rd e r _ n o o rd e r _ p r i c e o rd e r _ q u a n t i t y o rd e r _ d a t e c u s t _ n o

O762 625 2 1-12-2002 C023

O023 2175 4 3-3-2002 C035

O136 175 1 2-2-2002 C001

O174 550 2 3-22-2002 C017

O382 1050 4 1-22-2002 C023

Now, if the record for the customer with cust_no C017 is deleted, there will be an
order, O174, that will not have a valid cust_no. In order to avoid such a condition,
you need to establish relationships. When any two tables are related, you cannot
delete a record in one table if there is a related record for it in the other table.This
is known as referential integrity.

Referential integrity provides the following benefits. It prevents users from:

◆ Adding records to a related table if there is no associated record in the
primary table

PROJECT CASE STUDY Chapter 7 125

◆ Changing values in a primary table when there are related records in the
related table

◆ Deleting records from a primary table if there are related records in the
related table

Normalization
Normalization refers to the process of reducing data redundancy. It usually
involves splitting data into two or more tables until repeating groups of data are
placed in separate tables. The first step in building a database is to examine the
data and then break it down into a row and column format.To appreciate the need
for normalization, consider the following example.

Consider Table 7-10, which displays the records in the Product_Orders table.

Table 7-10 The Product_Orders Table

O rd _ I d O rd _ D a t e O rd _ Q t y O rd _ A m t P ro d _ I d P ro d _ N a m e P ro d _ r a t e

0014 03-13-02 3 $24 P012 Soft toys $8

0045 03-10-01 2 $12 P003 Candle stand $6

0033 02-17-02 4 $32 P012 Soft toys $8

0021 01-25-01 1 $11 P007 Pen $11

Consider a situation where you need to reduce the rate of soft toys to $6 because
you have a large stock of soft toys.However, in reducing the rate, you had to make
changes in two rows. Imagine the effort required to make changes in a table with
a large number of records. So, you decided to split this table into two tables,
Orders and Products. Whereas the Orders table has the orders that were booked
by customers, the Products table has the list of products sold by the company.

This type of problem, where the same information needs to be changed in more
than one record, is referred to as an update anomaly.

The order with Ord_Id 0045 was cancelled. So, you decide to delete that record.
However, you realized that the details of Candle stand would also be lost. The
solution to this problem is to split the table into two, Orders and Products. This
type of problem is referred to as a deletion anomaly.

126 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

Now, consider a situation where you need to change the rate for Candle stand.
You would need to change the rate for Ord_Id 0045 also. This problem is similar
to the update anomaly; however, you noticed this only when you added this
record. This kind of problem is referred to as an insertion anomaly.

Therefore, to design a database without having to encounter these anomalies, you
need to normalize the database.

To summarize, the following rules help you design a robust database:

◆ A table should have a unique identifier.

◆ A table should not have repeating values or columns.

◆ A table should store data for only a single type of entity.

◆ A table should avoid columns with null values.

Designing a Database
After applying all the concepts discussed so far, you would arrive at the database
structure shown in Figure 7-1 for the CMS database.

The following section discusses the details of each table in the CMS database.

PROJECT CASE STUDY Chapter 7 127

FIGURE 7-1 Structure of the CMS database

The tblWorker Table
The tblWorker table is used to store information about a worker. Table 7-11 shows
the details of the tblWorker table.

Table 7-11 Details of the tblWorker Ta bl e

Column Name Data Ty p e L e n g t h A l l ow Nulls

WorkerID int - No

Name nvarchar 50 Yes

The tblCustomer Table
The tblCustomer table stores information about the customers of the organiza-
tion. Table 7-12 displays the details of the tblCustomer table.

Table 7-12 Details of the tblCustomer Table

Column Name Data Ty p e L e n g t h A l l ow Nulls

CarNo nvarchar 15 No

Name nvarchar 255 Yes

Address nvarchar 255 Yes

Make nvarchar 50 Yes

The tblJobDetails Table
The tblJobDetails table stores information about the job done by a worker in a
particular month. It also stores the information about the amount of work done
on a car in a particular month.Table 7-13 displays the details of the tblJobDetails
table.

128 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

TEAMFL
Y

Team-Fly®

Table 7-13 Details of the tblJobDetails Ta bl e

Column Name Data Ty p e L e n g t h A l l ow Nulls

CarNo nvarchar 15 No

JobDate datetime 15 No

WorkerId int - No

KMs int - Yes

Tuning int - Yes

Alignment int - Yes

Balancing int - Yes

Tires int - Yes

Weights int - Yes

OilChanged int - Yes

OilQty int - Yes

OilFilter int - Yes

GearOil int - Yes

GearOilQty int - Yes

Point int - Yes

Condenser int - Yes

Plug int - Yes

PlugQty int - Yes

FuelFilter int - Yes

AirFilter int - Yes

Remarks int - Yes

After discussing the database design, the next section will look at the design of the
forms that display data from the tables in the databases.The next section discusses
the forms used in the Customer Maintenance project.

PROJECT CASE STUDY Chapter 7 129

Designing the Windows Forms Used
in Customer Maintenance Project

The Customer Maintenance project includes the WorkerForm, CustomerForm, and
JobDetails forms to access data from the tblWorker, tblCustomer, and tblJobDe-

tails tables, respectively. In addition,the Customer Maintenance project includes
the main form, Form1, and the Reports form.

Form1
Form1 contains links that a user uses to view different forms created in the Cus-
tomer Maintenance project. Figure 7-2 shows the layout of Form1.

The WorkerForm Form
The layout of the WorkerForm form is displayed in Figure 7-3.

130 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 7-2 Layout of Form1

FIGURE 7-3 Layout of the WorkerForm form

The CustomerForm Form
The layout of the CustomerForm form is displayed in Figure 7-4.

The JobDetails Form
The layout of the JobDetails form is displayed in Figure 7-5.

PROJECT CASE STUDY Chapter 7 131

FIGURE 7-4 Layout of the CustomerForm form

FIGURE 7-5 Layout of the JobDetails form

The Reports Form
The Reports form contains links to various reports created in the Customer Main-
tenance project. The layout of the Reports form is displayed in Figure 7-6.

Low-Level Design
In the low-level design phase, a detailed design of the software modules, based on
the high-level design, is produced. In addition, the team lays down specifications
for various software modules of an application. Modules defined in the high-level
design phase are used to create a detailed structure of a system. The system con-
tains subsystems, which are partitioned into one or more design units or modules.

In the low-level design phase, the flow of the different modules in the Customer
Maintenance project and the interactions between various interfaces are defined.
The flow and the interaction between the interfaces are shown in the following
figures.

The Form1 Module
The Form1 module deals with Form1. Figure 7-7 shows the flowchart and the inter-
action of Form1 with the other modules.

132 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 7-6 Layout of the Reports form

The Worker Module
The Worker module consists of WorkerForm that contains information about work-
ers. The flowchart of WorkerForm is displayed in Figure 7-8.

PROJECT CASE STUDY Chapter 7 133

FIGURE 7-7 Flowchart of the Form1 module

The Customer Module
The Customer module contains CustomerForm. Figure 7-9 displays the flowchart of
the Customer module.

134 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 7-8 Flowchart of the Worker module

The Job Details Module
The Job Details module contains the JobDetails form. Figure 7-10 displays the
flowchart of the Job Details module.

PROJECT CASE STUDY Chapter 7 135

FIGURE 7-9 Flowchart of the Customer module

The Reports Module
The Reports module contains the Reports form. The flowchart of the Reports
module is displayed in Figure 7-11.

136 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 7-10 Flowchart of the Job Details module

Construction
In the construction phase, different software modules are built.This phase uses the
output of the low-level design to produce software components. During the con-
struction phase, task responsibilities are assigned to team members. Some team
members may need to design and develop an interface, while the others may be
required to write the code for database connectivity and business rules.

PROJECT CASE STUDY Chapter 7 137

FIGURE 7-11 Flowchart of the Reports module

Integration and Testing
The integration of different modules and testing are conducted during the inte-
gration and testing phase. The quality assurance (QA) team validates whether the
functional requirements, defined in the requirements document, are met. The
development team also submits a test case report to the QA team so that the
application that the development team has created can be tested in various possi-
ble scenarios.

User Acceptance Testing
In the user acceptance phase, based on the predefined acceptance criteria, the client
conducts acceptance testing of the project. In this phase, the acceptance criteria
include the fulfillment of all the requirements identified during the requirements
analysis phase.

Implementation
The system is installed and made operational in a production environment. The
implementation phase is initiated after the system has been tested and accepted by
the client. This phase continues until the system operates in a production envi-
ronment.

Operations and Maintenance
In the operations and maintenance phase, software is monitored for performance in
accordance with user requirements. In addition, the modifications that are
required are incorporated in the software. Operations continue as long as a system
can effectively adapt to an organization’s needs. However, when modifications or
changes are identified, the system may re-enter the planning phase.

In the next few chapters, you will learn to develop the Windows application,start-
ing with the creation of the Windows forms.

Summary
This chapter introduced you to a project case study. You learned about the differ-
ent stages in a project life cycle. These stages include project initiation, project

138 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

TEAMFL
Y

Team-Fly®

execution, and project deployment.Then, you looked at various phases of the pro-
ject execution stage, such as analyzing requirements, creating high-level design,
creating low-level design, constructing, integration and testing, and user accep-
tance testing.

While learning about the high-level and low-level designs of a project, you
learned to create a database design and the layout of the forms used in the Cus-
tomer Maintenance project. In the forthcoming chapters, I will take you through
the process of developing the project.

PROJECT CASE STUDY Chapter 7 139

This page intentionally left blank

Chapter 8
Windows Forms
and Controls

In this chapter, you will be introduced to Visual Studio .NET projects and solu-
tions. In addition, you will learn to create a new project in Visual Studio .NET.

This chapter introduces you to console applications and Windows applications.
Finally, you will learn to create Windows forms and add controls to the forms
used in the Customer Maintenance project.

Introduction to Visual Studio
.NET Projects

Visual Studio .NET projects are containers that hold development material for an
application. Visual Studio .NET projects contain files, folders, and references to
databases, which you require while developing your project. To develop any appli-
cation in Visual Studio .NET, you need to create a new project by using the New
Project dialog box. You will look at creating a new project later in this chapter.

Projects in Visual Studio .NET are contained within solutions, which help you
create simple or complex applications by using the templates and tools available
in Visual Studio .NET. A solution can also contain multiple projects or other
solutions. In Visual Studio .NET, after you create a project, it is automatically
placed within a solution. Using solutions and projects enables you to manage and
organize the files and folders that will be used to create your application. To do
this, Visual Studio .NET provides you with a Solution Explorer window in which
you can view and manage solutions and projects. Figure 8-1 shows the Solution
Explorer window.

142 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

A project includes an HTML file, a project file, and source files. In addition, you
may include several other files in your project, depending on the complexity of the
application you create.For example, you may create an .xsd file to include a dataset
in your project. You will learn about these files later in this project.

When a project is completed, you usually convert the project into an executable
program (.exe), a dynamic-link library (.dll), or a module. The following section
discusses how to create a new project.

Creating a New Project
To create a new project in Visual Studio .NET, perform the following steps:

1. On the Start menu, point to Programs and click on Microsoft Visual
Studio .NET.

2. From the list that is displayed, select the Microsoft Visual Studio .NET
option.

The Microsoft Development Environment window is displayed.

WINDOWS FORMS AND CONTROLS Chapter 8 143

FIGURE 8-1 The Solution Explorer window

144 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 8-2 The Project option of the Add New dialog box

Using the available templates, you can create a variety of applications, such as
Windows applications, ASP.NET Web applications, ASP.NET Web services,
console applications, and so on. In this chapter, you will learn about console appli-
cations and Windows applications. However, ASP.NET Web applications and
ASP.NET Web services will be discussed in the next project.

Console Application
Using Visual Studio .NET templates, you can create applications that display the
output in a console window. Such applications are called console applications. To
create a console application, select the Console Application project template in
the right pane of the New Project dialog box. In the Name text box, specify the
name SampleConsoleApplication.

When you create a console application, Visual Studio .NET adds the necessary
files to the project.These files include References, App.ico, and AssemblyInfo.cs.
You will learn about these files later in this chapter.

In addition to the previously mentioned files, a class file with the name Class1.cs
is created. This file contains empty code for the class module. Figure 8-4 shows
the Class1.cs file.

WINDOWS FORMS AND CONTROLS Chapter 8 145

FIGURE 8-3 Templates provided by Visual Studio .NET

A console application does not have a user interface, and it is run from the com-
mand prompt. You can now create a simple console application that displays the
message This is a sample console application. in the console window.

To display the message, you need to add the following code to the void Main()
method of the application.

static void Main(string[] args)

{

Console.WriteLine(“This is a sample console application.”);

}

The WriteLine() method is present in the Console class, which lies in the System
namespace.The WriteLine() method is used to write the current line to the Con-
sole window. Similarly, to read from the Console window, you can include the
Console.ReadLine() method in the following manner:

static void Main(string[] args)

{

Console.WriteLine(“This is a sample console application.”);

C o n s o l e . R e a d L i n e () ;

}

The output of the previous code is displayed in Figure 8-5.

146 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 8-4 Class1.cs file

Windows Applications
Programmers worldwide have been using different programming languages to
create Windows applications that can run locally on a computer. However, all of
these languages have their own advantages and limitations. For example, C pro-
grammers use the Win32 API (application programming interface) to create Win-
dows applications. On the other hand, Visual Basic provides programmers with a
graphical interface to create forms and applications, and Visual C++ uses MFC
(Microsoft Foundation Classes) to create Windows applications.

Until now, there was no environment that provided the combined features of these
languages. As a result, Microsoft came up with Visual Studio .NET, which pro-
vides you with a common framework for developing Windows applications in any
of the Visual Studio .NET languages, such as Visual Basic .NET, Visual C++
.NET, and Visual C#. Visual Studio .NET provides a graphical interface for cre-
ating applications, and the .NET class library provides you with the classes you
can use to write the code for your application.There’s no doubt that you can cre-
ate Windows applications easily and in far less time by using the .NET Frame-
work. The next section will look at creating a Windows application.

Creating a Windows Application
To create a Windows application, select the Windows Application project tem-
plate in the Templates pane of the New Project dialog box. In the Name text box,
specify a name for your application, SampleWindowsApplication, and in the
Location text box, type the path or browse to the directory in which you want to
save your application.

WINDOWS FORMS AND CONTROLS Chapter 8 147

FIGURE 8-5 Output of the previous code

After you create a Windows application with the name SampleWindowsApplica-
tion, Visual Studio .NET creates a solution and a project with the same name.
The Windows application opens in the Windows Forms Design view. A default
form, Form1, is created for you in the design view. Form1 is an instance of the
Form class of the .NET class library and is an interface for your application.

In addition to creating a default form, Visual Studio .NET creates the default files
and references that you require to create your project. Table 8-1 lists some of these
files.

Table 8-1 The W i n d ows Application Files

F i l e s D e s c r i p t i o n

AssemblyInfo.cs The AssemblyInfo.cs file contains assembly information,such as the
versions of the assembly.

Form.cs The Form.cs file contains the code for the default form.

References The References folder includes references to the namespaces that you
use for the development of an application. For example, the References
folder contains System, System.Data, System.Drawing,
System.Windows.Forms, and System.XML files that contain references
to the respective namespaces.

Figure 8-6 displays the default files that are included in the SampleWindows-
Application project.

148 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

The Form class lies in the System.Windows.Forms namespace.

TIP

TEAMFL
Y

Team-Fly®

Visual Studio .NET also creates the code for the default form, Form1, which is
created in the Windows application. To view the code behind the form, you can
either double-click on the form or select the form and press the F7 key. The fol-
lowing sample shows the code that is automatically generated when you create a
Windows application.

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

namespace SampleWindowsApplication

{

public class Form1 : System.Windows.Forms.Form

{

private System.ComponentModel.Container components = null;

public Form1()

{

I n i t i a l i z e C o m p o n e n t () ;

}

WINDOWS FORMS AND CONTROLS Chapter 8 149

FIGURE 8-6 Windows application files

protected override void Dispose(bool disposing)

{

if(disposing)

{

if (components != null)

{

c o m p o n e n t s . D i s p o s e () ;

}

}

base.Dispose(disposing);

}

#region Windows Form Designer generated code

private void InitializeComponent()

{

this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

this.ClientSize = new System.Drawing.Size(292, 273);

this.Name = “Form1”;

this.Text = “Form1”;

this.Load += new System.EventHandler(this.Form1_Load);

}

e n d r e g i o n

[S T A T h r e a d]

static void Main()

{

Application.Run(new Form1());

}

private void Form1_Load(object sender, System.EventArgs e)

{

- - - - - - - -

}

}

}

When you create a Windows application in Visual Studio .NET, a default name-
space with the same name as that of your application is also created. In this case,

150 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

a default namespace is created with the name SampleWindowsApplication. In addi-
tion, Visual Studio .NET includes some of the existing namespaces in the appli-
cation, such as System, System.Drawing, System.Collections, and so on. Inside the
SampleWindowsApplication namespace, a public class named Form1 is created.
When you add controls to the form, the declarations of the controls are added to
this class. You will learn to add controls to a form later in this chapter.

The Form1 class contains a default constructor named Form1. The constructor
includes the InitializeComponent() method. This method contains the state-
ments required to initialize the Windows form used in the application. For exam-
ple, the InitializeComponent() method includes the name of the form. The
declaration for the InitializeComponent() method is included in the #region pre-
processor directive.

In addition, the Form1 class contains the Dispose() method, which is called to
deallocate the memory occupied by the components that are no longer used by the
application.The class also includes the Main() method, which is the starting point
of the execution of the program. Finally, the public class includes the declaration
of the Form1_Load method, which is used in the InitializeComponent() method.

This previous code creates a blank form for your application to which you need to
add functionality through various controls.The following section discusses how to
add controls to your form.

Adding Controls to a Windows Form
Visual Studio .NET provides you with various Windows form controls that you
can add to your application by just dragging the controls to your form.Figure 8-7
displays the Windows form controls available with Visual Studio .NET.

WINDOWS FORMS AND CONTROLS Chapter 8 151

#region preprocessor directives are used to demarcate regions.

TIP

You will now add a button to SampleWindowsApplication. To add a button, drag a
Button control to the form. You can place the Button control anywhere in the
form. Figure 8-8 shows a Windows form with a Button control.

152 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 8-7 Windows form controls available with Visual Studio .NET

FIGURE 8-8 Windows form with a Button control

As discussed earlier, when you add a control to the form, the declaration of the
control is added to the Form1 class. The following code shows the declaration of
the Button control:

private System.Windows.Forms.Button button1;

As you can see, the button has the text button1 on it. To change the text displayed
on the button, you must change its properties.

Changing the Properties of a Windows Form Control
You can view the properties of a button in the Properties window. Figure 8-9 dis-
plays the Properties window.

To change the properties of the button, perform the following steps:

1. Select the button to make it active.

2. In the Properties window, make the following changes to the properties
of a button:

◆ Text: Welcome

◆ Name: sampleButton

WINDOWS FORMS AND CONTROLS Chapter 8 153

FIGURE 8-9 The Properties window

◆ Font:

Name: Arial

Your button now displays the text Welcome. The button that you created, however,
does not perform any action. To add some functionality to the button, you need
to add code to button1_Click() method. You can add code to display a message
box when the button is clicked.

private void button1_Click(object sender, System.EventArgs e)

{

MessageBox.Show(“This is a sample Windows Application”);

}

The sample Windows application that you created in the preceding code is shown
in Figure 8-10.

In addition to the Button control, you can create other controls in a Windows
application.The following section discusses some of these controls.

154 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 8-10 Sample Windows application

Types of Windows Forms Controls
Windows forms controls are used with Windows forms to accept user input. In
addition to using Windows controls that are provided by Visual Studio .NET, you
can create custom controls. In this section, you will look at some of the controls
provided by Visual Studio .NET.

Button Control
A Button control is used to allow a user to perform a specified action on the click
of a mouse. You can specify the action to be performed in the click event of the
button. The following steps will create a Button control in a Windows form,
Form1, which displays another form, Form2, when the button is clicked. In addi-
tion, Form1 is hidden when the button is pressed. To create the Button control,
perform the following steps:

1. Drag a Button control from the Windows Forms toolbox to Form1.

2. Change the following properties of the Button control:

◆ Name: btnShow

◆ Text: &Show

3. Double-click on the Button control to display the code.

4. Add the following code to the Click event of the control:

private void button1_Click(object sender, System.EventArgs e)

{

Form2 newForm = new Form2();

n e w F o r m . S h o w () ;

t h i s . H i d e () ;

}

WINDOWS FORMS AND CONTROLS Chapter 8 155

If you prefix a letter in the Text property of a Button control with an ampersand (&),
Visual Studio .NET creates the letter as the access key for the Button control. You
can then access the button by using the Alt key in combination with the access key.
For example, prefixing an ampersand with the letter S in the text property of the
Show button allows you to click the Show button by using Alt and S keys.

TIP

Label Control
A Label control is used to display static text or images. You can use a Label con-
trol to display the descriptions of controls used in a form. For example, you can
create a Label control to specify the description of the Button control that you
created in the previous example. To create the Label control, perform the follow-
ing steps:

1. Drag a Label control from the Windows Forms toolbox to Form1.

2. Change the following properties of the Label control.

◆ Name: lblDescription

◆ Text: Click on the Show button to display Form 2

◆ Font:

Name: Arial

Size: 10

Bold: True

Figure 8-11 shows Form1.

156 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 8-11 Form1

TextBox Control
A TextBox control is used to allow a user to input values to a form. You can also
use a TextBox control to display dynamic text. This implies that you can change
the value in the text box at run time.

MainMenu Control
A MainMenu control is used to create menu items in a form. You can drag the
MainMenu control to the form to create menu items at run time. You can use the
Checked property of the MainMenu control to find whether the control is
selected or not. The following steps show you how to create the File menu for
Form1.

1. Drag a MainMenu control from the Windows Forms toolbox to the
form.

A menu item is added to the form.

2. Click on the text Type Here and type the name of the first menu item as
&File.

3. In the text area below the File menu, type &New to create the New
option.

Similarly, you can create the Open, Save, Save As, and Exit options.

4. To add a menu item adjacent to the File option, type &Edit in the text
area to the right of the File menu.

Similarly, you can create Cut, Copy, and Paste options on the Edit
menu.

However, the menu items that you have created so far do not perform
any function. To add functionality to the menu item, you need to add
code to the click event of the menu option.

5. Double-click the New option to display the code window.

6. Type the following code in the click event of the New option.

private void menuItem2_Click_1(object sender, System.EventArgs e)

{

Form2 newForm = new Form2();

n e w F o r m . S h o w () ;

t h i s . H i d e () ;

}

WINDOWS FORMS AND CONTROLS Chapter 8 157

When you click the New option on the File menu, a new form, Form2, is created
for you. Similarly, you can write code for other options. Figure 8-12 displays the
New option.

GroupBox Control
A GroupBox control is used to create a group of controls, such as RadioButton,
CheckBox, TextBox controls, and so on. You can give a specific name to a Group-
Box control that can be used to identify each item in the GroupBox control.

RadioButton Control
A RadioButton control is used to allow users to select an option from a group of
two or more options.You can use a GroupBox control to group RadioButton con-
trols. In the previous example of a Button control, when a user clicks the button,
Form2 is displayed. However, in this case, if the user has the option of viewing
more than one form, you can create a group of RadioButton controls. To do this,
perform the following steps:

158 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 8-12 The New option

TEAMFL
Y

Team-Fly®

1. Drag a GroupBox control to the form.

2. Change the Text property of the GroupBox control to Forms.

3. Drag three RadioButton controls and place them within the GroupBox
control.

4. In the Properties window, change the following properties of the
RadioButton controls:

RadioButton1:

◆ Name: btnForm1

◆ Text: Form1

RadioButton2:

◆ Name: btnForm2

◆ Text: Form2

RadioButton3:

◆ Name: btnForm3

◆ Text: Form3

To make the radio buttons functional, write the code for the click events of the
RadioButton controls.

1. Double-click on btnForm1 to open the code window.

2. Add the following code to the click event of btnForm1.

private void btnForm1_CheckedChanged(object sender, System.EventArgs e)

{

Form1 newForm = new Form1();

n e w F o r m . S h o w () ;

t h i s . H i d e () ;

}

The previous code creates an instance of Form1.The instance of Form1 is used to
call the Show() method to display Form1. The this.Hide() statement is used to
hide the current form.

Similarly, you can write the code for btnForm2 and btnForm3.

1. Double-click on btnForm2 to open the code window.

WINDOWS FORMS AND CONTROLS Chapter 8 159

2. Add the following code to the click event of btnForm2.

private void btnForm2_CheckedChanged(object sender, System.EventArgs e)

{

Form2 newForm = new Form2();

n e w F o r m . S h o w () ;

t h i s . H i d e () ;

}

3. Double-click on btnForm3 to open the code window.

4. Add the following code to the click event of btnForm3:

private void btnForm3_CheckedChanged(object sender, System.EventArgs e)

{

Form3 newForm = new Form3();

n e w F o r m . S h o w () ;

t h i s . H i d e () ;

}

5. Save the form by using the Save option on the File menu.

Figure 8-13 shows the GroupBox control with the three radio buttons.

160 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 8-13 RadioButton controls

CheckBox Control
A CheckBox control allows a user to select a state, which can be either True or
False. A CheckBox control is similar to a RadioButton control; however, you can
create a group of CheckBox controls that allow user to select more than one value.
To select an option, a user needs to check the CheckBox control.

To determine whether a CheckBox control is selected or not, you can use the
Checked property, which returns a Boolean value, True or False, depending on
whether the user has selected the check box or not.

To make a CheckBox control functional, you need to add code to the control. You
can use the CheckState property of the CheckBox control to specify the action to
be performed, depending on whether the control is checked or not. The Check-
State property returns a value of Checked or Unchecked.

ListBox Control
A ListBox control is used to allow users to select one or more options from a list
of items. You can use the SelectionMode property to specify whether a user can
select one or multiple options. For example, if you set the SelectionMode prop-
erty to one, the user can select only one option. However, if the SelectionMode
property is set to either MultiSimple or MultiExtended, the user can select mul-
tiple options.

To create a ListBox control that allow users to select only one option, perform the
following steps:

1. Drag a ListBox control to the form.

2. In the Properties window, set the following properties of the control:

◆ Name: listBox1

◆ SelectionMode: One

The ListBox control is empty until now. To add values to the control,
perform the following steps:

3. In the Properties window, select the Items property by clicking on the
ellipsis button.

The String Collection Editor window is displayed.

WINDOWS FORMS AND CONTROLS Chapter 8 161

4. Add values to the String Collection Editor window by typing each value
in a single row.

You can add values such as OptionA, OptionB, OptionC, OptionD, and
OptionE.

5. Click on the OK button to close the String Collection Editor window.

6. Click on the Save option on the File menu to save the form.

The values are displayed in the ListBox control. You can now resize the
control according to your need. If the options require more space than
that provided, a scroll bar appears. Figure 8-14 shows the ListBox con-
trol with values added to it.

ComboBox Control
A ComboBox control allows users to select an option from a list of options. In
addition, you can type an option in the ComboBox control if you do not want to
select any of the available options.

162 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 8-14 ListBox control

To determine the option that a user selects, you can use the SelectedIndex prop-
erty. The SelectedIndex property returns the index value of the item that is
selected. However, if you do not select any option, the value returned by the
SelectedIndex property is -1.

MonthCalendar Control
A MonthCalendar control allows users to select a date from a calendar that dis-
plays dates and months. By default, the current date is selected. However, a user
is allowed to select any other date by clicking on the date value. The user can also
change the month by clicking on the arrow buttons that appear at the top of the
MonthCalendar control. A MonthCalendar control allows you to select multiple
dates. The control also allows you to specify a range of dates that you can select.

DateTimePicker Control
A DateTimePicker control is used to allow users to select a single date from the
calendar of dates that is displayed when a user clicks the Down Arrow button. A
user can also type the date in the text box area of the DateTimePicker control.
Unlike the MonthCalendar control, you can also specify the time in the Date-
TimePicker control.

When the user clicks the Down Arrow button, a MonthCalendar control is dis-
played, which allows you to select a date by clicking on the date in the Month-
Calendar control.

Figure 8-15 shows a MonthCalendar control and a DateTimePicker control.

WINDOWS FORMS AND CONTROLS Chapter 8 163

Both the ListBox and ComboBox controls are used to allow users to select an option
from the items list. However, a ListBox control does not allow a user to enter values.
This implies that a user is restricted to selecting an option from the available list.
Alternatively, a ComboBox control provides the user with suggested options. The user
may or may not select the options that are provided in the ComboBox control.

NOTE

Having learned about Windows applications in general, you can now apply the
concepts to create a Windows application for the Customer Maintenance project.

Creating a Windows Application for
the Customer Maintenance Project

As discussed earlier, you can create a Windows application by using the templates
provided by Visual Studio .NET. Name the new project that you create Customer
Maintenance Project. When you create the application, Visual Studio .NET cre-
ates a default form, Form1, for you. The following section describes adding con-
trols to Form1.

164 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 8-15 MonthCalendar control and DateTimePicker control

Creating an Interface for Form1
1. Drag a Label control from the Windows Forms toolbox to the form.

2. Click on the Label control to change its properties.

If the Properties window is not displayed, click on the Properties Win-
dow option on the View menu. Alternatively, you can click the F4 key to
display the Properties window.

3. Change the following properties of the control:

◆ Text: Customer Maintenance System

◆ Font:

Name: Microsoft Sans Serif

Size: 25

4. Drag a MainMenu control from the Windows Forms toolbox to the
form.

A menu item is added to the form.

5. Click on the text Type Here and type the name of the first menu item as
&Worker.

Similarly, you can add more menu items to the form by typing in the area con-
taining the text Type Here. You can add menu items for Customer, Job Details,
Reports, and Exit. After adding menu items to the form, you need to change the
properties of the menu items.

6. Click on the Worker menu item to change its properties.

7. In the Properties window, change the following properties of the Worker
menu item.

◆ Text: &Worker

◆ Shortcut: AltW

Similarly, you can change the properties for the rest of the menu items. Table 8-2
shows the menu items and their corresponding property values.

WINDOWS FORMS AND CONTROLS Chapter 8 165

Table 8-2 M e nu Items and their Corresponding Pro p e rty Va l u e s

M e nu Item P ro p e rty Va l u e

Worker Text: &Worker

Shortcut: AltW

Customer Text: &Customer

Shortcut: AltC

Job Details Text: &Job Details

Shortcut: AltJ

Reports Text: &Reports

Shortcut: AltR

Exit Text: E&xit

Shortcut: AltX

Figure 8-16 shows Form1 after the controls are added to it.

Similarly, you can create an interface for the rest of the forms.

166 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 8-16 Form1 with the controls

Creating an Interface for WorkerForm
WorkerForm is used to display the records in the Worker table. You can also add,
modify, or delete records from this table by using WorkerForm. However, before
creating an interface for WorkerForm, you need to add another form to the pro-
ject. To add another form, perform the following steps.

1. Right-click on Customer Maintenance Project in the Solution Explorer
window and select the Add option.

2. From the list that is displayed, select the Add New Item option.

The Add New Item dialog box is displayed.

3. In the Templates: pane of the Add New Item dialog box, select the
Windows Form icon.

4. In the Name text box, type the name of the form as WorkerForm and
click on the Open button.

Visual Studio .NET creates a blank form with the name WorkerForm. You can
now add controls to the form. To do so, perform the following steps:

1. Add a Label control, DataGrid control, and four button controls to the
form.

2. In the Properties window, change the following properties of the
controls:

Label control:

◆ Name: label1

◆ Text: Click on the Edit Button to load the records.

◆ Font:

Name: Arial

Size: 10

Bold: True

Button1 control:

◆ Name: btnSave

◆ Text: Save

WINDOWS FORMS AND CONTROLS Chapter 8 167

Button2 control:

◆ Name: btnEdit

◆ Text: Edit

Button3 control:

◆ Name: btnCancel

◆ Text: Cancel

Button4 control:

◆ Name: btnExit

◆ Text: Exit

You will change the properties of a DataGrid control later in this project. Figure
8-17 shows the WorkerForm with the controls added to the form.

Creating an Interface for CustomerForm
CustomerForm is used to view, add, delete, or modify the records in the Customer
table. To create the CustomerForm, perform the following steps:

1. Right-click on Customer Maintenance Project in the Solution Explorer
window and select the Add option.

2. From the list that is displayed, select the Add New Item option.

The Add New Item dialog box is displayed.

168 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 8-17 WorkerForm with the controls

TEAMFL
Y

Team-Fly®

3. In the Templates: pane of the Add New Item dialog box, select the
Windows Form icon.

4. In the Name text box, type the name of the form as CustomerForm and
click on the Open button.

Visual Studio .NET creates a blank form with the name CustomerForm.You can
now add controls to the form. To do this, perform the following steps.

1. Add four Label controls to the form.

2. In the Properties window, change the following properties of the con-
trols:

Label1 control:

◆ Name: lblCarNo

◆ Text: Car No.

Label2 control:

◆ Name: lblName

◆ Text: Name

Label3 control:

◆ Name: lblAddress

◆ Text: Address

Label4 control:

◆ Name: lblMake

◆ Text: Make

3. Add five text boxes to the form.

You will change the properties of the text boxes after creating DataSet
for the form.

4. Add six button controls to the form and change the following properties
of the controls:

Button1 control:

◆ Name: btnSave

◆ Text: Save

Button2 control:

◆ Name: btnEdit

◆ Text: Edit

WINDOWS FORMS AND CONTROLS Chapter 8 169

Button3 control:

◆ Name: btnCancel

◆ Text: Cancel

Button4 control:

◆ Name: btnExit

◆ Text: Exit

Button5 control:

◆ Name: btnPrevious

◆ Text: Previous

Button6 control:

◆ Name: btnNext

◆ Text: Next

5. On the File menu, click on the Save option to save the form.

Figure 8-18 shows the layout of CustomerForm.

Creating an Interface for ReportsForm
ReportsForm includes a GroupBox control that contains four radio buttons. You
can select any radio button to generate a corresponding report. To create Reports-
Form, add a new form to the project and name the form ReportsForm. You can
now add controls to the form.

170 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 8-18 CustomerForm with the controls

1. Add a Label control, a GroupBox, four radio buttons, and a button con-
trol to the form.

2. Change the following properties of the control in the Properties window.

Label control:

◆ Name: label1

◆ Text: Select the radio button to generate the report.

◆ Font:

Name: Microsoft Sans Serif

Size: 10

Bold: True

GroupBox control:

◆ Name: groupBox1

◆ Text: Reports:

RadioButton1 control:

◆ Name: radioButton1

◆ Text: Monthly Consumable Report

RadioButton2 control:

◆ Name: radioButton2

◆ Text: Monthly Consumer Visit Report

RadioButton3 control:

◆ Name: radioButton3

◆ Text: Monthly Balancing and Alignment Report

RadioButton4 control:

◆ Name: radioButton4

◆ Text: Monthly Worker Report

Button control:

◆ Name: btnExit

◆ Text: Exit

3. On the File menu, click on the Save option to save the form.

Figure 8-19 shows the interface of the ReportsForm.

WINDOWS FORMS AND CONTROLS Chapter 8 171

Creating an Interface for JobDetailsForm
JobDetailsForm is used to view and modify the records in the JobDetails table.
You can create JobDetailsForm by using Data Form Wizard. Data Form Wizard
is used to create forms that interact with an underlying database. You will look at
creating JobDetailsForm in the subsequent chapter, which deals with database
interactivity in a Windows form.

Summary
In this chapter, you learned that Visual Studio .NET projects are the containers
used to hold the development material for an application. A Visual Studio .NET
project contains files, folders, and references to the databases that you may require
while developing your project. To develop any application in Visual Studio .NET,
you need to create a new project by using the New Project dialog box. You can
select the template from the available templates to create a variety of applications,
such as Windows applications, ASP.NET Web applications, ASP.NET Web ser-
vices, console applications, and so on.

Using Visual Studio .NET templates, you can create applications that display the
output in a console window. Such applications are called console applications. A
console application does not have a user interface and is run from the command
prompt. Another type of application that you can create using Visual Studio
.NET templates is a Windows application. Visual Studio .NET provides a graph-

172 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 8-19 ReportsForm with the controls

ical interface and the classes in the .NET class library for creating Windows
applications. Next, you learned to create a sample Windows application and to
add controls to the forms in the application. When you create a Windows appli-
cation by using the templates provided by Visual Studio .NET, a default form,
Form1, is created for you in the design view. Form1 is an instance of the Form class
of the .NET class library and is an interface for your application.

The chapter introduced you to several controls provided in the Windows Forms
toolbox.These controls include a Label control, a TextBox control, a Button con-
trol, a MainMenu control, a RadioButton control, and so on.

Finally, you used the general concepts explained in the chapter to create the lay-
outs of the forms used in the Customer Maintenance project.These forms include
Form1, WorkerForm, CustomerForm, ReportsForm and JobDetailsForm.

WINDOWS FORMS AND CONTROLS Chapter 8 173

This page intentionally left blank

Chapter 9
Validations
and Exception
Handling

Validation and exception handling form an integral part of any business appli-
cation. Your application needs to be robust to withstand any anomalies of

application execution.

Anomalies in an application can occur because of unexpected conditions. For
example, you may design your application to open a file in the write mode.
Although the code will not generate any error if the file is closed, if a user opens
the file in another application and then executes your application, your applica-
tion can generate an unrecoverable error. To avoid such run-time errors, you
should implement an exception-handling mechanism in your application.

Exception handling provides many uses in an application. For example, if a user
specifies the date in an incorrect format, the user can be allowed to rectify the
error and proceed with the registration. Similarly, if the databases pertaining to
the application are not responding, the application can display a message to that
effect and allow the user to select an alternate location for the database.

This chapter provides an in-depth coverage of the exception-handling capabilities
of Visual C#. You will apply exception-handling logic to the Customer Mainte-
nance project. In addition, Visual Studio .NET provides a number of debugging
tools that you can use to debug your application.This chapter will also introduce
you to the debugging tools and help you use the important ones to debug your
application.

Performing Validations
You should always validate data in a Windows form before updating the data in a
database. This method has several benefits, some of which include:

◆ Improved response time. The response time of an application is shorter
because the application does not need to attempt to update the data in
the database and then retrieve an error message because of incorrect
data.

◆ Accuracy of data. The application is less prone to sending incorrect data
to the database.

176 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

◆ Improved database performance. The load on the database is reduced
because it processes optimal transactions only.

In this section, you can learn to validate data for the JobDetails form of the Cus-
tomer Maintenance project.

Identifying the Validation Mechanism
There are several mechanisms to ensure that only valid values are specified in a
user form. Some of these ways are given in the following list:

◆ Selecting the appropriate Windows control for accepting data

◆ Trapping incomplete data when users navigate from one con t rol to another

◆ Validating the form before submitting records to the database

I will now explain each method described here one by one.

Selecting Windows Controls
Often, you can eliminate common errors by using the correct type of controls. For
example, instead of using a text box for accepting date values from users, you can
use the DateTimePicker control. Similarly, you can use the ListBox control to make
the user select an option from a range of options or use the RadioButton control
to accept one value from a range of values. In this way, the choices available to the
user are limited and the user is less likely to make a mistake.

In the JobDetails form, the value for the JobDate field should be in the date for-
mat. Therefore, instead of using a TextBox control, you should use the Date-
TimePicker control. The steps to add the DateTimePicker control to the form are
given in the following list:

1. Open the Customer Maintenance project.

2. Double-click on the JobDetails.cs form to open the code-behind file.

3. Delete the TextBox control from the JobDate field.

4. Drag a DateTimePicker control from the Toolbox to the form.

The changed form, which is obtained after completing the preceding steps, is
shown in Figure 9-1.

VALIDATIONS AND EXCEPTION HANDLING Chapter 9 177

Run the application and open the JobDetails form. You will notice that the cur-
rent date automatically appears in the form. Similarly, when data is loaded from
the database, the JobDate field changes to the one that was specified while adding
the record, as shown in Figure 9-2.

178 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 9-1 Adding a DateTimePicker control to the form

FIGURE 9-2 Displaying date and time data from a database

TEAMFL
Y

Team-Fly®

Trapping Incomplete Data
There are certain fields in a database that cannot be left blank when you add
records to the database. For example, the CMS (Customer Maintenance System)
database uses the tblJobDetails table to store records pertaining to the JobDe-
tails form. Follow these steps to check the fields that are mandatory in the
tblJobDetails table:

1. Open SQL Server Enterprise Manager.

2. In the SQL Server Enterprise Manager window, click on the + (plus)
sign next to the name of the SQL server on which the database is
installed.

3. In the SQL Server node, expand the CMS database, which stores the
tblJobDetails table.

4. Click on Tables. The tables in the CMS database will appear.

5. Right-click on tblJobDetails and select Properties. The Table
Properties - tblJobDetails dialog box will appear. This dialog box shows
the fields of the table in which you can have null values, as displayed in
Figure 9-3.

VALIDATIONS AND EXCEPTION HANDLING Chapter 9 179

FIGURE 9-3 Mandatory fields in a table

As you can see in Figure 9-3, the CarNo, JobDate, and WorkerId fields are manda-
tory in the database.The CarNo, JobDate, and WorkerId controls on the JobDetails
form represent these fields.

To ensure that a user has specified values for the three fields described above, there
are two methods. Either you can validate the required field as soon as a user moves
out of it, or you can validate the entire form when the user clicks on the Add or
Update button. I examine the procedure to validate an entire form in the next sec-
tion. In this section, I will describe the ways to validate one field at a time.

When a user selects a control, the Enter event of the control is generated. Simi-
larly, when a user deselects a control, the Leave event of the control is generated.
You can use these events to validate controls.

Begin by ensuring that the user has specified a valid car number before the user
proceeds to specify the date. When a user tabs out of the CarNo control, the Enter

event of the JobDate control and the Leave event of the CarNo control are gener-
ated.Therefore, you can check whether the user has specified a valid value for the
CarNo either in the Enter event of the JobDate control or in the Leave event of the
CarNo control. If the user has not specified a valid value, you can reactivate the
CarNo control. To code the functionality, follow these steps:

1. Click on the editCarNo text box in the design view of the JobDetails
form.

2. In the Properties window, click on the Events button (the button that
has the yellow lightning symbol). All the events available for the TextBox
control will appear.

3. From the list of available events, double-click on Leave. The location of
this option in the Properties window is shown in Figure 9-4.

4. When you double-click on Leave, Code Editor opens and the event han-
dler for the Leave event is defined. Write the following code for the
Leave event of the editCarNo text box:

private void editCarNo_Leave(object sender, System.EventArgs e)

{

if ((editCarNo.Text==””) || (editCarNo.Text==null))

{

MessageBox.Show(“Please specify a valid value for the car

number”,”Error in input”);

180 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

e d i t C a r N o . F o c u s () ;

}

}

After writing the preceding code, compile and run the application. If you attempt
to specify a blank value in the editCarNo text box, the application will display an
error message and bring the text box into focus, as shown in Figure 9-5.

VALIDATIONS AND EXCEPTION HANDLING Chapter 9 181

FIGURE 9-4 Adding event handlers for controls

FIGURE 9-5 Validating data in controls

The preceding method has two main drawbacks:

◆ The user cannot decide the order in which controls should be filled. For
example, if the user wishes to fill WorkerId before CarNo, the user cannot
do so.

◆ The control generates an error message when a user closes the form
without specifying a valid value in the CarNo field. This is because the
Leave event of the control is fired even when the user closes the form.
Therefore, even if the user decides to discard all changes and close the
form, the error message is generated.

To overcome these drawbacks, you can validate data in all the controls when the
user clicks on the Update or Add button. This method will be discussed in the
next section.

Validating a Form
You can validate data in the JobDetails form in the Click event of the Update
button. Validating all the controls simultaneously saves you the effort of coding
events for each TextBox control separately. To validate the JobDetails form:

1. Open the JobDetails form in the Design view.

2. Double-click on the Update button. Code Editor opens.

3. Write the following code for the Click event of the JobDetails form:

if (editCarNo.Text.Length <6)

{

MessageBox.Show(“Please specify a valid car Number”);

e d i t C a r N o . F o c u s () ;

r e t u r n ;

}

if (Convert.ToInt32(editWorkerId.Text)<1)

{

MessageBox.Show(“Please specify a valid worker ID”);

e d i t W o r k e r I d . F o c u s () ;

r e t u r n ;

}

182 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

The preceding code displays an error message if the user specifies incorrect values
for the editCarNo and the editWorkerId fields. You will notice that I have not val-
idated the dates and other fields. It is easier to validate these fields by using excep-
tion handlers, which will be discussed in the “Handling Exceptions” section of
this chapter. Before doing that, the next section will examine the ErrorProvider
control of Visual Studio .NET.

Using the ErrorProvider Control
Instead of displaying message boxes each time the user submits an incorrect or
incomplete form, you can use the ErrorProvider control to show an icon next to
the control (which will be referred to as the error icon in future references) that has
an error. When a user moves the mouse pointer over the error icon, the error mes-
sage associated with the icon is displayed as a ToolTip.

The ErrorProvider control enhances user experience by eliminating the use of
message boxes for notifying errors. You have already added the validation code for
the JobDetails form.Therefore, in this section, you will validate a different form,
CustomerForm, by using the ErrorProvider control. The steps to add the Error-
Provider control to the CustomerForm form are as follows:

1. Open the CustomerForm form in the Design view.

2. Drag the ErrorProvider control from the Toolbox to the form. The
ErrorProvider control will be added to the component tray.

3. Change the Name property of ErrorProvider to errCustForm.

4. Click on the textBox1 control that represents the Car No. field.

5. In the Properties window, specify a description of the error message in
the Error on errCustForm property, as shown in Figure 9-6.

6. Repeat Steps 4 and 5 to add error descriptions for all text boxes to the
CustomerForm form.

VALIDATIONS AND EXCEPTION HANDLING Chapter 9 183

184 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 9-6 Adding an ErrorProvider control

When you specify an error message with each control during design time,
the error icon appears as soon as a user loads the form. To avoid showing an
error message even before the user has entered values in the form, you
should clear the error message. To clear the error messages associated with
controls, use the SetError method of the errCustForm control.The SetError

method sets the error message associated with a control. If a blank string is
passed to this method, the error message associated with the control is
cleared. To clear error messages, add the following code for the Load event
of the CustomerForm form:

private void CustomerForm_Load(object sender, System.EventArgs e)

{

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 1 , ” ”) ;

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 2 , ” ”) ;

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 3 , ” ”) ;

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 4 , ” ”) ;

}

As you add error descriptions to each control in the form, an exclamation point icon
appears next to each control.

TIP

Next, you need to check for the availability of data in each text box when the user
clicks on Save.The code for the Click event of the Save button is given as follows:

private void btnSave_Click(object sender, System.EventArgs e)

{

bool flag;

f l a g = t r u e ;

if (textBox1.Text==””)

{

errCustForm.SetError(textBox1,”Please specify a valid car number.”);

f l a g = f a l s e ;

}

e l s e

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 1 , ” ”) ;

if (textBox2.Text==””)

{

errCustForm.SetError(textBox2,”Please specify a valid name.”);

f l a g = f a l s e ;

}

e l s e

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 2 , ” ”) ;

if (textBox3.Text==””)

{

errCustForm.SetError(textBox3,”Please specify a valid address.”);

f l a g = f a l s e ;

}

e l s e

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 3 , ” ”) ;

if (textBox4.Text==””)

{

errCustForm.SetError(textBox4,”Please specify a valid make.”);

f l a g = f a l s e ;

}

e l s e

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 4 , ” ”) ;

if (flag==false)

r e t u r n ;

VALIDATIONS AND EXCEPTION HANDLING Chapter 9 185

e l s e

{

s q l D a t a A d a p t e r 1 . U p d a t e (c u s t o m e r D a t a S e t 1) ;

MessageBox.Show(“Database updated!”);

}

}

In the preceding code, I have used a variable flag of the bool data type to deter-
mine whether any field has been left blank.When a field is blank, the value of the
flag variable changes to false and an error message is set on the ErrorProvider
control. Similarly, after the user specifies a valid value in the field, the error mes-
sage associated with the field is cleared.

After writing the preceding code, run the form and check the output. To open
CustomerForm, click on Customer on the main menu of the form. If you click on
Save without specifying any value in the CustomerForm form,error icons appear for
each field in the form, as shown in Figure 9-7.

Handling Exceptions
Exceptions are abnormal conditions in an application. For example, if you attempt
to update records in a database when one or more of the mandatory fields have
been left blank, your application will throw an exception.

186 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 9-7 Using an ErrorProvider control

If exceptions are not handled by your application, your application will terminate
abnormally. In this section, you can learn about ways to handle exceptions in the
JobDetails form.

Using the try and catch Statements
The try and catch statements form part of structured exception handling. When
you know about certain statements of code that may generate an error, you can
place those statements in a try block. For example, when you specify code to
update data in a database or convert data from one format to another, your appli-
cation can throw an exception. Therefore, you should place these statements in a
try block.

Whenever statements in a try block throw an exception, the catch block, which
follows the try block, catches the exception if the exception is in the same format
as that expected by the catch block. For example, if you attempt to supply a string
data type variable instead of an int data type, your application will throw an
exception of the FormatException class. If the catch block handles exceptions of
the FormatException class, the statements of the catch block will be executed.

You may wonder if you need to specify catch statements for each type of excep-
tion that your application generates. It is not mandatory to do so. All exception
classes are derived from the Exception class of the System namespace. Therefore,
unless you want to implement different exception handling logic for different
types of exceptions, you can use the Exception class to handle all exceptions gen-
erated by your application.

The syntax for the try and catch statements is given as follows:

t r y

{

//The statements that might generate an error

S t a t e m e n t (s) ;

}

catch (filter)

VALIDATIONS AND EXCEPTION HANDLING Chapter 9 187

{

//The statements written here are executed when the statements listed in the Try

//block fail and the filter specified is true.

S t a t e m e n t (s) ;

}

The code for the Click event of the Update button, after implementing the try
and catch statements, is given as follows:

private void btnUpdate_Click(object sender, System.EventArgs e)

{

if (editCarNo.Text.Length <6)

{

MessageBox.Show(“Please specify a valid car Number”);

e d i t C a r N o . F o c u s () ;

r e t u r n ;

}

t r y

{

if (Convert.ToInt32(editWorkerId.Text)<1)

{

MessageBox.Show(“Please specify a valid worker ID”);

e d i t W o r k e r I d . F o c u s () ;

r e t u r n ;

}

if (Convert.ToDateTime(dateTimePicker1.Value) > DateTime.Today)

{

MessageBox.Show(“Please specify a valid date”);

d a t e T i m e P i c k e r 1 . F o c u s () ;

r e t u r n ;

}

}

catch (Exception exception)

{

M e s s a g e B o x . S h o w (e x c e p t i o n . M e s s a g e) ;

}

}

188 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

TEAMFL
Y

Team-Fly®

In the preceding code, I used the try block for converting the values specified by
the user for the editWorkerId and dateTimePicker1 fields to int and date data
types, respectively. If these statements throw any exception, the program control
passes to the catch block and the description of the error is displayed to the user.

Using the Debug and Trace Classes
The .NET Framework class library provides the Debug and Trace classes in the
System.Diagnostics namespace.The classes can be used to monitor variables in an
application. For example, the number of months in a year cannot exceed 12.
Therefore, you can use the Debug or Trace classes to monitor the value of a vari-
able, such as a month. Whenever the value of the variable exceeds 12, the appli-
cation will throw an assertion failure, which will lead to display of the Debug
Assertion Failure dialog box.

VALIDATIONS AND EXCEPTION HANDLING Chapter 9 189

You can use the Debug and Trace classes anywhere in the JobDetails form. As an
example, I have used the Assert method of the Debug class to ensure that the date
in the dateTimePicker1 control never exceeds the current date. To do this, com-
plete the following steps:

1. Add a reference to the System.Diagnostics namespace by specifying the
following line of code in the JobDetails.cs file:

using System.Diagnostics;

2. Add the following line of code wherever you want to check the value of
the dateTimePicker1 control:

Debug.Assert(Convert.ToDateTime(dateTimePicker1.Value) >

DateTime.Today,”The date has exceeded the current date”);

The Debug and Trace classes provide the same functionality. However, the Debug
class is active only in the Debug configuration.Therefore, use the Debug class only to
debug your application. Do not change application data by using this class because
the logic will not work in the Release configuration.Therefore, if you plan to change
application data, use the Trace class.

CAUTION

When the value in the dateTimePicker1 control exceeds the current date, a Debug
Assertion Failure dialog box is displayed, as shown in Figure 9-8.

Debugging the Customer Management
Application

Visual Studio .NET provides a number of features that simplify the debugging of
applications. In this section, you will learn to use the debugging windows and
Task List features of Visual Studio .NET. Whereas the debugging windows help
you find errors in the program, the Task List helps you maintain a list of pending
tasks.

Using the Debugging Features of Visual Studio .NET
Visual Studio .NET provides 13 debugging windows. Of these, the important
ones are listed here.

190 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 9-8 The Debug Assertion Failure dialog box

◆ Autos. The Autos window shows the value of the variable in a code that
is currently executing.

◆ Watch. The Watch window can be used to monitor the value of vari-
ables. You can add variables to the Watch window and check their values
when your application is executing.

◆ Call Stack. The Call Stack window shows the functions and the
sequence in which they have been called in an application.

◆ Breakpoints. The Breakpoints window shows all the breakpoints that
you have added to your application.

◆ Command. The Command window can be used to check the output of
a variable or an expression.

◆ Output. The Output window shows the assemblies and modules that
have been loaded by your application.

These windows are available only when you run your application in the Debug
mode. When you are in the Debug mode, your application temporarily halts when
it encounters a breakpoint. At that time, you can examine the data in each win-
dow to determine the state of your application and correct any anomalies.

I will now discuss how to create a breakpoint and then how to use debug windows
at the breakpoint.

Adding Breakpoints to an Application
A breakpoint halts the execution of your application so that you can examine the
state of the application, such as the data in variables and the functions that have
been invoked in the application. To insert a breakpoint, follow these steps:

1. Click on the line in which you want to insert a breakpoint.

2. Click on the Debug menu and then click on New Breakpoint.

3. The New Breakpoint dialog box opens, which is shown in Figure 9-9. In
this dialog box, click on the File tab.

4. The file name and number of the line that you selected in Step 1 are
shown in the File tab of the New Breakpoint dialog box. Click on OK to
create the new breakpoint.

VALIDATIONS AND EXCEPTION HANDLING Chapter 9 191

Working with Debugging Windows
To use debugging windows, insert a breakpoint into your application by using the
steps given in the preceding section and run your application. When the applica-
tion encounters a breakpoint, it gets suspended temporarily. In the suspended
mode, you can view all the debugging windows.The suspended view of the appli-
cation is shown in Figure 9-10.

In the suspended view, as you can see in Figure 9-10, the Autos window shows
the value stored in the dateTimePicker1 control and the Breakpoints window
shows the breakpoints in the application. Similarly, the Watch and Call Stack
windows are shown in Figure 9-11. I have added the dateTimePicker1 watch
expression to the Watch window. The Call Stack window shows the calls to func-
tions that have been already made in the application.

192 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 9-9 Adding a new breakpoint

Using the Task List
The Task List in Visual Studio .NET is a useful feature that enables you to view
a summary of pending tasks in a project. You can use the Task List to view com-
pilation errors, summarize a list of pending tasks, and view the status of pending
tasks. To view Task List, follow these steps:

1. Click on the View menu.

2. On the View menu, click on Other Windows and then click on Task
List.

3. In the Task List, right-click on the Description field.

4. Click on Show Tasks in the short-cut menu.

5. From the Show Tasks submenu, click on All. All tasks that are currently
added to the Task List appear in the Task List, as shown in Figure 9-12.

VALIDATIONS AND EXCEPTION HANDLING Chapter 9 193

FIGURE 9-10 Suspending an application

FIGURE 9-11 Watch and Call Stack windows

By default, all compilation errors are added to the Task List. In addition, all com-
ment entries that you create with the keywords TODO or HACK are also added to the
Task List. Therefore, you can create a comment entry such as:

//TODO: Add data validation code here

This entry will automatically appear in the Task List. Double-clicking on the
entry will take to you to the line of code where you made the comment.

You can also add tasks to the Task List directly in the Task List window. Such
tasks are referred to as user-defined tasks. For user-defined tasks, you can assign a
priority of High, Low, or Normal. Figure 9-13 shows a user-defined high-priority
task in the Task List.

194 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 9-12 Viewing pending tasks in the Task List

FIGURE 9-13 User-defined tasks in the Task List

Summary
This chapter explained the concepts for validating code and handling exceptions.
There are several ways to ensure that users specify valid data into controls, such as
selecting the appropriate Windows control for accepting information, validating
data in controls by using the Leave event of controls, and validating a form at the
Click event of a button.

To handle exceptions in applications, you can use the try and catch statements.
You can also use the Debug and Trace classes of the System.Diagnostics namespace
to ensure that the values stored in variables remain within expected limits.

Finally, you can use the debugging windows and the Task List feature of Visual
Studio .NET to debug your applications.

VALIDATIONS AND EXCEPTION HANDLING Chapter 9 195

This page intentionally left blank

Chapter 10
Database
Interaction Using
ADO.NET

In most real-life projects, your application needs to interact with a database. To
do so, Visual Studio .NET provides you with the ADO.NET data access model

that helps your application to communicate with data sources, such as a Microsoft
SQL Server and Oracle.

ADO.NET is mainly designed to provide data access for distributed applications,
such as Web applications. In addition to accessing data from a data source,
ADO.NET enables you to modify, add, or delete data from the data source. To
provide data access, ADO.NET contains data providers, such as Microsoft Jet
OLE DB Provider, Microsoft OLE DB Provider for Oracle, Microsoft OLE DB
Provider for SQL Server, and so on. These data providers are used to connect to
a corresponding data source, enabling users to access and modify the data in the
data source.

In this chapter, you will learn to connect the Windows forms that you have cre-
ated for the Customer Maintenance project to the corresponding data source. In
addition, you will add functionality to the data-bound controls used in these Win-
dows forms. Finally, you will learn to create a form by using the Data Form
Wizard.

Connecting Windows Forms
to a Data Source Using ADO.NET

You have seen the design of the database in Chapter 7, “Project Case Study.” In
addition, you have created forms for the Customer Maintenance project in Chap-
ter 8, “Windows Forms and Controls.” You will now learn to connect the forms
that you have created to the Customer Maintenance database.

Creating Form1
Before connecting the WorkerForm, CustomerForm, and JobDetails form to the
corresponding data sources, you can add functionality to the menu items that you
created in Form1.

198 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

TEAMFL
Y

Team-Fly®

Form1 contains menu items used to display the corresponding forms. You have
already created these menu items; however, they are not functional. You can add
the code to these menu items to make them functional. To do so, perform the fol-
lowing steps:

1. Double-click on menuItem1 to display the code window.

When the user clicks the Worker menu item, WorkerForm should be dis-
played. In addition, Form1 should be hidden.

2. To display WorkerForm, add the following code to the Click event of
menuItem1.

private void menuItem1_Click (object sender, System.EventArgs e)

{

WorkerForm newForm = new WorkerForm();

n e w F o r m . S h o w D i a l o g (t h i s) ;

}

The previous code creates an instance of WorkerForm named newForm and then
calls the ShowDialog() method to display WorkerForm.The ShowDialog() method
is used to display WorkerForm as a modal dialog box. As you can see, the Show-

Dialog() method has a parameter this. Using the keyword this enables you to
declare Form1 as the parent form of WorkerForm.

Similarly, you can write the code for the
Customer menu item, the Job Details
menu item, and the Reports menu item,
which are used to display the Customer-
Fo rm , the JobDetails f o rm , and the
Reports form, respectively.

The Exit menu in Form1 is used to close
Form1. Therefore, you need to call the
Close() method of the Form class as fol-
lows:

private void menuItem5_Click(object sender,

System.EventArgs e)

{

t h i s . C l o s e () ;

}

DATABASE INTERACTION USING ADO.NET Chapter 10 199

Visual Studio .NET allows you to display a
form or a dialog box as modal or mode-
less in a MDI (multiple-document
interface) application. A modal dialog box,
when active, does not allow you to work
with any other form in the application.
Therefore, you need to close the form to
work with another form in the application.
You may even hide the modal form to
work with another form.

However, a modeless dialog box allows
you to work with another form in the appli-
cation even if you do not close the mode-
less form.

MODAL AND MODELESS FORMS

Connecting WorkerForm to the Workers Table
In Chapter 8, you created a WorkerForm with a DataGrid control and four But-
ton controls. However, these controls are not functional. You can now add code
for these controls to make them functional.

Adding Functionality to the DataGrid Control
Before adding code to make a DataGrid control functional, you first need to
understand what a DataGrid control is.

A DataGrid control is a type of a data-bound control that is used to display the
data from a data source.The data from the data source is displayed in the form of
a grid containing rows and columns. You can use a DataGrid control to add,
delete, or modify records from an associated data source. In addition, you can use
a DataGrid control to display data from one or more tables.

To display the data in a DataGrid control, you first need to bind the control to a
data source by using ADO.NET. When a DataGrid control is bound to a data
source, Visual Studio .NET automatically creates the rows and columns to display
the data. In addition, the data from the data source is loaded to a DataSet object
that you create.

A DataSet object is a memory cache that provides a relational view of the data
from the data source. You can create a dataset to hold data from one or more
tables. In addition to displaying the data from a data source, a dataset can be used
to store relationships between the tables and the constraints defined for the table.

You will now create a DataSet object that contains data from the tblWorker table,
which you need to display in the DataGrid control. To create a dataset, you first
need to connect to the SQL server that contains the Customer Maintenance data-
base. To do this, Visual Studio .NET provides you with several data adapters,such
as OleDbDataAdapter and SqlDataAdapter. These data adapters act as an inter-
face between the dataset and the underlying data source. This implies that a
dataset uses a data adapter to communicate with the underlying data source. A
data adapter is used to perform the functions of reading and writing data from a
dataset to a data source and vice versa.

To create a data adapter, perform the following steps.

1. Drag SqlDataAdapter from the Data toolbox.

The Data Adapter Configuration Wizard is displayed.

200 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

2. Click on the Next button to start the wizard.

3. In the Choose Your Data Connection page, click on the New Connec-
tion button to create a new connection to a SQL database.

The Data Link Properties window is displayed.

4. In the Provider tab of the Data Link Properties window, select the OLE
DB provider to which you want to connect.

The Microsoft OLE DB Provider for SQL Server option is selected by
default. In this case, you will use this option because you need to connect
to a SQL database. To connect to some other database, you can select
the appropriate option from the OLE DB Provider(s) list.

5. Click on the Next button to proceed with the wizard.

The Connection page of the Data Link Properties window is displayed.

6. From the Select or enter a server name: combo box, select the server to
which you want to connect.

7. In the Enter information to log on to the server: group box, select the
authentication mode to connect to a SQL server.

The Enter information to log on to the server: group box provides you
with two radio buttons. To connect to a SQL server by using the Win-
dows authentication mode, you select the Use Windows NT Integrated
Security radio button.

DATABASE INTERACTION USING ADO.NET Chapter 10 201

If you need to connect to a database other than a SQL database, you need to use
the OleDbDataAdapter.

TIP

You can also type the name of the server in the combo box.

TIP

However, if you select the Use a specific name and password: radio but-
ton, you need to specify the user name and the password in the User
name: and Password: text box, respectively. To leave the password blank,
check the Blank password check box.

8. Select the Select the database on the server: radio button to select a
name of the database to which you want to connect.

9. Select the name of the database from the drop-down list.

Here, the name of the database is CMS. You may also type the name of
the database in the combo box.

10. Click on the Test Connection button to test the connection to the CMS
database.

A message box showing the text Test connection succeeded. is dis-
played if the connection is successful.

11. Click on the OK button to close the message box.

12. Click on the OK button to close the Data Link Properties window.

The Choose Your Data Connection page is displayed.The name of the
database is displayed in the Which data connection should the data
adapter use? list box.

13. Click on the Next button to proceed with the wizard.

The Choose a Query Type page is displayed. The page provides you with
several options that the data adapter can use to access the database.

14. Select the Use SQL statements radio button.

This option allows you to create a SQL statement that enables the data
adapter to access the database.

15. Click on the Next button.

The Generate the SQL statements page is displayed. You can type the
query in the What data should the data adapter load into the dataset?
text box.

16. Type the following SQL statement in the text box:

SELECT WorkerId, Name

FROM tblWorker

202 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

This SQL statement allows you to select the WorkerId field and the
Name field from the tblWorker table. You can also click on the Query
Builder button to graphically create the query. The Data Adapter Con-
figuration Wizard uses this SQL statement to create the Insert, Update,
and Delete statements to insert, modify, and delete records from the
tblWorker table.

17. Click on the Next button.

The View Wizard Results page is displayed. This page displays a list of
tasks that the wizard has performed.The Data Adapter Configuration
Wizard creates Select, Insert, Update, and Delete statements. In addi-
tion, the wizard creates table mappings for your database.

18. Click on the Finish button to create the data adapter.

The Data Adapter Configuration Wizard creates a data adapter with the name
sqlDataAdapter1, which contains information about the table and the fields to
which the connection is made. In addition, the Data Adapter Configuration
Wizard creates a connection named sqlConnection1 that contains the information
about accessing the CMS database.

After creating a connection by using the Data Adapter Configuration Wizard,
you need to generate a dataset. Visual Studio .NET automatically creates a
DataSet object when you select the Generate Dataset option in the Data menu.
To generate a dataset, perform the following steps:

1. Click anywhere in the form to activate it.

2. In the Data menu, select the Generate Dataset option.

The Generate Dataset window is displayed.

3. From the Choose a dataset: group box, select the New radio button. In
the text box adjacent to the New radio button, type the name of the
DataSet object as workerDataSet.

Make sure that the tblWorker table is selected in the Choose which
table(s) to add to the dataset text box.

4. Check the Add this dataset to the designer. check box.

DATABASE INTERACTION USING ADO.NET Chapter 10 203

Selecting the Add this dataset to the designer. check box ensures that the
DataSet object is added to the component tray at the bottom of the form
in the design view.

5. Click on the OK button to close the Generate Dataset window.

A DataSet object with the name workerDataSet1 is created. In addition, Visual
Studio .NET creates a schema file named workerDataSet1.xsd in the Solution
Explorer window. This file contains the definition of the dataset.You can double-
click on the workerDataSet1.xsd file to view the definition of the dataset.

The dataset that you have created contains the data from the tblWorker table.
However, the data is still not visible to the user. To display the records from the
table, you need to bind the DataGrid control to the workerDataSet1 dataset. Per-
forming the following steps will bind the DataGrid control to the dataset.

1. In the Design view, click on the DataGrid control to display its
properties.

If the Properties window is not displayed, select the Properties Window
option from the View menu or press the F4 key.

2. In the Properties window, select the DataSource property.

3. Click on the Down Arrow button to display the list of DataSet objects.

4. From the list that is displayed, select the workerDataSet1 option.

5. Click on the Down Arrow button of the DataMember property.

A list of tables in the data source is displayed.

6. Select tblWorker from the displayed list.

A DataGrid control showing the column headings is displayed.

7. Save the form by clicking on the Save option in the File menu.

Figure 10-1 shows the WorkerForm with the DataGrid control.

204 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

As you can see, the DataGrid control contains only the column headings. Visual
Studio .NET does not automatically load the records from the table to the Data-
Grid control. To do so, you need to write the code for the Edit button.

Adding Functionality to the Edit Button
While creating the WorkerForm, you have included four Button controls to the
form. However, until now, you have not added code to the buttons. In this sec-
tion, you will write the code for the Click event of the Edit button that loads the
records from the data source to the DataGrid control. To do so, perform the fol-
lowing steps:

1. Double-click on the Edit button to open the code window.

2. Add the following code to the Click event of the button.

private void btnEdit_Click(object sender, System.EventArgs e)

{

w o r k e r D a t a S e t 1 . C l e a r () ;

s q l D a t a A d a p t e r 1 . F i l l (w o r k e r D a t a S e t 1) ;

}

The previous code calls the Clear() method of the System.Data.DataSet class,
which is used to clear records from the tables in the workerDataSet1 dataset.Then,
the Fill() method of the data adapter is called to load the records in the dataset.
The Fill() method accepts the name of the DataSet object as the parameter.

DATABASE INTERACTION USING ADO.NET Chapter 10 205

FIGURE 10-1 The WorkerForm with the DataGrid control

When the user clicks on the Edit button, the records from the tblWorker table get
loaded in the DataGrid control. You can resize the control to display as many
records as you want. However, if the records are more than the space provided, a
scroll bar is introduced in the DataGrid control. Figure 10-2 shows WorkerForm
with the records displayed from the tblWorker table.

Adding Functionality to the Save Button
The Edit button allows you only to view the records.However, when you perform
any modifications to the records that are displayed, the updated record is saved
only in the dataset.To replicate the changes made by the user to the records in the
data source, you need to write the code for the Save button.

206 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

If you are using an OleDbDataAdapter to connect to a database, include the following
code in the Click event of the Edit button.

private void btnEdit_Click(object sender, System.EventArgs e)

{

w o r k e r D a t a S e t 1 . C l e a r () ;

o l e D b D a t a A d a p t e r 1 . F i l l (w o r k e r D a t a S e t 1) ;

}

TIP

FIGURE 10-2 WorkerForm with the records displayed

Visual Studio .NET provides you with an Update() method of the data adapter
that you can use to make changes in the underlying data source. Writing the fol-
lowing code in the Click event of the Save button will call the Update() method.

private void btnSave_Click(object sender, System.EventArgs e)

{

s q l D a t a A d a p t e r 1 . U p d a t e (w o r k e r D a t a S e t 1) ;

MessageBox.Show(“The Worker table is updated.”);

}

You can make the following changes to the previous code if you are using OleDb-
DataAdapter.

private void btnSave_Click(object sender, System.EventArgs e)

{

o l e D b D a t a A d a p t e r 1 . U p d a t e (w o r k e r D a t a S e t 1) ;

MessageBox.Show(“The Worker table is updated.”);

}

The Update() method includes the statements for adding, deleting, and modify-
ing records in the database. When a user makes changes to the records and clicks
the Save button, the Update() method is called. The Update() method checks the
value of the RowState property to identify the index of the row to which the user
has made changes. The Update() method then executes the Insert, Delete, or
Update command as required.

When the changes are updated to the tblWorker table, a message box displaying
the text The Worker table is updated. is shown. Figure 10-3 shows the message
box displaying the message that the changes are updated to the database.

DATABASE INTERACTION USING ADO.NET Chapter 10 207

FIGURE 10-3 WorkerForm with the message box displayed

208 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

If the user needs to cancel the changes made to the records in the DataSet, the
user can click the Cancel button. You can now write the code for the Cancel
button.

Adding Functionality to the Cancel Button
To add functionality to the Cancel button, perform the following steps:

1. Double-click on the Cancel button to display the code window.

2. Add the following code to the Click event of the button.

private void btnCancel_Click(object sender, System.EventArgs e)

{

w o r k e r D a t a S e t 1 . C l e a r () ;

s q l D a t a A d a p t e r 1 . F i l l (w o r k e r D a t a S e t 1) ;

}

The previous code uses the Clear() method of the DataSet class to clear all the
rows in the dataset.

Adding Functionality to the Exit Button
After working with the WorkerForm, you need to close the WorkerForm to dis-
play the main form, Form1.This can be done by adding the following code to the
Click event of the Exit button.

private void btnExit_Click(object sender, System.EventArgs e)

{

Form1 newForm = new Form1();

n e w F o r m . S h o w () ;

t h i s . H i d e () ;

}

Until now, you have written the code for all the controls in the form. Now con-
sider the entire code for the WorkerForm.

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

TEAMFL
Y

Team-Fly®

namespace Customer_Maintenance_Project

{

public class WorkerForm : System.Windows.Forms.Form

{

private System.Windows.Forms.Button btnSave;

private System.Windows.Forms.Button btnEdit;

private System.Windows.Forms.Button btnCancel;

private System.Windows.Forms.Button btnExit;

private System.Data.SqlClient.SqlDataAdapter sqlDataAdapter1;

private System.Data.SqlClient.SqlCommand sqlSelectCommand1;

private System.Data.SqlClient.SqlCommand sqlInsertCommand1;

private System.Data.SqlClient.SqlCommand sqlUpdateCommand1;

private System.Data.SqlClient.SqlCommand sqlDeleteCommand1;

private System.Data.SqlClient.SqlConnection sqlConnection1;

private Customer_Maintenance_Project.WorkerDataSet workerDataSet1;

private System.Windows.Forms.DataGrid dataGrid1;

private System.Windows.Forms.Label label1;

private System.ComponentModel.Container components = null;

public WorkerForm()

{

I n i t i a l i z e C o m p o n e n t () ;

}

protected override void Dispose(bool disposing)

{

if(disposing)

{

if(components != null)

{

c o m p o n e n t s . D i s p o s e () ;

}

}

base.Dispose(disposing);

}

private void WorkerForm_Load(object sender, System.EventArgs e)

{

DATABASE INTERACTION USING ADO.NET Chapter 10 209

}

private void btnSave_Click(object sender, System.EventArgs e)

{

s q l D a t a A d a p t e r 1 . U p d a t e (w o r k e r D a t a S e t 1) ;

MessageBox.Show(“The Worker table is updated.”);

}

private void btnEdit_Click(object sender, System.EventArgs e)

{

w o r k e r D a t a S e t 1 . C l e a r () ;

s q l D a t a A d a p t e r 1 . F i l l (w o r k e r D a t a S e t 1) ;

}

private void btnExit_Click(object sender, System.EventArgs e)

{

Form1 newForm = new Form1();

n e w F o r m . S h o w () ;

t h i s . H i d e () ;

}

private void btnCancel_Click(object sender, System.EventArgs e)

{

w o r k e r D a t a S e t 1 . C l e a r () ;

s q l D a t a A d a p t e r 1 . F i l l (w o r k e r D a t a S e t 1) ;

}

}

}

The previous code includes default namespaces, such as System, System.Drawing,
System.Collections, System.ComponentModel, and System.Windows.Forms. Visual
Studio .NET creates a default namespace with the same name as that of the pro-
ject, Customer_Maintenance_Project.Inside the namespace, a class with the same
name as that of the form, WorkerForm, is created.The WorkerForm class is derived
from the System.Windows.Forms.Form class.

The WorkerForm class includes the declaration of all the controls used in the form.
These controls include the Label, Button, DataSet, DataAdapter, and DataGrid
controls. In addition, the declaration of the SQL commands, such as Select,

210 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

Update, Insert, and Delete are included in the WorkerForm class. This class also
contains a default constructor with the name WorkerForm. The constructor is used
to call the InitializeComponent() method, which is a private void method
declared in the #region preprocessor directives. The InitializeComponent()

method contains the statements used to initialize the controls and commands
used in the code.

The WorkerForm class also includes a protected override of the Dispose() method,
which is used to deallocate memory to the components that are no longer used by
the program code. Finally, the code includes the Click event of the button con-
trols that you added in the previous sections.

WorkerForm that you have created is now functional. To test the form, perform
the following steps:

1. On the Debug menu, click on the Start option. Alternatively, you can
press the F5 key to start debugging.

You can now click on each button to test the functionality.

2. Click on the Edit button.

The records in the tblWorker table are displayed.

3. Edit a record and click on the Save button.

A message box showing the text The Worker table is updated. is
displayed.

Similarly, you can add or delete a record by clicking the Save button. You can also
cancel the changes that you made to the records in the dataset by pressing the
Cancel button and return to the main form by pressing the Exit button.

As you can see, the main form, Form1, is displayed when you click on the Exit
button. Form1 contains the links to the WorkerForm, CustomerForm,JobDetails,
and Reports forms. After creating the WorkerForm form, you can now add the
functionality to the CustomerForm form.

Connecting CustomerForm to the tblCustomer Table
The CustomerForm is used to display the records from the tblCustomer table. To
do this, you need to create the DataSet object for the customer records similar to
the ones that you created for the worker records. The steps for creating a dataset

DATABASE INTERACTION USING ADO.NET Chapter 10 211

are the same as discussed earlier, except for the SQL query that you create to select
the records from the database.

To create a DataSet object, run the Data Adapter Configuration Wizard. The
wizard creates the sqlDataAdapter and sqlConnection objects that you can use to
connect to the tblCustomer table. However, in the Generate the SQL statements
page of the Data Adapter Configuration Wizard, type the following SQL query
that selects all the records from the tblCustomer table:

SELECT CarNo, Name, Address, Make

FROM tblCustomer

The previous SQL statement enables the sqlDataAdapter data adapter to connect
to the tblCustomer table. However, a dataset is still not created. To enable Visual
Studio .NET to create a dataset, perform the following steps:

1. Click anywhere in the form to make it active.

2. In the Data menu, select the Generate Dataset option.

The Generate Dataset window is displayed.

3. From the Choose a dataset: group box, select the New radio button. In
the text box adjacent to the New radio button, type the name of the
dataset as customerDataSet.

Make sure that the tblCustomer table is selected in the Choose which
table(s) to add to the dataset text box.

4. Check the Add this dataset to the designer. check box.

5. Click on the OK button to close the Generate Dataset window.

A DataSet object with the name customerDataSet1 is added to the com-
ponent tray at the bottom of the form. Figure 10-4 shows the Cus-
tomerForm form with sqlDataAdapter1, sqlConnection1, and
customerDataSet1 added to the form.

However, generating a DataSet object does not display records in the form. To
display records, you can either use a DataGrid control or bind the controls to the
fields in the underlying table. In the previous section, you have seen that a Data-
Grid control displays all the records in the form of a grid. However, you can also
display each field in a separate control by binding each control to a field in the
table. The following section discusses binding controls to the fields in a table.

212 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

Binding TextBox Controls to Fields
in the tblCustomer Table
In Chapter 7, you created the interface for the CustomerForm form. Customer-
Form includes four text boxes that you can bind to the four column headings in
the tblCustomer table. You can bind a control to a field in a table by changing the
properties of the control. To do so, perform the following steps:

1. Click on a TextBox control to change its properties.

In the Properties window, change the properties of the TextBox controls.

2. Click on the plus (+) sign to the left of the DataBindings property.

A list of properties is displayed.

3. Click on the Down Arrow button of the Text property.

A list of datasets is displayed.

4. Expand the customerDataSet1 dataset by clicking the plus (+) sign.

5. Expand the list of tables that is displayed.

6. Select the CarNo option to bind the text box control to the CarNo field.

The TextBox control will now display the records in the CarNo field.
Similarly, you can bind the rest of the text boxes to display records from
the Name, Address, and Make fields of the tblCustomer table.

DATABASE INTERACTION USING ADO.NET Chapter 10 213

FIGURE 10-4 CustomerForm in the design view

Even after binding the controls to the fields in the table, records are not auto-
matically loaded in the CustomerForm at run time. To load the records, you need
to call the Fill() method of the data adapter in the Click event of the Edit but-
ton. You can now write the code to load the records in the CustomerForm form
at run time.

Adding Functionality to the Edit Button
To write the code for the Edit button, perform the following steps:

1. Double-click on the Edit button to display the code window.

2. Add the following code to the Click event of the Edit button.

private void btnEdit_Click(object sender, System.EventArgs e)

{

c u s t o m e r D a t a S e t 1 . C l e a r () ;

s q l D a t a A d a p t e r 1 . F i l l (c u s t o m e r D a t a S e t 1) ;

}

The previous code calls the Clear() method to clear all the records in the dataset.
Next, it calls the Fill() method to load the records from customerDataSet1 to
CustomerForm. If you are using OleDbDataAdapter, you need to make the fol-
lowing changes to the Click event of the Edit button.

private void btnEdit_Click(object sender, System.EventArgs e)

{

c u s t o m e r D a t a S e t 1 . C l e a r () ;

o l e D b D a t a A d a p t e r 1 . F i l l (c u s t o m e r D a t a S e t 1) ;

}

When the user clicks on the Edit button, the records are displayed in the Cus-
tomerForm form. Figure 10-5 shows the CustomerForm form with the records
displayed.

When the records are loaded, you can make changes to the records. In addition,
you can add or delete a record. To save the changes that you make to the records,
you need to write the code for the Save button. The following section discusses
how to add code to the Save button.

214 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

Adding Functionality to the Save Button
The Save button is used to save the changes that you make to the records in the
tblCustomer table. To do so, you need to add the following code to the Click event
of the Save button.

private void btnSave_Click(object sender, System.EventArgs e)

{

bool flag;

f l a g = t r u e ;

if (textBox1.Text==””)

{

errCustForm.SetError(textBox1,”Please specify a valid car number.”);

f l a g = f a l s e ;

}

e l s e

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 1 , ” ”) ;

if (textBox2.Text==””)

{

errCustForm.SetError(textBox2,”Please specify a valid name.”);

f l a g = f a l s e ;

}

e l s e

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 2 , ” ”) ;

if (textBox3.Text==””)

{

errCustForm.SetError(textBox3,”Please specify a valid address.”);

f l a g = f a l s e ;

}

DATABASE INTERACTION USING ADO.NET Chapter 10 215

FIGURE 10-5 CustomerForm with the records displayed

e l s e

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 3 , ” ”) ;

if (textBox4.Text==””)

{

errCustForm.SetError(textBox4,”Please specify a valid make.”);

f l a g = f a l s e ;

}

e l s e

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 4 , ” ”) ;

if (flag==false)

r e t u r n ;

e l s e

{

s q l D a t a A d a p t e r 1 . U p d a t e (c u s t o m e r D a t a S e t 1) ;

MessageBox.Show(“Database updated!”);

}

}

Similar to the Cancel and Exit buttons in the WorkerForm, you need to add the
functionality to the Cancel and Exit buttons in the CustomerForm form.

As you have seen, a DataGrid con t rol displays all the re c o rds in a gri d . H ow eve r, i f
you are using individual con t rols to display the fields of a table, as in the case of Cus-
t om e r Fo rm , a single re c o rd is displayed at a time. To view all the re c o rd s , you need
to add Back and Next buttons that all ow you to navigate through multiple re c o rd s .

All the column headings in the tblCustomer table are mandatory. Therefore,
before saving the changes that a user has made to the records to the underlying
tblCustomer table, you first need to check whether the user has entered the data
in all fields. To do so, the previous code declares a bool type variable flag and ini-
tializes it to true.

The code then tests if any of the fields are left blank. If a field is left blank, an
error message is displayed adjacent to the corresponding field. For example, if the
user does not enter a value for the Address field, an error message with the text
“Please specify a valid address” is displayed.

Next, the value in the variable flag is changed to false.

Finally, the code uses an if statement to check the value of the variable flag. If
the value of the variable flag is false, the return statement is used to retrieve the
changes made by the user.

216 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

Alternatively, if the value of the variable flag is true, the changes made by the user
are replicated in the tblCustomer table and a message box confirming the same is
displayed.

Adding Functionality to the Back Button

The Back button allows you to display the previous record of the tblCustomer
table. To do so, add the following code to the Click event of the Back button.

private void btnBack_Click_1(object sender, System.EventArgs e)

{

btnBack.BindingContext[customerDataSet1, “tblCustomer”].Position -=1 ;

C u r r e n t P o s i t i o n () ;

}

The previous code uses the Position property of the BindingContext object to
find the position of the record. To navigate to the previous record, the value of the
Position property is decremented by one. The code then calls the CurrentPosi-
tion() method that is used to display the position of the record in the txtDis-
playPosition text box.

DATABASE INTERACTION USING ADO.NET Chapter 10 217

A BindingContext object is used to manage objects derived from the Control class.
These controls include all Windows Forms controls, such as TextBox, GroupBox, List-
Box, and so on. Each of these controls has an associated BindingContext object.The
BindingContext class contains several methods that can be used to perform opera-
tions on these objects.

NOTE

The CurrentPosition() method is a custom-defined private void method. You can
add the code of the CurrentPosition() method to the public class CustomerForm.

private void CurrentPosition()

{

int currentPosition, ctr;

ctr = this.BindingContext[customerDataSet1, “tblCustomer”].Count;

if(ctr == 0)

{

txtDisplayPosition.Text = “(There are no records in the Customer table.)”;

}

else

{

currentPosition = this.BindingContext[customerDataSet1, “tblCustomer”].Position + 1;

txtDisplayPosition.Text = currentPosition.ToString() + “ of “ + ctr.ToString() ;

}

}

The previous code declares two integer variables, currentPosition and ctr. The
Count property of the BindingContext object is used to find the number of records
in customerDataSet. The value returned by the Count property is stored in the vari-
able ctr.

The if construct is used to check the value of ctr. If the value of ctr is equal to
zero, it implies that there are no records in the table. However, if the value of ctr
is not equal to zero, the value of the current record is converted to a string by
using the ToString() method and is then displayed in the txtDisplayPosition text
box.

Similarly, you can write the code for the Next button. The Next button enables
the user to navigate to the next record in the table. To make the Next button func-
tional, add the following code to the Click event of the Next button:

private void btnNext_Click(object sender, System.EventArgs e)

{

btnNext.BindingContext[customerDataSet1, “tblCustomer”].Position +=1 ;

C u r r e n t P o s i t i o n () ;

}

Figure 10-6 shows CustomerForm.

218 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 10-6 CustomerForm

TEAMFL
Y

Team-Fly®

After adding the functionality for all the controls, the complete code for the Cus-
tomerForm form is as follows:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

namespace Customer_Maintenance_Project

{

public class CustomerForm : System.Windows.Forms.Form

{

private System.Windows.Forms.Button btnSave;

private System.Windows.Forms.Button btnEdit;

private System.Windows.Forms.Button btnCancel;

private System.Windows.Forms.Label lblCarNo;

private System.Windows.Forms.Label lblName;

private System.Windows.Forms.Label lblAddress;

private System.Windows.Forms.Label lblMake;

private System.Windows.Forms.TextBox textBox1;

private System.Windows.Forms.TextBox textBox2;

private System.Windows.Forms.TextBox textBox3;

private System.Windows.Forms.TextBox textBox4;

private System.Data.SqlClient.SqlDataAdapter sqlDataAdapter1;

private System.Data.SqlClient.SqlCommand sqlSelectCommand1;

private System.Data.SqlClient.SqlCommand sqlInsertCommand1;

private System.Data.SqlClient.SqlCommand sqlUpdateCommand1;

private System.Data.SqlClient.SqlCommand sqlDeleteCommand1;

private System.Data.SqlClient.SqlConnection sqlConnection1;

private Customer_Maintenance_Project.CustomerDataSet customerDataSet1;

private System.Windows.Forms.Button btnNext;

private System.Windows.Forms.Button Exit;

private System.Windows.Forms.TextBox txtDisplayPosition;

private System.Windows.Forms.Button btnBack;

private System.ComponentModel.Container components = null;

public CustomerForm()

DATABASE INTERACTION USING ADO.NET Chapter 10 219

{

I n i t i a l i z e C o m p o n e n t () ;

}

protected override void Dispose(bool disposing)

{

if(disposing)

{

if(components != null)

{

c o m p o n e n t s . D i s p o s e () ;

}

}

base.Dispose(disposing);

}

private void btnEdit_Click(object sender, System.EventArgs e)

{

c u s t o m e r D a t a S e t 1 . C l e a r () ;

s q l D a t a A d a p t e r 1 . F i l l (c u s t o m e r D a t a S e t 1) ;

C u r r e n t P o s i t i o n () ;

}

private void btnSave_Click(object sender, System.EventArgs e)

{

bool flag;

f l a g = t r u e ;

if (textBox1.Text==””)

{

errCustForm.SetError(textBox1,”Please specify a valid car number.”);

f l a g = f a l s e ;

}

e l s e

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 1 , ” ”) ;

if (textBox2.Text==””)

{

errCustForm.SetError(textBox2,”Please specify a valid name.”);

f l a g = f a l s e ;

}

220 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

e l s e

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 2 , ” ”) ;

if (textBox3.Text==””)

{

errCustForm.SetError(textBox3,”Please specify a valid address.”);

f l a g = f a l s e ;

}

e l s e

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 3 , ” ”) ;

if (textBox4.Text==””)

{

errCustForm.SetError(textBox4,”Please specify a valid make.”);

f l a g = f a l s e ;

}

e l s e

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 4 , ” ”) ;

if (flag==false)

r e t u r n ;

e l s e

{

s q l D a t a A d a p t e r 1 . U p d a t e (c u s t o m e r D a t a S e t 1) ;

MessageBox.Show(“Database updated!”);

}

}

private void btnBack_Click(object sender, System.EventArgs e)

{

btnBack.BindingContext[customerDataSet1, “tblCustomer”].Position -=1 ;

C u r r e n t P o s i t i o n () ;

}

private void btnNext_Click(object sender, System.EventArgs e)

{

btnNext.BindingContext[customerDataSet1, “tblCustomer”].Position +=1 ;

C u r r e n t P o s i t i o n () ;

}

DATABASE INTERACTION USING ADO.NET Chapter 10 221

private void CustomerForm_Load(object sender, System.EventArgs e)

{

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 1 , ” ”) ;

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 2 , ” ”) ;

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 3 , ” ”) ;

e r r C u s t F o r m . S e t E r r o r (t e x t B o x 4 , ” ”) ;

}

private void CurrentPosition()

{

int currentPosition, ctr;

ctr = this.BindingContext[customerDataSet1, “tblCustomer”].Count;

if(ctr == 0)

{

txtDisplayPosition.Text = “(There are no records in the Customer table.)”;

}

else

{

currentPosition = this.BindingContext[customerDataSet1,

“tblCustomer”].Position + 1;

txtDisplayPosition.Text = currentPosition.ToString() + “ of “ +

ctr.ToString() ;

}

}

private void btnCancel_Click(object sender, System.EventArgs e)

{

}

private void Exit_Click(object sender, System.EventArgs e)

{

Form1 newForm1 = new Form1();

n e w F o r m 1 . S h o w () ;

t h i s . H i d e () ;

}

222 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

private void btnBack_Click_1(object sender, System.EventArgs e)

{

btnBack.BindingContext[customerDataSet1, “tblCustomer”].Position -=1 ;

C u r r e n t P o s i t i o n () ;

}

}

}

Connecting the JobDetails Form
to the tblJobDetails Table

The JobDetails form is used to display records from the tblJobDetails table.
Visual Studio .NET provides us with the Data Form Wizard that you can use to
generate datasets, add data-bound controls, and add functionality to the controls.
Perform the following steps to run the Data Form Wizard.

1. Right-click on Customer Maintenance Project in the Solution Explorer
window.

2. From the list that is displayed, point to the Add option and click on the
Add New Item option.

The Add New Item dialog box is displayed.

3. From the Templates: pane, select the Data Form Wizard icon.

4. In the Name text box, type the name as JobDetails.

5. Click on the Open button to close the Add New Item dialog box.

The Data Form Wizard is displayed.

6. Click on the Next button to start the Wizard.

The Choose the dataset you want to use page is displayed.

7. Select the Create a new dataset named: radio button to create a new
dataset.

8. Type the name of the dataset as JobDataSet in the text box.

DATABASE INTERACTION USING ADO.NET Chapter 10 223

9. Click on the Next button.

The Choose a data connection page is displayed.

10. From the Which connection should the wizard use? list box, choose the
name of the database, CMS.

You can also create a new connection by using the New Connection
button.

11. Click on the Next button.

The Choose tables or views page is displayed.

12. Add the tables from the list by clicking on the Right Arrow button.

You can select multiple tables from the available list.

13. Click on the Next button.

The Choose tables and columns on the form page is displayed.

14. Select the fields that you want to display on the form.

By default, all the fields are selected. If you do not want to display a
field, deselect the field name.

15. Click on the Next button.

The Choose the display style page is displayed. This page provides you
with the option of creating a DataGrid control or individual controls.

16. Select the Single record in individual controls radio button.

The Add, Delete, Cancel, and Navigation controls check box becomes
active. If you do not want a button to appear on the form, you can
uncheck the corresponding check box.

17. Click on the Finish button to close the wizard.

Figure 10-7 displays the JobDetails form as created by the wizard.

224 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

As you can see, the Data Form Wizard creates the data-bound controls and but-
tons for you. You can now change the layout of the form and add an Exit button.
When a user clicks the Exit button, Form1 is displayed. In addition, the JobDe-
tails form is hidden. The code for the JobDetails form is as follows:

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

namespace Customer_Maintenance_Project

{

public class JobDetails : System.Windows.Forms.Form

{

private System.Data.OleDb.OleDbCommand oleDbSelectCommand1;

private System.Data.OleDb.OleDbCommand oleDbInsertCommand1;

private System.Data.OleDb.OleDbCommand oleDbUpdateCommand1;

private System.Data.OleDb.OleDbCommand oleDbDeleteCommand1;

private Customer_Maintenance_Project.JobDataSet objJobDataSet;

private System.Data.OleDb.OleDbConnection oleDbConnection1;

DATABASE INTERACTION USING ADO.NET Chapter 10 225

FIGURE 10-7 The JobDetails form

private System.Data.OleDb.OleDbDataAdapter oleDbDataAdapter1;

private System.Windows.Forms.Button btnLoad;

private System.Windows.Forms.Button btnUpdate;

private System.Windows.Forms.Button btnCancelAll;

private System.Windows.Forms.Label lblCarNo;

private System.Windows.Forms.Label lblJobDate;

private System.Windows.Forms.Label lblWorkerId;

private System.Windows.Forms.Label lblKMs;

private System.Windows.Forms.Label lblTuning;

private System.Windows.Forms.Label lblAlignment;

private System.Windows.Forms.Label lblBalancing;

private System.Windows.Forms.LabellblTires;

private System.Windows.Forms.Label lblWeights;

private System.Windows.Forms.Label lblOilChanged;

private System.Windows.Forms.Label lblOilQty;

private System.Windows.Forms.TextBox editCarNo;

private System.Windows.Forms.TextBox editJobDate;

private System.Windows.Forms.TextBox editWorkerId;

private System.Windows.Forms.TextBox editKMs;

private System.Windows.Forms.TextBox editTuning;

private System.Windows.Forms.TextBox editAlignment;

private System.Windows.Forms.TextBox editBalancing;

private System.Windows.Forms.TextBox editTires;

private System.Windows.Forms.TextBox editWeights;

private System.Windows.Forms.TextBox editOilChanged;

private System.Windows.Forms.TextBox editOilQty;

private System.Windows.Forms.Label lblOilFilter;

private System.Windows.Forms.Label lblGearOil;

private System.Windows.Forms.Label lblGearOilQty;

private System.Windows.Forms.Label lblPoint;

private System.Windows.Forms.Label lblCondenser;

private System.Windows.Forms.Label lblPlug;

private System.Windows.Forms.Label lblPlugQty;

private System.Windows.Forms.Label lblFuelFilter;

private System.Windows.Forms.Label lblAirFilter;

private System.Windows.Forms.Label lblRemarks;

private System.Windows.Forms.TextBox editOilFilter;

226 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

private System.Windows.Forms.TextBox editGearOil;

private System.Windows.Forms.TextBox editGearOilQty;

private System.Windows.Forms.TextBox editPoint;

private System.Windows.Forms.TextBox editCondenser;

private System.Windows.Forms.TextBox editPlug;

private System.Windows.Forms.TextBox editPlugQty;

private System.Windows.Forms.TextBox editFuelFilter;

private System.Windows.Forms.TextBox editAirFilter;

private System.Windows.Forms.TextBox editRemarks;

private System.Windows.Forms.Button btnNavFirst;

private System.Windows.Forms.Button btnNavPrev;

private System.Windows.Forms.Label lblNavLocation;

private System.Windows.Forms.Button btnNavNext;

private System.Windows.Forms.Button btnLast;

private System.Windows.Forms.Button btnAdd;

private System.Windows.Forms.Button btnDelete;

private System.Windows.Forms.Button btnCancel;

private System.Windows.Forms.Button btnExit;

private System.ComponentModel.Container components = null;

public JobDetails()

{

I n i t i a l i z e C o m p o n e n t () ;

}

protected override void Dispose(bool disposing)

{

if(disposing)

{

if(components != null)

{

c o m p o n e n t s . D i s p o s e () ;

}

}

base.Dispose(disposing);

}

DATABASE INTERACTION USING ADO.NET Chapter 10 227

public void FillDataSet(Customer_Maintenance_Project.JobDataSet dataSet)

{

dataSet.EnforceConstraints = false;

try

{

t h i s . o l e D b C o n n e c t i o n 1 . O p e n () ;

t h i s . o l e D b D a t a A d a p t e r 1 . F i l l (d a t a S e t) ;

}

catch (System.Exception fillException)

{

throw fillException;

}

finally

{

dataSet.EnforceConstraints = true;

t h i s . o l e D b C o n n e c t i o n 1 . C l o s e () ;

}

}

public void UpdateDataSource(Customer_Maintenance_Project.JobDataSet ChangedRows)

{

try

{

if ((ChangedRows != null))

{

t h i s . o l e D b C o n n e c t i o n 1 . O p e n () ;

o l e D b D a t a A d a p t e r 1 . U p d a t e (C h a n g e d R o w s) ;

}

}

catch (System.Exception updateException)

{

throw updateException;

}

finally

{

t h i s . o l e D b C o n n e c t i o n 1 . C l o s e () ;

}

}

228 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

TEAMFL
Y

Team-Fly®

public void LoadDataSet()

{

Customer_Maintenance_Project.JobDataSet objDataSetTemp;

objDataSetTemp = new Customer_Maintenance_Project.JobDataSet();

try

{

t h i s . F i l l D a t a S e t (o b j D a t a S e t T e m p) ;

}

catch (System.Exception eFillDataSet)

{

throw eFillDataSet;

}

try

{

o b j J o b D a t a S e t . C l e a r () ;

o b j J o b D a t a S e t . M e r g e (o b j D a t a S e t T e m p) ;

}

catch (System.Exception eLoadMerge)

{

throw eLoadMerge;

}

}

public void UpdateDataSet()

{

Customer_Maintenance_Project.JobDataSet objDataSetChanges =

new Customer_Maintenance_Project.JobDataSet();

t h i s . B i n d i n g C o n t e x t [o b j J o b D a t a S e t , ” t b l J o b D e t a i l s ”] . E n d C u r r e n t E d i t () ;

objDataSetChanges =

((Customer_Maintenance_Project.JobDataSet)(objJobDataSet.GetChanges()));

if ((objDataSetChanges != null))

{

try

{

t h i s . U p d a t e D a t a S o u r c e (o b j D a t a S e t C h a n g e s) ;

o b j J o b D a t a S e t . M e r g e (o b j D a t a S e t C h a n g e s) ;

DATABASE INTERACTION USING ADO.NET Chapter 10 229

o b j J o b D a t a S e t . A c c e p t C h a n g e s () ;

MessageBox.Show(“Database Updated!”);

}

catch (System.Exception eUpdate)

{

throw eUpdate;

}

}

}

private void btnCancelAll_Click(object sender, System.EventArgs e)

{

t h i s . o b j J o b D a t a S e t . R e j e c t C h a n g e s () ;

}

private void objJobDataSet_PositionChanged()

{

this.lblNavLocation.Text = ((((this.BindingContext[objJobDataSet,”tblJobDetails”].

Position + 1)).ToString() + “ of “)

+ this.BindingContext[objJobDataSet,”tblJobDetails”].Count.ToString());

}

private void btnNavNext_Click(object sender, System.EventArgs e)

{

this.BindingContext[objJobDataSet,”tblJobDetails”].Position =

(this.BindingContext[objJobDataSet,”tblJobDetails”].Position + 1);

t h i s . o b j J o b D a t a S e t _ P o s i t i o n C h a n g e d () ;

}

private void btnNavPrev_Click(object sender, System.EventArgs e)

{

this.BindingContext[objJobDataSet,”tblJobDetails”].Position =

(this.BindingContext[objJobDataSet,”tblJobDetails”].Position - 1);

t h i s . o b j J o b D a t a S e t _ P o s i t i o n C h a n g e d () ;

}

230 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

private void btnLast_Click(object sender, System.EventArgs e)

{

this.BindingContext[objJobDataSet,”tblJobDetails”].Position =

(this.objJobDataSet.Tables[“tblJobDetails”].Rows.Count - 1);

t h i s . o b j J o b D a t a S e t _ P o s i t i o n C h a n g e d () ;

}

private void btnNavFirst_Click(object sender, System.EventArgs e)

{

this.BindingContext[objJobDataSet,”tblJobDetails”].Position = 0;

t h i s . o b j J o b D a t a S e t _ P o s i t i o n C h a n g e d () ;

}

private void btnLoad_Click(object sender, System.EventArgs e)

{

try

{

t h i s . L o a d D a t a S e t () ;

}

catch (System.Exception eLoad)

{

S y s t e m . W i n d o w s . F o r m s . M e s s a g e B o x . S h o w (e L o a d . M e s s a g e) ;

}

t h i s . o b j J o b D a t a S e t _ P o s i t i o n C h a n g e d () ;

}

private void btnUpdate_Click(object sender, System.EventArgs e)

{

if (editCarNo.Text.Length <6)

{

MessageBox.Show(“Please specify a valid car Number”);

e d i t C a r N o . F o c u s () ;

r e t u r n ;

}

DATABASE INTERACTION USING ADO.NET Chapter 10 231

t r y

{

if (Convert.ToInt32(editWorkerId.Text)<1)

{

MessageBox.Show(“Please specify a valid worker ID”);

e d i t W o r k e r I d . F o c u s () ;

r e t u r n ;

}

if (Convert.ToDateTime(dateTimePicker1.Value) > DateTime.Today)

{

MessageBox.Show(“Please specify a valid date”);

d a t e T i m e P i c k e r 1 . F o c u s () ;

r e t u r n ;

}

}

catch (Exception exception)

{

M e s s a g e B o x . S h o w (e x c e p t i o n . M e s s a g e) ;

}

try

{

t h i s . U p d a t e D a t a S e t () ;

}

catch (System.Exception eUpdate)

{

S y s t e m . W i n d o w s . F o r m s . M e s s a g e B o x . S h o w (e U p d a t e . M e s s a g e) ;

}

t h i s . o b j J o b D a t a S e t _ P o s i t i o n C h a n g e d () ;

}

private void btnAdd_Click(object sender, System.EventArgs e)

{

try

{

t h i s . B i n d i n g C o n t e x t [o b j J o b D a t a S e t , ” t b l J o b D e t a i l s ”] . E n d C u r r e n t E d i t () ;

t h i s . B i n d i n g C o n t e x t [o b j J o b D a t a S e t , ” t b l J o b D e t a i l s ”] . A d d N e w () ;

}

232 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

catch (System.Exception eEndEdit)

{

S y s t e m . W i n d o w s . F o r m s . M e s s a g e B o x . S h o w (e E n d E d i t . M e s s a g e) ;

}

t h i s . o b j J o b D a t a S e t _ P o s i t i o n C h a n g e d () ;

}

private void btnDelete_Click(object sender, System.EventArgs e)

{

if ((this.BindingContext[objJobDataSet,”tblJobDetails”].Count > 0))

{

t h i s . B i n d i n g C o n t e x t [o b j J o b D a t a S e t , ” t b l J o b D e t a i l s ”] .

R e m o v e A t (t h i s . B i n d i n g C o n t e x t [o b j J o b D a t a S e t , ” t b l J o b D e t a i l s ”] . P o s i t i o n) ;

t h i s . o b j J o b D a t a S e t _ P o s i t i o n C h a n g e d () ;

}

}

private void btnCancel_Click(object sender, System.EventArgs e)

{

t h i s . B i n d i n g C o n t e x t [o b j J o b D a t a S e t , ” t b l J o b D e t a i l s ”] . C a n c e l C u r r e n t E d i t () ;

t h i s . o b j J o b D a t a S e t _ P o s i t i o n C h a n g e d () ;

}

private void btnExit_Click(object sender, System.EventArgs e)

{

Form1 newForm1 = new Form1();

n e w F o r m 1 . S h o w () ;

t h i s . H i d e () ;

}

private void JobDetails_Load(object sender, System.EventArgs e)

{

}

}

}

DATABASE INTERACTION USING ADO.NET Chapter 10 233

The previous code creates a namespace with the name of the project, Customer
Maintenance Project. Inside the namespace, the JobDetails class is created. This
class is derived from the System.Windows.Forms.Form class. The JobDetails class
contains the declaration of all the controls and the SQL statements used in the
JobDetails form. In addition, the class contains the declaration of the data
adapter, dataset, and the connection objects created by the Data Form Wizard.

The class also contains a default constructor with the name of the class, JobDe-
tails. The JobDetails constructor includes a method call statement for the Ini-
tializeComponent() method. The InitializeComponent() method is defined in
the #region preprocessor directives and contains the initialization statements for
all the controls and the SQL commands used in the code. The controls are ini-
tialized using the new keyword.

In addition to the public constructor, the JobDetails class defines the Dispose()
method, which is called to deallocate memory used by the components that are no
longer used by the project.

As you can see, the JobDetails form includes the Load, Add,Delete, Cancel, Can-
cel All, and Update buttons. The following sections discuss each of these buttons
in detail.

The Load Button
The Load button is used to display the records in the JobDetails table.The Click

event of the Load button includes the try and catch statements. In the try state-
ment, the LoadDataSet() method is called. The LoadDataSet() method is used to
create a temporary dataset, objDataSetTemp, which holds the records returned by
the FillDataSet() method. This method is called in the try statement of the
LoadDataSet() method.The try statement is then followed by the catch statement
that throws an eFillDataSet exception.

After the records are loaded into a temporary dataset, the records from the
tblJobDetails table are merged in the dataset object, objJobDataSet, by using the
Merge() method.The Merge() method takes the name of the temporary dataset as
the parameter. Figure 10-8 displays the JobDetails form with records loaded from
the tblJobDetails table.

234 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

The Add Button
The Add button is used to add a new record to the tblJobDetails table.The Click

event of the Add button includes try and catch statements. Inside the try state-
ment, a BindingContext object is used to add a new record to the underlying
table.

First, the EndCurrentEdit() method of the BindingManagerBase class is used to
stop any edit action that is taking place. Next, the AddNew() method of the Bind-
ingManagerBase class is called that adds a new record to the underlying table.
When the record is added, the objJobDataSet_PositionChanged() method is used
to display the position of the new record in the lblNavLocation label.

DATABASE INTERACTION USING ADO.NET Chapter 10 235

FIGURE 10-8 The JobDetails form

The BindingManagerBase class is an abstract class in the System.Windows.Forms
namespace. The methods defined in the BindingManagerBase class are used to per-
form operations on the objects that are bound to same data source.

NOTE

The Delete Button
The Delete button is used to delete the displayed record from the tblJobDetails
table. In the Click event of the Delete button, an if loop is created that checks
whether records are present in the table.The Count property of the BindingCon-
text object is used to find the number of records in the objJobDataSet dataset. If
the count is greater than zero, the record at the current position is deleted from
the dataset. Next, the objJobDataSet_PositionChanged() method is used to display
the position of the next record in the lblNavLocation label.

The Cancel Button
The Cancel button is used to cancel any changes made to the records in the
dataset. To do so, the CancelCurrentEdit() method of the BindingManagerBase
class is used. The objJobDataSet_PositionChanged() method is then called to
refresh the position of the records in the lblNavLocation label.

The Cancel All Button
The Cancel All button is used to reject all the changes that are made to the
records in the dataset by using the RejectChanges() method. This method rolls
back any changes made to the dataset from the time the dataset was created.

The Update Button
The Update button is used to modify any records in a dataset.The Click event of
the Update button includes a call to the UpdateDateSet() method defined in the
code. The UpdateDateSet() method creates an instance, objDataSetChanges, of a
dataset.The changes made to the objJobDataSet dataset are retrieved by using the
GetChanges() method and are stored in the objDataSetChanges dataset.

The UpdateDateSet() method contains an if loop, which is used to check whether
changes are made to the objJobDataSet dataset. If the value of objDataSetChanges
is not equal to null, the changes made to the objJobDataSet dataset are updated to
the underlying data source by using the UpdateDataSource() method.The Update-

DataSource() method is a public void method defined in the JobDetails class.
This method calls the Update() method to add, delete, or modify records in the
tblJobDetails table.

236 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

After creating the JobDetails form using the Data Form Wizard, you can test the
form by either pressing the F5 key or clicking on the Start command in the
Debug menu.

Summary
In this chapter, you learned about the basics of ADO.NET. ADO.NET is a data
access model that helps your application to communicate with data sources, such
as the Microsoft SQL Server data source. In addition, by using ADO.NET, your
application can interact with other OLE DB data sources, such as Oracle. Next,
you learned to create database connections of a Windows form with a data source.
Finally, you looked at the code for each of the Windows forms created for the
Customer Maintenance project.

DATABASE INTERACTION USING ADO.NET Chapter 10 237

This page intentionally left blank

TEAMFL
Y

Team-Fly®

Chapter 11
Crystal Reports

Crystal reports are a powerful tool used to create and view reports that display
selective data. For example, you can create a crystal report to view the sales

data of an organization for a particular year.

You have been creating crystal reports in various languages. Visual Studio .NET
also provides you with the Crystal Reports Designer tool that helps you create a
wide variety of reports easily and efficiently. In addition, you can use the Crystal
Reports Designer tool to modify an existing report.

In this chapter, you will be introduced to the Crystal Reports Designer tool. Next,
you will learn to create a crystal report by using the Crystal Report Gallery pre-
sent in the Crystal Reports Designer tool. Finally, you will use the Windows
Forms Viewer control to host and view the reports in a Windows form.

Introduction to the Crystal Reports
Designer Tool

Visual Studio .NET provides you with a powerful tool called the Crystal Reports
Designer tool for creating and modifying crystal reports. It is a common tool for
creating reports in the .NET Framework,which can be used by any language sup-
ported by the .NET Framework, such as Visual Basic .NET, Visual C#, and
Visual C++.

The Crystal Reports Designer tool enables you to create reports that can be
hosted in a Windows platform or published as Report Web Services on a Web
server. To view a crystal report in a Windows application, Visual Studio .NET
provides you with a Windows Forms Viewer control. However, to view a crystal
report in a Web application, you use a Web Forms Viewer control. In this chap-
ter, you will be creating crystal reports for a Windows application.

The Crystal Reports Designer tool contains the Crystal Report Gallery, which
allows you to select Report Expert. Report Expert is a wizard that helps you cre-
ate various types of crystal reports. You will learn more about the Crystal Report
Gallery and Report Expert in the following sections.

240 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

Creating the Reports Form
The Reports form contains four radio buttons. Clicking on any radio button gen-
erates the corresponding report. To add functionality to these radio buttons, per-
form the following steps:

1. Double-click on the first radio button to open the code window.

On selecting this radio button, a user should be able to view the Con-
sumableForm form that contains the report of the consumable products
used in a month.

2. To display the ConsumableForm form, add the following code to the
CheckedChanged event of radioButton1.

private void radioButton1_CheckedChanged(object sender, System.EventArgs e)

{

ConsumableForm newForm = new ConsumableForm();

n e w F o r m . S h o w () ;

t h i s . H i d e () ;

}

The previous code displays ConsumableForm when the user selects the first radio
button. However, you have not yet created the crystal report. The following sec-
tion discusses how to create crystal reports.

Creating Crystal Reports
As discussed earlier, Visual Studio .NET provides you with the Crystal Report
Gallery that consists of several standard wizards called Report Experts. These
Report Experts enable you to create crystal reports easily and efficiently. The
Crystal Report Gallery also provides you with the option of creating a crystal
report by using a blank report or an existing report. In this section, you will learn
to create a crystal report by using Report Expert. To open the Crystal Report
Gallery, perform the following steps:

1. In the Solution Explorer window, right-click the name of the project,
Customer Maintenance Project.

2. From the displayed list, point to the Add option and then select the Add
New Item option.

The Add New Item dialog box is displayed.

CRYSTAL REPORTS Chapter 11 241

3. In the Templates: pane of the Add New Item dialog box, select the
Crystal Report icon.

4. In the Name: text box, type ConsumablesReport.rpt as the name and
click on the Open button.

The Crystal Report Gallery dialog box is displayed.

5. In the Create a Crystal Report Document group box, select the Using
the Report Expert radio button.

You can select the As a Blank Report or the From an Existing Report radio but-
ton to create a crystal report by using a blank template or an existing template,
respectively.

As discussed earlier, the Crystal Report Gallery provides you with several Report
Experts. The following section discusses various Report Experts provided by the
Crystal Report Gallery.

The Report Experts Provided by the Crystal Report
Gallery
The Report Experts in Visual Studio .NET allow you to create reports with dif-
ferent formats. Figure 11-1 shows the Crystal Report Gallery dialog box contain-
ing various Report Experts.

242 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 11-1 The Crystal Report Gallery dialog box

Table 11-1 lists various Report Experts in the Crystal Report Gallery dialog box.

Table 11-1 The Report Expert s

R e p o rt Expert s D e s c r i p t i o n

Standard You can use Standard Report Expert to create a typical report.

Form Letter You can use Form Letter Report Expert to create a report that contains
customer information in addition to the standard text.

Form You can use Form Report Expert to create a report in the form of a let-
terhead that contains the logo of the organization.

Cross-Tab You can use Cross-Tab Report Expert to create a summary of a report
in the form of a grid.

Subreport You can use Subreport Report Expert to create another report as a part
of the main report.

Mail Label You can use Mail Label Report Expert to create a report that contains
multiple columns.

Drill Down You can use Drill Down Report Expert to create a report that contains
a summary created by extracting the available information.

Creating Crystal Reports Using
the Standard Report Expert
In this section, you will be creating a crystal report by using a Standard Report
Expert. The next steps continue with the procedure for creating reports.

6. In the Choose an Expert group box of the Crystal Report Gallery dialog
box, select the Standard option and click on the OK button.

The Data tab of Standard Report Expert is displayed.

CRYSTAL REPORTS Chapter 11 243

You can see a preview of various Report Experts in the Preview window.

TIP

7. Click on the plus (+) sign adjacent to the OLE DB [ADO] option.

The OLE DB (ADO) dialog box is displayed. Alternatively, you can
double-click on the OLE DB [ADO] option to open the OLE DB
(ADO) dialog box.

8. In the OLE DB Provider page, select the Microsoft OLE DB Provider
for SQL Server option and click on the Next button.

The Connection Information page is displayed. You use this page to
enter information required to set up a connection with a data source.

9. In the Server: combo box, select the name of the server containing the
database from the drop-down list.

You can also type the name of the server in the combo box. In this page,
you can specify the authentication mode to connect to a SQL server.

10. Select the name of the database as CMS from the Database: combo box
and click on the Finish button.

Standard Report Expert creates a connection with the CMS database.

11. Double-click on the CMS database to display a list of tables in the data-
base.

12. Select the table tblJobDetails from the available list and click on the
Insert Table button.

The tblJobDetails table is now displayed in the Tables in report: list.

13. Click on the Next button.

The Fields tab is displayed. This page contains a list of all the fields in
the tblJobDetails table. You can select the fields that you want display
in your report.

14. From the list of fields, select the JobDate, Tires, Weights, OilChanged,
OilFilter, GearOil, Point, Condenser, Plug, FuelFilter, and AirFilter

fields and click on the Add button.

The fields that you have selected appear in the Fields to Display: list.
You can use the Up Arrow or Down Arrow buttons to increase or
decrease the level of display of the fields.

The name of the field appears in the Column Heading: text box. You
can edit the name of a field by selecting the field and changing the text
in the Column Heading: text box.

244 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

15. Click on the Next button to proceed.

The Group tab is displayed. This page contains information about the
field that you want to use to group data. The records in the tblJobDe-
tails table are sorted on the basis of the Group By: field.

16. From the Available Fields: list, select the JobDate field and click on the
Add button.

The JobDate field appears in the Group By: list. You can also specify the
sort order of the records in the Sort Order: list box.

17. In the Break: list box, select the for each month option.

The records in the tblJobDetails table will be grouped for each month.
This will help the user to view monthly data of the consumable items in
the Monthly Consumables report.

18. Click on the Next button.

The Total tab of Standard Report Expert is displayed. In this page, you
can select the fields for which you want to create summarized informa-
tion. By default, all the fields are selected. You can either add or remove
a field by selecting the field and clicking on the Add or Remove button,
respectively. The Total tab provides you with a Summary Type: list box,
which contains the items that you can select to display the type of sum-
mary information. Because you need to know the total number of prod-
ucts consumed within a specified month, choose the summary type Sum.

19. Check the Add Grand Totals check box and click on the Next button.

The Top N tab is displayed. You can specify the name of the field based
on which one you want to sort the groups. This is optional information
and you may choose to click on the Next button without specifying any
information in this page.

20. Click on the Next button to display the Chart tab.

The Chart page provides you with several options for including a graph
in your report.

21. Click on the Style button if you do not want to include a chart.

The Style tab is displayed. You can select the formatting style of the
report and specify a title in this page. Standard Report Expert provides
you with several formatting styles for displaying your report. You can see
the preview of a style in the preview window.

CRYSTAL REPORTS Chapter 11 245

22. In the Title: text box, type the name of the report as Consumable Report.

23. From the Style: list, select the Standard option and click on the Finish
option to create the crystal report.

Figure 11-2 displays the report as created by the Crystal Report Gallery.

If you want, you can make changes to the layout of the report. However, this
report does not display the data. To make the data available to users, you need to
host the crystal report by using a Windows Forms Viewer control.

Windows Forms Viewer Control
As discussed earlier, a Windows Forms Viewer control provides you with a means
to host and display the data in a report. The Windows Forms Viewer control is
available in the Windows Forms toolbox and can be included in a Windows form.
Figure 11-3 shows a Windows Forms Viewer control.

246 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 11-2 Consumable Report

The left-hand pane of the Windows Forms Viewer control is a Field Explorer
window that displays field values, the basis on which the data in the records is
grouped. The right-hand pane is used to display the crystal report that you cre-
ated. On top of the Windows Forms Viewer control is a toolbar containing sev-
eral buttons that you can use to navigate, refresh, or print the report. Table 11-2
discusses the buttons in the toolbar of the Windows Forms Viewer control.

Table 11-2 Buttons in the Toolbar of the W i n d ows Forms V i ewer Contro l

B u t t o n s D e s c r i p t i o n

Go to First Page A user can click on the Go to First Page button to view the first
page, in case the report contains multiple pages of data.

Go to Previous Page A user can click on the Go to Previous Page button to view the
previous page.

Go to Next Page A user can click on the Go to Next Page button to view the next
page.

Go to Last Page A user can click on the Go to Last Page button to view the last
page.

continues

CRYSTAL REPORTS Chapter 11 247

FIGURE 11-3 Windows Forms Viewer control

Table 11-2 Buttons in the Toolbar of the W i n d ows Forms V i ewer Control
(c o n t i nu e d)

B u t t o n s D e s c r i p t i o n

Go to Page A user can click on the Go to Page button to view a specified page.

Close Current View A user can click on the Close Current View button to close the
current view. This button is active only for Subreport or groups.

Print Report A user can click on the Print Report button to print the data in a
report.

Refresh Report A user can click on the Refresh Report button to refresh the data in
a report.

Export Report A user can click on the Export Report button to save the report as
a Word document (.doc), an Acrobat file (.pdf), an Excel spread-
sheet (.xls), or a rich text format (.rtf) file.

Toggle Group Tree A user can click on the Toggle Group Tree button to display or
hide the Field Explorer window.

Zoom A user can click on the Zoom button to increase or decrease the
zoom percentage of a report.The user can select the zoom percent-
age from the drop-down list.

Search Text A user can click on the Search Text button to find the specified
data in a report.

The following section discusses creating a Windows Forms Viewer control to dis-
play a crystal report.

Creating the Windows Forms Viewer Control
As discussed earlier, a Windows Forms Viewer control is used to host and display
a crystal report. Perform the following steps to create a Windows Forms Viewer
control.

1. In the Solution Explorer window, right-click on the project name, Cus-
tomer Maintenance Project.

248 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

TEAMFL
Y

Team-Fly®

2. In the displayed list , point to Add and click on the Add New Item
option.

The Add New Item dialog box is displayed.

3. In the Templates: pane, select the Windows Form option.

4. In the Name: text box, type the name of the form as ConsumableForm
and click on the Open button.

Visual Studio .NET creates a new form for you.

From the Windows Forms toolbox, drag the CrystalReportViewer and
Button controls to the form.

Resize the CrystalReportViewer control to occupy maximum area on the form.
Figure 11-4 shows ConsumableForm with the CrystalReportViewer control.

CRYSTAL REPORTS Chapter 11 249

In the Windows Forms toolbox, a Windows Forms Viewer control is called CrystalRe-
portViewer.

TIP

FIGURE 11-4 ConsumableForm with the CrystalReportViewer control

As you can see, the CrystalReportViewer control is empty. To host and display the
report in the CrystalReportViewer control, you need to associate the control with
ConsumablesReport.rpt. To do so, perform the following steps:

1. Select the CrystalReportViewer control to make it active.

2. In the Properties window, change the value of the ReportSource prop-
erty of the CrystalReportViewer control.

The ReportSource property enables you to associate the CrystalRe-
portViewer control with the required crystal report.

3. Click on the down arrow button of the ReportSource property.

4. From the drop-down list, select the Browse option.

The Browse option enables you to browse for the location of the Con-
sumablesReport.rpt report.

After associating the report with the CrystalReportViewer control, you
can test the report by clicking on the F5 key or by selecting the Start
command on the Debug menu.

When you run the project and click on the Monthly Consumable
Report radio button in the Reports form, the ConsumableForm form is
displayed. Figure 11-5 shows the Reports form with the Monthly Con-
sumable Report radio button.

The ConsumableForm form now contains the Consumable Report that you have
created. Figure 11-6 shows the Consumable Report as seen at run time.

250 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 11-5 Reports form

To enable a user to return to the Reports form after viewing the report, you can
make the Exit button functional. To do so, add the following code to the Click
event of the Exit button.

private void btnExit_Click(object sender, System.EventArgs e)

{

Reports newForm = new Reports();

n e w F o r m . S h o w () ;

t h i s . H i d e () ;

}

After creating the Monthly Consumable report, you can similarly create the
Monthly Customer Visit, Monthly Balancing and Alignment, and Monthly
Worker reports.

Creating the Monthly
Customer Visit Report

The Mon t h ly Customer Visit re p o rt is created to tra ck the number of visits of a
c u s t omer in a particular mon t h . The pro c e d u re for creating the Mon t h ly Custom e r

CRYSTAL REPORTS Chapter 11 251

FIGURE 11-6 Consumable Report at run time

Visit re p o rt is similar to the one you used to create the Mon t h ly Con s u m a b l e
re p o rt . H ow eve r, while creating the Mon t h ly Customer Visit re p o rt , you need to
make a few ch a n g e s , s u ch as changes in the table name, field names, G roup By:
f i e l d , and so on .

Similar to the Monthly Consumable report, you can use Standard Report Expert
to create the Monthly Customer Visit report.However, if you want, you can select
any other expert.The following list will discuss the changes that you need to make
while creating the Monthly Customer Visit report.

1. In the Data tab of Standard Report Expert, select the tblCustomer and
tblJobDetails tables to display data from both these tables. After click-
ing on the Next button, the Links tab is displayed.

The Links tab displays the link between the tblCustomer and tblJobDe-

tails tables. By default, the common field name, CarNo, is selected as
the link. However, if required, you can clear the link by clicking on the
Clear Links button and then create a new link by dragging the field
name from one table to another. Figure 11-7 displays the Links tab of
Standard Report Expert.

252 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 11-7 The Links tab of Standard Report Expert

2. In the Fields tab, select the CarNo, Name, Address, and Make fields from the
tblCustomer table. From the tblJobDetails table, select the JobDate
option.

3. In the Group By: list, select the CarNo and then the JobDate fields.

4. In the Title: text box of the Style tab, type the title of the report as Cus-
tomer Visit Report and select any style from the Style: list.

Figure 11-8 displays the Monthly Customer Visit report as created by the Crys-
tal Report Gallery.

After creating the crystal report, you can create a new form, CustomerVisitForm,
and include a CrystalReportViewer control to display the report. Figure 11-9
shows the Monthly Customer Visit report as seen at run time.

CRYSTAL REPORTS Chapter 11 253

FIGURE 11-8 Monthly Customer Visit report in the design view

Creating the Monthly Balancing
and Alignment Report

The Monthly Balancing and Alignment report is created to track the number of
balancing and alignment jobs performed by a worker in a month. You can create
the Monthly Balancing and Alignment report by using the Crystal Report
Gallery as discussed in the previous sections. Figure 11-10 displays the report as
created by the Crystal Report Gallery.

254 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 11-9 Monthly Customer Visit report at run time

You can make changes to the layout of the Monthly Balancing and Alignment
report in the design view. However, to display the report at run time, you need to
create a new form, AlignmentForm, and then include a CrystalReportViewer
control. Figure 11-11 shows the Monthly Balancing and Alignment report at run
time.

CRYSTAL REPORTS Chapter 11 255

FIGURE 11-10 Monthly Balancing and Alignment report in the design view

FIGURE 11-11 Monthly Balancing and Alignment report at run time

Creating the Monthly Worker Report
The Monthly Worker report is used to determine the work done by a worker in a
month. You can also use the Monthly Worker report to determine the work done
by a worker on a car during a month. You can use the Crystal Report Gallery to
create the report. Figure 11-12 shows the output of the Crystal Report Gallery.

To view Monthly Worker report, create a new form, MonthlyReport, and include
a CrystalReportViewer control. Figure 11-13 shows the Monthly Worker report
with the data displayed.

256 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 11-12 Monthly Worker report in the design view

Summary
In this chapter, you learned that cr ystal reports are a powerful tool used to create
and view reports that display selective data. Visual Studio .NET provides you with
the Crystal Reports Designer tool that helps you create a wide variety of reports
easily and efficiently. In addition, you can use the Crystal Reports Designer tool
to modify an existing report.

The Crystal Reports Designer tool contains the Crystal Report Gallery, which
allows you to select Report Expert. Report Expert is a wizard that enables you to
create various kinds of crystal reports. After creating a crystal report by using
Report Expert, you can use a Windows Forms Viewer control to view the report.
A Windows Forms Viewer control provides you with a means to host and display
the data in a report.The Windows Forms Viewer control is available in the Win-
dows Forms toolbox and can be included in a Windows form.

Finally, you learned to create a cr ystal report by using the Crystal Report Gallery
and then host the report by creating a Windows Forms Viewer control.

CRYSTAL REPORTS Chapter 11 257

FIGURE 11-13 Monthly Worker report at run time

This page intentionally left blank

TEAMFL
Y

Team-Fly®

Chapter 12
Deploying a
Windows
Application

In the preceding chapters, you created the Customer Maintenance project for
CareKar, Inc. However, until now, you have not deployed the project at the

client site. Visual Studio .NET provides you with the functionality to deploy the
application that you have created on any other computer. You can also distribute
your application on another computer in the form of a program that can be easily
installed on the computer. In this chapter, you will learn to deploy a Windows
application.

Introduction to Deploying
a Windows Application

In real-life situations, you often need to execute a Windows application that you
have created on a computer other than the computer on which you created the
application. This is called deploying a Windows application. Deploying a Windows
application in Visual Studio .NET can be as simple as compiling the application
in the form of an .exe file. You can then execute the application by copying the
.exe file of the application on another computer.

However, for huge applications, like the one that you have created for CareKar,
Inc., compiling the application as an .exe file may not guarantee the successful
deployment of the application. In such cases, you need to create an installation
program to deploy your application on another computer. The user can then run
the installation program that copies the installation files to the user’s computer. In
addition, the user is not required to explicitly make changes to the registry of the
computer. The installation program modifies the registry, enabling the application
to run on the user’s computer.

To execute an application in Visual Studio .NET, the application is first converted
to managed code that is managed by the CLR (common language runtime). To do
so, the installation program makes the CLR files, which are required for the exe-
cution of the application, available to the application.

260 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

The process of deploying an application as an installable program on the user’s
machine requires you to decide on the location where you need to deploy the
application. In addition, you need to identify the method by which the applica-
tion is to be deployed. To create an installation program for your application, you
can use various deployment projects available in Visual Studio .NET, which are
discussed in the following section.

Deployment Projects Available in Visual Studio .NET
A deployment project in Visual Studio .NET is a project that enables you to create
an installation program to ensure a successful deployment of your application on
another computer. Figure 12-1 displays various deployment projects provided by
Visual Studio .NET.

You can choose the type of deployment project to be used depending on the type
of application that you create.

DEPLOYING A WINDOWS APPLICATION Chapter 12 261

FIGURE 12-1 Various deployment projects in Visual Studio .NET

The CAB Project
The simplest way to deploy a Windows application is to convert the application
to a CAB (cabinet) file. A CAB file is a compressed form of your project. This
implies that a CAB file compresses the application into smaller files that occupy
less memory on the user’s computer. Therefore, converting an application to a
CAB project enables the user to store the application in a compressed and orga-
nized manner. In addition, the CAB files that you create for your project can be
easily transported and deployed on the user ’s machine.

A CAB file can be used to package the ActiveX controls. Packaging an ActiveX
control involves signing the ActiveX control or the application that contains the
control. This process is called Authenticode signing. This enables the user to iden-
tify the source of the application and verify its authenticity. In addition, users can
easily download and then install these files on their machines. You will learn about
packaging Web applications that can be downloaded from a Web server in Chap-
ter 26, “Deploying the Application.”

To enable you to convert your application into a CAB file, Visual Studio .NET
provides the Cab Project template. To access the Cab Project template, perform
the following steps:

1. On the File menu, point to the Add Project option.

2. From the list that is displayed, select the New Project option.

The Add New Project dialog box is displayed.

3. In the Project Types: pane of the Add New Project dialog box, select the
Setup and Deployment Projects option.

Various options of deployment projects available in Visual Studio .NET
are displayed in the Templates: pane.

4. Select the Cab Project option.

Figure 12-2 shows the Cab Project option.

262 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

5. In the Name: text box, type the name of the Cab Project as Customer-
MaintenanceCabProject.

6. Browse for the location where you want to save CustomerMaintenance-
CabProject by using the Browse button.

7. Click on the OK button to close the Add New Project dialog box.

CustomerMaintenanceCabProject is added to the Solution Explorer
window. Figure 12-3 shows CustomerMaintenanceCabProject added to
the Solution Explorer window.

DEPLOYING A WINDOWS APPLICATION Chapter 12 263

FIGURE 12-2 The Cab Project option in the Add New Project dialog box

The Properties window of the CustomerMaintenanceCabProject project displays
information about the project,such as the name, version number, and Web depen-
dencies of the project.

You can also implement Authenticode signing by ch e cking the Authenticode sign-
i n g : ch e ck box in Custom e r M a i n t e n a n c e C a b Project Pro p e rty Pa g e s . To access
C u s t om e r M a i n t e n a n c e C a b Project Pro p e rty Pa g e s , p e rf o rm the foll owing step:

1. Click on the View menu and select the Property Pages option. Alterna-
tively, you can press the Shift+F4 keys.

CustomerMaintenanceCabProject Property Pages is displayed. Figure
12-4 shows CustomerMaintenanceCabProject Property Pages.

264 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 12-3 CustomerMaintenanceCabProject in the Solution Explorer window

Visual Studio .NET does not specify any Web dependencies of the CAB projects.
However, you can create references to any Web dependencies by changing the Web
dependencies property of the CAB project. If Web dependencies property is set, all
dependencies are automatically downloaded and installed when the CAB file is run.

TIP

You can also specify the amount by which you want to compress the application
in the properties of the CAB project. For example, if you compress an application
by a higher amount, the file creation process takes more time compared to com-
pressing a file by lower amounts. However, a file with higher compression level
takes less time to download. In addition, the properties of a CAB project allow
you to specify the location where you want to store the executable files.

However, the CustomerMaintenanceCabProject project that you have created
does not contain the application files.To add the application files to the CAB pro-
ject, perform the following steps:

1. Right-click on the CustomerMaintenanceCabProject project in the
Solution Explorer window.

2. In the displayed list, point to the Add option.

The displayed list contains the following options.

◆ Project Output. The Project Output option displays the Add Project
Output Group dialog box that provides several options of files that
you can add to the CAB project. Table 12-1 displays the file options
in the Add Project Output Group dialog box.

◆ File. The File option enables you to add an arbitrary file other than
the files listed in Table 12-1 of the CAB project.

DEPLOYING A WINDOWS APPLICATION Chapter 12 265

FIGURE 12-4 CustomerMaintenanceCabProject Property Pages

Table 12-1 File Options in the Add Project Output Group dialog box

File Options D e s c r i p t i o n

Documentation Files Documentation Files contain the documentation of the project.

Primary Output The Primary Output files contain the executable files built by the
project.

Localized Resources The Localized Resources files contain the assembly information
about the resources used in the project.

Debug Symbols The Debug Symbols files contain the debugging files required for
the project.

Content Files Content Files contain all the content files used in the project.

Source Files Source Files contain all the source files used in the project.

After learning about the types of files that Visual Studio .NET allows you to add
to the CAB project, you can continue with the steps to add files to the Cus-
tomerMaintenanceCabProject project that you have created.

3. Select the Project Output option.

The Add Project Output Group dialog box is displayed. The name of
the project is displayed in the Project: list box.

4. Select the Primary Output option from the file options in the Add Pro-
ject Output Group dialog box.

5. Click on the OK button to close the Add Project Output Group dialog
box.

The Primary Output option is displayed in the Solution Explorer win-
dow. You can view the file name and the path of the executable file in
the Properties window of the Primary Output option.

266 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

The Primary Output option is a mandatory option. However, you may choose to select
any other option to be deployed along with the application.

TIP

6. Select the Primary Output option in the Solution Explorer window to
display the Properties window.

7. Click the ellipsis button of the Outputs property.

8. The Outputs dialog box is displayed, which contains information about
the executable file for the Customer Maintenance project.

Figure 12-5 displays the Outputs dialog box.

9. Build the project by clicking on the F5 key.

Alternatively, you can select the Start option on the Debug menu.

To create the executable file, you need to build the CustomerMaintenance-
CabProject project, as described in the previous Step 9.

Building the project creates an executable file in the location specified in the Out-
puts dialog box. The executable file, along with an .osd file, is created in the form
of a compressed file. To access these files, you can unzip the CustomerMainte-
nanceCabProject.CAB file.The .osd file contains the information about the Cus-
tomerMaintenanceCabProject.CAB file in the XML format. Figure 12-6 shows
the contents of the .osd file.

DEPLOYING A WINDOWS APPLICATION Chapter 12 267

FIGURE 12-5 The Outputs dialog box

For huge projects, a CAB project may not be sufficient to deploy an application.
Therefore, you can combine the CAB project option with the other options pro-
vided by Visual Studio .NET. For example, consider the Customer Maintenance
project that we have created for CareKar, Inc. This project includes several
resource files, such as .xsd files, that contain information about the datasets cre-
ated to access the tables in the CMS (Customer Maintenance System) database.
Because these .xsd files are included in the application, they need to be distributed
as a part of the application.In such a scenario, it would be appropriate to first con-
vert the application into a CAB file and then create a Setup project. I will discuss
the Setup project in the following section.

The Setup Project
Another deployment project that Visual Studio .NET provides you is the Setup
project.The Setup Project template creates the installer files that users can install
on their machines to deploy the application. The installer files created by the
Setup Project template are called MSI (Microsoft Windows Installer) files. These
files have an extension of .msi and can be installed on the user’s machine by using
the Microsoft Installer service.

268 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 12-6 Contents of the .osd file

TEAMFL
Y

Team-Fly®

The Setup Project template creates the
MSI files for your applica t i on , w h i ch
i n clude the applica t i on files, the re s o u rc e
f i l e s , and the inform a t i on re q u i red for the
d e p l oyment of the applica t i on . This infor-
m a t i on includes the re g i s t ry inform a t i on
and the steps for the successful install a t i on
of the applica t i on . In addition , the MSI
files include the Visual St u d i o. N ET ru n -
time files that are re q u i red for the exe c u-
t i on of the Wi n d ows applica t i on .

You will now create a Setup project for
the Customer Maintenance project by using the Setup templates provided by
Visual Studio .NET. Visual Studio .NET provides separate templates for deploy-
ing the Windows application and Web applications.The template used to deploy
the Windows application,the Setup Project template, creates the MSI files for the
application on the user’s computer. The template used to deploy Web applications,
the Web Setup Project template, creates the MSI files in a virtual directory pre-
sent on a Web server. In this chapter, I will be discussing the deployment of the
Windows application by using the Setup Project template.

To create a Setup project for the Customer Maintenance project,perform the fol-
lowing steps:

1. On the File menu, point to the Add Project option.

2. From the list that is displayed, select the New Project option.

The Add New Project dialog box is displayed.

3. From the Project Types: pane, select the Setup and Deployment Projects
option.

4. In the Templates: pane, select the Setup Project option.

5. In the Name: text box, type the name of the Setup project as Customer-
MaintenanceSetupProject.

6. Click on the Browse button to browse to the location where you want to
save the Setup project.

7. Click on the OK button to close the Add New Project dialog box.

DEPLOYING A WINDOWS APPLICATION Chapter 12 269

The Microsoft Installer service is an instal-
lation service provided by Microsoft to
optimize the process of deploying an
application. For example, the Microsoft
Installer service installs the files required
for the successful deployment of an appli-
cation or the component of an application.
This service is available as a part of
Microsoft Windows 2000 and higher oper-
ating systems.

THE MICROSOFT INSTALLER SERVICE

The Setup Project template creates a file system editor, which is displayed by
default. You can also access the file system editor from the View menu. In addi-
tion to the file system editor, the View menu provides several other editor options,
such as Registry, File Types, User Interface, Custom Actions, and Launch Con-
ditions. To access the editors provided by Visual Studio .NET, perform the fol-
lowing steps:

1. Right-click on CustomerMaintenanceSetupProject in the Solution
Explorer window.

2. In the displayed list, point to the View menu.

The list of file editors is displayed. You can click on any of these options
to display the corresponding information. You will learn more about the
editors later in this chapter.

Figure 12-7 displays the file system editor as created on the user’s machine.

As you can see, the folders in the file system editor, such as Application Folder,
User’s Desktop, and User ’s Program Menu, are empty. This is because you have
not added the output files to the Setup project. You will learn to add the output
files later in this chapter.

270 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 12-7 File system editor as created on the user’s machine

The Add option of CustomerMaintenanceSetupProject provides you with two
options in addition to the Project Output and File options. These additional
options are Folder and Assembly.

◆ Folder. The Folder option allows you to add a new folder to the file sys-
tem editor.

◆ Assembly. The Assembly option allows you to add Visual Studio .NET
components from the Component Selector dialog box. The Component
Selector dialog box contains a list of components, their versions, and
their locations on the hard disk, which you may need to add to the user’s
machine. Figure 12-8 displays the Component Selector dialog box.

After seeing the options available on the Add menu, you can continue with the
process of creating a Setup project. In this project, you will be adding only Project
Output. However, you may add the other options to your project, if required.

1. In the user interface for the file system editor, right-click Application
Folder.

2. In the displayed list, point to the Add menu and then select the Folder
option.

DEPLOYING A WINDOWS APPLICATION Chapter 12 271

FIGURE 12-8 The Component Selector dialog box

Visual Studio .NET adds a new folder to the file system editor. Alterna-
tively, you can add a new folder by clicking on the Action menu. In the
displayed list, point to the Add menu and then select the Folder option.

3. Name this folder Output.

You may give any name to the folder.

4. On the Action menu, point to the Add option.

5. Select the Project Output option to add the required files to the Setup
project.

The Add Project Output Group dialog box is displayed.

6. In the Add Project Output Group dialog box, select the Primary Output
option.

The Primary Output is created in the Output folder.

You saw the user interface for the file system earlier. The folders did not contain
the output files.After adding the Project Output file to the Setup project, the user
interface for the file system appears as shown in Figure 12-9.

272 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 12-9 The user interface for the file system editor

After creating the output file, you need to build the Setup project by performing
the following steps:

1. Click on the Build menu.

2. From the drop-down list, select the Build CustomerMaintenanceSetup-
Project option.

Building the project creates a MSI file that can be easily deployed on the user’s
machine. The location and other properties of the MSI file are displayed in the
Properties window of the Primary Output file. Figure 12-10 shows the Cus-
tomerMaintenanceProject.msi file.

You can distribute the CustomerMaintenanceProject.msi file that you have cre-
ated in several ways, such as floppy disks or compact discs. To do this, copy the
MSI file that is created to the distribution medium and then run the installation
program on the user ’s machine.

Perform the following steps to install the Windows application on the user’s
machine.

1. Copy the CustomerMaintenanceProject.msi file to the user’s machine.

DEPLOYING A WINDOWS APPLICATION Chapter 12 273

FIGURE 12-10 The CustomerMaintenanceProject.msi file

2. Double-click on the CustomerMaintenanceProject.msi file to start the
installation.

The Windows Installer service prepares the user’s machine for the instal-
lation. Then, the Welcome page of the Setup wizard is displayed.

3. Click on the Next button to continue.

The Select Installation Folder page is displayed.

4. Browse for the location where you want to install the application by
clicking on the Browse button.

5. Select the Everyone radio button if you want to enable all the users who
log on to the machine to access the application.

By default, the Just me radio button is selected.

6. Click on the Next button to continue.

The Confirm Installation page is displayed.

7. Click on the Next button to start the installation.

A progress bar shows the progress of the installation process. When the
installation process is complete, the Installation Complete page is dis-
played.

8. Click on the Close button to complete the installation.

The CustomerMaintenanceProject.exe file is created in the specified
folder.

9. Double-click the CustomerMaintenanceProject.exe file to run the Win-
dows application.

Having tested the application, you can distribute the application to your customer.

Merge Module
In addition to a CAB or Setup project, you can create a Merge Module project by
using the templates provided by Visual Studio .NET. A Merge Module project is
used to combine the application files, resource files, registry files, and Setup files
in a single package.

You use the Merge Modules for projects that can be shared across applications.
This implies that the components used to set up a Merge Modules project can be

274 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

shared for multiple Merge Module projects. For example, consider a situation in
which you need to distribute two applications on a user’s computer. In this case,
you can have a common set of setup components for both the applications.There-
fore, the Merge Module projects are similar to the dynamic link library (.dll) files,
which allow applications to share the code.

In addition to the setup components, you can create any component as a Merge
Module that needs to be shared across multiple applications. For example, if a
resource is used in more than one application, you can deploy the resource as a
Merge Module and can then reuse the resource file for multiple applications.
However, you cannot install a Merge Module alone. It can be added to the MSI
files that you have created in the previous section.

Another advantage of creating a Merge Module project is that the project recog-
nizes all the dependencies for a component and tracks the versions of the compo-
n e n t . This prevents the user from installing the incorrect ve r s i on of the
component. To further avoid any version problem while installing a component,
you must create a Merge Module project that contains the dependencies of the
component.

You will now learn how to create a Merge Module project. You can create a Merge
Module project similar to the way you created the Setup Project.However, instead
of selecting the Setup Project option in the Add New Project dialog box, select
the Merge Module option. After performing the required steps, build the Merge
Module project to create a .msm file. Figure 12-11 shows the file system editor of
the Merge Module project.

DEPLOYING A WINDOWS APPLICATION Chapter 12 275

You can add a Merge Module component while creating a MSI file. In addition, the
merge module component can be added after the MSI files are created.

TIP

As discussed earlier, to deploy the .msm file, you need to merge the file with a
Windows Installer (.msi) file. The MSI file that contains a Merge Module com-
ponent also stores information about the version of the component.

While you install the application, the Windows Installer service adds the version
information to a Windows Installer database that enables multiple applications to
use a component. If you uninstall any one application, the Windows Installer
database ensures that the corresponding component is not uninstalled.

In the preceding sections, you looked at creating various deployment projects by
using the templates provided by Visual Studio .NET. However, you can create
these deployment projects by using the Setup wizard.

The Setup Wizard
The Setup wizard is used to create various deployment projects. You can now cre-
ate a deployment project by using the Setup wizard. To access the Setup wizard,
select the Setup Wizard option in the Add New Project dialog box.The Welcome

276 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 12-11 The file system editor of the Merge Module project

page of the Setup wizard is displayed. To create the deployment project by using
the wizard, perform the following steps.

1. On the Welcome page of the wizard, click on the Next button to start
the Setup wizard.

The Choose a project type page is displayed.

2. Click on the radio button to create the type of deployment project.

The wizard provides you with an option to create a Setup project for a
Windows application, a Setup project for a Web application, a Merge
Module for a Windows Installer, and a downloadable CAB file.

3. Click on the Next button to display the Choose project outputs to
include page.

4. In the Which project output groups do you want to include? text box,
check the file options that you want to include in your deployment pro-
ject, and click on the Next button.

The Choose files to include page is displayed. This page allows you to
add any additional file other than the files that you added in Step 4, such
as .txt or .htm files. You can add a file by clicking on the Add button.
Because adding additional files is optional, you may choose to proceed
further without adding any additional files.

5. Click on the Next button to display the Create Project page.

The Create Project page displays the summary of the information that
you have specified in the Setup wizard. Figure 12-12 displays the sum-
mary of the information specified in the Setup wizard.

6. To create the project, click on the Finish button on the Create Project
page.

DEPLOYING A WINDOWS APPLICATION Chapter 12 277

The project created by the wizard is added to the Solution Explorer window. You
can now build the deployment project to test it.

When you build the project, Visual Studio .NET creates the output file in the
Output folder that you created in the Application Folder. However, Visual Studio
.NET enables you to create a shortcut to the output file on the user’s machine.
The user can then conveniently access the output file by using this shortcut. You
can then create a shortcut to the output file.

It is a good practice to create a shortcut for users so that they can easily access your
application. To create a shortcut, perform the following steps:

1. Select the Primary output from CustomerMaintenanceProject (Active)
file in the Output folder.

2. On the Action menu, select the Create Shortcut to Primary output from
CustomerMaintenanceProject (Active) option.

A shortcut is created in the Output folder. If required, you can rename
the shortcut.

278 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 12-12 Summary of the information specified in the Setup wizardTEAMFL
Y

Team-Fly®

Visual Studio .NET allows you to create shortcuts to the user’s desktop and the
user’s program menu. To create a shortcut to the user’s desktop, drag the shortcut
to the User’s Desktop folder. However, to add a shortcut to the user’s program
menu, drag the shortcut to the User’s Program Menu folder in the file system edi-
tor. After adding the shortcut, you can build the project.

In this section, you learned about the file system editor. The following section dis-
cusses all the default editors in detail.

Deployment Project Editors
As discussed earlier, while creating a deployment project, you need to specify the
information, such as the location where you need to deploy the project, the
method of deployment, the registry information, and so on. In addition, you
might want to add customized information for the installation of the deployment
project. To enable you to specify all this information, Visual Studio .NET pro-
vides you with several deployment project editors. By default, there are six deploy-
ment project editors. The following sections will look at each of the deployment
project editors in detail.

The File System Editor
The file system editor is the default editor that is displayed when you create a
deployment project in Visual Studio .NET. You can use the file system editor to
add files and folders to your deployment project. By default, the file system editor
contains the Application Folder, the User ’s Desktop folder, and User ’s Program
Menu folder. The folder structure displayed in the file system editor corresponds
to the folder structure that will be created on the user’s machine. However, Visual
Studio .NET allows you modify the default folder structure by adding additional
folders to the file system editor.

To add additional folders, perform the following steps:

1. Right-click on the File System on Target Machine option.

2. From the displayed list, select the Add Special Folders option.

A list containing the available folders is displayed. You can select any option to
add the corresponding folder to the file system editor. These folders include Fonts
Folder, User’s Personal Data Folder, Windows Folder, User’s Favorites Folder, and
so on.

DEPLOYING A WINDOWS APPLICATION Chapter 12 279

In addition, you can also add several files to the file system editor. For example,
you can add output files, such as .exe or .dll files, or additional files, such as .txt
or .htm files, to any folder in the file system editor. To add a file to the file system
editor, perform the following steps:

1. Select the folder in which you want to add a file.

2. Click on the Action menu and point to the Add option.

3. From the list that is displayed, select the File option.

The Add Files dialog box is displayed.

4. Browse for the file in the Add Files dialog box and click on the Open
button.

The selected files are added to the specified folder.

You can also add shortcuts to the editor as explained in the previous section. Fig-
ure 12-13 displays a file system editor with additional files and folders added to it.

As you can see, a file system editor contains the left-hand pane, called the navi -
gation pane, and a right-hand pane, called the details pane. The navigation pane

280 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 12-13 A file system editor with additional files and folders

shows the list of folders, and the details pane contains the files, folders, and short-
cuts within the folder that is selected in the navigation pane. When you select a
folder, you can view the properties of the folder in the Properties window.

The Registry Editor
When you install an application on the user’s computer, you may need to make
modifications to the registry of the user’s computer. These modifications may
include adding registry keys and values to the registry. The registry editor in
Visual Studio .NET allows you to write the registry keys and values to the reg-
istry. To access the registry editor, perform the following steps:

1. On the View menu, point to the Editor option.

2. In the displayed list, select the Registry option.

The registry editor as shown in Figure 12-14 is displayed.

Similar to the file system editor, the registry editor includes the navigation pane
and the details pane. The navigation pane shows a list of existing registry keys on
the user’s computer. The details pane displays the registry entries for the registry

DEPLOYING A WINDOWS APPLICATION Chapter 12 281

FIGURE 12-14 The registry editor

key selected in the navigation pane. The navigation pane contains the name and
the values for the corresponding registry entry.

As discussed earlier, you can add registry keys to the registry on the user’s com-
puter by using the registry editor. The following section discusses adding registry
keys to the registry editor.

Adding Registry Keys to the Registry Editor
To add a registry key to the registry editor, perform the following steps:

1. Select the registry key in the navigation pane.

2. On the Action menu, select the New Key option.

A new registry key gets added to the selected registry key. You can rename the reg-
istry key as required.

Similar to adding registry keys, you can also add values to new or existing keys.

Adding Registry Values to Registry Keys
To add a registry value, perform the following steps:

1. Select the registry key for which you want to add a value.

2. On the Action menu, point to the New option.

The list that is displayed allows you to add a string, binary, or DWORD type value
to the registry keys. Select the String Value, Environment String Value, Binary
Value, or DWORD Value options to add the corresponding key value.

When you install the application on the user’s machine, the registry values are
written to the registry of the user’s computer. If values exist for a registry key, the
new value is overwritten to the registry key.

Visual Studio .NET also allows you to import an existing registry file to the reg-
istry editor, as discussed in the following section.

Importing Registry Files
A registry file with an extension .reg can be included in the registry editor by per-
forming the following steps:

1. In the registry editor, select the Registry on Target Machine option.

282 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

2. On the Action menu, click on the Import option.

3. The Import Registry File dialog box is displayed.

4. Browse for the required registry file, and click on the Open button to
import the registry file to your project.

The File Types Editor
Visual Studio .NET allows you to specify any file type or file association on the
user’s computer by using the file types editor. To create a file association, you need
to associate the file extension with the application that you have created. You can
then associate an action to be performed for all file types that you identify. For
example, you can associate your application with a Microsoft Word document
(.doc file) or a Microsoft Excel worksheet (.xls file). Associating an application
with a file type creates an executable file. For example, for a Microsoft Excel
worksheet, an executable file, EXCEL.exe, is created. When a file with an exten-
sion of .xls is opened, the executable file EXCEL.exe is launched.

Similar to the other editors, you can access the file types editor from the Editor
option on the View menu.The file types editor does not contain any file type yet.
You will now learn to add a file type to the file type editor.

Adding File Types to the File Type Editor
To add a file type to the file type editor, perform the following steps:

1. Select the File Types on Target Machine option in the file type editor.

2. On the Action menu, click on the Add File Type option.

Visual Studio .NET creates a new file type for your deployment project. Rename
this file MyFileType. This file type does not have a file extension associated
with it.

Associating a File Extension to the File Type
You can now associate a file extension to the MyFileType file type by performing
the following steps:

1. Select the MyFileType file type in the file type editor.

To associate a file extension, change the Extensions property of the file
type.

DEPLOYING A WINDOWS APPLICATION Chapter 12 283

2. In the Properties window, click on the Extensions property.

3. Type the value of the Extensions property as xls.

The file extension that you type is added to the name of the file type, MyFile-
Type. However, you have not yet added an executable file to the file type.

Adding an Executable File to the File Type
To add an executable file to the file type, perform the following steps:

1. Select the MyFileType file type in the file type editor.

To add an executable file, change the Command property of the file
type.

2. In the Properties window, click on the ellipsis button of the Command
property.

3. The Select Item in Project dialog box is displayed.

4. In the Select Item in Project dialog box, select the folder in which you
want to add the file from the Look in: list box and click on the Add File
button.

You may also add an output file or an assembly by clicking on the Add
Output or Add Assembly button, respectively.

5. The Add Files dialog box is displayed.

6. Browse for the executable file (EXCEL.exe file) and click on the OK
button.

284 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

The value for the Extensions property is not preceded with a period.

TIP

As discussed earlier, you can specify the actions to be performed on the file with
the .xls extension.The following section describes specifying an action.

Specifying an Action to be Performed on the File
with the .xls Extension
When you create a file type, the Open action is created for you by default. How-
ever, you can add more actions to be performed on the file. To specify an action,
perform the following steps:

1. Select the MyFileType file type in the file type editor.

2. On the Action menu, click on the Add Action option.

A new action is added to the MyFileType file type.

3. Rename the action &Save.

4. In the Properties window, select the Verb property and type the value of
the Verb property as Save.

The value in the Verb property is used to identify the action to be performed when
the user selects the Save option from the shortcut menu.

In addition to adding actions to the file types, you can specify a default action to
be performed when the user double-clicks on a file with the .xls extension. You
can create the default action Open. To do this, perform the following steps:

1. Right-click on the Open action.

2. Select the Set As Default option.

Figure 12-15 displays the file type editor.

DEPLOYING A WINDOWS APPLICATION Chapter 12 285

You can add an icon to the executable file by associating the icon file with the icon
property of the file type.

TIP

User Interface Editor
You have seen the installation process of the Customer Maintenance project.
During the installation process, the dialog boxes that are displayed are created by
Visual Studio .NET. You can make changes to these dialog boxes or may even add
new dialog boxes in Visual Studio .NET. In addition, you can change the proper-
ties of the default dialog boxes. To do this, Visual Studio .NET provides you with
a user interface editor. Similar to any other editor, you can access a user interface
editor from the Editor option on the View menu. Figure 12-16 displays the user
interface editor.

286 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 12-15 The file type editor

As you can see, the user interface editor displays the structure of dialog boxes that
will be displayed during the installation process.The user interface editor is a tree
view control containing the dialog boxes that are displayed when the user or the
system administrator installs the application on the user’s machine or the network.
The following section discusses customizing the dialog box in the installation
process of an application.

Customizing Dialog Boxes
Visual Studio .NET allows you to customize the interface of a dialog box by per-
forming the following steps:

1. Select the Standard dialog box in the user interface editor.

2. In the Properties window of the dialog box, modify the required
property.

In addition to customizing dialog boxes, you may want to add new dialog boxes
to the installation process.The next section will discuss adding new dialog boxes.

DEPLOYING A WINDOWS APPLICATION Chapter 12 287

FIGURE 12-16 The user interface editor

Adding New Dialog Boxes
Consider a situation in which you may need to add dialog boxes to the installa-
tion process. For example, you may want to add a dialog box that accepts the user
and company name at the time of installation. To do this, perform the following
steps:

1. Select the Start, Progress, or Finish option in the Install section.

2. On the Action menu, click on the Add Dialog option.

The Add Dialog page is displayed.The Add Dialog page provides you
with several options that you can add to the installation process. You can
view a short description of each option by selecting the option. Figure
12-17 shows the Add Dialog page.

3. Select the Register User dialog box on the Add Dialog page.

4. Click on the OK button to add the Register User dialog box.

By default, the Register User dialog box gets added last in the list. You can move
the newly added dialog box up or down the list as required. Figure 12-18 displays
the Register User dialog box added to the user interface editor.

288 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

FIGURE 12-17 The Add Dialog page

TEAMFL
Y

Team-Fly®

The Custom Action Editor
Using the custom editor in Visual Studio .NET, you can modify the installation
process to perform some additional tasks on the user’s computer. This implies that
you can add custom actions that the installation process performs while installing
the application. You can access the custom action editor in the Editor option of
the View menu. Figure 12-19 shows the custom action editor.

DEPLOYING A WINDOWS APPLICATION Chapter 12 289

FIGURE 12-18 The Register User dialog box added to the user interface editor

FIGURE 12-19 The custom action editor

As you can see, the custom action editor contains the Install, Commit, Rollback,
and Uninstall folders by default. These folders represent the stages of the instal-
lation process. You can add custom actions to any of these folders.

To add custom actions to the installation process, perform the following steps:

1. Select any folder to which you want to add a custom action.

2. On the Action menu, select the Add Custom Action option.

3. The Select Item in Project dialog box is displayed.

4. Select a folder in the Look in: list box.

5. To add a file, an output file, or an assembly that contains the custom
action, click on the Add File, Add Output, or Add Component button,
respectively.

6. Click on the OK button to add the custom action.

The Launch Conditions Editor
When you install an application, the installation process must follow some condi-
tions. These conditions may include the availability of certain files, the required
operating system, or the required registry keys. You can apply these conditions by
using the launch conditions editor. Applying conditions ensures the successful
installation and deployment of the application. To access the launch conditions
editor, access the Editor option on the View menu.

To add a launch condition, perform the following steps:

1. Select the Requirements on Target Machine option in the launch condi-
tion editor.

2. On the Action menu, select the Add File Launch Condition option.

290 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

Before adding a custom action to the installation process, you must compile your cus-
tom action in the form of executable files, such as .dll or .exe, or scripts, such as
VBScript (.vbs file) or JScript (.js file).

TIP

You may even choose to add a launch condition for a registry, Windows Installer,
.NET Framework, or Internet Information Services (IIS).

Visual Studio .NET adds two nodes, Search for File1 and Launch Conditions, to
the launch conditions editor. Figure 12-20 displays the launch conditions editor.

The properties of the Search for File1 node allow you to specify the properties of
the file to be searched during installation. The properties of the Launch Condi-
tions nodes allow you to specify the message to be displayed if the required file is
not found.

Summary
In this chapter, you learned about the basics of deploying a Windows application.
Deploying a Windows application allows you to execute a Windows application
that you have created on a computer other than the computer on which you cre-
ated the application. To enable you to deploy an application, Visual Studio .NET
provides you with deployment project templates. A deployment project in Visual
Studio .NET is a project that enables you to create an installation program to
ensure successful deployment of your application on another computer.

DEPLOYING A WINDOWS APPLICATION Chapter 12 291

FIGURE 12-20 The launch conditions editor

Next, you learned about the various deployment project templates available in C#.
The simplest way to deploy a Windows application is to convert the application
to a CAB file. A CAB file is a zipped form of your project. Another deployment
project that Visual Studio .NET provides you is the Setup project. The Setup
Project template creates the installer files, called MSI files, that the users can
install on their machines to deploy the application.In addition to a CAB or Setup
project, you can create a Merge Module project by using the templates provided
by Visual Studio .NET. A Merge Module project is used to combine the applica-
tion files, resource files, registry files, and Setup files in a single package. Visual
Studio .NET also provides you with a Setup wizard that you can use to create
these deployment projects.

Finally, you learned about the deployment editors, which allow you to specify
information, such as the location where you need to deploy the project, the
method of deployment, registry information, and so on, while creating a deploy-
ment project. By default, Visual Studio .NET contains six types of deployment
editors.These editors include the file system, registry, file type, user interface, cus-
tom action, and launch conditions editors.

292 Project 1 C R E ATING A CUSTOMER MAINTENANCE PROJECT

PARTIVP rofessional Project 2

This page intentionally left blank

Project 2
C reating the
Employee Record s
System (ERS)
P ro j e c t

P roject 2 Overv i e w
The Employee Records System (ERS) is a utility that will be used by the
human resources department to view the records of employees in the organi-
zation. The basic purpose of such a system is to assist the HR personnel in
finding details of the employees.

In this project, I will take you through the process of building the ERS appli-
cation using the TreeView, ListView, and StatusBar controls and interacting
with an XML file.

In the previous project, you learned to develop a Windows application for a
car maintenance company. In this project, you will learn to create another
Windows application, an Employee Records System (ERS) that displays the
details of employees.

Chapter 13
Project Case
Study and Design

This project describes the procedure to access XML data from a Windows
application. It also illustrates the use of important Windows controls, such as

the TreeView and ListView controls.

Case Study
You need to develop an application that enables you to pick up the details of
employees from an XML file and display the employee codes in the TreeView
control. On clicking an employee code, the details of the employee must be dis-
played in the ListView control.

This chapter will start developing the ERS project.This project will introduce you
to various controls, such as TreeView, ListView, StatusBar, and ListLabel, and
their properties and methods. The project will also discuss how to read records
from a XML data store. This chapter covers the design of the project.

Project Life Cycle
You looked at the phases of a DLC (development life cycle) of a project in Chapter
7, “Project Case Study,” in the section “Case Study.” Because we have already dis-
cussed the entire life cycle of the project, here I will discuss the design of the
application created by the development team for the ERS project. You, as a part
of the development team, will analyze the requirements and create a design for the
application.

Analyzing Requirements
To find a solution to a problem faced by a customer, you first need to analyze the
customer’s requirements in detail. This is done in the analyzing requirements
phase of the project life cycle. After analyzing the customer’s problems in detail,
you create a plan for developing the application. This analysis of the customer’s

298 Project 2 C R E ATING THE EMPLOYEE RECORDS SYSTEM PROJECT

TEAMFL
Y

Team-Fly®

problem is based on the problem statement stated by senior management and the
information gathered by the development team.

In this case, the problem statement, as stated by the HR Manager, is, “The details
of each employee must be accessible in an easy and simple manner.”

Upon analyzing the problem statement, the development team defined the fol-
lowing list of tasks that they need to do:

◆ The HR department needs to maintain the records of its employee in a
data store.

◆ The HR department needs an application that will enable it to obtain its
employee records in a quick and efficient manner.

This application can be extended to add new employee records, modify existing
records, and delete records.

High-Level Design
Based on the plan of the Windows application, the development team created a
design of the Windows application in the high-level design phase. The design of
the ERS application includes creating the user interface for the Windows form
used in the application.

The ERS application consists of a Windows form, as shown in Figure 13-1.

PROJECT CASE STUDY AND DESIGN Chapter 13 299

FIGURE 13-1 Layout of the ERS form

To create the layout of the ERS application, as shown in Figure 13-1, you need to
include TreeView, ListView, and StatusBar controls. The following section dis-
cusses the different controls in detail. The ERS application consists of a main
Windows form, called EmployeeRecordsForm.

Press F4 to view the properties of the EmployeeRecordsForm form. Change the fol-
lowing property values in the Properties window:

Name: EmployeeRecordsForm

Auto Scroll: True

MinimizeBox: False

MaximizeBox: False

Size: 728, 408

Text: Employee Records Monitoring System

The properties of the EmployeeRecordsForm form are as shown in Figure 13-2.

Changing the Name property changes the name of the form. By setting the Mini-
mizeBox and the MaximizeBox properties to False, you can ensure that the form
cannot be maximized or minimized.

300 Project 2 C R E ATING THE EMPLOYEE RECORDS SYSTEM PROJECT

FIGURE 13-2 Properties of the EmployeeRecordsForm form

TreeView Control
A TreeView control is a Windows Forms control that you can use to display a
hierarchy of nodes. These nodes are called root or parent nodes. Each root node in
the hierarchy can contain one or more nodes, called child nodes.The root and par-
ent nodes can be collapsed or expanded.

To add a TreeView control in Visual Studio .NET, you can drag the TreeView
control from the Windows Forms toolbox to the EmployeeRecordsForm form. Fig-
ure 13-3 shows the TreeView control in the Windows Forms toolbox.

You can create a TreeView control by dragging a TreeView control from the Win-
dows Forms toolbox to the form.The appearance of the TreeView control can be
changed from the properties window. Table 13-1 lists and explains some of the
important TreeView control properties.

PROJECT CASE STUDY AND DESIGN Chapter 13 301

FIGURE 13-3 A TreeView control in the Windows Forms toolbox

Table 13-1 Tr e e V i ew Control Pro p e rt i e s

P ro p e rt y D e s c r i p t i o n

Name Sets the name of the control.

AllowDrop Indicates whether the control can accept data that user drags onto it.

BorderStyle Sets the border style of the control.The default style is Fixed3D,
wherein the control has a sunken three-dimensional appearance.

CheckBoxes Displays check boxes next to the tree nodes in the control when set to
true.

FullRowSelect Highlights the entire width of the control when a node is selected.

HideSelection When set to true, the selected tree node remains highlighted even
after the control has lost the focus.

HotTracking When set to true, the tree node labels appear as a hyperlink when the
mouse pointer moves over it.

ImageIndex Sets the image-list index value of the default image that is displayed
by the tree nodes.

ImageList Specifies the ImageList that contains the images.

LabelEdit The tree node labels can be edited when this property is set to true.

Nodes Gets the collection of nodes that are assigned to the TreeView control.

Scrollable The TreeView control displays scroll bars when it is set to true.

SelectedImageIndex Gets or sets the image list index value of the image that is displayed
when a tree node is selected.

ShowLines Displays lines connecting the nodes in the control,when set to true.

ShowPlusMinus Displays plus sign (+) and minus sign (-) when a node contains child
nodes.

ShowRootLines Displays lines connecting root nodes in the control when set to true.

Size Sets the height and width of the control.

Sorted When set to true, the nodes in the control are displayed in a sorted
order.

Visible When set to true, the control is not displayed.

302 Project 2 C R E ATING THE EMPLOYEE RECORDS SYSTEM PROJECT

You will now create a TreeView control for the application. To create a TreeView
control, perform the following steps:

1. Drag a TreeView control from the Windows Forms toolbox to the form.

A blank TreeView control is added to the form.

2. Press the F4 key to display the properties of the TreeView control.

3. In the Properties window, change the following properties:

Name: treeView1

ShowLines: True

ShowPlusMinus: True

ShowRootLines: True

Size: 240, 352

The control does not contain any nodes.You can add both parent and child nodes
to the TreeView control by using the Nodes property. You can also add nodes pro-
grammatically, which will be discussed in the next chapter.

ListView Control
A ListView control is a Windows Form control that displays a collection of items
by using one of the four different possible views. A ListView control enables you
to display a list of items with text and images to identify the type of item. You can
display the items in a ListView control as large icons, small icons, or a vertical list.
The items can also be displayed with column headers identifying the information
being displayed in a subitem.

You can create a ListView control by dragging a ListView control from the Win-
dows Forms toolbox to the form.The appearance of the ListView control can be
changed from the Properties window. Table 13-2 lists and explains some of the
important ListView control properties.

PROJECT CASE STUDY AND DESIGN Chapter 13 303

Table 13-2 L i s t V i ew Control Pro p e rt i e s

P ro p e rt y D e s c r i p t i o n

Name Sets the name of the control.

Activation Specifies the type of action the user must take to activate an item.

Alignment Sets the alignment of items in the control.

AllowDrop Indicates whether the control will accept data the user drags onto it or
not.

AllowColumnReorder Indicates whether the user can drag column headers to reorder
columns in the control.

AutoArrange Indicates whether items are automatical ly arranged.

BorderStyle Sets the border style of the control.

Columns Gets the collection of all column headers that appear in the control.

Dock Sets the edge of the parent container to which a control is docked.

FullRowSelect Indicates whether clicking an item selects all its subitems.

HeaderStyle Sets whether the column header is clickable or not.

Items Specifies the collection of items in the control.

LabelWrap Indicates whether the item label wraps or not.

LargeImageList Specifies the ImageList to use when displaying the items as large
icons.

MultiSelect Indicates whether multiple items can be selected.

Scrollable Indicates whether scroll bars will be displayed.

SmallImageList Specifies the ImageList to use when displaying the items.

Sorting Sets the sort order for items in the control.

View Specifies the manner in which items are displayed in the control.The
items can be displayed either as large icons, small icons,in a list man-
ner, or in a details manner.

Visible When set to true, the control is not displayed.

304 Project 2 C R E ATING THE EMPLOYEE RECORDS SYSTEM PROJECT

You will now create a ListView control for the application. To create a ListView
control, perform the following steps:

1. Drag a ListView control from the Windows Forms toolbox to the form.

A blank ListView control is added to the form. Similar to the TreeView
control, the appearance of the ListView control can be modified by
changing its properties.

2. Press the F4 key to display the properties of the ListView control.

3. In the Properties window, change the following properties:

Name: listView1

Activation: TwoClick

MultiSelect: False

View: Details

StatusBar Control
A StatusBar control is a Windows Forms control that typically appears at the bot-
tom of the form and is used to display different types of status information. A Sta-
tusBar control can have status bar panels on them that display text or icons to
indicate the state. The StatusBar panels can be used to display information about
page numbers, spelling and grammar status, and editing modes on the status bar.

Perform the following steps to create a status bar for the application:

1. Drag a StatusBar control from the Windows Forms toolbox to the form.

2. Press F4 and change the following properties:

Name: statusBar1

ShowPanels: True

Panels can be added to a StatusBar control either at design time through
StatusBarPanel Collection Editor or at run time through the Status-
BarPanelCollection class.

3. In the Properties window, click on the Panels property, and then click on
the ellipsis (…) button to open StatusBarPanel Collection Editor.

4. Add a panel by clicking the Add button.

PROJECT CASE STUDY AND DESIGN Chapter 13 305

5. Change the following values:

Name: statusBarPanel1

Text: Click the employee code to view details

Width: 240

The StatusBarPanel Collection Editor is shown in Figure 13-4.

The XML File Schema
The development team decides to store the records of the employees in an XML
file.This would facilitate accessing the data store from any system.The schema of
this XML file is as follows:

<?xml version=”1.0”?>

< E m p R e c o r d s D a t a >

<Ecode Id=”E0001” EmployeeName=”Michael Perry”>

<EmpDetails DateofJoin=”02-02-1999” Grade=”A” salary=”1750”/>

< / E c o d e >

306 Project 2 C R E ATING THE EMPLOYEE RECORDS SYSTEM PROJECT

FIGURE 13-4 The StatusBarPanel Collection Editor

<Ecode Id=”E0002” EmployeeName=”Jenifer Carell”>

<EmpDetails DateofJoin=”03-22-1999” Grade=”B” salary=”2500”/>

< / E c o d e >

<Ecode Id=”E0003” EmployeeName=”George Rice”>

<EmpDetails DateofJoin=”04-18-1999” Grade=”A” salary=”1800”/>

< / E c o d e >

<Ecode Id=”E0004” EmployeeName=”Pamela Griffin”>

<EmpDetails DateofJoin=”04-27-1999” Grade=”E” salary=”7000”/>

< / E c o d e >

<Ecode Id=”E0005” EmployeeName=”Simon Watson”>

<EmpDetails DateofJoin=”05-03-1999” Grade=”A” salary=”1650”/>

< / E c o d e >

<Ecode Id=”E0006” EmployeeName=”Daniel Allison”>

<EmpDetails DateofJoin=”05-13-1999” Grade=”D” salary=”5700”/>

< / E c o d e >

<Ecode Id=”E0007” EmployeeName=”Laura Hansen”>

<EmpDetails DateofJoin=”06-02-1999” Grade=”C” salary=”4150”/>

< / E c o d e >

<Ecode Id=”E0008” EmployeeName=”Sarah Judd”>

<EmpDetails DateofJoin=”09-11-1999” Grade=”B” salary=”2600”/>

< / E c o d e >

<Ecode Id=”E0009” EmployeeName=”Joshua Johnson”>

<EmpDetails DateofJoin=”09-23-1999” Grade=”E” salary=”7725”/>

< / E c o d e >

<Ecode Id=”E0010” EmployeeName=”Larry Gates”>

<EmpDetails DateofJoin=”10-20-1999” Grade=”C” salary=”4350”/>

< / E c o d e >

<Ecode Id=”E0011” EmployeeName=”Nicholas Harvey”>

<EmpDetails DateofJoin=”10-20-1999” Grade=”B” salary=”2720”/>

< / E c o d e >

<Ecode Id=”E0012” EmployeeName=”Michael Brown”>

<EmpDetails DateofJoin=”11-11-1999” Grade=”A” salary=”1665”/>

< / E c o d e >

<Ecode Id=”E0013” EmployeeName=”George Lewis”>

<EmpDetails DateofJoin=”12-07-1999” Grade=”B” salary=”3150”/>

< / E c o d e >

PROJECT CASE STUDY AND DESIGN Chapter 13 307

<Ecode Id=”E0014” EmployeeName=”Elaine Thorn”>

<EmpDetails DateofJoin=”12-13-1999” Grade=”C” salary=”4070”/>

< / E c o d e >

< / E m p R e c o r d s D a t a >

This XML data store is saved as EmpRec.xml. The EmpRec.xml file has Ecode
and EmpDetails as its elements.Id and EmployeeName are attributes of the Ecode ele-
ment. Date of Join, Grade, and salary are attributes that are contained within the
EmpDetails element.

Low-Level Design
After completing the analysis and design of the ERS application in the high-level
design phase, the development team creates a detailed design of software modules.
These software modules are then used to create a detailed structure of the appli-
cation. In addition to creating software modules, the team decides the flow and
interaction of each module.

The flowchart of the project created by the development team is shown in
Figure 13-5.

308 Project 2 C R E ATING THE EMPLOYEE RECORDS SYSTEM PROJECT

FIGURE 13-5 Flowchart of the ERS project

TEAMFL
Y

Team-Fly®

Summary
In this chapter, you were introduced to the case study and design of the ERS pro-
ject. You created the high-level and low-level design of the application. You also
learned about different controls and the means of using them. You will learn to
develop the application in the next chapter.

PROJECT CASE STUDY AND DESIGN Chapter 13 309

This page intentionally left blank

Chapter 14
Implementing the
Business Logic

In this chapter, you will learn to add nodes to the tree view and items to the list
view programmatically. You will also learn to read contents of an XML file. You

will build the Employee Records System application.

Populating the TreeView Control
In order to build the application, the first task you need to complete is populating
the TreeView control. You have inserted a TreeView control in the form. How-
ever, the TreeView control does not contain any nodes. Now you will learn to add
nodes to the control programmatically.

In order to add a node, you first need to initialize a new instance of the TreeNode
class. Calling the constructor of the TreeNode class enables you to achieve this.The
constructor of the TreeNode class is overloaded, as explained in Table 14-1.

Table 14-1 TreeNode Class Constructors

C o n s t r u c t o r D e s c r i p t i o n

public TreeNode(); Initializes a new instance of the TreeNode
class

public TreeNode(string); Initializes a new instance of the TreeNode
class with the specified label text

public TreeNode(string, TreeNode[]); Initializes a new instance of the TreeNode
class with the specified label text and
child tree nodes

public TreeNode(string, int, int); Initializes a new instance of the TreeNode
class with the specified label text and
images to be displayed in selected and
unselected state

public TreeNode(string, int, int, TreeNode[]); Initializes a new instance of the TreeNode
class with the specified label text, child
tree nodes, and images to be displayed in
selected and unselected state

312 Project 2 C R E ATING THE EMPLOYEE RECORDS SYSTEM PROJECT

Displaying Employee Codes in the TreeView Control
You can add a node to the TreeView control using the Add method, as follows:

treeview1.Nodes.Add(new TreeNode(“Root Node”)

In this code, treeview1 refers to the TreeView control. The Nodes collection con-
tains all child nodes of a particular parent node. The Add method of the Tree-
NodeCollection class enables you to add nodes to the collection. For example, the
following code explains the manner in which you can add a node with the display
text “My Computer”.

tnRootNode = new TreeNode(“My Computer”);

t v F o l d e r V i e w . N o d e s . A d d (t n R o o t N o d e) ;

The previous code assumes that you have added a TreeView control to the form.

The first task that you need to accomplish is to open the XML data store and read
the employee records. You will learn about XML in Chapter 17,“Interacting with
a Microsoft Word Document and Event Viewer.” The .NET Framework class
library provides you with the XmlTextReader class that helps you access a stream of
XML data in a fast and noncached manner. I will be using the XmlTextReader class
to read the EmpRec.xml file. You have created the EmpRec.xml file in Chapter
13, “Project Case Study and Design.”

The XmlTextReader represents a reader that is advanced using the read methods
and properties of the current node. Table 14-2 lists some of the commonly used
properties of the XmlTextReader class.

Table 14-2 P ro p e rties of the XmlTextReader C l a s s

P ro p e rt i e s D e s c r i p t i o n

EOF Indicates whether the reader is positioned at the end of the XML stream

HasAttributes Indicates whether current node has any attributes

HasValue Indicates whether current node has any value

Item Obtains the value of the attribute

LineNumber Gets the current line number of the reader

LinePosition Gets the current position of the reader in the line specified

Name Gets the name of the current node

ReadState Gets the state of the reader

Value Gets the text value of the current node

IMPLEMENTING THE BUSINESS LOGIC Chapter 14 313

Table 14-3 lists some of the commonly used properties of the XmlTextReader class.

Table 14-3 Methods of the XmlTextReader C l a s s

M e t h o d s D e s c r i p t i o n

Close Changes the ReadState to closed

GetAttribute Gets the value of an attribute

MoveToAttribute Moves to the specified attribute

MoveToContent Checks whether the current node is a content node; if
not, the reader skips to the next node

MoveToElement Moves to the element that contains the current attribute
node

MoveToFirstAttribute Moves to the first attribute

MoveToNextAttribute Moves to the next attribute

Read Reads the next node from the stream

ReadAttributeValue Parses the attribute value into one or more Text,
EntityReference, or EndEntity nodes

ReadInnerXml Reads all the content, including markup, as a string

ReadOuterXml Reads the content, including markup, representing the
current node and its child nodes

ReadString Reads the contents of an element or a text node as a
string

Skip Skips the children of the current node

ToString Returns a string that represents the current object

Now you need to read the employee codes from the EmpRec.xml file and display
them in the tree view control.

You can open the XML file by initializing the XMLTextReader class, as follows:

XmlTextReader reader= new XmlTextReader (“E:\\BookProj\\EmpRec.xml”);

where e:\BookProj\EmpRec.xml represents the path on your hard disk where the
EmpRec.xml file is stored.

314 Project 2 C R E ATING THE EMPLOYEE RECORDS SYSTEM PROJECT

I have written the entire code for populating the TreeView control inside a func-
tion, PopulateTreeView, as given below.

protected void PopulateTreeView()

{

statusBarPanel1.Text=”Refreshing Employee Codes. Please wait...”;

this.Cursor = Cursors.WaitCursor;

t r e e V i e w 1 . N o d e s . C l e a r () ;

tvRootNode=new TreeNode(“Employee Records”);

this.Cursor = Cursors.Default;

t r e e V i e w 1 . N o d e s . A d d (t v R o o t N o d e) ;

TreeNodeCollection nodeCollect = tvRootNode.Nodes;

string strVal=””;

XmlTextReader reader= new XmlTextReader(“E:\\BookProj\\EmpRec.xml”);

r e a d e r . M o v e T o E l e m e n t () ;

t r y

{

w h i l e (r e a d e r . R e a d ())

{

if(reader.HasAttributes && reader.NodeType==XmlNodeType.Element)

{

r e a d e r . M o v e T o E l e m e n t () ;

r e a d e r . M o v e T o E l e m e n t () ;

r e a d e r . M o v e T o A t t r i b u t e (“ I d ”) ;

s t r V a l = r e a d e r . V a l u e ;

r e a d e r . R e a d () ;

r e a d e r . R e a d () ;

if(reader.Name==”Dept”)

{

r e a d e r . R e a d () ;

}

//create the child nodes

TreeNode EcodeNode = new TreeNode(strVal);

IMPLEMENTING THE BUSINESS LOGIC Chapter 14 315

// Add the Node

n o d e C o l l e c t . A d d (E c o d e N o d e) ;

}

}

statusBarPanel1.Text=”Click on an employee code to see their record.”;

}

catch(XmlException e)

{

MessageBox.Show(“XML Exception :”+e.ToString());

}

}

Figure 14-1 displays the TreeView control populated with the employee codes.

Event Handling
An event is the result of an action that has occurred. This action could have
occurred as a result of user action, such as a mouse click, or could have been the
result of a built-in program logic. For example, when a person rings the doorbell,
an event takes place. Another person responds to the event by attending the door.
The person ringing the bell is called the event sender and the person responding is
the event receiver or handler. However, the person triggering the event is not aware
of the person who will be handling the event.

316 Project 2 C R E ATING THE EMPLOYEE RECORDS SYSTEM PROJECT

FIGURE 14-1 The TreeView control populated with employee codes

To respond to an event, you must provide an event handler method that will han-
dle the events. Suppose you have a simple Windows form that contains a button.
When the button is clicked, the event must be handled by an event handler
method. The following code shows an event handler.

void Button_Clicked(object sender, EventArgs e)

{

//the program logic

}

However, for the event to be handled, you need to tie up your event handler to an
instance of the button. You need to create an instance of EventHandler that takes
a reference to Button_Clicked as its argument, as shown in the following code:

button.Click+=new EventHandler(this.Button_Clicked);

This tying up is taken care of by Visual Studio .NET. The following example
shows a simple Windows application that handles a button click event.

using System;

using System.ComponentModel;

using System.Windows.Forms;

using System.Drawing;

public class EventSampleForm: Form

{

private Button button;

public EventSampleForm () : base()

{

button = new Button();

button.Location = new Point(50,100);

button.Text = “Click Me”;

// To wire the event, create a delegate instance and add it to the Click event.

button.Click += new EventHandler(this.Button_Clicked);

Controls.Add(button);

}

// The event handler.

private void Button_Clicked(object sender, EventArgs e)

IMPLEMENTING THE BUSINESS LOGIC Chapter 14 317

{

MessageBox.Show(“You clicked me!”);

}

// STAThreadAttribute indicates that Windows Forms uses the

// single-threaded apartment model.

[S T A T h r e a d A t t r i b u t e]

public static void Main(string[] args)

{

Application.Run(new EventSampleForm ());

}

}

The essential steps in an event handling application are as follows:

◆ The source of an event is an instance of System.Windows.Forms.<control>
control.

◆ The <control> raises an event.

◆ The delegate for the event is EventHandler.

◆ The form has an event handler called Control_Event.

◆ The Control_Event is tied to the event.

Displaying Employee Details in the ListView Control
In the ERS application, the employee details need to be displayed in the ListView
control at the click of an employee code in the TreeView control. Items can be
added to ListView control using the ListView Collection Editor or program-
matically. For this application, you need to add the items programmatically,
because the items are dependent on an event, the click of an employee code node
in the TreeView control.

However, before the list view control is populated, you need to create column
headers for the ListView control. A column header is an item in a ListView con-
trol that contains heading text. I have put the code for displaying the column
headers in the initializeListControl method, as given below.

protected void initializeListControl()

{

l i s t V i e w 1 . C l e a r () ;

listView1.Columns.Add(“Employee Name”,225,HorizontalAlignment.Left);

318 Project 2 C R E ATING THE EMPLOYEE RECORDS SYSTEM PROJECT

TEAMFL
Y

Team-Fly®

listView1.Columns.Add(“Date of Join”,70,HorizontalAlignment.Right);

listView1.Columns.Add(“Grade”,105,HorizontalAlignment.Left);

listView1.Columns.Add(“Salary”,105,HorizontalAlignment.Left);

}

The Columns property of the ListView class contains a collection of all the column
headers that appear in the control. The Columns property returns a collection con-
taining ColumnHeader objects that are displayed in the ListView control. The
ColumnHeader objects define the text to be displayed for a column and is contained
in the ListView.ColumnHeaderCollection.

You can add a column header to the collection using the Add method. Alterna-
tively, you can create an array of ColumnHeader objects and pass it to the AddRange
method to add a number of column headers.

Table 14-4 explains some of the commonly used methods of the ListView.Column-
HeaderCollection.

Table 14-4 ListView.ColumnHeaderCollection M e m b e rs

M e t h o d D e s c r i p t i o n

Add This overloaded method adds a column header to the collection.

AddRange This method adds an array of column headers to the collection.

Clear This method removes all column headers from the collection.

Contains This method determines whether the specified method is contained in the
collection.

Insert This method inserts a column header into the collection at the specified
index.

Remove This method removes the specified column header from the collection.

RemoveAt This method removes the column header at the specified index from within
the collection.

The final task is to read the EmpRec.xml XML file and display the details of an
employee whose employee code has been clicked in the TreeView control.

protected void PopulateListView(TreeNode currNode)

{

i n i t i a l i z e L i s t C o n t r o l () ;

IMPLEMENTING THE BUSINESS LOGIC Chapter 14 319

XmlTextReader listRead= new XmlTextReader(“E:\\BookProj\\EmpRec.xml”);

l i s t R e a d . M o v e T o E l e m e n t () ;

w h i l e (l i s t R e a d . R e a d ())

{

string strNodename;

string strNodePath;

string name;

string grade;

string doj;

string sal;

string[] strItemsArr=new String [4];

l i s t R e a d . M o v e T o F i r s t A t t r i b u t e () ;

s t r N o d e n a m e = l i s t R e a d . V a l u e ;

s t r N o d e P a t h = c u r r N o d e . F u l l P a t h . R e m o v e (0 , 1 7) ;

i f (s t r N o d e P a t h = = s t r N o d e n a m e)

{

ListViewItem lvi;

l i s t R e a d . M o v e T o N e x t A t t r i b u t e () ;

name=listRead.Value;

lvi=listView1.Items.Add(name);

l i s t R e a d . R e a d () ;

l i s t R e a d . R e a d () ;

l i s t R e a d . M o v e T o F i r s t A t t r i b u t e () ;

d o j = l i s t R e a d . V a l u e ;

lvi.SubItems.Add(doj);

l i s t R e a d . M o v e T o N e x t A t t r i b u t e () ;

grade=listRead.Value;

lvi.SubItems.Add(grade);

l i s t R e a d . M o v e T o N e x t A t t r i b u t e () ;

sal=listRead.Value;

lvi.SubItems.Add(sal);

l i s t R e a d . M o v e T o N e x t A t t r i b u t e () ;

l i s t R e a d . M o v e T o E l e m e n t () ;

l i s t R e a d . R e a d S t r i n g () ;

}

}

}

320 Project 2 C R E ATING THE EMPLOYEE RECORDS SYSTEM PROJECT

Figure 14-2 displays the ERS application populated with the employee records.

The code for the entire application is given here.

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Xml;

using System.Diagnostics;

using System.IO;

namespace EmployeeRecords

{

/// <summary>

/// Summary description for Form1.

/// </summary>

public class EmployeeRecordsForm : System.Windows.Forms.Form

{

private System.Windows.Forms.TreeView treeView1;

private System.Windows.Forms.ListView listView1;

private System.Windows.Forms.StatusBar statusBar1;

private System.Windows.Forms.StatusBarPanel statusBarPanel1;

IMPLEMENTING THE BUSINESS LOGIC Chapter 14 321

FIGURE 14-2 The ERS application

/// <summary>

/// Required designer variable.

/// </summary>

private System.ComponentModel.Container components=null;

private TreeNode tvRootNode;

public EmployeeRecordsForm()

{

// Required for Windows Form Designer support

I n i t i a l i z e C o m p o n e n t () ;

// TODO: Add any constructor code after InitializeComponent call

P o p u l a t e T r e e V i e w () ;

i n i t i a l i z e L i s t C o n t r o l () ;

}

/// <summary>

/// Clean up any resources being used.

/// </summary>

protected override void Dispose(bool disposing)

{

if(disposing)

{

if (components != null)

{

c o m p o n e n t s . D i s p o s e () ;

}

}

base.Dispose(disposing);

}

#region Windows Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.treeView1 = new System.Windows.Forms.TreeView();

this.listView1 = new System.Windows.Forms.ListView();

this.statusBar1 = new System.Windows.Forms.StatusBar();

this.statusBarPanel1 = new System.Windows.Forms.StatusBarPanel();

322 Project 2 C R E ATING THE EMPLOYEE RECORDS SYSTEM PROJECT

((S y s t e m . C o m p o n e n t M o d e l . I S u p p o r t I n i t i a l i z e) (t h i s . s t a t u s B a r P a n e l 1))

. B e g i n I n i t () ;

t h i s . S u s p e n d L a y o u t () ;

this.treeView1.ImageIndex = -1;

this.treeView1.Name = “treeView1”;

this.treeView1.SelectedImageIndex = -1;

this.treeView1.Size = new System.Drawing.Size(240, 352);

this.treeView1.TabIndex = 0;

this.treeView1.AfterSelect += new System.Windows.Forms.TreeViewEventHandler

(t h i s . t r e e V i e w 1 _ A f t e r S e l e c t) ;

//

// listView1

//

this.listView1.Activation = System.Windows.Forms.ItemActivation.TwoClick;

this.listView1.Location = new System.Drawing.Point(240, 0);

this.listView1.Name = “listView1”;

this.listView1.Size = new System.Drawing.Size(480, 352);

this.listView1.TabIndex = 1;

this.listView1.View = System.Windows.Forms.View.Details;

//

// statusBar1

//

this.statusBar1.Location = new System.Drawing.Point(0, 357);

this.statusBar1.Name = “statusBar1”;

this.statusBar1.Panels.AddRange(new System.Windows.Forms.StatusBarPanel[] {

t h i s . s t a t u s B a r P a n e l 1 }) ;

this.statusBar1.ShowPanels = true;

this.statusBar1.Size = new System.Drawing.Size(720, 24);

this.statusBar1.TabIndex = 2;

//

// statusBarPanel1

//

this.statusBarPanel1.Text = “Click the employee code to view details”;

this.statusBarPanel1.Width = 720;

//

// EmployeeRecordsForm

//

IMPLEMENTING THE BUSINESS LOGIC Chapter 14 323

this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

this.AutoScroll = true;

this.ClientSize = new System.Drawing.Size(720, 381);

this.Controls.AddRange(new System.Windows.Forms.Control[] {

t h i s . s t a t u s B a r 1 ,

t h i s . l i s t V i e w 1 ,

t h i s . t r e e V i e w 1 }) ;

this.MaximizeBox = false;

this.MinimizeBox = false;

this.Name = “EmployeeRecordsForm”;

this.Text = “Employee Records Monitoring System”;

((S y s t e m . C o m p o n e n t M o d e l . I S u p p o r t I n i t i a l i z e) (t h i s . s t a t u s B a r P a n e l 1))

. E n d I n i t () ;

t h i s . R e s u m e L a y o u t (f a l s e) ;

}

e n d r e g i o n

/// <summary>

/// The main entry point for the application.

/// </summary>

[S T A T h r e a d]

static void Main()

{

Application.Run(new EmployeeRecordsForm());

}

protected void PopulateTreeView()

{

statusBarPanel1.Text=”Refreshing Employee Codes. Please wait...”;

this.Cursor = Cursors.WaitCursor;

t r e e V i e w 1 . N o d e s . C l e a r () ;

tvRootNode=new TreeNode(“Employee Records”);

this.Cursor = Cursors.Default;

t r e e V i e w 1 . N o d e s . A d d (t v R o o t N o d e) ;

TreeNodeCollection nodeCollect = tvRootNode.Nodes;

string strVal=””;

XmlTextReader reader= new XmlTextReader(“E:\\BookProj\\EmpRec.xml”);

r e a d e r . M o v e T o E l e m e n t () ;

324 Project 2 C R E ATING THE EMPLOYEE RECORDS SYSTEM PROJECT

t r y

{

w h i l e (r e a d e r . R e a d ())

{

if(reader.HasAttributes && reader.NodeType==XmlNodeType.Element)

{

r e a d e r . M o v e T o E l e m e n t () ;

r e a d e r . M o v e T o E l e m e n t () ;

r e a d e r . M o v e T o A t t r i b u t e (“ I d ”) ;

s t r V a l = r e a d e r . V a l u e ;

r e a d e r . R e a d () ;

r e a d e r . R e a d () ;

if(reader.Name==”Dept”)

{

r e a d e r . R e a d () ;

}

//create the child nodes

TreeNode EcodeNode = new TreeNode(strVal);

/ / Add the Node

n o d e C o l l e c t . A d d (E c o d e N o d e) ;

}

}

statusBarPanel1.Text=”Click on an employee code to see their record.”;

}

catch(XmlException e)

{

MessageBox.Show(“XML Exception :”+e.ToString());

}

}

protected void initializeListControl()

{

l i s t V i e w 1 . C l e a r () ;

listView1.Columns.Add(“Employee Name”,225,HorizontalAlignment.Left);

listView1.Columns.Add(“Date of Join”,70,HorizontalAlignment.Right);

listView1.Columns.Add(“Grade”,105,HorizontalAlignment.Left);

IMPLEMENTING THE BUSINESS LOGIC Chapter 14 325

listView1.Columns.Add(“Salary”,105,HorizontalAlignment.Left);

}

protected void PopulateListView(TreeNode currNode)

{

i n i t i a l i z e L i s t C o n t r o l () ;

XmlTextReader listRead= new XmlTextReader(“E:\\BookProj\\EmpRec.xml”);

l i s t R e a d . M o v e T o E l e m e n t () ;

w h i l e (l i s t R e a d . R e a d ())

{

string strNodename;

string strNodePath;

string name;

string grade;

string doj;

string sal;

string[] strItemsArr=new String [4];

l i s t R e a d . M o v e T o F i r s t A t t r i b u t e () ;

s t r N o d e n a m e = l i s t R e a d . V a l u e ;

s t r N o d e P a t h = c u r r N o d e . F u l l P a t h . R e m o v e (0 , 1 7) ;

i f (s t r N o d e P a t h = = s t r N o d e n a m e)

{

ListViewItem lvi;

l i s t R e a d . M o v e T o N e x t A t t r i b u t e () ;

name=listRead.Value;

lvi=listView1.Items.Add(name);

l i s t R e a d . R e a d () ;

l i s t R e a d . R e a d () ;

l i s t R e a d . M o v e T o F i r s t A t t r i b u t e () ;

d o j = l i s t R e a d . V a l u e ;

lvi.SubItems.Add(doj);

l i s t R e a d . M o v e T o N e x t A t t r i b u t e () ;

grade=listRead.Value;

lvi.SubItems.Add(grade);

l i s t R e a d . M o v e T o N e x t A t t r i b u t e () ;

sal=listRead.Value;

lvi.SubItems.Add(sal);

326 Project 2 C R E ATING THE EMPLOYEE RECORDS SYSTEM PROJECT

l i s t R e a d . M o v e T o N e x t A t t r i b u t e () ;

l i s t R e a d . M o v e T o E l e m e n t () ;

l i s t R e a d . R e a d S t r i n g () ;

}

}

}

private void treeView1_AfterSelect(object sender, System.Windows.Forms

.TreeViewEventArgs e)

{

TreeNode currNode = e.Node;

if (tvRootNode == currNode)

{

i n i t i a l i z e L i s t C o n t r o l () ;

statusBarPanel1.Text=”Double click the Employee Records”;

r e t u r n ;

}

e l s e

{

statusBarPanel1.Text=”Click an employee code to view individual records”;

}

P o p u l a t e L i s t V i e w (c u r r N o d e) ;

}

}

}

Summary
You have learned to develop a Windows application using TreeView, ListView,
and StatusBar controls and to interact with a XML file.

IMPLEMENTING THE BUSINESS LOGIC Chapter 14 327

This page intentionally left blank

TEAMFL
Y

Team-Fly®

PART VP rofessional Project 3

This page intentionally left blank

Project 3
C reating a
C reative Learn i n g
P ro j e c t

P roject 3 Overv i e w
In the preceding two projects, you looked at developing Windows applications
for a car maintenance company and creating an employee records system
application. In this project, you will learn to create another Windows applica-
tion for a chain of bookstores. This Windows application is called Creative
Learning after the name of the chain of bookstores.

The Creative Learning application contains a Windows form that validates
the data entered by a user in a Word document. In this project, you will learn
to create a Windows form that interacts with a Microsoft Word document. In
addition, any errors produced while processing a Word document are logged
in Windows Event Viewer. Therefore, you will also learn to access Event
Viewer from a Windows form created in Visual Studio .NET.

I will be discussing the creation of the Windows form in the following chap-
ters. The next chapter covers the case study and design of the Creative Learn-
ing application.

Chapter 15
Project Case
Study and Design

In this chapter, I will discuss the case study of the Creative Learning project. In
addition, you will be introduced to the project life cycle of the Creative Learn-

ing project.The project life cycle includes analyzing the requirements of Creative
Learning. Finally, you will create a high-level and low-level design of the Creative
Learning application.

Case Study
Creative Learning is a group of publishers located at New York. Recently, the
organization has moved into retailing the books published at the publishing
house. To start with, the organization has established bookstores at six locations
in New York. However, the organization aims at increasing the number of book-
stores in the forthcoming years. In addition, the organization is looking forward
to establishing bookstores across all major states in the United States.

To meet the competition in the retail market, the organization has decided to
monitor the sales data of all six bookstores for a few months.The management of
the organization has decided to develop an application that will track the sales
record of each bookstore on a daily basis.The analysis of the tracked data will give
the management a fair idea of the performance of each bookstore.

To develop and deploy the application, the senior managers have appointed a
development team of three people. The development team comprises the project
manager, John Frye, and two application developers, Larry Barrett and Sam Jones.
The development team has decided upon a strategy to build the application.
To understand the strategy, you first need to understand the sales process at the
bookstores.

All of the six bookstores in New York are connected to a main server over a LAN.
The main ser ver is located at the head office of Creative Learning in New York.
Whenever a book is purchased from any of the bookstores, the salesperson issues
a cash memo to the customer. A cash memo is a Word document that contains
details about the purchase made. The salesperson then sends the copy of the cash
memo to the main server over the LAN.

334 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

An operator at the head office makes an entry of each cash memo into an XML
document. At the end of the day, the data in the XML document is analyzed to
determine the sales from each bookstore. This data would then be analyzed at the
end of the month to decide the performance of the bookstores.

The development team at Creative Learning has decided to automate the entire
process. When a salesperson issues a cash memo to a customer, the salesperson
makes a copy of the cash memo in the specified directory on the main server.
Then, on the main server, the format of the cash memo is checked for accuracy.
Once the format is validated, the entry of the cash memo will be made into the
XML document.The data in the document can then be easily analyzed to see the
performance of each of the bookstores.

To carry out the entire process, the development team plans to create a Windows
application and name it the Creative Learning project.The following section dis-
cusses the stages in the life cycle of the Creative Learning project.

Project Life Cycle
You looked at the phases of a DLC (development life cycle) of a project in Chapter
7, “Project Case Study,” in the section “Case Study.” Therefore, in this chapter, I
will not discuss the entire life cycle of the project. However, I will discuss the
analysis of the organization’s requirements from the development team at Creative
Learning. In addition, I will discuss the design of the application created by the
development team based on the analysis of the organization’s requirements. You,
as a part of the development team, will analyze the requirements of Creative
Learning and will create a design for the application based on the analysis.

Analyzing Requirements
To find a solution to a customer’s problem, it is essential that you analyze the
requirements of the customer in detail.This is done in the analyzing requirements
phase of the project life cycle. After analyzing the customer’s problem in detail,
you create a plan for developing the application. This analysis of the customer’s
problem is based on the problem statement stated by senior managers and the
information gathered by the development team.

PROJECT CASE STUDY AND DESIGN Chapter 15 335

In the case of Creative Learning, the problem statement, as stated by senior man-
agers, is, “Creative Learning needs to automate the process of analyzing sales data
of each bookstore.”

Upon analyzing the problem statement, the development team defined the fol-
lowing list of tasks that Creative Learning needs to do:

◆ The organization needs to analyze the sales data of each bookstore.

◆ The organization needs to automate the data analysis process.

◆ Based on the analysis results, the organization will determine the perfor-
mance of each bookstore.

◆ Based on the performance of bookstores, the organization plans to move
ahead with its growth plans.

To provide a solution to the aforementioned problems of Creative Learning, the
development team plans to create a Windows application with the following
features:

◆ The application will receive a copy of the cash memo from a directory
on the main server at the head office of Creative Learning.

◆ The application will validate the format of the cash memo.

◆ If the format of the cash memo is incorrect, the application will create an
event log.

◆ Alternatively, if the format of the cash memo is correct, an entry for the
cash memo will be created in an XML document.

High-Level Design
Based on the plan of the Windows application, the development team created a
design of the Windows application in the high-level design phase. The design of
the Creative Learning application includes creating the interface for the Windows
form used in the application.

The Creative Learning application consists of a Windows form called Creative
Learning. Figure 15-1 shows the layout of the Creative Learning form.

336 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

To create the layout of the Creative Learning application, as shown in Figure
15-1, you need to include a tab control and two button controls.You have learned
about button controls in Chapter 8, “Windows Forms and Controls” in the sec-
tion “Types of Windows Forms Controls.”The following section discusses a Tab-
Control control in detail.

The TabControl Control
A TabControl control is a Windows forms control that you can use to create mul-
tiple tabbed pages in a window or a dialog box. For example, a tab control can be
used to display multiple-options pages in a wizard. You can use the arrow keys to
shift from one tabbed page to another. A TabControl control has a TabPages prop-
erty that you can modify to add tabbed pages to the tab control. You will learn
about adding tabbed pages to a tab control later in this chapter.

To create a tab control in Visual Studio .NET, you can drag the control from the
Windows Forms toolbox to the form. Figure 15-2 shows the TabControl control
in the Windows Forms toolbox.

PROJECT CASE STUDY AND DESIGN Chapter 15 337

FIGURE 15-1 Layout of the Creative Learning form

You can now create a tab control for your application. To create a tab control, per-
form the following steps:

1. Drag a TabControl control from the Windows Forms toolbox to the
Creative Learning form.

A blank TabControl control is added to the form. To add pages to the
tab control, you need to change the properties of the tab control.

2. Press the F4 key to display the properties of the tab control.

3. In the Properties window, click on the ellipsis button of the TabPages
property.

The TabPage Collection Editor page is displayed. This page allows you
to add tabbed pages to the control as a Collection object.

4. To add a tabbed page, click on the Add button.

A tabbed page with an index 0 is added to the Members: text box. The
properties of the tabbed page are displayed in the tabPage1 Properties:
window.

5. In the tabPage1 Properties: window, change the following properties of
the tabbed page.

◆ Text: Source Options

◆ Name: tabSource

338 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 15-2 A TabControl control in the Windows Forms toolbox

TEAMFL
Y

Team-Fly®

When you change the name of the tabbed page to tabSource, the name
of the tabPage1 Properties: window changes to tabSource Properties:
window.

6. Repeat Steps 4 and 5 to add another tabbed page to the form.

7. Name the new tabbed page tabDest, and change the Text property to
Destination Options.

You can change the order in which the tabbed pages are displayed by
clicking on either the Up or Down Arrow buttons.

Figure 15-3 shows the TabPage Collection Editor page.

8. Click on the OK button to add tabbed pages.

The tabbed pages are added, as shown in Figure 15-4. You can resize the tab con-
trol to display the tabbed pages.

PROJECT CASE STUDY AND DESIGN Chapter 15 339

FIGURE 15-3 The TabPage Collection Editor page

The tabs in the tab control do not contain an image yet. You can add images to
the tabs in the tab control by changing the ImageIndex property in the TabPage
Collection Editor page. However, to do this, you first need to add an ImageList
control to the Creative Learning form.

The ImageList Control
Visual Studio .NET provides you with an ImageList control that you can use to
add images to the controls in a Windows form. These include various controls,
such as TabControl, Button, ToolBar, TreeView control, and so on. An ImageList
control is a collection of images. You can add images to the ImageList control by
using the Images property.

However, to associate an ImageList control to a Windows Forms control,you can
change the ImageList property of the Windows Forms control. The ImageList
control is present in the Windows Forms toolbox, and to add the control to the
form, you must drag the control to the form.

To add an ImageList control to the Creative Learning form, perform the follow-
ing steps:

1. Drag an ImageList control from the Windows Forms toolbox to the
form.

340 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 15-4 The TabControl control added to the Creative Learning form

An ImageList control with the name ImageList1 is added to the
component tray. Figure 15-5 shows the ImageList control added to
the component tray of the Creative Learning form.

Until now, the ImageList control does not contain any image. To add
images to the ImageList control, you need to change the Images prop-
erty of the ImageList control. When you add images to the ImageList
control, the images are added to a Collection object of the control. To
add images to a ImageList control in Visual Studio .NET, perform the
following steps:

2. Click on the ellipsis button of the Images property.

The Image Collection Editor dialog box is displayed.

3. Click on the Add button to add an image to the Members: textbox.

You can browse for the image to add it to the ImageList control. The
image that you add is included in the System.Drawing namespace. The
index value of the first image that is added is 0. As you add more images
to the ImageList control, the index value increases. However, in the case
of Creative Learning form, you will add only one image.

4. C l i ck on the OK button to close the Image Coll e c t i on Editor dialog box .

Figure 15-6 shows the Bitmap image added to the Image Collection
Editor dialog box.

PROJECT CASE STUDY AND DESIGN Chapter 15 341

FIGURE 15-5 The ImageList control added to the component tray of the Creative Learning form

To add the image in the ImageList control to the TabControl control,
perform the following steps:

5. Click on the drop-down button of the ImageList property of the Tab-
Control control.

6. From the drop-down list, select the imageList1 option.

imageList1 is associated with the TabControl control.

However, the Bitmap image is not presently visible on the tabbed pages.
To display the image on the tabbed pages, you need to modify the prop-
erties of the tabbed pages on the TabPage Collection Editor page.

7. Click on the ellipsis button of the TabPages property of the tab control
to display the properties of the tabbed pages.

The tabSource tabbed page is selected by default.

8. Click on the drop-down button of the ImageIndex property.

9. From the drop-down list, select the 0 option.

10. Repeat Steps 8 and 9 to add an image to the tabDest tabbed page. The
images get added to the tabbed pages.

342 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 15-6 The Bitmap image added to the Image Collection Editor dialog box

Having created the tabbed pages in the tab control, you can add label controls and
text boxes to be displayed on the tabbed pages.

Adding Controls to Tabbed Pages
The tab control that you created contains two tabbed pages, Source Options and
Destination Options. You can first add controls to the Source Options page.

The Source Options page consists of a check box control, two label controls, and
two text box controls. You can add these controls to the tabSource tabbed page by
dragging the controls from the Windows Forms toolbox. Then, change the fol-
lowing properties of the controls.

Label1

◆ Name: label1

◆ Text: Source Directory

Label2

◆ Name: label3

◆ Text: After processing, move source file to:

TextBox1

◆ Name: txtSource

TextBox2

◆ Name: txtProcessedFile

PROJECT CASE STUDY AND DESIGN Chapter 15 343

You can add the same image to all tabbed pages or different images to different
tabbed pages in a tab control.

TIP

CheckBox

◆ Name: optGenerateLog

◆ Text: Generate event log for bad file format

After adding controls to the tabSource tabbed page, the page looks as shown in
Figure 15-7.

Similarly, you can add controls to the tabDest page. The tabDest page contains a
label, a text box, a list box, a group box, and two button controls. Change the fol-
lowing properties of the controls after adding them to the tabbed page.

Label

◆ Name: label2

◆ Text: Destination Directory

TextBox

◆ Name: txtDest

ListBox

◆ Name: lstEvents

344 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 15-7 The tabSource page with the controls added

GroupBox

◆ Name: groupEventLog

◆ Text: Event Log

Button1

◆ Name: btnRefresh

◆ Text: Refresh Log

Button2

◆ Name: btnViewSummary

◆ Text: View Summary

Figure 15-8 shows the controls added to the tabDest page.

Low-Level Design
After creating the design of a form in the high-level design phase, the develop-
ment team creates a detailed design of software modules.These software modules
are then used to create a detailed structure of the application. In addition to

PROJECT CASE STUDY AND DESIGN Chapter 15 345

FIGURE 15-8 The tabDest page with the controls added

creating software modules, the team decides the flow and interaction of each
module. This includes creating flowcharts for each module.

Based on the high-level design of the Creative Learning form, the development
team created the flowchart for the form, as shown in Figure 15-9.

346 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 15-9 Flowchart of the Creative Learning module

Having decided the interface and the software module, the development team
proceeds with the construction and testing of the Windows application. After the
application is tested and the errors in the application are detected and removed,
the application is deployed at the client site. I will discuss writing the code and
deploying the Creative Learning application in the next chapter.

Summary
In this chapter, you were introduced to the project case study. Based on the case
study of the project, you analyzed the requirements of Creative Learning and
learned to create a detailed high-level and low-level design of the application.You
will learn to create and deploy the application in the next chapter.

PROJECT CASE STUDY AND DESIGN Chapter 15 347

This page intentionally left blank

TEAMFL
Y

Team-Fly®

Chapter 16
Implementing
the Programming
Logic

In the preceding chapter, you looked at the design of the Creative Learning
application. This project adds the programming logic to the Creative Learning

application.

Adding the Programming Logic
to the Application

Before adding the programming logic to the Creative Learning application, you
need to understand how the application works.

1. When the Creative Learning application is run, a user needs to specify
the names of the source, destination, and processed file directories.

The application, by default, specifies the names of the source,
destination, and processed file directories as D:\Creative\Source,
D:\Creative\Destination, and D:\Creative\Processed. The user may
choose to retain the default directory structure or may change the
directory structure as required.

2. When the user adds the names of the specified directories and clicks on
the OK button, the application checks whether the entered directory
structure is valid.

3. If the user enters an invalid directory structure, the application creates an
error message in Error Provider and gives focus to the invalid directory.

4. If the user enters a valid directory structure, the application enables the
directory watcher.

5. The application then hides the Creative Learning form and displays a
notification icon in the status area of the taskbar.

6. While the application is running, it continuously checks whether the
user has added a file to the source directory.

7. When the user adds a file to the source directory, the application disables
the directory watcher and changes the notification icon in the status
area.

350 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

8. The application then validates the file format, and if the format of the
file is not correct, the application generates an error entry in Event
Viewer.

9. Alternatively, if the file format is correct, the application processes the
file. Processing of the file includes extracting data, such as Cash Memo No.
and Total amount payable from the cash memo document.

10. Once the file has been processed, the application saves the information
from the cash memo document to an XML document, Summary.XML. This
XML document is then saved in the destination directory as specified by
the user.

11. After creating the Summary.XML document, the application changes the
notification icon again and then enables the directory watcher so that the
directory watcher can check the directory for any new file.

You have seen how the application works. You can now code to the application so
that the application can be deployed at the client site. To start, add code to the
form Load() method.

Adding Code to the Form Load() Method
When the form is loaded by using the form Load() method, the default values of
the source, destination, and processed file directory are displayed in txtSource,
txtDest, and txtProcessedFile text boxes, respectively. In addition, the optGener-
ateLog check box is checked by default. When the optGenerateLog check box is
checked, any errors that occur while the application is running are logged in the
Event Viewer. However, if desired, the user may choose to uncheck the optGen-
erateLog check box.

To load the form, specify the following code to the Load() method of the Creative
Learning form.

private void frmCreative_Load(object sender, System.EventArgs e)

{

t x t S o u r c e . T e x t = ” D : \ \ C r e a t i v e \ \ S o u r c e \ \ ” ;

t x t P r o c e s s e d F i l e . T e x t = ” D : \ \ C r e a t i v e \ \ P r o c e s s e d \ \ ” ;

t x t D e s t . T e x t = ” D : \ \ C r e a t i v e \ \ D e s t i n a t i o n \ \ ” ;

o p t G e n e r a t e L o g . C h e c k e d = t r u e ;

}

IMPLEMENTING THE PROGRAMMING LOGIC Chapter 16 351

When the application is run, the Creative Learning form looks as shown in Fig-
ure 16-1 and Figure 16-2.

352 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 16-1 The tabSource page of the Creative Learning form at run time

FIGURE 16-2 The tabDest page of the Creative Learning form at run time

Adding Code to the OK Button
After entering the required information, such as the names of the source, desti-
nation, and processed file directory, the user clicks on the OK button. The appli-
cation then validates the directory structure that is specified by the user. If the
directory structure is found to be incorrect, the application creates an error mes-
sage in Error Provider and then gives the focus to the invalid directory. However,
for it to do so, you first need to add an ErrorProvider control from the Windows
Forms toolbox.

The ErrorProvider Control
The ErrorProvider control in Windows forms is used to validate data entered by
the user in a control. If the data entered by the user is incorrect, the ErrorProvider
control displays an icon adjacent to the control in which the user enters the data.
You can change the Icon property of the ErrorProvider control to specify the icon
that is displayed when an error occurs. By default, Visual Studio .NET displays
the icon as shown in Figure 16-3.

In addition, the ErrorProvider control displays an error message as a ToolTip
when the user points to the icon next to the control. You can specify the error

IMPLEMENTING THE PROGRAMMING LOGIC Chapter 16 353

FIGURE 16-3 The default icon of the ErrorProvider control

message by using the SetError() method of the ErrorProvider class. You will
learn to specify an error message by using the SetError() method later in this
chapter.

You can include an ErrorProvider control in the Creative Learning form by per-
forming the following steps:

1. Drag the ErrorProvider control from the Windows Forms toolbox to the
form.

Figure 16-4 shows an ErrorProvider control in the Windows Forms
toolbox.

The ErrorProvider control gets added to the component tray of the
form.

2. Change the Name property of the ErrorProvider control to errMessage.

After adding the ErrorProvider control to the form, you need to associ-
ate the ErrorProvider control with the control whose value is to be vali-
dated. You can do this by passing the name of the control as a parameter
to the SetError() method of the ErrorProvider class. In your project,
you need to validate the name of the source, destination, and processed
file directories specified in the txtSource, txtDest, and txtProcessedFile
text boxes, respectively.

3. To validate the names of the directories entered by the user, add the fol-
lowing code to the Click event of the OK button.

if (!Directory.Exists(txtSource.Text))

{

errMessage.SetError(txtSource,”Invalid source directory”);

t x t S o u r c e . F o c u s () ;

t a b C o n t r o l 1 . S e l e c t e d T a b = t a b S o u r c e ;

r e t u r n ;

}

e l s e

e r r M e s s a g e . S e t E r r o r (t x t S o u r c e , ” ”) ;

354 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

The preceding code uses an if loop to validate the directory structure.The if loop
uses the Exists() method of the Directory class to check whether the path of the
directory specified in the txtSource text box exists on the hard disk. If the path of
the directory specified in the txtSource text box does not exist, the ErrorProvider
control is used to display an error message.

The SetError() method is used to display an error message. This method takes
the name of the control whose value is to be validated, txtSource, and the error
message to be displayed as a ToolTip, Invalid source directory, as parameters.
The txtSource.Focus(); command is used to set the focus of the application to
the txtSource text box.Then, the SelectedTab property of the TabControl control
is used to set the tabSource tabbed page as the selected page. However, if the
directory structure specified by the user is correct, no text is displayed in the
ErrorProvider control. Figure 16-5 shows an icon next to the txtSource text box.

Similarly, you can add code to validate the directory structure in the txtDest and
txtProcessedFile text boxes.

IMPLEMENTING THE PROGRAMMING LOGIC Chapter 16 355

FIGURE 16-4 An ErrorProvider control in the Windows Forms toolbox

Another important aspect of the application is when a user specifies an invalid
directory structure, the color of the text box changes to pink. To do this, add the
following code to the KeyUp event of the txtSource text box.

private void txtSource_KeyUp(object sender, System.Windows.Forms.KeyEventArgs e)

{

if (Directory.Exists(txtSource.Text))

t x t S o u r c e . B a c k C o l o r = C o l o r . W h i t e ;

e l s e

t x t S o u r c e . B a c k C o l o r = C o l o r . P i n k ;

}

Similarly, you can add code to the txtDest and txtProcessedFile text boxes.

When the directory structure is validated, you need to enable the directory
watcher and display the notification icon in the status area. In addition, you need
to hide the Creative Learning form from the taskbar. This will enable your appli-
cation to appear minimized in the system tray. Before doing that, add a FileSys-
temWatcher component to the Creative Learning form.

356 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 16-5 An error icon next to the txtSource text box

The FileSystemWatcher Component
The FileSystemWatcher component in Visual Studio .NET is used to monitor
the contents of a directory. This implies that you can monitor the contents of a
directory by using the FileSystemWatcher component and perform custom
actions when the contents of the directory are changed. For example, you can use
the FileSystemWatcher component to find any modifications made to the con-
tent of the entire directory or one or more files in the specified directory. When a
user makes some change to the files in a specified directory, such as adding, delet-
ing, or modifying a file, the FileSystemWatcher component generates an event.
For example, when a user adds a file to the specified directory, the Created event
is generated. You will learn about the Created event in Chapter 17, “Interacting
with a Microsoft Word Document and Event Viewer.”

To add a FileSystemWatcher component to the Creative Learning form, perform
the following steps:

1. Drag a FileSystemWatcher component from the Components toolbox.

The FileSystemWatcher component gets added to the component tray.
Figure 16-6 shows the FileSystemWatcher component in the Compo-
nents toolbox.

2. Change the following properties of the FileSystemWatcher component.

◆ Name: watchDir

◆ Filter: *.doc

Specifying the value of the Filter property to *.doc restricts the watchDir
component to monitoring only Microsoft Word documents.

3. To enable the watchDir component, add the following statement to the
Click event of the OK button.

w a t c h D i r . E n a b l e R a i s i n g E v e n t s = t r u e ;

IMPLEMENTING THE PROGRAMMING LOGIC Chapter 16 357

By default, the EnableRaisingEvent property of the FileSystemWatcher component
is set to true. Therefore, as soon as the FileSystemWatcher component is enabled, it
starts monitoring the specified directory and raises an event when a change occurs.

TIP

Until now, you have not specified the path of the directory that the
watchDir component will monitor. In this case, the watchDir component
needs to monitor the source directory as entered by the user in the
txtSource text box.

4. To specify the path of the directory to the watchDir component, add the
following statement to the Click event of the OK button.

w a t c h D i r . P a t h = t x t S o u r c e . T e x t ;

After enabling the watchDir component, you need to add a notification icon to the
form that is displayed in the status area when the user runs the application. You
can do this by adding the NotifyIcon control to your form.

The NotifyIcon Control
The NotifyIcon control in Visual Studio .NET is used to denote a process run-
ning in the background as an icon in the status area. For example, when you print
a document, the printer icon is displayed in the status area of the taskbar. To spec-
ify the icon to be displayed, you need to change the Icons property of the control.

358 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 16-6 A FileSystemWatcher component in the Components toolbox

TEAMFL
Y

Team-Fly®

To add the NotifyIcon control to your form, perform the following steps:

1. Drag the NotifyIcon control from the Windows Forms toolbox to the
Creative Learning form.

A NotifyIcon control with the name notifyIcon1 gets added to the com-
ponent tray. Figure 16-7 shows the NotifyIcon control in the Windows
Forms toolbox.

2. Change the Name property of the NotifyIcon control to mnuNotify.

To display a notification icon, you need to add the icon file (Ready.ico
file) to the bin folder of your application and then create an instance of
the icon file.

3. To create an instance of the icon file, add the following statement to the
frmCreative class in the CreativeLearning namespace.

private System.Drawing.Icon m_Ready= new System.Drawing.Icon(“Ready.ICO”);

4. To display the notification icon, add the following code to the Click
event of the OK button.

i c o N o t i f y . I c o n = m _ R e a d y ;

i c o N o t i f y . V i s i b l e = t r u e ;

After you have specified the notification icon, the user does not need to
see the application. Therefore, you can hide the application from the
taskbar.

5. To hide the application, add the following code to the Click event of the
OK button.

t h i s . S h o w I n T a s k b a r = f a l s e ;

t h i s . H i d e () ;

The entire code for the OK button is as follows:

private void btnOK_Click(object sender, System.EventArgs e)

{

if (!Directory.Exists(txtSource.Text))

{

errMessage.SetError(txtSource,”Invalid source directory”);

IMPLEMENTING THE PROGRAMMING LOGIC Chapter 16 359

t x t S o u r c e . F o c u s () ;

t a b C o n t r o l 1 . S e l e c t e d T a b = t a b S o u r c e ;

r e t u r n ;

}

e l s e

e r r M e s s a g e . S e t E r r o r (t x t S o u r c e , ” ”) ;

if (!Directory.Exists(txtDest.Text))

{

errMessage.SetError(txtDest,”Invalid destination directory”);

t x t D e s t . F o c u s () ;

t a b C o n t r o l 1 . S e l e c t e d T a b = t a b D e s t ;

r e t u r n ;

}

e l s e

e r r M e s s a g e . S e t E r r o r (t x t D e s t , ” ”) ;

if (!Directory.Exists(txtProcessedFile.Text))

{

errMessage.SetError(txtProcessedFile,”Invalid processed file directory”);

t x t P r o c e s s e d F i l e . F o c u s () ;

360 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 16-7 The NotifyIcon control in the Windows Forms toolbox

t a b C o n t r o l 1 . S e l e c t e d T a b = t a b S o u r c e ;

r e t u r n ;

}

e l s e

e r r M e s s a g e . S e t E r r o r (t x t P r o c e s s e d F i l e , ” ”) ;

w a t c h D i r . P a t h = t x t S o u r c e . T e x t ;

w a t c h D i r . E n a b l e R a i s i n g E v e n t s = t r u e ;

i c o N o t i f y . I c o n = m _ R e a d y ;

i c o N o t i f y . V i s i b l e = t r u e ;

t h i s . S h o w I n T a s k b a r = f a l s e ;

t h i s . H i d e () ;

}

Visual Studio .NET also allows you to add a context menu to the NotifyIcon con-
trol.The context menu is displayed when the user right-clicks on the notification
icon in the status area of the taskbar.

The ContextMenu Control
The ContextMenu control in Visual Studio .NET allows you to create a menu
that consists of frequently used commands. The menu that is created is called a
context menu. A context menu is associated with a control in a Windows form.
The user can access the context menu by right-clicking on the control in the Win-
dows form.

To add a ContextMenu control to the NotifyIcon control, perform the following
steps:

1. Drag a ContextMenu control from the Windows Forms control to the
Creative Learning form.

A ContextMenu control with the name contextMenu1 is added to the
component tray. In addition, a context menu is added to the top of the
form.

2. Click on the text Context Menu on the top of the form to add menus to
the ContextMenu control.

A menu item gets added to the ContextMenu control. You can change
the text of the menu item by typing the text in the Type Here area.

3. Type the name of the menu item as Configure Application.

IMPLEMENTING THE PROGRAMMING LOGIC Chapter 16 361

4. Change the Name property of the menu item to mnuConfigure.

To add another menu item to the ContextMenu control, type the name
of the menu item in the Type Here area below the Configure Applica-
tion menu item.

5. Type the name of the second menu item as Exit.

6. Change the Name property of the menu item to mnuExit.

Figure 16-8 displays the ContextMenu control in the design view.

However, the menu items that you created do not contain the code so
far.

7. To make the mnuConfigure menu item functional, add the following
code to the Click event of the mnuConfigure menu item.

private void mnuConfigure_Click(object sender, System.EventArgs e)

{

i c o N o t i f y . V i s i b l e = f a l s e ;

t h i s . S h o w I n T a s k b a r = t r u e ;

t h i s . S h o w () ;

}

362 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 16-8 The ContextMenu control in the design view

When the user clicks the mnuConfigure menu item in the context
menu, the notify icon disappears and the Creative Learning form is dis-
played. In addition, the application appears in the taskbar.

8. To make the mnuExit menu item functional, add the following code to
the Click event of the mnuExit menu item.

private void menuItem3_Click(object sender, System.EventArgs e)

{

A p p l i c a t i o n . E x i t () ;

}

When the user clicks the mnuExit menu item, the application termi-
nates. In addition, the user can exit the application by clicking on the
Exit button. You will learn to add code to the Exit button later in this
chapter.

In addition to adding menu items to the ContextMenu control, you can
add code that displays the application when the user double-clicks on
the notification icon in the status area of the taskbar.

9. To display the application when the user double-clicks on the notifica-
tion icon, add the following code to the DoubleClick event of the Notify-
Icon control.

private void icoNotify_DoubleClick(object sender, System.EventArgs e)

{

i c o N o t i f y . V i s i b l e = f a l s e ;

t h i s . S h o w I n T a s k b a r = t r u e ;

t h i s . S h o w () ;

}

Adding Code to the Exit Button
Add the following code to the Click event of the Exit button. This code will
enable the application to terminate when the user clicks on the Exit button.

private void btnCancel_Click(object sender, System.EventArgs e)

{

A p p l i c a t i o n . E x i t () ;

}

IMPLEMENTING THE PROGRAMMING LOGIC Chapter 16 363

Summary
In this chapter, you added functionality to the Creative Learning form. While
adding code to the form, you learned about a few new Windows forms controls,
such as the ErrorProvider, FileSystemWatcher, NotifyIcon, and ContextMenu
controls.

364 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

Chapter 17
Interacting with a
Microsoft Word
Document and
Event Viewer

In the preceding chapter, you looked at how the Creative Learning application
works. However, the way that the Creative Learning application works also

involves accessing and processing a Microsoft Word document. In addition, the
errors generated during the processing of the Microsoft Word document are
trapped in Windows Event Viewer. Therefore, your application needs to interact
with both the Microsoft Word document and Windows Event Viewer. This pro-
ject covers the process of interacting with the Word document and Windows
Event Viewer.

Interacting with a
Microsoft Word Document

In the preceding chapter, you learned how to add a FileSystemWatcher compo-
nent to your application. This component monitors a specified directory for any
changes, such as adding or deleting a file. In addition, you changed the Filter
property of the FileSystemWatcher component to *.doc. Doing this restricts the
function of a FileSystemWatcher component to only monitoring the Word doc-
ument. Therefore, when a user adds a Word file to the source directory, the
FileSystemWatcher component generates a Created event.

The Created Event
The Created event is a public event of the FileSystemWatcher class.The FileSys-

temWatcher class generates the Created event when a new file is added to a direc-
tory specified in the FullPath property of the event.

To handle the Created event, the FileSystemWatcher class contains a delegate
FileSystemEventHandler. The FileSystemEventHandler delegate takes two para-
meters, the object that causes the event and an argument of the type FileSystem-

EventArgs that contains information about the event. This information includes
the name and path of the directory that is monitored by the FileSystemWatcher
component.

366 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

In this case, each time a new cash memo is added to the source directory, the
FileSystemWatcher component raises a Created event. Therefore, to access and
process the cash memo, you need to add programming logic to the Created event
of the FileSystemWatcher class.

Adding Code to the Created Event
When a file is added to the source directory, your application needs to process the
cash memo file.File processing involves extracting data from the cash memo, such
as Cash Memo No. and Total amount payable. This information is then written to
an XML document as a chronological summary of the sales recorded at the book-
stores of Creative Learning.

Displaying a Notification Icon with a ToolTip
in the Status Area
While the application processes one file, you need to disable the FileSys-
temWatcher component so that the component does not monitor the source
directory for that time. In addition, you can change the notification icon in the
status area of the taskbar to denote that the application is processing a file. You
can also change the text that is displayed when the user points to the notification
icon in the status area. You will now add code to the Created event to perform the
activities mentioned earlier in the chapter.

w a t c h D i r . E n a b l e R a i s i n g E v e n t s = f a l s e ;

i c o N o t i f y . I c o n = m _ I n f o ;

icoNotify.Text=”Processed: “+ e.Name;

The preceding code sets the EnableRaisingEvents property of the FileSys-
temWatcher class to false. Doing this disables the watchDir component for the
time the value of the EnableRaisingEvents property is set to true. Next, the Icon

property of the NotifyIcon control is changed to display a different icon in the sta-
tus area. However, before doing this, you need to add the Info.ico file to the bin
folder of your application and then create an instance of the Info.ico file by using
the following statement:

private System.Drawing.Icon m_Info= new System.Drawing.Icon(“Info.ICO”);

INTERACTING WITH A MICROSOFT WORD DOCUMENT Chapter 17 367

Creating an instance of the Info.ico file adds the file to the Icon class of the Sys-
tem.Drawing namespace. When the notification icon is displayed in the status area,
you can use the Text property of the notification icon to display a ToolTip. The
Text property appends the word Processed: to the name of the file that is being
processed. Figure 17-1 displays the notification icon with a ToolTip.

Extracting Data from a Word Document
Your application is now ready to process the Word document. However, to access
the Word application, you need to create an instance of the Word.Application-
Class class. After you are able to access the Word application, you can create an
instance of the Word.DocumentClass class to access the Word document. To do so,
add the following statements to the Created event of the FileSystemWatcher
component.

Word.Application wdApp= new Word.ApplicationClass();

Word.Document Doc = new Word.DocumentClass();

After creating the instance of the Word document Doc, you can use the instance
to open the document file that the user adds to the source directory. To do this,
you can use the Open() method of the Documents class. The Open() method takes
12 parameters. However, only the first parameter, which is an object containing
the file name to be opened, is essential. To pass FileName as a parameter to the
Open() method, you can create an object, filename, which stores the name of the
file and the full path of the directory where the file is stored. To create the file-
name object, use the following statement:

object filename=e.FullPath;

368 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 17-1 Notification icon with a ToolTip in the status area

The filename object is passed as a reference parameter to the Open() method.

TIP

TEAMFL
Y

Team-Fly®

Except for the first parameter, the rest of the parameters of the Open() method are
optional. Therefore, you can create an object of the instance of the Missing class
optional.

The optional object can now be passed as optional parameters to the Open()
method. To do this, use the following statements:

object optional=System.Reflection.Missing.Value;

Doc=wdApp.Documents.Open(ref filename, ref optional, ref optional,ref optional,ref

optional,ref optional,ref optional,ref optional,ref optional,ref optional,ref

optional,ref optional);

The preceding code opens the Word document present in the source directory and
stores the entire content of the Word document in the instance of the Word.Doc-
umentClass class Doc. However, in this case, you only require the information in
the Cash Memo No. and Total amount payable fields. Figure 17-2 shows a sample
cash memo document.

INTERACTING WITH A MICROSOFT WORD DOCUMENT Chapter 17 369

FIGURE 17-2 Sample cash memo document

The Missing class is a public sealed class in the System.Reflection namespace.
You cannot inherit a Missing class.

NOTE

To retrieve the required data from the cash memo document, add the following
code to the Created event:

Word.Range wdRange;

w d R a n g e = D o c . P a r a g r a p h s . I t e m (2) . R a n g e ;

string strMemo, strAmount;

int intParacount;

s t r M e m o = w d R a n g e . T e x t ;

s t r M e m o = s t r M e m o . S u b s t r i n g (1 5 , 4) ;

i n t P a r a c o u n t = D o c . P a r a g r a p h s . C o u n t ;

i n t P a r a c o u n t = i n t P a r a c o u n t - 2 ;

w d R a n g e = D o c . P a r a g r a p h s . I t e m (i n t P a r a c o u n t) . R a n g e ;

object count=”-1”;

object wdCharacter=”1”;

wdRange.MoveEnd(ref wdCharacter,ref count);

s t r A m o u n t = w d R a n g e . T e x t ;

s t r A m o u n t = s t r A m o u n t . S u b s t r i n g (2 3) ;

The preceding code creates an object of the type Range, wdRange that stores the
content of the Word document. You then use the Item property of the Paragraphs
collection to retrieve data from a specified paragraph. As shown in Figure 17-2,
Cash Memo No. is the second paragraph in the cash memo document. Therefore,
you need to retrieve the content of the second paragraph of the cash memo doc-
ument by using the Range property. The content that is retrieved is then stored in
wdRange.

The Text property of the wdRange object is used to store the text of the paragraph
in a string type variable, strMemo. Until now, the strMemo variable stores the entire
content of the second paragraph. However, to just retrieve the value of the Cash
Memo No. field, use the Substring() method. The Substring() method takes two
parameters, the starting position from where the text is retrieved and the number
of characters retrieved.

Similarly, you can store the text of the Total amount payable field in another
string type variable, strAmount. The Total amount payable field is the second last
paragraph in the cash memo document.Therefore, you need to declare an integer
variable, intParacount, that stores the number of paragraphs in a document. You
use the Count property of the Paragraphs collection to count the number of para-
graphs in the document.

370 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

You can store the data that you have retrieved from the cash memo document in
an XML document. However, before storing the data in an XML document, you
need to understand the basics of XML.

Overview of XML
XML (Extensible Markup Language) is a standard defined for W3C (World Wide
Web Consortium) that you can use to store and display data in a structured format.
The data in an XML document is displayed as plain text to provide you with a
standard interface to display data across multiple platforms. Because of this, XML
is extensively used to create applications that run on the Internet. To display data
in an XML document, you use tags. You can now write a simple XML code that
displays data in the Internet Explorer window. To create an XML document, type
the following code in a Notepad file.

<?xml version=”1.0”?>

< S t u d e n t s >

< S t u d e n t >

< StudentId> St001 </StudentId>

<LastName> Brown </LastName>

<FirstName> George </FirstName>

< / S t u d e n t >

< S t u d e n t >

< StudentId> St002 </StudentId>

<LastName> Floyd </LastName>

<FirstName> Nancy </FirstName>

< / S t u d e n t >

< S t u d e n t >

< StudentId> St003 </StudentId>

<LastName> Smith </LastName>

<FirstName> James </FirstName>

< / S t u d e n t >

< / S t u d e n t s >

In the preceding code, the first line <?xml version= “1.0”?> is an XML declara-
tion statement that is used to indicate to the browser that the document being
processed is an XML document. The tag Student is used to denote an element
that contains StudentId, LastName, and FirstName as nodes.

INTERACTING WITH A MICROSOFT WORD DOCUMENT Chapter 17 371

To view the output of the preceding code, save the Notepad file as Student.xml
and open the file in Internet Explorer. Figure 17-3 shows the Student.xml file in
Internet Explorer.

Visual Studio .NET provides you with several classes and APIs (application pro-
gramming interfaces) that you can use to display and process data in an XML doc-
ument.The following section discusses a few classes that you use to read and write
data from an XML document.

The XmlReader Class
The XmlReader class is an abstract base class in the Visual Studio .NET base class
library that allows you to access XML data. The XmlReader class lies in the Sys-
tem.Xml namespace and provides you with the ability to create a customized
reader. In addition, the XmlReader class allows you to implement the functionality
of deri ved classes such as X m l T e x t R e a d e r, X m l V a l i d a t i n g R e a d e r, and X m l-

NodeReader. The XmlReader class provides several methods and properties to access
data from XML documents.

372 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 17-3 The Student.xml file in Internet Explorer

The XmlWriter Class
The XmlWriter class is another abstract base class in the System.Xml namespace
that allows you to write data to an XML document. You can use the XmlWriter
class to create an interface for the XML documents. These XML documents are
created using streams generated by the XmlWriter class and conform to the W3C
and Namespace recommendations. The XmlWriter class implements the XmlText-
Writer class. The XmlWriter class contains several methods and classes that you
can use to write data to streams.

Displaying Data in an XML Document
Before writing the code to display data in an XML document, you should first see
a sample XML document created by the Creative Learning application. Figure
17-4 shows the sample XML document.

To display data in an XML document, you first need to create an object, xmlWrite,
of the XmlTextWriter class in the System.Xml.XmlWriter class. After creating the
xmlWrite object, you can use this object to write data to the XML document. The
following section discusses how to add code to the XML document.

INTERACTING WITH A MICROSOFT WORD DOCUMENT Chapter 17 373

FIGURE 17-4 Sample XML document

Adding Code to the XML Document
To write data to the XML document, add the following code to the Created event.

XmlTextWriter xmlWrite;

x m l W r i t e . F o r m a t t i n g = F o r m a t t i n g . I n d e n t e d ;

x m l W r i t e . W r i t e D o c T y p e (“ S a l e s ” , n u l l , n u l l , n u l l) ;

xmlWrite.WriteComment(“Summary of sales at Creative Learning”);

x m l W r i t e . W r i t e S t a r t E l e m e n t (“ S a l e s ”) ;

x m l W r i t e . W r i t e S t a r t E l e m e n t (C o n v e r t . T o S t r i n g (D a t e T i m e . T o d a y)) ;

x m l W r i t e . W r i t e E l e m e n t S t r i n g (“ M e m o ” , s t r M e m o) ;

x m l W r i t e . W r i t e E l e m e n t S t r i n g (“ A m o u n t ” , s t r A m o u n t) ;

x m l W r i t e . W r i t e E n d E l e m e n t () ;

x m l W r i t e . W r i t e E n d E l e m e n t () ;

The preceding code creates an object,xmlWrite, of the XmlTextWriter class.Then,
the code uses the WriteDocType() method of the XmlTextWriter class to write the
DOCTYPE declaration of the XML document. The WriteDocType() method
takes four parameters.The first parameter specifies the name of the DOCTYPE,
Sales, and is an essential parameter. However, the other three parameters are
optional.

The DOCTYPE Declaration
The DOCTYPE declaration is used to specify DTD (Document Type Definition)
for an XML document.DTD contains a set of rules that you can use to define the
structure and logic of XML documents. You can create a document called a DTD
document to store the set of rules for a specific XML document. The DTD docu-
ments contain rules that conform to W3C standards and are used to define the
structure and syntax of the XML documents. In addition, the DTD documents
contain the content and values allowed for an XML document as per W3C stan-
dards. The DTD document is a file with the extension .dtd.

When you create an XML document, the document is validated against the rules
specified in the DTD document. To do this, you need to associate an XML doc-
ument with a DTD document by using the DOCTYPE declaration. In addition
to the name of the document, you can specify the root element of the document.

After discussing the DOCTYPE declaration statement, I will continue with the
discussion of the code that is used to write data to the XML document. In addi-
tion to specifying a DOCTYPE for your XML document, you can add a com-

374 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

ment to the XML document. To add a comment, you can use the WriteComment()
method of the XmlTextWriter class. The WriteComment() method takes the text to
be displayed in the form of a comment as a parameter.

After specifying the DOCTYPE and a comment to the XML document, you
need to add data to the document.The data in an XML document is displayed in
the form of elements and nodes. Each element that you specify is enclosed within
tags. To specify the starting tag for an element, you use the WriteStartElement()
method. The WriteStartElement() method is a void method in the XmlTextWriter
class and is used to specify the starting tag for an element and associate the ele-
ment with the given namespace. The WriteStartElement() method takes the
name of the element as a parameter.

You can use the WriteStartElement() method to start two elements, Sales and
current date. To specify the current date, use the DateTime struct in the System
namespace. The Today property of the DateTime struct is used to retrieve the cur-
rent date. The value returned by the Today property of the DateTime struct is con-
verted to a string type value by using the ToString() method of the Convert class.

Once you have added elements to your XML document, you can add nodes to the
elements. To add nodes to the current date element, use the WriteElementString()
method XmlWrite class. When you override the WriteElementString() method in
a derived class, you can use it to create an element with the parameters that you
specify. The WriteElementString() method takes the name of the element and its
value as the parameter. You can use the WriteElementString() method to specify
Memo and Amount as nodes in the current date element.

After adding data to the element, you need to close the element tag. You can do
this by using the WriteEndElement() method. The WriteEndElement() method is a
void method in the XmlTextWriter class.

INTERACTING WITH A MICROSOFT WORD DOCUMENT Chapter 17 375

The ToString() method is used to convert a 64-bit signed integer to its equivalent
string type value represented by the System.String class in the specified base.
The ToString() method is a method in the Convert class that lies in the System
namespace.

NOTE

You have created an object of the XmlTextWriter class xmlWrite. You have also used
it to write the data to an XML document. However, until now, you have not spec-
ified the name of the XML document and the directory where the XML docu-
ment needs to be stored. To do this, add the following statement to the Created
event.The name of the file is specified as Summary.xml, and the destination direc-
tory is the directory specified in the txtDest text box.

xmlWrite= new XmlTextWriter(txtDest.Text + “Summary.xml”,null);

You can also use the I n t e n d e d enum of the S y s t e m . X m l . F o r m a t t i n g enum to form a t
the data that is displayed in the XML document. The S y s t e m . X m l . F o r m a t t i n g e n u m
is used to specify the format settings for the objects of the S y s t e m . X m l . X m l T e x t-
W r i t e r cl a s s . Using the I n t e n d e d enum enables you to display the data as per the
S y s t e m . X m l . X m l T e x t W r i t e r . I n d e n t a t i o n and S y s t e m . X m l . X m l T e x t W r i t e r . I n d e n t C h a r
s e t t i n g s . Fi g u re 17-5 shows the XML document before you format the data in the
d o c u m e n t .

376 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

You need to call the WriteEndElement() method of the XmlTextWriter class as
many times as the number of elements in your XML document.This means that call-
ing the WriteEndElement() method once will not close all the elements in the XML
document.

TIP

FIGURE 17-5 Data in the XML document without formatting

After the application writes the data to the Summary.xml document, the applica-
tion is ready to process the next document. Therefore, you need to again change
the notification icon to Ready.ico. To do this, type the following statement in the
Created event.

i c o N o t i f y . I c o n = m _ R e a d y ;

Figure 17-6 shows the Ready.ico notification icon in the status area of the taskbar.

However, while processing a document, the application might detect an error,
such as incorrect or incomplete data in the cash memo document. In such a case,
the application generates an error message in Event Log.

Displaying an Error Message in the Event Log
Event logging is a method by which the Microsoft Windows operating system
keeps track of all the important software and hardware events running on the sys-
tem. Tracking the events helps the system administrator to detect the cause of any
error that occurs on the system. You can view these software and hardware events
in Event Viewer provided by Microsoft Windows. To access Event Viewer, per-
form the following steps:

1. Point to the Settings option on the Start menu.

2. In the displayed list, click on the Control Panel option.

The Control Panel window is displayed.

3. In the Control Panel window, click on the Administrative Tools option.

The Administrative Tools window is displayed.

INTERACTING WITH A MICROSOFT WORD DOCUMENT Chapter 17 377

FIGURE 17-6 Ready.ico notification icon in the status area of the taskbar

4. In the Administrative Tools window, click on the Event Viewer option.

The Event Viewer window is displayed. Figure 17-7 displays the Event
Viewer window.

The EventLog Component
Visual Studio .NET provides you with the EventLog component to view the
events logged in Event Viewer. In addition to reading existing events, you can
write event logs to Event Viewer by using the EventLog component.The Event-
Log component allows you to connect to Microsoft Windows Event Viewer on
your local machine or on a remote machine.

You can access the EventLog component from the Components toolbox. Figure
17-8 shows the EventLog component in the Components toolbox.

378 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 17-7 The Event Viewer windowTEAMFL
Y

Team-Fly®

Adding the EventLog Component to the Form
To include the EventLog component, drag the EventLog component from the
Components toolbox to the Creative Learning form. The EventLog component
with a name eventLog1 is added to the component tray. Change the Name prop-
erty of the control to eventLog. Figure 17-9 shows the eventLog component
added to the component tray.

INTERACTING WITH A MICROSOFT WORD DOCUMENT Chapter 17 379

FIGURE 17-8 The EventLog component in the Components toolbox

FIGURE 17-9 The eventLog component added to the component tray

In addition to tracking events, Event Viewer can track the errors that are gener-
ated by the application while processing the cash memo document. When an
error occurs, you can change the notification icon to Error.ico by creating an
instance of the Error.ico file by adding the following statement to the frmCreative
class:

private System.Drawing.Icon m_Error= new System.Drawing.Icon(“Error.ICO”);

To add an error entry to the EventLog component, you need to catch any excep-
tion that is generated by the application. The exception can then be written to
Event Viewer by using the WriteEntry() method.

The WriteEntry() method is a void method of the EventLog class in the Sys-
tem.Diagnostics namespace.The WriteEntry() method is used to write a message
to Event Viewer. The message to be displayed is passed as a parameter to the
WriteEntry() method. You can now add code to the Created event that writes
error logs to Event Viewer.

catch (Exception catchException)

{

i c o N o t i f y . I c o n = m _ E r r o r ;

icoNotify.Text=”Error in “ + e.Name;

if (optGenerateLog.Checked==true)

eventLog.WriteEntry(e.Name + “: “ + catchException.Message);

}

In the preceding code, the Error.ico notification icon is displayed and a ToolTip
displaying the error message is added to the notification icon. The code then
checks whether the optGenerateLog check box is checked. If the user has selected
the check box, the error entry is written to Event Viewer. However, the user may
choose to clear the check box.This would prevent the error entry from being writ-
ten to Event Viewer.

380 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

Remember to add the Error.ico file to the bin folder of your application.

TIP

Figure 17-10 shows the Error.ico notification icon with an error message dis-
played in the status area.

Figure 17-11 displays the error entry in Event Viewer.

After writing the data to an XML document, you need to close the object of the
XmlTextWriter class by using the Close() method.In addition, you need to exit the
Word application. You can do this by using the Quit() method. You can then
instantiate the object of the Word.Application class to null so that the object can
refer to another Word document in the source directory. In addition, you need to
enable the directory watcher component to monitor the source directory.

f i n a l l y

{

x m l W r i t e . F l u s h () ;

x m l W r i t e . C l o s e () ;

INTERACTING WITH A MICROSOFT WORD DOCUMENT Chapter 17 381

FIGURE 17-10 The Error.ico notification icon with an error message

FIGURE 17-11 The error entry in Event Viewer

wdApp.Quit(ref optional, ref optional, ref optional);

w d A p p = n u l l ;

w a t c h D i r . E n a b l e R a i s i n g E v e n t s = t r u e ;

}

After the file is processed, you can move it the directory specified in the
txtProcessedFile text box. To do this, add the following code to the Created event.

t r y a g a i n :

t r y

{

F i l e . M o v e (e . F u l l P a t h , t x t P r o c e s s e d F i l e . T e x t + e . N a m e) ;

}

c a t c h

{

goto tryagain;

}

The File.Move() method call statement is enclosed in the try loop so that the
application tries to move the processed file to the processed directory until the
time the file closes and can be moved. The Move() method is used to move the
processed file to the directory specified in the txtProcessedFile text box.The path
of the source directory and destination directory are passed as parameters to the
Move() method.

The events that were generated are visible in Event Viewer. You can also create a
list box that displays the event entries that are generated in Event Viewer for your
Creative Learning application.

382 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

The Move() method is used to move a specified object from the source directory to
the destination directory. In addition, you can change the name of the object in the
destination directory by passing the new name as a parameter to the Move() method.

NOTE

Displaying Event Entries from Event Viewer
You have created a list box that will display the event entries from Event Viewer.
You can now add code to the Refresh Log button. When the user clicks on the
Refresh Log button, the event entries from Event Viewer are picked and dis-
played in the lstEvents list box. To do this, add the following code to the Click
event of the Refresh Log button.

private void btnRefresh_Click(object sender, System.EventArgs e)

{

l s t E v e n t s . I t e m s . C l e a r () ;

e v e n t L o g . L o g = ” A p p l i c a t i o n ” ;

e v e n t L o g . M a c h i n e N a m e = ” . ” ;

foreach (EventLogEntry logEntry in eventLog.Entries)

{

if (logEntry.Source==”CreativeLearning”)

{

l s t E v e n t s . I t e m s . A d d (l o g E n t r y . M e s s a g e) ;

}

}

}

The preceding code uses the Clear() method to clear the contents of the
lstEvents list box.The code then sets the Log property of the EventLog class to the
Application Log node of Event Viewer. Specifying the MachineName property of
the EventLog class to . (dot) indicates that the event log is created in the Event
Viewer of the user’s machine.

Next, the foreach loop is used to write all the event entries with Source as Cre-
ative Learning to the lstEvents list box. The Add() method of the ListBox class
adds an entry as an item to the lstEvents list box. Figure 17-12 shows the Appli-
cation Log node of Event Viewer.

INTERACTING WITH A MICROSOFT WORD DOCUMENT Chapter 17 383

Figure 17-13 displays the error logs in the lstEvents list box.

384 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 17-12 The Application Log node of Event Viewer

FIGURE 17-13 The error logs in the lstEvents list box

In addition to creating a list box to list the event entries for the Creative Learn-
ing application, you can display the contents of the Summary.xml document in a
message box.

Displaying Data from the Summary.xml Document
in a Message Box

To display the data from the Summary.xml document in a message box, you need
to read data from the XML document. To do this, create an instance of the
StreamReader class strRead. The StreamReader class is a class in the System.IO
namespace and implements the System.IO.TextReader class. The TextReader class
represents a reader that is used to read the characters in a byte stream. To create
an instance of the StreamReader class, use the following statement:

StreamReader strRead;

After creating the instance, you can use it to read the contents of the Summary.xml
document in the directory specified in the txtDest text box. To read the data from
the Summary.xml document, use the following statement:

strRead= new StreamReader(txtDest.Text+”Summary.xml”);

The data in the strRead object can then be displayed in a message box by using
the Show() method of the MessageBox class. To read the data in the Summary.xml
document, use the ReadToEnd() method of the StreamReader class that reads the
entire content of the Summary.xml document. In addition, you can include the OK
button and the Info.ico file in the message box by passing them as parameters to
the Show() method. To display a message box, type the following statement in the
Click event of the btnSummary button.

t r y

{

strRead= new StreamReader(txtDest.Text+”Summary.xml”);

M e s s a g e B o x . S h o w (s t r R e a d . R e a d T o E n d () , t x t D e s t . T e x t + ” S u m m a r y . x m l ” , M e s s a g e B o x B u t t o n s

. O K , M e s s a g e B o x I c o n . I n f o r m a t i o n) ;

s t r R e a d . C l o s e () ;

}

INTERACTING WITH A MICROSOFT WORD DOCUMENT Chapter 17 385

After displaying the message box,you need to close the object of the StreamReader
class. You can close the strRead object by using the Close() method of the Stream-
Reader class. The Close() method closes the object and releases any resources
associated with the strRead object.

Figure 17-14 shows the message box displaying the data from the Summary.xml
document.

If the application generates an exception while reading data from an XML docu-
ment, you can display the exception that is generated in another message box, as
shown in the following statement:

catch(Exception exc)

{

MessageBox.Show(“An error was returned: “ + exc.Message + “Please check the

destination folder for summary”);

}

Figure 17-15 displays the message box with an error.

386 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

FIGURE 17-14 The message box displaying the data from the Summary.xml document

FIGURE 17-15 The message box displaying an error message

You have completed writing code for the application. The following is the com-
plete code for the application.

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.IO;

using System.Diagnostics;

using System.Xml;

namespace CreativeLearning

{

public class frmCreative : System.Windows.Forms.Form

{

private System.Drawing.Icon m_Ready= new System.Drawing.Icon(“Ready.ICO”);

private System.Drawing.Icon m_Error= new System.Drawing.Icon(“Error.ICO”);

private System.Drawing.Icon m_Info= new System.Drawing.Icon(“Info.ICO”);

private System.Windows.Forms.Button btnOK;

private System.Windows.Forms.Button btnCancel;

private System.Windows.Forms.NotifyIcon icoNotify;

private System.Windows.Forms.TabControl tabControl1;

private System.Windows.Forms.TabPage tabSource;

private System.Windows.Forms.TabPage tabDest;

private System.Windows.Forms.ImageList imageList1;

private System.Windows.Forms.Label label1;

private System.Windows.Forms.TextBox txtSource;

private System.Windows.Forms.Label label3;

private System.Windows.Forms.TextBox txtProcessedFile;

private System.Windows.Forms.CheckBox optGenerateLog;

private System.Windows.Forms.ContextMenu mnuNotify;

private System.Windows.Forms.MenuItem menuItem2;

private System.Windows.Forms.MenuItem mnuConfigure;

private System.Windows.Forms.MenuItem mnuExit;

private System.IO.FileSystemWatcher watchDir;

private System.Windows.Forms.ErrorProvider errMessage;

INTERACTING WITH A MICROSOFT WORD DOCUMENT Chapter 17 387

private System.Diagnostics.EventLog eventLog;

private System.Windows.Forms.GroupBox groupEventLog;

private System.Windows.Forms.ListBox lstEvents;

private System.Windows.Forms.Button btnRefresh;

private System.Windows.Forms.TextBox txtDest;

private System.Windows.Forms.Label label2;

private System.Windows.Forms.Button btnSummary;

private System.Diagnostics.EventLog eventLog1;

private System.ComponentModel.IContainer components;

public frmCreative()

{

I n i t i a l i z e C o m p o n e n t () ;

}

protected override void Dispose(bool disposing)

{

if(disposing)

{

if (components != null)

{

c o m p o n e n t s . D i s p o s e () ;

}

}

base.Dispose(disposing);

}

static void Main()

{

Application.Run(new frmCreative());

}

private void frmCreative_Load(object sender, System.EventArgs e)

{

t x t S o u r c e . T e x t = ” D : \ \ C r e a t i v e \ \ S o u r c e \ \ ” ;

t x t P r o c e s s e d F i l e . T e x t = ” D : \ \ C r e a t i v e \ \ P r o c e s s e d \ \ ” ;

t x t D e s t . T e x t = ” D : \ \ C r e a t i v e \ \ D e s t i n a t i o n \ \ ” ;

o p t G e n e r a t e L o g . C h e c k e d = t r u e ;

}

388 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

TEAMFL
Y

Team-Fly®

private void btnOK_Click(object sender, System.EventArgs e)

{

if (!Directory.Exists(txtSource.Text))

{

errMessage.SetError(txtSource,”Invalid source directory”);

t x t S o u r c e . F o c u s () ;

t a b C o n t r o l 1 . S e l e c t e d T a b = t a b S o u r c e ;

r e t u r n ;

}

e l s e

e r r M e s s a g e . S e t E r r o r (t x t S o u r c e , ” ”) ;

if (!Directory.Exists(txtDest.Text))

{

errMessage.SetError(txtDest,”Invalid destination directory”);

t x t D e s t . F o c u s () ;

t a b C o n t r o l 1 . S e l e c t e d T a b = t a b D e s t ;

r e t u r n ;

}

e l s e

e r r M e s s a g e . S e t E r r o r (t x t D e s t , ” ”) ;

if (!Directory.Exists(txtProcessedFile.Text))

{

errMessage.SetError(txtProcessedFile,”Invalid processed file

d i r e c t o r y ”) ;

t x t P r o c e s s e d F i l e . F o c u s () ;

t a b C o n t r o l 1 . S e l e c t e d T a b = t a b S o u r c e ;

r e t u r n ;

}

e l s e

e r r M e s s a g e . S e t E r r o r (t x t P r o c e s s e d F i l e , ” ”) ;

w a t c h D i r . P a t h = t x t S o u r c e . T e x t ;

w a t c h D i r . E n a b l e R a i s i n g E v e n t s = t r u e ;

i c o N o t i f y . I c o n = m _ R e a d y ;

i c o N o t i f y . V i s i b l e = t r u e ;

t h i s . S h o w I n T a s k b a r = f a l s e ;

t h i s . H i d e () ;

}

INTERACTING WITH A MICROSOFT WORD DOCUMENT Chapter 17 389

private void txtSource_KeyUp(object sender, System.Windows.Forms.KeyEventArgs e)

{

if (Directory.Exists(txtSource.Text))

t x t S o u r c e . B a c k C o l o r = C o l o r . W h i t e ;

e l s e

t x t S o u r c e . B a c k C o l o r = C o l o r . P i n k ;

}

private void txtProcessedFile_KeyUp(object sender, System.Windows.Forms

.KeyEventArgs e)

{

if (Directory.Exists(txtProcessedFile.Text))

t x t P r o c e s s e d F i l e . B a c k C o l o r = C o l o r . W h i t e ;

e l s e

t x t P r o c e s s e d F i l e . B a c k C o l o r = C o l o r . P i n k ;

}

private void menuItem3_Click(object sender, System.EventArgs e)

{

A p p l i c a t i o n . E x i t () ;

}

private void mnuConfigure_Click(object sender, System.EventArgs e)

{

i c o N o t i f y . V i s i b l e = f a l s e ;

t h i s . S h o w I n T a s k b a r = t r u e ;

t h i s . S h o w () ;

}

private void btnCancel_Click(object sender, System.EventArgs e)

{

A p p l i c a t i o n . E x i t () ;

}

private void icoNotify_DoubleClick(object sender, System.EventArgs e)

{

i c o N o t i f y . V i s i b l e = f a l s e ;

t h i s . S h o w I n T a s k b a r = t r u e ;

390 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

t h i s . S h o w () ;

}

private void watchDir_Created(object sender, System.IO.FileSystemEventArgs e)

{

w a t c h D i r . E n a b l e R a i s i n g E v e n t s = f a l s e ;

i c o N o t i f y . I c o n = m _ I n f o ;

icoNotify.Text=”Processed: “+ e.Name;

Word.Application wdApp= new Word.ApplicationClass();

object optional=System.Reflection.Missing.Value;

XmlTextWriter xmlWrite;

xmlWrite= new XmlTextWriter(txtDest.Text + “Summary.xml”,null);

t r y

{

Word.Document Doc = new Word.DocumentClass();

object filename=e.FullPath;

Doc=wdApp.Documents.Open(ref filename, ref optional, ref optional,

ref optional,ref optional,ref optional,ref optional,ref optional,

ref optional,ref optional,ref optional,ref optional);

Word.Range wdRange;

w d R a n g e = D o c . P a r a g r a p h s . I t e m (2) . R a n g e ;

string strMemo, strAmount;

int intParacount;

s t r M e m o = w d R a n g e . T e x t ;

s t r M e m o = s t r M e m o . S u b s t r i n g (1 5 , 4) ;

i n t P a r a c o u n t = D o c . P a r a g r a p h s . C o u n t ;

i n t P a r a c o u n t = i n t P a r a c o u n t - 2 ;

w d R a n g e = D o c . P a r a g r a p h s . I t e m (i n t P a r a c o u n t) . R a n g e ;

object count=”-1”;

object wdCharacter=”1”;

wdRange.MoveEnd(ref wdCharacter,ref count);

s t r A m o u n t = w d R a n g e . T e x t ;

s t r A m o u n t = s t r A m o u n t . S u b s t r i n g (2 3) ;

x m l W r i t e . F o r m a t t i n g = F o r m a t t i n g . I n d e n t e d ;

x m l W r i t e . W r i t e D o c T y p e (“ S a l e s ” , n u l l , n u l l , n u l l) ;

xmlWrite.WriteComment(“Summary of sales at Creative Learning”);

x m l W r i t e . W r i t e S t a r t E l e m e n t (“ S a l e s ”) ;

x m l W r i t e . W r i t e S t a r t E l e m e n t (C o n v e r t . T o S t r i n g (D a t e T i m e . T o d a y)) ;

INTERACTING WITH A MICROSOFT WORD DOCUMENT Chapter 17 391

x m l W r i t e . W r i t e E l e m e n t S t r i n g (“ M e m o ” , s t r M e m o) ;

x m l W r i t e . W r i t e E l e m e n t S t r i n g (“ A m o u n t ” , s t r A m o u n t) ;

x m l W r i t e . W r i t e E n d E l e m e n t () ;

x m l W r i t e . W r i t e E n d E l e m e n t () ;

i c o N o t i f y . I c o n = m _ R e a d y ;

}

catch (Exception catchException)

{

i c o N o t i f y . I c o n = m _ E r r o r ;

icoNotify.Text=”Error in “ + e.Name;

if (optGenerateLog.Checked==true)

eventLog.WriteEntry(e.Name + “: “ + catchException.Message);

}

f i n a l l y

{

x m l W r i t e . F l u s h () ;

x m l W r i t e . C l o s e () ;

wdApp.Quit(ref optional, ref optional, ref optional);

w d A p p = n u l l ;

w a t c h D i r . E n a b l e R a i s i n g E v e n t s = t r u e ;

}

t r y a g a i n :

t r y

{

F i l e . M o v e (e . F u l l P a t h , t x t P r o c e s s e d F i l e . T e x t + e . N a m e) ;

}

c a t c h

{

goto tryagain;

}

}

392 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

private void btnRefresh_Click(object sender, System.EventArgs e)

{

l s t E v e n t s . I t e m s . C l e a r () ;

e v e n t L o g . L o g = ” A p p l i c a t i o n ” ;

e v e n t L o g . M a c h i n e N a m e = ” . ” ;

foreach (EventLogEntry logEntry in eventLog.Entries)

{

if (logEntry.Source==”CreativeLearning”)

{

l s t E v e n t s . I t e m s . A d d (l o g E n t r y . M e s s a g e) ;

}

}

}

private void btnSummary_Click(object sender, System.EventArgs e)

{

StreamReader strRead;

t r y

{

strRead= new StreamReader(txtDest.Text+”Summary.xml”);

M e s s a g e B o x . S h o w (s t r R e a d . R e a d T o E n d () , t x t D e s t . T e x t + ” S u m m a r y . x m l ” ,

M e s s a g e B o x B u t t o n s . O K , M e s s a g e B o x I c o n . I n f o r m a t i o n) ;

s t r R e a d . C l o s e () ;

}

catch(Exception exc)

{

MessageBox.Show(“An error was returned: “ + exc.Message + “Please check the

destination folder for summary”);

}

private void txtDest_KeyUp(object sender, System.Windows.Forms.KeyEventArgs e)

{

if (Directory.Exists(txtDest.Text))

t x t D e s t . B a c k C o l o r = C o l o r . W h i t e ;

e l s e

INTERACTING WITH A MICROSOFT WORD DOCUMENT Chapter 17 393

t x t D e s t . B a c k C o l o r = C o l o r . P i n k ;

}

}

}

Summary
In this chapter, you learned to add code that allows your application to interact
with a Word document and Windows Event Viewer.

394 Project 3 C R E ATING A CREATIVE LEARNING PROJECT

PARTVIP rofessional Project 4

This page intentionally left blank

Project 4
C reating an Airline
R e s e rvation Port a l

P roject 4 Overv i e w
An airline portal is an enterprise solution for managing customer and flight
information for an airline. The primary function of the portal is to manage
flight information and perform reservations and cancellations. However, the
duties in an airline also involve performing allied tasks, such as querying the
status of flights, managing accounts of executives who perform the reserva-
tions, and generating reports to interpret airline performance.

Airline reservation portals were developed as customized applications in
which the airline employees primarily managed all customer data and
processed customer requests. However, with the advent of the Internet, it is
possible to enable customers to access their data through a Web site or a
mobile device. These methods of accessing information over the Internet
through Web sites and mobile devices has become all the more easier with the
advent of ASP.NET.

In this project, I want to show you how to develop an enterprise solution for
managing the flight schedules and reservations in an airline. The project uses
a blend of the ASP.NET Web applications, ASP.NET Mobile Web Applica-
tions, and SQL Server Enterprise Management tools to provide an integrated
solution. With the help of the project, you can understand the processes
involved in managing business data and also the ability of C# to help you build
your application around the business logic.

TEAMFL
Y

Team-Fly®

Chapter 18
Project Case
Study and Design

In the preceding projects, you developed Windows Forms applications. Win-
dows Forms applications are usually run on desktop computers. For a distrib-

uted environment, ASP applications are preferred because a large audience can
access them relatively easily.

ASP.NET Web applications are an optimal solution for managing large-scale
business applications. You can either deploy these applications on an intranet and
make them accessible throughout an organization, or make them securely acces-
sible on the Internet so that Internet users can access and update information on
the Web site.

In this project, you will learn to create an ASP.NET Web application for automat-
ing the ticketing process of a fictitious airline, SkyShark Airlines. The project,
albeit customized for the requirements of SkyShark Airlines, can be easily cus-
tomized to specific business requirements.This chapter has been written to equip
you with the information necessary to begin creating the application.

In this chapter, I present the case study of the application and its design. The
design includes the databases and tables, the relationship between database tables,
and the structure of the Web forms in the application.

Airline Profile
Launched in 1999, SkyShark Airlines is a United States-based airline that has
rapidly grown in the past three years. High service standards and the exceptional
commitment of its employees have resulted in a consistent increase in the cus-
tomer base of the airline over the past years. Following this positive trend, the air-
line plans to further its profits in the next financial year with the introduction of
new aircrafts and new air routes.

Currently, the airline operates from a corporate office and a number of regional
offices. In the current setup, the regional offices interact with users somewhat
independently. The only interaction that happens between the regional and the
head offices is the daily exchange of customer transactions that have happened
during business hours.

400 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

The airline plans to add to its existing list of regional offices and enable real-time
communication between the regional offices and the corporate office. Each
regional office would be connected by an intranet. Subsequently, reservations and
cancellations will be performed at each of the regional offices,which will function
in an interlinked manner. The data will be collated on a daily basis at the corpo-
rate office for the purpose of analysis and reports.

The executives of SkyShark Airlines are categorized into three roles: business
management, network administration, and line-of-business operations. Tasks in
these roles are well defined and are equally important in the effective functioning
of the business transactions. It is important to understand the role of business
executives because the design of the application, as you will see later, depends
upon these roles.Therefore, in this section, I examine the tasks performed by each
business executive.

Role of a Business Manager
Business managers are responsible for framing policies and ensuring that the busi-
ness operations perform at the optimal level. In the context of SkyShark Airlines,
the duties of business managers are specified in the following list:

◆ Introducing new flights. Business managers are responsible for intro-
ducing new flights after analyzing the market opportunities and business
trends.

◆ Adding new user accounts. Business managers request for new user
accounts for users that need to access custom applications deployed by
the airline. When requesting for a new user account, the role of the user
is also specified. As a policy, when a new employee joins the airline,
business managers send a request for the inclusion of a new user account
to the network administrator.

◆ Analyzing flight performance. Business managers analyze the perfor-
mance of flights to determine whether or not a flight generates the
expected revenue. The results of the analysis are also used to determine if
the capacity of flights is optimally utilized.

◆ Launching frequent flier programs. Frequent flier programs are used to
enable discounts for customers who have either flown the airline more
than a predefined number of times or paid more than a predetermined
fare. To enable the frequent flier program, business managers use the

PROJECT CASE STUDY AND DESIGN Chapter 18 401

flight transaction data and determine which customers should be eligible
for the program.

Role of a Network Administrator
Network administrators are responsible for ensuring around-the-clock connectiv-
ity of the corporate office with the regional offices. You should note that network
administrators are proficient with database management tools, such as SQL
Server Enterprise Manager, because they need to use these tools frequently for
accomplishing their tasks. The duties of network administrators are given in the
following list:

◆ Maintaining Web servers and database ser vers. Network administra-
tors ensure that the latest patches and updates available for Web servers
and database servers are installed. They examine database logs and Web
server logs to ensure that there are no hardware or software-related
problems. They also analyze the network usage to determine if the pre-
sent infrastructure can sustain the demand. If it cannot, ways to scale the
hardware infrastructure are determined and implemented.

◆ Managing user accounts. Network administrators create user accounts
for users who are authorized to perform flight-related transactions. They
also ensure that the user accounts of users who resign from the organiza-
tion are disabled.

◆ Backing up and archiving databases. Network administrators back up
databases daily and also ensure that data that pertains to flights that have
departed is periodically archived.

Role of a Line-of-Business Executive
The line-of-business executives are responsible for performing the reservation and
cancellation of tickets for the airline. The responsibilities of these executives are
summarized in the following list:

◆ Reservation on flights. Line-of-business executives reserve passengers
on flights. While reserving the seats, they generate a ticket that specifies
the status and fare to the passenger.

◆ Cancellation on flights. Passengers can approach the line-of-business
executives for cancellation of their tickets. When a ticket is cancelled,
the fare amount entitled for refund to the passenger is refunded.

402 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

◆ Reporting flight status. On demand, line-of-business executives also
report the seat availability in the business and executive classes to pas-
sengers.

◆ Confirmation of reservation. Line-of-business executives can confirm
the ticket of a passenger 72 to 24 hours before the departure of the
flight. The confirmation can be carried out over telephone as well as
across the reservation counters at regional offices.

Having examined the role of business executives in SkyShark Airlines, you can
understand the requirements of the airline portal easily. These requirements are
explained in the next section.

Project Requirements
The airline portal required by the airline should be an integrated solution that
allows all business executives and customers to access data that is pertinent to their
roles. Notice the inclusion of customers that I made in the preceding sentence. By
enabling customers to manage their information, such as their ticket status and
the confirmation status of their reservation, the airline wants to reduce the work-
load of its line-of-business executives and enhance customer experience.

Based on the roles of executives discussed in the previous section, you can infer
that the responsibilities of the airline executives are well defined. The airline por-
tal uses the role of these executives as a framework for imparting its functionality.
Thus, the portal enables different sets of tasks for business managers, network
administrators, and line-of-business executives. In this section, I list all tasks that
need to be accomplished in the airline portal and also examine how these tasks
will be accomplished.

Creation and Deletion of User Accounts
The procedure of creating a new user account is given in the following list:

1. A business manager decides when a new user account needs to be cre-
ated and uses the online portal to send an e-mail message to the network
administrator. The username and the role of the user are specified in the
e-mail message.

PROJECT CASE STUDY AND DESIGN Chapter 18 403

2. Network administrators use the online portal to create a new user
account. When the new account is created, an e-mail message is trig-
gered to the user. The e-mail message specifies the username, password,
and the privacy policy of the airline (as an attachment).

3. When the user logs on for the first time, it is mandatory for the user to
change his or her password.

When a user is no longer required to use the airline portal, the network adminis-
trator deletes the user account from the airline portal.

Addition of Flight Details
After you add new user accounts, users can access the airline portal.The next step,
after adding user accounts, is to add the details of new flights so that registered
users can access the airline portal and perform reservations and cancellations.

To add new flight details, a business manager uses the following information:

◆ Flight number

◆ Origin and destination

◆ Number of seats in the business and executive class

◆ Fares for the two classes

◆ Type of aircraft

The business manager adds the information to the airline portal, and the flight is
ready to accept reservations and cancellations.

Reservations
Line-of-business executives perform reservations on flights after flight details are
added by business managers. Reservation of passengers on flights is a three-step
procedure, as specified following:

404 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

As a convention, the username selected by the network administrator for a new user
account is the same as the Windows 2000 domain account user ID for the user.

NOTE

1. The passenger supplies the flight number, the class, and the date of jour-
ney. The line-of-business executive uses this information to retrieve the
flight status. The flight status is intimated to the passenger.

2. If the passenger wishes to continue with the reservation, the line-of-
business executive accepts the name and e-mail address of the user to
perform the reservation.

3. The e-mail address of the user is optional and is used to check if the
customer qualifies for a frequent flier discount. If the customer qualifies
for a discount, the discount is deducted from the ticket fare and the
ticket is generated.

Cancellations
If a passenger wishes to cancel a ticket, the passenger approaches the line-of-busi-
ness with the ticket number. The line-of-business executive cancels the ticket and
refunds the fare to the passenger. The refund applicable to a customer is calculated
depending upon the departure time of the flight, by using the following scheme:

◆ If the user has not boarded the flight, as checked by the status in the
confirmation of reservations, and the flight has departed, 80 percent of
the fare is refunded.

◆ If the flight has not departed, 10 dollars are subtracted from the fare and
the remaining amount is refunded.

Query of Status
Passengers can query the status of their tickets as well as the status of flights. To
query the status, passengers can either contact the line-of-business executives or
query the information from the online portal of SkyShark Airlines. The online
portal for the airline presents information about flight schedules, flight status, and
ticket status. The online portal can also be used to confirm reservations. I will
describe the online portal in detail later in this project.

Confirmation of Tickets
Passengers need to confirm their tickets before the departure of the flight. This
practice is established to ensure that seats of passengers who decide not to travel

PROJECT CASE STUDY AND DESIGN Chapter 18 405

on the scheduled date are offered to the passengers in the waiting list. To confirm
their ticket, passengers can use the options given in the following list:

◆ Use the ticket number to confirm the ticket with the line-of-business
executive, either by telephone or in person.

◆ Use the ticket number and e-mail ID to confirm the reservation on the
online portal.

Creation of Reports
Business managers can generate reports to view the performance of flights. The
types of reports supported by the airline portal are specified in the following list:

◆ Monthly flight revenue. The monthly flight revenue report retrieves the
total revenue generated from all the flights in a given month. The busi-
ness manager needs to select the month and year to run the report.

◆ Flight revenue report. The flight revenue report reports the total rev-
enue generated from a flight. To run this report, the business manager
needs to specify the flight number.

◆ Customer affinity report. The customer affinity report retrieves the cus-
tomers who have flown the flight maximum number of times or who
have paid the maximum fare. To run this report, the business manager
needs to specify how many customer records the application should
retrieve. This report is used to launch the frequent fliers program.

◆ Total revenue report. The total revenue report is used to retrieve the
total revenue that has been generated by the airline since a given month
and year.

Launch of Frequent Flier Programs
Business managers are responsible for launching frequent flier programs that are
used for giving discounts to customers who frequently fly with the airline. Cus-
tomers are given discounts if they specify either of the parameters specified in the
following list:

◆ Frequency of flight. Customers who frequently fly the airline are given a
discount of a certain percent on their ticket fare. The business managers
determine the frequency of flight and the discount percentage.

406 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

◆ Total fare collected. Customers who have paid more than a certain
amount as fare are also given discounts. The amount and the discount, in
this case as well, are decided by the business manager.

The discount applicable to users is applied when they book a ticket on the airline.

Summarizing the Tasks
I have explained all the tasks that need to be performed by the airline. I will now
sort each task by role, because this information is used for creating the form
design.

The tasks of business managers are summarized as follows:

◆ Add and remove flights

◆ Request for user IDs

◆ Generate reports

◆ Manager frequent flier programs

The tasks of network administrators are summarized as follows:

◆ Add and delete user accounts

◆ Back up and archive databases

◆ Examine Web server and database logs

The tasks of line-of-business executives are summarized as follows:

◆ Create and cancel reservations

◆ Query status of flights and tickets

◆ Confirm tickets

The summarized tasks form the basis of the application. As you will see in the
next section, the database structure and the application interface follow closely
with the tasks summarized for each business executive.

Project Design
After having examined the requirements of the application in detail, you can now
proceed with designing the application. In the project design stage, you identify
the database tables and the relationships between them to finalize the database

PROJECT CASE STUDY AND DESIGN Chapter 18 407

schema. It is critical to examine all the possible requirements and incorporate
them in the database schema because reworking the design later means a lot of
wasted effort. After you finalize the database schema, you can finalize interface of
your application so that the development team has a framework on which it can
work.

In this section, I examine the database schema of the SkyShark Airlines database
and the design of the forms. The design of the forms is the interface of the final
application.

Database Design
You arrive at the structure of the database tables after creating the preliminary
structure of tables that match the application requirements and then normalizing
the structure to eliminate data redundancy. The process is explained in Chapter 7,
“Project Case Study,” in the section “Normalization.”

If you examine the business requirements stated previously, the first task per-
formed in the airline application is the creation of new user accounts. Therefore,
I begin with explaining the structure of the dtUsers table, which will be used for
storing the details of authorized users.Thereafter, I explain each table of the data-
base as it is created.

The dtUsers Table
The dtUsers table has four columns.Three columns store the username, password,
and role of the user, while the fourth one signifies whether or not the user has
changed the password after logging on the first time.The structure of the dtUsers
table is given in Table 18-1.

Table 18-1 Structure of the dtUsers Ta bl e

Column Name Data Ty p e L e n g t h A l l ow Nulls

Username char 15 0

Password char 15 0

Role char 10 0

PasswordChanged bit 1 1

408 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

TEAMFL
Y

Team-Fly®

After network administrators create user IDs in the dtUsers table, business man-
agers should specify flight details.

The dtFltDetails Table
The dtFltDetails table stores details of airline routes flown by the airline. The
structure of the dtFltDetails table is given in Table 18-2.

Table 18-2 Structure of the dtFltDetails Ta bl e

Column Name Data Ty p e L e n g t h A l l ow Nulls

FltNo char 10 0

Origin text 16 0

Destination text 16 0

Deptime datetime 8 0

Arrtime datetime 8 0

AircraftType char 10 0

SeatsExec int 4 0

SeatsBn int 4 0

FareExec int 4 0

FareBn int 4 0

LaunchDate datetime 8 0

PROJECT CASE STUDY AND DESIGN Chapter 18 409

In the preceding table structure, the value 0 for Allow Nulls implies that it is manda-
tory for you to specify a value for the field when you add a new record. Similarly, the
value 1 implies that the field is optional when you add a new record. For example, in
the dtUsers table, the PasswordChanged field, which stores a Boolean value to spec-
ify whether or not the user has changed the password, is optional.

TIP

In the structure of the dtFltDetails table given in Table 18-2, I have added a
LaunchDate field.The LaunchDate field is used to store the date on which the flight
is launched. This information will be used to display details of newly launched
flights on the Web site.

After flight details are added to the dtFltDetails table, line-of-business execu-
tives can make reservations on the airline. Therefore, I now move on to the table
that is used for storing details of reservations, dtReservations.

The dtReservations Table
The dtReservations table is the most frequently used table of the database. The
table is used to store details of passengers who have reserved a seat on the flight.
The structure of the dtReservations table is given in Table 18-3.

Table 18-3 Structure of the dtReservations Ta bl e

Column Name Data Ty p e L e n g t h A l l ow Nulls

TicketNo char 10 0

FltNo char 10 0

DateOfJourney datetime 8 0

ClassOfRes char 4 0

Name char 20 0

EMail char 50 1

Fare int 4 0

Status int 4 0

ReservedBy char 15 0

DateOfRes datetime 8 0

TicketConfirmed bit 1 1

In the dtReservations table, the TicketConfirmed and EMail fields allow null val-
ues. The TicketConfirmed field is updated when users confirm their ticket. The
e-mail address, when specified by the passenger, is used for enabling the frequent
flier program.

410 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

As a result of a large number of flights flown by the airline, there will be a large
amount of data in the dtReservations table. However, if you notice, you need to
store details of passengers related to those flights that have departed only for the
frequent flier programs. Therefore, a network administrator should ideally move
the data related to departed flights to another table, which can be used for the fre-
quent fliers program.This type of mechanism will have the following advantages:

◆ Archiving database tables easily. Data that is ready for archiving is
automatically moved to another table. Therefore, network administrators
can archive database tables easily.

◆ Improved performance. If you use a different database for storing data
pertaining to flights that have departed, queries for analyzing data will
be directed to the other database and the performance of the dtReserva-
tions table, which is critical to the online portal, will improve because
redundant transactions are eliminated.

◆ Easy access to data. For generating reports, business managers need not
access dynamic data in the dtReservations table. Instead, they can use
the other table to retrieve only the data that is pertinent to analysis.

To implement the logic that I have explained, I have created the dtDeparted-
Flights table, which follows next.

The dtDepartedFlights Table
The dtDepartedFlights table has exactly the same structure as the dtReservations
table. Therefore, I do not replicate it here. You can look the structure up in Table
18-3. After a flight has departed, data pertaining to passengers who have flown
the flight is moved to the dtDepartedFlights table. This data is used for generat-
ing reports and for enabling the frequent flier programs.

Having examined the tables related to flight details and reservations, you can
examine the table for cancellations, dtCancellations.

PROJECT CASE STUDY AND DESIGN Chapter 18 411

To ensure privacy of data, only customers who specify their e-mail address can query
their ticket status on the online portal of SkyShark Airlines.

TIP

The dtCancellations Table
The dtCancellations table stores information related to tickets that have been
cancelled. This information is required only for accountability of refunded fare
and reservations. Therefore, if a passenger whose ticket has been cancelled
informs the airline that the ticket should not have been cancelled, the details of
the executive who processed the cancellation can be traced and the reasons of the
cancellation can be determined. The structure of the dtCancellations table is
given in Table 18-4.

Table 18-4 Structure of the dtCancellations Ta bl e

Column Name Data Ty p e L e n g t h A l l ow Nulls

TicketNo char 10 0

Refund int 4 0

ProcessedBy char 15 0

CancellationDate datetime 8 0

The dtCancellations table can be archived on a timely basis to ensure that no
redundant data is stored in the database. I will now discuss the next important
table, dtFltStatus.

The dtFltStatus Table
When a passenger reserves a seat on an airline, the number of seats available for
reservation should reduce by one. Similarly, if a flight is overbooked, excess pas-
sengers should be placed in queue. The updated status of a flight should be avail-
able to passengers when they reserve their seat.

To ensure that an updated status of a flight is always available, I have used the
dtFltStatus table. As soon as the first ticket is booked on a flight, an entry for the
flight is created in the dtFltStatus table.This table is updated as reservations and
cancellations are made. The structure of the dtFltStatus table is given in Table
18-5.

412 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

Table 18-5 Structure of the dtFltStatus Table

Column Name Data Ty p e L e n g t h A l l ow Nulls

FltNo char 10 0

StatusDate datetime 8 0

StatusClass char 10 0

Status int 4 0

In the structure of the dtFltStatus table, the FltNo, StatusDate, and StatusClass

fields form a composite key. This implies that the three fields together form a
unique combination that can be used to retrieve the status of a specific class of a
flight on a specified date.

I will now examine the last two tables that are related to the frequent flier pro-
gram, dtPassengerDetails and dtFrequentFliers.

The dtPassengerDetails Table
To enable the frequent fliers program, the dtPassengerDetails table retrieves data
from the dtDepartedFlights table. The dtPassengerDetails table uses the e-mail
address of passengers to identify the number of times they have flown the airline
and the total fare collected from them in these flights.The structure of the dtPas-
sengerDetails table is given in Table 18-6.

Ta ble 18-6 Structure of the dtPassengerDetails Ta bl e

Column Name Data Ty p e L e n g t h A l l ow Nulls

EMail char 50 0

FareCollected int 4 0

TotalTimesFlown int 4 0

Whenever a new frequent flier program is launched, data from the dtPassen-
gerDetails table is used to determine how many passengers the program will
impact. This data is used for enabling discounts to passengers. The discounts are
specified in the dtFrequentFliers table.

PROJECT CASE STUDY AND DESIGN Chapter 18 413

The dtFrequentFliers Table
The dtFrequentFliers table is used to specify the discount (expressed in percent-
age) applicable to customers. Just as in the dtPassengerDetails table, the passen-
gers are identified by their e-mail address. The structure of the dtFrequentFliers
table is given in Table 18-7.

Table 18-7 Structure of the dtFrequentFliers Ta bl e

Column Name Data Ty p e L e n g t h A l l ow Nulls

EMail char 50 0

Discount int 4 0

When a passenger reserves a ticket, the e-mail address of the passenger is checked
in the dtFrequentFliers table to query if a discount is applicable to the passenger.
If a discount is applicable, the fare is computed after deducting the applicable
discount.

Database Schema
Having examined all the tables of the SkyShark Airlines database, you can infer
the database schema by creating relationships between database tables. The
schema for the SkyShark Airlines database is shown in Figure 18-1.

414 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 18-1 Database schema for SkyShark Airlines

The relationships between tables in the schema that is shown in Figure 18-1 are
explained in Table 18-8.

Ta ble 18-8 Relationships in the SkyShark Airlines Database

Relationship Ta bl e s R e l a t i o n s h i p R e m a r k s

dtUsers—dtReservations One-to-many One line-of-business executive
can perform one or more
reservations.

dtUsers—dtCancellations One-to-many One line-of-business executive
can perform one or more
cancellations.

dtFltDetails—dtReservations One-to-many Tickets on one flight can be
booked more than once in the
dtReservations table.

dtFltDetails—dtFltStatus One-to-many More than one entry for a flight
in the dtFltDetails table can
exist in the dtFltStatus table.

dtPassengerDetails—dtDepartedFlights One-to-many A passenger in the
dtPassengerDetails table could
have boarded a number of flights
in the dtDepartedFlights table.

dtPassengerDetails—dtFrequentFliers One-to-one An entry for the passenger in the
dtFrequentFliers table should
exist in the dtPassengerDetails
table.

You have examined each table of the SkyShark Airlines database and the database
schema. Next, you will examine the interface of the application—the Web Forms
that constitute the application.

Web Forms Design
As discussed in the previous sections, the Web application for SkyShark Airlines
should provide different ASP.NET Web forms for different roles. In this section,
I will show you the design of each Web form in the application.

PROJECT CASE STUDY AND DESIGN Chapter 18 415

The Login Form
The application has a single login form that allows users to log on by using their
logon name and password.The login form, Default.aspx, is shown in Figure 18-2.

The logon credentials specified by users are validated against the dtUsers table. If
the logon credentials specified by the user are valid, the role of the user is retrieved
from the dtUsers database. Next, the user is redirected to the default form for
business managers, line-of-business exe c u t i ve s , or netw o rk administra t o r s ,
depending upon the user’s role.

416 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

To create Web forms discussed in this section, refer to Chapter 20, “Designing the
Application.”

TIP

FIGURE 18-2 The login form for the Web application

Forms for Business Managers
The Web applica t i on has four forms for business managers: Ad d Fl . a s p x ,
RequestID.aspx, Reports.aspx, and FreqFl.aspx.The next sections discuss each of
these forms.

The AddFl.aspx Form
The AddFl.aspx form is used to add new flights to the airline. The information
specified by business managers in the AddFl.aspx form is stored in the dtFltDe-
tails table. The AddFl.aspx form is shown in Figure 18-3. Notice that the pre-
fix SS is added to all flight numbers by default, because these initials represent
SkyShark Airlines.

The RequestID.aspx Form
Business managers use the RequestID.aspx form to request new user IDs. The
request is sent to a network administrator by e-mail. The interface of the
RequestID.aspx form is shown in Figure 18-4.

PROJECT CASE STUDY AND DESIGN Chapter 18 417

FIGURE 18-3 Adding new flights to the airline

The Reports.aspx Form
The Reports.aspx form is used for generating reports. You can view a description
of the reports that a business manager can generate in the “Project Requirements”
section of this chapter. The Reports.aspx form is shown in Figure 18-5.

418 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 18-4 Requesting new user accounts

FIGURE 18-5 Generating reports for analysis

TEAMFL
Y

Team-Fly®

As you can see in Figure 18-5, you can select parameters for generating reports in
the Reports.aspx form. For example, in the monthly flight revenue report, busi-
ness managers can select the month and year for which the report should be gen-
erated. These parameters are internally used by the application to generate the
final report.

The FreqFl.aspx Form
The FreqFl.aspx form is used for managing the frequent fliers program.The form
is shown in Figure 18-6.

The FreqFl.aspx form provides two parameters on which you can enable the fre-
quent fliers program: the number of times that a passenger has flown the flight
and the total amount paid by passengers as fare. When a business manager enables
the frequent fliers program on these parameters, the eligible passengers are added
to the dtFrequentFliers table of the SkyShark Airlines database, which is used for
enabling discounts to the selected passengers at the time of reservation.

PROJECT CASE STUDY AND DESIGN Chapter 18 419

FIGURE 18-6 Enabling the frequent fliers program

Forms for Line-of-Business Executives
Line-of-business executives use four Web forms for their daily operations: Cre-
ateRes.aspx, CancelRes.aspx, QueryStat.aspx, and ConfirmRes.aspx. A descrip-
tion of these forms is given in this section.

The CreateRes.aspx Form
The CreateRes.aspx form is used for making reservations to flights. This is the
most elaborate of all forms in the Web application. The reservation process is
divided into three steps:

1. In Step 1, the line-of-business executive accepts the flight number, class,
and date of journey. The information is used to query the status of the
flight.

2. In Step 2, the details of the flight and the flight status are displayed to
the passenger. If the passenger wants to proceed with the reservation
after viewing the details, the line-of-business executive moves to the
third step of the reservation process.

3. In Step 3, passengers provide their name and e-mail ID. If the passenger
qualifies for the frequent flier program, the appropriate discount is
applied to the fare. Finally, the ticket for the passenger is generated.

The CreateRes.aspx form is shown in Figure 18-7.

420 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 18-7 Making reservations to flights

The CancelRes.aspx Form
The CancelRes.aspx form is used for canceling reservations. The only parameter
required on this form is the ticket number. After the line-of-business executive
specifies the ticket number and cancels the reservation, the ticket is marked as
canceled and status of the flight is updated in the dtFltStatus table.The Cancel-
Res.aspx form is shown in Figure 18-8.

The QueryStat.aspx Form
The QueryStat.aspx form is used for retrieving the status of flights and tickets.
The status of flights is queried from the dtFltStatus table by using the date, class,
and flight number. Similarly, the status of tickets is retrieved from the dtReserva-
tions table by using the ticket number. The QueryStat.aspx form is shown in Fig-
ure 18-9.

PROJECT CASE STUDY AND DESIGN Chapter 18 421

FIGURE 18-8 Canceling reservations

The ConfirmRes.aspx Form
The ConfirmRes.aspx form uses the ticket number to confirm the reservation of
a passenger before the departure of a flight. When the line-of-business executive
confirms the status of a passenger, the status is updated in the dtReservations
table. The ConfirmRes.aspx form is shown in Figure 18-10.

422 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 18-9 Querying the status of flights and tickets

FIGURE 18-10 Confirming reservations

Forms for Network Administrators
Network administrators can use the SQL Server Enterprise Manager for archiv-
ing and backing up databases. However, the SkyShark Airlines application pro-
vides two Web forms for simplifying some of the tasks of network administrators.
These forms are explained in this section.

The ManageUsers.aspx Form
The ManageUsers.aspx form is used for adding and deleting user accounts. The
details of users added or deleted are updated in the dtUsers database.

I have divided the ManageUsers.aspx form into two sections. The first section is
used for adding new users and the second one is used for deleting user accounts.
The ManageUsers.aspx form is shown in Figure 18-11.

PROJECT CASE STUDY AND DESIGN Chapter 18 423

FIGURE 18-11 Adding and deleting user accounts

The ManageUsers.aspx form is divided into two sections by using DHTML.You will
learn how to implement this functionality in Chapter 20.

TIP

The ManageDatabases.aspx Form
The ManageDatabases.aspx form is used for two tasks:

◆ Updating flight information for flights that have departed. Informa-
tion for flights that have departed needs to be moved from the dtReser-
vations table to the dtDepartedFlights table. Network administrators
can move this information by the click of a single button on the Man-
ageDatabases.aspx form.

◆ Updating customer for the frequent fliers program. Information per-
taining to the frequent fliers program needs to be retrieved from the
dtDepartedFlights table and updated in the dtPassengerDetails table.
This information can also be updated from the ManageDatabases.aspx
form.

The ManageDatabases.aspx form is shown in Figure 18-12.

Common Forms of the Application
Apart from the Default.aspx form, there are some forms that are common across
all roles in the organization. These forms are explained in the following list:

424 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 18-12 Managing databases

◆ ChangePassword.aspx. The ChangePassword.aspx form is used for
changing the password of a user. This form has a consistent interface
across all roles in the airline.

◆ Header.aspx. The Header.aspx form is used for displaying the header of
every form, which contains the banner.

◆ Logoff.aspx. The Logoff.aspx form is used for logging off a user from
the Web application. The Logoff.aspx form is shown in Figure 18-13.

Enabling Security with the Directory Structure
Whenever you create a new application, you need to secure it. This especially
holds true for ASP.NET applications because they need to be protected from
unauthorized intruders from the Internet. Security is not an issue that can be dealt
with only after applications are complete. Instead, you need to plan for the secu-
rity of the application from the conception stage.

ASP.NET enables you to implement directory-level security. Thus, you can grant
permissions to different uses for accessing forms stored in different directories.
This ability of ASP.NET is especially useful for your airline application.

PROJECT CASE STUDY AND DESIGN Chapter 18 425

FIGURE 18-13 Logging off users from the Web application

SkyShark Airlines has different roles defined for its executives. Each role has a set
of tasks defined for it. These tasks do not overlap. Therefore, your application
should not allow a line-of-business executive to add a new flight by using the
ASP.NET forms that is to be used by business managers. As a result, you need to
authenticate users to access the Web site and restrict users from accessing forms
based upon their respective roles.

To enable such a security model on your Web site, you can implement either of
the following methods:

◆ Place ASP.NET forms into different folders based upon the roles of
users who need to access these forms and use different security settings
for the folders.

◆ Programmatically manage access to ASP.NET forms of the Web appli-
cation.

In the airline application, I implement both the methods described above. Differ-
ent folders are created for forms pertaining to different roles and access to
ASP.NET forms is controlled programmatically. You can learn about restricting
access to ASP.NET forms programmatically in Chapter 25,“Securing the Appli-
cation.” However, I will examine the directory structure of the application, which
is always finalized in the early phases of the project.

In the SkyShark Airlines application, the ASP.NET forms pertaining to the three
business roles are given as follows:

◆ Business managers. AddFl.aspx, RequestID.aspx, Reports.aspx, and
FreqFl.aspx

◆ Line-of-business executives. CreateRes.aspx, CancelRes.aspx,
QueryStat.aspx, and ConfirmRes.aspx

◆ Network administrators. ManageUsers.aspx and ManageDatabases.aspx

The application root directory should therefore have three subdirectories: BM,
LOB,and NA.Each of these subdirectories will store files as per the scheme given
in the previous list. The final directory structure for the SkyShark Airlines appli-
cation is given in Figure 18-14.

426 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

Note that in the preceding directory structure, I have not shown the Images
folder, but in the final application, the Images folder is present in all subdirecto-
ries and holds figures that are used on Web pages.

Summary
The ASP.NET professional project is based upon the business transactions of a
fictitious airline, SkyShark Airlines. Executives in SkyShark Airlines can be cat-
egorized into three roles: business management, line-of-business operations, and
network administrators.

Business managers are responsible for framing policies and analyzing the perfor-
mance of the airline. Similarly, line-of-business executives are responsible for

PROJECT CASE STUDY AND DESIGN Chapter 18 427

FIGURE 18-14 Directory structure for the SkyShark Airlines application

performing reservations and cancellations, and network administrators perform
administrative tasks pertaining to managing databases and user accounts.

The airline portal for SkyShark Airlines is based upon the roles of business exec-
utives.The database of SkyShark Airlines comprises eight user-defined tables that
are associated with the interface of the portal. The interface of the portal presents
different Web forms to business executives based upon their role in the airline.

428 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

TEAMFL
Y

Team-Fly®

Chapter 19
Basics of ASP.NET
Web Applications

In the previous chapter, Chapter 18, “Project Case Study and Design,” you stud-
ied the case of SkyShark Airlines. You also saw the database schema and Web

forms that provide the interface to the application.

All the forms that you viewed in the last chapter are Web forms that are created
in ASP.NET. The Web application ASP.NET is the next version of ASP (Active
Server Pages) 3.0. However, ASP.NET is quite different from ASP because it
includes a completely revamped ASP engine and uses the CLR (common language
runtime) environment for running ASP code.

You will see in this chapter that ASP.NET simplifies Web development by allow-
ing you to separate programming logic from the HTML code that is used to dis-
play the page. ASP.NET also provides improved caching and debugging support.

You can write programming logic in ASP.NET by using Visual Basic .NET or
Visual C#. In this chapter, I will explore the basic concepts related to ASP.NET,
which will help you to start creating the SkyShark Airlines project. The subse-
quent chapters will build on the concepts covered in this chapter and help you
consolidate your learning of ASP.NET.

Visual Studio .NET provides a highly user friendly and powerful interface to sim-
plify development in ASP.NET. For example, the ASP.NET Web application and
ASP.NET Web service project templates can be conveniently used to develop
Web applications and Web services. These templates provide the Web form and
HTML controls that allow you to design a Web form without needing to write a
single line of code. Another important aspect that I will explain in this chapter is
the use of Visual Studio .NET for creating ASP.NET applications.

Getting Started with ASP.NET
ASP.NET is a server-side scripting technology that allows you to create dynamic
Web sites. ASP.NET is built upon the .NET framework. In this section, I’ll
explore the new features and the types of applications that you can create in
ASP.NET. However, before that, I’ll examine the prerequisite software package
that is required to create and run ASP.NET applications.

430 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

Prerequisites for ASP.NET Applications
ASP.NET is a component of .NET Framework SDK (Software Development Kit).
A S P. N ET can be downloaded free of cost from the Micro s o ft site at
http://msdn.microsoft.com. The software requirements to install the SDK are
specified in the following list:

◆ Windows XP Server or Windows XP Professional

◆ Windows 2000 Server or Windows 2000 Professional

◆ Windows NT 4.0 with Service Pack 6a

◆ IIS (Internet Information Server) 5.0 or a later version

In an enterprise environment, you have different development servers and deploy-
ment servers. The development servers are used to develop the applications, and
the deployment servers are the Web servers on which the application is deployed.
You need not install .NET Framework SDK on the deployment servers. Instead,
you can install .NET Framework Redistributable, which is also downloadable
from the Microsoft Web site.

New Features in ASP.NET
After having examined the prerequisites to run ASP.NET, I will examine the new
features of ASP.NET. The most important features of ASP.NET are specified in
the following list:

◆ Compiled code. One of the most prominent differences between ASP
and ASP.NET is that the code in ASP.NET is compiled while the code
in ASP 3.0 is interpreted. The compilation of code significantly
improves the performance of the Web application. It also allows early
binding and strong typing of the program code.

◆ Support for multiple programming languages. ASP.NET supports
Visual Basic .NET, Visual C#, and JScript. You can use any of these
three languages to write your code. You can also use a combination of all
three languages to develop your Web application. The development team
might code one module for the application in Visual Basic .NET and
another in Visual C# and JScript.

◆ Support for WYSIWYG (what you see is what you get) editors. Similar
to ASP 3.0, ASP.NET applications can be coded in WYSIWYG

BASICS OF ASP.NET WEB APPLICATIONS Chapter 19 431

HTML editors. In this project, the Visual Studio .NET development
platform that you will use to develop the SkyShark Airlines project is a
WYSIWYG editor.

◆ Improved caching. ASP.NET optimizes the performance of request
processing by providing extensive caching support. ASP.NET exposes a
cache API to help programmers cache their own objects. This allows
programmers to have greater control over caching of their content. The
data in ASP.NET can be cached at two levels, page and fragment. Page-
level caching enables you to cache a complete page, and fragment
caching enables the caching of only a part of a page.

◆ Extensive security. ASP.NET applications can use Windows, Forms,
and Microsoft Passport authentication mechanisms. In ASP 3.0 applica-
tions, security is configured at IIS. ASP.NET takes the security model to
the next step by allowing you to configure security at the IIS and Web
application. You can also enable directory-level security for your Web
application. I will explain ASP.NET security in detail later in this chap-
ter and in Chapter 25, “Securing the Application.”

◆ Debugging and tracing. An important task in application development
is debugging and tracing. When you build your ASP.NET application in
Visual Studio .NET, you can use the extensive debugging tools and trac-
ing methods to debug your application.

◆ Efficient state management. State management is the process of main-
taining state and page information over multiple requests for the same or
different pages. ASP.NET provides easy-to-use application and session-
state capabilities. Session and application data can be stored in user-
defined objects, which can be updated or queried from time to time.

◆ Improved data access. The ADO.NET architecture provides a reliable
and efficient mode of accessing data. Although the topic of ADO.NET
is too complicated to cover in a single chapter, I will use the ADO data
objects extensively in this project.These objects are explained as they are
used.

After having examined the features of ASP.NET, you can now examine the appli-
cations that can be created in ASP.NET.

432 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

Types of ASP.NET Applications
In ASP.NET, you can create two types of applications: Web applications and Web
services. In this section, I include a brief description of these applications.

ASP.NETWeb Applications
ASP.NET Web applications are applications that interact directly with users
through the Internet. The Web sites that you commonly browse on the Internet
are Web applications. The Web applications that are built using ASP.NET are
ASP.NET Web applications. I will explain ASP.NET Web applications in this
project in detail.

ASP.NETWeb Services
Consider a scenario where you need to consolidate the data that is available on
three data sources and display it on a Web site.The only way to display output by
using Web applications is to create different Web applications and provide links
to all applications on a Web site. However, consider that the data that you need
to access may be stored on legacy systems and the data may be relevant only when
it is consolidated and analyzed.

Implementing such a scenario by using Web applications can be a challenging
task. Here, the solution is in ASP.NET Web services. Web services expose the
functionality provided by one application to other applications. The functionality
exposed by a Web service can be implemented by other Web services or applica-
tions in a number of ways, depending upon the business requirements of Web ser-
vice clients. Therefore, a Web service that exposes a product catalog can be
displayed on one Web application as a list and on another Web application with
the custom search functionality.

Another advantage offered by Web services is that they are platform-independent.
Data is exposed by Web services in an XML format, which is the industry stan-
dard.Therefore, any device that can interpret XML can make use of the data that
is available from the Web service. I will discuss more of Web services in the next
professional project, “Project 5: Creating a Web Portal for a Bookstore.”

BASICS OF ASP.NET WEB APPLICATIONS Chapter 19 433

Exploring ASP.NET Web Applications
ASP.NET applications include Web pages that are used to interact with a user.
These pages are referred to as Web forms. When you browse an ASP.NET Web
site, you use its Web forms to retrieve and update information. You can retrieve
and update information on an ASP.NET Web site by using Web form server con-
trols.These controls help design the interface of your application and process user
data at the server.

In this section, I will explain the concept of Web forms and describe the controls
that are provided by ASP.NET.

Introducing Web Forms
Web forms are ASP.NET components that enable you to create interactive and
dynamic Web pages. Web forms also provide you with a rich set of controls that
can programmed in any .NET-compatible language, such as Visual Basic .NET
and Visual C#.

A Web form comprises two components, programming logic and form interface.
By separating the two, ASP.NET makes it easy for you to concentrate on the pro-
gramming logic of the application without worrying about how the text will be
rendered on the Web form. The two components of a Web form are explained as
follows:

◆ Visual component. The visual component of a Web form is the .aspx
file that contains the code for rendering a Web form.

◆ Programming logic. The programming logic of a Web form is the logic
used to generate the output for a Web form. The default option provided
by Visual Studio .NET is to create this file as a code-behind file. When
you create a code-behind file, the extension of the file is .aspx.cs or
.aspx.vb, depending upon whether you are coding your application in
Visual C# or Visual Basic .NET. However, you can also create this code
in a code-inline model in which the code is written in the .aspx file. This
method was used in ASP 3.0.

To create high performance Web forms, you should understand how Web forms
are processed. There are two processing methods, client-side and server-side. I
will discuss these methods in detail in this section.

434 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

Server-Side Processing
In the server-side processing method, the request from the client is passed to the
server for validation. For example, when a user needs to add details about a new
flight, the user specifies the required information on a Web form and submits the
information to the server for processing. This is an example of server-side pro-
cessing. In the SkyShark Airlines application, most of the processing needs to be
performed at the server side. Therefore, you will see that this method is used most
often in the Web forms created in the subsequent chapters of this project.

Each time a Web form is posted to the server for processing, data is processed and
the same form or another form is displayed to the user. For example, when you
specify flight details and query the database for status of a flight, the information
is retrieved and the Web form is reconstructed to display the status of the flight.

Before a Web form is displayed, the Page_Load event for the Web form is gener-
ated. All server controls are loaded for the Web form in the Page_Load event. Sim-
ilarly, when the user navigates away or closes a Web form, the Page_Unload event
is generated. In the Page_Unload event, the page is removed from the memory and
any clean-up code that might be required to free resources is executed.

This procedure has inherent performance overheads. Consider the case where you
specify a ticket number and submit the form to retrieve ticket details. All controls
will be reinstantiated each time the page is loaded. However, you need to change
the values in one or more controls. There should be a way to retain the control
state between round trips on the server. ASP.NET offers a solution to this prob-
lem.By setting the IsPostBack property of controls to true, you can retain the state
of a control between round trips. In addition, the initialization code executes only
after the IsPostBack property is set to true, which helps in averting performance
overheads.

Client-Side Processing
The client-side processing method is used to perform client-side validation. For
example, if a client needs to print a report, it needs to process the document at the

BASICS OF ASP.NET WEB APPLICATIONS Chapter 19 435

Round trips are generated when a user requests for the Web form that is displayed.

TIP

client end and not at the server end. If you use client-side validation code, the load
on your server can be considerably reduced. The performance of your application
improves. In the SkyShark Airlines application, I will use client-side processing
to print the reservation ticket that is generated for a passenger.

Web Form Server Controls
Web form server controls are used for designing the user interface of the applica-
tion and posting data to the server. Although similar to HTML controls in
appearance and operation, server controls run on the server. It is easier to program
with these controls because the methods, properties, and events exposed by these
controls are consistent and utilize the .NET Framework class library. In this sec-
tion, I will examine the server controls that are provided by ASP.NET.

Summary of Web Form Server Controls
To access Web form controls, you need to create an ASP.NET Web application.
The steps to create an ASP.NET Web application are specified in the following
list:

1. Launch Visual Studio .NET.

2. Click on File. The File menu will appear.

3. On the File menu, click on New and then click on Project. The New
Project dialog box will appear.

4. In the New Project dialog box, click on Visual C# projects in the Project
Types list.

5. Click on ASP.NET Web Application in the Templates list and specify a
name and location for the Web application in the Location text box.

6. Click on OK. A new Web application will be created.

In an ASP.NET Web application, Web form controls are available in the Toolbox.
Click the View menu and select Toolbox to open Toolbox. The Web form con-
trols are shown in Figure 19-1.

436 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

As you can see, in the Toolbox, there are different categories of controls available
for Web forms. These categories are described in Table 19-1.

Table 19-1 Types of Web Forms Contro l s

Web Forms Contro l s D e s c r i p t i o n

User controls User controls are used to create reusable Web pages. You use user
controls to create controls that are reusable across multiple Web
pages. For example, you can use a user control to create reusable
menus items, tables,toolbars, and so on.

Validation controls Validation controls are used to test the values that the user
specifies against the requirements defined by the programmer.
A validation control must be associated with another control
that accepts user input. For example, you can use a Required-
FieldValidator control to check whether the user has specified
a value for the control. You can also use RegularExpression-
Validator to check for a pattern of values that is entered by
the user.

continues

BASICS OF ASP.NET WEB APPLICATIONS Chapter 19 437

FIGURE 19-1 Web form controls in Visual Studio .NET

Table 19-1 Types of Web Forms Controls (c o n t i nu e d)

Web Forms Contro l s D e s c r i p t i o n

HTML server controls HTML server controls are used to expose an object to a server
so that the object becomes accessible to the programmers. You
can then program these controls within an ASP.NET file.

Web form controls Web form controls are used to create Web pages that have built-
in features that are more advanced than HTML Web pages. For
example, you can use label, text box, button, or other controls to
create a Web page. In addition, Web server controls include
advanced controls, such as Image, Calendar, and Table.

In this section, I will discuss Web form controls and validation controls. These
controls will be used frequently in the SkyShark Airlines application. The Web
form controls available in ASP.NET with their respective descriptions are given
in Table 19-2.

Table 19-2 Web Form Contro l s

C o n t ro l D e s c r i p t i o n

TextBox Displays a text box in which users can enter text.

Label Displays text that cannot be edited by the user. Commonly used to label
other controls on a Web form.

DropDownList Allows users to select an option from a list of available options.

ListBox Displays a list of options from which users can select multiple options.

Image Displays a clickable or nonclickable image. A clickable image can be
used to provide a hyperlink to another Web form.

AdRotator Displays a list of banners on the Web site.The list of banners can be
specified as an XML file.Each time a page is requested, banners are
retrieved from the file and displa yed sequentially.

CheckBoxList Displays a group of check boxes. For example, you can have a
CheckBoxList control to accept a user ’s preferences for a party.

438 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

TEAMFL
Y

Team-Fly®

Table 19-2 Web Form Controls (c o n t i nu e d)

C o n t ro l D e s c r i p t i o n

RadioButtonList Displays a list of radio buttons that allows users to select one option
from list of options. For example, you can use a RadioButtonList control
for gender, which displays two check boxes for Male and Female.

Calendar Displays a calendar and allows users to select dates and weeks. You can
customize the appearance of the calendar to blend it with your Web
application.

LinkButton A LinkButton control is similar to a Button control but it appears like a
hyperlink.

ImageButton Displays a button on which you can display an image.

HyperLink Used to create hyperlinks from one Web form to another.

Table Creates a table and provides several useful methods and properties to
render a table from the programming logic of the application.

Panel Creates a borderless division on the form that serves as a container for
other controls.

Repeater Control Displays information from a dataset by using a set of HTML elements
and controls.The Repeater control repeats the HTML elements for
each record in the data set.

DataList Provides extensive layout and formatting options to display information
in a table format.This control is similar to a Repeater control but offers
greater control over the format of the output.

DataGrid The DataGrid control can retrieve information from a dataset and dis -
play it directly on a form in the table format without requiring a user to
specify the structure of data in the dataset.

ASP.NET provides a number of validation controls that simplify your task of val-
idating user input. Instead of coding validation logic for each control, you can use
the validation controls to validate information specified by a user. The validation
controls of ASP.NET are summarized in Table 19-3.

BASICS OF ASP.NET WEB APPLICATIONS Chapter 19 439

Table 19-3 Validation Contro l s

C o n t ro l D e s c r i p t i o n

RequiredFieldValidator Ensures that users specify a valid value in the control with
which the RequiredFieldValidator control is associated.

CompareValidator Uses the comparison operators to validate user input with a
predefined value of another control or a database field.

RangeValidator Validates the user input to determine whether or not it is in
a predefined range for numbers, characters, or dates.

RegularExpressionValidator Matches user input with a regular expressions. For example,
it checks for predictable sequences of characters, such as
social security numbers, telephone numbers, and zip codes.

CustomValidator Checks the user’s entry by using validation logic that you
code for your application.

Working with Web Form Server Controls
Each control has a set of properties that can be used for modifying its state. You
can modify the properties of a control at design time or run time.

To modify the properties of a control at design time, follow these steps:

1. Right-click on a control and select Properties. The Properties window
for the control will appear. For example, the Properties window of the
ListBox control is shown in Figure 19-2.

2. Change the required property of the control. For example, you can
change the ID of a list box to lstMonth.

440 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

You can now modify the Items property of the list box to add months to the lst-
Month control programmatically. To change the properties of a control at run time,
you use the Code Editor window. Use the following steps to open the Code Edi-
tor window and change the properties of a control:

1. Drag a Button control from Toolbox to the form.

2. Double-click the button. The Code Editor window will open.

3. Add the following code to the Click event of the button.

private void Button1_Click(object sender, System.EventArgs e)

{

l s t M o n t h . I t e m s . A d d (“ J a n u a r y ”) ;

l s t M o n t h . I t e m s . A d d (“ F e b r u a r y ”) ;

l s t M o n t h . I t e m s . A d d (“ M a r c h ”) ;

l s t M o n t h . I t e m s . A d d (“ A p r i l ”) ;

l s t M o n t h . I t e m s . A d d (“ M a y ”) ;

l s t M o n t h . I t e m s . A d d (“ J u n e ”) ;

BASICS OF ASP.NET WEB APPLICATIONS Chapter 19 441

FIGURE 19-2 The Properties window of a control

l s t M o n t h . I t e m s . A d d (“ J u l y ”) ;

l s t M o n t h . I t e m s . A d d (“ A u g u s t ”) ;

l s t M o n t h . I t e m s . A d d (“ S e p t e m b e r ”) ;

l s t M o n t h . I t e m s . A d d (“ O c t o b e r ”) ;

l s t M o n t h . I t e m s . A d d (“ N o v e m b e r ”) ;

l s t M o n t h . I t e m s . A d d (“ D e c e m b e r ”) ;

}

After specifying the preceding code, when you run the application and click on
the button, the list box is populated with the months of the year.

Configuring ASP.NET Applications
After you create an ASP.NET application, you need to secure it. You also need to
ensure that your application can be ported to Web servers easily. Therefore, two
important features of configuring an ASP.NET application are security and
deployment. I will include a brief description of these concepts in this section.

Configuring Security for ASP.NET Applications
ASP.NET applications can be secured at IIS or at the Web application level. The
security methods employed at these two levels are described in the following list:

◆ IIS. You can configure application-level security to specify the authenti-
cation mode for a Web site or a virtual directory at IIS. You can also
configure the file access permissions for the Web site on IIS Server.

◆ ASP.NET. All ASP.NET applications include a Web.Config file that is
used for storing the application configuration. You can modify this file
for changing the authentication mode of your application, specifying a
list of users who are allowed to access your Web site, and specifying the
default login page that is displayed when an unauthenticated user
requests for a resource that requires authentication. The file-based secu-
rity mechanism provided by ASP.NET can help implement subdirectory
level security for a Web application. For example, you can implement
form-based authentication for Web forms in one folder of your applica-
tion, which is accessible to the registered users on the Web site. You can
implement Windows authentication for Web forms in another folder,
which is accessible only by corporate employees.

442 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

You will learn how to implement different security mechanisms for your Web
application in Chapter 25.

Deploying ASP.NET Applications
You can deploy ASP.NET applications by copying the files in the virtual directory
of an application to a virtual directory on the destination server. However, Visual
Studio .NET provides a more sophisticated method of deployment. Instead of
manually copying all ASP.NET files, you can use the Web Setup deployment pro-
ject in Visual Studio .NET.

The Web Setup deployment project is a project template that can be configured
to accomplish the necessary tasks to deploy a Web application. Some tasks that
you can configure using the Web Setup project template are specified in the fol-
lowing list:

◆ Check for the presence of .NET run-time files and other prerequisite
software before installing the application.

◆ Prompt the user for the name for the virtual directory in which the
application should be installed.

◆ Enforce business rules, such as acceptance of user agreements, before the
installation of the software.

◆ Create databases and add data that might be necessary for the successful
execution of your application.

It is advisable to use the Web Setup project template for deploying your
ASP.NET applications. However, another easy method to deploy your application
is to use the Copy Project feature in Visual Studio .NET. This feature copies the
source files of the application to a virtual directory that you specify. You can use
this feature only when the computer on which you want to deploy your applica-
tion is accessible on the network. It is not possible to use it to distribute your
application to customers or business partners. I will describe the steps to deploy
ASP.NET applications in Chapter 26, “Deploying the Application.”

Creating a Sample ASP.NET Application
After having examined the basic concepts of an ASP.NET application, you can
build on your knowledge by attempting a simple ASP.NET application. In this

BASICS OF ASP.NET WEB APPLICATIONS Chapter 19 443

section, I have created a simple application that queries a username and password
in a database and displays a welcome message if the user is successfully
authenticated.

Creating a New Project
The first step in creating an ASP.NET application in Visual Studio .NET is to
add a new project by using the ASP.NET Web Application template. The steps
to add a new ASP.NET Web Application were discussed in the section “Summary
of Web Form Server Controls.” Create a new project with the name SampleAp-
plication. After creating the new project, proceed to the next section, “Adding
Controls to the Project,” to add controls to the sample application.

Adding Controls to the Project
To design the user interface of the application, you need to add controls to the
application. The steps to add controls to the Web form are specified in the fol-
lowing list:

1. Click on the View menu and select Toolbox to open Toolbox.

2. Drag a Label control from Toolbox to the default form in the Web
application.

3. Change the properties of the label as given here:

◆ ID=lblCaption

◆ Text=Please log on

◆ Font

◆ Bold=True

◆ Italic=True

◆ Name=Georgia

4. Drag two label controls to the form for accepting the username and the
password. Change the Text property of these label controls to User
Name and Password, respectively.

5. Drag two TextBox controls to the form and change their ID to txtUser-
Name and txtPassword, respectively.

6. Drag a Button control to the form and change its Text property to Sub-
mit. In addition, change the ID of the button to btnSubmit.

444 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

The basic structure of the form is complete. Next, you need to add validation con-
trols to the form to validate user input before data is processed on the server. To
add validation controls to the form, follow these steps:

1. Drag a RequiredFieldValidator control to the form for validating the
User Name text box. Change the properties of the RequiredFieldValida-
tor control as mentioned in the following list:

◆ ErrorMessage=Invalid user name

◆ ControlToValidate=txtUserName

2. Drag another RequiredFieldValidator control to the form for validating
the Password text box. Change the properties of the control as men-
tioned here:

◆ ErrorMessage=Invalid password

◆ ControlToValidate=txtPassword

The interface of the form is complete. However, you can add one more Label con-
trol to display a welcome message if the user logs on successfully. Change the ID
of the label to lblMessage and clear the Text property. The complete form is
shown in Figure 19-3.

After having designed the interface of the form, you can code the functionality of
the Web application.

BASICS OF ASP.NET WEB APPLICATIONS Chapter 19 445

FIGURE 19-3 Form to accept username and password

Coding the Application
To code the functionality of the application, you need to create the database struc-
ture and use the database to validate users. In this section, I will explain the pro-
cedure for creating a database and utilizing it in the application.

Creating the Database
To validate the username and the password, I have created a database named
SampleDatabase and added a Logon table to the database. Next, I added two
records to the Logon table. To create a similar structure for your Web application,
execute the SQL script given as follows:

CREATE DATABASE SampleDatabase

G O

USE SampleDatabase

G O

CREATE TABLE Logon (

[UserName] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[Password] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL

) ON [PRIMARY]

G O

ALTER TABLE Logon WITH NOCHECK ADD

CONSTRAINT [PK_Logon] PRIMARY KEY CLUSTERED

(

[U s e r N a m e]

) ON [PRIMARY]

G O

INSERT INTO LOGON

VALUES (‘John’, ‘password’)

G O

INSERT INTO LOGON

VALUES (‘Suzan’, ‘mypassword’)

G O

Adding Functionality to the Application
ASP.NET includes data access tools that make it easier for you to interact with
databases. The SQL Server .NET data provider is used for accessing SQL Server
databases. The data provider provides three primary classes to access databases:

446 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

◆ SqlConnection. The SqlConnection class is used for creating a connection
to the database.

◆ SqlDataAdapter. The SqlDataAdapter class is used for adding, updating,
deleting, and selecting records from the database.

◆ DataSet. The DataSet class is used to cache data that is retrieved from a
database. A DataSet object comprises a number of DataTable objects that
contain data retrieved from database tables.

In addition to the three classes described here, ASP.NET provides the SqlCommand
class that can be used for executing queries on a database.

Visual Studio .NET provides data controls that correspond to the SQL Server
data provide classes described in the previous list. These controls are available on
the Data tab of the Toolbox. Follow these steps to use the data controls for access-
ing databases:

1. Drag an SqlDataAdapter control from Toolbox to the form. Data Adapter
Configuration Wizard will start.

2. On the Welcome screen, click on Next. The Choose Your Data Connec-
tion screen of the wizard will appear.

3 . On the Choose Your Data Con n e c t i on scre e n , cl i ck on New Con n e c t i on .
The Data Link Pro p e rties dialog box will appear, as shown in Fi g u re 19-4.

BASICS OF ASP.NET WEB APPLICATIONS Chapter 19 447

FIGURE 19-4 The Data Link Properties dialog box

4. In the Data Link Properties dialog box, configure the connection to the
database that you created in the previous section and click on OK. The
data connection that you created will be displayed on the Choose Your
Data Connection screen of the Data Adapter Configuration wizard.

5. Click on Next. The Choose Query Type screen will appear.

6. On the Choose Quer y Type screen, retain the default option and click
on Next. The Generate the SQL Statements screen will appear.

7. Specify the SQL Query as specified and click on Next.

Select UserName, Password from Logon where (UserName=@username)

8. On the View Wizard results screen, click on Finish to complete the
wizard.

When you complete the wizard, new SqlDataAdapter and SqlConnection con-
trols are added to your project.These controls appear in Component Designer, as
shown in Figure 19-5.

In the preceding steps, you used the Data Adapter Configuration wizard to con-
figure the SqlDataAdapter and SqlConnection controls. However, Visual Studio
.NET offers another simple mechanism to configure these controls without tra-
versing the wizard. This method is specified below:

448 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 19-5 Adding new SqlDataAdapter and SqlConnection controls to the form

TEAMFL
Y

Team-Fly®

1. Click on the View menu and select Server Explorer to open the Server
Explorer window.

2. In the Server Explorer window, navigate to the table for which you want
to configure the data adapter. For example, the path to the Logon table
is shown in Figure 19-6.

3. Press and hold the mouse button on the name of the table and drag it to
the form. Visual Studio .NET will automatically add the SqlData-
Adapter and SqlConnection controls to your form.

In the SkyShark Airlines project, I will use Server Explorer to configure the con-
nections to database tables.

After adding data controls to the Web form, you need to add a DataSet control
to the form. To add the DataSet control to the form, perform the following steps:

1. Click on the Data menu and then click on Generate Dataset. The Gen-
erate Dataset dialog box will appear, as shown in Figure 19-7.

2. Click on OK to configure a new DataSet control and add it to Compo-
nent Designer.

BASICS OF ASP.NET WEB APPLICATIONS Chapter 19 449

FIGURE 19-6 Using the Server Explorer to add data controls

You have added all the required controls to configure your application. In the last
step, add the following code for the Click event of the Submit button:

private void btnSubmit_Click(object sender, System.EventArgs e)

{

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . P a r a m e t e r s [0] . V a l u e = t x t U s e r N a m e . T e x t . T r i m () ;

sqlDataAdapter1.Fill(dataSet11, “UserDetails”);

if (dataSet11.Tables[“UserDetails”].Rows.Count==0)

{

lblMessage.Text=”Invalid user name”;

}

e l s e

{

if (dataSet11.Tables[“UserDetails”].Rows[0][1].ToString().Trim()==

t x t P a s s w o r d . T e x t . T r i m ())

lblMessage.Text=”Welcome “ + txtUserName.Text;

e l s e

lblMessage.Text=”Invalid password”;

}

s q l C o n n e c t i o n 1 . C l o s e ()

}

450 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 19-7 Adding a new DataSet control

In the preceding code, the following sequence of tasks is performed:

1. The connection to the database is opened by the Open function.

2. The value specified by the user for the username is assigned to the first
parameter of the SELECT query. The first parameter is @username.

3. The Fill method of the SqlDataAdapter class is used for executing the
select query and adding the resultant data to the data set. The Fill com-
mand accepts two parameters, the name of the data set and the name of
the DataTable in the data set in which the data should be stored.

4. If the number of rows returned by the select command is 0 as deter-
mined by the Count property of the Rows collection of a DataTable, an
error message is displayed to the user.

5. If the number of rows returned is greater than 0, the password specified
by the user is validated against the password retrieved from the database.
The password retrieved from the database is stored in the second column
of the first row of a DataSet table and can be accessed at the position
Rows[0][1].

6. If the password specified by the user matches the password retrieved
from the database, a welcome message is displayed. If the password does
not match, an error message is displayed.

After specifying the preceding code, click on Debug and then Start to run the
application. The output of the application, which is generated after you specify a
valid username and password, is shown in Figure 19-8.

BASICS OF ASP.NET WEB APPLICATIONS Chapter 19 451

The first member of a collection has the index 0.Therefore, to access the second ele-
ment, which is the password in this case, the index that needs to be used is 1.

TIP

Summary
ASP.NET is a server-side scripting language that allows you to create dynamic
Web pages. The Web pages that you create in ASP.NET are known as Web
forms. Web forms are processed on the server and can be coded in any .NET-
compatible scripting language, such as Visual C# or Visual Basic .NET.

ASP.NET provides a number of server controls and validation controls that can
be added to Web forms. Some commonly used server controls are Label,TextBox,
Button, DropDownList, ListBox, Calendar, and RadioButtonList. Validation
controls in ASP.NET help validate user input in a field before data is processed
on the server.

To make applications communicate with the database, you can use the SQL
Server .NET data provider. The three primary classes provided by this data
provider are SqlConnection, SqlDataAdapter, and DataSet. The SqlConnection class
is used for creating a connection to the database.The SqlDataAdapter class is used
for updating records in the database, and the DataSet class is used to cache the
data that is retrieved from the database.

452 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 19-8 Validating user credentials against a data source

Chapter 20
Designing
the Application

The last two chapters discussed the project case study and the basics of
ASP.NET applications. In this chapter, you will learn how to create the user

interface and the database schema of the SkyShark Airlines application. The
design of the application is based on the project case study described in Chapter
18, “Project Case Study and Design.”

The database schema is usually the first component to be finalized for an appli-
cation. Any changes in the database schema at a later stage in the development of
your application can lead to tremendous developmental overheads. Therefore, I
will first finalize the structure of the database and then proceed with the design
of forms.

Creating the Database Schema
I discussed the structure of the database schema in detail in the section “Database
Design” of Chapter 18. The schema is displayed in Figure 20-1.

454 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 20-1 Database schema for SkyShark Airlines

In this section, you will learn about the steps to create the database schema. You
can use either SQL Server Enterprise Manager or Query Analyzer to create the
database structure. If you choose SQL Server Enterprise Manager, you can use
the MMC (Microsoft Management Console) based interface to graphically design
your application. However, if you choose Query Analyzer, you need to specify
SQL (structured query language) statements to design database tables and manage
relationships.

In this section, I will examine how to create the database structure by using Query
Analyzer.

Creating Database Tables
To use Query Analyzer for creating databases, you need to open Query Analyzer
and connect to the SQL Server on which you want to create the database. The
steps to open Query Analyzer and connect to a database are given as follows:

1. Click on Start. The Start menu will appear.

2. From the Programs menu, select Programs and then select Microsoft
SQL Server.

3. From the submenu of Microsoft SQL Server, select Query Analyzer.
The SQL Query Analyzer window will open.

4. In the SQL Query Analyzer window, the Connect to SQL Server dialog
box appears by default. If it does not appear, select the Connect option
from the File menu.

5. The Connect to SQL Server dialog box is shown in Figure 20-2. In this
dialog box, select the name of the SQL Server from the SQL Server list
and specify the username and password to log on to the database.

6. Click on OK to connect to the database.

DESIGNING THE APPLICATION Chapter 20 455

After connecting to the SQL Server, you need to create the SkyShark Airlines
database before you can create the database tables. To create the SkyShark Air-
lines database, run the following SQL script in Query Analyzer:

CREATE DATABASE SkyShark

G O

USE DATABASE SkyShark

G O

In the preceding SQL statements, I have created a SkyShark database and have
changed the database context to SkyShark. All tables that I create now will be cre-
ated in the SkyShark database. I now begin creating tables in this database.

456 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 20-2 The Connect to SQL Server dialog box

While executing all SQL statements that follow in this section, ensure that the current
database is specified as SkyShark. If this is not the case, all database tables will be
created in the Master database.

CAUTION

Chapter20.qxd 3/7/03 09:48 AM Page 456

Creating the dtUsers Table
The dtUsers table is used to store the username, password, and role of all users
having access to the SkyShark Airlines application. To create the dtUsers table,
execute the SQL script given as follows:

CREATE TABLE [dbo].[dtUsers] (

[Username] [char] (15) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[Password] [char] (15) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[Role] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[PasswordChanged] [bit] NULL

) ON [PRIMARY]

G O

In the preceding statements, the dtUsers table is created and the Username, Pass-
word, Role, and Password fields are added to the table.

Creating the dtFltDetails Table
The dtFltDetails table is used to store details of all flights by SkyShark Airlines.
The script to generate the dtFltDetails table is given as follows:

CREATE TABLE [dbo].[dtFltDetails] (

[FltNo] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[Origin] [text] COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[Destination] [text] COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[Deptime] [datetime] NOT NULL ,

[Arrtime] [datetime] NOT NULL ,

[AircraftType] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,

[SeatsExec] [int] NOT NULL ,

[SeatsBn] [int] NOT NULL ,

[FareExec] [int] NOT NULL ,

[FareBn] [int] NOT NULL ,

[LaunchDate] [datetime] NOT NULL

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

G O

DESIGNING THE APPLICATION Chapter 20 457

Creating the dtReservations Table
The dtReservations table is used to reserve seats for passengers on each flight.
The SQL script that generates this table is given as follows:

CREATE TABLE [dbo].[dtReservations] (

[TicketNo] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[FltNo] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[DateOfJourney] [datetime] NOT NULL ,

[ClassOfRes] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[Name] [char] (20) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[EMail] [char] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[Fare] [int] NOT NULL ,

[Status] [int] NOT NULL ,

[ReservedBy] [char] (15) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[DateOfRes] [datetime] NOT NULL ,

[TicketConfirmed] [bit] NULL

) ON [PRIMARY]

G O

Creating the dtFltStatus Table
The dtFltStatus table stores the latest ticket availability status. The data in this
table is updated in tandem with any new record added to the dtReservations or
dtCancellations table. The script that generates the dtFltStatus table is given as
follows:

CREATE TABLE [dbo].[dtFltStatus] (

[FltNo] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[StatusDate] [datetime] NOT NULL ,

[StatusClass] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[Status] [int] NOT NULL

) ON [PRIMARY]

G O

458 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

TEAMFL
Y

Team-Fly®

Creating the dtCancellations Table
All cancellations made in the dtReservations table are recorded in the dtCancel-
lations table.The query for creating the dtCancellations table is given as follows:

CREATE TABLE [dbo].[dtCancellations] (

[TicketNo] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[Refund] [int] NOT NULL ,

[ProcessedBy] [char] (15) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[CancellationDate] [datetime] NOT NULL

) ON [PRIMARY]

G O

Creating the dtDepartedFlights Table
The dtDepartedFlights table is similar to the dtReservations table. After flight
departure, data pertaining to the flight is moved from the dtReservations table to
the dtDepartedFlights table. The script that generates the dtDepartedFlights
table is given as follows:

CREATE TABLE [dbo].[dtDepartedFlights] (

[TicketNo] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[FltNo] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[DateOfJourney] [datetime] NOT NULL ,

[ClassOfRes] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[Name] [char] (20) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[EMail] [char] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,

[Fare] [int] NOT NULL ,

[Status] [int] NOT NULL ,

[ReservedBy] [char] (10) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[DateOfRes] [datetime] NOT NULL ,

[TicketConfirmed] [bit] NULL

) ON [PRIMARY]

G O

DESIGNING THE APPLICATION Chapter 20 459

Creating the dtPassengerDetails Table
The dtPassengerDetails table is used for storing data pertaining to passengers
who have a valid e-mail address.The table is used to make discounts available for
the frequent fliers program. To create the dtPassengerDetails table, execute the
following script:

CREATE TABLE [dbo].[dtPassengerDetails] (

[EMail] [char] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[FareCollected] [int] NOT NULL ,

[TotalTimesFlown] [int] NOT NULL

) ON [PRIMARY]

G O

Creating the dtFrequentFliers Table
The dtFrequentFliers table is used to store a list of passengers eligible for the fre-
quent fliers program. The list is retrieved from the dtPassengerDetails table on
the basis of a query specified by business managers. To create the dtFrequent-
Fliers table, run the following script:

CREATE TABLE [dbo].[dtFrequentFliers] (

[EMail] [char] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[Discount] [int] NOT NULL

) ON [PRIMARY]

G O

Now that you have created all the tables, the next step is to set primary keys and
specify relationships between tables. You do that in the next section.

Managing Primary Keys and Relationships
Primary keys are used to ensure that the records in a table are unique. The pri-
mary keys for all database tables are listed in Table 20-1.

460 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

Table 20-1 P r i m a ry Key Fields in Ta bl e s

Ta ble Name P r i m a ry Key Field

dtUsers Username

dtFltDetails FltNo

dtReservations TicketNo

dtCancellations TicketNo

dtDepartedFlights TicketNo

dtPassengerDetails EMail

dtFrequentFliers EMail

To specify primary keys for tables, run the following script:

ALTER TABLE [dbo].[dtCancellations] WITH NOCHECK ADD

CONSTRAINT [PK_dtCancellation] PRIMARY KEY CLUSTERED

(

[T i c k e t N o]

) ON [PRIMARY]

G O

ALTER TABLE [dbo].[dtDepartedFlights] WITH NOCHECK ADD

CONSTRAINT [PK_dtDepartedFlights] PRIMARY KEY CLUSTERED

(

[T i c k e t N o]

) ON [PRIMARY]

G O

ALTER TABLE [dbo].[dtFltDetails] WITH NOCHECK ADD

CONSTRAINT [PK_dtFltDetails] PRIMARY KEY CLUSTERED

(

[F l t N o]

) ON [PRIMARY]

G O

ALTER TABLE [dbo].[dtFrequentFliers] WITH NOCHECK ADD

CONSTRAINT [PK_dtFrequentFlier] PRIMARY KEY CLUSTERED

(

[E M a i l]

) ON [PRIMARY]

G O

DESIGNING THE APPLICATION Chapter 20 461

ALTER TABLE [dbo].[dtPassengerDetails] WITH NOCHECK ADD

CONSTRAINT [PK_dtAllCustomers] PRIMARY KEY CLUSTERED

(

[E M a i l]

) ON [PRIMARY]

G O

ALTER TABLE [dbo].[dtReservations] WITH NOCHECK ADD

CONSTRAINT [PK_dtReservations] PRIMARY KEY CLUSTERED

(

[T i c k e t N o]

) ON [PRIMARY]

G O

ALTER TABLE [dbo].[dtUsers] WITH NOCHECK ADD

CONSTRAINT [PK_dtUsers] PRIMARY KEY CLUSTERED

(

[U s e r n a m e]

) ON [PRIMARY]

G O

After creating the tables and setting the primary keys, you need to create rela-
tionships between tables. Relationships between tables are discussed in Table 18-8
of Chapter 18. To create relationships between tables, run the following code:

ALTER TABLE [dbo].[dtCancellations] ADD

CONSTRAINT [FK_dtCancellation_dtUsers] FOREIGN KEY

(

[P r o c e s s e d B y]

) REFERENCES [dbo].[dtUsers] (

[U s e r n a m e]

)

G O

ALTER TABLE [dbo].[dtDepartedFlights] ADD

CONSTRAINT [FK_dtDepartedFlights_dtPassengerDetails] FOREIGN KEY

(

[E M a i l]

) REFERENCES [dbo].[dtPassengerDetails] (

[E M a i l]

) NOT FOR REPLICATION

462 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

G O

ALTER TABLE [dbo].[dtDepartedFlights] nocheck constraint

[F K _ d t D e p a r t e d F l i g h t s _ d t P a s s e n g e r D e t a i l s]

G O

ALTER TABLE [dbo].[dtFltStatus] ADD

CONSTRAINT [FK_dtFlightStatus_dtFltDetails] FOREIGN KEY

(

[F l t N o]

) REFERENCES [dbo].[dtFltDetails] (

[F l t N o]

)

G O

ALTER TABLE [dbo].[dtFrequentFliers] ADD

CONSTRAINT [FK_dtFrequentFlier_dtAllCustomers] FOREIGN KEY

(

[E M a i l]

) REFERENCES [dbo].[dtPassengerDetails] (

[E M a i l]

)

G O

ALTER TABLE [dbo].[dtReservations] ADD

CONSTRAINT [FK_dtReservations_dtFltDetails] FOREIGN KEY

(

[F l t N o]

) REFERENCES [dbo].[dtFltDetails] (

[F l t N o]

) ,

CONSTRAINT [FK_dtReservations_dtUsers] FOREIGN KEY

(

[R e s e r v e d B y]

) REFERENCES [dbo].[dtUsers] (

[U s e r n a m e]

)

G O

DESIGNING THE APPLICATION Chapter 20 463

Viewing the Database Schema
After you run all the preceding scripts, the database schema is ready. You can view
the structure of database tables and their relationships in Enterprise Manager. To
view the database schema, follow these steps:

1. Open SQL Server Enterprise Manager.

2. Navigate to the SkyShark database.

3. Right-click on Diagrams in SkyShark and select New Database Dia-
gram.The Create Database Diagram Wizard will appear.

4. In the Welcome screen of the wizard, click on Next. The Select Tables
to be Added screen of the wizard will appear. This screen is shown in
Figure 20-3.

5. Select all database tables that you created in the previous section and
click on Next. The Completing the Create Database Diagram Wizard
screen of the wizard will appear.

6. Click Finish to complete the wizard.

After you complete the task by using the wizard, the database schema appears.

464 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 20-3 The Select Tables to be Added screen

Designing Application Forms
The application provides different forms for users in different roles. For example,
business managers are provided with four forms: AddFl.aspx, RequestID.aspx,
Reports.aspx, and FreqFl.aspx. All forms pertaining to different roles were dis-
cussed in Chapter 18.

In this section, I explain the controls that you need to add to each Web form and
the properties of Web forms that you need to configure. After this section, all
Web forms for the application will be ready.

Standardizing the Interface of the Application
All Web forms for the SkyShark Airlines application have a standard interface,
which is derived by adding a banner to a header.htm file and including the file on
each Web page. Next, I have added a menu bar, which resembles a tab control, on
top of each Web form. To do this, I created four similar images with different tabs
selected and showing the images at the same position on each Web form. A col-
lage of these images is shown in Figure 20-4.

Now, when a user selects different screens, distinct images are displayed but give
the impression that the same screen contains several tabs.

Common Forms in the Application
There are a number of common forms used by employees at all positions in
SkyShark Airlines. In this section, I will explain the design of these forms.

DESIGNING THE APPLICATION Chapter 20 465

FIGURE 20-4 Creating a menu bar for the application

Default.aspx
The default.aspx form is the first form displayed when a user visits a Web site.
The default.aspx form is the logon form for the Web application. When users visit
the Web application, they need to log on by specifying their logon credentials in
the default.aspx form. Subsequently, depending upon the position of the user, the
user is redirected to other forms of the Web application.

You can change the form WebForm1.aspx, added to the Web application by
default, to make the form the default.aspx page. To do so, follow these steps:

1. Right-click on WebForm1.aspx in Solution Explorer and select Rename.

2. Type the name of the form as default.aspx.

3. Double-click on default.aspx to open the code-behind file in the Code
Editor window.

4. Change the name of the class to WebLogonForm.

5. Return to the design view of the default.aspx form.

6. In the design view of the form, in the @ Page directive in the first line,
change the name of the class to WebLogonForm. The new @ Page direc-
tive is given as follows:

<%@ Page language=”c#” Codebehind=”default.aspx.cs” AutoEventWireup=”false”

Inherits=”SkyShark.WebLogonForm” %>

466 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

By performing these steps, you have changed the name and the default class associ-
ated with the Web form.These steps need to be carried out for all Web forms that
you will add to the project. However, I will not repeat these steps separately for each
Web form.

NOTE

To design the default.aspx form, add controls to it and change their properties as
shown in Table 20-2.

Table 20-2 C o n t rols in the Default.aspx Form

C o n t rol Ty p e I D P ro p e rties Change d

TextBox txtUserName None

TextBox txtPassword TextMode=Password

Button btnSubmit Text=Submit

Label lblMessage ForeColor=Red
Text=""
Font:Bold=True

RequiredFieldValidator RequiredFieldValidator ControlToValidate=txtUserName
ErrorMessage=Please specify a valid
user name.

RequiredFieldValidator RequiredFieldValidator2 ControlToValidate=txtPassword
ErrorMessage=Please specify a valid
password.

In the preceding table, I have not included the details of the User Name and Pass-
word labels. You need to add these controls to the form as well. The completed
default.aspx form is shown in Figure 20-5.

DESIGNING THE APPLICATION Chapter 20 467

FIGURE 20-5 The default.aspx page

Logoff.aspx
The Logoff.aspx form is used to display the logoff page when a user logs off from
the Web site.The controls I have added to the Logoff.aspx form are summarized
in Table 20-3.

Table 20-3 C o n t rols in the Logoff.aspx Form

C o n t rol Ty p e I D P ro p e rties Change d

TextArea None None

Hyperlink HyperLink1 NavigateUrl=default.aspx

Text=Click here to logon.

468 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 20-6 The Logoff.aspx page

TextArea is an HTML control.Therefore, you need not specify any values for the
control.

TIP

The Logoff.aspx page is shown in Figure 20-6.

TEAMFL
Y

Team-Fly®

ChangePassword.aspx
The ChangePassword.aspx form is used by authenticated users to change their
passwords. The controls you need to add to the ChangePassword.aspx form are
given in Table 20-4.

Table 20-4 C o n t rols in the Change Pa s swo rd.aspx Form

C o n t rol Ty p e I D P ro p e rties Change d

Label txtUser Text=Changing Password for:

TextBox txtPassword TextMode=Password

TextBox txtConfPassword TextMode=Password

Button btnSubmit Text=Submit

RequiredFieldValidator RequiredFieldValidator1 ErrorMessage=Please specify a valid
password.

ControlToValidate=txtPassword

RequiredFieldValidator RequiredFieldValidator2 ErrorMessage=Please specify a valid
password.

ControlToValidate=txtConfPassword

CompareValidator CompareValidator1 ErrorMessage=The passwords
specified by you do not match.
Please try again.

ControlToValidate=txtConfPassword

ControlToCompare=txtPassword

In the ChangePassword.aspx form,the txtUser control is used to display the logon
name of the user who is currently logged on.This control is common to all forms
in the application. The CompareValidator1 control is used to ensure that the user
specifies identical values in the txtPassword and txtConfPassword controls. The
completed ChangePassword.aspx form is shown in Figure 20-7.

DESIGNING THE APPLICATION Chapter 20 469

Forms for Network Administrators
The SkyShark Airlines application provides two forms for business managers,
ManageUsers.aspx and ManageDatabases.aspx. The ManageUsers.aspx form is
used to add and remove user accounts, and the ManageDatabases.aspx form is
used to update databases. I will discuss the design of these two forms in this sec-
tion.

ManageUsers.aspx
The ManageUsers.aspx form is divided into two sections. One section is used to
add user accounts and the other is used to remove user accounts.The controls you
need to add to the ManageUsers.aspx form are given in Table 20-5.

470 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 20-7 The ChangePassword.aspx form

Table 20-5 C o n t rols in the Manage U s e rs.aspx Form

C o n t rol Ty p e I D P ro p e rties Change d

Label txtUser Text=Changing Password for:

HyperLink HyperLink1 NavigateUrl=ChangePassword.aspx

Text=Change Password

HyperLink HyperLink2 NavigateUrl=../Logoff.aspx

Text=Logoff

Label lblMessage Text=""

ForeColor=Red

Font:Bold=True

Button (HTML) AddUser None (HTML control)

Button (HTML) DeleteUser None (HTML control)

TextBox txtAddUserName None

TextBox txtAddPassword TextMode=Password

TextBox txtAddConfPassword TextMode=Password

ListBox lstAddRole Items=BM, NA, LOB

Button btnAddSubmit Text=Submit

TextBox txtDelUserName None

Button btnDelDelete Text=Delete

DESIGNING THE APPLICATION Chapter 20 471

In the ManageUsers.aspx form, items are added to the lstAddRole property by using
the ListItem Collection Editor. The ListItem Collection Editor is invoked when you click
on the ellipsis button in the Items property.

TIP

After you add the controls specified in Table 20-5, the design of the Man-
ageUsers.aspx form is complete and is shown in Figure 20-8.

ManageDatabases.aspx
The ManageDatabases.aspx form includes two Button controls used for moving
information pertaining to flight departure from the dtReservations table to the
dtDepartedFlights table and from the dtDepartedFlights table to the dtPassen-
gerDetails table. Apart from the first four controls consistent in all forms and
mentioned in Table 20-5, I have added two Button controls to the form. These
controls are described in Table 20-6.

472 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 20-8 The ManageUsers.aspx form

Table 20-6 C o n t rols in the ManageDatabases.aspx Form

C o n t rol Ty p e I D P ro p e rties Change d

Button btnArchive Text=Archive information pertaining
to flights that have departed.

BackColor=Silver

BorderColor=Blue

Font:Name=Bookman Old Style

Button btnUpdate Text=Update customer information
for the frequent fliers program.

BackColor=Silver

BorderColor=Blue

Font:Name=Bookman Old Style

Forms for Business Managers
SkyShark Airlines provides four forms for business managers: AddFl.aspx,
RequestID.aspx, Reports.aspx, and FreqFl.aspx.The design of these forms is dis-
cussed in this section.

AddFl.aspx
The AddFl.aspx form is used to add details of any new flights introduced by
SkyShark Airlines. The design of the AddFl.aspx form is straightforward. Apart
from including the first four controls mentioned in Table 20-5, I have added text
boxes and validation controls for the flight number, departure time and place,
arrival time and destination, aircraft type, number of seats in the executive and
business classes, and the fares of the executive and business class fields. I have also
added two buttons for submitting and canceling the form. The design of the
AddFl.aspx form is shown in Figure 20-9.

DESIGNING THE APPLICATION Chapter 20 473

RequestID.aspx
The RequestID.aspx form is used by business managers to request for new user
IDs. The controls in the RequestID.aspx form are listed in Table 20-7.

Table 20-7 C o n t rols in the RequestID.aspx Form

C o n t rol Ty p e I D P ro p e rties Change d

TextBox txtUserID None

RequiredFieldValidator RequiredFieldValidator1 ErrorMessage=Please specify a valid
user name.

ControlToValidate=txtUserID

ListBox lstRole Items=Admin,BM, NA

Button btnSubmit Text=Submit Mail

BackColor=Silver

BorderColor=Blue

The RequestID.aspx form is shown in Figure 20-10.

474 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 20-9 The AddFl.aspx form

Reports.aspx
The Reports.aspx form is used to generate reports. The form uses a DataGrid
control to display reports corresponding to the type of report selected by the busi-
ness manager. You can assign a DataView control to the DataGrid control so that
data can be formatted and displayed in the form. A DataView control, in turn,
retrieves data from a DataSet control. You will learn about using the DataGrid
control in Chapter 21, “Implementing the Business Logic.”

The controls you need to add to the Reports.aspx page are listed in Table 20-8.

DESIGNING THE APPLICATION Chapter 20 475

FIGURE 20-10 The RequestID.aspx form

Table 20-8 C o n t rols in the Reports.aspx Form

C o n t rol Ty p e I D P ro p e rties Change d

Label Label1 Text=Select a report:

Label Label2 Text=Generate a flight usage report
for all flights flown by the airline.

Label Label3 Generate a customer affinity report
for top 100 customers

Label Label4 Generate a total revenue report from
the month

Buttons (3) Button1, 2, 3 Text=Generate

BackColor=Silver

BorderColor=Blue

ListBox lstMonth Items=1, 2, 3, 4, 5, 6, 7,8, 9, 10, 11,
12

ListBox lstYear Items=2002, 2003, 2004, 2005

DataGrid DataGrid1 BorderColor=#8080FF

Font:Name=Bookman Old Style

BorderStyle=Inset

BorderWidth=2px

The completed Reports.aspx form is shown in Figure 20-11.

476 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FreqFl.aspx
The FreqFl.aspx form is used to make the frequent fliers program available to pas-
sengers. The form is similar to the Reports.aspx form.The FreqFl.aspx form uses
the DataGrid control to list users entitled to the frequent fliers program. The
design of the FreqFl.aspx form is shown in Figure 20-12.

DESIGNING THE APPLICATION Chapter 20 477

FIGURE 20-11 The Reports.aspx form

FIGURE 20-12 The FreqFl.aspx form

Forms for Line-of-Business Executives
Line-of-business executives use the SkyShark Airlines application to manage
reservations and answer queries pertaining to flight status. The application pro-
vides four forms for line-of-business executives.These forms are described in this
section.

CreateRes.aspx
The CreateRes.aspx form is used to make reservations. Making flight reservations
is a three-step procedure. In the first step, the line-of-business executive enquires
about flight information from the passenger. Next, the flight information is used
to find out the fare and status of the flight, and these details are communicated to
the passenger. Finally, the name and e-mail address of the passenger are used to
make the reservation. The controls added to the CreateRes.aspx form are sum-
marized in Table 20-9.

Table 20-9 C o n t rols in the CreateRes.aspx Form

C o n t rol Ty p e I D P ro p e rties Change d

Label Label3 Text=Step 1: Specify ticket details

Font:Name=Microsoft Sans Serif

BorderStyle=Inset

TextBox txtFltNo None

ListBox lstClass Items=Executive, Business

Calendar Cal1 BackColor=White

BorderColor=Black

BorderStyle=Double

Border=2px

DayNameFormat=FirstTwoLetter

Button btnNext BackColor=Silver

BorderColor=Blue

Font:Name=Microsoft Sans Serif

Text=Next

478 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

TEAMFL
Y

Team-Fly®

Table 20-9 C o n t rols in the CreateRes.aspx Form (c o n t i nu e d)

C o n t rol Ty p e I D P ro p e rties Change d

Label Label4 Text=Step 2: Confirm flight status
and fare with the customer

Font:Name=Microsoft Sans Serif

BorderStyle=Inset

TextBox(6) txtTNo, txtFare, TextBox controls for ticket number,
txtStatus, txtOrg, fare, status, origin of flight,
txtDest, and txtDepTime destination of flight, and departure

time.

Enabled=False

Label Label5 Text=Step 3: Confirm booking

Font:Name=Microsoft Sans Serif

BorderStyle=Inset

TextBox txtName None

TextBox txtEMail None

Button btnCreate BackColor=Silver

BorderColor=Blue

Font:Name=Microsoft Sans Serif

Text=Create Reservation

Button btnCancel BackColor=Silver

BorderColor=Blue

Font:Name=Microsoft Sans Serif

Text=Cancel

The completed CreateRes.aspx form is shown in Figure 20-13.

DESIGNING THE APPLICATION Chapter 20 479

CancelRes.aspx
The CancelRes.aspx page is used to cancel reservations. The form uses the ticket
number specified by the customer to cancel the reservation. Apart from the stan-
dard controls included on every page, I have included three controls in the Can-
celRes.aspx form.These controls are listed as follows:

◆ txtTNo. The txtTNo control is used to accept the ticket number to be
cancelled.

◆ RequiredFieldValidator1. The RequiredFieldValidator1 control is used
to ensure that the user specifies a valid value in the txtTNo field.

◆ btnCancel. The btnCancel control is used to cancel reservations.

QueryStat.aspx
The QueryStat.aspx form is used to enquire about the status of flights and tick-
ets. The first section of the form, which is used to find out the status of flight
arrival and departure, uses the same controls that are used in Step1 of the Cre-
ateRes.aspx form.The next section, which provides information about the confir-
mation status of passenger tickets, is similar to the CancelRes.aspx form. The
completed QueryStat.aspx form, which will help you design your form, is dis-
played in Figure 20-14.

480 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 20-13 The CreateRes.aspx form

ConfirmRes.aspx
The ConfirmRes.aspx form is used to confirm reservations before flight depar-
ture. Just as with the CancelRes.aspx form, the ConfirmRes.aspx form uses the
ticket number to confirm a reservation.

Summary
This chapter discussed how to design an application for an airline portal.The first
step to design the application is to create the database schema by using either
SQL Server Enterprise Manager or Query Analyzer.

The next step is to design the Web forms of the application by using the list of
controls specified against each form of the application. Then, you change the
default name and classes associated with each Web form. Finally, you update the
changed class name in the @ Page directive of the Web form so that the applica-
tion can identify the classes associated with each Web form. The design of your
application is now ready.

DESIGNING THE APPLICATION Chapter 20 481

FIGURE 20-14 The QueryStat.aspx form

This page intentionally left blank

Chapter 21
Implementing the
Business Logic

In the last chapter, you designed the forms for the SkyShark Airlines application.
In this chapter, you will implement the business logic for running the applica-

tion and fulfilling the business requirements of SkyShark Airlines that were dis-
cussed in Chapter 18, “Project Case Study and Design.”

Coding the Logon and Logoff
Functionality

The logon and logoff functionality of the Web application is implemented by the
use of Session variables. To log on to the Web site, the user supplies the logon
name and password on the default.aspx page. After the user has been successfully
authenticated, the username and the role of the user are stored in session variables.
These values are used for identifying the user on each page of the Web applica-
tion. When the user decides to log off, the Session variables for the user are
cleared and the user is no longer able to browse the Web site.

484 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

You can also authenticate users by using the ASP.NET authentication mechanism.
This mechanism is discussed in Chapter 25, “Securing the Application.”

TIP

The next sections will implement the functionality described previously in the
default.aspx and Logoff.aspx forms.

The Default.aspx Form
The default.aspx form uses the dtUsers table to authenticate users. Before you
write the code for the default.aspx form, drag the dtUsers table from Server
Explorer to the design view of the form. Visual Studio .NET automatically con-
figures SqlDataAdapter and SqlConnection controls for the form. You can read a

description of these controls in Chapter 19, “Basics of ASP.NET Web Applica-
tions,” in the section “Coding the Application.”

After you add SqlDataAdapter and SqlConnection controls to the form, you can
generate a dataset for the form. To generate the dataset, follow these steps:

1. Click anywhere on the form.

2. Click on the Data menu and select Generate Dataset.The Generate
Dataset dialog box will appear.

3. In the Generate Dataset dialog box, click on the New option and click
on OK.

4. A new DataSet control is added to your project.

All the three data controls are visible in Component Designer in the Design view
of the form, as you can see in Figure 21-1.

A DataAdapter control has a default set of queries associated with it for selecting,
inserting, updating, and deleting data from the SQL Ser ver table with which the
DataAdapter control is associated.These queries are specified by the SelectCom-
mand, InsertCommand, UpdateCommand, and DeleteCommand properties of
the DataAdapter control.

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 485

FIGURE 21-1 Data controls appear in Component Designer

If required, you can change the default queries associated with the DataAdapter
control. For example, the default SelectCommand associated with the sql-
DataAdapter1 control, which you added to the form for the dtUsers table, is
SELECT Username, Password, Role, PasswordChanged FROM dtUsers. This quer y
returns all the records from the dtUsers table.

However, to validate a single user, you need not retrieve all the records from the
dtUsers table. Therefore, you can modify the SelectCommand property to
SELECT Username, Password, Role, PasswordChanged FROM dtUsers WHERE

(UserName=@username). The modified query accepts the @username parameter at
run time and retrieves the record from the table that has the same username as
specified by the user.

After you add and configure data controls for the default.aspx form, double-click
on Submit to write the code for the Click event of the form.

The code for the Click event of the Submit button is logically divided into three
parts:

1. Retrieve data from the dtUsers table. The username and password spec-
ified by the user are used to retrieve the details of the user from the
dtUsers table. To retrieve data, you can use the Fill method of the sql-
DataAdapter1 control.The Fill method runs the SELECT query associ-
ated with the control and updates data into the dataset that is passed to
the method as a parameter. The code for retrieving data from the data-
base is given as follows:

string username, password;

int datarows;

u s e r n a m e = t x t U s e r N a m e . T e x t . T r i m () ;

p a s s w o r d = t x t P a s s w o r d . T e x t . T r i m () ;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . P a r a m e t e r s [“ @ U s e r N a m e ”] . V a l u e = u s e r n a m e ;

d a t a r o w s = s q l D a t a A d a p t e r 1 . F i l l (d a t a S e t 1 1 , ” U s e r D e t a i l s ”) ;

s q l C o n n e c t i o n 1 . C l o s e () ;

2. Check username and password supplied by the user. If the username
specified by the user matches with any record in the database, then the
data inserted into the dataset will have at least one row in it. The num-
ber of records retrieved from the database can be ascertained by checking
the return value of the Fill method described previously. If no rows have

486 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

been returned by the SELECT query, then the username specified by the
user is incorrect. However, if the SELECT query returns data but the pass-
word does not match, then the password specified by the user is incor-
rect. The code that uses the logic described above to check the username
and password is given as follows:

if (datarows==0)

lblMessage.Text=”Incorrect user name”;

e l s e

{

if (dataSet11.Tables[“UserDetails”].Rows[0][1].ToString().

T r i m () = = p a s s w o r d)

{

//The credentials supplied by the user are correct

}

e l s e

lblMessage.Text=”Incorrect password”;

}

3. Store username and role in session variables and redirect the user.
When the user is successfully authenticated, the username and the role
of the user are stored in Session variables and the user is redirected to
the home page of one of the roles in the organization, depending upon
the role of the user retrieved from the database. The code to implement
this functionality is given as follows:

string Role;

R o l e = d a t a S e t 1 1 . T a b l e s [“ U s e r D e t a i l s ”] . R o w s [0] [2] . T o S t r i n g () . T r i m () ;

S e s s i o n [“ u s r N a m e ”] = u s e r n a m e ;

S e s s i o n [“ u s r R o l e ”] = R o l e ;

if (Role==”Disabled”)

{

lblMessage.Text=”Your account has been disabled. Please contact the

network administrator.”;

r e t u r n ;

}

F o r m s A u t h e n t i c a t i o n . G e t A u t h C o o k i e (u s e r n a m e , f a l s e) ;

s w i t c h (R o l e)

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 487

{

case “Admin”:

R e s p o n s e . R e d i r e c t (“ . \ \ N A \ \ M a n a g e U s e r s . a s p x ”) ;

b r e a k ;

case “BM”:

R e s p o n s e . R e d i r e c t (“ . \ \ B M \ \ A d d F l . a s p x ”) ;

b r e a k ;

case “LOB”:

R e s p o n s e . R e d i r e c t (“ . \ \ L O B \ \ C r e a t e R e s . a s p x ”) ;

b r e a k ;

}

The complete code of the Click event of Submit button, which incorporates the
functionality described previously, is given as follows:

private void btnSubmit_Click(object sender, System.EventArgs e)

{

if (Page.IsValid==true)

{

string username, password;

int datarows;

u s e r n a m e = t x t U s e r N a m e . T e x t . T r i m () ;

p a s s w o r d = t x t P a s s w o r d . T e x t . T r i m () ;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . P a r a m e t e r s [“ @ U s e r N a m e ”] . V a l u e = u s e r n a m e ;

d a t a r o w s = s q l D a t a A d a p t e r 1 . F i l l (d a t a S e t 1 1 , ” U s e r D e t a i l s ”) ;

s q l C o n n e c t i o n 1 . C l o s e () ;

if (datarows==0)

lblMessage.Text=”Incorrect user name”;

e l s e

{

if (dataSet11.Tables[“UserDetails”].Rows[0][1].ToString().Trim()==password)

{

string Role;

R o l e = d a t a S e t 1 1 . T a b l e s [“ U s e r D e t a i l s ”] . R o w s [0] [2] . T o S t r i n g () . T r i m () ;

S e s s i o n [“ u s r N a m e ”] = u s e r n a m e ;

S e s s i o n [“ u s r R o l e ”] = R o l e ;

if (Role==”Disabled”)

{

488 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

TEAMFL
Y

Team-Fly®

lblMessage.Text=”Your account has been disabled. Please

contact the network administrator.”;

r e t u r n ;

}

s w i t c h (R o l e)

{

case “Admin”:

R e s p o n s e . R e d i r e c t (“ . \ \ N A \ \ M a n a g e U s e r s . a s p x ”) ;

b r e a k ;

case “BM”:

R e s p o n s e . R e d i r e c t (“ . \ \ B M \ \ A d d F l . a s p x ”) ;

b r e a k ;

case “LOB”:

R e s p o n s e . R e d i r e c t (“ . \ \ L O B \ \ C r e a t e R e s . a s p x ”) ;

b r e a k ;

}

}

e l s e

lblMessage.Text=”Incorrect password”;

}

d a t a S e t 1 1 . C l e a r () ;

}

}

The Logoff.aspx Form
The Logoff.aspx form is used for logging a user off from the Web site. This form
clears the Session variables assigned to the user so that the user is unable to browse
any page on the Web application. All code on the Logoff.aspx form is written in
the Load event of the form. To write the code for the Load event, double-click on
the form in the Design view. The code for the Load event of the Logoff.aspx form
is given as follows:

private void Page_Load(object sender, System.EventArgs e)

{

S e s s i o n . R e m o v e A l l () ;

}

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 489

Coding the Forms for Network
Administrators

SkyShark Airlines provides the ManageUsers.aspx and ManageDatabases.aspx
forms for network administrators.

By default, when the application is installed, a user account for network adminis-
trators is added to the application,with the username and password as Admin and
Password, respectively, so that a network administrator can access the Man-
ageUsers.aspx form and create user accounts. You can examine the code for the
ManageUsers.aspx form.

The ManageUsers.aspx Form
The ManageUsers.aspx page is used for adding and deleting user accounts. I will
examine the steps to add and delete user accounts separately. However, before
examining these tasks, perform the following steps to configure data controls for
the ManageUsers.aspx form:

1. Drag the dtUsers table from Server Explorer to the Design view of the
form.

2. Generate a dataset for the SqlDataAdapter control that is added to the
form.

3. Modify the default queries that are associated with the sqlDataAdapter1
control as specified:

◆ SelectCommand. SELECT Username FROM dtUsers

◆ DeleteCommand. UPDATE dtUsers SET Role = ‘Disabled’ WHERE
(Username = @Original_Username)

Adding User Accounts
To add a user account, you need to perform the following steps:

1. Check whether the username already exists. Before adding a record to
the dtUsers table, you should check whether the user account already
exists. You can check usernames by retrieving them from the dtUsers
table and checking each record. The following code snippet retrieves

490 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

records from the dtUsers table and compares them with the username
specified by the user.

string username, password, role;

int selection;

r o l e = l s t A d d R o l e . S e l e c t e d I t e m . T e x t ;

u s e r n a m e = t x t A d d U s e r N a m e . T e x t . T r i m () ;

p a s s w o r d = t x t A d d P a s s w o r d . T e x t . T r i m () ;

s e l e c t i o n = l s t A d d R o l e . S e l e c t e d I n d e x ;

s q l C o n n e c t i o n 1 . O p e n () ;

sqlDataAdapter1.Fill(dataSet11, “UserList”);

s q l C o n n e c t i o n 1 . C l o s e () ;

foreach (DataRow myRow in dataSet11.Tables[“UserList”].Rows)

{

if (myRow[0].ToString().Trim().ToLower()==username.ToLower())

{

lblMessage.Text=”The user name already exists. Please try another

user name”;

r e t u r n ;

}

}

2. Add the new user to the database. If the username specified by the user
is unique, the application adds a record to the database by using the
SQL query associated with the InsertCommand property of the sql-
DataAdapter1 control. However, before you execute the query, you need
to assign values specified by the user as the parameters to the query. To
assign values to parameters, you can use the Parameters collection of
InsertCommand. The code snippet to add a new user to the database is
given as follows:

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s [0] . V a l u e = u s e r n a m e ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s [1] . V a l u e = p a s s w o r d ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s [2] . V a l u e = r o l e ;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 491

3. Send an e-mail message to the registered user. After adding the new
user to the SkyShark Airlines application, use the SmtpMail class to send
an e-mail message to the registered user. The Send method of the Smtp-
Mail class uses an object of the MailMessage class to send an e-mail mes-
sage to the user. The code for creating and sending the message is given
as follows:

MailAttachment attachment= new

M a i l A t t a c h m e n t (“ c : \ \ I n e t p u b \ \ w w w r o o t \ \ S k y S h a r k \ \ N A \ \ P r i v a c y P o l i c y . d o c ”) ;

MailMessage email= new MailMessage();

e m a i l . A t t a c h m e n t s . A d d (a t t a c h m e n t) ;

email.To=username + “@skyshark.com”;

e m a i l . F r o m = ” a d m i n @ s k y s h a r k . c o m ” ;

email.Subject=”Message from SkyShark Airlines”;

email.Body=”Dear “ + username + “,\n\nYour account has been added “ +

“to the SkyShark Airlines application. You can log on to the “ +

“application at http://npandey-d185/skyshark. \n\nYour logon name” +

“ is “ + username + “ and the password is password. Please change” +

“ your password when you log on. \n\n By logging on to the application,” +

“ you agree to abide by the terms and conditions attached in the mail” +

“\n\n Happy Browsing.\n\n Network Administrator (SkyShark)”;

S m t p M a i l . S e n d (e m a i l) ;

When a new user registers on the Web site, the details of the new user are added
to the dtUsers table and an e-mail message is sent to the user. The complete code

492 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

Instead of using the code in Step 2, you could also update the DataSet that corre-
sponds to the data in the dtUsers table and then invoke the Update method of sql-
DataAdapter1 to update data in the dtUsers table. The ideal scenario to employ that
method is when you want to optimize database interaction by caching changes and
then sending them to the database at regular intervals.

NOTE

of the Click event of the Submit button is obtained by combining the code snip-
pets given earlier. The code is given as follows:

private void btnAddSubmit_Click(object sender, System.EventArgs e)

{

if (txtAddUserName.Text==null || txtAddUserName.Text==”” || txtAddPassword.Text

==null || txtAddPassword.Text==”” || txtAddConfPassword.Text

==null || txtAddConfPassword.Text==””)

{

lblMessage.Text=”One or more required values are missing. Try again.”;

}

if (Page.IsValid)

{

string username, password, role;

int selection;

r o l e = l s t A d d R o l e . S e l e c t e d I t e m . T e x t ;

u s e r n a m e = t x t A d d U s e r N a m e . T e x t . T r i m () ;

p a s s w o r d = t x t A d d P a s s w o r d . T e x t . T r i m () ;

s e l e c t i o n = l s t A d d R o l e . S e l e c t e d I n d e x ;

s q l C o n n e c t i o n 1 . O p e n () ;

sqlDataAdapter1.Fill(dataSet11, “UserList”);

s q l C o n n e c t i o n 1 . C l o s e () ;

foreach (DataRow myRow in dataSet11.Tables[“UserList”].Rows)

{

if (myRow[0].ToString().Trim().ToLower()==username.ToLower())

{

lblMessage.Text=”The user name already exists. Please try another user name”;

r e t u r n ;

}

}

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s [0] . V a l u e = u s e r n a m e ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s [1] . V a l u e = p a s s w o r d ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s [2] . V a l u e = r o l e ;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

MailAttachment attachment= new MailAttachment(“c:\\Inetpub\\wwwroot\\SkyShark\\NA

\ \ P r i v a c y P o l i c y . d o c ”) ;

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 493

MailMessage email= new MailMessage();

e m a i l . A t t a c h m e n t s . A d d (a t t a c h m e n t) ;

email.To=username + “@niit.com”;

e m a i l . F r o m = ” n i t i n p @ n i i t . c o m ” ;

email.Subject=”Message from SkyShark Airlines”;

email.Body=”Dear “ + username + “,\n\nYour account has been added “ +

“to the SkyShark Airlines application. You can log on to the “ +

“application at http://npandey-d185/skyshark. \n\nYour logon name” +

“ is “ + username + “ and the password is password. Please change” +

“ your password when you log on. \n\n By logging on to the application,” +

“ you agree to abide by the terms and conditions attached in the mail” +

“\n\n Happy Browsing.\n\n Network Administrator (SkyShark)”;

S m t p M a i l . S e n d (e m a i l) ;

lblMessage.Text=”User added successfully”;

t x t A d d U s e r N a m e . T e x t = ” ” ;

d a t a S e t 1 1 . C l e a r () ;

}

}

Deleting User Accounts
The procedure for deleting user accounts is straightforward. The username spec-
ified by the network administrator is checked in the dtUsers database to ensure
that it exists. Next, the DeleteCommand property of the sqlDataAdapter1 control is
used to delete the username specified by the network administrator from the data-
base. The code for the Click event of the Delete button is given as follows:

private void btnDelDelete_Click(object sender, System.EventArgs e)

{

string username=txtDelUserName.Text.Trim();

bool userexists=false;

if (username==null || username==””)

{

lblMessage.Text=”Please specify a valid user name”;

}

e l s e

{

s q l C o n n e c t i o n 1 . O p e n () ;

sqlDataAdapter1.Fill(dataSet11, “UserList”);

494 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

s q l C o n n e c t i o n 1 . C l o s e () ;

foreach (DataRow myRow in dataSet11.Tables[“UserList”].Rows)

{

if (myRow[0].ToString().Trim().ToLower()==username.ToLower())

{

u s e r e x i s t s = t r u e ;

}

}

if (userexists==false)

{

lblMessage.Text=”The user does not exist”;

r e t u r n ;

}

s q l D a t a A d a p t e r 1 . D e l e t e C o m m a n d . P a r a m e t e r s [0] . V a l u e = u s e r n a m e ;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . D e l e t e C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

lblMessage.Text=”User disabled successfully”;

t x t D e l U s e r N a m e . T e x t = ” ” ;

}

}

The ManageDatabases.aspx Form
The ManageDatabases.aspx form is used for moving data between the dtReser-
vations and dtDepartedFlights tables. It is also used to update the dtPassen-
gerDetails table for the frequent fliers program.

For updating the dtDepartedFlights and dtPassengerDetails tables,I have created
stored procedures in SQL Server. These procedures are called from the SkyShark
Airlines application so that the data can be updated directly at the back end.
There are several advantages of using a stored procedure in this scenario:

◆ Since the data is not required in the application, it does not need to be
retrieved from the application and then posted back again.This saves a
lot of unnecessary network congestion and improves the performance of
the application and the database.

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 495

◆ The developer does not need to write unnecessary code for the applica-
tion. SQL queries that are used in stored procedures can be easily tested
by using Query Analyzer.

To move data from the dtReservations table to the dtDepartedFlights table, you
need to write the following stored procedure:

CREATE PROCEDURE UpdateReservations

@date datetime

A S

INSERT INTO dtDepartedFlights

SELECT * from dtReservations

WHERE (DateOfJourney < @date) AND (TicketConfirmed=1)

DELETE from dtReservations

WHERE (DateOfJourney < @date)

G O

To execute a stored procedure, you need to associate it with an SqlCommand
object. Stored procedures can be associated with SqlCommand objects in the
same way as you associate SQL Server tables with your application. The stored
procedures in the SkyShark Airlines database are shown in Figure 21-2.

496 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 21-2 Stored procedures can be accessed from Server Explorer

To write the code for executing the UpdateReservations stored procedure from
the SkyShark Airlines application,drag the Update Reservations stored procedure
form Server Explorer to the design view of the form. Visual Studio .NET auto-
matically creates the sqlDataAdapter1 and sqlCommand1 controls. To run the
stored procedure when a user clicks on the Archive button, write the following
code for the Click event of the Archive button:

private void BtnArchive_Click(object sender, System.EventArgs e)

{

l b l M e s s a g e . T e x t = ” ” ;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l C o m m a n d 1 . P a r a m e t e r s [1] . V a l u e = D a t e T i m e . T o d a y . D a t e . T o S h o r t D a t e S t r i n g () ;

s q l C o m m a n d 1 . E x e c u t e N o n Q u e r y () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

l b l M e s s a g e . T e x t = ” D o n e . ” ;

}

To move data between the dtDepartedFlights and dtPassengerDetails tables, I
have created the FrequentFlier stored procedure.The definition of this procedure
is given as follows:

CREATE PROCEDURE FrequentFlier

A S

DELETE dtFrequentFliers

INSERT INTO dtPassengerDetails

SELECT EMail, Sum(Fare), Count(EMail) from dtDepartedFlights

where EMAIL!=’NotSpecified’ group by EMail

G O

To run this procedure, specify the following code in the Click event of the Update
button:

private void btnUpdate_Click(object sender, System.EventArgs e)

{

l b l M e s s a g e . T e x t = ” ” ;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l C o m m a n d 2 . E x e c u t e N o n Q u e r y () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

l b l M e s s a g e . T e x t = ” D o n e . ” ;

}

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 497

The ChangePassword.aspx Form
The ChangePassword.aspx form is included in the folders for network adminis-
trators, business managers, and LOB (line-of-business) executives. However, I will
discuss the coding and functionality of this form in this section only. The func-
tionality remains same across the forms for all the roles.

To add functionality to the ChangePassword.aspx page, drag the dtUsers table
from Server Explorer to Component Designer. In the resulting sqlDataAdapter1
control that is added to the form, change the UpdateCommand property as men-
tioned here:

UPDATE dtUsers SET Password = @Password, PasswordChanged = ‘1’ WHERE (Username =

@ O r i g i n a l _ U s e r n a m e)

After specifying the preceding query, double-click on the Submit button to code
the functionality for its Click event. Write the following code for the Click event
of the form:

private void btnSubmit_Click(object sender, System.EventArgs e)

{

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . U p d a t e C o m m a n d . P a r a m e t e r s [0] . V a l u e = t x t P a s s w o r d . T e x t . T r i m () ;

s q l D a t a A d a p t e r 1 . U p d a t e C o m m a n d . P a r a m e t e r s [1] . V a l u e = S e s s i o n [“ u s r N a m e ”] ;

s q l D a t a A d a p t e r 1 . U p d a t e C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

R e s p o n s e . R e d i r e c t (“ M a n a g e U s e r s . a s p x ”) ;

}

The preceding code accepts the new password specified by the user as the first
parameter and the username, which is retrieved from the Session state variables,
as the second parameter to update the password of the user in the dtUsers table.

Restricting Access to Web Forms
One aspect that is common across all Web pages of the application is that the
users should be able to access Web forms pertaining to a role only if they are in
that role. For example, the ManageUsers.aspx form should be accessible to net-
work administrators only.

498 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

TEAMFL
Y

Team-Fly®

The SkyShark Airlines application enforces this constraint by using Session vari-
ables. The role of the user is queried from these variables in the Load event of all
forms. When the role of the user matches with the intended audience of the form,
the user is allowed to load the Web form. If the user should not be allowed to
access the page, the user is redirected to the default.aspx page.The code that con-
trols access to Web pages in the Load event of forms for network administrators is
given as follows:

private void Page_Load(object sender, System.EventArgs e)

{

if (Session[“usrRole”]==null)

{

R e s p o n s e . R e d i r e c t (“ . . \ \ d e f a u l t . a s p x ”) ;

}

if (!(Session[“usrRole”].ToString()==”Admin”))

{

R e s p o n s e . R e d i r e c t (“ . . \ \ d e f a u l t . a s p x ”) ;

}

e l s e

{

txtUser.Text=”Changing password for “+ Session[“usrName”].ToString();

}

}

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 499

You need to add the code given here in the Load event of all forms. The only precau-
tion you need to take is that you should change the value to check in the if clause
((!(Session[“usrRole”].ToString()==”Admin”))) to “BA” for business managers
and “LOB” for LOB executives.

NOTE

Coding the Forms for
Business Managers

Business managers use the AddFl.aspx, RequestID.aspx, Reports.aspx, and Freq-
Fl.aspx forms for their business operations. In this section, you can learn to add
functionality to these forms.

The AddFl.aspx Form
The AddFl.aspx form is used for adding details of new flights. To add data to the
AddFl.aspx table, configure SqlConnection and SqlDataAdapter controls by
dragging the dtFltDetails table to the form. Next, change the SelectCommand
and InsertCommand properties of the sqlDataAdapter1 control as mentioned
here:

◆ SelectCommand= SELECT FltNo FROM dtFltDetails

◆ InsertCommand= INSERT INTO dtFltDetails (FltNo, Origin,

Destination, Deptime, Arrtime, AircraftType, SeatsExec, SeatsBn,

FareExec, FareBn, LaunchDate) VALUES (@FltNo, @Origin, @Destina-

tion, @Deptime, @Arrtime, @AircraftType, @SeatsExec, @SeatsBn,

@FareExec, @FareBn, @LaunchDate)

The steps to add new flights to the airline are as follows:

1. Ensure that the flight number is unique. The flight number specified
by the business manager is queried in the dtFltDetails table. If the
flight number is not unique, an error message is displayed to the user.
You need to write the following code to ensure that the flight number is
unique:

d a t a S e t 1 1 . C l e a r () ;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . F i l l (d a t a S e t 1 1 , ” F l t N o s ”) ;

s q l C o n n e c t i o n 1 . C l o s e () ;

foreach (DataRow myRow in dataSet11.Tables[“FltNos”].Rows)

{

if (myRow[0].ToString().Trim().ToLower()==txtFltNo.Text.ToLower())

500 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

{

lblMessage.Text=”The flight already exists. Please try another

flight number.”;

r e t u r n ;

}

}

2. Validate the departure and arrival times. The departure and arrival
times for flights need to be specified in the correct format. The departure
and arrival times specified by the user are converted into date and time
format by using the ToDateTime function of the Convert class. The resul-
tant values are stored in TimeSpan structures. The code to validate depar-
ture and arrival times is given as follows:

TimeSpan deptime, arrtime;

t r y

{

d e p t i m e = C o n v e r t . T o D a t e T i m e (t x t D e p T i m e . T e x t) . T i m e O f D a y ;

a r r t i m e = C o n v e r t . T o D a t e T i m e (t x t D e p T i m e . T e x t) . T i m e O f D a y ;

}

c a t c h

{

lblMessage.Text=”Invalid departure or arrival time”;

r e t u r n ;

}

3. Update flight details. The details of the new flight are added as parame-
ters to the InsertCommand query. Next, you need to open the connection
to the database and execute the query. Then you can close the connec-
tion to the database and clear all fields of the AddFl.aspx form. The
code snippet to update flight details is given as follows:

t r y

{

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s [0] . V a l u e = t x t F l t N o . T e x t . T r i m () ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s [1] . V a l u e = t x t O r i g i n . T e x t . T r i m () ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s [2] . V a l u e = t x t D e s t i n a t i o n .

T e x t . T r i m () ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s [3] . V a l u e = d e p t i m e . T o S t r i n g () ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s [4] . V a l u e = a r r t i m e . T o S t r i n g () ;

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 501

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s [5] . V a l u e = t x t A i r c r a f t .

T e x t . T r i m () ;

sqlDataAdapter1.InsertCommand.Parameters[6].Value= Convert.ToInt32

(t x t S e a t s E x e c . T e x t . T r i m ()) ;

sqlDataAdapter1.InsertCommand.Parameters[7].Value= Convert.ToInt32

(t x t S e a t s B u s . T e x t . T r i m ()) ;

sqlDataAdapter1.InsertCommand.Parameters[8].Value= Convert.ToInt32

(t x t F a r e E x e c . T e x t . T r i m ()) ;

sqlDataAdapter1.InsertCommand.Parameters[9].Value= Convert.ToInt32

(t x t F a r e B n . T e x t . T r i m ()) ;

sqlDataAdapter1.InsertCommand.Parameters[10].Value= DateTime.Today.Date.

T o S h o r t D a t e S t r i n g () ;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . E x e c u t e N o n Q u e r y () ;

}

c a t c h

{

lblMessage.Text=”Unable to add flight details.”;

s q l C o n n e c t i o n 1 . C l o s e () ;

r e t u r n ;

}

s q l C o n n e c t i o n 1 . C l o s e () ;

lblMessage.Text=”Flight added successfully.”;

t x t F a r e B n . T e x t = ” ” ;

t x t F a r e E x e c . T e x t = ” ” ;

t x t S e a t s B u s . T e x t = ” ” ;

t x t S e a t s E x e c . T e x t = ” ” ;

t x t A r r T i m e . T e x t = ” ” ;

t x t D e p T i m e . T e x t = ” ” ;

t x t D e s t i n a t i o n . T e x t = ” ” ;

t x t O r i g i n . T e x t = ” ” ;

t x t F l t N o . T e x t = ” ” ;

t x t A i r c r a f t . T e x t = ” ” ;

}

The complete code for the Submit button of the form is obtained by combining
the three preceding code snippets.

502 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

The form also includes a Cancel button that is used to clear the values of all fields.
The code for the Click event of the Cancel button is given as follows:

private void btnCancel_Click(object sender, System.EventArgs e)

{

t x t F a r e B n . T e x t = ” ” ;

t x t F a r e E x e c . T e x t = ” ” ;

t x t S e a t s B u s . T e x t = ” ” ;

t x t S e a t s E x e c . T e x t = ” ” ;

t x t A r r T i m e . T e x t = ” ” ;

t x t D e p T i m e . T e x t = ” ” ;

t x t D e s t i n a t i o n . T e x t = ” ” ;

t x t O r i g i n . T e x t = ” ” ;

t x t F l t N o . T e x t = ” ” ;

t x t A i r c r a f t . T e x t = ” ” ;

}

The RequestID.aspx Form
The RequestID.aspx form is used for making a request for a new user account.
The business manager specifies the username and the role of the new user and
submits the request to the network administrator by e-mail. The code for the
Click event of the Submit button is given as follows:

private void btnSubmit_Click(object sender, System.EventArgs e)

{

string to, from, subject, body;

t o = ” a d m i n @ s k y s h a r k . c o m ” ;

from=Session[“usrName”].ToString() + “@niit.com”;

subject=”New User Request”;

body=”I would like to request for a new user. The details are given

b e l o w : \ n \ n ” +

“User Name: “ + txtUserID.Text + “\n\nRole: “ + lstRole.SelectedItem.Text

+ “\n\nThanks!\n\n” + Session[“usrName”].ToString();

SmtpMail.Send(from, to, subject, body);

t x t U s e r I D . T e x t = ” ” ;

l s t R o l e . S e l e c t e d I n d e x = 0 ;

lblMessage.Text=”Request sent successfully”;

}

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 503

The Reports.aspx Form
The Reports.aspx form is used for generating reports. The SkyShark Airlines
application supports three reports.I have added three SqlDataAdapter controls on
the form; one for each report. To add three SqlDataAdapter controls to the form,
drag the dtPassengerDetails and dtDepartedFlights tables to the form. I have
added the dtPassengerDetails table to the Component Designer twice so that I
can configure two sqlDataAdapter controls for the application. The SelectCom-
mand queries associated with each sqlDataAdapter control are given as follows:

◆ sqlDataAdapter1. SELECT FltNo, SUM(Fare) AS Fare FROM dtDeparted-
Flights WHERE (DateOfJourney > @date) GROUP BY FltNo

◆ sqlDataAdapter2. SELECT FltNo, DateOfJourney, SUM(Fare) AS Revenue
FROM dtDepartedFlights GROUP BY DateOfJourney, FltNo

◆ sqlDataAdapter3. SELECT TOP 100 EMail, FareCollected, TotalTimes-
Flown FROM dtPassengerDetails ORDER BY TotalTimesFlown

In the preceding list, the sqlDataAdapter1 control is used for generating the total
revenue report. The total revenue report displays the total revenue generated by
each flight after a specified date. The sqlDataAdapter2 control is used for gener-
ating the flight usage report for all flights flown by the airline. The flight usage
report displays the total daily revenue generated by each flight. Finally, the sql-
DataAdapter3 control is used for identifying the top 100 customers who have
flown the airline most frequently.

For generating the total revenue report, you need to specify a date from which the
report should be generated. After you select the date and click on Generate, the
following sequence of steps generates the report:

1. The date is constructed by retrieving the month and year selected by the
user and appending 01 to the date. Therefore, if the user has selected the
month 07 and the year 2003, the date generated will be 07/01/2003, in
the mm/dd/yyyy format.

2. The generated date is passed to the SelectCommand query of sql-
DataAdapter1 as a parameter and the result is retrieved in a dataset.

3. The table in the dataset is associated with an object of the DataView
class, which is bound to the DataGrid1 control to display the output
report to the user.

504 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

The code to generate the total revenue report is given as follows:

private void Button4_Click(object sender, System.EventArgs e)

{

d a t a S e t 2 1 . C l e a r () ;

D a t a G r i d 1 . D a t a S o u r c e = ” ” ;

string month, date, year;

m o n t h = l s t M o n t h . S e l e c t e d I t e m . T e x t ;

y e a r = l s t Y e a r . S e l e c t e d I t e m . T e x t ;

date=month + “/01/” + year;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . P a r a m e t e r s [0] . V a l u e = d a t e ;

s q l D a t a A d a p t e r 1 . F i l l (d a t a S e t 2 1 , ” R e v e n u e ”) ;

s q l C o n n e c t i o n 1 . C l o s e () ;

DataView source=new DataView(dataSet21.Tables[“Revenue”]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

D a t a G r i d 1 . D a t a B i n d () ;

}

The flight usage report does not accept any information from the user because it
generates a report for all the flights.The code for this report is straightforward, as
given here:

private void Button1_Click(object sender, System.EventArgs e)

{

d a t a S e t 2 1 . C l e a r () ;

D a t a G r i d 1 . D a t a S o u r c e = ” ” ;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 2 . F i l l (d a t a S e t 2 1 , ” U s a g e ”) ;

DataView source=new DataView(dataSet21.Tables[“Usage”]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

D a t a G r i d 1 . D a t a B i n d () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

}

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 505

Finally, the code of the customer affinity report, which queries the top 100 cus-
tomers who have flown the airline, is given as follows:

private void Button3_Click(object sender, System.EventArgs e)

{

d a t a S e t 2 1 . C l e a r () ;

D a t a G r i d 1 . D a t a S o u r c e = ” ” ;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 3 . F i l l (d a t a S e t 2 1 , ” F r e q F l ”) ;

DataView source=new DataView(dataSet21.Tables[“FreqFl”]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

D a t a G r i d 1 . D a t a B i n d () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

}

The FreqFl.aspx Form
The FreqFl.aspx form is used for enabling the frequent flier program. This form
is very similar to the Reports.aspx form in its appearance and functionality. The
FreqFl.aspx form enables two types of frequent flier programs. In the first pro-
gram, customers who have flown the airline more than a predetermined number
of times are given discounts. In the second program, customers who have paid
more than a specified fare are given discounts.

To create the frequent flier programs, I have added an SqlConnection1 control to
the form. Next, I have written the following function for enabling discounts to
customers based on the number of times that they have flown the airline:

private void Button2_Click(object sender, System.EventArgs e)

{

l b l M e s s a g e . T e x t = ” ” ;

D a t a G r i d 1 . D a t a S o u r c e = ” ” ;

SqlCommand Command1= new SqlCommand(“INSERT INTO dtFrequentFliers Select

EMail, Discount=”+lstDisc1.SelectedItem.Text+ “ from dtPassengerDetails where

TotalTimesFlown > “+ lstTimesFlown.SelectedItem.Text, sqlConnection1);

s q l C o n n e c t i o n 1 . O p e n () ;

C o m m a n d 1 . E x e c u t e N o n Q u e r y () ;

l b l M e s s a g e . T e x t = ” D o n e . ” ;

SqlDataAdapter DataAdapter = new SqlDataAdapter(“SELECT * from

dtFrequentFliers”, sqlConnection1);

506 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

DataSet ds= new DataSet();

D a t a A d a p t e r . F i l l (d s) ;

DataView source = new DataView(ds.Tables[0]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

D a t a G r i d 1 . D a t a B i n d () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

}

In the preceding code, I have assigned an SQL query to an object of the Sql-
DataAdapter class.The query is run and the rows returned are stored in an object
of the DataSet class. These rows are displayed on the form by using the Data-
Grid1 control.

The code for the second frequent fliers program is very similar to the code for the
frequent flier program already shown. However, the query that is used for retriev-
ing the records from the database is different. The complete code of the function
that retrieves passengers for the frequent fliers program on the basis of the fare
that they have paid is given as follows:

private void Button1_Click(object sender, System.EventArgs e)

{

l b l M e s s a g e . T e x t = ” ” ;

if (txtFare.Text==”” || txtFare.Text==null)

{

lblMessage.Text=”Invalid parameter for fare collected.”;

r e t u r n ;

}

D a t a G r i d 1 . D a t a S o u r c e = ” ” ;

SqlCommand Command1= new SqlCommand(“INSERT INTO dtFrequentFliers Select EMail,

Discount=”+lstDisc2.SelectedItem.Text+ “ from dtPassengerDetails where

FareCollected > “+ txtFare.Text, sqlConnection1);

s q l C o n n e c t i o n 1 . O p e n () ;

C o m m a n d 1 . E x e c u t e N o n Q u e r y () ;

l b l M e s s a g e . T e x t = ” D o n e . ” ;

SqlDataAdapter DataAdapter = new SqlDataAdapter(“SELECT * from

dtFrequentFliers”, sqlConnection1);

DataSet ds= new DataSet();

D a t a A d a p t e r . F i l l (d s) ;

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 507

DataView source = new DataView(ds.Tables[0]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

D a t a G r i d 1 . D a t a B i n d () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

}

Finally, business managers have the option to discard frequent flier programs. To
discard the frequent flier program, you need to delete all the records from the
dtFrequentFliers table. The code to accomplish this task is given as follows:

private void Button3_Click(object sender, System.EventArgs e)

{

l b l M e s s a g e . T e x t = ” ” ;

SqlCommand Command1= new SqlCommand(“DELETE dtFrequentFliers”, sqlConnection1);

s q l C o n n e c t i o n 1 . O p e n () ;

C o m m a n d 1 . E x e c u t e N o n Q u e r y () ;

l b l M e s s a g e . T e x t = ” D o n e . ” ;

s q l C o n n e c t i o n 1 . C l o s e () ;

}

Coding the Forms for LOB Executives
LOB executives perform the tasks of reserving and canceling seats for passengers,
querying the status of flights and tickets, and confirming the reservation of pas-
sengers. In this section, I provide a description of how these tasks are accom-
plished.

The CreateRes.aspx Form
The reservation process is a two-stage process. In the first stage, the flight num-
ber, class, and date of reservation are used for querying the status of the flight.The
code to retrieve the status of the flight by using the flight number is given as fol-
lows:

private void btnNext_Click(object sender, System.EventArgs e)

{

d a t a S e t 1 1 . C l e a r () ;

s q l C o n n e c t i o n 1 . O p e n () ;

508 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

TEAMFL
Y

Team-Fly®

sqlDataAdapter1.Fill(dataSet11, “FltDetails”);

s q l C o n n e c t i o n 1 . C l o s e () ;

bool exists=false;

foreach (DataRow myRow in dataSet11.Tables[“FltDetails”].Rows)

{

if (myRow[0].ToString().Trim().ToLower()==txtFltNo.Text.ToLower())

{

e x i s t s = t r u e ;

t x t O r g . T e x t = m y R o w [1] . T o S t r i n g () ;

t x t D e s t . T e x t = m y R o w [2] . T o S t r i n g () ;

txtDepTime.Text=myRow[3].ToString().Substring(myRow[3].ToString().

L e n g t h - 1 1) . T r i m () ;

i f (l s t C l a s s . S e l e c t e d I n d e x = = 0)

t x t F a r e . T e x t = m y R o w [8] . T o S t r i n g () ;

e l s e

t x t F a r e . T e x t = m y R o w [9] . T o S t r i n g () ;

}

}

if (exists==false)

{

lblMessage.Text=”Incorrect flight number. Please try again”;

r e t u r n ;

}

txtTNo.Text=”Auto generated”;

t x t F l t N o . E n a b l e d = f a l s e ;

l s t C l a s s . E n a b l e d = f a l s e ;

C a l 1 . E n a b l e d = f a l s e ;

s q l D a t a A d a p t e r 2 . S e l e c t C o m m a n d . P a r a m e t e r s [0] . V a l u e = t x t F l t N o . T e x t . T r i m () ;

sqlDataAdapter2.SelectCommand.Parameters[1].Value=Cal1.SelectedDate.

T o S h o r t D a t e S t r i n g () ;

sqlDataAdapter2.SelectCommand.Parameters[2].Value=lstClass. SelectedItem.Text;

s q l C o n n e c t i o n 1 . O p e n () ;

sqlDataAdapter2.Fill(dataSet11, “FltStatus”);

if (dataSet11.Tables[“FltStatus”].Rows.Count==0)

{

t x t S t a t u s . T e x t = ” A v a i l a b l e ” ;

}

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 509

e l s e

{

int status=Convert.ToInt32(dataSet11.Tables[“FltStatus”].Rows[0][3]);

if (status<=0)

{

txtStatus.Text=”Waitlisted (“ + Convert.ToString((status-1)) + “)”;

}

e l s e

{

t x t S t a t u s . T e x t = ” A v a i l a b l e ” ;

}

}

}

After the customer agrees to proceed with the reservation, the details of the flight
are retrieved from the dtFltDetails and the dtFltStatus tables. The status of the
flight is retrieved to ensure that the flight status has not changed between the time
when the request for reservation was first made to the actual processing of the
process. This functionality is achieved by the following code snippet:

if (txtName.Text==”” || txtName.Text==null)

{

lblMessage.Text=”Invalid user name”;

r e t u r n ;

}

string TicketNo, DateOfRes, DateOfJourney, FltNo, ClassOfRes, Name, EMail;

int TicketConf, Status, Fare;

t r y

{

F l t N o = t x t F l t N o . T e x t . T r i m () ;

C l a s s O f R e s = l s t C l a s s . S e l e c t e d I t e m . T e x t ;

N a m e = t x t N a m e . T e x t ;

D a t e O f R e s = D a t e T i m e . T o d a y . D a t e . T o S h o r t D a t e S t r i n g () ;

D a t e O f J o u r n e y = C a l 1 . S e l e c t e d D a t e . T o S h o r t D a t e S t r i n g () ;

T i c k e t C o n f = 0 ;

F a r e = C o n v e r t . T o I n t 3 2 (t x t F a r e . T e x t . T r i m ()) ;

d a t a S e t 1 1 . C l e a r () ;

s q l C o n n e c t i o n 1 . O p e n () ;

510 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

s q l D a t a A d a p t e r 2 . S e l e c t C o m m a n d . P a r a m e t e r s [0] . V a l u e = t x t F l t N o . T e x t . T r i m () ;

sqlDataAdapter2.SelectCommand.Parameters[1].Value= Cal1.SelectedDate

. T o S h o r t D a t e S t r i n g () ;

sqlDataAdapter2.SelectCommand.Parameters[2].Value= lstClass.SelectedItem.Text;

sqlDataAdapter2.Fill(dataSet11, “FltStatus”);

if (dataSet11.Tables[“FltStatus”].Rows.Count==0)

{

//fill in the flight details

sqlDataAdapter1.Fill(dataSet11, “FltDetails”);

string strTotSeats;

int intTotSeats;

foreach (DataRow myRow in dataSet11.Tables[“FltDetails”].Rows)

{

if (myRow[0].ToString().Trim().ToLower()==txtFltNo.Text.ToLower())

{

i f (l s t C l a s s . S e l e c t e d I n d e x = = 0)

{

s t r T o t S e a t s = m y R o w [6] . T o S t r i n g () ;

}

e l s e

{

s t r T o t S e a t s = m y R o w [7] . T o S t r i n g () ;

}

i n t T o t S e a t s = C o n v e r t . T o I n t 3 2 (s t r T o t S e a t s) ;

sqlDataAdapter2.InsertCommand.Parameters[0].Value= txtFltNo.Text

. T r i m () ;

sqlDataAdapter2.InsertCommand.Parameters[1].Value= Cal1.SelectedDate

. T o S h o r t D a t e S t r i n g () ;

sqlDataAdapter2.InsertCommand.Parameters[2].Value= lstClass

. S e l e c t e d I t e m . T e x t ;

s q l D a t a A d a p t e r 2 . I n s e r t C o m m a n d . P a r a m e t e r s [3] . V a l u e = i n t T o t S e a t s - 1 ;

s q l D a t a A d a p t e r 2 . I n s e r t C o m m a n d . E x e c u t e N o n Q u e r y () ;

}

}

//set status as available

S t a t u s = 1 ;

}

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 511

e l s e

{

int val=Convert.ToInt32(dataSet11.Tables[“FltStatus”].Rows[0][3]);

if (val<=0)

{

S t a t u s = v a l - 1 ;

}

e l s e

{

S t a t u s = 1 ;

}

s q l D a t a A d a p t e r 2 . U p d a t e C o m m a n d . P a r a m e t e r s [0] . V a l u e = t x t F l t N o . T e x t . T r i m () ;

sqlDataAdapter2.UpdateCommand.Parameters[1].Value= Cal1.SelectedDate

. T o S h o r t D a t e S t r i n g () ;

sqlDataAdapter2.UpdateCommand.Parameters[2].Value= lstClass.SelectedItem

. T e x t ;

s q l D a t a A d a p t e r 2 . U p d a t e C o m m a n d . E x e c u t e N o n Q u e r y () ;

}

The information that is retrieved from the database tables is updated into the
dtReservations table. To update information into the dtReservations table, the
following code snippet is used:

sqlDataAdapter3.Fill(dataSet11, “TicketNos”);

int count, maxno, ticketno;

if (dataSet11.Tables[“TicketNos”].Rows.Count>0)

{

m a x n o = C o n v e r t . T o I n t 3 2 (d a t a S e t 1 1 . T a b l e s [“ T i c k e t N o s ”] . R o w s [0] [0] . T o S t r i n g ()) ;

for (count=1; count < dataSet11.Tables[“TicketNos”].Rows.Count; count++)

{

if (maxno < Convert.ToInt32(dataSet11.Tables[“TicketNos”].Rows[count][0]

. T o S t r i n g ()))

m a x n o = C o n v e r t . T o I n t 3 2 (d a t a S e t 1 1 . T a b l e s [“ T i c k e t N o s ”] . R o w s [c o u n t] [0] . T o S t r i n g ()) ;

}

}

e l s e

{

m a x n o = 0 ;

}

512 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

t i c k e t n o = m a x n o + 1 ;

T i c k e t N o = C o n v e r t . T o S t r i n g (t i c k e t n o) ;

E M a i l = t x t E M a i l . T e x t ;

if (EMail==null || EMail==””)

{

E M a i l = ” N o t S p e c i f i e d ” ;

}

e l s e

{

s q l D a t a A d a p t e r 4 . S e l e c t C o m m a n d . P a r a m e t e r s [0] . V a l u e = E M a i l ;

s q l D a t a A d a p t e r 4 . F i l l (d a t a S e t 1 1 , ” F r e q F l ”) ;

if (dataSet11.Tables[“FreqFl”].Rows.Count==0)

{

//do nothing to the fare

}

e l s e

{

int discount;

d i s c o u n t = C o n v e r t . T o I n t 3 2 (d a t a S e t 1 1 . T a b l e s [“ F l t S t a t u s ”] . R o w s [0] [0]) ;

d i s c o u n t = (1 0 0 - d i s c o u n t) / 1 0 0 ;

F a r e = F a r e - d i s c o u n t ;

}

}

s q l D a t a A d a p t e r 3 . I n s e r t C o m m a n d . P a r a m e t e r s [0] . V a l u e = T i c k e t N o ;

s q l D a t a A d a p t e r 3 . I n s e r t C o m m a n d . P a r a m e t e r s [1] . V a l u e = F l t N o ;

s q l D a t a A d a p t e r 3 . I n s e r t C o m m a n d . P a r a m e t e r s [2] . V a l u e = D a t e O f J o u r n e y ;

s q l D a t a A d a p t e r 3 . I n s e r t C o m m a n d . P a r a m e t e r s [3] . V a l u e = C l a s s O f R e s ;

s q l D a t a A d a p t e r 3 . I n s e r t C o m m a n d . P a r a m e t e r s [4] . V a l u e = N a m e ;

s q l D a t a A d a p t e r 3 . I n s e r t C o m m a n d . P a r a m e t e r s [5] . V a l u e = E M a i l ;

s q l D a t a A d a p t e r 3 . I n s e r t C o m m a n d . P a r a m e t e r s [6] . V a l u e = F a r e ;

s q l D a t a A d a p t e r 3 . I n s e r t C o m m a n d . P a r a m e t e r s [7] . V a l u e = S t a t u s ;

s q l D a t a A d a p t e r 3 . I n s e r t C o m m a n d . P a r a m e t e r s [8] . V a l u e = S e s s i o n [“ u s r N a m e ”] . T o S t r i n g () ;

s q l D a t a A d a p t e r 3 . I n s e r t C o m m a n d . P a r a m e t e r s [9] . V a l u e = D a t e O f R e s ;

s q l D a t a A d a p t e r 3 . I n s e r t C o m m a n d . P a r a m e t e r s [1 0] . V a l u e = T i c k e t C o n f ;

s q l D a t a A d a p t e r 3 . I n s e r t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

lblMessage.Text=”Reservation complete. Fare is US$ “+ Fare.ToString();

t x t F l t N o . T e x t = ” ” ;

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 513

l s t C l a s s . S e l e c t e d I n d e x = 0 ;

C a l 1 . S e l e c t e d D a t e = D a t e T i m e . T o d a y ;

t x t T N o . T e x t = ” ” ;

t x t F a r e . T e x t = ” ” ;

t x t S t a t u s . T e x t = ” ” ;

t x t O r g . T e x t = ” ” ;

t x t D e s t . T e x t = ” ” ;

t x t D e p T i m e . T e x t = ” ” ;

t x t N a m e . T e x t = ” ” ;

t x t E M a i l . T e x t = ” ” ;

t x t F l t N o . E n a b l e d = t r u e ;

l s t C l a s s . E n a b l e d = t r u e ;

C a l 1 . E n a b l e d = t r u e ;

Response.Redirect(“Ticket.aspx?TNo=” + TicketNo);

}

catch (Exception ex)

{

l b l M e s s a g e . T e x t = e x . M e s s a g e ;

s q l C o n n e c t i o n 1 . C l o s e () ;

t x t F l t N o . E n a b l e d = t r u e ;

l s t C l a s s . E n a b l e d = t r u e ;

C a l 1 . E n a b l e d = t r u e ;

}

}

The CancelRes.aspx Form
The CancelRes.aspx form is used to perform cancellation of reservations. When
a ticket is cancelled, the status of the flight needs to be updated in the dtFltSta-
tus table. You also need to update the status of the passengers on the flight who
are in the waiting list. In addition, you also need to compute the refund amount
that is applicable to the passenger.

To perform cancellations, I have used a combination of stored procedures and
programming logic. The steps to cancel a reservation are given as follows:

1. Retrieve the fare that the passenger had paid.

2. Compute the refund applicable to the customer, depending upon
whether or not the flight has departed.

514 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

3. Update status of other passengers who might have been confirmed
because of the cancellation of ticket.

4. Create a record in the dtCancellations table and delete the reservation
of the passenger from the dtReservations table.

The first two tasks are performed by programming logic, the code for which is
given as follows:

l b l M e s s a g e . T e x t = ” ” ;

d a t a S e t 5 1 . C l e a r () ;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . P a r a m e t e r s [0] . V a l u e = t x t T N o . T e x t . T r i m () ;

sqlDataAdapter1.Fill(dataSet51, “TicketDetails”);

s q l C o n n e c t i o n 1 . C l o s e () ;

if (dataSet51.Tables[“TicketDetails”].Rows.Count==0)

{

lblMessage.Text=”Invalid ticket number”;

r e t u r n ;

}

e l s e

{

string ticketno, user, cancdate, journeydate;

int refund, fare;

t i c k e t n o = t x t T N o . T e x t . T r i m () ;

j o u r n e y d a t e = d a t a S e t 5 1 . T a b l e s [“ T i c k e t D e t a i l s ”] . R o w s [0] [2] . T o S t r i n g () ;

fare=Convert.ToInt32(dataSet51.Tables[“TicketDetails”]. Rows[0][6].ToString());

if (Convert.ToDateTime(journeydate)<=DateTime.Today)

{

r e f u n d = f a r e - 1 0 ;

}

e l s e

{

r e f u n d = C o n v e r t . T o I n t 3 2 (f a r e * 0 . 8) ;

}

After the refund amount has been calculated, the details of the ticket that needs
to be cancelled are passed to a stored procedure that updates the status of other
customers booked on the flight and also deletes the customer record from the

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 515

dtReservations database. The code for the DeleteReservations stored procedure,
which accomplishes these tasks, is given as follows:

CREATE PROCEDURE DeleteReservations

@ticketno char(10), @user char(15), @cancdate datetime, @refund int

A S

Declare @fltno char(10)

Declare @date datetime

Declare @class char(10)

Declare @status int

select @fltno=FltNo, @date=DateOfJourney, @class=ClassOfRes , @status=Status

from dtReservations where TicketNo=@ticketno

Update dtReservations

set Status=Status+1 where FltNo=@fltno and DateOfJourney=@date

and ClassOfRes=@class and Status<@status

Update dtFltStatus

set Status=Status+1 where FltNo=@fltno and StatusDate=@date

and StatusClass=@class

INSERT into dtCancellations

values (@ticketno, @refund, @user, @cancdate)

Delete dtReservations where TicketNo=@ticketno

G O

The QueryStat.aspx Form
The QueryStat.aspx page is used for querying the status of flights and tickets.
LOB executives can either use the flight number to query the status of a flight or
use the ticket number to query the status of a ticket. In both the cases, an error
message is displayed if the number specified is invalid. Otherwise, the status of
the flight or ticket is retrieved and displayed to the user.

The following code is used for querying the status of a flight:

private void Button2_Click(object sender, System.EventArgs e)

{

d a t a S e t 4 1 . C l e a r () ;

l b l M e s s a g e . T e x t = ” ” ;

l b l S t a t u s . T e x t = ” ” ;

if (txtFltNo.Text==”” || txtFltNo.Text==null)

516 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

{

lblMessage.Text=”Invalid flight number”;

r e t u r n ;

}

e l s e

{

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . P a r a m e t e r s [0] . V a l u e = t x t F l t N o . T e x t . T r i m () ;

sqlDataAdapter1.SelectCommand.Parameters[1].Value=Cal1. SelectedDate

. T o S h o r t D a t e S t r i n g () ;

sqlDataAdapter1.SelectCommand.Parameters[2].Value= lstClass.SelectedItem

. T e x t ;

sqlDataAdapter1.Fill(dataSet41, “FltStatus”);

s q l C o n n e c t i o n 1 . C l o s e () ;

if (dataSet41.Tables[“FltStatus”].Rows.Count==0)

{

lblStatus.Text=”Status: Available”;

}

e l s e

{

string strStatus;

int status;

s t r S t a t u s = d a t a S e t 4 1 . T a b l e s [“ F l t S t a t u s ”] . R o w s [0] [0] . T o S t r i n g () ;

s t a t u s = C o n v e r t . T o I n t 3 2 (s t r S t a t u s) ;

if (status >= 0)

{

lblStatus.Text=”Status: Available”;

}

e l s e

{

lblStatus.Text=”Status: Overbooked (“ + strStatus + “)”;

}

}

}

}

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 517

The ConfirmRes.aspx Form
The ConfirmRes.aspx form is used for confirming the reservation of customers.
The form queries the ticket number specified by the user against the dtReserva-
tions database. If the ticket number is valid, the data of journey is retrieved from
the database to ensure that the flight has not already departed. If both the condi-
tions, validity of ticket number and nondeparture of flight, are fulfilled, the ticket
is confirmed and the customer is informed about the same.The code for the Click
event of the Submit form, which enables you to confirm a reservation, is given as
follows:

private void btnConfirm_Click(object sender, System.EventArgs e)

{

l b l M e s s a g e . T e x t = ” ” ;

l b l D e t a i l s . V i s i b l e = f a l s e ;

s q l C o n n e c t i o n 1 . O p e n () ;

d a t a S e t 2 1 . C l e a r () ;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . P a r a m e t e r s [0] . V a l u e = t x t T N o . T e x t . T r i m () ;

sqlDataAdapter1.Fill(dataSet21, “TicketDetails”);

s q l C o n n e c t i o n 1 . C l o s e () ;

if (dataSet21.Tables[“TicketDetails”].Rows.Count==0)

{

lblMessage.Text=”Invalid ticket number.”;

r e t u r n ;

}

e l s e

{

string DateOfFlight;

D a t e O f F l i g h t = d a t a S e t 2 1 . T a b l e s [“ T i c k e t D e t a i l s ”] . R o w s [0] [2] . T o S t r i n g () ;

if (Convert.ToDateTime(DateOfFlight) < Convert.ToDateTime(DateTime.Today

. T o S h o r t D a t e S t r i n g ()))

{

lblMessage.Text=”The flight has already departed”;

r e t u r n ;

}

e l s e

{

s q l C o n n e c t i o n 1 . O p e n () ;

sqlDataAdapter1.UpdateCommand.Parameters[0].Value= txtTNo.Text.Trim();

518 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

TEAMFL
Y

Team-Fly®

s q l D a t a A d a p t e r 1 . U p d a t e C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

lblDetails.Text=”Ticket confirmed\n(“ + dataSet21.Tables

[“TicketDetails”].Rows[0][4].ToString() +

“\n” + dataSet21.Tables[“TicketDetails”].Rows[0][2].ToString() + “)”;

l b l D e t a i l s . V i s i b l e = t r u e ;

}

}

}

Summary
This chapter provided the necessary code and explanations to implement the
functionality for Web forms.The forms of the SkyShark Airlines application have
a consistent interface that is created by using a header file and a consistent menu
on all Web forms. Most forms of the SkyShark Airlines application include data
controls that are used to exchange data with the SkyShark database. Additionally,
each Web form includes an authentication mechanism to ensure that the user is
authorized to view the Web forms.

IMPLEMENTING THE BUSINESS LOGIC Chapter 21 519

This page intentionally left blank

Chapter 22
Creating
the Customer
Transaction Portal

In the last chapter, you implemented the business logic for running the applica-
tion and fulfilling the business requirements of SkyShark Airlines. In this chap-

ter, you will design and create the customer transaction portal for the airline,
which will help customers to view details of new flights launched by the company,
the status of their tickets, and the status of flights.

Designing the Form
The customer transaction portal is developed to enhance the experience of cus-
tomers. This portal provides the following four options to a customer:

◆ View New Flights. This option enables customers to view the five most
recently launched flights.

◆ View Ticket Status. This option enables customers to view the status of
their tickets.

◆ View Flight Status. This option enables customers to view the booking
status of a flight.

◆ Confirm Reservation. This option enables customers to confirm their
reservation.

To provide these functionalities, you’ll create an ASP.NET Web application.This
application will contain only one Web form named wbFrmSkyShark.aspx. This
form will display the data corresponding to all four options by using a different set
of controls. The design of the wbFrmSkyShark.aspx Web form is displayed in
Figure 22-1.

522 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

The preceding figure does not show all the controls present on the Web form.
This is because I’ve used only a single Web form for all the options. Controls cor-
responding to each option are organized in various Panels. Table 22-1 lists all
these Panels and other controls present on the Web form.

Table 22-1 C o n t rols in the wbFrmSkyShark.aspx Form

C o n t ro l s F u n c t i o n

Panel1 Contains controls to display all the options

Panel2 Contains controls used for the View Flight Status option

Panel3 Contains controls used for the View Ticket Status option

Panel4 Contains controls used for the Confirm Reservation option

DataGrid1 Displays the new flights

LblStatus To display various messages to the user

CREATING THE CUSTOMER TRANSACTION PORTAL Chapter 22 523

FIGURE 22-1 The design of the wbFrmSkyShark.aspx Web form

Of these panels, Table 22-2 lists all the controls present in Panel1.

Table 22-2 C o n t rols in Pa n e l 1

C o n t rol Ty p e I D P ro p e rties Change d

Hyperlink Hyperlink1 Text=View New Flights

NavigateURL = wbFrmSkyShark.aspx?subform=VNF

Hyperlink Hyperlink2 Text=View Ticket Status

NavigateURL = wbFrmSkyShark.aspx?subform=VTS

Hyperlink Hyperlink3 Text=View Flight Status

NavigateURL = wbFrmSkyShark.aspx?subform=VFS

Hyperlink Hyperlink4 Text=Confirm Reservation

NavigateURL = wbFrmSkyShark.aspx?subform=CR

Hyperlink Hyperlink5 Text=Home

NavigateURL = wbFrmSkyShark.aspx?subform=H

If you notice, each panel is placed in different locations on the form. However, at
run time, only one panel will appear on the screen, depending on the choice of the
user. Therefore, you should align each panel at the same location before loading
the form. You can do so by changing the Left and Top attributes of the panels in
the Load event of the Web form, as given in the code that follows:

private void Page_Load(object sender, System.EventArgs e)

{

P a n e l 2 . S t y l e [“ l e f t ”] = ” 2 2 2 p x ” ;

P a n e l 2 . S t y l e [“ T o p ”] = ” 1 5 2 p x ” ;

P a n e l 3 . S t y l e [“ l e f t ”] = ” 2 2 2 p x ” ;

P a n e l 3 . S t y l e [“ T o p ”] = ” 1 5 2 p x ” ;

P a n e l 4 . S t y l e [“ l e f t ”] = ” 2 2 2 p x ” ;

P a n e l 4 . S t y l e [“ T o p ”] = ” 1 5 2 p x ” ;

}

The wbFrmSkyShark.aspx uses the dtFltDetails table to retrieve the flight
details. Before you write the code for the wbFrmSkyShark.aspx form, drag the
dtFltDetails table from Server Explorer to the design view of the form. Visual

524 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

Studio .NET automatically configures SqlDataAdapter and SqlConnection con-
trols for the form. You can read a description of these controls in Chapter 19,
“Basics of ASP.NET Web Applications,” in the section “Coding the Application.”

After you add SqlDataAdapter and SqlConnection controls to the form, you can
generate a dataset for the form. To generate the dataset, follow these steps:

1. Click anywhere on the form.

2. Click on the Data menu and select Generate Dataset.The Generate
Dataset dialog box will appear.

3. In the Generate Dataset dialog box, click on the New option and in the
corresponding box, enter dsFlight and click on OK.

4. A new DataSet control is added to your project.

All three data controls are visible in Component Designer in the Design view of
the form, as you can see in Figure 22-1. I will now proceed with the implemen-
tation of the functionality that was discussed in the beginning of the chapter.

The View New Flights Option
This option displays the details of the five most recent flights launched by the
SkyShark Airlines in a DataGrid control. To implement this functionality, create
a procedure named Display_NewFlights(). The code for this procedure is given as
follows.

public void Display_NewFlights()

{

string SelStr;

SelStr = “Select top 5 fltno, origin, destination, deptime, fareexec,

farebn, launchdate from dtfltdetails order by launchdate”;

SqlCommand SelComm;

SelComm = new SqlCommand(SelStr, sqlConnection1);

sqlDataAdapter1.SelectCommand = SelComm;

s q l D a t a A d a p t e r 1 . F i l l (d s F l i g h t 1 , ” D e t a i l s ”) ;

DataView source= new DataView(dsFlight1.Tables[“Details”]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

D a t a G r i d 1 . D a t a B i n d () ;

DataGrid1.Visible = true;

}

CREATING THE CUSTOMER TRANSACTION PORTAL Chapter 22 525

This procedure will retrieve the data stored in the fltno, origin, destination, dep-
time, fareexec, farebn, and launchdate columns of the dtFltDetails table. The
retrieved data is displayed in the DataGrid1 control. This procedure will be called
from the Page_Load event of the wbFrmSkyShark.aspx page.

The View Ticket Status Option
This option will enable the customer to view the status of her ticket. To view the
status,the customer needs to provide the ticket number and e-mail ID. These val-
ues are then validated against the values stored in the dtReservations table in the
database. If either the ticket number or the e-mail ID provided is incorrect, then
a suitable error will be displayed.

You will accept the values from the customer in the txtTicketNo and txtEMail text
boxes contained on Panel3. Table 22-3 lists all the controls contained in Panel3.

Table 22-3 C o n t rols in Pa n e l 3

C o n t rol Ty p e I D P ro p e rties Change d

TextBox txtTicketNo None

TextBox txtEMail None

Button btnSubmit Text=Submit

The values entered in the text boxes are validated and the corresponding result is
displayed on the click of the Submit button. The code for the Click event of the
Submit button is given as follows.

private void btnSubmit_Click(object sender, System.EventArgs e)

{

string strSel;

int status;

strSel = “Select email, status from dtReservations where TicketNo = @TN”;

SqlCommand SelComm;

SelComm = new SqlCommand(strSel, sqlConnection1);

sqlDataAdapter1.SelectCommand = SelComm;

sqlDataAdapter1.SelectCommand.Parameters.Add(“@TN”, SqlDbType.Char, 10).Value

= txtTicketNo.Text ;

526 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

SqlDataReader rdrTicket;

s q l C o n n e c t i o n 1 . O p e n () ;

rdrTicket = sqlDataAdapter1.SelectCommand.ExecuteReader();

if(rdrTicket.Read())

{

if(rdrTicket.GetString(0).Trim() == txtEMail.Text)

{

status = rdrTicket.GetInt32(1);

}

e l s e

{

lblStatus.ForeColor = Color.Red ;

lblStatus.Text = “Incorrect EMail ID!!”;

r e t u r n ;

}

}

e l s e

{

lblStatus.ForeColor = Color.Red ;

lblStatus.Text = “Incorrect Ticket Number!!”;

r e t u r n ;

}

s q l C o n n e c t i o n 1 . C l o s e () ;

if(status >= 0)

{

lblStatus.ForeColor = Color.Blue ;

lblStatus.Text = “Your ticket is confirmed”;

}

e l s e

{

lblStatus.ForeColor = Color.Blue ;

lblStatus.Text = “Your ticket is overbooked by “ + Convert.ToString

(s t a t u s) ;

}

}

CREATING THE CUSTOMER TRANSACTION PORTAL Chapter 22 527

The View Flight Status Option
This option will enable the customer to view the booking status of a flight. To
view the status, the customer needs to provide the flight number. The code then
searches for the booking status of the flight in the dtFltStatus table and displays
the result. If the flight number is incorrect, then an error message is displayed.

You will accept the values from the customer in the txtFlightNo text box con-
tained on Panel2. Table 22-4 lists all the controls contained in Panel2.

Table 22-4 C o n t rols in Pa n e l 2

C o n t rol Ty p e I D P ro p e rties Change d

TextBox txtFlightNo None

Button btnSubmit1 Text=Submit

The booking status of the flight is displayed on the click of the Submit button. If
the value entered is incorrect, an error message is displayed. The code for the
Click event of the Submit button is given as follows.

private void btnSubmit1_Click(object sender, System.EventArgs e)

{

string strSel;

int status;

strSel = “Select status from dtfltstatus where FltNo = @FN”;

SqlCommand SelComm;

SelComm = new SqlCommand(strSel, sqlConnection1);

sqlDataAdapter1.SelectCommand = SelComm;

sqlDataAdapter1.SelectCommand.Parameters.Add(“@FN”,

SqlDbType.Char, 10).Value = txtFlightNo.Text ;

SqlDataReader rdrTicket;

s q l C o n n e c t i o n 1 . O p e n () ;

rdrTicket = sqlDataAdapter1.SelectCommand.ExecuteReader();

if(rdrTicket.Read())

{

status = rdrTicket.GetInt32(0);

}

528 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

TEAMFL
Y

Team-Fly®

e l s e

{

lblStatus.ForeColor = Color.Red ;

lblStatus.Text = “Incorrect Flight Number!!”;

r e t u r n ;

}

s q l C o n n e c t i o n 1 . C l o s e () ;

if(status >= 0)

{

lblStatus.ForeColor = Color.Blue ;

lblStatus.Text = “Ticket is available”;

}

e l s e

{

lblStatus.ForeColor = Color.Blue ;

lblStatus.Text = “Flight is overbooked by “ +

C o n v e r t . T o S t r i n g (s t a t u s) ;

}

}

The Confirm Reservation Option
This option will enable the customer to confirm a reservation. To do so, the cus-
tomer will need to provide the ticket number and the e-mail ID, which are then
validated against the values stored in the dtReservations table of the database. If
either of the two values is incorrect, an appropriate error message is displayed.

You will accept the values from the customer in the txtTktNo and txtEml text boxes
contained on Panel4. Table 22-5 lists various controls present on Panel4.

CREATING THE CUSTOMER TRANSACTION PORTAL Chapter 22 529

Table 22-5 C o n t rols in Pa n e l 4

C o n t rol Ty p e I D P ro p e rties Change d

TextBox txtTktNo None

TextBox txtEml None

Button btnSubmit2 Text=Submit

These values are validated and the corresponding result is displayed on the click
of the Submit button. The code for the Click event of the Submit button is given
as follows.

private void btnSubmit2_Click(object sender, System.EventArgs e)

{

string strSel;

bool status;

strSel = “Select email, ticketconfirmed from dtReservations where

TicketNo = @TN”;

SqlCommand SelComm;

SelComm = new SqlCommand(strSel, sqlConnection1);

sqlDataAdapter1.SelectCommand = SelComm;

sqlDataAdapter1.SelectCommand.Parameters.Add(“@TN”,

SqlDbType.Char, 10).Value = txtTktNo.Text ;

SqlDataReader rdrTicket;

s q l C o n n e c t i o n 1 . O p e n () ;

rdrTicket = sqlDataAdapter1.SelectCommand.ExecuteReader();

if(rdrTicket.Read())

{

if(rdrTicket.GetString(0).Trim() == txtEml.Text)

{

status = rdrTicket.GetBoolean(1);

}

e l s e

{

lblStatus.ForeColor = Color.Red ;

lblStatus.Text = “Incorrect EMail ID!!”;

r e t u r n ;

}

}

530 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

e l s e

{

lblStatus.ForeColor = Color.Red ;

lblStatus.Text = “Incorrect Ticket Number!!”;

r e t u r n ;

}

s q l C o n n e c t i o n 1 . C l o s e () ;

if(status == true)

{

lblStatus.ForeColor = Color.Blue ;

lblStatus.Text = “Your ticket has already been confirmed!!”;

}

e l s e

{

string UpdStr;

UpdStr= “Update dtReservations set ticketconfirmed = 1 where

ticketno = @TN”;

SqlCommand UpdComm;

UpdComm = new SqlCommand(UpdStr, sqlConnection1);

sqlDataAdapter1.UpdateCommand = UpdComm;

sqlDataAdapter1.UpdateCommand.Parameters.Add(“@TN”,

SqlDbType.Char, 10).Value = txtTktNo.Text ;

s q l C o n n e c t i o n 1 . O p e n () ;

sqlDataAdapter1.UpdateCommand.ExecuteNonQuery ();

sqlConnection1.Close ();

lblStatus.ForeColor = Color.Blue ;

lblStatus.Text = “Your ticket has been confirmed!!”;

}

}

This finishes the code for various options.These codes are executed after the page
is loaded. Therefore, I will now list the code for the Page_Load event of the
wbFrmSkyShark.aspx page.

private void Page_Load(object sender, System.EventArgs e)

{

// Put user code to initialize the page here

P a n e l 2 . S t y l e [“ l e f t ”] = ” 2 2 2 p x ” ;

CREATING THE CUSTOMER TRANSACTION PORTAL Chapter 22 531

P a n e l 2 . S t y l e [“ T o p ”] = ” 1 5 2 p x ” ;

P a n e l 3 . S t y l e [“ l e f t ”] = ” 2 2 2 p x ” ;

P a n e l 3 . S t y l e [“ T o p ”] = ” 1 5 2 p x ” ;

P a n e l 4 . S t y l e [“ l e f t ”] = ” 2 2 2 p x ” ;

P a n e l 4 . S t y l e [“ T o p ”] = ” 1 5 2 p x ” ;

if(Request.QueryString.Count == 0)

{

r e t u r n ;

}

e l s e

{

string param;

param = Request.QueryString.Get(0).ToString();

s w i t c h (p a r a m)

{

case “VNF”:

D i s p l a y _ N e w F l i g h t s () ;

b r e a k ;

case “VTS”:

Panel3.Visible = true;

b r e a k ;

case “VFS”:

Panel2.Visible = true;

b r e a k ;

case “CR”:

Panel4.Visible = true;

b r e a k ;

case “H”:

b r e a k ;

d e f a u l t :

b r e a k ;

}

}

}

532 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

This listing completes the coding part. I will now discuss the testing of this
application.

Testing the Application
To test the application, perform the following steps:

1. Execute the application. The wbFrmSkyShark.aspx Web form appears as
shown in Figure 22-2.

2. Click on the View New Flights link. DataGrid1 appears, as shown in
Figure 22-3, containing the appropriate records.

CREATING THE CUSTOMER TRANSACTION PORTAL Chapter 22 533

FIGURE 22-2 The home page

3. Click on the View Ticket Status link. The corresponding screen displays
two text boxes and a button, as shown in Figure 22-4.

534 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 22-3 The details of new flights

FIGURE 22-4 The screen to check the ticket status

4. Enter test values in both the text boxes and click the Submit button. If
both the values are correct, the status is displayed. Otherwise, an error
message is displayed.

5. Click on the View Flight Status link. The corresponding screen displays
a text box and a button, as shown in Figure 22-5.

6. Enter an appropriate value in the Flight Number text box and click the
Submit button. If the provided value is correct, the booking status of the
flight is displayed. Otherwise, an error message is displayed.

7. Click on the Confirm Reservation link. The corresponding screen dis-
plays two text boxes and a button, as shown in Figure 22-6.

CREATING THE CUSTOMER TRANSACTION PORTAL Chapter 22 535

FIGURE 22-5 The screen to check the flight status

8. Enter some appropriate values in both the text boxes and click the Sub-
mit button. If both the values are correct, then the reservation is con-
firmed. Otherwise, an error message is displayed.

9. Click on the Home link. The home page appears.

This completes the testing of the customer portal of SkyShark Airlines.

Summary
In this chapter, you learned how to create the customer transaction portal of
SkyShark Airlines. Next, you learned about the interface of the form and the pro-
gramming logic to add functionality to the form. Finally, you examined the steps
to test the application and ensure that it operates correctly.

536 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 22-6 The screen to confirm reservation

Chapter 23
Debugging and
Testing the
Application

You have developed the SkyShark Airlines application. Suppose you compile
the application and run it. The application does run; however, it generates

error messages or displays dialog boxes that might not be interpretable by end
users. By debugging your application, you can track and eliminate these errors.

Visual Studio .NET provides several options to help you in such situations. In this
chapter, I will discuss the various debugging tools provided by Visual Studio
.NET to debug these errors. This chapter also discusses the points to be consid-
ered while testing the application.

Locating Errors in Programs
One of the most difficult tasks in developing an application is finding errors.
With Visual Studio .NET it is very simple to trace syntax errors. Visual Studio
.NET warns you about syntax errors at the time of writing the code itself. In addi-
tion, these errors are listed when you compile the program in the Output window.

Visual Studio .NET provides you with a number of debugging tools and options
to enable you to write error-free programs. You can see these tools and options
while debugging a Visual Studio .NET program in the break mode. A program is
in break mode when any error halts the execution of your program temporarily.
You can also introduce a breakpoint in your application. When your application
encounters a breakpoint, it enters the break mode. This mode enables you to
examine the status of your application by using other debugging tools provided by
Visual Studio .NET.

A program can be forced to enter the break mode by setting a breakpoint. You can
set a breakpoint simply by placing the cursor on a line and pressing the F9 key.
You can also set a breakpoint as follows: On the Debug menu, click the New
Breakpoint option. The New Breakpoint dialog box appears as shown in Figure
23-1.

538 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

TEAMFL
Y

Team-Fly®

You can also enter the break mode from within your code by using the Stop
statement.

Visual Studio .NET has four types of breakpoints, as follows:

◆ Function breakpoint. Temporarily puts the program execution on hold
when the program execution reaches a specific position within a func-
tion.

◆ File breakpoint. Causes the program execution to halt when it reaches a
specified position within the specified file.

◆ Address breakpoint. Causes the program to break when execution
reaches a specific memory location.

◆ Data breakpoint. Causes the program execution to halt when the value
of a variable changes.

The advantage of the break mode is that it enables you to modify the values of
variables and properties. Now I will discuss other debugging tools available with
Visual Studio .NET.

DEBUGGING AND TESTING THE APPLICATION Chapter 23 539

FIGURE 23-1 The New Breakpoint dialog box

Watch Window
The Watch window is useful to monitor values of variables and expressions. You
can add variables to the Watch window by entering the variable name in the
Name column of the window or by selecting QuickWatch option from the Debug
window. The Watch window can be invoked only from the break mode. Figure
23-2 displays the Watch window.

Locals Window
The Locals window displays variables that are local to the current execution con-
text, such as the current function or module. In order to open the Locals window,
you must be in debugging mode. To open the Locals window, on the Debug
menu, point to Windows, and then click Locals. Figure 23-3 shows the Locals
window.

Call Stack Window
The Call Stack window lists the functions and procedure calls that are currently
loaded in memory in the order in which they were called. You can view this win-
dow only in the break mode.The Call Stack window displays the sequence of pro-
gram execution. The Call Stack window is shown in Figure 23-4.

540 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 23-2 The Watch window

FIGURE 23-3 The Locals window

Autos Window
The Autos window displays the name of all variables in the current and previous
statement. You need not specify the name of the variable. The Visual Studio
.NET debugger automatically identifies the variables in the current execution
location statement and displays them in the window. Figure 23-5 displays the
Autos window.

Command Window
The Command window is used to evaluate expressions or issue commands when
in the debug mode. To open the Command window, perform the following steps:

On the View menu, point to Other Windows.

In the displayed list, click on the Command Window option.

The Command window has two modes, Command and Immediate. Command
mode is used to issue Visual Studio .NET commands, while the Immediate mode
is used for debugging purposes, evaluating expressions, and printing variable val-
ues. For example, ? num, where num represents a variable, will return the value
stored in the variable. Figure 23-6 displays the Command window.

DEBUGGING AND TESTING THE APPLICATION Chapter 23 541

FIGURE 23-4 The Call Stack window

FIGURE 23-5 The Autos window

Having learned about the basics of debugging an application, you can test the
SkyShark Airlines application. The following section discusses how to test the
Web site developed for SkyShark Airlines.

Testing the Application
After creating the application, you need to test the application. Testing enables
you to verify that your application is secure and running smoothly. In addition,
testing the Web site ensures that there are no dead links in your Web site. You can
now test the Web site for SkyShark Airlines.

While testing the application, you will log in as three different users and test the
functionality associated with each of the users.To start with, you will log in as the
network administrator. To do this, perform the following steps:

1. Execute the application. The default.aspx page appears as shown in Fig-
ure 23-7.

542 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 23-6 The Command window

FIGURE 23-7 The default.aspx page

2. In the User Name box, enter the user name as admin. The admin account
is created by default when you create the application.

3. In the Password box, enter the password as password.

4. Click on the Submit button. The ManageUsers.aspx page appears, as
shown in Figure 23-8. This page helps the network administrators to
add or delete users.

5. Next, you will add a new user to the application.This user will be added
as a business manager. To do this, enter the following details on the form
to add new users:

User Name: RobertB

Password: Password

Confirm Password: Password

Role: BM

6. Click on the Submit button. A message appears, as shown in Figure
23-9, indicating that the user was successfully added. Now you will log
on using the credentials of this new user and test the functionality pro-
vided to a business manager.

DEBUGGING AND TESTING THE APPLICATION Chapter 23 543

FIGURE 23-8 The ManageUsers.aspx page

7. Click on the Logoff link. The Logoff.aspx page appears as shown in
Figure 23-10.

544 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 23-9 Adding a new user

FIGURE 23-10 Logging off the application

8. Click on the Click here to logon link to enter the application as a busi-
ness manager.

9. Enter the username and password that you entered in Step 5, and click
on the Submit button. The Addfl.aspx page appears as shown in Figure
23-11. This page helps a business manager to add new flights. In addi-
tion, a business manager can generate various reports.

10. Click on the Reports link. The Reports.aspx page appears, as shown in
Figure 23-12. A business manager can use this page to view different
reports.

DEBUGGING AND TESTING THE APPLICATION Chapter 23 545

FIGURE 23-11 The page to add new flights

11. Click on the second Generate button to generate the report for the top
100 customers. The report appears as shown in Figure 23-13. You will
now log in as a line-of-business executive.

546 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 23-13 The report generated by the Web site

FIGURE 23-12 The page to view reports

12. Click on the Logoff link. The Logoff.aspx page appears.

13. Click on the Click here to logon link to log in to the Web site. The
default.aspx page appears.

14. In the User Name box, type the username as meetag.

15. In the Password box, type the password as password.

Click on the Submit button. The CreateRes.aspx page appears as shown
in Figure 23-14.

16. In the Flight Number box, enter 0735.

17. Click on the Next button.The details of the flight appear, as shown in
Figure 23-15. You may need to scroll down.

DEBUGGING AND TESTING THE APPLICATION Chapter 23 547

FIGURE 23-14 The CreateRes.aspx page

18. In the Customer Name box, enter John Smith.

19. In the E-Mail ID box, enter JohnS@xyz.com.

20. Click on the Create Reservation button. A ticket is issued to the cus-
tomer in the Ticket.aspx page, as shown in Figure 23-16.

548 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 23-15 The flight details

FIGURE 23-16 The ticket issued to a customer

TEAMFL
Y

Team-Fly®

21. Click the Back button.

22. Click on the Logoff link.

The user is logged off from the site.

With this, you have tested all the functionalities provided by the system.

Summary
In this chapter, you learned about the basics of debugging an application. Next,
you learned about the tools provided by Visual Studio .NET for debugging an
application. Finally, you tested the Web site developed for SkyShark Airlines.

DEBUGGING AND TESTING THE APPLICATION Chapter 23 549

This page intentionally left blank

Chapter 24
Administering
the Application

In the preceding chapters, you learned to create the SkyShark Airlines Web
application and test it. After an application is successfully created, a network

administrator needs to perform regular maintenance tasks to ensure that the
application operates optimally.

Two common tasks that need to be performed by network administrators to
ensure that the application operates optimally are database management and Web
server management. In this chapter, I explain how these tasks are performed. You
need to perform these tasks regularly to ensure that the SkyShark Airlines is oper-
ational at all times.

Managing the Databases
Database management tasks are performed using SQL Server Enterprise Man-
ager. The database management tasks that a network administrator needs to per-
form for the SkyShark Airlines application are summarized in the following list:

◆ Manage user accounts

◆ Move data from the dtReservations and dtPassengerDetails tables

◆ Back up the SkyShark database

◆ Export data from the dtDepartedFlights and dtCancellations tables

◆ Review database logs on a timely basis

◆ Schedule database maintenance tasks

In the list of preceding tasks, the SkyShark Airlines application can be used to
perform the first two tasks. However, SQL Server Enterprise Manager can help
you perform the remaining tasks easily. Therefore, in this section, you will learn to
use Enterprise Manager to perform database administration tasks.

552 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

Backing Up the SkyShark Airlines Databases
To back up the SkyShark Airlines database, you first need to launch Enterprise
Manager. To launch Enterprise Manager in SQL Server 2000, perform the steps
given as follows:

1. Click on the Start menu. The Start menu will appear.

2. On the Start menu, point to Programs and then point to Microsoft SQL
Server.

3. From the Microsoft SQL Server submenu, select Enterprise Manager.
The SQL Server Enterprise Manager window will open.

After you open the SQL Server Enterprise Manager window, navigate to the
SkyShark database by performing the following steps:

1. Under Console Root, double-click on Microsoft SQL Servers. The list
of SQL Server groups registered on the SQL Server will appear.

2. Click on the + (plus) sign next to the SQL Server groups and then click
on the + sign next to the server on which you had created the database.

3. Next, click on the + sign next to the Databases folder. The SkyShark
Airlines database will appear in the list of databases, as shown in Figure
24-1.

ADMINISTERING THE APPLICATION Chapter 24 553

FIGURE 24-1 Path to the SkyShark database

After you navigate to the database, follow these steps to make a backup of the
database:

1. Right-click on the name of the database and point to All Tasks.

2. From the All Tasks submenu, select Backup Database. The SQL Server
Backup - SkyShark dialog box will appear, which is shown in Figure
24-2.

3. Before you can back up a database, you need to specify a device to which
you want to back up. For example, you can back up a database to a Tape
drive or a location on your computer. To specify a new backup device,
click on Add. The Select Backup Destination dialog box will appear.

4. In the Select Backup Destination dialog box, you can either specify a
backup device or specify the name of the file to which you want to
backup the database. To back up the database in a directory, specify the
location and name of the file as C:\Program Files\Microsoft SQL
Server\MSSQL\BACKUP\SkyShark_Backup in the File name text box.

554 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 24-2 Backing up a database

5. Click on OK to close the Select Backup Destination dialog box. The file
name that you specified in Step 5 will appear in the Backup to list.

6. Click on the Options tab of the SQL Server Backup - SkyShark dialog
box.

7. On the Options tab, check the Verify backup upon completion option.

8. Click on OK. The SQL Ser ver Backup - SkyShark dialog box will close,
and SQL Server will start backing up your database.

SQL Server will display the Backup Progress dialog box when the backup is in
progress. Upon successfully completing the backup, it will display a dialog box to
indicate that the backup was completed successfully.

Instead of backing up your databases manually each time, you can also create a
schedule to back up databases on a regular basis. I will discuss the procedure to
periodically back up databases in the “Scheduling Database Maintenance Tasks”
section of this chapter.

Exporting Data from Databases
The dtDepartedFlights and dtPassengerDetails tables are used for storing data
pertaining to flights that have departed and the names of passengers on these
flights respectively. Data in these tables will tend to become redundant over time.
For example, you might not need to maintain a list of passengers who have flown
a particular flight that departed a month ago. Therefore, you can archive this data
into another data store and delete it from the database.

To move data from one database to another, you can use the SQL Server DTS
(Data Transformation Services) tasks. To use a DTS task for exporting data from
the dtDepartedFlights table, follow these steps:

1. Double-click on SkyShark in SQL Server Enterprise Manager to view a
list of objects in the database.

ADMINISTERING THE APPLICATION Chapter 24 555

The default location of the backup folder is C:\Program Files\Microsoft SQL Server
\MSSQL\BACKUP\.

TIP

2. Under SkyShark, right-click on Tables and point the mouse over All
Tasks. From the All Tasks submenu, select Export Data.The DTS
Import/Export Wizard will be launched.

3. On the Welcome screen of the DTS Import/Export Wizard, click on
Next.The Choose a Data Source screen of the wizard will appear.
Notice that the name of the SkyShark database is already selected in the
Database list.

4. Click on Next. The Choose a destination screen of the wizard will
appear. This screen is shown in Figure 24-3.

5. Select the database to which you want to back up data. For example, I
have selected the SkyShark_Archive database. Click on Next to con-
tinue. The Select Table Copy or Query screen will appear.

6. On the Select Table Copy or Query screen, retain the default option to
copy a table and click on Next. The Select Source Tables and Views
screen will appear as shown in Figure 24-4.

556 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 24-3 The Choose a destination screen of the DTS Import/Export Wizard

7. Check the dtDepartedFlights table and click on Next. The Save, sched-
ule, and replicate package screen will appear.

8. To run the DTS task immediately, click on Next. The Completing the
DTS Import/Export screen will appear.

9. Click on Finish to run the DTS task.

While the DTS task executes successfully, the Execute Package dialog box is
open. When the task is complete, a dialog box appears signifying the successful
execution of the DTS task. Click on OK to close the dialog box and then click on
Done to close the Execute Package dialog box.

After you copy data from the dtDepartedFlights table, you can delete the data in
this table from the SkyShark database.

Examining Database Logs
Every activity in SQL Server is logged in a log file. You can examine these log
files on a periodic basis to track all activities on the database and identify any
errors that SQL Server might encounter. To view the SQL Server log files, follow
these steps:

1. In Enterprise Manager, double-click on Management under the entry
for the SQL Server for which you want to view log files.

ADMINISTERING THE APPLICATION Chapter 24 557

FIGURE 24-4 The Select Source Tables and Views screen of the DTS Import/Export Wizard

2. Under Management, click on SQL Server Logs. The SQL Server logs
appear in the right pane, as shown in Figure 24-5.

3. To view any log file, double-click on the log file. The information logs in
the log file that you select will appear. You can view these entries to
detect any error in your databases.

Scheduling Database Maintenance Tasks
Having examined how to back up databases and analyze SQL Server log files, you
can examine how to create scheduled database maintenance tasks so that the
process of backing up databases is automated.To create a maintenance task for the
SkyShark database, follow these steps:

1. Right-click on the name of the database in Enterprise Manager and
select the Maintenance Plan menu option from the All Tasks menu. The
Database Maintenance Plan Wizard will be launched.

2. On the Welcome screen of the wizard, click on Next. The Select Data-
bases screen of the wizard will appear. Notice that the SkyShark database
is already selected.

558 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 24-5 Viewing the SQL Server log filesTEAMFL
Y

Team-Fly®

3. Click on Next until you reach the Specify the Database Backup Plan
screen.

4. On the Specify the Database Backup Plan screen, click on Change to
specify a schedule for backing up databases. The Edit Recurring Job
Schedule screen will appear.

5. On the Edit Recurring Job Schedule screen, specify the schedule to back
up databases. For example, I have created a schedule to back up the data-
base daily at 12:00 A.M., as shown in Figure 24-6.

6. Click on OK.The Specify the Database Backup Plan screen will reap-
pear. Click on Next to continue.

7. Click on Next until you reach the Completing the Database Mainte-
nance Plan Wizard screen.

8. On the Completing the Database Maintenance Plan Wizard screen,
specify a name for the maintenance plan or retain the default name and
click on Finish.

The maintenance tasks that you schedule are listed in the Database Maintenance
Plans section of Enterprise Manager as shown in Figure 24-7.

ADMINISTERING THE APPLICATION Chapter 24 559

FIGURE 24-6 Specifying a schedule to back up databases

Managing Internet Information Server
You can optimize the SkyShark Airlines Web application by modifying the
Web.Config file or by using Internet Services Manager, which is the administra-
tion tool for IIS (Internet Information Server). Internet Services Manager is an
MMC (Microsoft Management Console) based console that can be used to manage
IIS Server. By using Internet Information Services, you can add and remove Web
sites, control access to Web sites, and start and stop the IIS server. In this section,
you will examine the steps to configure HTTP error pages and Web server log
files for the SkyShark Airlines application. To configure the error pages and Web
server log files, I will use the Web.Config file and Internet Information Services
MMC add-in, respectively.

Configuring IIS Error Pages
A default set of error pages is associated with IIS. Error pages are HTML pages
that are numbered according to the error that they represent.These pages are dis-
played when HTTP errors occur while browsing the Web site. For example, if IIS
encounters an error while processing a request, an internal server error is gener-
ated, which is the HTTP error number 500. Similarly, if the user requests a Web
page that does not exist, error 404 is generated, which is shown in Figure 24-8.

560 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 24-7 Viewing a list of maintenance tasks

Notice that in the preceding figure, I browsed for the Web form http://
npandey-d185/SkyShark/CreateNewReservation.aspx that does not exist in
the application. You can change the default error pages that are associated with
IIS. For example, you can create a new Web page for the 404 error. The Web page
might provide links to another page of the Web site or enable the user to send an
e-mail message to the network administrator of SkyShark Airlines.

The next section will customize the 404 error page for the Web site. I have cre-
ated a simple HTML page to which the user should be redirected if a Web page
does not exist. The code for the page is given as follows:

< h t m l >

< h e a d >

<title>Page Not Found</title>

< / h e a d >

< b o d y >

<p align=”center”>Page Not

F o u n d . < / F O N T > < / b > < / p >

< H R >

<p>The resource you are looking for (or one of its dependencies) could have been

removed, had its name changed, or is temporarily unavailable. Please make sure

that it is spelled correctly or select one of the options given below:</p>

ADMINISTERING THE APPLICATION Chapter 24 561

FIGURE 24-8 A default error message

<p>Report a bug to the System

a d m i n i s t r a t o r < / a > < / p >

<p>Browse to default page of SkyShark

A i r l i n e s < / p >

< H R >

<p>(C) <a href=”http://npandey-d185

/ s k y s h a r k ” >

SkyShark Airlines 2001-

2 0 0 2 < / F O N T > < / f o n t > < / p >

< / b o d y >

< / h t m l >

Save the file in the root directory of the SkyShark Airlines application with the
name Error404.htm. To associate the HTML page with the 404 error, you need
to make configuration changes in the Web.Config file.The Web.Config file is an
XML-based file that contains information pertaining to the configuration of the
application, such as the authentication mode that is supported by the application
and the mode of tracking session state of the application.

The Web.Config file includes the <customError> element that is used for config-
uring custom error messages for the application. The <customError> element has
two attributes that pertain to custom error messages. These attributes are
described in the following list:

◆ mode. The mode attribute is used to enable or disable custom error mes-
sages for the Web site.This attribute can have the values On, Off, or
RemoteOnly. When the value is On, custom error messages are enabled in
the application. Similarly, the value Off disables custom error messages
on the Web site. When the value is RemoteOnly, custom error messages
are displayed only for remote requests to the Web application.

◆ defaultRedirect. The defaultRedirect attribute is used to identify the
location and name default error page that is associated with the Web
application.

The <customError> element includes a child element <error> that is used to con-
figure error pages for specific errors that occur in the Web application. Thus, if
you need to specify a specific error page for the 404 error, you need to use the
<error> element. The <error> element includes two attributes: statusCode and
redirect. These attributes are described in the following list:

562 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

◆ statusCode. The statusCode attribute is used for specifying the error
number with which you are associating the error page.

◆ redirect. The redirect element is used to specify the custom page that
you want to display when the application encounters the error.

To associate your error page with the 404 error, open the Web.Config file in
Visual Studio .NET. The Web.Config file is located in the root directory of the
Web application. In the Web.Config file, locate the <customError> element and
replace it with the following code:

<customErrors mode=”On” defaultRedirect=”AllErrors.htm”>

<error statusCode=”404” redirect=”Error404.htm”/>

< / c u s t o m E r r o r s >

Save the Web.Config file. After you associate the custom error page with error
404, the error message shown in Figure 24-9 is generated when a user requests a
Web page that does not exist.

Managing Web Server Log Files
IIS generates log files for all requests that are processed by it. Log files can help
you track the users who have visited your Web site or provide useful information
about the performance of the IIS server and your application.

ADMINISTERING THE APPLICATION Chapter 24 563

FIGURE 24-9 Displaying custom error messages

You can configure IIS to create log files in a number of formats. Some of the com-
monly used formats for generating log files are given as follows:

◆ W3C Extended Log File. This format creates ASCII files that contain
one entry per request that is processed by IIS. Each entry has a number
of fields that provide information about the different parameters of the
request. For example, the #Date field indicates the date on which the first
entry in the log file was made.

◆ Microsoft IIS Log. This format also creates ASCII files that record
basic information about each Web request, such as the user ’s IP address
and the number of bytes that were exchanged in processing the request.
The Microsoft IIS Log format can be exported to other applications like
Microsoft Excel, Microsoft Access, or another RDBMS (Relational
Database Management System) for proper utilization.

◆ ODBC Logging. This format is used to record log file data in ODBC
(Open Database Connectivity) compliant databases, such as Microsoft
SQL Server. This is a convenient format for analyzing log file data
because data from SQL Server databases can be presented in a number
of ways.

To configure the location of log files and the format in which logs should be cre-
ated, you need to use the MMC-based administration console for Internet Infor-
mation Services. To access the MMC-based administration console for Internet
Information Services, perform the following steps:

1. Open the Programs menu by clicking on Start and then selecting Pro-
grams.

2. On the Programs menu, point to Administrative Tools and click Internet
Services Manager to open the Internet Information Services window.

3. In Internet Information Services, right-click on Default Web Site and
select Properties. The Default Web Site Properties dialog box wil l
appear.

4. In the Default Web Site Properties dialog box, select the required log-
ging format from the Active log format list.

5. Click on Properties to configure the location and the frequency with
which the log files should be generated. The Extended Logging Proper-
ties dialog box will appear.

564 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

6. Specify the location of the log files in the Log file directory text box and
the frequency for creating new log files in the New Log Time Period
section of the Extended Logging Properties dialog box.

7. Click on OK to close the Extended Logging Properties dialog box. The
Default Web Site Properties dialog box will reappear.

8. Click on OK to close the Default Web Site Properties dialog box.

After you complete the preceding steps, IIS creates log files at the specified loca-
tion. You can retrieve log files from time to time and analyze the performance of
your Web application.

Summary
Network administrators can use SQL Server Enterprise Manager to manage
databases. You can use the Enterprise Manager to back up databases, review data-
base logs and schedule maintenance tasks.

You can change the default error messages associated with your Web application
by designing a new HTML page and associating it with the application by using
the Web.Config file. The Web.Config file includes the <customError> element,
which in turn includes the <error> element that is used for mapping the error
numbers with the error pages of the application.

IIS creates log files to track all Web requests that are processed by the server. You
can select from a number of log file formats to create the log file, depending upon
where you want to store the logs and how you want to analyze them.

ADMINISTERING THE APPLICATION Chapter 24 565

This page intentionally left blank

Chapter 25
Securing the
Application

Securing a Web site is as important as developing it. You need to ensure that
your Web site is safeguarded from hackers and unauthenticated users to pre-

vent any damage to the content or functionality of your Web site. This is essen-
tial for the smooth functioning of your Web application. You can implement
various security measures to secure your Web site from unintentional access.

In this chapter, you will learn about the authentication mechanisms for Web and
database servers. Next, you will use these mechanisms to implement Web server
and database security on the SkyShark Airlines application.

Security in ASP.NET Applications
ASP.NET applications are deployed on IIS (Internet Information Server). IIS has
security mechanisms that can be implemented to ensure safety of Web applica-
tions. In addition to the security mechanisms of IIS, ASP.NET applications have
security mechanisms implemented using a Web.Config file that can be used to
specify how users are authenticated when accessing the application.

In this section, you will learn about concepts pertaining to securing Web sites by
using IIS and ASP.NET. You will also learn about the different authentication
mechanisms that can be implemented for securing a Web application.

Authentication Mechanisms
Authentication is the method of determining whether a user is authorized to view
the requested resource.The user is able to access the resources on the server or the
Web site only after the authentication process is complete. In this section, I will
explain the authentication mechanisms supported by IIS and ASP.NET.

IIS Security Mechanisms
IIS provides built-in support for validating the identity of clients. An ASP.NET
application is deployed on IIS, which implies that any security feature made avail-

568 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

TEAMFL
Y

Team-Fly®

able by IIS is automatically incorporated into your Web application.The authen-
tication methods available with IIS are Anonymous authentication, Basic authen-
tication, Integrated Windows authentication, and Digest authentication. Take a
look at Table 25-1 to learn more about each of these methods.

Table 25-1 IIS Authentication Methods

Authentication Method D e s c r i p t i o n

Anonymous This type of authentication mechanism does not require a user
to provide a user ID or password to browse through a Web
application. In this mechanism, IIS uses a default logon name
and password to request for resources from a Web application.
Therefore, this is the least secure authentication medium avail-
able for accessing Web site resources.

Basic This type of authentication mechanism does not allow a user
to access the resources of a Web application unless the user
provides the user ID and password. However, this authentica-
tion method has one drawback.The user’s password is trans-
mitted over the Internet in an unencrypted form, making it
vulnerable to hackers.

Integrated Windows This type of authentication uses the “hashing to track the user”
mechanism. In this mechanism,a user need not specify a pass-
word to be authenticated.The user is verified over the network
by using the user ’s Windows account logon credentials.This
mechanism is generally deployed for internal business process-
es of organizations, where the users accessing the application
are few.

Digest This type of authentication mechanism, just like the Basic
authentication mechanism, does not allow a user to access the
resources of a Web application unless he or she provides the
user ID and password.This mechanism ensures greater securi-
ty than the Basic authentication method because the user’s
password is sent over the Internet in an encr ypted form.

SECURING THE APPLICATION Chapter 25 569

ASP.NET Authentication Mechanisms
To ensure the security of your Web applications, ASP.NET provides three
authentication mechanisms: Forms authentication, Passport authentication, and
Windows authentication. These three mechanisms are described as follows:

◆ Forms authentication. This authentication mechanism, also called
cookie-based authentication, is based on a single logon form. Users can
access this form anytime they need to log on. A few Web sites allow you
to browse through Web forms without the need to log on. However,
when you have to log on to a Web site, you are directed to a logon form.
After the logon process is successful, you are redirected to the original
form. In Forms authentication, a logon form is invoked as soon as an
unauthenticated user requests for a Web form. Cookies are vulnerable to
attack by hackers and can be easily accessed by other users on the site
because cookies are transmitted over the Web in an unencrypted form.
However, cookies can be made safer by encryption. In addition, you can
embed cookies with the IP address of the original user to restrict unau-
thenticated users from getting permissions to resources.

◆ Passport authentication. Passport is the default authentication mecha-
nism provided by Microsoft for its Hotmail, MSN, and Passport ser-
vices. This is a centralized authentication service, which requires fewer
resources because you need not implement additional hardware for
authentication. Moreover, all users registered for the Passport authenti-
cation service are registered users of the Web site. Therefore, Passport
authentication caters to a greater number of users as compared to the
Forms authentication service. To use the Passport authentication service,
you need to download the Passport software development kit.

◆ Windows authentication. Windows authentication is implemented in a
Windows 2000 domain. In Windows authentication, users are authenti-
cated against their account in the Windows 2000 domain.

Securing a Web Site with IIS and ASP.NET
By configuring security settings on IIS and including the Web.Config file, you
can create a highly secure environment for your application. Consider the case of
the SkyShark Airlines application.

570 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

The corporate office and regional offices of SkyShark Airlines are connected on a
LAN. Therefore, every user who accesses the Web application has a valid Win-
dows account. Consequently, as the first level of authentication, you can make
Windows authentication available on IIS. This ensures that anonymous users do
not access the Web site. As the next level of security, you can enable form-based
authentication for your ASP.NET application and validate users with their
accounts in the dtUsers table of SQL Server before they can access the Web site
resources.

Therefore, the SkyShark Airlines application has two levels of security. The first
level of security is implemented by IIS. Users authenticated by IIS access the Web
application and are then authenticated against the dtUsers table of the SQL
Server database. When users are authenticated, their profile is also retrieved from
the dtUsers table, which is used to grant access to Web pages. You can view the
mechanism of granting permissions to users for accessing Web pages in Chapter
21, “Implementing the Business Logic.”

To restrict access to Web pages, the SkyShark Airlines application uses the Ses-
sion variables usrRole and usrName. The code to initialize these variables is dis-
cussed in Chapter 21.

I will now discuss the steps to implement Windows authentication on IIS and
Forms authentication on ASP.NET.

Enabling Authentication
in SkyShark Airlines

In the SkyShark Airlines application,you need to enable Windows authentication
on the IIS Web server and Forms authentication for the SkyShark Airlines appli-
cation. In this section, I list the steps to configure these two authentication modes
for the SkyShark Airlines application.

Configuring IIS Authentication
To enable Windows authentication, you can use the IIS console. The steps to
open the console and configure the application are given as follows:

1. Click on Start and point to Programs.

SECURING THE APPLICATION Chapter 25 571

2. From the Programs menu, select Administrative Tools and then click on
Internet Services Manager. The Internet Information Services window
will open.

3. In the Internet Information Services window, double-click on Default
Web Site to view a list of Web sites installed on the computer.

4. In Default Web Site, right-click on SkyShark and select Properties. The
SkyShark Properties dialog box will appear.

5. Click on the Directory Security tab of the SkyShark Properties dialog
box.This tab of the dialog box is shown in Figure 25-1.

6. In the SkyShark Properties dialog box, click on Edit in the Anonymous
access and authentication control section.

7. In the Authentication Methods dialog box, clear the Anonymous access
option and check the Integrated Windows authentication option, as
shown in Figure 25-2.

572 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 25-1 Directory Security tab of the SkyShark Properties dialog box

8. Click on OK to close the Authentication Methods dialog box.The
SkyShark Properties dialog box will reappear.

9. Click on OK to close the SkyShark Properties dialog box.

Your Web server is now configured for Windows authentication. Next, you need
to configure the Web application to use Form authentication. In the next section,
I will discuss Form authentication in ASP.NET.

Configuring Authentication in ASP.NET
To configure ASP.NET security, you need to specify a default logon page that is
displayed to a user if the identity of the user is not validated. The default logon
page for SkyShark Airlines is default.aspx. Therefore, if an unauthenticated user
tries to navigate directly to a page of the Web application, the user will be directed
to the default.aspx page.

ASP.NET provides the System.Web.Security namespace that makes the necessary
classes available for configuring authentication. To authenticate a user, you need
to use the FormsAuthentication class of the System.Web.Security namespace.
Some important functions of this class, which help you to authenticate users on
your Web application, are listed in Table 25-2.

SECURING THE APPLICATION Chapter 25 573

FIGURE 25-2 Enabling Integrated Windows authentication

Table 25-2 Methods of the FormsAuthentication C l a s s

M e t h o d D e s c r i p t i o n

Authenticate The Authenticate method validates usernames and passwords
against those specified in the data store.

GetAuthCookie The GetAuthCookie method creates an authentication cookie for
an authenticated user. The cookie can be used for identifying
authenticated users.

RedirectFromLoginPage After validating a user, the RedirectFromLoginPage method redi-
rects a user to the requested page.

RenewTicketIfOld The RenewTicketIfOld method renews/revalidates the authentica-
tion ticket of a user after it is no longer valid.

SignOut The SignOut method is used for logging a user off from the Web
application.

To implement Forms authentication, you need to change the <authentication>
and <authorization> elements of the Web.Config file. By default, when you cre-
ate a new application, authentication is not enabled in your application, as speci-
fied by the following line of code in the Web.Config file:

<authentication mode=”None”/>

To enable Forms authentication on your Web site, change the <authentication>
property as follows:

<authentication mode=”Forms”>

<forms loginUrl=”default.aspx” name=”.ASPXFORMSAUTH”/>

< / a u t h e n t i c a t i o n >

< a u t h o r i z a t i o n >

<deny users=”?” />

< / a u t h o r i z a t i o n >

In the preceding code snippet, I have changed the authentication mode to Forms
by changing the mode attribute of the <authentication> element.

When the authentication mode is set to Forms, the Web application issues a cookie
to an authenticated user. You need to specify the suffix of the cookie by using the

574 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

name attribute of the <forms> element. You also need to specify the name of the
logon form, where an unauthenticated user is redirected. In the preceding code
snippet, I have specified the name of the logon form as default.aspx, which is the
logon form for SkyShark Airlines, and the suffix of the cookies is specified as
.ASPXFORMSAUTH.

SECURING THE APPLICATION Chapter 25 575

ASP.NET uses the * and ? user types to control access to Web site resources. The *

user type represents all users and the ? user type represents anonymous users.

TIP

After enabling Forms authentication, you need to prevent Web application access
to anonymous users.The <deny users=”?”/> statement uses the ? user type to pre-
vent access to anonymous users.

After enabling custom authentication for SkyShark Airlines, you can modify the
code of the default.aspx form so that an authentication ticket can be issued to the
user after the user’s credentials are validated. To issue authentication tickets, the
FormsAuthentication class provides the GetAuthCookie and RedirectFromLoginPage

methods. The difference in the two methods is that the GetAuthCookie method
generates an authentication ticket but does not redirect the user to the page
requested initially. However, the RedirectFromLoginPage method authenticates the
user and then redirects the user to the page requested initially.

For the SkyShark Airlines application, you need to use the GetAuthCookie method
to generate the authentication ticket. You cannot use the RedirectFromLoginPage
method because you have implemented a custom solution based on Session state
variables. These variables redirect the user to Web forms depending upon the role
of the users. For example, if you implement the RedirectFromLoginPage method,
when a line-of-business executive requests the ManageUsers.aspx page, which
should be accessible to network administrators only, the RedirectFromLoginPage

method will authenticate and redirect him to the ManageUsers.aspx page. This
should not be the case.

The GetAuthCookie method uses two parameters to generate the authentication
ticket, the username and the state of the cookie (persistent or not). To generate

the authentication ticket for the user by using the GetAuthCookie method, add a
reference to the System.Web.Security namespace in the default.aspx page and call
the GetAuthCookie method of the FormsAuthentication class. The code snippet
where you need to make the change is given as follows, and the changes made
appear in bold format.

if (Role==”Disabled”)

{

lblMessage.Text=”Your account has been disabled. Please contact the network

a d m i n i s t r a t o r . ” ;

r e t u r n ;

}

F o r m s A u t h e n t i c a t i o n . G e t A u t h C o o k i e (u s e r n a m e , f a l s e) ;

s w i t c h (R o l e)

{

case “Admin”:

After you have issued an authentication ticket to the user, you need to remove the
ticket when the user logs off from the Web site. To remove the authentication
t i ck e t , use the S i g n O u t method of the F o r m s A u t h e n t i c a t i o n class in the
Logoff.aspx form.The code for the Load event of the form, which implements the
log off functionality, is given as follows:

private void Page_Load(object sender, System.EventArgs e)

{

S e s s i o n . R e m o v e A l l () ;

F o r m s A u t h e n t i c a t i o n . S i g n O u t () ;

}

When the user logs off from the Web site, the authentication ticket for the user
is removed and the user has restricted access to the Web site.

Securing SQL Server
Although not directly in the purview of ASP.NET, you need to secure the
SkyShark Airlines databases to ensure that the security aspects of the Web appli-
cation are taken care of. In this section, I briefly describe the authentication
process of SQL Server to help you secure SQL Server by using the optimal
authentication mode.

576 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

To access the resources on SQL Server 2000, you pass through two security
stages. The first security stage is the authentication stage. In this stage, you need
to enter a valid logon ID and password. After you pass this stage, you are con-
nected to an instance of SQL Server 2000. The next stage is the authorization
stage. In this stage, the exact permissions to be granted to a user to access differ-
ent databases are decided. The user needs to have an account in each of the data-
bases to which the user wants to connect and access resources. This stage also
enables you to determine the extent of activities that a user can perform on a spec-
ified database. SQL Server 2000 uses two authentication modes:

◆ Windows Authentication mode. The Windows Authentication mode
enables you to connect to the SQL Server by using the Windows 2000
domain user account.

◆ Mixed Authentication mode. The Mixed Authentication mode enables
you to connect to the SQL Server either by using Windows authentica-
tion or by using SQL Server ID-based authentication. If either of the
logon credentials is valid, you are able to connect to an instance of SQL
Server 2000.

To configure the authentication mode on SQL Server, follow these steps:

1. Open SQL Server Enterprise Manager.

2. Right-click on the name of the SQL Server on which you want to con-
figure authentication and select Properties. The SQL Server Properties
(Configure) dialog box will appear.

3. Click on the Security tab. The Security tab of the SQL Server Properties
(Configure) dialog box is shown in Figure 25-3.

4. Select the authentication mode that you want to select from the Security
section of the SQL Server Properties (Configure) dialog box and click
on OK.

SECURING THE APPLICATION Chapter 25 577

It is recommended that you use the Mixed Authentication mode to secure the
SQL Server. In this way, users need not only to have permissions to manage
resources on the SQL Server, but also to know SQL Server logon credentials to
manage the resource.

Summary
Authentication for ASP.NET applications can be configured on IIS and in the
Web.Config file. IIS supports Basic, Integrated, Windows, and Digest authenti-
cation, whereas ASP.NET supports Forms, Passport, and Windows authentica-
tion.

To configure the authentication mechanism on IIS, you use SQL Server Enter-
prise Manager. To configure application security, you need to set the authentica-
tion mode to forms in the Web.Config file. You also need to restrict access to
anonymous users.

578 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 25-3 Configuring authentication on SQL Server 2000

TEAMFL
Y

Team-Fly®

After configuring the Web.Config file, you can use the methods of the GetAuth-
Cookie or RedirectFromLoginPage methods of the FormsAuthentication class to
generate an authentication ticket for a user. Finally, you can remove the authenti-
cation ticket by using the SignOut method when the user logs off from the Web
application.

SQL Se rver offers two authentica t i on modes, Wi n d ows and Mixe d . Fo r
enhanced security, you should implement the Mixed Authentication mode.

SECURING THE APPLICATION Chapter 25 579

This page intentionally left blank

Chapter 26
Deploying
the Application

In this chapter, you will learn to deploy a Web application. Deployment can be
described as the process of distributing an entire application or even a compo-

nent to other computers. You will learn about different deployment scenarios and
the situations where you can use a particular method of deployment.

Deployment Scenarios
The process of deployment has undergone a number of changes compared to the
deployment model of applications developed using Visual Studio 6.0. In order to
deploy a Visual Studio .NET solution, you need to pass on some information to
.NET. This information can be regarding the location, method, and application
to be deployed. For deployment purposes, Visual Studio .NET provides templates
for four different types of deployment projects, which are as follows:

◆ Merge Module project. This type of project allows you to package all
your project files/components into a single module (.msm) file. The
Merge Module project enables you to create reusable setup components
and share setup code between installers. Merge modules contain compo-
nents and related files, such as resources and registry entries. Merge
modules need to be merged into an installer for each application that
uses the component.

◆ Setup project. This type of project is used to create installers for distrib-
uting Windows Application projects. The output file is a Windows
Installer (.msi) file. The Installer file contains the application files and
any dependent files, such as registry entries and setup instructions. The
target files are installed in the files system of your local computer.

◆ Web Setup project. This type of project is used to distribute Web
Application projects. The files are deployed on a Web server. The Web
Setup project automatically takes care of configuration and registration.

582 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

◆ Cab project. This type of project is used primarily to package and dis-
tribute ActiveX controls so that they can be downloaded from a Web
server. This option is employed when you want the code to run on a
client computer instead of a server.

The primary aim of deployment is to install the application on a target computer.
You can create a new deployment project or even add an existing deployment pro-
ject to a solution. I will now discuss the process of creating a deployment project.

1. On the File menu, point to Add and click on New Project.

2. In the Add New Project dialog box (refer to Figure 26-1), select the
Setup and Deployment option from the Project Types: pane and Setup
Project from the Templates: pane.

3. Specify the name for the deployment project in the Name: text box and
the path in the Location: text box.

The File System editor is opened (refer to Figure 26-2).

DEPLOYING THE APPLICATION Chapter 26 583

FIGURE 26-1 The Add New Project dialog box

Deployment Editors
You might want to specify the location where files should be installed on a target
computer and other configuration tasks to be performed during installation. For
this purpose, Visual Studio .NET provides you with six deployment editors,
which can be used to specify and customize properties and settings for various
aspects of deployment. You can open a deployment editor as follows:

1. Select the deployment project in Solution Explorer.

2. On the View menu, point to Editor and then click on the name of the
editor that you want to open.

The deployment editors available with Visual Studio .NET are listed as follows:

◆ File System editor

◆ Registry editor

◆ File Types editor

◆ User Interface editor

◆ Customs Action editor

◆ Launch Conditions editor

584 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 26-2 The File System editor

The User Interface editor is not available in the case of Merge Module projects, and
no editor is available for Cab projects.

NOTE

I will explain each one of the editors in detail.

File System Editor
The File System editor presents the file system view of the target computer. The
File System editor uses the concept of abstract folders to ensure that files are
installed in the location you specify. For example, the Desktop folder compares to
the desktop folder on the target computer.

Registry Editor
The Registry editor enables you to specify the registry keys and values to be added
to the registry of the target computer. By default, the Registry editor displays the
standard Windows registry keys. You can add your own keys to any registry key
or subkey.

File Types Editor
The File Types editor is used to specify file associations on the target computer.
You can associate a file extension with your application and specify the action to
be performed for each file type.

User Interface Editor
The User Interface editor is used to specify and set properties for dialog boxes dis-
played during installation on the target computer. This editor is a tree control that
contains two sections, Install and Administrative Install. The Install section con-
tains dialog boxes to be displayed when the user runs the installer, and the
Administrative Install contains dialog boxes to be displayed when the system
administrator uploads the installer to a network location. The User Interface edi-
tor is shown in Figure 26-3.

DEPLOYING THE APPLICATION Chapter 26 585

Customs Action Editor
This editor enables you to specify actions to be performed on the target computer
upon the completion of installation.This editor contains four folders, each corre-
sponding to a particular installation phase.The folders are Install, Commit, Roll-
back, and Uninstall. Custom actions run in the same order in which they are
displayed in the editor.

Launch Conditions Editor
You can specify conditions that need to be fulfilled for installation. For example,
you might want to check for a file before installation.

Now that you are aware of the different deployment options and the deployments
editors available in Visual Studio .NET, I will guide you through the process of
creating the deployment project for the SkyShark Airlines application.

Deploying the SkyShark Airlines
Application

As you know, the SkyShark Airlines application is a Web application. In order to
create a deployment project for this application, you will need to create a Web
Setup project. Apart from creating Windows Installers for distribution through
the traditional medium, such as CDs or DVDs, Visual Studio .NET supports its

586 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 26-3 The User Interface editor

deployment to a Web server. This is a better option for Web application projects
because registration and configuration issues are handled by Visual Studio .NET.

In order to deploy a Web application to a Web server, you create a Web Setup pro-
ject, build it, copy it to the Web server computer, and run the installer to install
the application on the Web server.

Creating a Deployment Project
Perform the following steps in order to create a deployment project for the
SkyShark Airlines application.

1. Open your SkyShark Airlines application.

2. On the File menu, point to Add and click on New Project.

3. In the Add New Project dialog box (refer to Figure 26-4), select the
Setup and Deployment option from the Project Types: pane and the
Setup Project from the Templates: pane.

4. Enter SkySharkDeploy in the Name: text box and the required path in the
Location: text box (refer to Figure 26-4).

DEPLOYING THE APPLICATION Chapter 26 587

FIGURE 26-4 The Add New Project dialog box

5. Ensure that the Add to Solution radio button is selected.

6. Click on the OK button to create a deployment project.

The File System editor is displayed.

The window of the File System editor is divided into two parts, a navigation pane
on the left and a details pane on the right.The navigation pane contains a hierar-
chical list of folders representing the file system.

The settings of the File System editor can be modified by changing the proper-
ties.However, the actual properties are dependent on the project type and the cur-
rent selection in the editor. The properties of the File System editor are given in
Table 26-1.

Table 26-1 File System Editor Pro p e rties for Web Application Folder

P ro p e rt y D e s c r i p t i o n

AllowDirectoryBrowsing Sets the IIS DirectoryBrowsing property for the selected folder

AllowReadAccess Sets the IIS Read property for the selected folder

AllowScriptSourceAccess Sets the IIS Script source access property for the selected folder

AllowWriteAccess Sets the IIS Write property for the selected folder

AlwaysCreate Specifies whether the selected folder is to be created as part of
installation

ApplicationProtection Sets the IIS Application Protection property for the selected
folder

AppMappings Sets the IIS Application Mappings property for the selected
folder

Condition Sets the Windows Installer condition that must be satisfied

DefaultDocument Specifies the startup file for the selected folder

ExecutePermissions Sets the IIS Execute Permissions property for the selected folder

Index Sets the IIS Index this resource property for the selected folder

588 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

TEAMFL
Y

Team-Fly®

Table 26-1 File System Editor Pro p e rties for Web Application Folder
(c o n t i nu e d)

P ro p e rt y D e s c r i p t i o n

IsApplication Specifies whether the IIS application root will be created for the
selected folder

LogVisits Sets the IIS Log Visits property for the selected folder

Name Specifies the name for the selected folder

Port Specifies the port where a Web server is located on the target
computer

Property Specifies the named property that can be accessed during installa-
tion to override the path of a custom folder

VirtualDirectory Specifies the virtual directory on the Web server where a Web
application will be installed on the target computer

Adding the Output of SkySharkDeploy
to the Deployment Project

Perform the following steps to add the project output to the deployment project.

1. Select the Web Application folder.

2. Press F4 to open the Properties window. Set the VirtualDirectory prop-
erty to SkySharkDeploy.

3. Set the DefaultDocument property to default.aspx.

4. In the File System editor, select the Web Application folder.

5. On the Action menu, point to Add and choose Project Output.

6. In the AddProjectOutputGroup dialog box (refer to Figure 26-5),
choose SkyShark from the drop-down list.

DEPLOYING THE APPLICATION Chapter 26 589

7. Select the Primary output and Content Files from the list and click on
OK.

The File System editor is shown in Figure 26-6.

8. On the Build menu, choose Build SkySharkDeploy.

The SkyShark Airlines application is now ready for deployment. However, the
database also needs to be packaged and distributed. For this purpose, you need to

590 Project 4 C R E ATING AN AIRLINE RESERVATION PORTA L

FIGURE 26-5 The AddProjectOutputGroup dialog box

FIGURE 26-6 The File System editor

create a custom action to create the database and associated tables during
installation.

You can create a custom action by performing the steps given as follows.

1. Create an installer class.

2. Create a data connection object.

3. Create a text file that contains the SQL statements to create the data-
base and its associated tables.

4. Add code to the installer class to read the text file.

Deploying the Project to a Web Server
on Another Computer

The steps that follow describe the procedure to deploy the application to a Web
server on another computer.

1. In Windows Explorer, navigate to the project and locate the installer.
The default path is \documents and setting\yourloginname\My Docu-
ments\Visual Studio Projects\WebDeploy\project configuration
\SkySharkDeploy.msi. The default project configuration is Debug.

2. Copy the SkySharkDeploy.msi and all other files and subdirectories to
the Web server computer.

3. Double-click on the Setup.exe on the Web server to run the installer.

Summary
Deployment is the process of distributing a ready application or even its compo-
nent to other computers. Visual Studio .NET provides templates for four differ-
ent types of deployment projects: Merge Module, Setup, Web Setup, and Cab.
Visual Studio .NET provides six deployment editors that enable you to specify the
location where files should be installed on a target computer, the registry keys to
be added, or any other conditions that need to be fulfilled during installation.

DEPLOYING THE APPLICATION Chapter 26 591

This page intentionally left blank

VIIPART
P rofessional Project 5

This page intentionally left blank

Project 5
C reating a We b
P o rtal for a
B o o k s t o re

P roject 5 Overv i e w
A Web portal for a bookstore is an enterprise solution that allows businesses to inter-
operate. A portal for a bookstore offers users a variety of books from several publish-
ers.Therefore, implementing Web services with the Web portal enables organizations
to share their data with each other. For example, publishers can publish their catalog
of books on the Web site of the retailer. Retailers, in turn, can share the data of their
customers with the publishers. In addition to sharing data across organizations, these
organizations share the business objective of achieving success.

Traditionally, customers used to visit a bookstore to buy a book. However, with the
advent and increasing popularity of the Internet, customers can now shop for books
on the Internet. In addition, book lovers can keep abreast of virtually all newly pub-
lished books.

In this context, Bookers Paradise, a chain of retailers of books, has planned to launch
its Web site.The Web site will display the catalogs of books from various publishers.
To display information about books from the publishers, Bookers Paradise has
planned to create Web services for each of the publishers.

In the Web portal project, you will learn to develop a complete solution for Bookers
Paradise. You will learn to create a Web portal that accesses data by using Web ser-
vices.In addition,the data displayed on the portal is stored in the SQL databases that
act as the back end. The Web portal and the Web services are created by using the
.NET Framework. The language used as the front end will be Visual C# .NET.

In this project, you will learn to create a Web portal for Bookers Paradise. In addi-
tion, you will learn to create Web services for two publishers, Deepthoughts Publica-
tions and Black and White Publications.

After completing this project, you will be able to appreciate the support that the
.NET Framework extends to create Web services.In addition, you will be able to cre-
ate an integrated business solution in the form of Web portal. This Web portal can
then be customized to meet your business requirements.

Chapter 27
Project Case
Study and Design

In the preceding projects, you learned how to develop Windows applications and
an ASP.NET Web application. Windows applications are used to develop

applications that can run on a desktop computer. Alternatively, ASP.NET appli-
cations are large-scale business applications that can be deployed on an intranet
of the organization or on the Internet. However, to find a business solution that
integrates applications built on different platforms, you need to create a Web ser-
vice. In addition to integrating various applications, a Web service can be used to
integrate data from various applications developed for different organizations.

In this chapter, I will discuss the case study of the Web portal project.In addition,
I will discuss the database and the interface design for the Web portal. You wil l
learn to create the actual application in the forthcoming chapters.

Organization Profile
Bookers Paradise is chain of retailers, having their retail outlets spread across the
United States. Bookers Paradise was established in 1998 as a small bookstore in
the city of New York. Since then, the organization has grown to be a chain of
more than 50 outlets in the United States. To grow further in the business world
and increase its yearly profits, the organization plans to sell the books of two pub-
lishers over the Internet. These publishers are Deepthoughts Publications and
Black and White Publications.

Deepthoughts Publications is one of the leading book publishers of the United
States. Deepthoughts Publications has been publishing books on various subjects
ever since it was established in 1991. Deepthoughts Publications publishes high-
quality books and,therefore, has a huge clientele.In addition, Deepthoughts Pub-
lications has been dealing with a number of retailers, Bookers Paradise being one
of them. Therefore, to enable its customers to buy books online, Deepthoughts
Publications has decided to create a Web service. This Web service will provide
the Web site developed by Bookers Paradise with information about the books
published at the publishing house.

598 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

TEAMFL
Y

Team-Fly®

Similar to Deepthoughts Publications,Black and White Publications is one of the
major book providers of Bookers Paradise. Established in 1994, Black and White
Publications has grown to be a leading publishing house in the United States.The
organization, with its corporate office located in New York, has its branches
spread all over the United States. Black and White Publications shares the cor-
porate goal of increasing its yearly profits with Bookers Paradise.Therefore, Black
and White Publications wants to collaborate with Bookers Paradise to sell its
books online. To do this, the publishing house plans to create a Web service that
provides the site of Bookers Paradise with the information about the books pub-
lished at its publishing house.

Project Requirements
Bookers Paradise wants to launch an online bookstore that contains information
about books published by Deepthoughts Publications and Black and White Pub-
lications. To display the catalog of books on the Web portal, Deepthoughts Pub-
lications and Black and White Publications need to host a Web service that is
used to expose the information about the books in the form of a catalog. This
information includes the ISBN (International Standard Book Number) number, the
title, the author, and so on. To access the information exposed by the Web ser-
vices, Bookers Paradise needs to host a Web service client.This Web service client
is the Web portal launched by Bookers Paradise. The Web service client displays
the book catalogs to the visitors on the site. In addition, the Web service client
stores the information about its customers.

The function of the Web service that you create is not limited to providing the
Web portal with book catalogs. The customers that visit the site of Bookers Par-
adise can search for information about the books on the site. For example, the cus-
tomer can search for books on a particular subject, books written by a particular
author, or books published by a particular publisher. To provide customers with
the required information, Web services need to expose functions to the Web ser-
vice client. In addition, the Web service can expose functions that provide infor-
mation about the availability of the book and the editions of the book released by
the publisher.

PROJECT CASE STUDY AND DESIGN Chapter 27 599

As stated earlier, a Web service is used to integrate information from various orga-
nizations.Therefore, a Web service provides the Web service client with informa-
tion about books. Similarly, the Web service client shares the data of its customers
with the publisher. When customers visit the Web portal for Bookers Paradise,
they can view information about the books on the site. In addition,they can query
for information on books on the site. When the customer views the information
about a book and places an order for the book on the site of Bookers Paradise, the
Web service client forwards the purchase request to the publisher of the book. In
addition, the information about the customer is sent to the publisher.

The publisher then maintains the customer data along with the information about
the book that is released. When the book is delivered to the customer, the pub-
lisher updates the status of the book in the database maintained by the publisher.
The customer can then query the Web site to know the status of the order placed
by the customer. I will discuss the structure of the databases maintained by the
retailer and the publisher later in this chapter.

To have a clear understanding of the working of the Web portal,I will first list the
tasks that need to be performed by the Web portal. In addition, I will discuss how
these will be accomplished.

Querying for Information about All Books
As discussed earlier, a user can query for the information about the books pub-
lished by a publisher. The procedure for querying information is as discussed here:

1. A user visits the Web site of Bookers Paradise. On the Main page, the
user chooses to view the information about all the books published by
the Deepthoughts Publications and the Black and White Publications
publishing houses.

600 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

The user has the option to view the information about all the books or search for
information about the books based on criteria. In the next section, you will learn
about the procedure for viewing the information about books based on criteria.

NOTE

2. The Web site sends the request to the Web service hosted by the two
publishing houses.

3. The Web service processes the request and sends the result of the query
back to the Web site. The user can then view the desired information on
the Web site.

PROJECT CASE STUDY AND DESIGN Chapter 27 601

The Web service has certain Web methods that the Web service uses to respond
to the queries sent by the Web service client, which is the Web site in this case. You
will learn about creating the Web service and the Web methods in the succeeding
chapters.

NOTE

Querying for Information about Books Based on Criteria
A user who visits the site of Bookers Paradise can view information about the
selected books published by Deepthoughts Publications and Black and White
Publications. The search for information about books in this case is based on cri-
teria. For example, the user can search for information about books based on cat-
egory, title, or author. The procedure to search for information based on criteria is
given as follows:

1. The user visits the Web site of Bookers Paradise and selects the criteria
from the list box in the Main page.

2. The Web site requests the Web service to retrieve the required informa-
tion.

3. The required information is returned to the Web site in the form of
records from the database. This information can then be viewed by the
user in the Results form.

After the user has viewed and selected a book to purchase, the user can order the
book on the site. The following section covers the procedure for ordering a book
on the Web site.

Ordering a Book on the Web Site
The procedure to order a book on the Web site is as follows:

1. The user selects a book to order in the Orders page.

2. The user then clicks on the Order button to order the book.

3. The user is taken to the Orders page. On the Orders page, the customer
details, such as name, address, and credit card information, are specified.

4. After specifying the required details, the user clicks on the Order button.

5. When the Order button is clicked, the details submitted by the user is
sent to the database maintained by the publishing house.

602 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

To send the information submitted by the user to the database of the publishing
house, the Web site uses a Web method created in the Web service. You will learn
about this method, AcceptDetails(), in Chapter 29, “Developing Web Services.”

NOTE

6. The details of the customer and the order placed by the customer are
stored in the database at the publishing house.

7. At the site of the publishing house, the request of the user is processed
and the book is delivered to the client.

Project Design
Having examined the project requirements in detail, you need to create a detailed
design of the project. You can create a design of the application in the project
design stage. The project design stage includes identifying the database design
and the database schema.To finalize the database schema,you first need to decide
on the tables required in the database. Then, a detailed analysis of the database
design is required to identify the relationships between various tables in the data-
base. Based on this, a detailed schema of the database is created. It is critical to
examine all possible requirements and incorporate them in the database schema
to avoid reworking at a later stage. The following section delineates the database
design for the Web portal.

Database Design
After creating the structure of database tables and normalizing the structure, you
arrive at a database schema that is appropriate for your Web portal project. Nor-
malizing the database design helps to remove data redundancy.

In the case of this Web portal, data is not stored in the database of any one orga-
nization.Data is spread across the databases of Bookers Paradise and the two pub-
lishing houses. It therefore becomes all the more essential for you to carefully plan
the database design and normalize the design. This will help you avoid data
redundancy across tables in the databases of different organizations. You have
learned about the basic concepts of creating an SQL database and normalization
in Chapter 7, “Project Case Study,” in the section “Normalization.”

In addition to creating the database design for the three organiza t i on s , you need to
establish re l a t i onships between the tables in the databases. This will help you pro-
g ram your applica t i on to query and update data in the related tables. I will discuss
h ow to create re l a t i onships between tables later in this ch a p t e r. H ow eve r, I will first
discuss the stru c t u re of the tables in the databases of the three organiza t i on s .

Database Design for Bookers Paradise
Bookers Paradise plans to launch a Web site that allows visitors to view informa-
tion about books and to place an order for a book. To do this, Bookers Paradise
maintains a database called BookersDB. This database includes two tables,
BookersOrders and BookersCustDetails. The following section discusses these
tables in detail.

The BookersOrders Table
The BookersOrders table stores information about the order placed by a customer
for a book.Therefore, this table includes information such as OrderNo, CustomerID,
and ISBNNo of the book. When a customer places an order, a unique identification
number, CustomerID, is assigned to the customer. In addition, for each order, a
unique number, OrderNo, is assigned.The OrderNo is defined as the primary key for
the table. Table 27-1 shows the fields in the BookersOrders table in the Book-
ersDB database.

PROJECT CASE STUDY AND DESIGN Chapter 27 603

Table 27-1 Structure of the BookersOrders Ta bl e

Column Name Data Ty p e L e n g t h A l l ow Nulls

OrderNo char 10 0

CustomerID char 6 0

ISBNNo char 10 0

604 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

In the preceding structure of the BookersOrders table, the value 0 for the Allow
Nulls column does not allow the user to leave this field blank. However, if you specify
the value as 1, the field is optional when adding a new record. I will be using this con-
vention while discussing the structure of the rest of the tables.

NOTE

The BookersCustDetails Table
In addition to storing the details of the order, Bookers Paradise wants to store the
details of all the customers who place an order for a book. To do this, the
BookersCustDetails table is created. The BookersCustDetails table contains fields
such as CustomerID, CustomerName, BillingAddress, and so on. The CustomerID

field is set as primary key for this table. Table 27-2 shows the details of the
BookersCustDetails table.

Table 27-2 Structure of the BookersCustDetails Ta bl e

Column Name Data Ty p e L e n g t h A l l ow Nulls

CustomerID char 6 0

CustomerName varchar 50 0

BillingAddress1 varchar 50 0

BillingAddress2 varchar 50 0

BillingAddressCity varchar 20 0

BillingAddressState varchar 20 0

Database Design for Deepthoughts Publications
If you consider the business requirements for the Web portal project, when a cus-
tomer places an order for a book, the order, along with the information about the
customer, is forwarded to the respective publisher. Deepthoughts Publications
then stores this information in a database called DTDB. The DTDB database
contains two tables, the DTCatalog and the DTOrders tables.I will discuss the struc-
ture of these tables in the following sections.

The DTCatalog Table
The D T C a t a l o g table stores inform a t i on about the books published by
Deepthoughts Publications. This information includes the ISBN number, title,
author, date of publishing, price, and category of the book. In addition, the table
contains a short description of the book.

Every book published at the publishing house has a unique ISBN number, which
is defined as the primary key for the DTCatalog table. Table 27-3 shows the struc-
ture of the DTCatalog table.

Table 27-3 Structure of the DTCatalogTable

Column Name Data Ty p e L e n g t h A l l ow Nulls

ISBNNo char 10 0

BookTitle varchar 50 0

Author varchar 50 0

Category char 10 0

Description varchar 50 0

DateOfPublication datetime 8 0

Price varchar 8 0

The DTOrders Table
The DTOrders table stores information about an order placed by the customer. In
addition, you can store the details of the customer who placed the order. Table
27-4 shows the fields in the DTOrders table.

PROJECT CASE STUDY AND DESIGN Chapter 27 605

Ta ble 27-4 Structure of the DTOrders Ta bl e

Column Name Data Ty p e L e n g t h A l l ow Nulls

ISBNNo char 10 0

OrderNo char 5 0

DateOfOrder datetime 8 0

CustomerName varchar 50 0

CustomerAddress1 varchar 50 0

CustomerAddress2 varchar 50 1

CustomerCity varchar 20 0

CustomerState varchar 10 0

OrderedBy varchar 50 0

Status varchar 20 0

CreditCardType char 10 0

CreditCardNumber varchar 20 0

The preceding table contains a Status column. This column contains information
about the status of the delivery of the book to the customer. In addition, Table
27-4 contains a field with the name OrderedBy. This field stores the information
about the retailer who ordered for the specified book. In our case, the value stored
in this field is Bookers Paradise.

The DTOrders table also contains information about the credit card of the cus-
tomer, such as the type of credit card and the credit card number of the customer.

The DTOrders table has the combination of ISBNNo and OrderNo fields as the com-
posite key.

Database Design for Black and White Publications
Black and White Publications maintains a database called BWDB. Similar to the
database of Deepthoughts Publications, the BWDB database stores information

606 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

about the books published by Black and White Publications and the customers
who order the books. To store this information, the BWDB database has two
tables, BWCatalog and BWOrders. The following sections discuss these tables in
detail.

The BWCatalog Table
The BWCatalog table stores information about the books published by Black and
White Publications. Table 27-5 shows the structure of the BWCatalog table.

Ta ble 27-5 Structure of the BWCatalog Ta bl e

Column Name Data Ty p e L e n g t h A l l ow Nulls

ISBNNo char 10 0

BookName varchar 50 0

Author varchar 50 0

Price decimal 9 0

AboutTheAuthor varchar 100 1

Category varchar 30 0

As you can see, the BWCatalog table stores information such as the ISBN number,
name, author, price, and category of the book. In addition, the preceding table
contains the AboutTheAuthor field. You can store some information about the
author of the book in this field. The ISBNNo field is set as the primary key for this
table.

The BWOrders Table
Similar to the orders table of Deepthoughts Publications,the orders table of Black
and White Publications stores information about the orders that are sent by the
site of Bookers Paradise. Table 27-6 shows the fields contained in the BWOrders
table in the BWDB database.

PROJECT CASE STUDY AND DESIGN Chapter 27 607

Ta ble 27-6 Structure of the BWOrders Ta bl e

Column Name Data Ty p e L e n g t h A l l ow Nulls

ISBNNo char 10 0

OrderNo char 5 0

DateOfOrder datetime 8 0

CustomerName varchar 50 0

CustomerAddress1 varchar 50 0

CustomerAddress2 varchar 50 0

CustomerCity varchar 20 0

CustomerState varchar 20 0

RequestedBy varchar 20 0

Status varchar 20 0

CreditCardType char 10 0

CreditCardNumber varchar 20 0

Similar to the Status and OrderedBy fields of the DTOrders table, the Status and
RequestedBy fields of the BWOrders table store the status of delivery of the book and
the details of the retailer who ordered for the book, respectively.

In addition, the BWOrders table contains the credit card information of the cus-
tomer who orders for a book on the Web site of Bookers Paradise.

Database Schema
Having created the design of the tables of Bookers Paradise, Deepthoughts Pub-
lications and Black and White Publications, you need to establish relationships
between the tables of the organizations. Based on these relationships, a detailed
database schema is created. I will first discuss the relationships between the tables
of Bookers Paradise.

608 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

TEAMFL
Y

Team-Fly®

The Relationships between
the Tables of Bookers Paradise
The relationships between the tables of Bookers Paradise are shown in Figure
27-1.

Table 27-7 explains the relationships between the tables of Bookers Paradise
shown in Figure 27-1.

Table 27-7 Relationships in the Ta bles of Bookers Paradise Database

Ta bl e 1 Ta bl e 2 Ty p e D e s c r i p t i o n

BookerCustDetails BookersOrders One-to-many One customer can place one or
more orders. However, one
order can contain orders from
only one customer.

PROJECT CASE STUDY AND DESIGN Chapter 27 609

FIGURE 27-1 Database schema for Bookers Paradise

The Relationships between the Tables of Deepthoughts
Publications
The relationships between the tables of Deepthoughts Publications are explained
in Table 27-8.

Table 27-8 Relationships in the Ta bles of Deepthoughts Publications Database

Ta bl e 1 Ta bl e 2 Ty p e D e s c r i p t i o n

DTCatalog DTOrders Many-to-many One order can be placed for one
book. However, one order can
contain one or more books.

This relationship is shown in Figure 27-2.

The Relationships between the Tables
of Black and White Publications
The relationships between the tables of Black and White Publications are similar
to those of Deepthoughts Publications. Figure 27-3 shows the relationships of
Black and White Publications.

610 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 27-2 Database schema for Deepthoughts Publications

The relationships shown in Figure 27-3 are explained in Table 27-9.

Table 27-9 Relationships in the Ta bles of Black and White Publ i c a t i o n s
D a t a b a s e

Ta bl e 1 Ta bl e 2 Ty p e D e s c r i p t i o n

BWCatalog BWOrders One-to-many One order can be placed for one
book. However, one order can
contain one or more books.

After you finalize the database schema, you can finalize the interface of your
application. Finalizing the interface of the application includes deciding on the
Web forms to be included in the application.This will help the development team
to have a framework to work on.

Web Forms Design
The Web site for Bookers Paradise includes five forms, the Main form, the
Results form, the Orders form, the Search form, and the Construction form.The
following section discusses these forms in detail.

PROJECT CASE STUDY AND DESIGN Chapter 27 611

FIGURE 27-3 Database schema for Black and White Publications

The Main Form
The Main form is the first form displayed when a user visits the site of Bookers
Paradise. This form is the home page of the site of Booker’s Paradise. The Main
form consists of one button control, five hyperlink controls, one list control, one
text box control, and two table controls. After adding these controls to the form,
you need to change the properties of these controls. You will learn to change the
properties of the controls in Chapter 30.

Once the controls are added to the form, the Main form looks as shown in Fig-
ure 27-4.

The Main form allows you to search for information about all the books or only
books based on criteria. When the user selects the criteria and clicks on the Go
button in the Main form, the Results page is displayed.

612 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

In this chapter, I will only detail the layout of these forms. You will learn to create
these forms in Chapter 30, “Developing Web Service Clients.”

TIP

FIGURE 27-4 The layout of the Main form

The Results Form
The Results form shows the result of the search performed by the user. In addi-
tion, the Results page allows the user to order a book. The Results page includes
a data grid, a label, and a hyperlink control.

To add these controls to the form, drag the controls from the Web Forms tool-
box. When the controls are added, the Results form looks as shown in Figure
27-5.

In the Results page, the user can choose a book to order. To order a book, a user
needs to click on the Order button.This takes the user to the Orders page.

The Orders Form
The Orders form accepts details of the user who wishes to order a book on the
Web site of Booker’s Paradise. Figure 27-6 shows the layout of the Orders form.

PROJECT CASE STUDY AND DESIGN Chapter 27 613

FIGURE 27-5 The layout of the Results form

As you can see in Figure 27-6, the Orders form includes 1 button control, 2
hyperlink controls, 12 label controls, 1 list control, 5 RequiredFieldValidator con-
trols, and 10 text box controls.

The Search Form
The Main form in the site of Booker’s Paradise allows a user to select criteria to
search for a book. When a user selects criteria in the list box, the user needs to
specify a value for the criteria. In case the user forgets to specify a value, the user
is taken to the Search page.

The Search page prompts the user to specify the criteria and a value for the crite-
ria. To do this, the Search page includes a label control, two button controls, four
radio buttons, and four text box controls.

Figure 27-7 shows the layout of the Search form.

614 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 27-6 The layout of the Orders form

The Construction Form
The Main form, as you saw in Figure 27-4, includes hyperlink controls. When a
user clicks on any of the hyperlink controls, the user is taken to the Construction
page. Figure 27-8 shows the Construction page.

PROJECT CASE STUDY AND DESIGN Chapter 27 615

FIGURE 27-7 The layout of the Search form

FIGURE 27-8 The layout of the Construction form

The Construction form contains a hyperlink control and two label controls. The
hyperlink on the Construction page takes you to the Main form.

Flowcharts for the Web Forms Modules
After seeing the design of all the forms in the Web client application for Booker’s
Paradise, you can create the flowcharts for these forms. This will help you under-
stand the working of the client application, making it easier for you to write the
code for the client application. To begin, create a flowchart for the Main form,
which is the home page for the Web site.

Flowchart for the Main Form
In the Main page, the user selects criteria, specifies a value for the criteria, and
queries for the information based on the criteria. In addition, the user may choose
to click on any of the hyperlinks on the Main form. Based on this functionality, a
flowchart for the Main form is created. Figure 27-9 shows the flowchart for the
Main form.

616 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 27-9 The flowchart for the Main form

Flowchart for the Results Form
The Results form allows a user to select a book to order. Based on this, the flow-
chart for the Results page is shown in Figure 27-10.

Flowchart for the Orders Form
The Orders page accepts the information about the customer and passes this
information to the database of the publisher. In addition, the information about
the book that is ordered is passed to the database of the publisher. To do this, the
Orders form works as shown in Figure 27-11.

PROJECT CASE STUDY AND DESIGN Chapter 27 617

FIGURE 27-10 The flowchart for the Results form

FIGURE 27-11 The flowchart for the Orders form

Flowchart for the Search Form
In the Search page, the user selects a radio button to choose criteria to search for
information about the site. In addition, the user specifies the value for the crite-
ria. Figure 27-12 shows this functionality of the Search page in the form of a
flowchart.

Summary
In this chapter, you learned about the case study and design of the Web portal
project. The design of the project includes creating the design of the application
and the supporting databases. Based on the design of the application, you created
the flowcharts for the Web forms. You will learn to create the application in the
forthcoming chapters.

618 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 27-12 The flowchart for the Search form

TEAMFL
Y

Team-Fly®

Chapter 28
Exploring ASP.NET
Web Services

The ever-changing business scenario has become more and more dependent on
the Web for any data transaction or for communication between applications.

Because of this dependency, the focus of developers is shifting from creating a
desktop application to an application that can access data through the Internet.
These applications are mainly distributed applications. Distributed applications are
scalable applications in which data is shared across applications.

For example, a distributed application consists of a client application that inter-
acts with a middleware application, which contains the business logic for the
entire business solution that you create. This intermediate application in turn
interacts with the underlying databases that store the data for the application.
Therefore, as you can see, a business solution on the whole comprises a number
of applications and databases.These applications and databases may be present on
a single computer. However, in large-scale business operations, these applications
are generally distributed across different computers connected over a network. In
such cases, these applications may be created using different programming lan-
guages and, in the worst scenario, on different platforms.

To build a complete business solution, it is essential that you integrate these appli-
cations. Integration of applications built on various platforms is made simpler
with the use of Web services.

In this chapter, you will be introduced to the basics of ASP.NET Web services. In
addition, you will learn about the architecture and working of a Web service.
Next, you will be introduced to the technologies used in a Web service. These
technologies include XML (Extensible Markup Language), SOAP (Simple Object
Access Protocol), WSDL (Web Services Description Language), and UDDI (Univer-
sal Description Discovery and Integration). Finally, you will learn to create a simple
Web service in a Visual Studio .NET.

620 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

Introduction to ASP.NET Web Services
You were introduced to Web services in Chapter 1, “Overview of the .NET
Framework,” in the section “Introduction to the .NET Framework.” In this chap-
ter, I will discuss Web services in detail.

As discussed earlier, a Web service is used to integrate different applications that
access data through the Internet. To do this, methods in a Web service are called
over the Internet, which can then be accessed by applications developed on dif-
ferent platforms.This implies that a Web service is a reusable component, such as
a method, that can be used by any Web application running on the Internet. In
addition, a Web service can be used by a Windows application.These applications
are called Web service client applications.

Before developing Web services, DLL (Dynamic Link Library) files or compo-
nents were used to create distributed applications.However, to communicate with
a client application, these components use protocols such as RPC (Remote Proce-
dure Call), DCOM (Distributed Component Object Model), RMI (Remote Method
Invocation), or IIOP (Internet Inter-ORB Protocol). Therefore, communication
between a client application and a component depends on various factors, such as
hardware platform, programming languages, vendor implementations, and data-
encryption schemes.This implies that transferring data between two applications
requires a similar infrastructure at the two application sites. However, this sce-
nario cannot be obtained while working with Internet applications. An Internet
application can be accessed by various client applications.Therefore, it is essential
to build components that can be used to create distributed applications that can
be accessed from various platforms. To do this, you can use Web services. Web
services allow you to create platform independent distributed applications. The
ability to create distributed applications that are independent of the platform is
mainly due to the support of a Web service for Internet standards, such as HTTP
and XML.

In addition to integrating applications built on different platforms, a Web service
allows you to integrate business solutions for one or more organizations. You can
create a Web service specific for your organization or customize a Web service cre-
ated by another organization to your specific requirements. You can also create a
Web service that can be used by a single application or be called on the Internet
to be used by multiple applications. To call a Web service from the Internet, the

EXPLORING ASP.NET WEB SERVICES Chapter 28 621

Web service client needs to know the location of the Web service and the input
and output information required for accessing the Web service.

A Web service that you create can be a simple one-method service. For example,
consider a situation in which you want to know the current time in a particular
state. In this case, you can create a method in a Web service that returns the cur-
rent time in the state that you choose. You can pass the state for which you want
to know the current time as a parameter to the method. The method created in a
Web service is called a Web method. You will learn to about Web methods in detail
later in this chapter.

In addition to performing simple tasks by using a Web service method, you can
create Web methods that perform complex tasks. In such cases, a Web service may
consist of several Web methods performing complex tasks. For example, consider
a situation in which you need to validate the username and password entered by
a user to log on to a site.This is a very common scenario, as almost all Web sites
require a method to validate the username and password. Therefore, in such a
case, you can create a Web service that performs data validations. In addition, the
Web service that you create can be used to validate data for various Web sites. You
can then customize the Web service according the requirements based on your
database schema. In this case, the Web site that uses the Web service to perform
data validations is called a Web service client application, and the application that
hosts the Web service is called a Web service provider application.

The data validation scenario that I discussed inv o lves various applica t i ons and an
u n d e rlying database. For example, the Web site that needs to perf o rm data valida-
t i on is a Web applica t i on , w h i ch interacts with a database. The database may be
c reated using SQL, Ac c e s s , O ra cl e, or any other RDBMS (R elational Data ba s e
M a n a gement Syste m) . In addition , for the Web applica t i on to perf o rm validation s
based on the data in the database, the Web applica t i on uses another applica t i on .
In this ca s e, another applica t i on re q u i red to perf o rm validations is a Web serv i c e .
T h e re f o re, as you can see, multiple applica t i ons are inv o lved in a complete business
s o l u t i on . To integrate these applica t i on s , a Web service can be used. The next sec-
t i ons will show how a Web service can provide integra t i on of multiple applica t i on s .

A Web service uses XML and any other Internet standard, such as HTTP, to cre-
ate an infrastructure that helps you to integrate applications build on multiple
platforms. Because of the support of Web services for XML, these Web services
are often referred to as XML Web services.

622 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

An XML Web service uses SOAP messaging to communicate and transfer data
across applications. In addition, SOAP messaging allows a great deal of abstrac-
tion between a Web service client and a Web service provider. This implies that
using the XML messaging technique allows you to create a client and a service
provider independent of each other.

By now, you must have got an idea of the need for a Web service. I will now dis-
cuss the architecture of a Web service.

Web Service Architecture
As discussed earlier, a Web service can be an intermediate application that allows
a Web service client application to access data from an underlying database. To do
this, the Web service architecture internally consists of four layers.These layers are
explained in the following bulleted list.

◆ The data layer. The data layer is the first layer in the Web service archi-
tecture. This layer contains the data that the Web client application
needs to access.

◆ The data access layer. The layer above the data layer is the data access
layer. The data access layer contains the business logic or the code that
allows the Web client application to access the data in the data layer. In
addition to storing data, the data access layer is used to secure the data
present in the data layer.

◆ The business layer. The third layer in the Web service architecture is the
business layer. This layer contains the code required for implementing the
Web service. The business layer in turn is divided into business logic and
business façade layers.The business logic layer contains all the services
provided in a Web service. However, the business façade layer acts as an
interface of the Web service.

◆ The listener layer. The layer closest to the Web service client is the lis-
tener layer. It is the main layer used by the Web service client to commu-
nicate with the Web service. When a Web service client wants to access
a Web method present in a Web service, the Web service client sends in
a request. This request is received by the listener layer. The listener layer
then interprets the request sent by the Web service client application.
When the client request is processed and the Web service returns the
response in the form of an XML message, the listener layer forwards this
XML message to the Web service client.

EXPLORING ASP.NET WEB SERVICES Chapter 28 623

The Web service architecture is explained in Figure 28-1.

After discussing the four-layered structure of a Web service, I will look at the
working of the Web service based on the Web service architecture.

Working of a Web Service
The working of a Web service involves the client application sending a request for
a service. The request made to the Web service is in the form of an XML mes-
sage using a transfer protocol, such as HTTP. This scenario is somewhat similar
to a method call statement that you use to call a particular method. The request
for the service is passed to the listener layer, which forwards the request to the
Web service provider application. The request is then processed by the Web ser-
vice provider application. Processing of the request includes the data access layer
to retrieve the data requested by the client application.This data is then passed to
the listener layer, which in turn forwards the data to the client application. Figure
28-2 shows the working of a Web service.

624 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 28-1 The Web service architecture

I will now discuss the working of a Web service in detail. When a client applica-
tion sends a request for a service, you may need to pass arguments. To pass argu-
ments over the network, the arguments are packaged as a SOAP message and
passed to the Web method by using a network protocol. You will learn about
SOAP in detail later in this chapter.

Then, the Web service decodes the SOAP message to retrieve the arguments
passed to the Web method. Once the arguments are passed to the Web method,
the method is executed and the return value is passed to the Web client
application.

Having learned about the working of a Web service, you can look at the tech-
nologies that are used by a Web service.

Technologies Used in Web Services
You can create Web services by using any language provided by the .NET Frame-
work, such as Visual C# .NET, Visual Basic .NET, and Visual C++ .NET. How-
ever, for an application to be able to access a Web service, the client application
needs to meet certain requirements. These requirements include a standard

EXPLORING ASP.NET WEB SERVICES Chapter 28 625

FIGURE 28-2 The working of a Web service

format for describing Web services, a standard format for representing data trans-
fer, and a standard for sending methods and the results returned by the methods
across the network. In addition, to be able to access a Web service, the Web client
application needs to identify a method for locating the Web service and passing
inputs to the Web methods.

As a solution to these re q u i re m e n t s , t e chnologies such as XML, W S D L , a n d
S OAP were deve l o p e d . The foll owing sections discuss these technologies in detail.

XML in a Web Service
XML is a markup language used to describe data in a particular format.This data
can be accessed by any application built on any platform. XML allows you to
transfer data in a format that is independent of the platform. Therefore, XML is
a widely used technology that transfers data across the Internet applications.
XML documents store data in the form of text. This makes the XML document
easily understood by applications built on different platforms. Moreover, content
stored in an XML document is easily transferred over the network.

Having discussed XML in general, you can see how a Web service uses XML.
When a Web service client application calls a Web service, the client application
passes arguments to the Web method.The Web service processes the Web meth-
ods and returns a result to the client application. Because the client application
can be built using any platform, the data returned by the Web service is in the
form of XML.

WSDL in a Web Service
WSDL is a markup language that defines a Web service. WSDL is an XML file
that contains information about a Web service. This information includes the
Web services called by a Web site, the methods included in each of the Web ser-
vices, and the parameters that you need to pass to the Web methods. In addition,
WSDL includes information about the results returned when a request is
processed by a Web service. For example, WSDL defines the type of the values
returned by a Web method.Therefore, WSDL is a vocabulary defined for the cre-
ation of a Web service that the developer may need to use while creating a Web
service.

626 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

In addition to storing information about the Web methods, WSDL stores infor-
mation about the format used by a user to access a Web service and specifies the
location at which the Web service is available. Therefore, WSDL describes the
entire mechanism involved in the transfer of data from a Web service client to the
Web service and vice versa.

For example, a Web service client application needs to call a Web method that
validates the username and password entered by the user. The Web method is cre-
ated in a Web service. To call this Web method, the Web service client sends a
request to the Web service. The request that is sent to the Web method is speci-
fied by WSDL.The request is sent to the Web service in the form of XML mes-
sages. In this case, WSDL stores the format in which the request is sent.

In addition, when a Web method is called, you need to pass the username and
password as parameters. The information about the type and the format of the
parameters is stored in a WSDL file. When the request is processed and the result
is returned, WSDL stores the format and other information about the results
returned.

SOAP in a Web Service
To transfer data from a Web service client to a Web service and vice versa, the
transfer protocol used is SOAP. SOAP is a protocol based on XML that is used
by a client application to access a Web service. In addition to XML, SOAP uses
HTTP for the transfer of data. When a client sends a request, the request is in
the form of a SOAP message. The SOAP message also includes the parameters
and the method call statement. Based on this information in the SOAP message,
the appropriate Web method is called.

As discussed earlier, SOAP is a standard protocol used for communication
between a Web service client and a Web service. However, SOAP does not define
syntax to be followed while transferring data. Instead, SOAP provides a mecha-
nism for packaging data to be transferred across a network. In addition, SOAP is
a transfer protocol based on simple Internet standards. The transfer of data using
SOAP takes place in the form of a SOAP package. A SOAP package includes an
envelope that encapsulates the data to be exchanged.

In addition to these technologies, Web services uses UDDI to identify the Web
services provided by various Web service providers. I will now discuss UDDI in
detail.

EXPLORING ASP.NET WEB SERVICES Chapter 28 627

UDDI in a Web Service
When you develop a Web service, you need to register the Web service in a UDDI
directory. UDDI provides a mechanism for the Web service providers to register
their Web services. When a Web service is registered with a UDDI directory, an
entry for the Web service is created. A UDDI directory maintains an XML file
for each Web service registered with the UDDI directory. This XML file contains
a pointer to the Web service that is registered in the directory. In addition, the
UDDI directory also contains pointers to the WSDL document for a Web ser-
vice. To do this, the Web service provider needs to first describe the Web service
in a WSDL document. Once a WSDL document is created, the Web service can
be registered with the UDDI directory. This makes the Web service easily acces-
sible to the Web service clients, as the client applications can discover and iden-
tify a Web service from a UDDI directory.

Consider the example of the Web service used to perform user validation. Once
you have created the Web service and described it in a WSDL document, you can
register the Web service with the UDDI directory. Then, any user who wants to
use the Web method can search on the UDDI directory for the required Web
method. The UDDI directory returns the list of Web services that are registered
with the UDDI directory. The user can then select the required Web method from
the list of the available Web services.

A UDDI directory contains white pages, yellow pages, and green pages. The
white pages contain information about the organization that provides the Web
service. This information includes the name, address, and other contact numbers
of the Web service provider company. The yellow pages in a UDDI directory con-
tain information about the companies based on geographical taxonomies. The
green pages provide the service interface for the client applications that access the
Web service.

After discussing Web services and the technologies used with Web services, I will
discuss how Web services fit into the .NET Framework.

Web Services in the .NET Framework
The .NET Framework provides a complete framework for developing Web ser-
vices. This implies that in the .NET Framework you can not only create Web

628 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

TEAMFL
Y

Team-Fly®

services but also deploy, use, and maintain the Web services. The .NET Frame-
work provides you with tools and technologies that you can use to develop a Web
service.The following section discusses how to create a Web service in Visual Stu-
dio .NET.

Similar to creating a Windows application and a Web application, Visual Studio
.NET provides you with a template to create a Web service.The template for cre-
ating a Web service is provided in the New Project dialog box. To access the Web
service template, perform the following steps:

1. On the File menu, point to the New option.

2. In the displayed list, select the Project option.

The New Project dialog box is displayed.

3. In the right pane of the New Project dialog box, select the ASP.NET
Web Service project template option.

4. In the Location text box, type the address of the Web server on which
you will develop the Web service.

In our case, the development server is the local computer. You can also specify the
name of the Web service, SampleWebService, in the Location text box. Figure
28-3 shows the New Project dialog box with the ASP.NET Web Service project
template selected.

EXPLORING ASP.NET WEB SERVICES Chapter 28 629

FIGURE 28-3 The New Project dialog box

A Web service with the name SampleWebService is created. Figure 28-4 shows
the design view for SampleWebService.

SampleWebService contains the files and references required for the Web service.
The description of these files is given in Table 28-1.

630 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 28-4 The design view for SampleWebService

The Web server that you specify as the development server must have the .NET
Framework and IIS (Internet Information Server) 5.0 or later installed on it. In case
you have IIS 5.0 installed on your local computer, you can specify the path in the
Location text box of the local computer.

TIP

Ta ble 28-1 Files in a Web Serv i c e

F i l e s D e s c r i p t i o n

AssemblyInfo.cs This file contains the metadata of the assembly for the
project.

Service1.asmx.cs This file contains the code for the class declared in the
Web service.

Service1.asmx This file is the entry point of the Web service and con-
tains information about the processing directive of the
Web service.The processing directive identifies the class
in which the code for the Web service is implemented.

Global.asax.cs This file contains the code for handling the events gen-
erated in the application.

Global.asax This file contains information about handling the
events generated in the application.

Web.config This file contains information about the configuration
settings of ASP.NET resources.

SampleWebService.csproj.webinfo This file contains information about the location of the
project on the development server.

SampleWebService.vsdisco This file contains the description of the Web service
that is required by the client application to access the
Web service.The file contains the description of the
methods and interfaces used in the Web service to
enable programmers to communicate with these
resources.

SampleWebService.sln This solution file contains the metadata of the solution.
If your local ser ver is your development server, the
SampleWebService.sln file exists on the local server.

SampleWebService.csproj This project file contains information about the list of
files related to a project.

When you create a Web service, the component designer view for Service1.asmx
is displayed.The Service1.asmx.cs file contains the code for the Web service. You
will learn about the default code generated by Visual Studio .NET later in this
chapter.

EXPLORING ASP.NET WEB SERVICES Chapter 28 631

In the .NET Framework, you can create complex Web services that an applica-
tion can use to access data over the Internet. You will learn about creating com-
plex Web services during the project. However, in this chapter, you will create a
simple Web service that will help you to have a better understanding of how to
create a Web service.

Creating a Simple Web Service
in the .NET Framework

In this section, I will show how to create a simple Web service in the .NET
Framework. Name this Web service SampleWebService. You can create a Web
service by using the ASP.NET Web Service template in the New Project dialog
box. In the Location: text box of the New Project dialog box, specify the name of
the Web service as SampleWebService.

When you click on the OK button in the New Project dialog box, Visual Studio
.NET creates a virtual directory with the name of your Web service. In case a Web
service with the specified name already exists, Visual Studio .NET prompts you
to specify another name for your Web service. Figure 28-5 shows the window dis-
played when Visual Studio .NET creates a new virtual directory.

As you can see, the Web service does not have any user interface or a form. The
default file displayed when Visual Studio .NET creates a Web service is Ser-
vice1.asmx. I have already explained the default files generated by Visual Studio
.NET in Table 28-1.

632 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 28-5 The window displayed while creating a new virtual directory

After creating the Web service, you need to add Web methods to the Web service.
The code behind the Web service is written in the Service1.asmx.cs file. To access
the Service1.asmx.cs file, press the F7 key or double-click the Service1.asmx file.

As you can see in the Service1.asmx.cs file, Visual Studio .NET generates a
default code for your Web service. The following section discusses the default
code created by Visual Studio .NET.

The Default Code Generated for a Web Service
Creating a Web service includes writing the code for Web methods in a Web ser-
vice. However, before you add Web methods to the Web service, Visual Studio
.NET generates a default code as shown:

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

namespace SampleWebService

{

public class Service1 : System.Web.Services.WebService

{

public Service1()

{

I n i t i a l i z e C o m p o n e n t () ;

}

//WEB SERVICE EXAMPLE

// The HelloWorld() example service returns the string Hello World

// To build, uncomment the following lines then save and build the project

// To test this web service, press F5

/ / [W e b M e t h o d]

//public string HelloWorld()

EXPLORING ASP.NET WEB SERVICES Chapter 28 633

/ / {

//return “Hello World”;

/ / }

}

}

The preceding code includes the required namespaces in your Web service. In
addition, the code creates a namespace with the name of your Web service. Inside
the SampleWebService namespace, a public class with the name Service1 is
declared.This class contains a default constructor, Service1. In addition, the code
contains a simple Web method with the name HelloWorld(). The HelloWorld()

Web method returns a string Hello World when the Web service is run.

634 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

As you can see in the preceding code, the Web method HelloWorld() is marked as
comment entries.You can remove the front slash (//) signs preceding the Web
method declaration statements.

TIP

When you re m ove the comment signs and build the Web serv i c e, t h e
Service1.asmx page, as shown in Figure 28-6, is created.

FIGURE 28-6 The Service1.asmx page

As you can see in Figure 28-6, the Service1.asmx page contains the SOAP mes-
sage used to send a request for a Web service. In addition, the Service1.asmx page
contains the response of the request for the Web service. The response for the
SampleWebService Web service is in the form of a SOAP message

The Service1.asmx page contains an Invoke button that you can click to test the
Web service. When you click on the Invoke button, the Hello World Web service
is displayed, as shown in Figure 28-7.

Having seen a sample Web service, you can now continue with the procedure for
creating the SampleWebService Web service.

Creating a Web Method in the
SampleWebService Web Service

Until now, I have not specified the task that the Web method in the Sam-
pleWebService Web service would perform. You can create a Web method that
returns the day of the week on which a date falls. For example, if January 1, 2002
was Tuesday, the value returned by the Web method will be 2.

EXPLORING ASP.NET WEB SERVICES Chapter 28 635

FIGURE 28-7 The Hello World Web service

When you create a Web service, it is a good practice to specify a summary of the
Web service. This will help any user who tries to locate a similar Web service. To
add a summary to your Web service, add the following line in the beginning of
your Web service.

[WebService(Namespace=”http://WebServices/SampleWebService”, Description=”This

service retrieves the day of the week on which a date falls.”)]

The preceding statement includes information about the Web service that you
create.This information includes the URL that you can use to access the Web ser-
vice and a short description of the task performed by the Web service.

After providing the information about the Web service, write the code for the
Web method required to perform the specified task. In this case, the task per-
formed by the Web method is to return the day of the week on which a specified
date falls.Therefore, you need to pass the date as a parameter to the Web method.

Similar to writing a description for the Web service, you can write a short descrip-
tion for the Web method that you declare in the Web service. To write a descrip-
tion for the Web method, add the following code to the Web service.

[WebMethod(Description=”This method returns the day of the week in integer format.

It expects a date in mm/dd/yyyy format and returns 8 if the value specified is

i n v a l i d . ”)]

After adding a description of the Web method to the code, write the actual code
for the Web method. The code for the Web method is as follows:

[WebMethod(Description=”This method returns the day of the week in integer format.

It expects a date in mm/dd/yyyy format and returns 8 if the value specified is

i n v a l i d . ”)]

public int GetDay(DateTime dt)

{

System.DayOfWeek dw;

d w = d t . D a y O f W e e k ;

s w i t c h (d w . T o S t r i n g ())

{

case “Sunday”:

return 0;

636 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

case “Monday”:

return 1;

case “Tuesday”:

return 2;

case “Wednesday”:

return 3;

case “Thursday”:

return 4;

case “Friday”:

return 5;

case “Saturday”:

return 6;

d e f a u l t :

return 8;

}

}

The preceding code declares a Web method with the name GetDay(). The Get-

Day() method takes a parameter dt of the struct DateTime. The date for which you
want to retrieve the day is passed as a parameter dt to the GetDay() method. In
addition, the GetDay() method returns an integer type value that stores the day
on which the specified date falls.

Inside the declaration of the method, the code creates a variable, dw, of the enum
DayOfWeek. This enumeration is present in the System namespace and is used to
specify a day of the week. Next, the code initializes the dw variable to the day for
the value passed as a parameter to the GetDay() method.

Then, the switch case statements are used to return an integer value for the day
stored in the dw variable. To do this, the value stored in the dw variable is checked
using the switch case statements. However, to check for the value stored in the dw
variable, you first need to convert this value to a string type value. To do this, you
can use the ToString() method.

Once you have written the code for the Web method, your Web service is ready
to be tested. The following section discusses the procedure for testing a Web
service.

EXPLORING ASP.NET WEB SERVICES Chapter 28 637

Testing the SampleWebService Web Service
As already discussed, the Web service does not have an interface. However, to test
the Web service, Visual Studio .NET launches the Web service in Internet
Explorer. I will now discuss the steps to test SampleWebService.

To test the SampleWebService Web service, click on the Debug menu, and then
select the Start option. Alternatively, you can press the F5 key to debug and run
the Web service.

Visual Studio .NET launches the Web service in the Internet Explorer window,
as shown in Figure 28-8.

In addition to the description of the Web service and the Web method, the Ser-
vice1.asmx page contains a link to call the GetDay() method. To access the Web
method, click on the link.

When you click on the link in the Service1.asmx page, the Service1.asmx page for
the GetDay() method is displayed. To execute the GetDay() method, you need to
pass a date as a parameter to the GetDay() method and click on the Invoke but-
ton. Figure 28-9 shows a parameter passed to the GetDay() method.

638 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 28-8 The Service1.asmx page for SampleWebService

TEAMFL
Y

Team-Fly®

The result returned by the SampleWebService Web service is displayed. Figure
28-10 shows the result returned by the Web method.

EXPLORING ASP.NET WEB SERVICES Chapter 28 639

FIGURE 28-9 The parameter specified in the GetDay() method

FIGURE 28-10 The result returned by the GetDay() method

Summary
In this chapter, you learned about distributed applications. Distributed applica-
tions are scalable applications in which data is shared across applications. There-
fore, distributed applications include applications built on different platforms or
by using different programming languages. To create a large-scale business solu-
tion, it is essential that you integrate these applications. Integration of applica-
tions built on various platforms is made simpler with the use of Web services.

A Web service is a reusable component, such as a method, that can be used by any
Web application running on the Internet. These applications are called Web ser-
vice client applications. An application that hosts the Web service is called a Web
service provider application.

Next, you learned about the architecture of a Web service.The Web service archi-
tecture includes a four-layered model. These layers are the data layer, the data
access layer, the business layer, and the listener layer. Based on this architecture,
you learned about the working of the Web service.

Next, you learned about the role of XML, WSDL, SOAP, and UDDI in a Web
service.Based on this knowledge about a Web service, you learned to create a sim-
ple Web service using Visual Studio .NET.

640 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

Chapter 29
Developing
Web Services

In the preceding chapters, you looked at the case study and design of the Web
site of Bookers Paradise. In addition, you were introduced to the basics of an

ASP.NET Web service. Based on the knowledge about Web services, you learned
to create a sample Web service by using Visual Studio .NET. This chapter dis-
cusses how to create a Web service for Deepthoughts Publications.

Creating a Web Service for
Deepthoughts Publications

A Web service for Deepthoughts Publications provides information about books
published at its publishing house. This information is displayed on the Web site
of Bookers Paradise. In addition to searching for information about all the books
published by Deepthoughts Publications, a user can search for selected books
based on criteria.

To start with, you can create a Web service by using the ASP.NET Web Service
template provided by Visual Studio .NET. Refer to this Web service as DTWeb-
Service. To create the Web service, perform the following steps:

1. On the File menu, point to the New option.

2. In the displayed list, select the Project option.

The New Project dialog box is displayed.

3. In the Project Types: pane, select the Visual C# Projects option.

4. In the Templates: pane, select the ASP.NET Web Service option.

5. In the Location: text box, type the name of the Web service as
DTWebService.

6. Click on the OK button to create the DTWebService Web service.

Figure 29-1 shows the New Project dialog box for DTWebService.

642 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

Visual Studio .NET creates the Web service and the default files in the Web ser-
vice. I have discussed the default files generated by Visual Studio .NET for a Web
service in Chapter 28, “Exploring ASP.NET Web Services,” in the section “Web
Services in the .NET Framework.”

After creating the Web service, add a short description of the Web service. This
will help any user looking for a similar Web service. To write a short description,
add the following code at the beginning of the Web service.

[WebService (Namespace=”http://LocalHost/DTWebService/”, Description=”A service

displaying catalogs of Deepthoughts publisher”)]

Because the Web service that you create needs to connect to a database, you need
to create a data connection object. To create a data connection object to connect
to a database, perform the following steps:

1. In the Server Explorer window, expand the Servers node.

If the Server Explorer window is not displayed, you can select the Server
Explorer option on the View menu.

When you expand the Servers node, a list of the available SQL servers is
displayed.

DEVELOPING WEB SERVICES Chapter 29 643

FIGURE 29-1 The New Project dialog box for DTWebService

2. Browse for the DTDB database and drag the DTCatalog table to the Ser-
vice1.asmx page.

Visual Studio .NET automatically adds sqlConnection and sqlDataAdapter com-
p onents to the Se rvice1.asmx page. When the sqlCon n e c t i on and sql-
DataAdapter components are added, you need to create a dataset that accesses
data from the DTDB database. To do this, perform the following steps:

1. On the Data menu, select the Generate Dataset option.

The Generate Dataset dialog box is displayed.

2. In the Choose a dataset: group box, select the New radio button.

3. Specify the name of the dataset as dsDetails1.

4. Check the Add this dataset to the designer window check box.

5. Click on the OK button to close the Generate Dataset dialog box.

The dataset with the name dsDetails1 is added to the Service1.asmx page. Figure
29-2 shows the sqlConnection, sqlDataAdapter, and dataset components added
to the Service1.asmx page.

Once a Web service is created and the components are added, you can add Web
methods to it. Web methods are required to provide the functionality to the Web
site. The following section discusses the Web methods in the Web service of
Deepthoughts Publications.

644 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 29-2 The Service1.asmx page with the components added

Creating the SearchAll() Web Method
Creating a Web service involves coding for the Web methods in the Web service.
In this case, you need to create a Web method that returns information about all
the books published at Deepthoughts Publications. Before creating the Web
method, add a short description about the Web method.

[WebMethod(Description=”This method searches for the details of all books published

by Deepthoughts Publications”)]

Now add the code for the Web method. The code for the Web method is as
displayed:

[WebMethod(Description=”This method searches for the details of all books published

by Deepthoughts Publications”)]

public DataSet SearchALL()

{

string SelStr;

SelStr = “Select * from DTCatalog”;

SqlCommand SelCom;

SelCom = new SqlCommand(SelStr, sqlConnection1);

sqlDataAdapter1.SelectCommand = SelCom;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l D a t a A d a p t e r 1 . F i l l (d s D e t a i l s 1 , ” D e t a i l s ”) ;

s q l C o n n e c t i o n 1 . C l o s e () ;

return dsDetails1;

}

The preceding code declares a string variable with the name SelStr. Next, the
code initializes the SelStr variable to a SQL statement that retrieves all the
records from the DTCatalog table. Next, an instance of the SqlCommand class is cre-
ated with the name S e l C o m. The S q l C o m m a n d class is present in the
System.Data.SqlClient namespace. The SqlCommand class is used to represent a
SQL statement that is executed against a SQL server database. You can derive a
class from a SqlCommand class.

After declaring the SelCom instance, you can initialize it. In the constructor of the
SqlCommand class, you need to pass two parameters, SelStr and sqlConnection1.
Because the SqlCommand class represents all the SQL statements executed against
a SQL server database, you need to specify the SQL statement by passing it as a

DEVELOPING WEB SERVICES Chapter 29 645

parameter to the constructor. In addition, you need to specify the sqlConnection
object for executing the SQL command. This object is passed as a parameter to
the constructor of the SqlCommand class.

Next, the SelectCommand property of the SqlDataAdapter class is used to select the
records stored in the SelCom object.The SqlDataAdapter class is present in the Sys-
tem.Data.SqlClient namespace and represents the SQL commands used to mod-
ify the SQL server database.

Then, the Open() method of the SqlConnection class is used to establish a con-
nection with the DTDB database. When a connection with the DTDB database
is established, the records in the DTCatalog table are retrieved and stored in the
dsDetails1 dataset. To do this, the ExecuteNonQuery() method of the SqlCommand
class is executed to return the records that are affected by the SQL command
stored in the SelStr variable. In this case, all the records in the DTCatalog table are
returned by the ExecuteNonQuery() method. The records returned are then stored
in the dataset by using the Fill() method of the DbDataAdapter class.

Once the records are retrieved, you can close the connection to the DTDB data-
base by using the Close() method of the SqlConnection class. Finally, the dataset,
dsDetails1, is returned when the SearchAll() method is called by a Web service
client application. To return the dataset, you use the return keyword.

After creating the Web method, you can test the Web method by pressing the F5
key. The Service1.asmx page is displayed as shown in Figure 29-3.

646 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 29-3 The Service1.asmx page

The Se rvice1.asmx page contains a link to the S e a r c h A l l () m e t h o d . C l i ck on the
link to view the Se rvice1.asmx page for the S e a r c h A l l () m e t h o d . This page con-
tains an Inv oke button . When the user cl i cks on the Inv oke button , the S e a r c h A l l ()
method is executed and the results are displayed as shown in Fi g u re 29-4.

Creating the SrchISBN() Web Method
You can now create a Web method that returns the records from the DTCatalog
table with the ISBN number that is passed as a parameter to the Web method.
First, write a description for the Web method.

[WebMethod(Description=”This method searches for the details of the book based on

the “ + “ ISBN Number of the book”)]

After writing the description, you need to write the code for the Web method
SrchISBN(). The code for the Web method is as follows:

[WebMethod(Description=”This method searches for the details of the book based on

the “ + “ ISBN Number of the book”)]

public DataSet SrchISBN(string ISBN)

{

string SelStr;

DEVELOPING WEB SERVICES Chapter 29 647

FIGURE 29-4 The results returned by the SearchAll() method

SelStr = “Select * from DTCatalog where ISBNNo = @ISB”;

SqlCommand SelCom;

SelCom = new SqlCommand(SelStr, sqlConnection1);

sqlDataAdapter1.SelectCommand = SelCom;

sqlDataAdapter1.SelectCommand.Parameters.Add(“@ISB”,SqlDbType.Char, 10)

.Value = ISBN;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l D a t a A d a p t e r 1 . F i l l (d s D e t a i l s 1 , ” D e t a i l s ”) ;

s q l C o n n e c t i o n 1 . C l o s e () ;

return dsDetails1;

}

The preceding code declares a Web method, SrchISBN(), which accepts a string
type parameter named ISBN. In the method declaration statement, you also spec-
ify the return type of the Web method. Because the SrchISBN() Web method
returns the records with the specified ISBN number, the return type of the
SrchISBN() Web method is Dataset.

Next, a SQL statement that retrieves the record with the specified ISBN number
is created and stored in the string type variable SelStr. Notice that the parame-
ter specifying the ISBN number is preceded with @ in the SQL statement. This
is the syntax for writing SQL queries in Visual Studio .NET.

After the SQL statement is created, the Add() method of the SqlParameterCol-
lection class is used to add SqlParameter to the SqlParameterCollection object.
The SqlParameterCollection object is used to store the parameters associated with
the SQL command in the SqlParameterCollection object. Next, the Value prop-
erty is used to assign a value to the parameter. In this case, the value assigned to
the @ISB parameter is the ISBN number, which is passed to the SrchISBN() Web
method.

After specifying a parameter, you can create a connection to the DTDB database.
To do this, you use the Open() method. Then, the records affected are retrieved
and stored in the dsDetails1 dataset. In this case, the records affected are the ones
that match the ISBN number sent as the parameter. After storing the records,
close the SQL connection by using the Close() method. The dataset is then
returned by using the return keyword.

A fter creating the Web method, you can test the Web serv i c e . On the
Service1.asmx page for the SrchISBN() Web method, specify the parameter and

648 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

TEAMFL
Y

Team-Fly®

click on the Invoke button. Figure 29-5 shows the Service1.asmx page for the
SrchISBN() Web method.

After clicking on the Invoke button, the Web method is executed and the results
are returned as shown in Figure 29-6.

DEVELOPING WEB SERVICES Chapter 29 649

FIGURE 29-5 The Service1.asmx page for the SrchISBN() method

FIGURE 29-6 The results returned by the SrchISBN() method

Similarly, you can write the code for the Web methods that accept the author, the
category, or the title as the parameter.

Creating the AcceptDetails() Web Method
In addition to providing the data to the Web site, DTWebService accepts the
details of the customer who orders a book on the Web service. These details are
then stored in the DTDB database.To perform this function, create another Web
method, AcceptDetails(). The code for the AcceptDetails() Web method is as
shown:

public string AcceptDetails(string ISBN, string DateOrder, string CustName, string

CustAddr1, string CustAddr2, string CustCity, string CustState, string OrdBy,

string OrdStat, string CardType, string CardNum)

{

string OrderNo;

string error;

e r r o r = ” ” ;

OrderNo = GenerateOrder();

string InsStr;

InsStr = “Insert Into DTOrders Values(@IN, @ON, @DO, @CN, @CA1, @CA2, @CC, @CS,

@OB, @ST, @CT, @CCN)”;

t r y

{

SqlCommand InsCom;

InsCom = new SqlCommand(InsStr, sqlConnection1);

sqlDataAdapter1.InsertCommand = InsCom;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@IN”, SqlDbType.Char,10).

Value = ISBN;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@ON”, SqlDbType.Char,5).

Value = OrderNo;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ D O ” , S q l D b T y p e . D a t e T i m e , 8) .

Value = Convert.ToDateTime(DateOrder).Date ;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@CN”, SqlDbType.VarChar ,50).

Value= CustName;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@CA1”, SqlDbType.VarChar,50).

Value= CustAddr1;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ C A 2 ” , S q l D b T y p e . V a r C h a r , 5 0) .

650 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

V a l u e = C u s t A d d r 2 ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ C C ” , S q l D b T y p e . V a r C h a r , 2 0) .

Value = CustCity;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@CS”, SqlDbType.VarChar ,10).

Value = CustState;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@OB”,SqlDbType.VarChar , 50).

V a l u e = O r d B y ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ S T ” , S q l D b T y p e . V a r C h a r , 2 0) .

V a l u e = O r d S t a t ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ C T ” , S q l D b T y p e . C h a r , 1 0) .

V a l u e = C a r d T y p e ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ C C N ” , S q l D b T y p e . V a r C h a r , 2 0) .

V a l u e = C a r d N u m ;

if(sqlConnection1.State== ConnectionState.Closed)

{

sqlConnection1.Open ();

}

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

}

catch(Exception E1)

{

error = E1.Message;

}

string result;

if (error.Length != 0)

{

result = “Record Not Inserted due to the following reason: \n”+ error;

}

e l s e

{

result = “Record Inserted!!”;

}

return result;

}

The preceding code declares a Web method with the name AcceptDetails() that
returns a string type variable.This string type variable, result, returns a message

DEVELOPING WEB SERVICES Chapter 29 651

whether the records are inserted in the DTDB database or not. If an error occurs
while attempting to add the records to the DTDB database, the AcceptDetails()

Web method returns an error.

In addition, the Web method declaration statement accepts 11 parameters, each
corresponding to a field in the DTOrders table. These parameters include ISBN
number, date of ordering, name of the customer, address of the customer, and so
on. In addition, the credit card details of the customer are passed as a parameter
to the Web method.

Inside the Web method, three string variables, OrderNo, error, and InsStr, are
declared. The variable error is initialized to a null value. However, the OrderNo

variable is initialized to the GenerateOrder() method. The GenerateOrder()

method is used to autogenerate the order number for any order placed by a cus-
tomer. You will learn to add code to the GenerateOrder() method later in this
chapter.

Next, the code creates a SQL statement that inserts a value into the DTOrders
table. To do this, an Insert statement is created.The Insert statement accepts 12
parameters, each corresponding to the parameter passed to the AcceptDetails()
Web method. This Insert statement is then stored in the InsStr variable.

After creating the SQL statement, a try loop is used to enter records to the
DTOrders table. Inside the try loop, an instance, InsCom, of the SqlCommand class is
created and the Insert command is passed as a parameter to the constructor of the
SqlCommand class. Then, the value of the parameter passed to the AcceptDetails()
Web method is stored in the SqlParameterCollection object. This process is
repeated for all of the 11 parameters.

Next, an if statement is used to check whether the connection to the DTDB
database is closed or not.To do this, the State property of the SqlConnection class
is used. If the connection is closed, the code opens the connection by using the
Open() method.Then, the ExecuteNonQuery() method is used to return the records
affected by the Insert statement and the connection to the SQL database is
closed.

While adding records to the DTOrders table, if an exception is generated, the
exception is caught in the catch loop and stored in the error variable. Next, a
string type variable result is declared that returns the message stating whether the
records are added to the database or not. To do this, the Length property of the
String class is used. If the value in the Length property is equal to zero, an error

652 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

message is displayed. However, if the records are added, a message confirming
that the records are added is displayed. Figure 29-7 shows the message returned
by the AcceptDetails() Web method.

Until now, I have not added a description for the AcceptDetails() Web method.
To do this, add the following statement before the Web method:

[WebMethod(Description=”This method accepts the details of Customer who opt “ + “

for a book published by Deepthoughts Publications”)]

Creating the GenerateOrder() Web Method
As discussed earlier, when a customer places an order for a book, the details of the
book and the customer are returned to the Web service. In addition, an order
number for each order is generated automatically. To do this, you need to write
code for the GenerateOrder() Web method.

However, first add a short description for the Web method.

[WebMethod(Description=”This method returns the order number of a customer”)]

DEVELOPING WEB SERVICES Chapter 29 653

FIGURE 29-7 The message returned by the AcceptDetails() Web method

Now, add the following code to the Web service:

[WebMethod(Description=”This method returns the order number of a customer”)]

public string GenerateOrder()

{

string SelStr;

SelStr = “Select Count(*) From DTOrders”;

SqlCommand SelCom;

SelCom = new SqlCommand(SelStr, sqlConnection1);

s q l C o n n e c t i o n 1 . O p e n () ;

sqlDataAdapter1.SelectCommand = SelCom;

s q l D a t a A d a p t e r 1 . F i l l (d s D e t a i l s 1 , ” D e t a i l s ”) ;

s q l C o n n e c t i o n 1 . C l o s e () ;

string str;

str = dsDetails1.Tables[“Details”].Rows[0][0].ToString ();

int val;

val = Convert.ToInt32(str);

val= val+1;

if(val>0 & val<=9)

{

str = “O000” + Convert.ToString(val);

}

else if(val>9 & val<=99)

{

str =”O00” + Convert.ToString (val);

}

else if(val>99 & val <=999)

{

str = “O0” + Convert.ToString (val);

}

e l s e

{

str = “O” + Convert.ToString (val);

}

return str;

}

654 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

The preceding code declares a public Web method named GenerateOrder() that
returns a string containing the generated order number. Inside the method dec-
laration statement, a string type variable named SelStr is declared. This variable
is then initialized to a SQL statement that selects all the records in the DTOrders
table. Next, an instance of the SqlCommand class is created and initialized to the
SQL statement stored in the SelStr variable.

Then, the Open() method is used to open the SQL connection to the DTOrders
table. Next, the records in the DTOrders table are selected using the SelectCommand
property. These records are then added to the dsDetails dataset by using the
Fill() method and the connection to the DTOrders table is closed.

The code then declares a string type variable named str and initializes it to a col-
lection of rows in the DTOrders table. To do this, the Rows property of the DataRow-
Collection class is used. The value returned by the Rows property is converted to
a string value by using the ToString() method and stored in the str variable.
Next, an integer type variable, val, is declared and initialized to the 32-bit signed
integer equivalent of the value stored in the str variable. To convert the string
type variable to the 32-bit signed integer variable, you use the ToInt property of
the System.Convert class.

The value stored in the variable val is the number of records in the DTOrders table.
Therefore, to generate the next order number, you need to add 1 to the value in
the variable val. Then, an if loop is used to find the range of the value in the vari-
able val. If this value lies in the range 0 to 9, the string, O000, is added to this
value. However, to do this, you again need to convert the value in the variable val
to a string type value.

Similarly, if the value in the variable val lies in the range 9 to 99, the string O00
is added to the value. Therefore, the range of the value is found out and O fol-
lowed by zeros is added to make the order number a four-digit number. This value
stored in the variable str is returned by the Web method.

After writing the code for the GenerateOrder() Web method, you can test the
Web method. On testing the Web method, an order number is returned,as shown
in Figure 29-8.

DEVELOPING WEB SERVICES Chapter 29 655

Now look at the entire code for the Web service project that you created.This will
help you enhance your understanding of the Web service.

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

using System.Data.SqlClient ;

namespace DTWebService

{

[WebService (Namespace=”http://LocalHost/DTWebService/”, Description=”A service

displaying catalogs of Deepthoughts Publications “)]

public class Service1 : System.Web.Services.WebService

{

public Service1()

656 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 29-8 The order number returned by the GenerateOrder() Web method

{

I n i t i a l i z e C o m p o n e n t () ;

}

private System.Data.SqlClient.SqlCommand sqlSelectCommand1;

private System.Data.SqlClient.SqlCommand sqlInsertCommand1;

private System.Data.SqlClient.SqlCommand sqlUpdateCommand1;

private System.Data.SqlClient.SqlCommand sqlDeleteCommand1;

private System.Data.SqlClient.SqlConnection sqlConnection1;

private System.Data.SqlClient.SqlDataAdapter sqlDataAdapter1;

private DTWebService.dsDetails dsDetails1;

[WebMethod(Description=”This method accepts the details of Customer who opt“

+” for a book published by Deepthoughts Publications”)]

public string AcceptDetails(string ISBN, string DateOrder, string CustName,

string CustAddr1, string CustAddr2, string CustCity, string CustState,

string OrdBy, string OrdStat, string CardType, string CardNum)

{

string OrderNo;

string error;

e r r o r = ” ” ;

OrderNo = GenerateOrder();

string InsStr;

InsStr = “Insert Into DTOrders Values(@IN, @ON, @DO, @CN, @CA1, @CA2,

@CC, @CS, @OB, @ST, @CT, @CCN)”;

t r y

{

SqlCommand InsCom;

InsCom = new SqlCommand(InsStr, sqlConnection1);

sqlDataAdapter1.InsertCommand = InsCom;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@IN”, SqlDbType.Char,10).

Value = ISBN;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@ON”, SqlDbType.Char,5).

Value = OrderNo;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ D O ” ,

SqlDbType.DateTime,8).Value = Convert.ToDateTime(DateOrder).Date ;

DEVELOPING WEB SERVICES Chapter 29 657

sqlDataAdapter1.InsertCommand.Parameters.Add(“@CN”, SqlDbType

.VarChar ,50).Value= CustName;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@CA1”, SqlDbType

.VarChar,50).Value= CustAddr1;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ C A 2 ” , S q l D b T y p e

. V a r C h a r , 5 0) . V a l u e = C u s t A d d r 2 ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ C C ” , S q l D b T y p e

.VarChar,20).Value = CustCity;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@CS”, SqlDbType

.VarChar ,10).Value = CustState;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ O B ” , S q l D b T y p e

.VarChar , 50).Value=OrdBy;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ S T ” , S q l D b T y p e

. V a r C h a r , 2 0) . V a l u e = O r d S t a t ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ C T ” , S q l D b T y p e

. C h a r , 1 0) . V a l u e = C a r d T y p e ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ C C N ” , S q l D b T y p e

. V a r C h a r , 2 0) . V a l u e = C a r d N u m ;

if(sqlConnection1.State== ConnectionState.Closed)

{

sqlConnection1.Open ();

}

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

}

catch(Exception E1)

{

error = E1.Message;

}

string result;

if (error.Length != 0)

{

result = “Record Not Inserted due to the following reason: \n”+ error;

}

658 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

TEAMFL
Y

Team-Fly®

e l s e

{

result = “Record Inserted!!”;

}

return result;

}

[WebMethod(Description=”This method searches for the details of all books

published by Deepthoughts Publications “)]

public DataSet SearchALL()

{

string SelStr;

SelStr = “Select * from DTCatalog”;

SqlCommand SelCom;

SelCom = new SqlCommand(SelStr, sqlConnection1);

sqlDataAdapter1.SelectCommand = SelCom;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l D a t a A d a p t e r 1 . F i l l (d s D e t a i l s 1 , ” D e t a i l s ”) ;

s q l C o n n e c t i o n 1 . C l o s e () ;

return dsDetails1;

}

[WebMethod(Description=”This method searches for the details of the book

based on the “ +” ISBN Number of the book”)]

public DataSet SrchISBN(string ISBN)

{

string SelStr;

SelStr = “Select * from DTCatalog where ISBNNo = @ISB”;

SqlCommand SelCom;

SelCom = new SqlCommand(SelStr, sqlConnection1);

sqlDataAdapter1.SelectCommand = SelCom;

sqlDataAdapter1.SelectCommand.Parameters.Add(“@ISB”,SqlDbType.Char, 10)

.Value = ISBN;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l D a t a A d a p t e r 1 . F i l l (d s D e t a i l s 1 , ” D e t a i l s ”) ;

DEVELOPING WEB SERVICES Chapter 29 659

s q l C o n n e c t i o n 1 . C l o s e () ;

return dsDetails1;

}

[WebMethod(Description=”This method searches for the details of the book

based on the “ + “ the name of the Author”)]

public DataSet SrchAuthor(string Author)

{

string SelStr;

SelStr = “Select * from DTCatalog where Author = @AU”;

SqlCommand SelCom;

SelCom = new SqlCommand(SelStr, sqlConnection1);

sqlDataAdapter1.SelectCommand = SelCom;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . P a r a m e t e r s . A d d (“ @ A U ” , S q l D b T y p e .

VarChar , 50).Value = Author;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l D a t a A d a p t e r 1 . F i l l (d s D e t a i l s 1 , ” D e t a i l s ”) ;

s q l C o n n e c t i o n 1 . C l o s e () ;

return dsDetails1;

}

[WebMethod(Description=”This method searches for the details of the book

based on the “ +” the Catalog of the books”)]

public DataSet SrchCategory(string Catalog)

{

string SelStr;

SelStr = “Select * from DTCatalog where Category = @CA”;

SqlCommand SelCom;

SelCom = new SqlCommand(SelStr, sqlConnection1);

sqlDataAdapter1.SelectCommand = SelCom;

sqlDataAdapter1.SelectCommand.Parameters.Add(“@CA”,SqlDbType.Char , 10)

.Value = Catalog;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l D a t a A d a p t e r 1 . F i l l (d s D e t a i l s 1 , ” D e t a i l s ”) ;

s q l C o n n e c t i o n 1 . C l o s e () ;

660 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

return dsDetails1;

}

[WebMethod(Description=”This method searches for the details of the book

based on the “ + “ the Title of the books”)]

public DataSet SrchTitle(string BkTitle)

{

string SelStr;

SelStr = “Select * from DTCatalog where BookTitle = @BT”;

SqlCommand SelCom;

SelCom = new SqlCommand(SelStr, sqlConnection1);

sqlDataAdapter1.SelectCommand = SelCom;

sqlDataAdapter1.SelectCommand.Parameters.Add(“@BT”,SqlDbType.VarChar , 50)

.Value = BkTitle;

s q l C o n n e c t i o n 1 . O p e n () ;

s q l D a t a A d a p t e r 1 . S e l e c t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l D a t a A d a p t e r 1 . F i l l (d s D e t a i l s 1 , ” D e t a i l s ”) ;

s q l C o n n e c t i o n 1 . C l o s e () ;

return dsDetails1;

}

[WebMethod(Description=”This method returns the order number of a customer”)]

public string GenerateOrder()

{

string SelStr;

SelStr = “Select Count(*) From DTOrders”;

SqlCommand SelCom;

SelCom = new SqlCommand(SelStr, sqlConnection1);

s q l C o n n e c t i o n 1 . O p e n () ;

sqlDataAdapter1.SelectCommand = SelCom;

s q l D a t a A d a p t e r 1 . F i l l (d s D e t a i l s 1 , ” D e t a i l s ”) ;

s q l C o n n e c t i o n 1 . C l o s e () ;

string str;

str = dsDetails1.Tables[“Details”].Rows[0][0].ToString ();

int val;

val = Convert.ToInt32(str);

DEVELOPING WEB SERVICES Chapter 29 661

val= val+1;

if(val>0 & val<=9)

{

str = “O000” + Convert.ToString(val);

}

else if(val>9 & val<=99)

{

str =”O00” + Convert.ToString (val);

}

else if(val>99 & val <=999)

{

str = “O0” + Convert.ToString (val);

}

e l s e

{

str = “O” + Convert.ToString (val);

}

return str;

}

}

}

After creating the Web service, you can test the Web service.

Testing the Web Service
To test the Web service, press the F5 key or select the Start option on the Debug
menu. Because you have tested most of the Web methods while creating them,
you can test the remainder of the Web methods.

Testing the SrchAuthor() Web Method
On testing the SrchAuthor() Web method, the method returns records for the
specified author. Figure 29-9 shows the records returned by the SrchAuthor() Web
method.

662 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

Testing the SrchCategory() Web Method
Figure 29-10 shows the records based on the category specified by the user in the
SrchCategory() Web method.

DEVELOPING WEB SERVICES Chapter 29 663

FIGURE 29-9 The records returned by the SrchAuthor() Web method

FIGURE 29-10 The records returned by the SrchCategory() Web method

Testing the SrchTitle() Web Method
When the user wants to search for a particular book, the user can specify the title
of the book as the search criteria. Figure 29-11 shows the record returned by the
SrchTitle() Web method.

Once you have created a Web service, you need to secure your Web service. The
following section discusses how to secure a Web service.

Securing a Web Service
It is essential that you secure the Web service that you create.This would prevent
anyone else from tampering with your Web service. To secure a Web service, there
are several attributes associated with the Web service, as shown:

◆ Authentication

◆ Authorization

◆ Auditing

664 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 29-11 The record returned by the SrchTitle() Web method

◆ Data integrity

◆ Data privacy

◆ Data availability

Among all these attributes, authentication is the most important attribute. To
provide security to your Web service, you need to have a secure mechanism for
authentication. Authentication is defined as the process of verifying the details of
the user attempting to access the Web service. This verification is done on the
basis of the information stored about the user. This information may include a
password, an ID, or a thumbprint. These credentials stored for a user are called
principal. However, to avoid a situation in which an unauthorized user tries to
access the Web service by using the password assigned to an authorized user, you
need to carefully decide the authentication credentials for your Web service.

Summary
In this chapter, you learned how to create the DTWebService Web service. While
creating the Web service, you added the required Web methods to the Web
s e rv i c e . These Web methods include A c c e p t D e t a i l s (), G e n e r a t e O r d e r (),
SearchALL(), SrchISBN(), SrchTitle(), SrchCategory(), and SrchAuthor(). In this
way, you can also create a Web service for Black and White Publications.

After adding the Web methods to the DTWebService Web service, you tested the
Web service in the Internet Explorer window. Finally, you learned to secure a Web
service.

DEVELOPING WEB SERVICES Chapter 29 665

This page intentionally left blank

Chapter 30
Developing Web
Service Clients

In the preceding chapter, you created a Web service for Deepthoughts Publica-
tions.However, to access the Web service, you need to create a Web client appli-

cation. In this case, the Web client application is the Web site for Bookers
Paradise.

In this chapter, you will learn to create the Web service client application. Creat-
ing the Web service client application includes creating the Web forms required
for the Web site. In addition, you will learn to add code to the Web forms.

Creating a Web Service Client
Application for Bookers Paradise

The Web site for Bookers Paradise displays the information about the books pub-
lished by Deepthoughts Publications and Black and White Publications.The user
can choose to view information about all the books or selected books on the Web
site. In addition to viewing information, the user can select a book to order.

When a user orders a book, the details of the book and the customer are added to
the database of the publisher. Before writing the code for the client application,
you will create the Web forms for the application.

Creating the Web Forms for
the Bookers Paradise Web Site

You have seen the design of the Web forms for the Bookers Paradise Web site in
Chapter 27, “Project Case Study and Design,” in the section “Web Forms
Design.” However, in Chapter 27, you did not create the forms. The following
sections discuss the creation of the Web forms used in the Bookers Paradise Web
site.

668 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

TEAMFL
Y

Team-Fly®

Creating the Main Form
As already discussed in Chapter 27, the Main form consists of four label controls,
one button control, five hyperlink controls, one list control, one text box control,
and two table controls. To add these controls to the Main form, drag these con-
trols from the Web Forms toolbox and change the properties of the controls.Table
30-1 shows the properties that you need to change for the controls.

Table 30-1 P ro p e rties for the Controls Added to the Main Form

C o n t ro l P ro p e rt y Va l u e

Label1 ID Label1
Text Browse
Font Verdana
ForeColor Purple
BackColor #FF80FF

Label2 ID Label2
Text Bookers Paradise
Font Monotype Corsiva, XX-Large
ForeColor Purple
BackColor Transparent

Label3 ID Label3
Text Your Online Bookstore…
Font Monotype Corsiva, Larger
ForeColor Purple
BackColor Transparent

Label4 ID Label4
Text About US…
Font Monotype Corsiva, Larger
ForeColor Purple
BackColor Transparent

HyperLink1 ID HyperLink1
Text Visual Studio .NET
NavigateURL ConstructionForm.aspx
BackColor #FF80FF

continues

DEVELOPING WEB SERVICE CLIENTS Chapter 30 669

Table 30-1 P ro p e rties for the Controls Added to the Main Form (c o n t i nu e d)

C o n t ro l P ro p e rt y Va l u e

HyperLink2 ID HyperLink2
Text Operating Systems
NavigateURL ConstructionForm.aspx
BackColor #FF80FF

HyperLink3 ID HyperLink3
Text RDBMS
NavigateURL ConstructionForm.aspx
BackColor #FF80FF

HyperLink4 ID HyperLink4
Text Networking
NavigateURL ConstructionForm.aspx
BackColor #FF80FF

HyperLink5 ID HyperLink5
Text Internet
NavigateURL ConstructionForm.aspx
BackColor #FF80FF

Button ID btnGo
Text Go

List ID lstType
Items All

Author
Title
ISBN Number
Category

Table1 ID Table1
BorderStyle Outset
ForeColor Purple
BackColor #FF80FF
Rows TableRow0

TableRow1

TableRow0 Cells TableCell0

670 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

Table 30-1 P ro p e rties for the Controls Added to the Main Form (c o n t i nu e d)

C o n t ro l P ro p e rt y Va l u e

TableCell0 Text Search
Font Verdana, Small
ForeColor Purple
VerticalAlign Top

Table2 ID Table2
BorderStyle Outset
ForeColor Purple
BackColor Magenta
Rows TableRow0

TableRow0 BorderStyle Outset
BackColor #FFC0FF
Cells TableCell0

TableCell0 BackColor #FF80FF

TextBox1 ID txtSearch

After creating the form in the design view, the form looks as shown in Figure
30-1.

DEVELOPING WEB SERVICE CLIENTS Chapter 30 671

FIGURE 30-1 The Main form

Creating the Results Form
The Results page is generated to display the results of the user’s query. To create
the Results form, you need to include a DataGrid, a label, and a hyperlink con-
trol. You can name the Results form DispResultForm. After adding the controls,
you need to change the properties of the Web form controls as shown in Table
30-2.

Table 30-2 P ro p e rties for the Controls Added to the Results Form

C o n t ro l P ro p e rt y Va l u e

HyperLink1 ID HyperLink1
Text Home
NavigateURL MainForm.aspx

Lable1 ID lblInfo
Font Verdana, Large
ForeColor #400040

DataGrid1 ID DataGrid1
BackColor #E0E0E0

After adding the DataGrid control to the form, you need to add button controls
to the DataGrid control. To do this, perform the following steps:

1. Select the DataGrid control to view its Properties window.

Below the Properties window, the Property Builder link is displayed.

2. Click on the Property Builder link to display the DataGrid1 Properties
dialog box.

3. In the DataGrid1 Properties dialog box, select the Columns tab in the
left hand pane.

4. In the Available columns: list box, expand the Button Column node.

5. Select the Select option and click on the right arrow button to add the
Select button.

When you add the Select button, the text boxes in the ButtonColumn
properties area become enabled.

672 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

6. In the Text: text box, type the text as Order.

7. In the Command name: text box, type the value as Ord.

8. In the Button Type: list box, select the value as LinkButton.

9. Click on the OK button to close the DataGrid1 Properties dialog box.

Figure 30-2 shows the DataGrid1 Properties dialog box.

When you create the form, the DispResultForm form looks as shown in Figure
30-3.

DEVELOPING WEB SERVICE CLIENTS Chapter 30 673

FIGURE 30-2 The DataGrid1 Properties dialog box

Creating the Orders Form
The Orders form stores the details of the book and the customers who order a
book at the Web site. To do this, 1 button control, 2 hyperlink controls, 12 label
controls, 1 list control, 5 RequiredFieldValidator controls, and 10 text box con-
trols are added to the form. Name this Web form OrdersForm. In the Orders-
Form form, change the properties of the controls as shown in Table 30-3.

Table 30-3 P ro p e rties for the Controls Added to the Ord e rs Form

C o n t ro l P ro p e rt y Va l u e

Button1 ID btnClear
Text Clear

Button2 ID btnOrder
Text Order

HyperLink1 ID HyperLink1
Text Home
NavigateURL MainForm.aspx

Label1 ID Label1
Text ISBN Number
ForeColor Purple

674 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 30-3 The DispResultForm form

Table 30-3 P ro p e rties for the Controls Added to the Ord e rs Form (c o n t i nu e d)

C o n t ro l P ro p e rt y Va l u e

Label2 ID Label2
Text Enter your details here
ForeColor Purple
Font Monotype Corsiva, Large

Label3 ID Label3
Text Book Title
ForeColor Purple

Label4 ID Label4
Text Name
ForeColor Purple

Label5 ID Label5
Text Address1
ForeColor Purple

Label6 ID Label6
Text Address2
ForeColor Purple

Label7 ID Label7
Text City
ForeColor Purple

Label8 ID Label8
Text State
ForeColor Purple

Label9 ID Label9
Text Author
ForeColor Purple

List ID lstCardType
Items Amex

Visa
Master

Text Box1 ID TextBox1
TextMode Multiline
Enabled False
Font Verdana

DEVELOPING WEB SERVICE CLIENTS Chapter 30 675

Table 30-3 P ro p e rties for the Controls Added to the Ord e rs Form (c o n t i nu e d)

C o n t ro l P ro p e rt y Va l u e

Text Box2 ID txtAddr1

Text Box3 ID txtAddr2

Text Box4 ID txtAuthor
Enabled False

Text Box5 ID txtCardNumber

Text Box6 ID txtCity

Text Box7 ID txtISBN
Enabled False

Text Box8 ID txtName

Text Box9 ID txtState

Text Box10 ID txtTitle

RequiredFieldValidator1 ID RequiredFieldValidator1
ControlToValidate txtCardNumber
ErrorMessage Please enter the Credit Card

Number
RequiredFieldValidator2 ID RequiredFieldValidator3

ControlToValidate txtName
ErrorMessage Please enter your Name
Text Please enter your Name

RequiredFieldValidator3 ID RequiredFieldValidator4
ControlToValidate txtCardNumber
ErrorMessage Please enter your Name
Text Please enter your Name

RequiredFieldValidator4 ID RequiredFieldValidator5
ControlToValidate txtAddr1
ErrorMessage Please enter the Address

RequiredFieldValidator5 ID RequiredFieldValidator6
ControlToValidate txtCity
ErrorMessage Please enter the City

676 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

Table 30-3 P ro p e rties for the Controls Added to the Ord e rs Form (c o n t i nu e d)

C o n t ro l P ro p e rt y Va l u e

RequiredFieldValidator6 ID RequiredFieldValidator7
ControlToValidate txtState
ErrorMessage Please enter the State

In addition to the previously mentioned controls, you need to add an sql-
DataAdapter, an sqlConnection, and Dataset objects to the OrdersForm form. I
have already explained the steps to include these controls to the form in Chapter
29, “Developing Web Services,” in the section “Creating a Web Service for
Deepthoughts Publications.”

Figure 30-4 shows the form after it is created.

Creating the Search Form
The Search form allows a user to search for records based on criteria. Therefore,
the user needs to enter the criteria and a value for the criteria. To create the Search
form, add a label control, two button controls, four radio buttons, and four text
box controls to the form and then change the properties of the controls added to

DEVELOPING WEB SERVICE CLIENTS Chapter 30 677

FIGURE 30-4 The OrdersForm form

the form.The properties that you need to change in the Search page are specified
in Table 30-4.

Table 30-4 P ro p e rties for the Controls Added to the Search Form

C o n t ro l P ro p e rt y Va l u e

Button1 ID btnHome
Text Home

Button2 ID btnSearch
Text Search

Label1 ID lblInfo
ForeColor Red

Radio Button1 ID radAuthor
Text Author
GroupName Criteria
ForeColor #400040

Radio Button2 ID radCategory
Text Category
GroupName Criteria
ForeColor #400040

Radio Button3 ID radISBN
Text ISBN Number
GroupName Criteria
ForeColor #400040

Radio Button4 ID radTitle
Text Title
GroupName Criteria
ForeColor #400040

Text Box1 ID txtAuthor

Text Box2 ID txtCategory

Text Box3 ID txtISBN

Text Box4 ID txtTitle

Figure 30-5 shows the Search form when it is created.

678 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

TEAMFL
Y

Team-Fly®

Once the form is created, you can rename the form SearchForm.

Creating the Construction Form
To create the construction form, add a hyperlink control and two label controls to
the form. Rename the form ConstructionForm. Next, you need to change the
properties of the controls, as shown in Table 30-5.

Table 30-5 P ro p e rties for the Controls Added to the Construction Form

C o n t ro l P ro p e rt y Va l u e

Label1 ID Label1
Text This page is under construction.
ForeColor Purple
Font Verdana, Large

Label2 ID Label2
Text Check out later...
ForeColor Purple
Font Verdana, Large

HyperLink1 ID HyperLink1
Text Home
NavigateURL MainForm.aspx

DEVELOPING WEB SERVICE CLIENTS Chapter 30 679

FIGURE 30-5 The Search form

Having created the form, look at the form as shown in Figure 30-6.

Adding Code to the Web Forms
After creating the forms, add the code to the forms to make them functional.The
following section discusses writing code for the Web forms that you have created.

Adding Code to the Main Form
To begin with, write the code for the Main form. Adding functionality to the
Main form includes writing code for the button control in the Main form. To add
the functionality to the button control, add the following code in the Click event
of the button control.

private void btnGo_Click(object sender, System.EventArgs e)

string strList;

string strText;

strList = lstType.SelectedItem.Text ;

if(String.Compare(strList, “ALL”)==0)

680 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 30-6 The ConstructionForm form

{

strText=”Search ALL”;

}

e l s e

{

strText = txtSearch.Text;

}

if(strText.Length != 0)

{

Response.Redirect (“DispResultForm.aspx?Cat=” + strList + “& str=” + strText);

}

e l s e

{

Response.Redirect (“SearchForm.aspx”);

}

}

The preceding code for the Click event of the Go button declares two string type
variables, strList and strText. The strList variable is used to store the value
selected by the user in the list box control. To do this, you use the Text property
of the ListItem class.The Text property is used to specify or retrieve values in the
list box that is created. To retrieve the selected item, use the SelectedItem prop-
erty of the ListControl class.

Next,the Compare() method of the String class is used to compare the value stored
in the strList variable to zero. If the value stored in the variable is zero, then the
text Search ALL is stored in the variable strText. However, if the value stored in
the variable strList is not equal to zero, the value entered by the user in the
txtSearch text box is assigned to the variable strText. Doing this helps you to
store the value entered by the user for the selected criteria.

However, there may be cases where the user forgets to specify a value in the
txtSearch text box. In this case, the user is taken to the SearchForm form. Other-
wise, the user is taken to the DispResultForm where the records matching a given
criteria are displayed. To do this, you use an if statement that checks whether the
length of the value stored in the strText variable is zero or not.The length of the
variable is found out by using the Length property of the String class.

DEVELOPING WEB SERVICE CLIENTS Chapter 30 681

To display the form based on the result of the if statement, you can use the Redi-
rect() method. The Redirect() method redirects the user to a new page. The
URL of the resultant page is passed as a parameter to the Redirect() method.

After writing the code for the Click event of the Go button, you can see the code
for the MainForm form. The code for the MainForm form is as shown:

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace BookersClient

{

public class WebForm1 : System.Web.UI.Page

{

protected System.Web.UI.WebControls.TextBox txtSearch;

protected System.Web.UI.WebControls.Button btnGo;

protected System.Web.UI.WebControls.DropDownList lstType;

protected System.Web.UI.WebControls.Table Table2;

protected System.Web.UI.WebControls.Label Label1;

protected System.Web.UI.WebControls.HyperLink HyperLink1;

protected System.Web.UI.WebControls.HyperLink HyperLink2;

protected System.Web.UI.WebControls.HyperLink HyperLink3;

protected System.Web.UI.WebControls.HyperLink HyperLink5;

protected System.Web.UI.WebControls.HyperLink HyperLink4;

protected System.Web.UI.WebControls.Label Label2;

protected System.Web.UI.WebControls.Label Label3;

protected System.Web.UI.WebControls.Label Label4;

protected System.Web.UI.WebControls.Table Table1;

682 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

private void Page_Load(object sender, System.EventArgs e)

{

}

private void btnGo_Click(object sender, System.EventArgs e)

{

string strList;

string strText;

strList = lstType.SelectedItem.Text ;

if(String.Compare(strList, “ALL”)==0)

{

strText=”Search ALL”;

}

e l s e

{

strText = txtSearch.Text;

}

if(strText.Length != 0)

{

Response.Redirect (“DispResultForm.aspx?Cat=” + strList + “& str=”

+ strText);

}

e l s e

{

Response.Redirect (“SearchForm.aspx”);

}

}

}

}

Adding Code to the DispResultForm Form
When the user is taken to the DispResultForm form, the records matching the
criteria specified in the MainForm page are displayed.Therefore, you need to add
code to the Page_Load() method as shown:

private void Page_Load(object sender, System.EventArgs e)

{

DTService.Service1 srv1 = new DTService.Service1();

DEVELOPING WEB SERVICE CLIENTS Chapter 30 683

DataSet ds1;

string strCategory;

string strParam;

strCategory = Request.QueryString.Get(0).ToString();

strParam = Request.QueryString.Get(1).ToString();

s w i t c h (s t r C a t e g o r y)

{

case “ALL”:

ds1 = srv1.SearchALL();

if(ds1.Tables[“Details”].Rows.Count != 0)

{

DataView source= new DataView(ds1.Tables[“Details”]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

DataGrid1.DataBind();

lblInfo.Text = “Your search produced following results”;

}

e l s e

{

DataGrid1.Visible = false;

lblInfo.Text = “No matching records found!!”;

}

b r e a k ;

case “Title”:

ds1=srv1.SrchTitle (strParam);

if(ds1.Tables[“Details”].Rows.Count !=0)

{

DataView source= new DataView(ds1.Tables[“Details”]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

DataGrid1.DataBind();

lblInfo.Text = “Your search produced following results...”;

}

e l s e

{

DataGrid1.Visible = false;

lblInfo.Text = “No matching records found!!”;

}

684 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

b r e a k ;

case “ISBN Number”:

ds1=srv1.SrchISBN (strParam);

if(ds1.Tables[“Details”].Rows.Count !=0)

{

DataView source= new DataView(ds1.Tables[“Details”]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

DataGrid1.DataBind();

lblInfo.Text = “Your search produced following results...”;

}

e l s e

{

DataGrid1.Visible = false;

lblInfo.Text = “No matching records found!!”;

}

b r e a k ;

case “Author”:

ds1=srv1.SrchAuthor (strParam);

if(ds1.Tables[“Details”].Rows.Count !=0)

{

DataView source= new DataView(ds1.Tables[“Details”]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

DataGrid1.DataBind();

lblInfo.Text = “Your search produced following results”;

}

e l s e

{

DataGrid1.Visible = false;

lblInfo.Text = “No matching records found!!”;

}

b r e a k ;

DEVELOPING WEB SERVICE CLIENTS Chapter 30 685

case “Category”:

d s 1 = s r v 1 . S r c h C a t e g o r y (s t r P a r a m) ;

if(ds1.Tables[“Details”].Rows.Count !=0)

{

DataView source= new DataView(ds1.Tables[“Details”]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

DataGrid1.DataBind();

lblInfo.Text = “Your search produced following results...”;

}

e l s e

{

DataGrid1.Visible = false;

lblInfo.Text = “No matching records found!!”;

}

b r e a k ;

d e f a u l t :

b r e a k ;

}

}

The preceding code is used to declare an instance, srv1, of the DTService.Service1
class. In addition, the code declares a dataset object with the name ds1 and two
string type variables, strCategory and strParam. Next, the strCategory variable is
initialized to the QueryString value stored at the index value 0. Similarly, the str-

Param variable is initialized to the QueryString value stored at the index value 1.

Then, the switch case statements are used to find out the value selected by the
user in the list box on the Main page. Based on this value, the records are dis-
played in the DispResultForm form.

First consider the case in which a user selects the All option. In this case, the
object, ds1, of the dataset is used to call the SearchALL() Web method in the Web
service that you created in Chapter 29. This will store all the records returned by
the SearchALL() Web method in the ds1 dataset object.

However, there may be a case where there are no records to be displayed. In this
case, you can display an error message to the user. To do this, you first need to

686 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

check whether the records in the Details data table object are equal to null or not.
To find this, you can use the Count property of the InternalDataCollectionBase
class. The Count property returns the total number of elements in the data table
object. The value that is retuned is then equated to null. If the collection object
contains records, then an object, source, of the DataView class is created and ini-
tialized to the records in the Details data table object.

Then, the DataSource property of the DataGrid object is used to specify a source
for the records in the DataGrid control. In this case, the source for the records is
the source object. Finally, the DataBind() method is used to bind the DataGrid
control to the source object. Once the records are stored and displayed in the
DataGrid control, you can display a message in the lblInfo label control. To dis-
play the text in the label control, the Text property of the control is used. Figure
30-7 shows the records displayed in the DataGrid control.

However, in the case where the Details data table object does not contain any
records, the DataGrid control is made invisible and an error message is displayed
in the lblInfo label control. Figure 30-8 shows an error message in the lblInfo
label control.

DEVELOPING WEB SERVICE CLIENTS Chapter 30 687

FIGURE 30-7 The records displayed in the DataGrid control

Having understood the code for the case in which the user selects the All option,
you can easily add code for the rest of the switch cases.The only difference is that
in the case of returning records based on the criteria, you need to pass a parame-
ter strParam to the DataSet object, ds1.

After viewing the information about the books in the DispResultForm form, the
user can order a book by clicking on the Order button.To do this, you need to add
the following code to the ItemCommand() event of the DataGrid control:

private void DataGrid1_ItemCommand(object source,

System.Web.UI.WebControls.DataGridCommandEventArgs e)

{

if(e.CommandName == “Ord”)

{

string strISBN;

string strTitle;

string strAuthor;

strISBN = e.Item.Cells[1].Text ;

strTitle = e.Item.Cells[2].Text ;

strAuthor = e.Item.Cells[3].Text;

688 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 30-8 The error message in the lblInfo label control

TEAMFL
Y

Team-Fly®

Response.Redirect (“OrdersForm.aspx?ISBN=” + strISBN + “ & Title=” + strTitle

+ “ & Author=” + strAuthor);

}

}

The preceding code uses the CommandName property in an if loop to check whether
the CommandName specified for the button controls in the DataGrid control is Ord.
I have discussed the CommandName property earlier in this chapter.

Inside the if loop, three string variables are declared with the names strISBN,
strTitle, and strAuthor. These variables store the text in the cells of the Data-
Grid control. These variables are then passed as parameters to the Redirect()
method of the HTTPResponse class. The page to be displayed using the Redirect()
method is also passed as a parameter to the Redirect() method. In this case, the
page to be displayed is the Orders form.

After adding the previously mentioned code to DispResultForm form,have a look
at the complete code for the DispResultForm form. The complete code for the
DispResultForm form is as shown:

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace BookersClient

{

public class WebForm3 : System.Web.UI.Page

{

protected System.Web.UI.WebControls.Label lblInfo;

protected System.Web.UI.WebControls.HyperLink HyperLink1;

protected System.Web.UI.WebControls.DataGrid DataGrid1;

DEVELOPING WEB SERVICE CLIENTS Chapter 30 689

private void Page_Load(object sender, System.EventArgs e)

{

DTService.Service1 srv1 = new DTService.Service1();

DataSet ds1;

string strCategory;

string strParam;

strCategory = Request.QueryString.Get(0).ToString();

strParam = Request.QueryString.Get(1).ToString();

s w i t c h (s t r C a t e g o r y)

{

case “ALL”:

ds1 = srv1.SearchALL();

if(ds1.Tables[“Details”].Rows.Count != 0)

{

DataView source= new DataView(ds1.Tables[“Details”]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

DataGrid1.DataBind();

lblInfo.Text = “Your search produced following results...”;

}

e l s e

{

DataGrid1.Visible = false;

lblInfo.Text = “No matching records found!!”;

}

b r e a k ;

case “Title”:

ds1=srv1.SrchTitle (strParam);

if(ds1.Tables[“Details”].Rows.Count !=0)

{

DataView source= new DataView(ds1.Tables[“Details”]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

DataGrid1.DataBind();

lblInfo.Text = “Your search produced following results...”;

}

690 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

e l s e

{

DataGrid1.Visible = false;

lblInfo.Text = “No matching records found!!”;

}

b r e a k ;

case “ISBN Number”:

ds1=srv1.SrchISBN (strParam);

if(ds1.Tables[“Details”].Rows.Count !=0)

{

DataView source= new DataView(ds1.Tables[“Details”]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

DataGrid1.DataBind();

lblInfo.Text = “Your search produced following results...”;

}

e l s e

{

DataGrid1.Visible = false;

lblInfo.Text = “No matching records found!!”;

}

b r e a k ;

case “Author”:

ds1=srv1.SrchAuthor (strParam);

if(ds1.Tables[“Details”].Rows.Count !=0)

{

DataView source= new DataView(ds1.Tables[“Details”]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

DataGrid1.DataBind();

lblInfo.Text = “Your search produced following results...”;

}

e l s e

{

DataGrid1.Visible = false;

lblInfo.Text = “No matching records found!!”;

}

DEVELOPING WEB SERVICE CLIENTS Chapter 30 691

b r e a k ;

case “Category”:

d s 1 = s r v 1 . S r c h C a t e g o r y (s t r P a r a m) ;

if(ds1.Tables[“Details”].Rows.Count !=0)

{

DataView source= new DataView(ds1.Tables[“Details”]);

D a t a G r i d 1 . D a t a S o u r c e = s o u r c e ;

DataGrid1.DataBind();

lblInfo.Text = “Your search produced following results...”;

}

e l s e

{

DataGrid1.Visible = false;

lblInfo.Text = “No matching records found!!”;

}

b r e a k ;

d e f a u l t :

b r e a k ;

}

}

private void DataGrid1_ItemCommand(object source, System.Web.UI.WebControls

.DataGridCommandEventArgs e)

{

if(e.CommandName == “Ord”)

{

string strISBN;

string strTitle;

string strAuthor;

strISBN = e.Item.Cells[1].Text ;

strTitle = e.Item.Cells[2].Text ;

strAuthor = e.Item.Cells[3].Text;

Response.Redirect (“OrdersForm.aspx?ISBN=” + strISBN + “ & Title=”

+ strTitle + “ & Author=” + strAuthor);

}

}

692 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

}

}

Adding Code to the Search Form
The Search form prompts the user to specify criteria and the value for the crite-
ria. After specifying the criteria and the value, the user needs to click on the
Search Now button. Clicking on the Search Now button will display the match-
ing records in the DispResultForm form. In addition, the user can select the
Home button to visit the Home page for the Web site of Bookers Paradise.

In order for the Web service to return the required records, you need to track the
radio button selected by the user. In addition, you need to track the value speci-
fied for the criteria. To do this, you need to add the following code to the Click
event of the btnSearch button:

private void btnSearch_Click(object sender, System.EventArgs e)

{

string strText, strCriteria;

s t r T e x t = ” ” ;

s t r C r i t e r i a = ” ” ;

if(txtISBN.Text.Trim() == “” & txtAuthor.Text.Trim() ==”” & txtCategory

.Text.Trim() ==”” & txtTitle.Text.Trim() ==””)

{

lblInfo.Text =”Please enter a value!!”;

r e t u r n ;

}

if(radISBN.Checked == true)

{

strText = txtISBN.Text;

strCriteria = “ISBN Number”;

}

else if(radAuthor.Checked == true)

{

strText = txtAuthor.Text;

strCriteria = “Author”;

}

else if(radCategory.Checked == true)

DEVELOPING WEB SERVICE CLIENTS Chapter 30 693

{

strText = txtCategory.Text;

strCriteria = “Category”;

}

else if(radTitle.Checked == true)

{

strText = txtTitle.Text;

strCriteria = “Title”;

}

Response.Redirect (“DispResultForm.aspx?Cat=” + strCriteria + “& str=”

+ strText);

}

The preceding code declares two string variables, strText and strCriteria, and
initializes these variables to a null value. Next, the Trim() property of the String
class is used to check whether the user has entered a value in any of the text box
controls in the Search form. To check this, the code uses an if loop. If any of the
text box controls do not contain a value, the user is prompted to enter a variable.
Figure 30-9 shows the message in the lblInfo label control.

694 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 30-9 The message in the lblInfo label control

When a user selects any of the radio buttons, you need to track the radio button
clicked. To do this, the Checked property of the CheckBox class is used.The Checked
property returns a Boolean value. If the radio button is clicked, the value returned
by the Checked property is True. Otherwise, the Checked property returns a value
False.

For the radio button that is selected, the code uses the strText variable to store
the text in the corresponding text box. In addition, the criteria specified by the
user is stored in the strCriteria variable. Finally, the Redirect() method is used
to display the DispResultForm form. The values in the strText and strCriteria

variables are passed to the Redirect() method as a parameter.

As already discussed, the Search page contains a Home button. When the Home
button is clicked,the Home page of the Web site of Bookers Paradise is displayed.
To add this functionality, write the following code for the Click event of the
Home button:

private void btnHome_Click(object sender, System.EventArgs e)

{

Response.Redirect (“MainForm.aspx”);

}

The preceding code uses the Redirect() method to redirect the user to the Main-
Form form, which is the Home page in this case.

After adding the preceding code to the SearchForm page, look at the complete
code for the SearchForm page.

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

DEVELOPING WEB SERVICE CLIENTS Chapter 30 695

namespace BookersClient

{

public class SearchForm : System.Web.UI.Page

{

protected System.Web.UI.WebControls.RadioButton radISBN;

protected System.Web.UI.WebControls.RadioButton radAuthor;

protected System.Web.UI.WebControls.RadioButton radTitle;

protected System.Web.UI.WebControls.RadioButton radCategory;

protected System.Web.UI.WebControls.TextBox txtISBN;

protected System.Web.UI.WebControls.TextBox txtAuthor;

protected System.Web.UI.WebControls.TextBox txtTitle;

protected System.Web.UI.WebControls.Button btnSearch;

protected System.Web.UI.WebControls.Label lblInfo;

protected System.Web.UI.WebControls.Button btnHome;

protected System.Web.UI.WebControls.TextBox txtCategory;

private void Page_Load(object sender, System.EventArgs e)

{

}

private void btnSearch_Click(object sender, System.EventArgs e)

{

string strText, strCriteria;

s t r T e x t = ” ” ;

s t r C r i t e r i a = ” ” ;

if(txtISBN.Text.Trim() == “” & txtAuthor.Text.Trim() ==”” &

txtCategory.Text.Trim() ==”” & txtTitle.Text.Trim() ==””)

{

lblInfo.Text =”Please enter a value!!”;

r e t u r n ;

}

if(radISBN.Checked == true)

{

strText = txtISBN.Text;

strCriteria = “ISBN Number”;

}

696 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

else if(radAuthor.Checked == true)

{

strText = txtAuthor.Text;

strCriteria = “Author”;

}

else if(radCategory.Checked == true)

{

strText = txtCategory.Text;

strCriteria = “Category”;

}

else if(radTitle.Checked == true)

{

strText = txtTitle.Text;

strCriteria = “Title”;

}

Response.Redirect (“DispResultForm.aspx?Cat=”

+ strCriteria + “& str=” + strText);

}

private void btnHome_Click(object sender, System.EventArgs e)

{

Response.Redirect (“MainForm.aspx”);

}

}

}

Adding Code to the Orders Form
The Orders form accepts the information about the customer who orders a book
on the Web site.This information, along with the information about the book, is
added to the database of the publishing house.

When the Orders page is displayed, it contains the information about the book to
be ordered. To do this, add the following code to the Page_Load() method. The
Page_Load() method is executed when the page is loaded at run time.

private void Page_Load(object sender, System.EventArgs e)

{

txtISBN.Text = Request.QueryString.Get(0).ToString();

DEVELOPING WEB SERVICE CLIENTS Chapter 30 697

txtTitle.Text = Request.QueryString.Get(1).ToString();

txtAuthor.Text = Request.QueryString.Get(2).ToString();

}

The preceding code retrieves the QueryString value stored at index 0, 1, and 2 and
assigns these values to the txtISBN, txtTitle, and txtAuthor text boxes, respec-
tively.

When the user enters the required details and clicks on the Order button, the
information is added to the underlying database. To do this, add the following
code to the Click event of the btnOrder button.

private void btnOrder_Click(object sender, System.EventArgs e)

{

DTService.Service1 srv = new DTService.Service1();

string strDate, strStatus, strOrderBy;

strDate = Convert.ToString(DateTime.Today);

s t r S t a t u s = ” P e n d i n g ” ;

strOrderBy=”Bookers Paradise”;

string result;

result = srv.AcceptDetails(txtISBN.Text,

s t r D a t e ,

t x t N a m e . T e x t ,

t x t A d d r 1 . T e x t ,

t x t A d d r 2 . T e x t ,

t x t C i t y . T e x t ,

t x t S t a t e . T e x t ,

s t r O r d e r B y ,

s t r S t a t u s ,

l s t C a r d T y p e . S e l e c t e d I t e m . T e x t ,

txtCardNumber.Text);

string orderno;

orderno = srv.GenerateOrder();

if (result == “Record Inserted!!”)

{

string custid;

custid = InsertBookersDB(orderno);

698 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

TEAMFL
Y

Team-Fly®

TextBox1.Text = “Dear “ + txtName.Text + “!! \n” +

“Thanks for visiting Bookers Paradise. \n” +

“Your Customer ID is “ + custid + “.\n” +

“Your order (Number “ + orderno + “) will be shipped by “

+ DateTime.Today.AddDays(15).Date + “.”;

}

e l s e

{

TextBox1.Text = “Dear “ + txtName.Text + “!! \n” +

“Thanks for visiting Bookers Paradise \n” +

“Your request could not be processed due to some internal error. \n”+

“Please visit later.”;

}

}

The preceding code creates an instance of the DTService.Service1 class. In addi-
tion, the code declares three string type variables, strDate, strStatus, and
strOrderBy. The strDate variable is initialized to the current date, which is
retrieved by the Today property of the System.DateTime struct. However, to store
the date in a string type variable, you first need to convert the date type value to
a string type value by using the Convert() method. Next, the strStatus variable
is initialized to the value Pending and the strOrderBy variable to the value Bookers
Paradise.

Then, a string type variable, result, is declared and initialized to the value
returned by the AcceptDetails() Web method.This Web method is used to store
the details of the customer and the book, passed as parameters to the Web
method, in the DTDetails table. You have learned to write the code for the Accept-
Details() Web method in Chapter 29 in the section “Creating the AcceptDe-
tails() Web Method.”

Next,the code declares and initializes another string type variable, orderno, to the
value returned by the GenerateOrder() Web method.This method is used to auto-
matically generate an order number for each order that is placed.

Next, a if construct is used to check whether records are added to the database.
If the records are added, a string type variable, custid, is declared. This variable
is initialized to a value returned by the InsertBookersDB() method that is used to
automatically create the customer ID for all orders that are placed. You will learn
to write a code for the InsertBookersDB() method later in this chapter.

DEVELOPING WEB SERVICE CLIENTS Chapter 30 699

Then, a message is displayed in a text box confirming that the order for a book is
successfully placed. Figure 30-10 shows a message displayed to the customer.

However, if the AcceptDetails() Web method fails to add the records to the
underlying database, an error message is displayed to the customer.

Adding Code to the InsertBookersDB() Method
The InsertBookersDB() method is used to automatically generate the customer ID
value for all orders that are placed on the Web site. The order number for the
order is passed as the parameter to this method. To create the InsertBookersDB()
method, write the following code:

public string InsertBookersDB(string order)

{

string SelStr;

SelStr = “Select Count(*) From BookerCustDetails”;

SqlCommand SelCom;

SelCom = new SqlCommand(SelStr, sqlConnection1);

s q l C o n n e c t i o n 1 . O p e n () ;

sqlDataAdapter1.SelectCommand = SelCom;

s q l D a t a A d a p t e r 1 . F i l l (d s C u s t o m e r s 1 , ” C u s t o m e r ”) ;

700 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

FIGURE 30-10 The message displayed to the customer

s q l C o n n e c t i o n 1 . C l o s e () ;

string str;

str = dsCustomers1.Tables[“Customer”].Rows[0][0].ToString ();

int val;

val = Convert.ToInt32(str);

val= val+1;

if(val>0 & val<=9)

{

str = “C000” + Convert.ToString(val);

}

else if(val>9 & val<=99)

{

str =”C00” + Convert.ToString (val);

}

else if(val>99 & val <=999)

{

str = “C0” + Convert.ToString (val);

}

e l s e

{

str = “C” + Convert.ToString (val);

}

}

In the preceding code, a string type variable SelStr is declared and initialized to
a SQL statement that is used to count the records in the BookersCustDetails
table. Next, an instance, SelCom, of the SqlCommand class is declared. In the con-
structor of the SqlCommand class, the variable SelStr is passed as a parameter. In
addition, an object of the sqlConnection component is added as a parameter to
the constructor of the SqlCommand class.

Once you have assigned the SQL statement to the SelStr variable, the connection
to the BookerCustDetails table is opened by using the Open() method. Then, the
Fill() method is used to fill the sqlDataAdapter component with the data in the
dataset. After the records are added to the sqlDataAdapter component, the con-
nection to the BookerCustDetails table is closed using the Close() method.

The code then declares a string type variable str and initializes it to a collection
of rows in the table. To do this, the Rows property of the DataRowCollection class

DEVELOPING WEB SERVICE CLIENTS Chapter 30 701

is used. The value returned by the Rows property is converted to a string value by
using the ToString() method and stored in the str variable. Next, an integer type
variable, val, is declared and initialized to the 32-bit signed integer equivalent of
the value stored in the str variable. To convert the string type variable to the 32-
bit signed integer variable, you use the ToInt property of the System.Convert class.

Because the value stored in the variable val is the number of records in the Book-
erCustDetails table, to generate the next customer ID, you need to add 1 to the
value in the variable val. Then, an if construct is used to find the range of the
value in the variable val. If this value lies in the range 0 to 9, the string C000 is
added to this value. However, to do this, you again need to convert the value in
the variable val to a string type value.

Similarly, if the value in the variable val lies in the range 9 to 99, the string C00
is added to the value. Therefore, the range of the value is found out and C fol-
lowed by zeros is added to make the customer ID a four-digit number. This value
stored in the variable str is returned by the method.

Adding Code to Store the Customers’ Details in the Database
As already discussed, the values entered by the user in the Orders form are stored
in the database of Deepthoughts Publications. You can write the code that stores
the details about the customers in the underlying database.To do this, add the fol-
lowing code to the Orders page:

string InsStr;

InsStr = “Insert Into BookerCustDetails Values(@CID, @CN, @BA1, @BA2, @BC, @BS)”;

SqlCommand InsCom;

InsCom = new SqlCommand(InsStr, sqlConnection1);

sqlDataAdapter1.InsertCommand = InsCom;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@CID”, SqlDbType.Char,6).Value = str;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@CN”, SqlDbType.VarChar,50)

.Value = txtName.Text;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@BA1”, SqlDbType.VarChar ,50)

.Value= txtAddr1.Text ;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@BA2”, SqlDbType.VarChar,50)

.Value= txtAddr2.Text ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ B C ” , S q l D b T y p e . V a r C h a r , 2 0)

.Value = txtCity.Text ;

702 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

sqlDataAdapter1.InsertCommand.Parameters.Add(“@BS”, SqlDbType.VarChar ,10)

.Value = txtState.Text ;

if(sqlConnection1.State== ConnectionState.Closed)

{

sqlConnection1.Open ();

}

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

The preceding code declares a string type variable InsStr and stores an SQL
query used to insert values to the BookerCustDetails table.The values to be stored
are passed to the SQL query. Next, an instance of the SqlCommand class is created
to connect to the sqlDataAdapter component. Next, the Add() method is used to
add values in the text box controls to the SqlParameterCollection object. To
retrieve the value in the text box, the Text property is used.

Next, an if loop is used to check whether the SQL connection is opened or
closed. If the connection is closed, you use the Open() method to open the con-
nection. Finally, the ExecuteNonQuery() method of the SqlCommand class is executed
to return the records that are affected by the SQL command stored in the SelStr
variable. After adding the records, the connection is closed.

Similarly, you can add the code that adds the details of the book for which the
user has placed an order in the database of Deepthoughts Publications. You will
see the code later in this chapter.

In addition to the Order button, the Orders form contains a Clear button. The
following section discusses adding code to the Clear button.

Adding Code to the Clear Button
The Clear button is used to clear all the values entered by the user in the Orders
page. To add this functionality, write the following code in the Click event of the
btnClear button:

private void btnClear_Click(object sender, System.EventArgs e)

{

t x t I S B N . T e x t = ” ” ;

txtTitle.Text =””;

txtAuthor.Text =””;

t x t N a m e . T e x t = ” ” ;

DEVELOPING WEB SERVICE CLIENTS Chapter 30 703

t x t A d d r 1 . T e x t = ” ” ;

t x t A d d r 2 . T e x t = ” ” ;

t x t C i t y . T e x t = ” ” ;

t x t S t a t e . T e x t = ” ” ;

TextBox1.Text =””;

txtCardNumber.Text =””;

lstCardType.SelectedIndex =0;

}

The preceding code writes a null value in all the text box controls.

After adding the previously described code snippets to the Orders page, look at
the complete code for the OrdersForm form.

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using System.Data.SqlClient ;

namespace BookersClient

{

public class OrdersForm : System.Web.UI.Page

{

protected System.Web.UI.WebControls.Label Label1;

protected System.Web.UI.WebControls.Label Label4;

protected System.Web.UI.WebControls.Label Label5;

protected System.Web.UI.WebControls.Label Label6;

protected System.Web.UI.WebControls.Label Label7;

protected System.Web.UI.WebControls.Label Label8;

protected System.Web.UI.WebControls.TextBox txtISBN;

protected System.Web.UI.WebControls.TextBox txtName;

704 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

protected System.Web.UI.WebControls.TextBox txtAddr1;

protected System.Web.UI.WebControls.TextBox txtAddr2;

protected System.Web.UI.WebControls.TextBox txtCity;

protected System.Web.UI.WebControls.RequiredFieldValidator

R e q u i r e d F i e l d V a l i d a t o r 3 ;

protected System.Web.UI.WebControls.RequiredFieldValidator

R e q u i r e d F i e l d V a l i d a t o r 4 ;

protected System.Web.UI.WebControls.RequiredFieldValidator

R e q u i r e d F i e l d V a l i d a t o r 5 ;

protected System.Web.UI.WebControls.RequiredFieldValidator

R e q u i r e d F i e l d V a l i d a t o r 6 ;

protected System.Web.UI.WebControls.Button btnOrder;

protected System.Web.UI.WebControls.Button btnClear;

protected System.Web.UI.WebControls.Label Label2;

protected System.Web.UI.WebControls.Label Label3;

protected System.Web.UI.WebControls.Label Label9;

protected System.Web.UI.WebControls.Label Label10;

protected System.Web.UI.WebControls.Label Label11;

protected System.Web.UI.WebControls.Label Label12;

protected System.Web.UI.WebControls.DropDownList lstCardType;

protected System.Web.UI.WebControls.TextBox txtCardNumber;

protected System.Web.UI.WebControls.TextBox txtTitle;

protected System.Web.UI.WebControls.TextBox txtAuthor;

protected System.Web.UI.WebControls.RequiredFieldValidator

R e q u i r e d F i e l d V a l i d a t o r 1 ;

protected System.Web.UI.WebControls.TextBox TextBox1;

protected System.Web.UI.WebControls.HyperLink HyperLink1;

protected System.Data.SqlClient.SqlCommand sqlSelectCommand1;

protected System.Data.SqlClient.SqlCommand sqlInsertCommand1;

protected System.Data.SqlClient.SqlCommand sqlUpdateCommand1;

protected System.Data.SqlClient.SqlCommand sqlDeleteCommand1;

protected System.Data.SqlClient.SqlConnection sqlConnection1;

protected System.Data.SqlClient.SqlDataAdapter sqlDataAdapter1;

protected BookersClient.dsCustomers dsCustomers1;

protected System.Web.UI.WebControls.TextBox txtState;

DEVELOPING WEB SERVICE CLIENTS Chapter 30 705

private void Page_Load(object sender, System.EventArgs e)

{

// Put user code to initialize the page here

txtISBN.Text = Request.QueryString.Get(0).ToString();

txtTitle.Text = Request.QueryString.Get(1).ToString();

txtAuthor.Text = Request.QueryString.Get(2).ToString();

}

private void btnOrder_Click(object sender, System.EventArgs e)

{

DTService.Service1 srv = new DTService.Service1();

string strDate, strStatus, strOrderBy;

strDate = Convert.ToString(DateTime.Today);

s t r S t a t u s = ” P e n d i n g ” ;

strOrderBy=”Bookers Paradise”;

string result;

result = srv.AcceptDetails(txtISBN.Text,

s t r D a t e ,

t x t N a m e . T e x t ,

t x t A d d r 1 . T e x t ,

t x t A d d r 2 . T e x t ,

t x t C i t y . T e x t ,

t x t S t a t e . T e x t ,

s t r O r d e r B y ,

s t r S t a t u s ,

l s t C a r d T y p e . S e l e c t e d I t e m . T e x t ,

txtCardNumber.Text);

string orderno;

orderno = srv.GenerateOrder();

if (result == “Record Inserted!!”)

{

string custid;

custid = InsertBookersDB(orderno);

706 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

TextBox1.Text = “Dear “ + txtName.Text + “!! \n” +

“Thanks for visiting Bookers Paradise. \n” +

“Your Customer ID is “ + custid + “.\n” +

“Your order (Number “ + orderno + “) will be shipped by “ +

DateTime.Today.AddDays(15).Date + “.”;

}

e l s e

{

TextBox1.Text = “Dear “ + txtName.Text + “!! \n” +

“Thanks for visiting Bookers Paradise \n” +

“Your request could not be processed due to some internal error. \n”+

“Please visit later.”;

}

}

public string InsertBookersDB(string order)

{

//Code To Generate Customer ID

string SelStr;

SelStr = “Select Count(*) From BookerCustDetails”;

SqlCommand SelCom;

SelCom = new SqlCommand(SelStr, sqlConnection1);

s q l C o n n e c t i o n 1 . O p e n () ;

sqlDataAdapter1.SelectCommand = SelCom;

s q l D a t a A d a p t e r 1 . F i l l (d s C u s t o m e r s 1 , ” C u s t o m e r ”) ;

s q l C o n n e c t i o n 1 . C l o s e () ;

string str;

str = dsCustomers1.Tables[“Customer”].Rows[0][0].ToString ();

int val;

val = Convert.ToInt32(str);

val= val+1;

if(val>0 & val<=9)

{

str = “C000” + Convert.ToString(val);

}

DEVELOPING WEB SERVICE CLIENTS Chapter 30 707

else if(val>9 & val<=99)

{

str =”C00” + Convert.ToString (val);

}

else if(val>99 & val <=999)

{

str = “C0” + Convert.ToString (val);

}

e l s e

{

str = “C” + Convert.ToString (val);

}

//Store customer details

string InsStr;

InsStr = “Insert Into BookerCustDetails Values(@CID, @CN, @BA1, @BA2,

@BC, @BS)”;

SqlCommand InsCom;

InsCom = new SqlCommand(InsStr, sqlConnection1);

sqlDataAdapter1.InsertCommand = InsCom;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@CID”,

SqlDbType.Char,6).Value = str;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@CN”,

SqlDbType.VarChar,50).Value = txtName.Text;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@BA1”, SqlDbType

.VarChar ,50).Value= txtAddr1.Text ;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@BA2”, SqlDbType.VarChar,50)

.Value= txtAddr2.Text ;

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . P a r a m e t e r s . A d d (“ @ B C ” , S q l D b T y p e . V a r C h a r , 2 0)

.Value = txtCity.Text ;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@BS”, SqlDbType

.VarChar ,10).Value = txtState.Text ;

if(sqlConnection1.State== ConnectionState.Closed)

{

sqlConnection1.Open ();

}

708 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

TEAMFL
Y

Team-Fly®

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

//Store Order Details

string InsStr1;

InsStr1 = “Insert Into BookersOrders Values(@ON, @CID, @ISBN)”;

SqlCommand InsCom1;

InsCom1 = new SqlCommand(InsStr1, sqlConnection1);

sqlDataAdapter1.InsertCommand = InsCom1;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@ON”, SqlDbType.Char,10)

.Value = order;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@CID”, SqlDbType.Char,6)

.Value = str;

sqlDataAdapter1.InsertCommand.Parameters.Add(“@ISBN”, SqlDbType.Char,10)

.Value = txtISBN.Text;

if(sqlConnection1.State== ConnectionState.Closed)

{

sqlConnection1.Open ();

}

s q l D a t a A d a p t e r 1 . I n s e r t C o m m a n d . E x e c u t e N o n Q u e r y () ;

s q l C o n n e c t i o n 1 . C l o s e () ;

return str;

}

private void btnClear_Click(object sender, System.EventArgs e)

{

t x t I S B N . T e x t = ” ” ;

txtTitle.Text =””;

txtAuthor.Text =””;

t x t N a m e . T e x t = ” ” ;

t x t A d d r 1 . T e x t = ” ” ;

t x t A d d r 2 . T e x t = ” ” ;

t x t C i t y . T e x t = ” ” ;

t x t S t a t e . T e x t = ” ” ;

TextBox1.Text =””;

txtCardNumber.Text =””;

lstCardType.SelectedIndex =0;

}

DEVELOPING WEB SERVICE CLIENTS Chapter 30 709

private void btnHome_Click(object sender, System.EventArgs e)

{

Response.Redirect (“Mainform.aspx”);

}

}

}

Adding Code to the Construction Form
The Main form in the Bookers Paradise Web site contains some hyperlinks. On
clicking the hyperlinks, the user is taken to the ConstructionForm form. How-
ever, the Construction form displays a message that the page to which the user
wants to connect is under construction.

The Construction form includes a hyperlink control that takes you to the Home
page. The code for the Construction form includes the declarations for the con-
trols added to the form. The code for the Construction form is as shown as
follows:

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace BookersClient

{

public class ConstructionForm : System.Web.UI.Page

{

protected System.Web.UI.WebControls.Label Label2;

protected System.Web.UI.WebControls.HyperLink HyperLink1;

protected System.Web.UI.WebControls.Label Label1;

710 Project 5 C R E ATING A WEB PORTAL FOR A BOOKSTORE

private void Page_Load(object sender, System.EventArgs e)

{

}

}

}

Summary
In this chapter, you learned about how to create the forms required for the Web
site of Bookers Paradise. In addition, you learned to add code to the Web forms
created for the Web site.

DEVELOPING WEB SERVICE CLIENTS Chapter 30 711

This page intentionally left blank

VIIIPART
P rofessional Project 6

This page intentionally left blank

Project 6
C reating a Mobile
A p p l i c a t i o n

P roject 6 Overv i e w
In the preceding projects, you have developed Windows applications, Web
applications, and Web services. In this project, you will learn to create a mobile
Web application for an electronic goods company named Electronix, Inc.The
mobile application that you will develop is called MobileCallStatus.

To begin with, I will discuss the case study and design of the MobileCallSta-
tus application.Then, I will discuss the basics of the mobile Web applications
that involve the need for developing mobile Web applications. In addition, in
this project you will be introduced to the technologies responsible for creating,
testing, and deploying mobile Web applications. Finally, based on this knowl-
edge, you will create the MobileCallStatus application.

Chapter 31
Project Case
Study and Design

In this pro j e c t , you will learn to create a mobile Web applica t i on . I will discuss the
case study and design of the mobile Web applica t i on in this ch a p t e r. In addition ,

you will learn about the project life cycle of the MobileCall Status applica t i on ,
w h i ch includes creating high-level and low - l evel designs of the applica t i on .

Case Study
Electronix, Inc. is one of the leading electronic goods companies in the United
States.The company has its offices all over the United States, with its head office
located in California. The company was established in 1990 and has grown
tremendously since then. The company now provides electronic goods services to
more than a million customers all over the United States.

Electronix, Inc. has a huge customer support division comprising more than 500
executives across all branches.The customer support executives at Electronix, Inc.
provide services to customers over the telephone, the mobile phone, and the Inter-
net. In addition, the engineers of the customer support division visit the customers
to solve their problems. Because of this, the engineers need to travel a lot.

The customer support division tracks all the complaints made by the customers in
a CRM (Customer Relations Management) database. The engineers then access the
customer complaint data in the CRM database to discover the pending calls and
the new complaints that are logged in the database. The senior managers in the
customer support division have realized the need for the engineers to be able to
access the customer complaint datawhile they are traveling. This would enable the
engineers to be aware of the pending and new calls without going back to the
office. As a result, the engineers can attend to the pending and new calls while
they are traveling.

In this context, the senior management has decided to create a mobile application
that can be accessed using an engineer’s mobile phone. The complaints that are
logged in the CRM database are then stored in an XML document. The senior
management has decided to create a mobile application that can provide the data
from this XML document to the users.The engineers can access the mobile appli-
cation from their mobile phones to discover the status of the complaints.

718 Project 6 C R E ATING A MOBILE APPLICAT I O N

TEAMFL
Y

Team-Fly®

PROJECT CASE STUDY AND DESIGN Chapter 31 719

While creating this application, I am assuming that the customer complaint data is
already transformed from the CRM database to an XML document.

NOTE

To develop the application, the senior managers performed an analysis of the
available technologies and decided to create the application by using the mobile
technologies available as a part of the .NET platform. This is because the .NET
Framework provides an easy and user-friendly framework for developing Web
applications for the distributed environment. In addition, the Mobile Internet
Toolkit, which is based on the .NET Framework, can be installed on the user’s
computer. The Mobile Internet Toolkit provides the user with the tools and com-
ponents that can be used to create a mobile application easily and efficiently.

Therefore, the senior managers have appointed a software developer who has
experience in working with the .NET technologies. The software developer has
decided to use C# as language to develop this mobile application. The following
section discusses the stages in the life cycle of the MobileCallStatus application.

Project Life Cycle
You are familiar with the phases of a DLC (development life cycle) of a project.
Therefore, in this chapter, I will only discuss the analysis of the organization’s
requirements that were done by the software developer at Electronix, Inc.In addi-
tion, I will discuss the design of the application created by the software developer
based on the analysis of the organization’s requirements. You, as a developer, will
analyze the requirements of Electronix, Inc., and create a design for the Mobile-
CallStatus application.

Analyzing Requirements
To develop an application, it is essential that you analyze the requirements of the
customer in detail. This analysis is done in the analyzing requirements phase of
the project life cycle. Based on the customer’s problem, you can create a plan for
developing the application. The analysis of the customer’s problem is completed

on the basis of the problem statement stated by senior managers and the infor-
mation gathered by the developer.

In the case of Electronix, Inc., the problem statement is as follows: “Electronix,
Inc. needs to make the customer complaint data, which contains the status of the
calls made by the customers, accessible to the engineers while they are traveling.”

After analyzing the problem statement, the developer created a detailed list of
tasks to be done while creating the application:

◆ The organization needs to make the customer complaint data containing
the status of the calls accessible to the engineers while they are traveling.

◆ The organization needs to save the time and effort of the engineers.

◆ Because the engineers travel a lot, the application should be deployed on
a mobile device, such as their mobile phones.

To provide a solution to the problems of Electronix, Inc., the developer plans to
create a mobile Web application that can be accessed from the mobile phones of
the engineers. The mobile Web application will have the following features:

◆ The application will prompt the users to enter their logon name and
password.

◆ The application will validate the logon name and password of the users.

◆ The information about the logon name and password of the users is
stored in the Users.xml file.

◆ The application will show the pending calls to the users.

◆ When a user marks the status of a call as complete, the status is reflected
in the Calls.xml file.

◆ The application will show the unattended or new calls to the users.

◆ When a user accepts a call, the status of the call is changed to pending
in the Calls.xml file.

High-Level Design
Based on the plan that is created by the developer at Electronix, Inc., the devel-
oper needs to create a high-level and low-level design of the application in the
high-level and low-level design phases, respectively. To create a design of the
mobile application, the developer needs to identify the mobile Web forms to be

720 Project 6 C R E ATING A MOBILE APPLICAT I O N

included in the application. In addition, the developer needs to identify the
mobile Web form controls to be included in the Web forms. All this is done in
the high-level design phase of the DLC of the application.

The MobileCallStatus application consists of four mobile Web forms, frmLogon,
frmSelectOption, frmPending, and frmUnattended. You will learn about mobile
Web forms in detail in Chapter 32, “Basics of Mobile Applications,” in the sec-
tion, “The Mobile Web Form.” However, in this chapter, I will only discuss the
designs of the four forms. Figure 31-1 shows the layout of the frmLogon form.

The frmLogon form consists of two Label controls, two TextBox controls, two
RequiredFieldValidator controls, and one Command control.You will learn about
these controls in detail in Chapter 32 in the section “The Design of the Mobile-
TimeRetriever Application.”

Figure 31-2 shows the layout of the frmSelectOption form.

PROJECT CASE STUDY AND DESIGN Chapter 31 721

FIGURE 31-1 The design of the frmLogon form

As you can see in Figure 31-2, the frmSelectOption form includes a Label, a
SelectionList, and a Command control. You will learn to add controls to a mobile
Web form in Chapter 32. As discussed earlier, the MobileCallStatus application
also includes a frmPending form. Figure 31-3 shows the layout of the frmPend-
ing form.

722 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 31-2 The design of the frmSelectOption form

FIGURE 31-3 The design of the frmPending form

The frmPending form includes a Label, a SelectionList, and two Command
controls.

In addition to the previously mentioned forms, the MobileCallStatus application
contains another form, frmUnattended. Figure 31-4 shows the design of the
frmUnattended form.

Low-Level Design
After creating the design of the forms in the high-level design phase, the devel-
oper needs to create a detailed design of the software modules. These software
modules are then used to create the applications. In addition to creating software
modules, the developer needs to decide the flow and interaction of each module.
This includes creating flowcharts for each module. The flowcharts for the soft-
ware modules are created in the low-level design phase of the DLC of the appli-
cation. Figure 31-5 shows the flowchart for the frmLogon module.

PROJECT CASE STUDY AND DESIGN Chapter 31 723

FIGURE 31-4 The design of the frmUnattended form

Based on the design of the frmSelectOption form,the developer created the flow-
chart for the form, as shown in Figure 31-6.

724 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 31-5 Flowchart of the frmLogon module

Similarly, based on the design of the frmPending form, the developer created the
flowchart for the frmPending module. Figure 31-7 shows the flowchart of the
frmPending module.

PROJECT CASE STUDY AND DESIGN Chapter 31 725

FIGURE 31-6 Flowchart of the frmSelectOption module

FIGURE 31-7 Flowchart of the frmPending module

In addition, the developed created a flowchart for the frmUnattended module as
shown in Figure 31-8.

After the developer has created the interface and the software modules, the devel-
oper constructs and tests the mobile application. After the application is tested
and the errors in the application are detected and removed, the application is
deployed on a mobile device. I will discuss how to write the code of the Mobile-
CallStatus application in the following chapters.

Summary
In this chapter, you were introduced to the project case study. Based on the case
study of the project, you analyzed the requirements of Electronix, Inc. and created
detailed high-level and low-level designs for the MobileCallStatus application.
You will learn to create the actual application in the following chapters.

726 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 31-8 Flowchart of the frmUnattended module

Chapter 32
Basics of Mobile
Applications

Over the years, the Internet has become more of a necessity than a luxury. In
today’s scenario, the Internet is not restricted only to the business world but

has become an essential part of our day-to-day activities. For example, you can
search for information on the Internet, shop on the Internet, pay your bills on the
Internet, and so on.

Moreover, with the increasing popularity of the Internet, people worldwide want
to access the Internet from anywhere and anytime. People no longer want to
restrict themselves to accessing the World Wide Web from their personal com-
puters at home or in their offices. Instead, they want to access the Internet from
any mobile device, such as Pocket PC handhelds, mobile phones, and so on. To
make this possible, software developers around the world are developing applica-
tions that can be accessed from mobile devices. Such applications are called mobile
applications.

In this chapter, I will discuss the basics of mobile applications. In addition, you
will learn about the Mobile Internet Toolkit and the basics of the WAP (Wireless
Application Protocol) and WML (Wireless Markup Language) technologies. Finally,
you will learn to create a simple mobile Web application that can be accessed from
a mobile phone in Visual Studio .NET.

Overview of Mobile Applications
Mobile applications are the applications that are accessible from various mobile
devices. In addition, mobile applications allow you to access a Web site from the
mobile devices. Until now, users have not been extensively using the mobile appli-
cations, because of the following limitations of the mobile applications:

◆ Mobile applications running on a mobile device, such as a mobile phone,
require higher bandwidths. This adds to the overall cost of running a
mobile application.

◆ Mobile devices have a limited memory and battery life. Therefore, it
becomes difficult to run the application for a long time.

728 Project 6 C R E ATING A MOBILE APPLICAT I O N

TEAMFL
Y

Team-Fly®

◆ It is difficult for a user to access information from the applications on
the Internet, which are designed to be accessed from a personal com-
puter, by using a mobile application. A Web page does not exactly fit the
small screen of a mobile device. This makes it difficult for the user to
navigate through the Web pages on a small screen.

As a solution to the previously mentioned problems, Visual Studio .NET provides
you with the mobile technology that you can use to create applications that can
be accessed from mobile devices. These applications contain mobile Web forms
that can easily fit to the small screen of the mobile device, making navigation of
Web pages possible. In addition, these mobile Web forms can adapt to the mem-
ory and bandwidth requirements of various mobile devices from which the Web
form is accessed. I will discuss mobile Web forms in detail later in this chapter.

To be able to create mobile applications by using the Visual Studio .NET mobile
technology, you need to use the Microsoft Mobile Internet Toolkit. The follow-
ing section discusses the Mobile Internet Toolkit.

The Microsoft Mobile Internet Toolkit
The Microsoft Mobile Internet Toolkit provides you with the essential tools for
creating, testing, and deploying a mobile application. These tools include the
mobile Web forms, components, and controls. These tools provide you with a
user-friendly interface for creating mobile applications. Creating a mobile appli-
cation by using the Mobile Internet Toolkit becomes as simple as creating an
ASP.NET Web application in the .NET Framework. You have learned to create
an ASP.NET Web application in the .NET Framework in Project 5, “Creating a
Web Portal for a Bookstore.”

The following list looks at some of the features of the Mobile Internet Toolkit
that make it an easy-to-use tool for developing mobile applications.

◆ The Mobile Internet Toolkit is based on the .NET Framework and,
therefore, provides you with all the features of the .NET Framework,
such as the toolbox that contains mobile Web controls. You can drag
these controls to the form to use them. In addition, the Mobile Internet
Toolkit has the Mobile Internet Designer. The Mobile Internet Designer
is a visual tool that works as a part of the existing Visual Studio .NET

BASICS OF MOBILE APPLICATIONS Chapter 32 729

IDE (interactive development environment) and provides you with a visual
interface for creating the mobile Web forms. Figure 32-1 shows the
Mobile Internet Designer with a blank mobile Web form created by the
Mobile Internet Toolkit.

◆ The Mobile Internet Toolkit creates managed code that can be accessed
from various mobile devices.

◆ The Mobile Internet Toolkit enables you to debug and deploy the
mobile Web application on various devices, such as mobile phones,
pagers, and PDAs (personal digital assistants). In addition, the Mobile
Internet Toolkit extends the functionality of the .NET Framework to
allow you to create applications that can be accessed from any supporting
device.

◆ In addition to allowing you to test your mobile application on a built-in
browser, the Mobile Internet Toolkit allows you to test your application
on an emulator by using emulator software. However, to do this, you
need to install the emulator and the emulator software. Testing the
application on an emulator provides you with a fair idea of how your
application will appear on the actual mobile device. An emulator simu-
lates the mobile device environment for you so that you can test your
application before deploying it on the actual mobile device.

730 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 32-1 Mobile Internet Designer with a blank mobile Web form

The Mobile Internet Toolkit is not packaged as a part of Visual Studio .NET.
T h e re f o re, to create mobile applica t i on s , you need to install the Mobile Intern e t
To o l k i t . M i c ro s o ft provides a fre e ly downloadable ve r s i on of the Mobile Intern e t
Toolkit on its site. You can download the Mobile Internet Toolkit from the foll ow-
ing link: h t tp : / / m s d n . m i c ro s o ft . c o m / s u b s c ri p ti o n s / re s o u rc e s / s u b d w n l d . a s p.
This link connects you to the MSDN Su b s c riber Downloads page on the Micro s o ft
Web site. You can then search for the Mobile Internet Toolkit on the page.

BASICS OF MOBILE APPLICATIONS Chapter 32 731

You can download the Mobile Internet Toolkit on a computer running Windows NT or
higher. In addition, you need to have either the .NET Framework or Visual Studio
.NET on your computer before installing the Mobile Internet Toolkit.

TIP

After you have downloaded and installed the Mobile Internet Toolkit on your
computer, several new project types are added to the New Project dialog box. Fig-
ure 32-2 shows the New Project dialog box with the Mobile Web Application
project type selected.

FIGURE 32-2 The New Project dialog box with the Mobile Web Application project type selected

I will discuss how to create a mobile Web application by using the Mobile Web
Application project type later in this chapter. I will first discuss the transfer pro-
tocol used with the mobile applications that can be accessed from a mobile phone,
WAP. However, when you access the mobile application from a PDA, the trans-
fer protocol used will be TCP/IP.

Overview of WAP
I have already discussed the limitations of the earlier mobile Web applications,
such as low memory and CPU capacity and higher bandwidth requirements. As a
solution to these problems, a new protocol was developed. This protocol enables
a wireless device, such as a mobile phone or a two-way pager, to access a Web site
on the Internet. Therefore, this protocol was named WAP. WAP is a communi-
cation protocol, or a set of rules, that allows a wireless device to access a mobile
application. To enable a user to access a mobile application, the user needs to have
a WAP-enabled mobile device, such as a WAP-enabled mobile phone.

WAP is an industry standard developed by the WAP Forum that provides a set of
rules for communication between the wireless devices and the world of the Inter-
net. In addition, it provides telephony services for several wireless devices. WAP
extends support to several advanced Internet technologies, such as IP (Internet
Protocol), TCP (Transmission Control Protocol), and HTTP (Hypertext Transfer
Protocol).This makes it possible for a wireless device to utilize the functionality of
these Internet technologies.

In addition, the wireless devices
have hardware factors suitable for
accessing an Internet site from
the device. These hardware fac-
tors include a small screen, lim-
ited RAM, ROM, and a battery.
These devices also allow users to
navigate through the site by using
the one-finger navigation feature,
which makes navigation fun for
the users.The wireless devices are
capable of using the maximum

732 Project 6 C R E ATING A MOBILE APPLICAT I O N

WAP is a protocol developed by the WAP
Forum. The WAP Forum works in coordi-
nation with several organizations, such as
W3C (World Wide Web Consortium), to
provide the wireless industry with a global
specification for all wireless networks. In
this context, the WAP Forum released its
first specification, WAP 1.0, in 1998.The
WAP Forum has also released its second
specification, WAP 2.0. The WAP Forum
includes the major wireless technology
companies, such as Nokia, Ericsson, Ora-
cle Corporation, and so on.

THE WAP FORUM

power of processors, which reduces the overall cost of accessing the application
from a wireless device.

To access an Internet site from a mobile device, your mobile device needs to be
WA P - e n a b l e d . A WAP-enabled mobile device has micro b rowser softw a re
installed on it.This software is used to send and receive a user’s request for access-
ing a Web site. For example, when a user tries to access a site from the WAP-
enabled device, the microbrowser software sends a request to the server to allow
the user to access the site. The following section discusses the WAP architecture
in detail.

The WAP Architecture
To understand the concept of the WAP architecture, first have a look at the Web
architecture.The Web architecture refers to the architecture involved when a user
tries to access a Web site from a Web browser. When a user tries to access a Web
site on a Web server, a request for the site is sent from the client to the server. In
this case, the client is the Web browser that sends a URL (Uniform Resource Loca-
tor) request to the server, which is the Web server. Then, at the server site, the
request is processed in the form of CGI (Common Gateway Interface) scripts, and
the content of the site is returned to the client as a response to the user’s request.
Figure 32-3 shows the Web architecture in detail.

BASICS OF MOBILE APPLICATIONS Chapter 32 733

FIGURE 32-3 The Web architecture

After learning about the Web architecture, you can easily understand the WAP
architecture.The WAP architecture is similar to the Web architecture, except that
the WAP architecture involves a WAP gateway that acts as an interface between
the client and the server. A WAP gateway is software placed between the client and
the server that supports the WAP standards and the Internet protocols, such as
HTTP and IP. In addition, the WAP gateway supports XML (Extensible Markup
Language) and WML. A WAP gateway consists of encoders, decoders, and script
compilers that are used for communication between the client and the server.

In the case of a mobile device trying to access an Internet site, the mobile device
becomes the client and the Web server is the server from where the site is being
accessed. Figure 32-4 shows the WAP architecture in detail.

As you can see in the figure, to access a Web site from a client (mobile device),
the client first needs to send a request for the site. To do this, the client establishes
a connection to the WAP gateway. Once a connection is established, the WAP
gateway software uses an encoder to encode or convert the request to a form that
is easily understood by the Internet server. This encoded form of the request is
then forwarded to the server where the request is further processed.

734 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 32-4 The WAP architecture

Then, as a response to the user’s request, the server sends the content of the site
to the client. However, a user of a mobile device cannot read this content in the
form returned by the server. Therefore, the WAP gateway transfers the content in
the Internet language to a form supported by WAP devices, such as WML and
WMLScript. WAP uses the WML and WMLScript languages to send and
receive data on a wireless device. The data is then displayed to the user by using
the microbrowser software on the mobile device.

Overview of WML
WML is a language based on XML. In addition to releasing specifications on
WAP, the WAP Forum releases specifications on WML. Similar to XML, WML
provides a standard for describing data.The standards defined for describing data
are based on the W3C standards. You have learned about XML in detail in Chap-
ter 17, “Interacting with a Microsoft Word Document and Event Viewer,” in the
section “Overview of XML.”

The standards defined for describing data in WML are stored as rules in a docu-
ment called DTD (Document Type Definition). This implies that the DTD docu-
ment stores the syntax for describing data in a WML document. In addition, a
DTD document can include the definition of the elements to be used in the
WML document. The elements in a WML document are enclosed within tags.
WML allows the users to define the tags to be used in the WML documents.
While describing data in a WML document, you need to associate your WML
document to a DTD document.

I have already discussed the use of the microbrowser software. A microbrowser
understands and fully supports the syntax of a WML document.

After discussing the technology and the transfer protocol for a mobile Web appli-
cation, I will discuss a simple mobile Web application. The following section dis-
cusses the mobile Web application that includes a mobile Web form.

BASICS OF MOBILE APPLICATIONS Chapter 32 735

WAP allows users to access only WAP-enabled sites, such as www.google.com and
www.yahoo.com.

TIP

Creating a Simple Mobile Web
Application by Using the Mobile
Internet Toolkit

As discussed earlier, when you install the Mobile Internet Toolkit on your com-
puter, the Mobile Web Application project type is added to the New Project dia-
log box. You can use this project type option to create a sample mobile Web
application. To access the mobile Web application project type, perform the fol-
lowing steps:

1. On the File menu, point to the New option.

2. In the displayed list, click on the Project option.

The New Project dialog box is displayed.

3. In the Project Types: pane of the New Project dialog box, select the
Visual C# option.

4. In the Templates: pane, select the Mobile Web Application option.

5. In the Location: text box, the localhost appears by default. Type the
name of the application as MobileTimeRetriever.

Figure 32-5 shows the New Project dialog box.

6. Click on the OK button.

736 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 32-5 The New Project dialog box for the MobileTimeRetriever application

The MobileTimeRetriever application opens in the design view. Visual Studio
.NET creates a number of default files for the mobile Web application, as dis-
played in the Solution Explorer window. The MobileWebForm1.aspx file is
selected by default. In addition to the default files, Visual Studio .NET creates a
blank mobile Web form, Form1, in the design view. Figure 32-6 shows the default
files and the mobile Web form.

The following section discusses the mobile Web form in detail.

The Mobile Web Form
A mobile Web application contains a mobile Web form by default. However, you
can add multiple mobile Web forms to the application. All the mobile Web forms
that you add to your application appear on a single mobile Web form page in the
design view. However, at run time, only one mobile Web form appears to a user
at a time. The mobile Web form has an extension .aspx and appears as a control
in the mobile Web forms toolbox. When you install the Mobile Internet Toolkit
on your computer, the mobile Web forms toolbox is added to the toolbox of Visual
Studio .NET. Figure 32-7 shows the mobile Web forms toolbox.

BASICS OF MOBILE APPLICATIONS Chapter 32 737

FIGURE 32-6 The default files and a blank mobile Web form for the MobileTimeRetriever application

As you can see in Figure 32-7, the mobile Web forms toolbox contains several
other mobile Web controls in addition to the mobile Web form control. You can
add these mobile Web controls to the mobile Web form that you create. You can
add the mobile Web controls to either a Form control or a Panel control. How-
ever, you cannot directly add the controls to the mobile Web forms page. The
Form or Panel control acts as a container to store and display the mobile Web
forms controls that need to be displayed in a mobile Web forms page. You wil l
learn more about various mobile Web forms controls later in this chapter.

738 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 32-7 The mobile Web forms toolbox

You can add as many mobile Web controls as you want to a Form or Panel control.
However, to increase the usability of a mobile Web form, it is advisable that you add
the minimum possible controls to a mobile Web form. You can add any number of
mobile Web forms to a mobile Web form page.

TIP

TEAMFL
Y

Team-Fly®

In addition to the mobile Web forms control, a mobile Web form also contains
the content from a Web site. You can display the content of the site in the con-
trols on a mobile Web page. When a user sends a request for a Web page, the con-
tent of the Web page is displayed to the user in the format that is supported by
the mobile device on a mobile Web form. While displaying data of a site on a
mobile device, the mobile Web form page automatically identifies the type of the
mobile device and converts the content of the site to the format that can be dis-
played on the device.Therefore, a mobile Web form acts as an interface that pre-
sents the content of a Web page to a user of a mobile device. In addition,a mobile
Web page helps hide the code of the Web page from the user by displaying only
the content of the Web page to the user.

A mobile Web form is similar to an ASP.NET Web form page. In addition, the
process of creating a mobile Web form application is similar to the process of cre-
ating an ASP.NET Web form application. In this project, I will discuss how to
create a mobile Web form application that can be accessed from a mobile phone.

After discussing mobile Web forms, which are the building blocks of a mobile
Web application,in detail, this section will continue with creating a simple mobile
Web application, MobileTimeRetriever. The MobileTimeRetriever application is
a simple mobile Web application that displays the current time in the city of New
York and allows the user to select a city from a list and find the current time in
the selected city. The steps to create a mobile Web application are the same as the
steps to create a Windows application that you did in the last two projects:

1. Create the interface for the application.

2. Write the code for the application.

However, before creating any mobile Web application, it is essential that you
design the mobile Web forms in the application. The following section discusses
the design of the MobileTimeRetriever application.

The Design of the MobileTimeRetriever Application
Designing the application before its actual creation is all the more essential in the
case of a mobile Web application. This is because of the smaller screen size of a

BASICS OF MOBILE APPLICATIONS Chapter 32 739

mobile device.The content of a site in a mobile device is not shown as a single or
multiple page Web site. Instead, the entire content of the site is displayed in the
form of smaller but logical chunks of data presented in a linear manner. These
chunks of data are displayed in the controls on a mobile Web form.

When the data in the controls needs to be displayed, these controls are broken
down into smaller units called screens by the Mobile Internet Toolkit. The size of
the screen is determined by the type of device on which you need to deploy the
mobile application. However, while designing a mobile application, you need not
worry about the different screen sizes of various mobile devices. The Mobile
Internet Toolkit allows you to create applications once for various mobile devices.
The code then adapts to the various form factors, such as the screen size, band-
width, and memory of the accessing client device.

As discussed earlier, the mobile Web forms toolbox contains several tools that you
can use to create a mobile application. In addition, the Mobile Internet Toolkit
allows you to create custom Web forms tools for your application. In the follow-
ing sections, I will discuss about the standard controls available. You can then use
these standard controls to design a MobileTimeRetriever application.

The Form Control
I have already discussed Form controls.A Form control is a container used to store
and display other mobile Web forms controls. At run time, a single form is dis-
played at a time. However, you can access multiple forms on a mobile Web page
by using the same URL address of the Web page. To add a form to your mobile
Web forms page, drag the Form control from the mobile Web forms toolbox to
the mobile Web forms page.

The Panel Control
The Panel control is similar to a Form control in that it can be used to logically
group related controls. However, unlike a Form control, you cannot place a Panel
control directly on the Web forms page. A Panel control needs to be included in
a Form control or another Panel control. Alternatively, you cannot nest a Form
control within a Panel control. If you try to include a Form control within a Panel
control, an error is generated, as shown in Figure 32-8.

740 Project 6 C R E ATING A MOBILE APPLICAT I O N

In addition to organizing controls in a Panel control, you can use a Panel control
to set the properties of all the controls within the same Panel control.

The MobilePage Control
In addition to the Form and Panel controls, Visual Studio .NET provides you
with another control called the MobilePage control, which groups related con-
trols. The MobilePage control acts as a container for all other containers in a
mobile Web application. This implies that the MobilePage control is the outer-
most container in a mobile Web application and has an associated URL address.
The MobilePage control has a class associated with it called the MobilePage class.
It is the base class for all the controls in a mobile Web application and stores the
information about the style and other properties that are common to the controls
in a MobilePage control. Figure 32-9 shows a MobilePage control.

BASICS OF MOBILE APPLICATIONS Chapter 32 741

FIGURE 32-8 The error displayed on including a Form control within a Panel control

The Label Control
A mobile Web form Label control is similar to a Windows forms Label control.
A Label control is used to display any text in mobile application. You can add text
to a Label control either by setting the Text property of the Label control or by
programmatically changing the text of the Label control. To add a Label control
to your form, drag the Label control from the mobile Web forms toolbox to the
Form or Panel control.

742 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 32-9 The MobilePage control

The MobilePage control is not packaged as a control in the mobile Web forms con-
trols toolbox.Visual Studio .NET automatically creates a MobilePage control for your
application. You can add one or more Form controls to the MobilePage control. In
addition, the MobilePage control may contain a StyleSheet control.

NOTE

The TextBox Control
A TextBox control is another control that allows you to display text. You can use
a TextBox control to allow users to input text, which is then stored in the Text
property of the control.Unlike the TextBox control in a Windows application, the
TextBox control in a mobile application is used to display single-line text. To dis-
play text in multiple lines, you use a TextView control.

The TextView Control
A TextView control is used to display text in a mobile application, similar to a
TextBox control. However, a TextView control is used to display multiple lines of
text. You can use the Text property of the TextView control to specify the text to
be displayed in a TextView control. The Text property of the TextView control
accepts HTML tags to specify the formatting of the text in the TextView control.
Figure 32-10 shows a TextView control in a mobile Web form.

BASICS OF MOBILE APPLICATIONS Chapter 32 743

You can have multiple controls in different mobile Web forms. However, you should
not give the same name to the controls in different Web forms for the same mobile
Web application. You can specify a name for a control by using the ID property of the
control.

TIP

FIGURE 32-10 The TextView control in a mobile Web form

To display the text as it appears in Figure 32-10, add the following text to the Text
property of the control.

A TextView control is used to display text in a mobile application.

You can display text in multiple lines in a TextView control.

The Link Control
A Link control is a text-based control that creates a text hyperlink. You can use
this hyperlink to connect to another form or another mobile Web page. You can
specify the name of the form or the URL of the page in the NavigateURL property
of the control.

The PhoneCall Control
A PhoneCall control is another text-based control that is used to store a phone
number to be called. When a PhoneCall control is accessed from a mobile device,
such as a cellular phone, the PhoneCall control dials the number specified in the
control.

The List Control
A List control is used to display a list of items in a mobile device. A user can select
any item from the List control.To add items to a List control, use the Items prop-
erty of the control. You can also associate the List control to a data source to dis-
play a list of items from a data source. Perform the following steps to display a list
of items in a List control.

1. Drag a List control from the mobile Web forms toolbox to a mobile
Web form.

2. Select the List control to make it active.

3. In the Properties window of the list control, change the ID property of
the control to lstCountry.

If the Properties window is not visible, press the F4 key or select the
Properties Window option on the View menu.

4. Click on the ellipsis button of the Items property to add items to the
List control.

744 Project 6 C R E ATING A MOBILE APPLICAT I O N

The lstCountry Properties dialog box is displayed. To associate the List
control to a data source, select the General tab. However, you can add
items to the List control in the Items tab of the lstCountry Properties
dialog box. The Items tab is displayed by default.

5. Click on the Create New Item button to add a new item.

A new item is added to the list. To change the text of the new item that
is added, you can specify the text in the area that shows Text.

6. Type the name of the first item as Australia.

7. Repeat Steps 5 and 6 to add more items to the List control.

You can add Belgium, China, Germany, India, Japan, France, United King-
dom, and United States. You can move an item in the list by using the
Up or Down Arrow keys in the lstCountry Properties dialog box. Figure
32-11 shows the lstCountry Properties dialog box.

Visual Studio .NET allows you to create list items as hyperlinks. To do
so, check the Render list items as hyperlinks check box.

8. Click on the OK button to close the lstCountry Properties dialog box.

The items are added to the lstCountry list control.

BASICS OF MOBILE APPLICATIONS Chapter 32 745

FIGURE 32-11 The lstCountry Properties dialog box

The SelectionList Control
A SelectionList control is similar to a List control because it can be used to dis-
play a list of items. However, you can use a SelectionList control to provide users
with a choice of options in the form of a drop-down list, radio buttons, check
boxes, and combo boxes. A user can select one or more options from a Selection-
List control. When a user selects an item from the list, the selected item is not
automatically posted to the server. To do this, the user needs to explicitly click on
the Command control. You will learn about the Command control later in this
chapter.

To display the list of countries as you did in the previous section, you can also use
a SelectionList control instead of a List control.To add items to the SelectionList
control, use the Items property of the control. The procedure for adding items to
a SelectionList control is the same as that of adding items to a List control. Fig-
ure 32-12 shows the items added to a SelectionList control and a List control.

The ObjectList Control
An ObjectList control is also used to display a list of items in a mobile applica-
tion. However, the list of items in an ObjectList control includes the list of data
objects. To display a list of data objects in an ObjectList control,you need to bind
the ObjectList control to a data source. You can do this by using the DataSource
property of the control.

746 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 32-12 The items added to a SelectionList control and a List cont rol

The Command Control
A Command control is similar to a Button control that is used to post user input
to a server. For example, when a user types data in a text box and selects an option
from the SelectionList control, the user needs to click the Command button to
post this data on the server.

The Image Control
An Image control is used to display an image in a mobile application. An image
control allows you to specify an image in multiple formats,depending on the type
of device on which the image needs to be displayed. A file format defined for a
type of a device may not be displayed on another type of device.

The Calendar Control
A Calendar control is used to add a calendar to the mobile Web form page. A user
can select a date, month, and year in the Calendar control. You can change the
properties of a Calendar control to change the look of the control. Figure 32-13
shows a Calendar control with a date selected.

BASICS OF MOBILE APPLICATIONS Chapter 32 747

FIGURE 32-13 The Calendar control with a date selected

The StyleSheet Control
A StyleSheet control is used to store the styles applied to the controls in a mobile
Web form page. The StyleSheet control consists of a number of style elements
that can be accessed by the name of the element specified in the Name property of
the style element. A StyleSheet is associated with a mobile Web form page and,
therefore, needs to be placed directly on the mobile Web form page.To specify the
style elements in a StyleSheet control, perform the following steps:

1. Drag the StyleSheet control to the mobile Web form page.

2. Right-click on the control to add the style elements.

The StyleSheet1 Styles Editor dialog box is displayed.

3. To add a style to the StyleSheet control, select the style from the Style
Types: list box and click on the > button.

The style element is added to the StyleSheet control. Figure 32-14 shows the
StyleSheet1 Styles Editor dialog box with the PagerStyle1 style element added
to it.

748 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 32-14 The StyleSheet1 Styles Editor dialog box

TEAMFL
Y

Team-Fly®

The Validation Controls
In addition to the previously discussed controls, the mobile Web forms controls
also include some validation controls, such as RequiredFieldValidator, Regular-
ExpressionValidator, CompareValidator, RangeValidator, and CustomValidator.
The following sections discuss the validation controls in a mobile Web page.

The RequiredFieldValidator Control
A RequiredFieldValidator control is used to ensure that a user enters a value in
the associated control. If the control has a default value, the RequiredFieldVal-
idator control checks whether the value entered by the user is different from its
initial value. You can associate a control to the RequiredFieldValidator control by
using the ControlToValidate property of the RequiredFieldValidator control.

The RegularExpressionValidator Control
If you need to validate the value of a control entered by a user against an expres-
sion, you can associate the control to the RegularExpressionValidator control. To
do this, you specify the name of the control in the ControlToValidate property of
the RegularExpressionValidator control. You can specify the expression to which
the value is matched by selecting an expression from the Regular Expression Edi-
tor dialog box. You can also create a custom expression in the Regular Expression
Editor dialog box. To access the Regular Expression Editor dialog box, click on
the ellipsis button of the ValidationExpression property.

The CompareValidator Control
A CompareValidator control is used to compare the values in two controls. You
can specify criteria for the values that need to be compared. In addition, you need
to specify the control in order to associate it with the CompareValidator control.
You can do this by specifying a control in the ControlToCompare property of the
CompareValidator control.

The RangeValidator Control
A Ra n g e Validator con t rol is used to validate that the value of an associated con t ro l
lies within the range that you specify. You can specify the range by setting the value
of the M a x i m u m V a l u e and M i n i m u m V a l u e p ro p e rties of the Ra n g e Validator con t ro l .

BASICS OF MOBILE APPLICATIONS Chapter 32 749

The CustomValidator Control
A CustomValidator control allows you to write custom code to validate the value
specified in a control. You can specify an error message to be displayed when the
value entered in the control is incorrect. To display an error message, change the
ErrorMessage property of the control.

You have seen the validation controls that you can use in a mobile Web applica-
tion. However, to display the error message when an error occurs, you need to
include a ValidationSummary control.

The ValidationSummary Control
A ValidationSummary control is used to display the summary of the errors that
occurred when the values entered in the controls are validated by the validation
controls.The ValidationSummary control displays the list of error messages as you
specify in the ErrorMessage property of the validation controls. To display the
errors that occur while validating a form, you need to associate the Validation-
Summary control with a form. To do this, you specify the name of the form in the
FormToValidate property of the control. In addition, you can change the font of
the error message that is displayed in the ValidationSummary control by chang-
ing the Font property of the control. Figure 32-15 shows a ValidationSummary
control with an error message displayed.

750 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 32-15 The ValidationSummary control with an error message displayed

You have learned about various controls that can be used in a mobile Web appli-
cation. You can now use this knowledge to create the mobile Web forms required
for a MobileTimeRetriever application.

Creating the Interface for the Mobile Web Forms
The MobileTimeRetriever application contains two forms, frmOptions and frm-
Result. Figure 32-16 shows the interface of the frmOptions form.

As you can see, the frmOptions form contains three Label controls, one Com-
mand control, and one SelectionList control. To add these controls to the form,
drag the controls from the mobile Web forms control toolbox to the form and
change the following properties of the controls.

Label1

◆ ID: lblCurrentTime

◆ Text: The current time in New York is:

◆ Font:

Bold: True

BASICS OF MOBILE APPLICATIONS Chapter 32 751

FIGURE 32-16 The interface of the frmOptions form

Label2

◆ ID: lblCurTime

◆ Text: Label

Label3

◆ ID: lblRegion

◆ Text: Select a new location below:

◆ Font:

Bold: True

Command1

◆ ID: cmdFindTime

◆ Text: Find Time

SelectionList

◆ ID: lstLocations

◆ Items: The items to be added in the SelectionList control are displayed
in Table 32-1.

Table 32-1 Items to Be Added to the SelectionList Contro l

I t e m Tex t Va l u e S e l e c t e d

London 1 Checked

Moscow 2 Unchecked

Bangkok 3 Unchecked

Singapore 4 Unchecked

Sydney 5 Unchecked

752 Project 6 C R E ATING A MOBILE APPLICAT I O N

In the General tab of the lstLocations Properties dialog box, change the follow-
ing properties:

◆ Select Type: DropDown

◆ Rows: 4

After creating the interface for the frmOptions form, create the interface for the
frmResult form. Figure 32-17 shows the interface for the frmResult form.

The frmResult form contains three Label controls and one Command control.
Change the following properties of the controls:

Label1

◆ ID: lblSelLoc

◆ Text: You selected:

BASICS OF MOBILE APPLICATIONS Chapter 32 753

FIGURE 32-17 The frmResult form

Label2

◆ ID: lblTime

◆ Text: Time:

◆ Font:

Bold: True

Label3

◆ ID: lblOrgLoc

◆ Text: (as of EST)

Command1

◆ ID: cmdBack

◆ Text: Back

After creating the interface, add code to the controls in the MobileTimeRetriever
application.

Adding Code to the MobileTimeRetriever Application
Once you have added the controls to the form,Visual Studio .NET automatically
creates the declaration statements for the controls. However, to make the controls
functional, you need to add code to the Click events of the Command controls.

Adding Code to the cmdFindTime Command Control
When a user selects the location from a lstLocations SelectionList control and
clicks on the cmdFindTime Command control, the application displays the current
time in the selected location. To do this, add the following code to the Click event
of the cmdFindTime Command control.

private void cmdFindTime_Click(object sender, System.EventArgs e)

{

DateTime currentTime= DateTime.Now;

TimeSpan timeDiff=new TimeSpan(0,0,0);

switch (lstLocations.Selection.Value)

754 Project 6 C R E ATING A MOBILE APPLICAT I O N

{

case “1”:

timeDiff=new TimeSpan(5,0,0);

b r e a k ;

case “2”:

timeDiff=new TimeSpan(8,0,0);

b r e a k ;

case “3”:

timeDiff=new TimeSpan(12,0,0);

b r e a k ;

case “4”:

timeDiff=new TimeSpan(13,0,0);

b r e a k ;

case “5”:

timeDiff=new TimeSpan(15,0,0);

b r e a k ;

}

DateTime newTime=currentTime.Add(timeDiff);

lblSelLoc.Text=”You selected: “ + lstLocations.Selection.Text;

lblTime.Text=”Time at the selected location:” + Convert.ToString(newTime);

lblOrgLoc.Text=”(as of “ + DateTime.Now + “ EST)”;

A c t i v e F o r m = f r m R e s u l t ;

}

The previous code creates a variable, currentTime, of the struct DateTime in the
System namespace. It then uses the Now property of the struct DateTime to retrieve
the current date and time on the computer. The value returned by the Now prop-
erty is stored in the currentTime variable. The code then creates an instance,
timeDiff, of the TimeSpan struct in the System namespace. The TimeSpan struct is
used to represent a time interval. Next, a switch case is used to trap the value
selected by the user in the SelectionList control. To do this, the Value property of
the MobileListItem class is used.

Then, the instance of the TimeSpan struct is used to find the time for different
locations. The difference between the time in New York and the selected city is
passed as a parameter to timeDiff. For example, the difference between the time
in New York and London is five hours.Therefore, this time difference in hours is
passed as a parameter to the default constructor of timeDiff. Similarly, the time

BASICS OF MOBILE APPLICATIONS Chapter 32 755

difference between other cities is passed to timeDiff for different cases of the
switch statement.

The code then creates another variable of the DateTime struct, newTime. Then, the
Add() method of the DateTime class is used to add the value stored in timeDiff to
the value stored in the currentTime variable. The result is then stored in the new-
Time variable, which is then converted to a string and displayed in the lblTime
Label control. The location selected by the user is displayed in the lblSelLoc
Label control. The time at the original location, New York, is displayed in the
lblOrgLoc Label control. Finally, the code makes the frmResult form active. Fig-
ure 32-18 shows the frmOptions form at run time.

When the user clicks on the Find Time button, the frmResult form becomes
active. Figure 32-19 shows the frmResult form at run time.

756 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 32-18 The frmOptions form at run time

To return to the frmOptions form from the frmResult form, the user needs to
click on the Back button. The following section discusses how to add code to the
Back button.

Adding Code to the cmdBack Command Control
When a user clicks on the Back button, the frmOptions form becomes active. To
do this, add the following code to the Click event of the cmdBack Command
control.

private void cmdBack_Click(object sender, System.EventArgs e)

{

A c t i v e F o r m = f r m O p t i o n s ;

}

The preceding code uses the ActiveForm property to set the frmOptions form as
active. The entire code of the application is as shown below.

using System;

using System.Collections;

using System.ComponentModel;

BASICS OF MOBILE APPLICATIONS Chapter 32 757

FIGURE 32-19 The frmResult form at run time

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.Mobile;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.MobileControls;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

using System.Xml;

namespace MobileTimeRetriever

{

public class MobileWebForm1 : System.Web.UI.MobileControls.MobilePage

{

protected System.Web.UI.MobileControls.Label lblCurrentTime;

protected System.Web.UI.MobileControls.Label lblRegion;

protected System.Web.UI.MobileControls.SelectionList lstLocations;

protected System.Web.UI.MobileControls.Command cmdFindTime;

protected System.Web.UI.MobileControls.Label lblSelLoc;

protected System.Web.UI.MobileControls.Label lblTime;

protected System.Web.UI.MobileControls.Command cmdBack;

protected System.Web.UI.MobileControls.Label lblCurTime;

protected System.Web.UI.MobileControls.Form frmOptions;

protected System.Web.UI.MobileControls.Form frmResult;

protected System.Web.UI.MobileControls.Label lblOrgLoc;

private void Page_Load(object sender, System.EventArgs e)

{

A c t i v e F o r m = f r m O p t i o n s ;

l b l C u r T i m e . T e x t = C o n v e r t . T o S t r i n g (D a t e T i m e . N o w) ;

}

private void cmdFindTime_Click(object sender, System.EventArgs e)

{

DateTime currentTime= DateTime.Now;

TimeSpan timeDiff=new TimeSpan(0,0,0);

switch (lstLocations.Selection.Value)

758 Project 6 C R E ATING A MOBILE APPLICAT I O N

TEAMFL
Y

Team-Fly®

{

case “1”:

timeDiff=new TimeSpan(5,0,0);

b r e a k ;

case “2”:

timeDiff=new TimeSpan(8,0,0);

b r e a k ;

case “3”:

timeDiff=new TimeSpan(12,0,0);

b r e a k ;

case “4”:

timeDiff=new TimeSpan(13,0,0);

b r e a k ;

case “5”:

timeDiff=new TimeSpan(15,0,0);

b r e a k ;

}

DateTime newTime=currentTime.Add(timeDiff);

lblSelLoc.Text=”You selected: “ + lstLocations.Selection.Text;

lblTime.Text=”Time at the selected location:” + Convert.ToString(newTime);

lblOrgLoc.Text=”(as of “ + DateTime.Now + “ EST)”;

A c t i v e F o r m = f r m R e s u l t ;

}

private void cmdBack_Click(object sender, System.EventArgs e)

{

A c t i v e F o r m = f r m O p t i o n s ;

}

}

}

In Figures 32-18 and 32-19, you saw the forms in Internet Explorer. To have an
idea of the look of the forms in a mobile device, you can view the output of the
application in a WAP device emulator. To view the output of the application in
an emulator, you need to install the emulator and the WAP gateway. After
installing the emulator and the gateway, you need to perform the following steps
to view the output in the emulator:

1. On the View menu, point to the Mobile Explorer Browser option.

BASICS OF MOBILE APPLICATIONS Chapter 32 759

2. In the displayed list, select the Show Browser option.

3. Type the URL address of the mobile Web page in the Address box of
the emulator and then press the Enter key.

The output is shown in the emulator. Figure 32-20 shows the frmOptions form
in an emulator.

Figure 32-21 shows the frmResult form in the emulator.

760 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 32-20 The frmOptions form in an emulator

Summary
In this chapter, you learned about the basics of a mobile application.Mobile appli-
cations are applications that are accessible from various mobile devices. In addi-
tion, mobile applications allow you to access a Web site from mobile devices. To
create a mobile application, you first need to install the Microsoft Mobile Inter-
net Toolkit.The Mobile Internet Toolkit provides you with the essential tools for
creating, testing, and deploying a mobile application. These tools include mobile
Web forms, components, and controls.

BASICS OF MOBILE APPLICATIONS Chapter 32 761

FIGURE 32-21 The frmOptions form in an emulator

I have used the Microsoft Mobile Explorer 3.0 Emulator and the Ericsson Gateway/
Proxy Demo 1.0 gateway to capture the preceding figures.

NOTE

Next, you learned about the transfer protocol for mobile applications, WAP. WAP
is a communication protocol, or a set of rules, that allows a wireless device to
access a mobile application. Therefore, to enable a user to access a mobile appli-
cation, the user needs to have a WAP-enabled mobile device, such as a WAP-
enabled mobile phone.

Then you learned about the technology used for rendering the mobile applica-
tions on a mobile phone, WML. WML is a language based on XML. Similar to
XML, WML provides a standard for describing data. The standards defined for
describing data are based on the W3C standards.

Finally, you learned to create a simple mobile Web application, MobileTime-
Retriever, that can be accessed from a mobile phone. You can use the same code
to create a mobile application that can be accessed from a PDA. However, in that
case, the transfer protocol used is TCP/IP.

762 Project 6 C R E ATING A MOBILE APPLICAT I O N

Chapter 33
Implementing the
Business Logic

In the preceding chapters, you looked at the case study and design of the Mobile-
CallStatus application. In addition, you were introduced to the basics of a

mobile Web application. Based on this learning, you created a simple mobile Web
application in the .NET Framework. In this chapter, you will create the forms
required for the MobileCallStatus application.You will also add the business logic
to the MobileCallStatus application.

Creating the Forms Required for
the MobileCallStatus Application

You have already seen the design of the forms required for the MobileCallStatus
application. In this chapter, I will discuss how to create the mobile Web forms for
the MobileCallStatus application.

Before creating the mobile Web forms, you need to create a mobile application
with the name MobileCallStatus. To create a mobile application with the name
MobileCallStatus, perform the following steps:

1. On the File menu, point to the New option.

2. In the displayed list, click on the Project option.

The New Project dialog box is displayed.

3. In the Project Types: pane of the New Project dialog box, select the
Visual C# option.

4. In the Templates: pane, select the Mobile Web Application option.

5. In the Location: text box, the local host appears by default. Type the
name of the application as MobileCallStatus.

6. Click on the OK button.

Figure 33-1 shows the IDE (Interactive Development Environment) for the
MobileCallStatus application.

764 Project 6 C R E ATING A MOBILE APPLICAT I O N

As you can see in Figure 33-1, Visual Studio .NET automatically creates the
default files. In addition, Visual Studio .NET generates default code.The follow-
ing section discusses the default code generated by Visual Studio .NET for a
mobile application.

The Default Code Generated by Visual Studio
.NET for a Mobile Application

The default code generated by Visual Studio .NET is as follows:

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.Mobile;

IMPLEMENTING THE BUSINESS LOGIC Chapter 33 765

FIGURE 33-1 The IDE for the MobileCallStatus application

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.MobileControls;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

namespace MobileCallStatus

{

public class MobileWebForm1 : System.Web.UI.MobileControls.MobilePage

{

protected System.Web.UI.MobileControls.Form Form1;

private void Page_Load(object sender, System.EventArgs e)

{

}

}

}

The preceding code contains the using directive statements that allow you to use
the namespace and the classes defined in the namespace within the code for your
application. In addition, the Visual Studio .NET creates a namespace with the
same name as that of the application, MobileCallStatus.

Inside the MobileCallStatus namespace, a public class with the name MobileWeb-
Form1 is created. The MobileWebForm1 class is derived from the MobilePage class
that lies in the System namespace. The MobileWebForm1 class contains the declara-
tion of the instance of the Form class, Form1. In addition, the MobileWebForm1 class
contains the Page_Load() method. You can include the statements required for ini-
tializing the mobile page in the Page_Load() method.

In addition to the preceding code, Visual Studio .NET creates HTML code for
the mobile application. To view the HTML code, switch to the HTML page in
the IDE. To do this, select the HTML Source option on the View menu. Figure
33-2 shows the HTML code for the MobileCallStatus application.

766 Project 6 C R E ATING A MOBILE APPLICAT I O N

As you can see in Figure 33-2, the first two lines of the HTML code are high-
lighted.These two lines are called the prolog for the MobileCallStatus application.
The @ Page directive includes the information about the mobile page.This infor-
mation includes the language used for developing the mobile application, the
mobile Web form included in the mobile page, and the base class of the mobile
Web page. The @ Register directive includes the information about the name-
space and the assembly for the mobile Web page.

Next, the HTML code includes the meta information for the HTML code, such
as the software and the language used to create the mobile application. In addi-
tion, the meta statements include the information about the schema used for cre-
ating the mobile Web page. Next, the HTML code contains the body tags. Inside
the body tags, the information about the mobile Web form is included.

After discussing the code generated by Visual Studio .NET, I will continue dis-
cussing how to create forms for the MobileCallStatus application.

Creating the frmLogon Form
You have seen the design of the frmLogon form. You can now create the frm-
Logon form. To create the frmLogon form, drag two Label controls, two TextBox

IMPLEMENTING THE BUSINESS LOGIC Chapter 33 767

FIGURE 33-2 The HTML code for the MobileCallStatus application

controls, two RequiredFieldValidator controls, and one Command control to the
form. Next, change the following properties of the controls:

Label1

◆ ID: Label1

◆ Text: Please Log On

◆ Font:

Bold: True

Label2

◆ ID: lblMessage

◆ Visible: False

◆ Font:

Bold: True

TextBox1

◆ ID: TextBox1

TextBox2

◆ ID: TextBox2

◆ Password: True

RequiredFieldValidator1

◆ ID: RequiredFieldValidator1

◆ ControlToValidate: TextBox1

◆ ErrorMessage: Please provide a valid logon name

768 Project 6 C R E ATING A MOBILE APPLICAT I O N

TEAMFL
Y

Team-Fly®

RequiredFieldValidator2

◆ ID: RequiredFieldValidator2

◆ ControlToValidate: TextBox2

◆ ErrorMessage: Please provide a valid password

Command1

◆ ID: cmdSubmit

◆ Text: Submit

After you have added the controls and changed the previously mentioned proper-
ties, the form appears as shown in Figure 33-3.

Creating the frmSelectOption Form
The second form required for the MobileCallStatus application is the frmSelect-
Option form. To create the frmSelectOption form, add a Label, a SelectionList,
and a Command control to the form. After adding these controls, change the fol-
lowing properties of the control.

IMPLEMENTING THE BUSINESS LOGIC Chapter 33 769

FIGURE 33-3 The frmLogon form with the controls added

Label1

◆ ID: Label2

◆ Text: Please select an option:

◆ Font:

Bold: True

SelectionList1

◆ ID: lstOptions

◆ Items: The items to be added in the SelectionList1 control are displayed
in Table 33-1.

Table 33-1 Items to be Added to the SelectionList Contro l

I t e m Tex t Va l u e S e l e c t e d

View Pending Calls viewPending Checked

Show Unattended Calls showUnattended Unchecked

In the General tab of the lstOptions Properties dialog box, change the following
properties:

◆ Select Type: Radio

◆ Rows: 2

Command1

◆ ID: cmdLoad

◆ Text: Query

Figure 33-4 shows the frmSelectOption form with the controls added.

770 Project 6 C R E ATING A MOBILE APPLICAT I O N

Creating the frmPending Form
The frmPending form contains a Label, a SelectionList, and two Command con-
trols. Drag these controls to the form and change the following properties of the
controls:

Label1

◆ ID: Label3

◆ Text: Pending Calls

◆ Font:

Bold: True

SelectionList1

◆ ID: lstPending

◆ Select Type: CheckBox

◆ Rows: 4

IMPLEMENTING THE BUSINESS LOGIC Chapter 33 771

FIGURE 33-4 The frmSelectOption form with the controls added

Command1

◆ ID: cmdUpdate

◆ Text: Mark checked as complete

Command2

◆ ID: cmdBack1

◆ Text: Back

When you add controls to the frmPending form, the form appears as shown in
Figure 33-5.

Creating the frmUnattended Form
To create the frmUnattended form, drag a Label, a SelectionList, and two Com-
mand controls to the form.Then, change the following properties of the controls:

Label1

◆ ID: Label4

◆ Text: Unattended Calls

772 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 33-5 The frmPending form with the controls added

◆ Font:

Bold: True

SelectionList1

◆ ID: lstUnattended

◆ Select Type: CheckBox

◆ Rows: 4

Command1

◆ ID: cmdAcceptCall

◆ Text: Accept checked call(s)

Command2

◆ ID: cmdBack2

◆ Text: Back

Figure 33-6 shows the frmUnattended form with the previously mentioned con-
trols added to the form.

IMPLEMENTING THE BUSINESS LOGIC Chapter 33 773

FIGURE 33-6 The frmUnattended form with the controls added

Until now, you have created the interface of the forms required for the Mobile-
CallStatus application. However, the controls that are added to the forms are not
functional. To make the controls functional, you need to add code to these
controls.

Adding the Business Logic
to the MobileCallStatus Application

You should first understand the working of the MobileCallStatus application.
This will help you to write the code for the mobile Web controls in the mobile
forms.

1. When a user accesses the MobileCallStatus application, the user needs
to enter a logon name and password in the frmLogon form.

2. The user then clicks on the Submit button.

3. The application then validates the logon name and password of the user
based on the data in the Users.xml file.

4. If the data entered by the user is incorrect, a message is displayed to the
user.

5. The user then needs to reenter the logon name and password.

6. The logon name and password are again validated, and the process is
repeated until the user enters correct data.

7. When the data entered by the user is validated and found to be correct,
the frmSelectOption form is displayed. In the frmSelectOption form,
the user can choose to view the incomplete calls or the new calls added
to the Calls.xml file.

8. To view the pending calls, the user selects the View Pending Calls
option and clicks on the Query button. The frmPending form is dis-
played.

9. However, to view the new calls added to the XML file, the user needs to
select the Show Unattended Calls radio button. The user then clicks on
the Query button.The frmUnattended form is displayed.

774 Project 6 C R E ATING A MOBILE APPLICAT I O N

10. In the frmPending form, the user can view the pending calls and click
on the Back button to return to the frmSelectOption form. In addition,
the user may check the pending calls check boxes and click on the Mark
checked as complete button when a call is completed. The status of the
call will be changed to Complete in the Calls.xml file.

11. In the frmUnattended form, the user can view the new calls added to the
list in the Calls.xml file and click on the Back button to return to the
frmSelectOption form. However, if the user wishes to accept any new
call, the user needs to check the pending calls check boxes and click on
the Accept checked call(s) button. In this case, the status of the accepted
calls is changed to Pending in the Calls.xml file.

To implement the previously listed functionality, you need to add code to the
Command controls that are included in the MobileCallStatus application. You
can start with the Submit button in the frmLogon form.

Adding Code to the Submit Button in the frmLogon Form
While writing the code for the Submit button, you first need to set the Visible
property of the lblMessage Label control to false. This will make the lblMessage
control invisible until an error message is generated.To display the error message,
you would then need to change the Visible property of the control to true. How-
ever, to make the control invisible, add the following statement to the Click event
of the cmdSubmit button.

l b l M e s s a g e . V i s i b l e = f a l s e ;

Next, you need to validate the logon name and password entered by the user. The
data entered by the user is validated against the Users.xml document. To do this,
add the following code to the Click event of the cmdSubmit button.

if (Page.IsValid)

{

bool found;

f o u n d = f a l s e ;

XmlTextReader reader= new XmlTextReader(“C:\\ Electronix\\Users.xml”);

r e a d e r . M o v e T o C o n t e n t () ;

while (reader.Read())

IMPLEMENTING THE BUSINESS LOGIC Chapter 33 775

{

if (reader.HasAttributes)

{

r e a d e r . M o v e T o N e x t A t t r i b u t e () ;

if (reader.Value==TextBox1.Text)

{

r e a d e r . M o v e T o N e x t A t t r i b u t e () ;

if (reader.Value==TextBox2.Text)

{

f o u n d = t r u e ;

r e a d e r . M o v e T o F i r s t A t t r i b u t e () ;

A c t i v e F o r m = f r m S e l e c t O p t i o n ;

}

e l s e

{

lblMessage.Text=”Invalid Password”;

l b l M e s s a g e . V i s i b l e = t r u e ;

}

}

}

}

r e a d e r . C l o s e () ;

if (found==false & lblMessage.Visible==false)

{

lblMessage.Text=”Invalid User Name”;

l b l M e s s a g e . V i s i b l e = t r u e ;

}

}

The preceding code uses an if loop to validate the data entered by the user. To do
this, the IsValid property of the Page is used. The IsValid property returns a
Boolean type value, true or false. If all the validations applied in the page are suc-
cessful, the IsValid property returns true. Alternatively, if any of the validation

776 Project 6 C R E ATING A MOBILE APPLICAT I O N

fails, the IsValid property returns false. The value returned by the IsValid prop-
erty is stored in the Boolean type variable found. The variable found is initialized
to false.

Next, an object reader of the XmlTextReader class is created and initialized to read
the Users.xml file. The path of the Users.xml file is specified in the initialization
statement. You have learned about the XmlTextReader class in Chapter 17, “Inter-
acting with a Microsoft Word Document and Event Viewer,” in the section “The
XmlReader Class.”

The code then uses the MoveToContent() method of the XmlReader class to check
whether the current node in the XML document is a content node. If the current
node is not a content node, the reader moves to the next content node. You need
to check for the content node to read the values from the content node of the
Users.xml file.

Then the Read() method of the XmlTextReader class is used in a while loop to read
the content of the Users.xml file. Inside the while loop, the HasAttributes prop-
erty of the XmlReader class is used to check whether the current node has any
attributes associated with it. The HasAttributes property returns a Boolean type
value. If the current node has an associated attribute, the HasAttributes property
returns a value, true.

Then an if loop is used to match the value entered by the user in TextBox1 to the
value in the reader object. To do this, the Value property of the XmlTextReader
class is used. If the value in TextBox1 is the same as the value in the reader object,
the value of TextBox2 is matched to the value of the next attribute. The Move-

ToNextAttribute() method is used to move to the next attribute in the Users.xml
document. If the values of TextBox1 and TextBox2 are matched to the values in the
attributes of the XML document, the found variable is set to true. A value of the
variable found, if set to true, indicates that the validations performed in the frm-
Logon form are successful. In addition, the reader object is set to the first
attribute in the Users.xml file and the frmSelectOption form is displayed to the
user. Figure 33-7 shows the Users.xml file.

IMPLEMENTING THE BUSINESS LOGIC Chapter 33 777

However, if any of the values, TextBox1 or TextBox2, do not match, an error mes-
sage is displayed to the user. This would require you to set the Visible property
of the lblMessage Label control to true. Figure 33-8 shows the frmLogon form
with an error message, Invalid User Name, displayed.

778 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 33-7 The Users.xml file

FIGURE 33-8 The frmLogon form with an error message displayed

TEAMFL
Y

Team-Fly®

The preceding code matches the value entered by the user to all the attributes in
the Users.xml file If the value of the variable found is false, an error message is
displayed. Finally, the reader object is closed using the Close() method of the
XmlTextReader class.

Adding Code to the Query Button
in the frmSelectOption Form

When a user selects an option, View Pending Calls or Show Unattended Calls,
and clicks on the Query button, the frmPending form or the frmUnattended form
is displayed, respectively. Therefore, you first need to track the option selected by
the user and display the corresponding form. To do this, add the following code
to the Click event of the cmdLoad button.

if (lstOptions.Selection.Value==”viewPending”)

{

A c t i v e F o r m = f r m P e n d i n g ;

}

e l s e

{

A c t i v e F o r m = f r m U n a t t e n d e d ;

}

The preceding code uses the Value property of the MobileListItem class to find
the option selected by the user and then to display the appropriate form. How-
ever, displaying the form requires reading data from the Calls.xml file. To display
data from the Calls.xml file, you need to add the following code to the Click
event of the cmdLoad button.

string lstItem;

XmlTextReader reader = new XmlTextReader(“C:\\Electronix\\Calls.xml”);

r e a d e r . M o v e T o C o n t e n t () ;

while (reader.Read())

{

l s t I t e m = ” ” ;

if (reader.HasAttributes)

IMPLEMENTING THE BUSINESS LOGIC Chapter 33 779

{

r e a d e r . M o v e T o N e x t A t t r i b u t e () ;

r e a d e r . M o v e T o N e x t A t t r i b u t e () ;

if (reader.Value==”Unattended”)

{

r e a d e r . M o v e T o F i r s t A t t r i b u t e () ;

lstItem=reader.Value + “: “;

r e a d e r . M o v e T o E l e m e n t () ;

lstItem=lstItem+ reader.ReadInnerXml();

l s t U n a t t e n d e d . I t e m s . A d d (l s t I t e m) ;

}

if (reader.Value==”Pending”)

{

r e a d e r . M o v e T o F i r s t A t t r i b u t e () ;

lstItem=reader.Value + “: “;

r e a d e r . M o v e T o E l e m e n t () ;

lstItem=lstItem+ reader.ReadInnerXml();

l s t P e n d i n g . I t e m s . A d d (l s t I t e m) ;

}

}

}

The preceding code creates a variable of the type string, lstItem, and initializes it
to a null value. In addition, the code creates an instance, reader, of the XmlTex-
tReader class and initializes it to the Calls.xml file. Next, the MoveToContent()

method of the XmlReader class is used to move to the content node in the XML
document.

The code uses the Read() method to read the data in the while loop. Inside the
while loop, an if loop is used to check whether the current node has any attrib-
utes associated with it. If the current node has attributes associated with it, the
reader object is moved to read the second attribute, status, in the Calls.xml file.
Figure 33-9 displays the content of the Calls.xml file.

780 Project 6 C R E ATING A MOBILE APPLICAT I O N

If the value of the status node is Unattended, the reader object is moved back to
the first attribute of the content node, id. To move to the id attribute, the
MoveToFirstAttribute() method of the XmlTextReader class is used. Then, the
value in the id attribute is retrieved using the Value property and stored in the
lstItem variable.

Next, the reader object is moved to the Call element that contains the id
attribute. This would enable the reader object to read the entire content of the
Call element with the value of the status node as Unattended. To read the entire
content of the Call element as a string, you can use the ReadInnerXml() method
of the XmlTextReader class. Then, the content of the Call element is stored in the
lstItem variable and added to the lstUnattended SelectionList control by using
the Add() method of the MobileListItemCollection() class.

Similarly, if the user has selected the View Pending Calls option, the content of
the Call element with the value of the status property as Pending is added to the
lstPending SelectionList control and displayed in the frmPending form. Figure
33-10 shows the frmSelectOption form with the View Pending Calls option
selected.

IMPLEMENTING THE BUSINESS LOGIC Chapter 33 781

FIGURE 33-9 The content of the Calls.xml file

Adding Code to the Mark checked as complete
Button in the frmPending Form

When a user checks the pending calls check box and clicks on the Mark checked
as complete button, the status of the selected call is changed to Complete in the
Calls.xml file. In addition, the entry of the call is removed from the lstPending
SelectionList control in the frmPending form. To do this, you need to add the fol-
lowing code to the Click event of the cmdUpdate button.

private void cmdUpdate_Click(object sender, System.EventArgs e)

{

StreamReader strRead;

string content, strText;

int index;

strRead= new StreamReader(“C:\\Electronix\\Calls.xml”);

c o n t e n t = s t r R e a d . R e a d T o E n d () ;

s t r R e a d . C l o s e () ;

for (int i=0; i<lstPending.Items.Count; i++)

{

if (lstPending.Items[i].Selected==true)

{

s t r T e x t = l s t P e n d i n g . I t e m s [i] . T e x t ;

782 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 33-10 The frmSelectOption form with the View Pending Calls option selected

s t r T e x t = s t r T e x t . S u b s t r i n g (0 , 4) ;

i n d e x = c o n t e n t . I n d e x O f (s t r T e x t) ;

c o n t e n t = c o n t e n t . R e m o v e (i n d e x + 1 4 , 7) ;

content=content.Insert(index+14, “Complete”);

}

}

StreamWriter strWrite;

strWrite = new StreamWriter(“C:\\Electronix\\Calls.xml”);

s t r W r i t e . W r i t e (c o n t e n t) ;

s t r W r i t e . C l o s e () ;

l s t P e n d i n g . I t e m s . C l e a r () ;

string lstItem;

XmlTextReader reader;

reader = new XmlTextReader(“C:\\Electronix\\Calls.xml”);

r e a d e r . M o v e T o C o n t e n t () ;

while (reader.Read())

{

l s t I t e m = ” ” ;

if (reader.HasAttributes)

{

r e a d e r . M o v e T o N e x t A t t r i b u t e () ;

r e a d e r . M o v e T o N e x t A t t r i b u t e () ;

if (reader.Value==”Pending”)

{

r e a d e r . M o v e T o F i r s t A t t r i b u t e () ;

lstItem=reader.Value + “: “;

r e a d e r . M o v e T o E l e m e n t () ;

lstItem=lstItem+ reader.ReadInnerXml();

l s t P e n d i n g . I t e m s . A d d (l s t I t e m) ;

}

}

}

r e a d e r . C l o s e () ;

}

The preceding code creates an instance, strRead, of the StreamReader class and
initializes it to the Calls.xml file in the Electronix folder. Next, a string type
variable, content, is declared and initialized to the data in the strRead object.

IMPLEMENTING THE BUSINESS LOGIC Chapter 33 783

However, to do this, you first need to use the ReadToEnd() method of the Stream-
Reader class to read the entire content stored in the strRead object. Once the data
in the strRead object is stored in the content variable, you can close the strRead
object by using the Close() method. Next, a for loop is used to add the data in
the content variable as list items to the lstPending SelectionList control.This data
is then displayed as a list of calls in the frmPending form. Figure 33-11 shows the
list of pending calls at run time.

As you can see in Figure 33-11, the user has selected the C002 pending list check
box. After selecting the check box, if the user clicks on the Mark checked as com-
plete button, the status of the C002 call is changed to Complete. You have already
added the code to do this in the Click event of the cmdAcceptCall button. I will
now discuss the code.

To write the changes to the Calls.xml file, you would need an object of the
StreamWriter class. Therefore, the code declares and initializes an object, str-

Write, to the Calls.xml file. The strWrite object uses the Write() method of the
StreamWriter class to write the changes to the Calls.xml file.The data to be writ-
ten is passed as a parameter to the Write() method.After doing this, you can close

784 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 33-11 The list of pending calls at run time

the strWrite object. Figure 33-12 shows the status of the C002 call changed to
Complete.

Once the changes are made to the Calls.xml file, the changes should be reflected
in the frmPending form. To do this, an object reader of the XmlTextReader class is
created that will read the content of the Calls.xml file.This content is then added
to the lstPending SelectionList control and displayed in the frmPending form.

After the user makes changes to the frmPending form, the user needs to return to
the frmSelectOption form. To do this, a Back button is added to the frmPending
form.

Adding Code to the Back Button in the frmPending Form
To display the frmPending form, when the user clicks on the Back button, add the
following code to the cmdBack button.

private void cmdBack1_Click(object sender, System.EventArgs e)

{

l s t P e n d i n g . I t e m s . C l e a r () ;

A c t i v e F o r m = f r m S e l e c t O p t i o n ;

}

IMPLEMENTING THE BUSINESS LOGIC Chapter 33 785

FIGURE 33-12 The status of the C002 call changed to Complete

Adding Code to the Accept checked call(s) Button
in the frmUnattended Form

After writing the code for the cmdUpdate button in the frmPending form, you can
easily write the code for the cmdAcceptCall button. The code for the Click event
of the cmdAcceptCall button is as follows:

private void cmdAcceptCall_Click(object sender, System.EventArgs e)

{

StreamReader strRead;

string content, strText;

int index;

strRead= new StreamReader(“C:\\Electronix\\Calls.xml”);

c o n t e n t = s t r R e a d . R e a d T o E n d () ;

s t r R e a d . C l o s e () ;

for (int i=0; i<lstUnattended.Items.Count; i++)

{

if (lstUnattended.Items[i].Selected==true)

{

s t r T e x t = l s t U n a t t e n d e d . I t e m s [i] . T e x t ;

s t r T e x t = s t r T e x t . S u b s t r i n g (0 , 4) ;

i n d e x = c o n t e n t . I n d e x O f (s t r T e x t) ;

c o n t e n t = c o n t e n t . R e m o v e (i n d e x + 1 4 , 1 0) ;

content=content.Insert(index+14, “Pending”);

}

}

StreamWriter strWrite;

strWrite = new StreamWriter(“C:\\Electronix\\Calls.xml”);

s t r W r i t e . W r i t e (c o n t e n t) ;

s t r W r i t e . C l o s e () ;

l s t U n a t t e n d e d . I t e m s . C l e a r () ;

string lstItem;

XmlTextReader reader;

reader = new XmlTextReader(“C:\\Electronix\\Calls.xml”);

r e a d e r . M o v e T o C o n t e n t () ;

while (reader.Read())

786 Project 6 C R E ATING A MOBILE APPLICAT I O N

{

l s t I t e m = ” ” ;

if (reader.HasAttributes)

{

r e a d e r . M o v e T o N e x t A t t r i b u t e () ;

r e a d e r . M o v e T o N e x t A t t r i b u t e () ;

if (reader.Value==”Unattended”)

{

r e a d e r . M o v e T o F i r s t A t t r i b u t e () ;

lstItem=reader.Value + “: “;

r e a d e r . M o v e T o E l e m e n t () ;

lstItem=lstItem+ reader.ReadInnerXml();

l s t U n a t t e n d e d . I t e m s . A d d (l s t I t e m) ;

}

}

}

r e a d e r . C l o s e () ;

}

Figure 33-13 shows the frmUnattended form at run time.

IMPLEMENTING THE BUSINESS LOGIC Chapter 33 787

FIGURE 33-13 The frmUnattended form at run time

Adding Code to the Back Button
in the frmUnattended Form

Similar to writing the code for the Back button in the frmPending form, you can
add the following code to the Back button of the frmUnattended form.

private void cmdBack2_Click(object sender, System.EventArgs e)

{

s t U n a t t e n d e d . I t e m s . C l e a r () ;

A c t i v e F o r m = f r m S e l e c t O p t i o n ;

}

After creating the MobileCallStatus application,you can test the application in an
emulator. The following section discusses how to test a mobile application in an
emulator.

Testing the MobileCallStatus
Application in an Emulator

To test your application in an emulator, perform the following steps:

1. On the View menu, point to the Mobile Explorer Browser option.

2. In the displayed list, select the Show Browser option.

3. Type the address of the mobile Web form in the Address box of the
emulator and then press Enter.

788 Project 6 C R E ATING A MOBILE APPLICAT I O N

While using an emulator, you can use the keyboard to type the information or navi-
gate through the pages. While working with the actual device, such as a mobile
phone, you can use the keys on the mobile phone.

TIP

You can type the address of the forms in the Address box to view all the forms in
the MobileCallStatus application. Figure 33-14 shows the frmLogon form in an
emulator.

TEAMFL
Y

Team-Fly®

Navigating to the next form takes you to the frmSelectOption form, as shown in
Figure 33-15.

IMPLEMENTING THE BUSINESS LOGIC Chapter 33 789

FIGURE 33-14 The frmLogon form in an emulator

FIGURE 33-15 The frmSelectOption form in an emulator

In the frmSelectOption form, if the user selects the View Pending Calls option,
the frmPending form is displayed as shown in Figure 33-16.

However, if the user selects the Show Unattended Calls option in the frmSelect-
Option form, the frmUnattended form is displayed. Figure 33-17 shows the
frmUnattended form in an emulator.

790 Project 6 C R E ATING A MOBILE APPLICAT I O N

FIGURE 33-16 The frmPending form in an emulator

Summary
In this chapter, you created the MobileCallStatus application. While creating the
application, you looked at the default code created by Visual Studio .NET for a
mobile Web application. Finally, you learned to write the code for the Mobile-
CallStatus application.

IMPLEMENTING THE BUSINESS LOGIC Chapter 33 791

FIGURE 33-17 The frmUnattended form in an emulator

This page intentionally left blank

PARTIXBeyond
the Labs

This page intentionally left blank

Chapter 34
Advanced
C# Concepts

In this chapter, you will learn about COM+, System.Messaging namespace, and
asynchronous message queuing.

COM+
Before I introduce you to COM+, you need to understand the concepts of COM,
MTS, and Windows DNA.

What Is COM?
As you might be aware, COM stands for component object model, and it is a model
for con s t ru c t i on of binary - c ompatible softw a re com p onents introduced by
Microsoft. In simple terms, COM is a specification and implementation frame-
work that allows you to create modular, object-oriented, customizable, and
upgradeable distributed applications using a number of programming languages.
COM enables you to develop components that can communicate with other com-
ponents irrespective of the programming language or tool you choose to develop
it.Therefore, COM allows you to concentrate on developing your application and
not bother about the internals of the components.

COM allows clients to invoke services provided by COM-compliant components
(COM objects).Services implemented by COM objects are exposed through a set
of interfaces that represent the point of contact between clients and the object.

Why COM?
In order to understand the features provided by COM, you first need to under-
stand the rationale for its existence. Binary code has been in use for a long time
now. Libraries have been used in C and C++ from the very beginning. Windows
programmers have been reusing DLLs (dynamically linked libraries). But there
were other issues.

Libraries created using C/C++ compilers were often incompatible with executa-
bles created using a different C/C++ compiler. Secondly, DLLs were language

796 Part IX BEYOND THE LABS

dependent. Moreover, updating DLLs posed greater problems. Compatibility
between versions was not achieved because of memory allocation reasons.
Changed DLLs often broke executables designed for an earlier version.

Benefits of COM
COM was an alternative developed by Microsoft to overcome these problems.
The major benefits of COM are:

◆ COM components can provide functionality in a standard way.

◆ COM provides for component interoperability.

◆ COM provides a good versioning mechanism that allows one system
component to be updated without requiring updates to other compo-
nents in the system.

◆ COM components can be implemented in a number of programming
languages.

Before we proceed further, I will take you through some commonly used terms in
COM.

Interfaces
An interface is a specification that defines the type of behavior a class must imple-
ment. An interface provides a group of related methods that are pure virtual func-
tions. These methods are not implemented in the interface but are implemented
in the class that implements the interface.The class that implements the interface
methods is referred to as coclass. When the coclass is instantiated,the instance that
is created is referred to as component object.

A class that inherits an interface must implement every member of the interface.
An interface enables other programs to access the functionality provided by your
component.

Consider the following example, where a COM object behaves like a clock. The
clock object supports two interfaces, IClock and IAlarm. The IClock interface
provides the methods to set and read current time. The IAlarm interface provides
the alarm and methods.

ADVANCED C# CONCEPTS Chapter 34 797

GUID
COM objects and interfaces are specified using Microsoft IDL (interface defini-
tion language). In order to avoid problems arising out of two components with
same names, every COM component and interface has a GUID (globally unique
identifier). A GUID is a 128-bit integer that is generated and assigned to every
COM component and interface built. It uniquely identifies the component to the
operating environment and other sof tware.

CLSID
Class ID (CLSID) is a unique identifier that is associated with an OLE (Object
Linking and Embedding) object. If a class is used to create more than one instance
of an object, the associated application needs to register its CLSID in the system
registry. This enables clients to locate and load the executable code associated with
the objects.

Marshaling
Marshaling is the process of packaging and sending interface method calls across
thread or process boundaries.

Type Library
Type libraries are binary files (.tlb files) that include information about types and
objects exposed by an ActiveX application. A type library can contain any of the
following:

◆ Information about data types

◆ Description about one or more objects

◆ Reference to type descriptions from other type libraries

Including the type library with the product ensures that information about objects
in the library is made available to users of the application. Type libraries can be
shipped as a standalone binary file or a resource in a DLL.

798 Part IX BEYOND THE LABS

TEAMFL
Y

Team-Fly®

Stub
Stub is an interface-specific object that unpackages the parameters for that inter-
face after they are marshaled across the process boundary and makes the requested
method call.The stub runs in the address space of the receiver and communicates
with a corresponding proxy in the sender ’s address space.

Proxy
A proxy is an interface-specific object that packages parameters for that interface
in preparation for a remote method call. A proxy runs in the address space of the
sender and communicates with a corresponding stub in the receiver’s address
space.

Standard Interfaces
Every component must implement at least two interfaces, the IUnknown and the
IDispatch interfaces. The IUnknown interface has three methods, as follows:

◆ AddRef

◆ Release

◆ QueryInterface

COM objects keep track of the number of interface pointers to the object that are
in use. When the reference count reaches zero, it can be freed.However, the object
is not explicitly freed;instead, all the objects interface pointers and the object frees
itself after an appropriate time.

AddRef increments the reference count and Release documents it. The QueryIn-
terface is the most important method. Because all interfaces inherit from IUn-
known, all interfaces must implement QueryInterface. The QueryInterface
method provides client access to other interfaces on an object.

IDispatch interface exposes objects, methods, and properties to other programs
that support automation. COM components implement the IDispatch interface
to enable access by automation clients.

ADVANCED C# CONCEPTS Chapter 34 799

Every COM object runs inside of a server. A single server can support multiple
COM objects. A client can access COM objects provided by a server in one the
following three ways:

◆ In-process server. Clients can link directly to a library containing the
server. The client and server execute in the same process. Communica-
tion is accomplished through function calls.

◆ RPC (remote procedure call). The client can access a server running in a
different process but on the same machine through an interprocess com-
munication mechanism.

◆ Remote Object Proxy. The client can access a remote server running on
another machine. The network communication between client and server
is accomplished through RPC. The mechanism supporting access to
remote servers is called DCOM (Distributed COM).

Functioning of COM Objects
If the client and the server are in the same process, the sharing of data between
the two is simple. However, when the server process is separate from the client
process, as in a local server or remote server, COM must format and bundle the
data in order to share it. This process of preparing the data is called marshaling.
Marshaling is accomplished through a proxy object and a stub object that handle
the cross-process communication for any particular interface. COM creates the
stub in the object’s server process and has the stub manage the real interface
pointer. COM then creates the proxy in the client ’s process and connects it to the
stub. The proxy then supplies the interface pointer to the client.

The client calls the interfaces of the server through the proxy, which marshals the
parameters and passes them to the server stub. The stub unmarshals the parame-
ters and makes the actual call inside the server object. When the call completes,
the stub marshals return values and passes them to the proxy, which in turn
returns them to the client. The same proxy/stub mechanism is used when the
client and server are on different machines.

The internal implementation of marshaling and unmarshaling differs depending
on whether the client and server operate on the same machine (COM) or on dif-

800 Part IX BEYOND THE LABS

ferent machines (DCOM). When a client wishes to create and use a COM object,
the client performs the following steps:

1. It invokes the COM API to instantiate a new COM object.

2. COM locates the object implementation and initiates a server process
for the object.

3. The server process creates the object and returns an interface pointer at
the object.

4. The client can then interact with the newly instantiated COM object
through the interface pointer.

COM Threading Model
Programming multithreading applications is quite a tedious task irrespective of
the tool or the language being used. In an application that is single threaded,
everything runs synchronously, that is, one after the other, whereas in case of mul-
tithreaded applications, the execution sequence is not so straightforward. All
requests for a component method are queued up in the message pump, causing all
requests to be executed simultaneously. Applications in which multiple threads are
active at the same time can be asynchronous.

It is possible that methods in a component execute simultaneously. Data in a com-
ponent can be changed or accessed by more than one thread, thus losing its con-
currency. Therefore, it becomes the responsibility of the component or the
application to prevent such simultaneous access by multiple threads or to make
the code thread savvy.

Because this is a likely scenario for COM components, the COM architecture
provides various threading models, which allows you to create components that
are inherently thread savvy but less flexible, or components that can handle
threading issues themselves.

You can build COM components that have any of the following threading
models:

◆ Single threaded

◆ Apartment threaded

◆ Both single and apartment threaded

◆ Free threaded

ADVANCED C# CONCEPTS Chapter 34 801

An apartment is neither a thread nor a process. It is an execution context in which
components exist. Different types of apartments define how a class object can be
accessed from different threads in the same process.

An apartment can be an STA (single threaded apartment) or an MTA (multi-
threaded apartment). As the name suggests, objects in an STA can be accessed by
only one thread at a time. If more than one thread tries to access the object in an
STA, the requests are queued in a message pump and access is given serially. The
advantage here is that because the access is serialized, you can be sure a compo-
nent created in this model will never be accessed by more than one thread at a
time.

In the case of an MTA, it is possible for multiple threads to enter the apartment,
that is, more than one thread can access an object in an MTA. Here, the onus of
protecting the data in an object from concurrent access and possible corruption is
on the programmer.

A process can have multiple STAs, but only one MTA. The first STA created in
the process is called its main STA. When a component is created using the single
threaded model, it is forced to run on the same thread that initialized it or on the
main STA of the process. This is the least flexible of the COM threading mod-
els.

When a component is created as apartment threaded (STA), the object can be
loaded into any STA in the process. This ensures that access to the object is syn-
chronized. When a component is created as free threaded, it will be loaded into
the process-wise MTA. It is possible for multiple threads to access it simultane-
ously. The programmer is responsible for creating thread-safe code.

In case a component is created to support both apartment threading and free
threading, any client that supports either of these models can access the class
object. However, the access to the data must be synchronized by the developer.

Windows DNA
Now that I have gone though the basics of COM, I will introduce you to COM+.
Before that, I will take a quick look at Windows DNA (Distributed Internet Appli-
cations) architecture. Windows DNA is the application development for the Win-
d ows platform . It specifies how to develop ro b u s t , s ca l a b l e, d i s t ri b u t e d

802 Part IX BEYOND THE LABS

applications using the Windows platform and to extend existing data and exter-
nal applications to support the Internet.

Windows DNA describes the technologies that provide a complete integrate n-
tier development model and the set of services that developers require to build
scalable enterprise-level applications on the Windows platform. Figure 34-1
shows the Windows DNA model.

Windows DNA addresses the requirements at all tiers of modern distributed
applications: presentation, business logic, and data. The presentation services
include all applications and technologies that can be used to provide access to the
application. They can be HTML, dynamic HTML, and JavaScript viewed
through a Web browser (thin client) or a Windows application developed using
Win32 API and distributed as executables (rich client).

The application services tier is typically composed of components that bind the
presentation and the data layers. The technologies involved in this layer are IIS,
COM, ASP, and MTS. This layer handles the business logic and other applica-
tion services.

The data services layer enables the application to store and retrieve data. The
technologies involved in this layer are ADO+ and OLE DB.

ADVANCED C# CONCEPTS Chapter 34 803

FIGURE 34-1 Windows DNA architecture

Some of the benefits of Windows DNA include:

◆ Windows DNA provides a very comprehensive, integrated platform for
building distributed applications. Commonly needed middle tier services
are provided to developers, doing away with the burden of having to
build commonly used services.

◆ Applications can be built faster by using a common services infrastruc-
ture of the Windows platform.

◆ Windows DNA supports a number of programming languages and
development tools, providing the developers with a wide variety of
choice.

◆ Windows DNA is designed to provide a high level of interoperability
with existing applications and legacy systems.

The core of Windows DNA is the integration of Web and client/server applica-
tion development models through the COM. Windows DNA defines a common
set of services, including components, dynamic HTML, Web browser and server,
scripting, transactions, message queuing, security, directory, database and data
access, systems management, and user interface. These services are exposed in a
unified way through COM.

The application services, infrastructure services, and common interfaces operate
in a multitier framework. COM and other protocols and services act as the bond
between the application and data layer.

From a technology that was initially designed to promote code reuse, COM has
made a very successful transition to design software components that encapsulate
business rules and logic. Today, system services are provided through COM.

Microsoft Transaction Server (MTS)
COM was a component technology designed to enable efficient code reuse.With
the release of DCOM in Windows NT 4.0, the technology was expanded to sup-
port distributed applications by means of remote component instantiation and
method invocations.

This was followed by release of MTS, which allowed developers to build and run
their components in MTS as its middle tier. In addition, it provided much needed
support for distributed transactions, integrated security, thread pooling, and
improved configuration and administration.

804 Part IX BEYOND THE LABS

COM+
One of the problems faced by developers building multitier applications is decid-
ing when to use MTS and when to use COM. COM is shipped with Windows
NT, whereas MTS needs to be installed as an add-on.MTS is not a part of COM.
Moreover, MTS and COM have quite different programming models of their
own. MTS is a layer on top of COM, but COM was not modified to accommo-
date MTS. However, the two are not tightly integrated.

In Windows 2000,COM and MTS have been unified into a single run-time layer
and support a common programming model. The new run time has been named
COM+. COM+ is a part of Windows 2000.

COM+, just like COM, is based on binary components and interface-based pro-
gramming. Method calls are remoted across process and computer boundaries
using a transparent RPC layer. COM+ components can be upgraded and
extended in production without affecting the client applications that use them.
They also support distributed transactions and role-based security. Additionally,
COM+ provides a built-in thread-pooling scheme and uses attribute program-
ming as its programming model.

In addition to transactional services and integrated security, COM+ exposes ser-
vices such as synchronization and object pooling. COM+ provides new features,
such as queued components and COM+ events that are exposed through config-
urable attributes and a new threading model called neutral apartment threading.
I will now discuss each of these features in brief.

Role-Based Security
COM+ supports role-based as well as process-based security. A role represents the
security profile of one or more users in an MTS application. At design time, a
developer can set up security checks programmatically through roles. At deploy-
ment time, an administrator maps a set of roles to user accounts and group
accounts inside a Windows NT domain. Therefore, in role-based security, access
to parts of an application are granted or denied on the basis of the logical group
or role to which the caller has been assigned. The role-based security model of
MTS provides more flexibility than the security model provided by COM.

ADVANCED C# CONCEPTS Chapter 34 805

Threading
COM+ includes a new threading model, neutral apartment threading. You can
use neutral apartments for projects with no user interface. In case of neutral apart-
ments, objects follow the rules for MTAs. However, they can execute on any kind
of thread. Each process can have only one neutral apartment.

Object Pooling
This is a service that enables you to configure a component to have instances of
itself kept alive in a pool, ready to be used by clients accessing the component. You
can configure and monitor the pool by specifying characteristics such as pool size
and creation request timeout values. COM+ manages the pool while the applica-
tion is running, handling object activation and reuse based on the criteria you have
specified. This object reuse leads to significant performance and scaling benefits.

Queued Components
Queued components are a feature of COM+ that is based on MSMQ (Microsoft
Message Queue Service). Queued components provide a simple way to invoke and
execute components asynchronously. Processing can take place without having to
bother about whether the sender is available or not at the other end. With
MSMQ, a client application can send request messages even when the server
application is offline, and a server can respond to request messages after all client
applications have gone offline. In environments where client applications and
servers can become disconnected for any number of reasons, this capability allows
the distributed application as a whole to stay up and running.

However, this results in extra code for creating, preparing, and sending messages
from client applications. It also requires you to write a server-side listener appli-
cation.

On the other hand, COM+ provides a service, named queued components, that
allows you to take advantage of MSMQ without having to explicitly program
using the MSMQ API.The queued components service is a layer built on top of
MSMQ. The COM+ queued components services enable you to create compo-
nents that can execute immediately, provided the client and the server are con-
nected or the execution can be deferred until a connection is established.

The benefits of queued processing are:

806 Part IX BEYOND THE LABS

◆ Shorter component life span

◆ Message reliability

◆ Reduced dependency on component availability

◆ Efficient server scheduling

COM+ Events
Events are used to manage a connection between a publisher and one or more
subscribers and then manage the delivery of events to those subscribers. In the
COM+ event model, applications that send out event notifications are called pub-
lishers. Applications that receive event notifications are called subscribers. The
COM+ queued components service is used to make the publisher and subscriber
processing time independent by queuing the publisher’s message and later replay-
ing it to the subscriber. COM+ events are often called LCEs (loosely coupled
events) because publishers and subscribers do not have any knowledge of one
another. Publishers and subscribers know about event classes, but not about each
other. Whether or not you need to use the queued components service depends
on the underlying business logic of your application. If you need to have events
that are time-independent,you can create them by composing COM+ events with
COM+ queued components.

Working of COM+ Events
Suppose you author an event class that implements one or more interfaces. The
methods that are defined in these interfaces represent a set of events. You write
subscriber components to implement these interfaces and respond to events when
they are triggered. Next, you write a publisher application to create objects from
the event class and call various methods when it wants to fire events. The event
service takes care of processing the method and delivering the events to every sub-
scriber.

COM+ events store event information from different publishers in an event store
in the COM+ catalog. Subscribers query this store and select the events that they
want to hear about. Selecting event information from the event store creates a
subscription. When an event occurs, the event system looks in this database and
finds the interested subscribers, creates a new object of each interested class, and
calls a method on that object.

ADVANCED C# CONCEPTS Chapter 34 807

Automatic Transactions
Automatic transaction processing assumes that COM components are either
transaction-aware or transaction-unaware. Transaction-aware components are
called transactional components. COM+ looks at the component’s transaction
requirement before activating an object based on the component.

Once .NET Framework class is marked to participate in a transaction, it will
automatically execute within the scope of a transaction. You can control the
object’s transactional behavior by setting a transaction attribute value in the class.
The attribute value, in turn, determines the transactional behavior of the instan-
tiated object.Thus, based on the attribute value, the object will automatically par-
ticipate or never participate in a transaction.

Just-in-Time Activation
Just-in-Time (JIT) activation is an automatic service provided by COM+ that can
enable you use server resources more efficiently. When a component is configured
as JIT activated, COM+ can disable an instance of the component even when a
client is holding an active reference to the object. The next time the client calls a
method on the object (which the client believes to be still active), COM+ will
reactivate the object to the client, just in time.

The primary advantage of JIT activation is that you enable clients to hold refer-
ences to objects for as long as they need them without tying up server resources.

Synchronization
Synchronization is a service provided by COM+ for managing concurrency. Syn-
chronization prevents more than one caller from entering the component at a
given time. It determines when threads can make calls to an object.Typically, syn-
chronization is needed when you have a multithreaded or a free threaded apart-
ment object. Synchronization prohibits flow across processes or computers and
flows from one component to another.

COM+ ensures concurrency by a series of locks for each activity. If a caller tries
to enter a COM+ synchronized component that is already being used by another
caller, the call is blocked until the lock is released. If the lock is not in use, the lock
is acquired and the call is processed. After completing, the lock is released for the
next caller. To prevent deadlock, COM+ manages access to all objects across activ-
ities by a nested series of calls chained throughout the network.

808 Part IX BEYOND THE LABS

TEAMFL
Y

Team-Fly®

.NET Interoperability
. N ET provides intero p e ra b i l i ty fe a t u res that all ow you to work with existing
unmanaged code (that is, code running outside the CLR) in COM com p onents as
w e ll as Win32 DLL s . . N ET CLR enables intero p e ra b i l i ty by hiding the com p l e x-
i ty associated with ca lls between managed and unmanaged code. The run time
a u t om a t i ca lly generates code to translate ca lls between the two env i ron m e n t s .

When you call a COM object from .NET, the run time generates an RCW (run-
time callable wrapper). The RCW acts as a surrogate for the unmanaged object
(refer to Figure 34-2).The RCW handles all interaction between the .NET client
and the COM component. It takes care of creating and binding the COM object,
translating and marshaling data between environments, and managing the life-
time of the wrapped COM object.

Even when you call a .NET component from COM, the run time generates a
wrapper object called CCW (COM callable wrapper). The run time reads the type
information for the component from its assembly metadata and generates a
CCW. The CCW, like the RCW, acts as a proxy between the unmanaged COM
object and the managed .NET component. The CCW takes care of handling all
interaction between the COM client and the managed object.

COM+ Services
.NET components can participate in COM+ applications and share context,
transactions, synchronization boundaries, and so forth with COM+ components.
.NET components that participate in COM+ applications are called serviced com-
ponents. A serviced component is the mechanism that enables context sharing
between COM+ and .NET Framework classes.

Serviced components must be registered in the COM+ catalog, typically by using
the regsvcs tool provided with the .NET Framework SDK. You can specify the

ADVANCED C# CONCEPTS Chapter 34 809

FIGURE 34-2 COM DLL-to-RCW conversion

exact service requirements for your .NET component by annotating your man-
aged code with service related attributes.

Calling Unmanaged APIs from .NET
.NET also supports calling unmanaged code in Win32 DLLs. This interoper-
ability, referred to as platform invocation or simply P/Invoke, allows managed code
to call into C-language-type API functions. It also handles the marshaling of data
types between managed and unmanaged types, finds and invokes the function in
the DLL, and facilitates transition from managed to unmanaged code.

COM Interoperability
COM interoperability provides access to existing COM components without
modifying the original component. When you need to incorporate a COM code
in to your managed application, import the relevant COM types using the COM
Interop (TlbImp.exe) utility.

The TlbImp (type library importer) utility is a command-line tool that is shipped
along with .NET Framework SDK. It converts a COM type library into .NET
Framework metadata. The type library importer also does the following:

◆ COM coclasses are converted to C# classes with a zero parameter con-
structor.

◆ COM structs are converted into C# structs with public fields.

COM interop also allows you to access managed objects. For this purpose, COM
interop provides a utility (RegAsm.exe) that exports the managed types into a
type library and registers the component as a COM component. At run time, the
CLR marshals data between COM objects and managed objects as needed.

C# Client Interop
I will now discuss the steps to be followed to use C# code to interoperate with
COM objects.

C# provides support for the following:

◆ Creating COM objects

◆ Determining whether a COM interface is implemented by an object

810 Part IX BEYOND THE LABS

◆ Calling methods on COM interfaces

◆ Implementing objects and interfaces that can be called by COM clients

Creating a COM Class Wrapper
In order to access COM objects and interfaces from C# code, you need to include
a .NET Framework definition for the COM interfaces in your C# code. You can
easily accomplish this by using the type library importer utility.

Declaring a COM Coclass
COM coclasses are represented as classes in C#. These classes must have the
ComImport attribute associated with them. A coclass is declared as shown in the
code snippet that follows:

// declare CalcManager as a COM coclass

[ComImport, Guid(“E436EBB3-524F-11CE-9F53-0020AF0BA770”)]

class CalcManager

{

//code to do something

}

The C# compiler will add a constructor without any parameters that you can call
to create an instance of the COM coclass.

Creating a COM Object
Creating an instance of the COM coclass using the new operator is equivalent to
using CoCreateInstance. The above class can be instantiated as given here:

class MainClass

{

public static void Main()

{

CalcManager calc = new CalcManager ();

}

}

ADVANCED C# CONCEPTS Chapter 34 811

Declaring a COM Interface
COM interfaces are represented in C# as interfaces with ComImport and Guid

attributes. They cannot include any interfaces in their base interface list, and they
must declare the interface member functions in the order that the methods appear
in the COM interface.

Developing COM+ Applications
When developing COM+ applications, the principal tasks include designing
COM components to encapsulate application logic, creating the COM+ applica-
tion, and administering the application through deployment and maintenance.

Designing COM Components
The following steps describe a general procedure for good component design:

1. Define the COM classes and implementation classes.

2. Group the classes into components.

3. Integrate the components into a COM+ application.

Creating the COM+ Application
After designing the COM components, the developer integrates the components
into a COM+ application and configures the application. The following steps
describe the process:

1. Integrate the components into a COM+ application. You can integrate
the components into an existing COM+ application or create a new
application for the components. Specify the correct set of attributes for
each of the classes. These attributes express the component’s dependen-
cies on any services its implementation might rely on, such as transac-
tions, queued components, security, object pooling, and JIT activation.

2. Set up the security framework, that is, define roles and association of
roles to classes, interfaces, and methods.

3. Configure environment-specific attributes on classes and applications.

4. Export the application for redistribution and deployment.

812 Part IX BEYOND THE LABS

Administering COM+ Applications
Typically, a developer delivers a partially configured COM+ application to the
system administrator. The administrator then customizes the application for one
or more specific environments. For example, the system administrator adds user
accounts in roles and server names in an application. The administrator’s tasks
include the following:

1. Install the configured COM+ application on an administrative machine.

2. Provide the environment-specific attributes, such as role members and
object pool size.

3. Export the fully configured COM+ application.

4. Create an application proxy.

After an application is fully configured for a specific environment, the adminis-
trator can then deploy it on test or production machines. This involves installing
the fully configured COM+ application on one or more machines.

Accessing a COM+ Component from C# Code
If you want to access an existing COM+ application from C# code, you do not
need to modify the existing COM+ application, despite the fact that the execu-
tion model of the component is very different.

Following is an example of accessing a DLL from C# code. You can access the
DLL in two ways, early binding and late binding. I will first take you through the
early binding example.

Accessing a COM Component Using Early Binding
In order to use an existing COM component, you need to create a RCW using
the type library importer (TlbImp.exe) utility, as follows.

Assume you have a COM component with a method Add that takes two parame-
ters and returns their sum.

‘CompAdd.Dll

(class1)

Public Function Add(A As Long, B As Long) As Long

Add = A + B

End Function

ADVANCED C# CONCEPTS Chapter 34 813

Run the TlbImp.exe utility to create a RCW as shown in Figure 34-3.

The preceding command generates a wrapper DLL, called CompAddRcw.dll.
You can view this DLL using a utility called IlDasm.exe.

Now you need to write code to call the wrapper DLL (CompAddRcw.dll) to access
the actual DLL (CompAdd.dll). The code for calling the DLL is given as follows.

//code to access CompAdd.dll

using CompAddRcw;

using System;

namespace AddEarlyBind

{

class EarlyBinding

{

public static void Main()

{

CompAddRcw.Class1 objAdd = new CompAddRcw.Class1();

long lRes;

int ix=100;

int iy=200;

lRes= objAdd.Add(ref ix, ref iy);

C o n s o l e . W r i t e L i n e (l R e s) ;

}

}

}

Compile the program with /r: switch and execute it to call the COM component.

814 Part IX BEYOND THE LABS

FIGURE 34-3 Creating an RCW with TlbImp utility

Accessing a COM Component Using Late Binding
To implement late binding, you need to use System.Reflection namespace, which
enables access to the types contained in any assembly. This can be accomplished
as follows:

1. Get the interface IDispatch using
Type.GetTypeFromProgID(“Project1.Class1”).

2. Create instance using the type ID Activator.CreateInstance(objAdd-
Type).

3. Create an array of arguments.

4. Invoke the method using the function objAddType.InvokeMember.

The code for implementing the same is as follows.

using System.Reflection;

using System;

namespace AddLateBind

{

class LateBinding

{

public static void Main()

{

//Get IDispatch Interface

Type objAddType = Type.GetTypeFromProgID(“Project1.Class1”);

//Create Instance

object objAdd = Activator.CreateInstance(objAddType);

//Make Array of Arguments

object[] myArguments = { 100, 200 };

object obj;

//Invoke Add Method

obj = objAddType.InvokeMember(“Add”, BindingFlags.InvokeMethod,

null, objAdd, myArguments);

C o n s o l e . W r i t e L i n e (o b j) ;

}

}

}

ADVANCED C# CONCEPTS Chapter 34 815

The method Type.GetTypeFromProgID is used to load the type information of the
COM object. The call to Activator.CreateInstance returns an instance of the
COM object. Finally, InvokeMember function is used to call the method of COM
object.

A Complete Example
The following example describes the process of creating a DLL in C# and access-
ing it from C# code. I shall first take you through the steps to create a DLL.

Creating the DLL
1. On the File menu, point to the New option.

2. In the displayed list, click the Project option.

The New Project dialog box is displayed.

3. In the Project Types: pane of the New Project dialog box, select the
Visual C# option.

4. In the Templates: pane, select the Class Library option.

5. Type the name of the application as Math in the Name: text box and the
desired location in the Location: text box.

6. Click the OK button.

7. Add a method with the following definition.

public long Add(long Val1, long Val2)

{

return Val1 + Val2;

}

8. Add a property, Extra, as shown in the following code.

public bool Extra

{

g e t

{

return bTest;

}

s e t

{

b T e s t = E x t r a ;

816 Part IX BEYOND THE LABS

}

}

9. Change the name of Class1 to MathComp. Also change the name of the
constructor.

10. Build the component.

Building the Client
1. On the File menu, point to the New option.

2. In the displayed list, click the Project option.

The New Project dialog box is displayed.

3. In the Project Types: pane of the New Project dialog box, select the
Visual C# option.

4. In the Templates: pane, select the Console Application option.

5. Type the name of the application as MathClient in the Name: text box
and the desired location in the Location: text box.

6. Click the OK button.

7. On the Project menu, click the Add Reference option.

8. Browse and select the Math.dll you created and add it to the current
project (refer to Figure 34-4).

ADVANCED C# CONCEPTS Chapter 34 817

FIGURE 34-4 The Add Reference dialog box

9. Type the following code:

using System;

using Math;

namespace MathClient

{

/// <summary>

/// Summary description for Class1.

/// </summary>

class Class1

{

/// <summary>

/// The main entry point for the application.

/// </summary>

[S T A T h r e a d]

static void Main(string[] args)

{

MathComp obj=new MathComp();

long lRes=obj.Add(10,20);

o b j . E x t r a = f a l s e ;

C o n s o l e . W r i t e (l R e s) ;

r e t u r n ;

}

}

}

Compile the project and see the output. You can expand on this project further to
create a better math application that performs more functions.These steps explain
to you the mechanism to create a DLL and access it.

Messaging
The System.Messaging namespace provides classes that allow you to connect to,
monitor, and administer message queues on the network and send or receive mes-
sages. Before I explain the System.Messaging namespace, it is critical to under-
stand message queuing and certain terms related to messaging.

818 Part IX BEYOND THE LABS

TEAMFL
Y

Team-Fly®

Benefits of Message Queues
Messaging also provides a powerful and flexible mechanism for interprocess com-
munication between components of a server-based application. The advantages
provided by messaging are:

◆ Robustness. Messages are less affected by component failures than
direct calls between components, as messages are stored in queues until
processed.

◆ Message prioritization. Important messages are received before less
important ones.Therefore, you can guarantee adequate response time for
critical applications.

◆ Offline capabilities. Messages can be sent to temporary queues and
remain there until they are delivered successfully. Moreover, users can
continue to perform operations when access to the queue is unavailable.
Additional operations can proceed as if the message has already been
processed, because the message delivery is guaranteed when the network
connection is restored.

◆ Transactional messaging. Several messages can be coupled into a single
transaction, ensuring that the messages are delivered in sequence and are
successfully retrieved from their destination queue. If any errors occur,
the entire transaction is cancelled.

◆ Security. The message queuing technology on which the MessageQueue
component is based uses Windows security to provide secure access con-
trol, provide auditing, and encrypt and authenticate the messages your
component sends and receives.

Limitations
In order to develop MessageQueue components your system must meet the fol-
lowing requirements:

◆ To see queue information in Server Explorer or to access queues pro-
grammatically, you must install message queuing on your client com-
puter.

◆ Message queuing can be run in either a domain or a workgroup environ-
ment. In the context of message queuing, a domain environment

ADVANCED C# CONCEPTS Chapter 34 819

includes domain controllers that provide a directory service such as active
directory, and a workgroup environment is any environment that does not
provide such a directory service.

Key Messaging Terms
Before we proceed further, I would like to explain certain key terms.

A message is a unit of data sent from one computer to another. A message can be
very simple, consisting of just a string of text, or more complex, possibly involv-
ing embedded objects or pictures.

Messages are transmitted to queues. A message queue is a temporary storage area
that holds messages while they are in transit. The message queue manager acts as
the intermediary in transmitting a message from its source to its destination.The
main purpose of a queue is to provide routing and guarantee the delivery of the
message. In case the recipient is not available when a message is sent, the queue
holds the message until it can be successfully delivered.

Message queuing, Microsoft’s messaging technology, provides messaging and mes-
sage queue facilities for any applications that have Microsoft Windows installed
regardless of whether they are on the same network or whether they are online at
the same time.

A message queuing network is a set of computers that are enabled to send messages
back and forth to one another. Different computers in the network play different
roles to ensure that messaging proceeds smoothly. Some computers provide infor-
mation to determine how messages are sent, some hold information about the
entire network, while others simply send and receive messages.

During message queuing setup, an administrator makes decisions about which
servers can communicate with each other and sets up special roles for specific
servers. The computers that make up this message queuing network are called
sites, and they are connected to one another by site links. Each site link has an
associated cost, determined by the administrator, that indicates how quickly mes-
sages can be passed across it.

The message queuing administrator also sets up one or more computers in the
network that act as routing servers. A routing server makes decisions about how a
message is delivered by looking at the cost of various site links and determining
the quickest and most efficient way to deliver the message across multiple sites.

820 Part IX BEYOND THE LABS

Types of Message Queues
There are two main categories of queues, queues created by users and system
queues.

User-Generated Queues
Queues created by users can be any of the following:

Public queues are those that are replicated throughout the message network and
can potentially be accessed by all of the computers connected by the network.

Private queues are queues that are not published across the entire network. They
are available only on the local computer that contains them. They can be accessed
only by applications that know the full path name of the queue.

Administration queues are queues that contain messages acknowledging the deliv-
ery of messages sent within a given message queuing network. You specify the
administration queue you want your MessageQueue components to use.

Response queues contain response messages that are returned to the sender appli-
cation when the message is received by the destination application. You specify
the response queue you want your MessageQueue components to use.

System Queues
System queues generally fall in one of the following categories:

Journal queues optionally store copies of messages that you send and copies of mes-
sages removed from a queue. A single journal queue on each message queuing
client stores copies of messages sent from that computer. On the server, a separate
journal queue is created for each individual queue. This journal tracks messages
removed from that queue.

Dead-letter queues store copies of undeliverable or expired messages. If the mes-
sage that expired or was undeliverable was a transactional message, it is stored in
a special kind of dead-letter queue called a transaction dead-letter queue. Dead let-
ters are stored on the computer on which the message expired.

Report queues contain messages that indicate the route a message took to its des-
tination and can contain test messages. There can be only one report queue per
computer.

ADVANCED C# CONCEPTS Chapter 34 821

Private system queues are a series of private queues that store administrative and
notification messages that the system needs to process messaging actions.

Most of the work you do in your applications will involve accessing public queues
and their messages. However, you will most likely use several different kinds of
the system queues in your day-to-day operations, depending on your application’s
need for journal recording, acknowledgement, and other special processing.

Synchronous and Asynchronous Communication
Messages are sent to and received from a queue as separate processes. Therefore,
queue communication is inherently asynchronous. You can also receive messages
asynchronously by invoking the BeginReceive method and then move on to per-
form other tasks without waiting for a reply. However, synchronous communica-
tion is different from this.

In synchronous communication, the sender of a request waits for a response from
the receiver before performing other tasks. The amount of time that the sender
must wait depends on the amount of time it takes for the receiver to process the
request and send a response.

System.Messaging Namespace
As you know, message queuing is a technology that allows applications running at
different times to communicate across heterogeneous networks and systems.
Applications send, receive, or read messages from queues.The MessageQueue class
is a wrapper around message queuing. There are different versions for different
operating environments. System.Messaging namespace provides classes that allow
you to connect to, monitor, and administer message queues on the network and
send, receive, or read messages.

Message queuing enables developers to build applications that communicate with
other programs quickly in a simple and reliable manner. Messaging ensures guar-
anteed messages delivery and a fail-proof way to carry out your business processes.
For example, suppose you have a retail point-of-sale application that must run 24
hours a day, seven days a week. If the database system behind the application goes
down, your sales staff might need to start taking orders manually. Using message
queuing, you can set up the system so that the orders that cannot be processed
during the downtime are automatically put into a queue and processed as soon as
the database comes back up.

822 Part IX BEYOND THE LABS

You can use an instance of the MessageQueue component to establish connection
with existing message queues, examine their contents, and send and receive mes-
sages. You can also use Server Explorer of Visual Studio .NET to view message
queues on any server to which you have access. You can also add a queue from
Server Explorer to your component ’s designer to automatically create a compo-
nent that is configured to interact with the queue.

MessageQueue Class
MessageQueue class provides members for reading and writing message to the
queue.The Send method enables your application to write messages to the queue.
This method is overloaded and enables you to specify whether to send your mes-
sage using a message or any other managed object, including application-specific
classes.

The Receive, ReceiveById, and ReceiveByCorrelationId methods provide func-
tionality for reading messages from a queue.These methods support transactional
queue processing. These methods also provide overloads with timeout parameters
that enable processing to continue if the queue is empty. Because these methods
are examples of synchronous processing, they interrupt the current thread until a
message is available, unless you specify a timeout.

The Peek method is similar to the Receive method, but it does not cause a mes-
sage to be removed from the queue when it is read.Because the Peek method does
not change the queue contents, there are no overloads to support transactional
processing.

The BeginPeek, EndPeek, BeginReceive, and EndReceive methods provide ways to
asynchronously read messages from the queue. They do not interrupt the current
thread while waiting for a message to arrive in the queue.

Other methods of the MessageQueue class provide functionality for retrieving lists
of queues by specified criteria and determining if specific queues exist.

In addition, MessageQueue class provides methods for creating and deleting mes-
sage queues, for setting ACL-based access rights, and for working with the con-
nection cache.

The Message class provides detailed control over the information you send to a
queue and is the object used when receiving or peeking messages from a queue.

ADVANCED C# CONCEPTS Chapter 34 823

Besides the message body, the properties of the Message class include acknowl-
edgment settings, format selection, identification, authentication and encryption
information, timestamps, and transaction data.

Table 34-1 lists the classes in the System.Messaging namespace hierarchy.

Ta ble 34-1 System.Messaging Namespace Hierarchy

C l a s s D e s c r i p t i o n

AccessControlEntry Specifies access rights for a user or a computer
to perform application-specific implementa-
tions of common tasks.

AccessControlList Contains a list of access control entries, speci-
fying access rights for one or more trustees.

ActiveXMessageFormatter Serializes or deserializes primitive data types
and other objects to or from the body of a
message.

BinaryMessageFormatter Serializes or deserializes an object, or a group
of connected objects, to or from the body of a
message, using a binary format.

DefaultPropertiesToSend Specifies the default property values that wil l
be used when sending objects other than
Message instances to a message queue.

Message Provides access to the properties needed to
define a message queuing message.

MessageEnumerator Provides a forward-only cursor to enumerate
through messages in a message queue.

MessagePropertyFilter Controls and selects the properties that are
retrieved when peeking or receiving messages
from a message queue.

MessageQueue Provides access to a queue on a message queu-
ing server.

MessageQueueAccessControlEntry Specifies access rights for a user or a computer
to perform message queuing tasks.

MessageQueueCriteria Filters message queues when performing a
query.

824 Part IX BEYOND THE LABS

Ta ble 34-1 System.Messaging Namespace Hierarchy (c o n t i nu e d)

C l a s s D e s c r i p t i o n

MessageQueueEnumerator Provides a forward-only cursor to enumerate
through messages in a message queue.

MessageQueueException The exception that is thrown if a Microsof t
message queuing internal error occurs.

MessageQueueInstaller Allows you to install and configure a queue
that your application needs in order to run.

MessageQueuePermission Allows control of code access permissions for
messaging.

MessageQueuePermissionAttribute Allows declarative MessageQueue permission
checks.

MessageQueuePermissionEntry Defines the smallest unit of a code access secu-
rity permission set for messaging.

MessageQueuePermissionEntryCollection Contains a strongly typed collection of
MessageQueuePermissionEntry objects.

MessageQueueTransaction Provides a message queuing internal
transaction.

MessagingDescriptionAttribute Specifies a description for a property or event.

PeekCompletedEventArgs Provides data for the PeekCompleted event.
When your asynchronous peek operation calls
an event handler, an instance of this class is
passed to the handler.

ReceiveCompletedEventArgs Provides data for ReceiveCompleted event.

Trustee Specifies a user account, group account, or
logon session to which an access control entry
applies.

XmlMessageFormatter Serializes and deserializes objects to or from
the body of a message, using the XML format.

ADVANCED C# CONCEPTS Chapter 34 825

Creating a Queue
The following steps explain how to create a message queue on your computer
using the MessageQueue component. Using the MessageQueue component, you can
send messages and retrieve them from the queue.

1. On the File menu, point to New, and then click Project.

2. In the New Project dialog box, choose Visual C# in the left pane, and
Windows Application from the Template: pane.

3. Type the name of the application in the Name: text box and the desired
location in the Location: text box.

4. Click the OK button.

5. Open Server Explorer.

6. Expand the Servers node.

7. Expand the node for your local server. The node on your local computer
is identified by the computer name.

8. Expand the Message Queues node.

9. Right-click Private Queues and select Create Queue from the shortcut
menu.

10. Enter a queue name, such as Trial. Do not check Make Transactional.

A new private queue is created and appears in Server Explorer.

11. Drag the Trial queue from the Server Explorer onto your form. A new
MessageQueue component is added to the project.

The MessageQueue component is used to programmatically access the messages
contained in the Trial queue created earlier.

Summary
COM is a specification and implementation framework pioneered by Microsoft
that allows you to create binary compatible software components. COM allows
you to concentrate on developing your application without bothering about the
internals of the components. COM architecture provides various threading mod-
els, which enables you to create components that are inherently thread savvy.

826 Part IX BEYOND THE LABS

MTS is an add-on to Windows NT that allows developers to build and run their
components as middle tier. COM+ is the new run time in Windows 2000 that
unifies the COM and MTS programming models. COM+ components support
attribute programming, distributed transactions, synchronization, thread pooling
and other features supported by the COM model. In addition, COM+ provides
new features such as neutral apartment threading, queued components, role-based
security, JIT activation, automatic transactions, and a new COM+ event model.

C# provides full support for COM+ services. Through COM interoperability, a
C# program can call methods of any COM component.The process making this
happen involves early and late binding. A .NET component may also be exposed
as a COM component. The C# component does not need anything special to be
written in the code. However, you can use type library importer utility to register
a C# component and create a type library.

Message queuing is a technology that allows applications running at different
times to communicate across heterogeneous networks and systems. Applications
send, receive, or read messages from queues. The System.Messaging namespace
provides classes that allow you to connect to, monitor, and administer message
queues on the network and send or receive messages. The MessageQueue class is a
wrapper around message queuing. The MessageQueue class provides members for
reading and writing messages to the queue.

Messages are sent to and received from a queue as separate processes. Therefore,
queue communication is inherently asynchronous. In synchronous communica-
tion, the sender of a request waits for a response from the receiver before per-
forming other tasks.

ADVANCED C# CONCEPTS Chapter 34 827

This page intentionally left blank

TEAMFL
Y

Team-Fly®

PART XA p p e n d i x e s

This page intentionally left blank

Appendix A
Unsafe Code

In this chapter, you will learn about the basics of pointers. You will learn to
declare and implement pointers. In addition, you will learn about using point-

ers with managed code. Finally, you will learn to compile unsafe code.

Pointers
Pointers are not a new concept for C and C++ programmers. A pointer is a vari-
able similar to a reference and points to an address in memory. A pointer stores
the actual memory address and makes it available to you.

Pointers are extensively used in C and C++ for dynamic allocation of memory and
to directly access the memory. However, if pointers are not used properly, they
may lead to memory corruption. To avoid such situations, C# hides most of the
memory management operations from the end user. However, there may be cases
where you need to have direct access to memory. C# allows you to use pointers in
such cases.The following list contains some of the cases where you need to access
memory addresses by using pointers.

◆ You may be required to use pointers when you are working with existing
code written in C or C++ that uses pointers.

◆ You may require pointers to create applications with high performance
requirements.

◆ Pointers allow you to work with the underlying operating system by pro-
viding an interface between the program code and the operating system.

◆ When you are debugging an application, you may be required to have
direct access to a particular memory location. In addition to various
debugging options provided by Visual Studio .NET, pointers help you in
this case by allowing you to access the data stored at the specified mem-
ory location.

◆ Pointers also provide you with an interface to work with advanced COM
(Component Object Model) applications containing structures that use
pointers.

832 Part X A P P E N D I X E S

As discussed earlier, if pointers are not used effectively, they can be a problem to
programmers. The following list contains some of the problems faced by pro-
grammers while using pointers.

◆ Working with pointers requires extensive and high-level programming.
If you are not careful while programming with pointers, you may intro-
duce errors in your code, which may even result in the program crashing.

◆ When a pointer is no longer used by any program, you need to deallo-
cate its memory. If you forget to deallocate the memory associated with
the pointer, it may lead to unpredictable problems in your code. Debug-
ging these problems can be time-consuming and tedious.

◆ Pointers make the address of a memory location transparent to the users.
Therefore, it becomes possible for users to manipulate the memory
addresses. This may introduce errors in your code by making it unsafe to
use.

◆ While writing a program that uses pointers, you may make your pointer
point to a wrong memory location. Therefore, when your program code
accesses an incorrect memory location, it may produce errors or may
even result in the program crashing.

◆ The major problem with using pointers in the program code used to be
because of the garbage collection system of CLR (common language run-
time). The garbage collection system operates in the background to deal-
locate memory to objects that are no longer used by any program. The
garbage collection system also causes the movement of objects within
memory. Each time an object is moved, C# updates its reference. How-
ever, there is no mechanism by which the programmer is informed about
the new memory location of the object. This may cause your pointer to
point to a different memory location, thereby introducing errors in the
program. As a solution to this problem, the .NET Framework intro-
duced the concept of unsafe code. You will learn about unsafe code later
in this appendix.

In spite of these problems, programmers have been extensively using pointers in
C and C++. This is mainly because pointers offer several advantages to program-
mers, thereby helping them to write complex applications. Some of the advan-
tages of using pointers in your code include backward compatibility with code

UNSAFE CODE Appendix A 833

written in C and C++. Pointers also help you to access and manipulate data eas-
ily and efficiently, thereby increasing the performance of your application.

Because of the advantages of pointers, C# has retained pointers in some capacity.
However, to prevent memory corruption in C#, pointers are used only within
blocks of code for which the pointer is required.This restricts the programmer to
using pointers only when they are required and marked. You can use the unsafe
keyword to mark the block of code in which you need to declare a pointer. A class,
method, struct, constructor, or block of code within a method can be marked as
unsafe. However, you cannot mark a static constructor as unsafe.

When you mark code as unsafe, you inform the compiler that the program is not
sure whether the code is safe to execute. Therefore, to execute code marked as
unsafe, you need to give full trust to the program code. As discussed earlier, the
major problem that you face while working with pointers is because of the garbage
collection system of CLR. Therefore, to solve this problem, C# runs the code
marked as unsafe outside the garbage collection system. This allows you to per-
form memory management processes directly. Therefore, you can only declare a
pointer in the set of statements marked as unsafe.

Declaring Pointers
The following syntax shows how to declare a pointer. An asterisk (*) is used to
declare a pointer.

unsafe class Class1

{

int *pointer1;

}

The preceding code marks the class Class1 as unsafe.The pointer named pointer1
is declared in this class. You can also mark a variable as unsafe. However, you can
only do this in the block of code that is marked unsafe. After you mark code as
unsafe, you need to inform the compiler that your program contains unsafe code.
This will allow you to declare pointers in the unsafe code.To inform the compiler
about the presence of unsafe code, you use the flag unsafe with the compile com-
mand. You will learn about the compilation of unsafe code later in this appendix.

C# allows you to declare more than one pointer of the same data type in a single
command. In this case, you will use only one asterisk sign, although in C++, you

834 Part X A P P E N D I X E S

were required to have different asterisk for each pointer declaration. It is an excep-
tion in the syntax of a pointer declaration statement.

int *pointer1, pointer2;

This code will give an error in C++. To declare two pointers in C++, you use the
following syntax:

int *pointer1, *pointer2;

After a pointer is declared, you can use it like any other variable used in the code.
However, to use a pointer, you need to initialize the pointer with the address in
the memory. Similar to variables, you cannot use a pointer without initializing it.
A pointer can also be initialized to a null value.

After initializing a pointer, you can use it with any program code.All programs in
C# are classified as managed or unmanaged code. The following section discusses
the types of code in detail.

Types of Code
The code in C# is classified as managed or unmanaged code based on the level of
control that CLR has over the code.

Managed Code
Managed code contains some information about the code. This information con-
tained in managed code is called metadata. Managed code in the .NET Frame-
work is controlled by CLR, which uses metadata to provide safe execution of the
program code. CLR also helps in memory management, security, and interoper-
ability of the code with other languages. In addition to providing safe execution
of the program, managed code aims at targeting the CLR services. These CLR
services include locating and loading classes and interoperating with the existing
DLL (dynamic link library) code and COM objects. By default, all code in C# is
managed code.

Unmanaged Code
Code that is marked with the unsafe keyword is called unmanaged code. The
unmanaged code does not provide any information about the code. In other

UNSAFE CODE Appendix A 835

words, unmanaged code does not provide CLR with metadata. CLR is not sure
of the safe execution of unmanaged code, and therefore, unmanaged code is con-
sidered to be unsafe. You can only run unsafe code in a fully trusted environment.
Because of the problems that you face while working with pointers, C# allows you
to use pointers in unsafe code.

After declaring a pointer in unsafe code, you need to implement pointers.

Implementing Pointers
A pointer that you declare must be of the type pointer. You can declare a pointer
type by using the asterisk (*) sign after the void keyword or by declaring the
pointer as an unmanaged-type. For example:

void *

or

unmanaged-type *

In the preceding syntax, void is the data type of the variable to which the pointer
points. This data type is called the reference type. However, an unmanaged-type can
be of any data type other than the reference type. The unmanaged-type data types
include all variable types, enum, pointer, or struct.

While working with pointer typ e s , you need to remember the foll ow i n g
guidelines:

◆ The void type pointer points to any variable type that is not known to
the user. Therefore, you cannot use the indirection operator with the
void type pointer. In addition, you cannot perform any arithmetic opera-
tion on the void pointer. However, you can type cast the void pointer to
any other pointer type and vice versa. You will learn about the indirec-
tion operator and pointer arithmetic later in this appendix.

◆ Because pointers are of unmanaged-type, they are not managed by garbage
collector. Therefore, you cannot declare a pointer pointing to a reference
type.

◆ C# does not allow a pointer to inherit from an object. In addition, you
cannot type cast a pointer type to an object and vice versa. This implies
that you can neither box nor unbox a pointer. However, if you convert a
pointer to a value type, you can box this value type variable.

836 Part X A P P E N D I X E S

As you have seen, pointers are used with unmanaged code. However, in some
cases, C# also allows you to use pointers with managed code. The following sec-
tion discusses the use of pointers with managed code in detail.

Using Pointers with Managed Code
The main problem of using pointers with managed code is that the garbage col-
lection system of CLR controls the execution of the managed code. The garbage
collection system moves the objects internally in the memory. If you use pointers
in managed code, the garbage collector does not automatically change the address
stored in the pointer. This is because the garbage collector does not have control
over pointers. This may cause problems with your code, as the pointer points to
incorrect memory locations.

To solve this problem, C# allows you to prevent CLR from moving a specified
object in the memory. To do this, you use the fixed statement. To understand the
fixed statement, look at its syntax.

fixed (pointer declaration statement)

Here, the fixed keyword is used to pin the position of the managed object. The
pointer declaration statement declares and initializes a pointer with the address of
the managed object. Until the C# compiler finishes the compilation of the pro-
gram code, the garbage collection system is not allowed to move the object that is
marked with the fixed keyword.

Having seen the use of pointers in managed and unmanaged code, you will learn
about the operators that you can use to work with pointers.

Working with Pointers
In addition to the operators used with variables, C# supports some more opera-
tors to be used with pointers.

◆ indirection operator. The indirection operator is used to retrieve the
content stored at the memory address referred by the pointer. In other
words, the indirection operator converts a pointer to a variable of the
value type. You can convert a pointer to almost every variable data type
or a struct. However, you cannot convert a pointer to a class or an array.
This operator is denoted by an asterisk (*) sign, and it is also called a
dereference operator.

UNSAFE CODE Appendix A 837

◆ address operator. The address operator is used to retrieve the address
of the memory location referred by the pointer. In other words, the
address operator converts the variable of the value type to a pointer.
This operator is denoted by the ampersand (&) sign.

◆ sizeof operator. The sizeof operator is used with the unmanaged-type
pointer to find out the size of the pointer. While allocating memory to
the pointer, you may need to know the size of the pointer. The return
type of the sizeof operator is integer, and it can be used to find the
size of both default and user-defined unmanaged pointers.

◆ stackalloc operator. The stackalloc operator is used to allocate mem-
ory from the call stack. The stackalloc operator has the following
syntax:

stackalloc <data type>[expression]

Here, data type is the type of variable that you can store at the new
memory location, and expression specifies the number of memory loca-
tions to be allocated.

◆ -> operator. The -> operator is used to access the struct members by
using a pointer. You can use the -> operator as follows:

<expression> -> <identifier>

In the preceding syntax, the expression is any unmanaged-type expres-
sion, and identifier is the struct to which the pointer points.

◆ [] operator. The [] operator is used to access an element of the
pointer. The syntax of the [] operator is:

<data type>[] <identifier>

Here, the data type is the type of the pointer, and identifier specifies
the name of the pointer whose elements are to be accessed.

Working with pointers also involves performing operations on pointers. The fol-
lowing section discusses the pointer arithmetic.

Pointer Arithmetic
Pointer arithmetic is very similar to the operations performed with variables.
However, you cannot perform operations on a void type pointer. Similar to

838 Part X A P P E N D I X E S

TEAMFL
Y

Team-Fly®

variables, you can use the increment (+) and the decrement (-) operators to add and
subtract values from a pointer, respectively. For example, to add an integer value
to a pointer, you use the following statement:

Pointer1 + 20;

Because the size of an integer is 4 bytes, the preceding statement adds 80 bytes to
the pointer named Pointer1. However, to increment the value of a pointer by 1
byte, you can add a byte or an sbyte to a pointer.

Similarly, you can use the ++, --, and the comparison operators, such as <, >, ==,
!=, <=, and >=, to perform operations on pointers.

In addition to performing operations on pointers, you can also type cast pointers.

Type Casting Pointers
As discussed earlier, you can type cast a pointer type to a variable type and vice
versa. Pointers are used to store memory addresses, which are integer values.
Therefore, it is possible to explicitly convert a pointer to an integer type. You
need to convert a pointer to an integer type to display the pointer. The Con-

sole.WriteLine method does not take a pointer as a parameter. However, if you
convert a pointer to an integer variable, you can pass it as a parameter to the Con-
sole.WriteLine method. To know more about pointer type casting, consider the
following example:

int Integer = 20;

int *Pointer1;

Pointer1 = &Integer;

Console.WriteLine (“The value of Pointer1 is” + (int) Pointer1);

Here, a pointer named Pointer1 is declared and initialized with the address of an
integer variable named Integer. To display the value of Pointer1, the pointer is
type casted to an integer type by using the cast operator.

Because integer data type has a size of 4 bytes, you cannot use it in 64-bit sys-
tems. If you type cast a pointer to an integer value, it may result in an overflow
condition. Therefore, it is advisable to type cast a pointer to a ulong type value.

UNSAFE CODE Appendix A 839

C# also allows you to type cast between different pointer types. Consider the fol-
lowing example:

int Integer = 20;

int *Pointer1;

Pointer1 = &Integer;

sbyte *Pointer2 = (sbyte*) Pointer1;

You can only explicitly convert between pointer types. C# does not allow an
implicit pointer type conversion.

In this chapter, you learned about pointers and the use of pointers in your pro-
gram code. After writing code that contains a pointer, you need to compile the
code. Compilation of code containing pointers is slightly different from the com-
pilation of an ordinary code.

Compiling Unsafe Code
As discussed earlier, you need to inform the compiler that the code to be executed
is marked as unsafe. If you are compiling the program code from the command
line, you can add the unsafe flag with the compile command, as shown:

csc /unsafe file1.cs

The preceding statement includes the unsafe flag with the csc command to
inform the compiler that the file named file1.cs is marked as unsafe.

You can also compile the unsafe code by setting the Allow unsafe code blocks
property to True in Visual Studio .NET. To do this, you can do the following
steps:

1. Right-click on the project name in the Solution Explorer window.

2. Click on the Properties option in the drop-down list.

The Property Pages page is displayed.

840 Part X A P P E N D I X E S

You cannot use the checked keyword to track overflow conditions while working with
pointers.

TIP

3. In the right pane, select the Configuration Properties option.

4. Change the value of Allow unsafe code blocks property in the Build
option to True.

The default value of this property is False.

5. Click on the OK button to close the Property Pages page.

Figure A-1 shows the Allow unsafe code blocks option.

Summary
In this chapter, you learned about pointers. A pointer is a variable similar to a ref-
erence and points to an address in memory. A pointer stores the actual memory
address and makes it available to you. Pointers are extensively used in C and C++
for dynamic allocation of memory and to directly access the memory. Working
with pointers requires extensive programming. Therefore, C# allows you to use
pointers only within blocks of code for which the pointer is required. You can use
the unsafe keyword to mark the block of code in which you need to declare a
pointer.

Then you learned about the classification of code in C#. All program code in C#
is classified as managed or unmanaged code. Managed code contains some infor-
mation about the code.This information contained in the managed code is called

UNSAFE CODE Appendix A 841

FIGURE A-1 Allow unsafe code blocks option

metadata.The code that is marked with the unsafe keyword is called unmanaged
code. The unmanaged code does not contain metadata.

Next, you learned about the operators used with pointers.These operators include
the indirection operator, the address operator, the sizeof operator, the stack-

alloc operator, the -> operator, and the [] operator. Finally, you learned about
the commands used to compile the code that uses pointers.

842 Part X A P P E N D I X E S

Appendix B
Introduction to
Visual Basic .NET

In this appendix, you will learn about the languages of Visual Studio .NET. In
addition, you will learn in detail about Visual Basic .NET as an object-oriented

programming language. The appendix will also cover the different features of an
object-oriented programming language. In addition, you will learn about the
components of Visual Basic. NET.

Based on your knowledge of Visual Basic .NET, you will learn to create a simple
Visual Basic .NET Windows application and compare a Visual Basic .NET
application with a Visual C# .NET application.

Introduction to the Languages
of Visual Studio .NET

The latest version of Visual Studio is Visual Studio .NET, which is based on the
.NET Framework. The tools and languages provided by Visual Studio .NET
enable you to build applications such as Web-based applications, desktop applica-
tions, and mobile applications. In addition, you can create Web services in Visual
Studio .NET.

The following programming languages are included in Visual Studio .NET:

◆ Visual C# .NET

◆ Visual Basic .NET

◆ Visual C++ .NET

Visual Studio .NET also supports technologies such as ASP.NET. These tech-
nologies enable you to develop and deploy various applications. Visual Studio
.NET also includes the MSDN Library, which contains complete documentation
on various applications and development tools.

The IDE (Integrated Development Environment) of Visual Studio .NET helps you
to create applications in various .NET languages. Visual Studio .NET allows the
IDE to share tools and create applications in multiple languages.

Visual Studio .NET includes various advanced features compared to the earlier
versions of Visual Studio. The following sections discuss the languages included
in Visual Studio .NET.

844 Part X A P P E N D I X E S

Visual C# .NET
Visual C# .NET is a new language provided by Visual Studio .NET. Visual C#
.NET is an object-oriented language based on languages such as C and C++. You
can create applications for the .NET Framework by using Visual C# .NET. Visual
C# .NET supports CLR (common language runtime). Code written in Visual C#
.NET is managed code. Various templates,designers, and wizards,which help you
create applications in Visual C# .NET, are provided by IDE. You have learned
about Visual C# .NET throughout this book. The next sections will look at the
other languages provided by Visual Studio .NET.

Visual Basic .NET
The latest version of Visual Basic, which is Visual Basic .NET, includes several
new features. Unlike the earlier versions of Visual Basic, Visual Basic .NET sup-
ports inheritance. Version 4 and Version 6 of Visual Basic supported interfaces but
not implementation inheritance. Visual Basic .NET supports both implementa-
tion inheritance and interfaces. Overloading is another new feature of Visual
Basic .NET, which I will discuss later in this appendix.

Visual Basic .NET also supports multithreading, which allows you to create
multithreaded and scalable applications. Visual Basic .NET can also be used with
CLS (common language specification) and
supports structured exception handling.

Visual C++ .NET
The enhanced version of Visual C++ is
Visual C++ .NET. Features such as sup-
port for managed extensions and attrib-
utes are included in Visual C++ .NET.

You can create applications for the .NET
Framework by using a set of language
extensions of C++ that are included in
managed extensions. You can also convert
the components that are already present
in C++ into components that support the
. N ET Fra m ew o rk by using managed

INTRODUCTION TO VISUAL BASIC .NET Appendix B 845

A set of rules and constructs supported by
the CLR is known as CLS. Visual Basic
.NET supports CLS. CLS also shares the
objects, classes, or components created
in Visual Basic .NET with any other lan-
guage that supports CLS.

Regardless of the language used in creat-
ing the application, CLS ensures that
there is interoperability between the differ-
ent applications. You can derive a class
that is based on a class written in Visual
C# .NET while you work in Visual Basic
.NET, where the data types and variables
of the class that is derived matches the
base class.

COMMON LANGUAGE SPECIFICATION

extensions.Therefore, using managed extensions, the existing code can be reused,
saving both time and effort. You can also use managed extensions to merge both
unmanaged and managed C++ code in an application.

Attributes that enable you to extend the functionality of a language and simplify
the creation of COM components are supported by Visual C++ .NET. You can
also apply classes, data members, or member functions to attributes.

Overview of Visual Basic .NET
The complete framework of Visual Basic .NET is based on the .NET Frame-
work. Visual Basic .NET inherits the various features of the .NET Framework
along with features of the earlier versions of Visual Basic. In this section, you will
learn about the features of Visual Basic .NET as compared to the features in the
earlier versions of Visual Basic.

As discussed earlier, Visual Basic .NET supports implementation inheritance as
compared to the earlier versions of Visual Basic that supported interface inheri-
tance. In other words, you can implement only interfaces with the earlier versions
of Visual Basic. All the methods of the interface need to be implemented when
you implement an interface in Visual Basic 6.0. In addition, the code has to be
rewritten each time you implement the interface.

Visual Basic .NET, on the other hand, supports implementation inheritance.This
implies that while applications are created in Visual Basic .NET, a class can also
be derived from another class, which is known as the base class. The methods and
properties of the base class are inherited by the derived class. In the derived class,
you can either use or override the code that already exists in the base class.There-
fore, code can be reused with the help of implementation inheritance. Although
multiple interfaces can be implemented in a class in Visual Basic .NET, the class
can inherit from only one class.

Visual Basic .NET also provides constructors and procedures, where constructors
are used to initialize objects. The Sub New procedure replaces the Class_Initial-
ize event in Visual Basic .NET. The Sub Newprocedure is executed when an object
of the class is created, unlike the Class_Initialize event that is available in the
earlier versions of Visual Basic.The first procedure to be executed in a class is the
Sub New procedure. Instead of the Class_Terminate event, the Sub Finalize pro-
cedure is available in Visual Basic .NET. When an object is destroyed, the Sub

846 Part X A P P E N D I X E S

Finalize procedure is automatically called to complete the tasks that remain
incomplete. In addition, the Sub Finalize procedure can only be called from the
class to which it belongs or from the classes from which it is derived.

Visual Basic .NET has another additional feature known as garbage collection.
Allocated resources such as objects and variables are monitored by the .NET
Framework. In addition, the destroying objects, which are no longer in use, auto-
matically release memory for reusing the objects in the .NET Framework. When
an object is set to Nothing, in Visual Basic 6.0, it is destroyed automatically,
whereas in Visual Basic .NET, it continues to occupy space even when it is set to
Nothing. In Visual Basic .NET, the garbage collector checks the objects that are
not currently used by the applications.The garbage collector releases the memory
occupied by the object when any object is found marked for garbage collection.

The GC class, the Sub Finalize procedure, and the IDisposable interface are used
to perform garbage selection operations in the .NET Framework. The System

namespace contains the GC class that provides various methods that enable you to
control the system garbage collector. In the .NET Framework, a member of the
Object class, the Sub Finalize procedure, acts as a destructor. You can also over-
ride this procedure in your applications. However, the Sub Finalize procedure is
not executed when the application is executed. The Sub Finalize procedure is
called by the GC class to release the memory that is occupied by a destroyed object.
However, an explicit way of managing resources in the form of the IDisposable
interface is provided by the .NET Framework.The Dispose() method is included
in the IDisposable interface. After the IDisposable interface is implemented, the
Dispose() method can be overridden in the applications. You can release resources
and database connections in the Dispose() method.

Overloading is a feature that enables you to define several procedures with the
same name, where each procedure has a different set of arguments. Visual Basic
.NET supports this feature of overloading as compared to the earlier versions of
Visual Basic. You can use overloading for constructors and properties in a class
along with the procedures. The Overloads keyword is used for overloading
procedures.

Consider a scenario in which a procedure needs to be created to display the
address of an employee. The address of the employee should be viewed based on
either the employee name or the employee code, which can be done by using the
overload feature. You need to create two procedures with the same name but

INTRODUCTION TO VISUAL BASIC .NET Appendix B 847

different arguments. The employee name is accepted as the argument by the first
procedure, and the employee code is accepted as the argument by the second.

The .NET Framework class library is organized into namespaces. A namespace is
referred to as a collection of classes. You can logically group classes within an
assembly by using namespaces. In addition to Visual Basic .NET, these name-
spaces are available in all the .NET languages.

In Visual Basic .NET, you use the Imports statement to access the classes in
namespaces. Consider an example: To use a button control as defined in the Sys-
tem.Windows.Forms namespace, you include the statement mentioned here in the
beginning of the program.

Imports System.Windows.Forms

After the Imports statement has been added, a new button can be created using
the following code:

Dim button1 as Button

If you do not include the Imports statement in the program, the full reference path
of the class to create a button needs to be used. If the Imports statement is not
used, then the following code can be used for creating a button:

Dim button1 as System.Windows.Forms.Button

848 Part X A P P E N D I X E S

In addition to using the namespaces already available in Visual Basic .NET, you can
create your own namespaces. In the next appendix, you will learn how to create a
namespace.

TIP

As already discussed, Visual Basic .NET also supports multithreading. A multi-
threaded application can simultaneously handle multiple tasks. Multithreading
can also be used to decrease the time taken by an application to respond to user
interaction. You need to ensure that a separate thread in the application handles
user interaction so that the time taken by an application to respond to user inter-
action is decreased.

TEAMFL
Y

Team-Fly®

Visual Basic .NET enables you to detect and remove errors at run time by sup-
porting structured exception handling. In Visual Basic .NET, you can use
T r y … C a t c h … F i n a l l y statements to create exc e p t i on handl e r s . By using
Try…Catch…Finally statements, you can create strong and efficient exception han-
dlers to improve the performance of the application.

You have considered the new and added features of Visual Basic .NET. The fol-
lowing sections discuss the features of an object-oriented programming language.

Features of an Object-Oriented
Programming Language

In an object-oriented programming language, objects serve as the building blocks
of a programming language, displaying a unique identity and behavior. A chair, a
table, and a book are examples of objects that are used every day. An object in a
programming language is defined as an instance of a class. Applications created in
an object-oriented programming language are made up of objects.

An object is qualified as an object-oriented programming language if the follow-
ing features are supported:

◆ Abstraction

◆ Encapsulation

◆ Inheritance

◆ Polymorphism

The next sections will consider each of the features mentioned here in detail.

Abstraction
Before you buy a television set, you consider its size, durability, and features. As a
buyer, you may not be interested in knowing about the machinery of the televi-
sion set.The main features of the television set are more likely to be your primary
concern. This is known as abstraction. In a programming language, abstraction
helps you focus mainly on the essential aspects of an object. The nonessential
aspects are normally overlooked.

INTRODUCTION TO VISUAL BASIC .NET Appendix B 849

Visual Basic .NET, like any other programming language, provides abstraction
through classes and objects. Attributes and behavior shared by similar objects are
defined as class. The instance of the class is an object. Each object consists of char-
acteristics and attributes that are the properties of the object. In addition, a set of
actions can be performed by each object. The actions that are performed are
known as methods. In Visual Basic .NET, you can specify the various properties
and methods that are used for objects while creating classes. Abstraction is mainly
used to reduce the complexity of an object by exposing only the essential features
and methods of an object. Additionally, abstraction helps you generalize an object
as a data type. By declaring classes, you can also generalize objects as data types.

Encapsulation
I n f o rm a t i on hiding or e n cap s u l a t i o n means that the nonessential details of an object
a re hidden. C onsider an example: When you switch your telev i s i on on , it start s
f u n c t i on i n g. Ne e dless to say that the internal functioning process remains hidden.
In other word s , the functioning of the telev i s i on is hidden or enca p s u l a t e d .

The method of implementing abstraction is encapsulation. As mentioned earlier,
abstraction refers mainly to concentrating on the necessary and essential details of
an object while ignoring the unnecessary and nonessential ones. Encapsulation
achieves this.

The internal implementation of the classes is hidden from the user by encapsula-
tion.Therefore, encapsulation is displaying only the properties and methods of an
object. It helps the developers in hiding the complexity of an object and also uses
different implementations of the same object.

Inheritance
The earlier versions of Visual Basic supported interface inheritance but not imple-
mentation inheritance. However, Visual Basic .NET supports both implementa-
tion inheritance and interface inheritance.

Implementation inheritance means that a class is derived from an existing class.
The derived class is called subclass, and the class from which it is derived is called
base class.

850 Part X A P P E N D I X E S

The properties and methods of the base class are inherited by the subclass. In
addition, methods and properties can be added to the subclass in order to extend
the functionality of the base class. In the derived class, the methods of the base
class can also be overridden.

Inheritance also helps you create hierarchies of objects. For example, you can con-
sider a class named animals. The cats class is derived from the animals class, and
the lions class is derived from the cats class.

In the preceding example, the class lions inherits the properties and methods of
the class cats, which in turn inherits all the properties and methods of the class
animals. Therefore, all the properties and methods of the lions class and the cats
class are inherited by the animals class.

All the classes that are created in Visual Basic .NET can be inherited by default.
Inheritance helps you create complex objects from simpler ones and reuse the
code. After a class is created in Visual Basic .NET, it can also be used as a base
class in order to create a derived class.

Polymorphism
The ability of an object to exist in different forms is known as polymorphism. Con-
sider an example to have a proper understanding of the term.

If you decide to buy a television set, you either contact a dealer or call the manu-
facturing company. If you contact a dealer, the dealer first takes the order and then
contacts the company. However, if you contact the company directly, the company
contacts the dealers of your region and makes the necessary arrangements to
deliver the television set. In this case, the dealer and the company are two differ-
ent classes.The dealer and the company respond differently to the same order. In
object-oriented programming, this is known as polymorphism.

INTRODUCTION TO VISUAL BASIC .NET Appendix B 851

The classes that are created in Visual Basic .NET are derived from the Object class,
which is a part of the System namespace.

NOTE

Polymorphism helps you to perform different functions by using the same meth-
ods. To elaborate, the implementation of a base class can be changed in the
derived classes. Therefore, when two classes are derived from the same class, a
method can be created with the same name in both the classes. Based on the task
that needs to be performed, you can select the method.

You learned about the features of object-oriented programming language, such as
abstraction, encapsulation, inheritance, and polymorphism. Now, have a look at
the components of Visual Basic .NET.

Components of Visual Basic .NET
You have learned about the components of Visual C# .NET throughout this
book.This appendix discusses the components of Visual Basic .NET. These com-
ponents include variables, constants, operators, arrays, collections, procedures,
arguments, and functions.

Variables
Applications deal mostly with different types of data, such as text or numeric.
This data needs to be stored by an application for later use and for performing cer-
tain operations on the data. It also needs to be stored for performing certain oper-
ations, such as calculating totals. A programming language uses variables in order
to store data. A temporary memory location is called a variable that has a name
or a word to refer to and a data type to determine the kind of data it can hold.

Visual Basic .NET provides various data types that help in storing different kinds
of data. In the following section, you will learn more about the data types.

Data Types
The kind of data that a variable can hold is referred to as a data type. Integer,
Long, and Byte are some of the data types that are provided by Visual Basic .NET.
Table B-1 lists the various data types of Visual Basic .NET.

852 Part X A P P E N D I X E S

Table B-1 Data Types in Visual Basic .NET

Data Ty p e D e s c r i p t i o n

Integer The numeric data is stored.This data type stores the Integer data as a 32-bit
(4 bytes) number.

Long The numeric data that can exceed the range supported by the Integer data type
that is stored. It stores the value of Long as a 64-bit (8 bytes) number.

Short The smaller range of numeric data (between –32,678 to 32,767) is stored.This
data type stores the Short data as a 16-bit (2 bytes) number.

Byte The binary data is stored.This data type can also store ASCII character values
in the numeric form.

Char A single character is stored.This data type stores the Char data as a 16-bit (2
bytes) unsigned number.

DateTime The date and time data is stored.This data type stores the date and time data
as IEEE 64-bit (8 bytes) long integers.

String The alphanumeric data, which is data containing numbers and text,is stored.

Object The data of any type, such as Integer, Boolean, String, or Long, is stored.

Double The large floating-point numbers are stored.This data type stores the Double
data as an IEEE 64-bit (8 bytes) floating-point number.

Single The single precision floating-point values are stored.This data type stores the
Single data as an IEEE 32-bit (4 bytes) floating-point number.

Decimal The very large floating-point values are stored.This data type stores the
Decimal data as a 128-bit (16 bytes) signed integer to the power of 10.

Boolean The data that can have only two values is stored.This data type stores the True
and False Boolean data as a 16-bit (2 bytes) number.

As compared to the earlier versions of Visual Basic, some changes in data types of
Visual Basic .NET are mentioned as follows.

◆ The Variant data type is used to store any type of data in Visual Basic
6.0. This is similar to the Object data type in Visual Basic .NET.

◆ The Double data type is used to store a date in Visual Basic 6.0. The
DateTime data type stores data in the date and time format in Visual
Basic .NET.

INTRODUCTION TO VISUAL BASIC .NET Appendix B 853

◆ The Currency data type is not supported by Visual Basic .NET. Instead,
the Decimal data type is used to store currency values.

After having a look at the various data types, you can now examine how variables
are declared in Visual Basic .NET.

Variable Declarations
To provide information about a variable to a program in advance is known as
declaring a variable. The Dim statement is used to declare a variable. To declare a
variable, you can use the following syntax:

Dim VariableName As type

The As type clause in the Dim statement is optional, and it defines the object type
or the data type of the variable that you are declaring. Now, consider the follow-
ing statement:

Dim int1 as Integer

Dim str1 as String

An Integer variable known as int1 is declared by the first statement, and a String
variable known as str1 is declared by the second variable.

Variables can also be declared using the identifier type characters. These charac-
ters also specify the data type of a variable. You can consider the following state-
ment as an example:

Dim str1$

In the statement, the identifier type character for a String variable is specified by
$. The various identifier type characters that can be used in Visual Basic .NET are
listed in Table B-2.

854 Part X A P P E N D I X E S

Table B-2 Identifier Type Characters in Visual Basic .NET

Data Ty p e Identifier Type Character

Integer %

Long &

Decimal @

String $

Single !

Double #

You should consider some of the ground rules for naming a variable before dis-
cussing the various variable declarations that are possible in Visual Basic .NET.
However, it is not necessary for you to follow these naming conventions. Follow-
ing the naming convention makes the code easy to understand for anyone who
wants to understand the code.

Some of the ground rules of naming a variable are:

◆ A variable must begin with a letter.

◆ A variable cannot contain a period or identifier type character.

◆ A variable must not exceed 255 characters.

◆ A variable must be unique within the same scope, defined as the range
from which a variable can be accessed, such as a procedure, a form, or a
module.

INTRODUCTION TO VISUAL BASIC .NET Appendix B 855

A module is defined as a collection of procedures where a procedure is a set of
statements used to perform some specific tasks.

NOTE

You learned how to declare a variable. You will now learn how to initialize
variables.

Variable Initialization
A variable contains a value when it is declared. Consider the following example:
By default, an Integer variable contains 0 and a Boolean variable stores False as
the value.

To set a start value, you can initialize a variable. The following code explains the
variable:

Dim int1 as Integer

int1 = 20

An Integer variable, int1, is declared by the first statement, while the second
statement initializes it to the value 20. In the earlier versions of Visual Basic, the
initialization of variables was not allowed in the same line as their declarations.
But now, Visual Basic .NET allows it.Therefore, the code can now be written as:

Dim int1 As Integer = 20

Variable Scope
The scope of a variable determines the part of the program or application that can
use the variable. Consider an example. A variable can be used only within a par-
ticular block of code or the entire program. Based on its scope, a variable can be
called local or module-level. You can also refer to the scope of a variable as its
accessibility.

If a variable is declared inside a procedure, it can only be accessed within that pro-
cedure. The variable is then referred to as a local variable. At times, you need to
use a variable across modules within an application or throughout the application.
The variable is then referred to as module-level variables.The declaration section
of the module declares these variables. Module-level variables can be further clas-
sified as private or public.

The modules that can be used within the module in which they are declared are
known as private modules.These modules are declared only at the module-level.
A private variable is declared in the following statements:

Private Dim int1 As Integer

or

Private int1 As Integer

856 Part X A P P E N D I X E S

The public variables can be used across modules and also can be declared at the
module-level. A public variable is declared in the following statements.

Public Dim int1 As Integer

or

Public int1 As Integer

Constants
Suppose you need to use a particular value in an application. The application
needs to calculate and display the percentage of marks obtained by each student
in an examination. To calculate the percentage of marks, the application needs to
use the maximum score at a number of places. In this case, instead of repeating
each value every time, you can use constants. A variable whose value remains the
same during the execution of a program is called a constant.

To declare a constant, you can use the following statement:

Const maxMarks As Integer = 100

or

Const maxMarks = 100

Each of the previously mentioned statements declares a constant by the name
maxMaks and initializes it with the value 100. These statements use a const keyword
to declare a constant.

In case of any change in value, the processing of constants is faster than with vari-
ables; only the value at the point of declaring the constant needs to be changed.

You have learned about the variables and related concepts. You will now learn how
to perform various operations on these variables.

Operators
A unit of code that performs an operation on one or more variables or elements
is known as an operator. An operator can be used to perform various operations,
such as arithmetic operations, concatenation operations, comparison operations,
and logical operations.

INTRODUCTION TO VISUAL BASIC .NET Appendix B 857

The following operators are supported by Visual Basic .NET:

◆ Arithmetic operators. Used for mathematical calculations.

◆ Comparison operators. Used for comparisons.

◆ Assignment operators. Used for assignment operations.

◆ Concatenation operators. Used for combining strings.

◆ Logical/Bitwise operators. Used for logical operations.

Arrays
Variables are used to store data. At times, there may be situations where you need
to work with multiple variables that store a similar type of information. For exam-
ple, the names of about 50 employees need to be stored. Declaring these 50 vari-
ables is a monotonous and time-consuming task. Therefore, an array can be
declared to make the task easy.

A collection of variables of the same data type is called array. The variables that
form an array have the same name and are known as array elements. An index num-
ber refers to each variable in an array, which is its position in the array. The index
number helps in distinguishing one array element from another. As an example,
you can declare an array containing 50 variables of the String data type in order
to store the names of 50 employees. When an array is declared, you need to cre-
ate and initialize all the variables immediately. When an Integer array is declared,
all the elements are initialized to 0. As compared to multiple variables, it is easier
to manipulate an array and its elements. You can manipulate arrays by using the
various loop statements that are provided by Visual Basic .NET.

In Visual Basic .NET, all the arrays that you create are basically derived from the
Array class of the System namespace. You can also use the methods and properties
of the System.Array type to manipulate these arrays. The next section will discuss
how to declare these arrays.

Declaring Arrays
You need to declare an array before using the array in a program, just like a vari-
able. While declaring an array, you need to specify the array name, the data type
of the array, and the number of variables that the array contains. In Visual Basic
.NET, you need to declare arrays in a way similar to that in which variables are

858 Part X A P P E N D I X E S

TEAMFL
Y

Team-Fly®

declared. You can do this by using the Dim statement, the Public statement, or the
Private statement. The syntax that is used to declare an array is:

Dim ArrayName (NumElements) As DataType

In the syntax mentioned, the following list contains specifications:

◆ ArrayName. Specifies the name of the array.

◆ NumElements. Specifies the number of elements that the array can
contain.

◆ DataType. Specifies the data type of the elements. This is optional.

While declaring arrays, parentheses need to be included after the array name to
differentiate an array from a variable. Consider the following code statement:

Dim intArray1(10) As Integer

An Integer array by the name intArray1, which can contain 11 elements, is
declared in the code mentioned above. Why are there 11 elements and not 10 as
mentioned in the code? It is because arrays are zero-based. The index number,
which is between 0 and 10, adds up to 11. The code mentioned previously is part
of the statement given here:

Dim IntArray () As Integer = New Integer(10) {}

Differences between Visual Basic .NET
and Visual Basic 6.0 in Terms of Arrays
I will now discuss some of the basic differences between Visual Basic .NET and
the earlier versions of Visual Basic in terms of arrays.By default, the starting index
of an array is 0 in Visual Basic 6.0, and you can change the starting index to 1 by
using the Option Base statement. In addition, the starting index for individual
array declarations can be changed. The number of elements in the array is equal
to the number specified during an array declaration statement plus one, if the
default-starting index is set to 0. However, the starting index for every array is 0
and cannot be changed in Visual Basic .NET. The Option Base statement is not
supported by Visual Basic .NET. Interoperability with arrays of other program-
ming languages is permitted because most programming languages support zero-
based arrays.

INTRODUCTION TO VISUAL BASIC .NET Appendix B 859

Initializing Arrays
Each element of an array is initialized as if it were a separate variable. However,
if an array is not initialized, then Visual Basic .NET initializes each array element
to the default value of the data type of the array.

Consider the code given here. It explains how to declare and initialize an array.

Dim booksArray1(4) As String

booksArray1(0) = “Introducing VB.NET”

booksArray1(1) = “Introducing ADO.NET”

booksArray1(2) = “Introducing VC++.NET”

booksArray1(3) = “Introducing ASP.NET”

booksArray1(4) = “Introducing C#”

In the previously mentioned code, an array, booksArray1, is declared that can con-
tain five String type elements. This array stores Introducing VB.NET at index 0,
Introducing ADO.NET at index 1, Introducing VC++.NET at index 2, Introducing
ASP.NET at index 3, and Introducing C# at index 4. It may be mentioned that 0 is
the starting index or the lower bound that remains fixed for all the arrays. The
upper bound or the end index is 4, and it can differ from one array to another.

An array can be declared or initialized in a single line by using the new keyword
provided by Visual Basic .NET. This example shows how to declare an array by
using a single line of code.

Dim booksArray1() As String = {“Introducing VB.NET”, “Introducing ADO.NET”,

“Introducing VC++.NET”, “Introducing ASP.NET”, “Introducing C#”}

To retrieve the values stored in a particular index position, the index number and
the name of the array needs to be specified.The following statements illustrate the
point:

Dim strVar As String

strVar = booksArray1(2)

After the execution of the previously mentioned statements, the value of the
String type variable, strVar, which is stored in the index position 2 in books-
Array1, is retrieved.

860 Part X A P P E N D I X E S

Collections
A collection can be considered as a group of related objects. Generally, a collec-
tion is used to work with related objects. However, collections can be made to
work with any data type.

Standard Collections Provided by Visual Basic .NET
Visual Basic .NET provides you with several collections that are used to organize
and manipulate objects in an efficient way. Consider an example. All the controls
in a form are stored in the Controls collection. Similarly, all the forms in a Visual
Basic .NET project are stored in the Forms collection. An efficient way to keep
track of the objects that an application needs to create and destroy during run time
is provided by a collection.

Consider an example: In an application that you have created, you need to take
inputs for five text boxes from the user and then validate the data entered by the
user for all of them. One way in which the code can be written is to check for each
of the text boxes separately. Another way, which is relatively easy, is to check using
the Controls collection. Every form has a Controls collection that represents all
the controls, such as command buttons, labels, text boxes, and so on that are pre-
sent in the form. You can easily perform the input validation check by using the
Controls collection.

INTRODUCTION TO VISUAL BASIC .NET Appendix B 861

Controls is the base class for all the controls. It is included in the
System.Windows.Forms namespace and is provided by Visual Basic .NET.

NOTE

You have learned about the collections in a brief overview. I will now discuss how
you can create your own collections.

Creating Collections
In addition to the various standard collections that are present in Visual Basic
.NET, you can create your own collections. For collections, Visual Basic .NET

provides the Collection class. The syntax for creating a collection is discussed as
follows:

Dim CollectionName As New Collection()

In the preceding syntax, the name of the collection that you want to create is spec-
ified by CollectionName. An instance of the Collection class is created, which is
declared by the New keyword in the declaration statement

After the creation of the collection, you can manipulate the creation in the same
way as you would manipulate the standard collections that are provided by Visual
Basic .NET. However, there are some differences between the two. Consider the
following example:

Dim collection1 as New Collection()

collection1 = Controls

The preceding code creates and initializes a Collection object, collection1, with
the Controls collection. However, this statement displays an error message. Why
is it so? The answer is that the Controls collection and the Collection class object
are not interchangeable and are of different types with different usage. In addi-
tion, they do not have the same methods and also do not use the same kinds of
index values.

Procedures
Consider a scenario where you need to perform a particular task repeatedly, for
instance, calculating the average of marks obtained by students in a particular sub-
ject. In a situation such as this, you can group them in a procedure instead of writ-
ing the statements repeated ly. A set of statements grouped together to perform a
specific task is called procedure. You can organize your applications by using pro-
cedures that allow you to chunk and group the program code logically.

After grouping the statements in a procedure, you can call the procedure from
anywhere in the application. To call a procedure means to execute a statement that
further instructs the compiler to execute the procedure. After executing the code
in the procedure, the statement following the statement that called the procedure
is executed.The statement that is called by a procedure is called a calling statement,
and it includes the name of the procedure.The calling statement also includes the

862 Part X A P P E N D I X E S

data values that are needed by the procedure for performing the tasks that are
specified. The data values are also referred to as arguments or parameters.

Consider the example of calculating average mentioned previously. In this case,
you can create a procedure that accepts the maximum and minimum marks
obtained by students as data values and calculate the average. To call this proce-
dure, the statement to be called must provide the minimum and maximum marks
obtained by students as parameters.

Now consider some of the advantages that are offered by procedures. The first
advantage is the reusability of code. In other words, a procedure can be created
and used when it is required and if any statement has to be changed, you simply
need to make the changes in a single location.This is useful mainly in the case of
large and complex applications.The applications that use procedures are easier to
debug. Additionally, you can easily trace the errors in a procedure without debug-
ging the entire application code.

Now consider the scope or accessibility of procedures in an application. Similar to
classes and variables, procedures have a scope. A procedure is generally declared
in a class or a module. Therefore, you can call a procedure from the same class or
module in which it is created. The scope of the procedure depends on the access
modifiers that you use while the procedures are declared. The access modifiers
supported by Visual Basic .NET are listed in Table B-3.

Table B-3 Access Modifiers for Procedures

Access Modifier S c o p e

Public A procedure with a Public access modifier can be called from any class
or module in the application.

Private A procedure with a Private access modifier can be called from the
same class or module in which it is declared.

Protected A procedure with a Protected access modifier can be called from the
same class or module in which it is declared. In addition, it can be
called from the derived classes of the class in which it is declared.

Friend A procedure with a Friend access modifier can be called from any class
or module that contains its declaration.

INTRODUCTION TO VISUAL BASIC .NET Appendix B 863

Based on the functionality of procedures, they can be classified as:

◆ Sub procedures. A sub procedure is used to perform a specific task.

◆ Function procedures. A function procedure is used to perform the spe-
cific tasks and returns a value to the calling statement.

◆ Property procedures. A property procedure is used to assign or access a
value from an object.

◆ Event-handling procedures. An event-handling procedure is used to
perform a specific task when a particular event occurs.

Arguments
As stated earlier, variables, constants, or expressions are accepted as arguments by
procedures. As a result, each time a procedure that accepts arguments is called,
arguments need to be passed to the procedure. Based on the data values that are
passed as arguments, the result can differ for each call to a procedure. Arguments
can be passed to procedures by either value or reference.

Functions
Visual Basic .NET provides various built-in functions that can be used in appli-
cations. Some of the built-in functions are MsgBox, InputBox, CStr, DateDiff, and
StrComp. The Microsoft.VisualBasic namespace contains a declaration for these
built-in functions. These functions can be classified based on the tasks performed
by the various built-in functions. The functions can be classified as follows:

◆ Functions to enhance your programs are performed by the Application
enhancement functions. Examples of Application enhancement func-
tions are MsgBox and InputBox.

◆ Functions to manipulate strings are performed by String functions.
Examples of String functions are StrComp, Len, and Trim.

◆ Functions to manipulate date and time values are performed by the Date
function. Examples of Date functions are DateDiff, Now, and Month.

◆ Functions to convert one data type to another are performed by the
Conversion function. Examples of Conversion functions are CStr, CDate,
and Val.

864 Part X A P P E N D I X E S

Having discussed the components of Visual Basic .NET, you can use this knowl-
edge to create a simple application in Visual C# .NET.

Creating a Simple Visual C# .NET
Windows Application

In this section, you will create a simple Visual C# .NET Windows application.
Then, I will discuss how to create the same application in Visual Basic .NET.
Doing this will help you to appreciate how easy it is to convert an application cre-
ated in one of the languages of the .NET Framework to another. In addition, you
will be able to realize how closely the two languages of the .NET Framework,
Visual Basic .NET and Visual C# .NET, are related.

Now, I will proceed with creating a simple Windows application in Visual C#
.NET. Name this application SampleWindowsApplication. This application
accepts a username and password from the user. After specifying the required
information, the user clicks on the Submit button. A message box showing the
text The user name and password that you have specified is accepted. is dis-
played. In addition, the Windows form consists of an Exit button that is used to
exit the Windows application. To create SampleWindowsApplication, include
two label controls, two text box controls, and two command controls to the Win-
dows form. Next, change the following properties of the controls:

Form1

◆ Name: frmAcceptUserInput

◆ Text: Accept User Input

Label1

◆ Name: lblUserName

◆ Text: User Name

Label2

◆ Name: lblPassword

◆ Text: Password

INTRODUCTION TO VISUAL BASIC .NET Appendix B 865

Textbox1

◆ Name: txtUserName

Textbox2

◆ Name: txtPassword

◆ PasswordChar: [*]

Button1

◆ Name: btnSubmit

◆ Text: submit

Button2

◆ Name: btnExit

◆ Text: Exit

After dragging the controls to the form, your SampleWindowsApplication looks
as shown in Figure B-1.

866 Part X A P P E N D I X E S

FIGURE B-1 SampleWindowsApplication with the controls added

Now, to add the functionality to the application, you need to write code for the
button controls. After adding code to the button controls, the code for the appli-
cation is as shown:

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

namespace SampleWindowsApplication

{

public class frmAcceptUserInput : System.Windows.Forms.Form

{

private System.Windows.Forms.Label lblUserName;

private System.Windows.Forms.Label lblPassword;

private System.Windows.Forms.Button btnSubmit;

private System.Windows.Forms.Button btnExit;

private System.Windows.Forms.TextBox txtUserName;

private System.Windows.Forms.TextBox txtPassword;

private System.ComponentModel.Container components = null;

public frmAcceptUserInput()

{

I n i t i a l i z e C o m p o n e n t () ;

}

protected override void Dispose(bool disposing)

{

if(disposing)

{

if (components != null)

{

c o m p o n e n t s . D i s p o s e () ;

}

}

base.Dispose(disposing);

}

INTRODUCTION TO VISUAL BASIC .NET Appendix B 867

[S T A T h r e a d]

static void Main()

{

Application.Run(new frmAcceptUserInput());

}

private void btnSubmit_Click(object sender, System.EventArgs e)

{

MessageBox.Show(“The user name and password that you have specified is

a c c e p t e d . ”) ;

}

private void btnExit_Click(object sender, System.EventArgs e)

{

A p p l i c a t i o n . E x i t () ;

}

}

}

After creating an application in Visual C# .NET, you can create this application
in Visual Basic .NET.

Creating a Simple Application
in Visual Basic .NET

The steps for creating an application in Visual Basic .NET are similar to the steps
for creating an application in Visual C# .NET. Similar to Visual C# .NET, Visual
Studio .NET also provides you with a template to create an application in Visual
Basic .NET. To create the SampleWindowsApplication by using Visual Basic
.NET, perform the following steps:

1. On the File menu, point to the New option.

2. In the displayed list, select the Project option.

The New Project dialog box is displayed.

3. In the Project Types: pane of the New Project dialog box, select the
Visual Basic Projects option.

868 Part X A P P E N D I X E S

TEAMFL
Y

Team-Fly®

4. In the Templates: pane, select the Windows Application option.

5. In the Name: text box, type the name of the Windows application as
SampleWindowsApplication1.

6. Accept the default location as specified in the Location: text box. You
may also choose to browse for the location where you want to save the
application by clicking on the Browse button.

7. Click on the OK button to close the New Project dialog box.

Figure B-2 shows the New Project dialog box for the SampleWindowsApplica-
tion1 project in Visual Basic .NET.

When you click on the OK button, Visual Studio .NET automatically creates the
default files and a blank Windows form for you. Click on the Show All Files but-
ton in the Solution Explorer window to view a list of all the files created by Visual
Studio .NET. Figure B-3 shows the default files and the blank form created by
Visual Studio .NET.

INTRODUCTION TO VISUAL BASIC .NET Appendix B 869

FIGURE B-2 The New Project dialog box for SampleWindowsApplication1

As you can see in Figure B-3, the blank form in Visual Basic .NET is created with
an extension .vb. In addition, Visual Studio .NET creates some reference files for
the SampleWindowsApplication1 project. Similar to Visual C# .NET, Visual
Studio .NET creates a solution with the same name as that of the Windows appli-
cation. Inside the solution, the project with the name SampleWindowsApplica-
tion1 is created.

Now, proceed with the creation of the SampleWindowsApplication1 application.
To create the application, you need to add controls to the Windows form. Because
Visual Basic .NET and Visual C# .NET are languages based on the .NET
Framework, the IDE for the Visual Basic .NET applications is the same as that
of the Visual C# .NET applications. The IDE for the Visual Basic .NET appli-
cations contains a toolbox that contains controls that you can use to create the
Windows application. Figure B-4 shows the toolbox that contains standard con-
trols for creating a Windows application in Visual Basic .NET.

870 Part X A P P E N D I X E S

FIGURE B-3 The default files and the blank form created by Visual Studio .NET

From the toolbox, drag two label controls, two text box controls, and two button
controls and place them on the form. Now in the Properties window of the con-
trols, change the properties of the controls.

INTRODUCTION TO VISUAL BASIC .NET Appendix B 871

FIGURE B-4 The toolbox for creating Windows application

If the Properties window is not displayed, select the control and press the F4 key.
Alternatively, you can select the Properties Window option on the View menu.

TIP

Change the following properties of the controls:

Form1

◆ Name: Form1

◆ Text: Accept User Input

Label1

◆ Name: lblUserName

◆ Text: User Name

Label2

◆ Name: lblPassword

◆ Text: Password

Textbox1

◆ Name: txtUserName

Textbox2

◆ Name: txtPassword

◆ PasswordChar: [*]

Button1

◆ Name: btnSubmit

◆ Text: submit

Button2

◆ Name: btnExit

◆ Text: Exit

After adding the controls, you need to add the code to the button controls to
make them functional.The following sections discuss how to write code in Visual
Basic .NET.

Adding Code to the Submit Button
When the user clicks on the Submit button, a message box is displayed. To do
this, add the following code to the Click event of the Submit button.

Private Sub btnSubmit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnSubmit.Click

872 Part X A P P E N D I X E S

MessageBox.Show(“The user name and password that you have specified is

a c c e p t e d . ”)

End Sub

The preceding code creates a Sub procedure with the private access modifier for
the Click event of the Submit button. As you can see in the preceding code, the
event handler declaration for the Click event includes two parameters, a sender

object and an event argument. In addition, the statement includes a Handles key-
word. This keyword indicates that whenever a Click event occurs for the Submit
button, the event is handled by the Sub procedure, btnSubmit_Click.

Inside the Sub procedure, the Show() method of the MessageBox class is used to dis-
play a message. Figure B-5 shows the message box when the user clicks on the
Submit button.

Adding Code to the Exit Button
On clicking the Exit button,the Windows application should exit.To do this,add
the following code to the Click event of the Exit button.

Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnExit.Click

A p p l i c a t i o n . E x i t ()

End Sub

The preceding code creates an event handler Sub procedure for the Click event of
the Exit button. Inside the Sub procedure, the Exit() sub of the Application class
is used to exit the application. Figure B-6 shows the Exit button in the Accept
User Input form.

INTRODUCTION TO VISUAL BASIC .NET Appendix B 873

FIGURE B-5 The message box displayed when user clicks on the Submit button

As you can see, writing code for a Visual Basic .NET application is very similar
to adding code to the Visual C#. NET application. However, to have a better
understanding of the code of Visual Basic .NET as compared to the code of
Visual C# .NET, look at the complete code for Visual Basic .NET. The entire
code for the SampleWindowsApplication1 application is as follows:

Public Class Form1

Inherits System.Windows.Forms.Form

Private Sub btnSubmit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnSubmit.Click

MessageBox.Show(“The user name and password that you have specified is

a c c e p t e d . ”)

End Sub

Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnExit.Click

A p p l i c a t i o n . E x i t ()

End Sub

End Class

The overall code for the Visual Basic .NET application is slightly different from
that of the Visual C# .NET. As you can see, the preceding code creates a class
Form1, which is inherited from the Form class. The Form class is present in the Sys-
tem.Windows.Forms namespace. The Inherits keyword is used to inherit a class

874 Part X A P P E N D I X E S

FIGURE B-6 The Exit button in the Accept User Input form

from a base class. Next, the code contains the declarations for the event handlers
for the Submit and Exit buttons.

INTRODUCTION TO VISUAL BASIC .NET Appendix B 875

A major difference in the code of Visual Basic .NET and Visual C# .NET is that the
statements in Visual Basic .NET are not followed by a semicolon (;) as in Visual C#
.NET.

TIP

Summary
In this chapter, you learned about the various languages of Visual Studio .NET.
Visual C# .NET, Visual Basic .NET, and Visual C++ .NET are the three main
languages of Visual Studio .NET. In addition, you looked at an overview of Visual
Basic .NET.

Next, you learned about the different features of an object-oriented programming
language. These features include abstraction, encapsulation, inheritance, and
polymorphism.

You also learned about the various components of Visual Basic.NET, such as vari-
ables, constants, operators, arrays, collections, procedures, arguments, and func-
tions. In addition, you learned to create a simple Visual C# .NET Windows
application. Finally, you learned to create the same application by using Visual
Basic .NET.

This page intentionally left blank

Appendix C
Visual Studio .NET
Integrated
Development
Environment

In this appendix, you will learn about the Visual Studio .NET IDE (integrated
development environment), which enables you to develop applications based on

the .NET Framework. You will also learn about the various tools and windows
associated with the Framework. In addition, you will learn about the functions of
the tools and windows in the Visual Studio .NET Framework.

Introduction to Visual Studio .NET IDE
The Visual Studio .NET IDE is common to all the .NET languages. You can use
the same set of tools and windows across languages to create an application.

When you begin working with Visual Studio .NET, the Start Page is the default
screen that is displayed. Alternatively, you can open the Start Page by choosing
the Show Start Page command from the Help menu.

The Start Page is the default home page for the Web browser in Visual Studio
.NET, and it provides a centralized location to work in Visual Studio .NET. In
addition, the Start Page provides various links, such as Get Started, Online Com-
munity, and Headlines, to enable a quick and efficient environment for working
in Visual Studio. NET. The Start Page in the Visual Studio .NET IDE is shown
in Figure C-1.

FIGURE C-1 The Start Page in the Visual Studio .NET IDE

878 Part X A P P E N D I X E S

TEAMFL
Y

Team-Fly®

I will discuss the windows and tools displayed in IDE in the following sections.

Menu Bar
The menus that are displayed on the menu bar of the Visual Studio .NET IDE
enable you to perform different tasks, such as opening, saving, editing, and for-
matting files. In addition to these default menus, IDE displays menus that are rel-
evant to the task that is being performed.

The following list takes a look at some commonly used menus in Visual Studio
.NET.

◆ File. The File menu provides commands to open and save projects, files,
and solutions. In addition, the menu provides commands to add items
such as forms, controls, modules, and classes to projects and solutions.

◆ Edit. The Edit menu provides commands such as Cut, Copy, Paste,
Delete, Undo, and Redo to perform the tasks associated with them.

◆ View. The View menu provides commands to access the various win-
dows and tools available in Visual Studio .NET.

◆ Project. The Project menu provides commands to add components such
as forms, modules, classes, and controls to the projects.

◆ Build. The Build menu provides commands to build projects.This menu
also provides the Configuration Manager command to create, modify,
and build configurations for solutions and projects.

◆ Debug. The Debug menu provides commands such as Start, Step Into,
and Step Over to locate and correct errors in the applications.

◆ Format. The Format menu provides commands such as Align and Cen-
ter in Form to format controls while working in a designer.

◆ Tools. The Tools menu provides commands such as Debug Processes,
Customize Toolbox, Add-in Manager, Customize, and Options to per-
form the functions associated to them. When these commands are
selected, the corresponding dialog box also gets displayed.

◆ Window. The Window menu provides commands such as New Win-
dow and Split to work with windows in IDE.

◆ Help. The Help menu provides commands such as Dynamic Help,
Contents, Index, Search, and Previous Topic and Next Topic, which
takes the content from the MSDN (Microsoft Developer Network) library
and provides the required information.

VISUAL STUDIO .NET IDE Appendix C 879

Figure C-2 shows the menu bar in the Visual Studio .NET IDE.

Toolbars
Visual Studio .NET IDE provides the Standard and Web toolbars that are dis-
played by default. The other toolbars that are provided include the Text Editor,
Build, and Debug toolbars.

Depending on the designer, tool, or window that is being used, the toolbars rele-
vant to the performed task will be displayed in IDE. Some of the toolbars avail-
able in Visual Studio .NET IDE are described in Table C-1.

880 Part X A P P E N D I X E S

Windows Forms Designer, Web Form Designer, XML Designer, and Component
Designer are the designers provided by Visual Studio .NET to design applications
quickly and easily.

NOTE

FIGURE C-2 The menu bar in the Visual Studio .NET IDE

Table C-1 To o l b a rs Ava i l a ble in Visual Studio .NET

To o l b a r F u n c t i o n

Build Used to build applications.

Crystal Reports - Insert Used to open the Insert Summary, Insert Group, Insert
Subreport, Insert Chart, and Insert Picture dialog boxes.

Crystal Reports - Main Used to perform basic formatting operations, such as justify text,
apply fonts,and access dialog boxes. You can use the Cr ystal
Reports-Main toolbar to access dialog boxes such as Select Expert
and Object Properties.

Data Design Used to generate datasets and preview data.

Database Diagram Used to work with database objects.

Debug Used to start and stop debugging of applications.

Debug Location Used to view the program, thread, and stack frame of an error
encountered while debugging a program.

Design Used to work with controls in the Web Form Designer.

Formatting Used to format text.

Full Screen Used to work in the full-screen mode.

HTML Editor Used to format, validate, and work with HTML documents.

Image Editor Used to create and manipulate images.

Layout Used to modify the la yout of controls in the designer.

Source Control Used to maintain different versions of your applications.

Standard Used to work with solutions, projects, and files.In addition, you
can use the Standard toolbar to open windows, such as Solution
Explorer and Class View.

Style Sheet Used to format and view style sheets.

Table Used to work with the tables in a database.

Text Editor Used to work in the code editor.

Web Used to browse for Web pages.

XML Data Used to create schemas.

XML Schema Used to preview datasets and edit keys and relations.

VISUAL STUDIO .NET IDE Appendix C 881

Figure C-3 shows the toolbars in the Visual Studio .NET IDE.

Having looked at the toolbars, you can look at the windows in Visual Studio
.NET in the next section.

Visual Studio .NET IDE Windows
As discussed earlier, the Start Page is the first screen that appears when you
launch Visual Studio .NET. This page enables you to access existing projects or
create new ones. The Start Page is the default home page of Visual Studio .NET
IDE, which contains various links providing online help on MSDN. The Start
Page also allows you to customize the appearance of IDE by specifying your pref-
erences.

The Solution Explorer Window
A collection of all the projects and files needed for an application is called a solu-
tion. A project file contains a number of files that need to be executed for work-

882 Part X A P P E N D I X E S

FIGURE C-3 The toolbars in the Visual Studio .NET IDE

ing in the project.In Visual Studio .NET IDE,Solution Explorer provides a hier-
archical view of all files, solutions, and projects. To open Solution Explorer, you
need to select the Solution Explorer command from the View menu. The Solu-
tion Explorer window in the Visual Studio .NET IDE is shown in Figure C-4.

The Solution Explorer window is displayed, which shows a listing of the projects,
files, and references present in the solution. You can open a file by double-clicking
on the file name in Solution Explorer.

The Solutions Explorer also contains a toolbar that displays the buttons that are
specific to the selected file. View Code, Show All Files, and Properties are a few
commonly displayed buttons. Figure C-5 shows the toolbar in the Solution
Explorer window.

VISUAL STUDIO .NET IDE Appendix C 883

FIGURE C-4 The Solution Explorer window in the Visual Studio .NET IDE

The Class View Window
You can view the hierarchical structure of solutions and projects by using the Class
View window provided in the Visual Studio .NET IDE. You can open the Class
View window by selecting either the Class View tab on the Visual Studio .NET
IDE or the Class View command from the View menu. The components are
organized in the Class View window based on the project in which they are con-
tained. The Class View window also provides a structured view of the code that
helps in understanding the organization of the components within a project. A
logical view provided by the Class View window helps in understanding the inter-
relationships between various components and objects. The Class View window
is shown in Figure C-6.

884 Part X A P P E N D I X E S

FIGURE C-5 The toolbar in the Solution Explorer window

An icon represents each type of component in the Class View window. Each icon
represents different types of components, such as namespaces, classes, and
interfaces.

You can navigate through the projects in a solution by using the Class View win-
dow. You can also view the properties or code for a component by using the Class
View window. Consider an example: To view the code associated with a method,
right-click the method name in the Class View window and select the Browse
Definition command from the context menu. The corresponding code for the
selected method is displayed.

A toolbar is also displayed in the Class View window, which displays the Sort By
and New Folder buttons. Using the Sort By button, you can sort the files in the
order of the alphabet by type. You can use the New Folder button to create virtual
folders.

VISUAL STUDIO .NET IDE Appendix C 885

FIGURE C-6 The Class View window

The Properties Window
The Properties window displays the properties of a component. By selecting the
Properties Window command from the View menu, you can open the Properties
window. To display the properties associated with the selected components, you
need to select the component or object in the Solution Explorer window. You can
also view, edit, and modify the components of projects and solutions by using the
Properties window.

The Properties window displays different properties for different controls. Vari-
ous buttons, such as Categorized, Alphabetic, and Property Pages, are also dis-
played in the Properties window.

To view and modify the properties of a Button control, for example, you open the
Solution Explorer window and select the Button control. The properties of the
Button control are displayed in the Properties window, as shown in Figure C-7.

The Dynamic Help Window
The Dynamic Help window in Visual Studio .NET provides access to the infor-
mation that is relevant to perform a particular task. The Dynamic Help window
is displayed when Visual Studio .NET IDE is opened. Alternatively, you can
access this command by selecting the Dynamic Help command from the Help
menu.

886 Part X A P P E N D I X E S

FIGURE C-7 The Properties window for a Button control

Various links related to the current window or current task are also displayed in
the Dynamic Help window. The Dynamic Help window displays information
depending on the selection in IDE.The information is organized categorically in
the Dynamic Help window. By default, the Dynamic Help window displays the
Help, Samples, and Getting Started categories.

Consider an example: When you work in the Class View window, the informa-
tion related to the Class View window is displayed in the Dynamic Help window.
Similarly, if a Button control is selected while working in the designer, the infor-
mation related to the Button class is displayed in the Dynamic Help window, as
shown in Figure C-8.

The Server Explorer Window
In Visual Studio .NET, the Server Explorer window enables server management.
You can access the Server Explorer window by selecting the Server Explorer tab
displayed on the left margin of the IDE. Alternatively, you can select the Server
Explorer command from the View menu to open the Server Explorer window.

The nodes Data Connections and Servers are displayed in the Server Explorer
window. The Data Connections node lists the database connections for the data-
bases that are created using the Server Explorer window. The Server node lists the

VISUAL STUDIO .NET IDE Appendix C 887

FIGURE C-8 The Dynamic Help window for a Button control

names of the servers that are currently being used. Figure C-9 shows the Server
Explorer window.

The Server Explorer window also allows you to add event logs, message queues,
and performance counters to your project. A toolbar displaying the buttons for
commonly used commands is displayed in the Server Explorer window.

Toolbox
The Toolbox contains various tools available in Visual Studio .NET. The Toolbox
can be opened by clicking the Toolbox tab displayed on the left margin of the
Visual Studio .NET IDE. You can also open the Toolbox by selecting the Tool-
box command from the View menu.

The General and Clipboard Ring tabs are displayed by default. In addition, tools
with specific functions are displayed in the toolbox. You can view all the tabs on
the Toolbar by selecting the Show All Tabs option from the context menu.

Some of the tabs available in the Toolbox are:

◆ General tab. The General tab, by default, displays only the Pointer con-
trol. You can also add controls, such as custom controls, to the General
tab. Custom controls refer to user-defined controls. Figure C-10 shows
the General tab of the Toolbox.

888 Part X A P P E N D I X E S

FIGURE C-9 The Server Explorer windowTEAMFL
Y

Team-Fly®

◆ Clipboard Ring tab. The Clipboard Ring tab also displays only the
Pointer control by default. The Clipboard Ring tab displays the last 12
items that are added to the clipboard. The clipboard is basically a mem-
ory cache maintained by the Microsoft Windows operating system. The
Clipboard Ring tab of the Toolbox is shown in Figure C-11.

VISUAL STUDIO .NET IDE Appendix C 889

FIGURE C-10 The General tab of the Toolbox

FIGURE C-11 The Clipboard Ring tab of the Toolbox

The Toolbox can also be customized by adding tabs and tools. You can use the
Customize Toolbox command from the Tools menu to open the Customize Tool-
bar dialog box.

The Task List Window
Visual Studio .NET allows you to mark the code present in your application with
comments. The Task List window helps track errors and warnings. These com-
ments are displayed in the table format. To view these errors, you need to double-
click the message and determine the exact location of the error.

You can open the Task List window by selecting the Other Windows command
from the View menu and then selecting the Task List command from the sub-
menu. The Task List window is shown in Figure C-12.

You can also add comments for the errors in the code, which may be useful for
later references. Figure C-13 shows a comment for an error in the code.

890 Part X A P P E N D I X E S

FIGURE C-12 The Task List window

FIGURE C-13 A comment for an e rror in the code

Managing Windows
The windows that are displayed in Visual Studio .NET IDE can be managed
according to your requirements. The following options are available to perform
this function. The next sections will discuss them in detail.

Hiding Windows
To hide a window, you use the Auto Hide feature of the Visual Studio .NET
IDE. The window is then displayed as a tab, which can be clicked to maximize
the hidden window. You can apply the Auto Hide feature to various tools of IDE,
such as Solution Explorer, Task List, and Toolbox.The Auto Hide feature may be
enabled or disabled by toggling the pushpin icon in the upper-right corner of the
window. Figure C-14 shows the Auto Hide feature of the Visual Studio .NET
IDE.

Docking Windows
You can drag the windows present in IDE as per your requirements by using the
docking windows feature provided by Visual Studio .NET. The windows can be
attached or left free-standing as per your requirements.

VISUAL STUDIO .NET IDE Appendix C 891

FIGURE C-14 The Auto Hide feature of Visual Studio .NET IDE

Customizing Visual Studio .NET IDE
The Visual Studio .NET IDE can be customized according to your requirements
while creating an application. The following sections will discuss how to cus-
tomize Visual Studio .NET.

The Options Dialog Box
The Options dialog box is used for customizing the IDE. This dialog box can be
used to specify a default location to save the projects and manipulate the layout of
IDE. The Options dialog box can also be used for specifying the user interface
elements, such as keyboard mappings, font, and color. The Options dialog box is
shown in Figure C-15.

You can display the Options dialog box by selecting the Options command from
the Tools menu.The dialog box consists of two panes that contain folders such as
Environment, Text Editor, and Debugging, and their respective options.

The following sections will discuss some frequently used features of the Environ-
ment folder.

The General Page
The General Page is used to change the default settings of IDE. You can use this
page to display the Status bar in IDE and specify whether IDE should support

892 Part X A P P E N D I X E S

FIGURE C-15 The Options dialog box

the MDI (Multiple Document Interface) environment. In addition, you can specify
the item to be displayed at the startup. The General Page is shown in Figure
C-16.

The Fonts and Colors Page
The Fonts and Colors Page is used to customize the font and color settings for
the elements having a user interface. Figure C-17 shows the Fonts and Colors
Page.

VISUAL STUDIO .NET IDE Appendix C 893

FIGURE C-16 The General Page

FIGURE C-17 The Fonts and Colors Page

In addition to the pages mentioned previously, the Options dialog box consists of
the Documents page, the Dynamic Help page, the Help page, and the Keyboard
page.

The Customize Dialog Box
You use the Customize dialog box to manipulate the toolbars that are present in
IDE. You can create and modify your own toolbars. You can also add and remove
the existing toolbars.

The Customize dialog box can be displayed by selecting Customize from the
Tools menu. Figure C-18 shows the Customize dialog box.

As you can see in Figure C-18, the Customize dialog box contains the Toolbars,
Commands, and Options tabs. The following section discusses these tabs in
detail.

The Toolbars Tab
The Toolbars tab is used create a toolbar and rename, delete, and reset existing
toolbars.

894 Part X A P P E N D I X E S

FIGURE C-18 The Customize dialog box

The Commands Tab
The Commands tab is used to add frequently used commands to toolbars. The
Commands tab consists of two lists, Categories and Commands. The Categories
list displays commands such as File and Edit, and the Commands list displays the
commands for a selected category.

The Options Tab
The Options tab is used to customize the appearance of toolbars and menu bars.

Summary
In this chapter, you learned about the Visual Studio .NET IDE that will enable
you to develop applications based on the .NET Framework. You also learned
about the various windows and tools that are used in the Visual Studio .NET
IDE. In addition, you learned about the various functions of windows and tools
that enable enhancement of the Visual Studio .NET IDE.

VISUAL STUDIO .NET IDE Appendix C 895

This page intentionally left blank

Symbols
@ Page directive, 767
@ symbol, 648

A
aborting threads,97–98
abstraction, OOP, 849–50
Accept checked call(s) button,adding code,

786–87
AcceptDetails() Web method,creating,

650–53
access

COM components, 813–15
COM+ components,813–16
indexers,76
mobile applications,734. See also WAP
namespaces,58
Setup wizard,276
Web forms, 498–99

accessors, 89–91
accounts,490–94. See also user accounts

creating, 403–4
deleting, 403–4

Action menu commands,272
Add,589
Add Dialog, 289

actions
custom action editor, 289–90
specifying, 285–86

activating JIT, 808
Add button, 235
Add command (Action menu), 589
Add Custom Action option,290
Add Dialog command (Action menu),289
Add Files dialog box,280
Add menu commands, Folder, 271
Add New Project dialog box,144
Add option, 271
Add Project Output Group dialog box, 266
AddFl.aspx form,417, 473–74,500–3
adding

bitmap images, 342
breakpoints to applications, 191–92

code
Clear button,703–10
cmdBack Command control, 757–61
Construction form,710–11
Created event, 367–71
DispResultForm form,683–93
Exit button, 363,873–75
form load method, 351–52
frmLogon form,775–79
frmPending form,782–85, 785
frmSelectOption form, 779–82
frmUnattended form,786–87, 788
InsertBookerDB() method,700–2
Main form,680–83
MobileTimeRetriever application,754–61
OK button, 353–63
Orders form,697–700
Search form,693–97
storing customer details,702–3
Submit button,872–73
Web forms, 680–711
XML documents,374

controls
ASP.NET, 444–45
tabbed pages,343–45

dialog boxes, 288–89
EventLog components to forms,379–82
executable files,284
file types, 283
flight details,404
flights,545
forms in Windows,151–53
functionality

ASP.NET, 446–52
Back button, 217–23
Cancel Button, 208
DataGrid controls,200–5
Edit button, 205–6,214–15
Exit Button,208–11
Save Button,206–8,215–16

launch conditions,290–91
ListView control, 303–5
output to deployment projects, 589–91
MobileCallStatus application,774–88

Index

adding (continued)
programming logic to Creative Learning applications,

350–63
registry keys, 282
StatusBar controls,305–6
TreeView controls, 301–3
user accounts, 490–94
users, 544

AddProjectOutputGroup dialog box, 589
addresses, 539
administering

applications, 552–65
COM+ applications,813
queues,821

ADO.NET, 198–237. See also databases
airline reservation portals

airline profile, 400–3
creating, 400
design,407–27
requirements,403–7
security, 425–27

aliases, 58–59
allocation, heaps,10
analysis

Creative Learning application, 335–36
development requirements,116
ERS, 298–99
mobile requirements,719–20

ANSI (American National Standards Institute), 117
apartments,802
API (application programming interface),4, 810
Application folder, 271
applications

administering, 552–65
ASP.NET

configuring, 442–43
creating, 443–52

breakpoints, 191–92
C#. See C#
COM+,812
construction, 137
Creative Learning application, 332

life cycles,335–47
Customer Management, 190–95
deploying, 582–91
domains, 13
errors, 538–42
exceptions,186–90
forms,424–25

design, 465–81
functionality, 446–52
high-level design, 117–23
implementation,138

integration, 138
logon/logoff functionality, 484–89
maintenance, 138
mobile. See mobile applications
MobileCallStatus application,722, 764–91
MobileTimeRetriever application,739–61
operations,138
security, 11,568–79
testing, 138,533–36,542–49
user acceptance testing, 138
Visual Basic .NET, 868–75
Visual C# .NET, 865–68
Web. See Web applications
Web services, 621. See also Web services
Windows,260–61
Windows DNA, 802–4

applying
collections,73–75
ErrorProvider controls, 183–86
strings,26–27
Task List (Visual Studio .NET), 193–95

architecture
WAP, 733–35
Web services, 623–24
Windows DNA, 802–4

arguments, 864
arithmetic

operators,37
pointers, 838–39

arrays
C#,24–25

methods, 70–71
types of, 68–70

declaring, 858–59
elements,21, 25
indexers, 75–77
indexes, 24–25
initializing, 25, 860
parameters,53
Visual Basic .NET, 859

ASP.NET
airline reservation portals

airline profile, 400–3
creating, 400
design,407–27
requirements,403–7

applications,446–52
authentication,573–76
configuring, 442–43
controls, 444–45
creating, 443–52
database schemas,454–64
features,431–32

898 Index

TEAMFL
Y

Team-Fly®

functionality, 446–52
Microsoft Mobile Internet Toolkit,729–32
requirements,431
security, 425–27

authentication, 568–70
enabling, 571–78
IIS, 570–71

types, 432–33
Web forms, 434–36

server controls, 436–42
Web services, 621–23

.NET Framework,628–39
architecture, 623–24
creating, 642–65
developing, 640–65
security, 664–65
technologies, 625–28
testing, 662–65
workings of, 623–24

assemblies,10–11
private assemblies, 11–12
registration,11
self-describing assemblies,13
shared assemblies, 12
side-by-side features,13
versioning, 14

Assembly option,271
assignment operators,38
associating file extensions,283–84
asynchronous communication, 822. See also messaging
attributes

C#
classes, 85
declaring, 84–85
defaults,86–88
parameters,86

defaultRedirect, 562
mode, 562
redirect, 563
statusCode, 563

auditing Web services, 664–65
authentication. See also security

ASP.NET, 573–76
default.aspx form, 484–89
forms, 570
IIS, 568–69

configuring, 571–73
Web services, 664–65
Windows,577

Authentication Methods dialog box, 572
Authenticode signing, 262
authorization, Web services, 664–65
automatic transactions,808

Autos window, 541

B
Back button

adding code, 785,788
functionality, 217–23

backing up databases,553–55
scheduling, 559

base classes, 4
inheritance, 45–47
overview, 14–16

benefits
of COM,797–800
of message queues,819–20

binary operators,37
binding TextBox controls, 213–14
bit shifting operators, 38
bitmap images,adding, 342
BookersCustDetails table, 604
BookersOrders table, 603–4
books,ordering, 602
bookstores,creating Web portals for, 596
boxing, 77–79
break mode, 538
break statements,36. See also statements
breakpoints, 538–42

adding, 191–92
building

clients,817–18
CMS,273
COM components,801–2

business layer, 623
business logic

implementing, 312–27
MobileCallStatus application,774–88

business managers
forms,417–19

AddFl.aspx,473–74
coding, 500–8
FreqFl.aspx,477
Reports.aspx,475–77
RequestID.aspx,474–75

roles, 401–2
Button controls, 155
BWCatalog table, 607
BWOrders table, 607–8

C
C#

Arrays, 24–25

Index 899

C# (continued)
arrays

methods,70–71
types of, 68–70

attributes
classes,85
declaring, 84–85
defaults,86–88
parameters, 86

boxing/unboxing, 77–79
classes

constructors, 48–49
declaring, 44–45
destructors, 50–51
inheritance, 45–47

client interoperability, 810–12
collections,71

applying, 73–75
creating, 72–73

COM+,796–810
accessing, 813–16

compiling, 65
enumerations,61–62
executing, 66
expressions,36–37

operators,37–38
indexers,76–77
interfaces,62–63
maintenance, 114–15
methods

calling, 52
declaring, 51
modifiers, 54–55
overloading, 55–56
passing parameters, 52–53

namespaces,56–57
accessing, 58
aliases, 58–59
declaring, 57–58

preprocessor directives, 79–82
properties

accessors,89–91
declaring, 88–89
types of, 91

statements, 28
types of, 28–36

strings,26
applying, 26–27
initializing, 26

structs,59–61
threads,94–95

aborting, 97–98
creating, 95–98

joining, 98–99
making threads sleep, 100–2
priorities, 102–4
states,102
suspending, 99–100
synchronization, 104–6

variables,22–23
casting data types, 22–24
data types,20
initializing, 123
modifiers, 19–20
scope, 22
types of, 20–22

Visual C# .NET, 845
writing, 64–65

C++. See Visual C++ .NET
CAB (cabinet) project,262–74
Cab projects, 583
Calendar control, 747
Call Stack window, 540–41
calling

methods,52
overloaded methods, 55–57
unmanaged APIs from .NET, 810

Cancel All button,236
Cancel button, 236

adding functionality, 208
cancellations,405
CancelRes.aspx form,421, 480,514–16
case studies

Creative Learning application, 334–35
ERS, 298
maintenance, 114

casting data types, 22–24
catch statements,187–89
CCW (COM callable wrapper),809
CGI (Common Gateway Interface), 733
ChangePassword.aspx form, 469–70, 498
CheckBox controls, 161
checked operators, 38
class libraries,10
Class View window, Visual Studio .NET IDE, 884–85
classes,850

attributes,85
base. See base classes
C#

constructors,48–49
declaring, 44–45
destructors, 50–51
inheritance, 44–47

Debug, 189–90
indexers,75–77
MessageQueue class,823–26

900 Index

MFCs,10
SQLCommand, 645
SqlDataAdapter, 646
strings. See strings
Trace, 189–90
TreeNode, 312
wrappers, 811
XmlReader, 372
XmlTextReader

methods, 314
properties,313

XmlWriter, 373
Clear button, adding code, 703–10
client-side processing, 435–36
clients

building, 817–18
interoperability, 810–12
Web services, 621. See also Web services

creating, 668–711
Close() method, 51,648
CLR (common language runtime), 6–7,260

Garbage Collector, 9–10
CLS (common language specification), 8–9,845
CLSID (Class ID),798
cmdBack Command control,adding code, 757–61
cmdFindTime Command control,754–57
CMS (Customer Maintenance System), 179,268

building, 273
Setup project, 268–74

coclasses,declaring, 811
code

ASP.NET applications, 446–52
C#,813–16
Clear button,703–10
CLR. See CLR
cmdBack Command control, 757–61
Construction form,710–11
Created event, 367–71
default Web services, 633–35
DispResultForm form,683–93
Exit button,363, 873–75
form load method, 351–52
forms

business managers,500–8
line-of-business executives,508–19
network administrators, 490–99

frmLogon form,775–79
frmPending form,782–85
frmSelectOption form, 779–82
frmUnattended form,786–88
InsertBookerDB() method, 700–2
logon/logoff functionality, 484–89
Main form,680–83

managed,835
pointers,837–40

mobile applications,765–67
MobileTimeRetriever application, 754–61
OK button, 353–63
Orders form,697–700
Search form,693–97
storing customer details,702–3
Submit button,872–73
types of, 835–36
unmanaged, 835–36
unsafe code, 832–41

compiling, 840–41
Web forms, 680–711
XML documents, 374

collections
C#,71

applying, 73–75
creating, 72–73

creating, 861–62
standard, 861

COM (component object model),4,796–97
benefits of, 797–800
class wrappers, 811
CLSID, 798
coclasses,811
COM+

automatic transactions,808
developing applications,812–13
events,807
interoperability, 809–18
.NET interoperability, 809–10
object pooling, 806
queued components, 806–7
security, 805
synchronization, 808
threading, 806

components, 813–15
DCOM,800
GUID, 798
IDispatch interface, 799
interfaces, 797

declaring, 812
IUnknown interface, 799
marshaling, 798
MTS, 804
objects,800–1

creating, 811
proxies, 799
stubs,799
threading model, 801–2
type libraries, 798
Windows DNA, 802–4

Index 901

combining, 274. See also Merge Module
ComboBox controls,162–63
Command control,747
Command window, 541–42
commands. See also preprocessor directives

Action menu,272
Add,589
Add Dialog, 289

Add menu, Folder, 271
Debug menu, Start, 638
View menu

Editor, 281,584
Mobile Explorer Browser option,759
Property Pages, 264

Commands tab, Customize dialog box,895
Compare() method,26
CompareValidator control,749
compilers, scripts,734
compiling

C#,65
unsafe code, 840–41

Completing the Create Database Diagram Wizard,
464

Component Selector dialog box,271
components

COM
accessing, 813–15
building, 801–2

COM+,813–16
EventLog, 378–82
FileSystemWatcher, 357–58
interfaces, 799
queued components (COM+),806–7
Visual Basic .NET, 852–65

configuring
ASP.NET, 442–43
authentication,573–76
error pages, 560–63
IIS authentication,571–73
SQL authentication mode, 577
user accounts, 490–94

confirm reservation option, 529–33
confirmation of tickets,405–6
ConfirmRes.aspx form,422,481, 518–19
Connect to SQL Server dialog box,455
connecting

CustomerForm forms, 211–23
tblJobDetails table, 223–37
Windows forms (ADO.NET), 198–237

console applications (Visual Studio .NET),
145–47

constants,857
construction of applications,137

Construction form,615–16
code, 710–11
creating, 679–80

constructors, 48–49
TreeNode class,312

ContextMenu control,361–63
continue statements,36. See also statements
controls

ASP.NET
adding, 444–45
Web forms, 436–42

Button,155
Calendar, 747
Checkbox, 161
cmdBack Command, 757–61
cmdFindTime Command,754–57
ComboBox,162–63
Command,747
CompareValidator, 749
Construction form,679–80
ContextMenu,361–63
CustomValidator, 750
DataGrid, 200–5
DateTimePicker, 163–64
ErrorProvider, 183–86, 353–56
Form, 740
forms,151–53
GroupBox, 158
Image, 747
ImageList,340–43
Label,156,742–43
Link, 744
List, 744–45
ListBox,161–62
ListView, 303–5

displaying employee details, 318–27
Main form,669–71
MainMenu,157–58
MobilePage, 741–42
MonthCalendar, 163
NotifyIcon,358–61
ObjectList,746
Order form,674–77
Panel,740–41
panels,523–24
PhoneCall, 744
properties,153–54
RadioButton, 158–60
RangeValidator, 749
RegularExpressionValidator, 749
RequiredFieldValidator, 749
Results form,672–74
Search form,677–79

902 Index

SelectionList,746
StatusBar, 305–6
StyleSheet,748
tabbed pages,343–45
TabControl, 337–40
TextBox, 157,743

binding, 213–14
TextView, 743–44
TreeView, 301–3

displaying employee codes, 313–16
populating, 312–27

Validation,749–51
ValidationSummary, 750–51
Windows,177–78
Windows Forms Viewer, 246–51

conventions,naming, 12
conversion

boxing/unboxing, 77–79
explicit data, 23
implicit,22

Create database Diagram Wizard,464
Create statements, 122–23
Created event,366–67

adding code, 367–71
CreateRes.aspx form,420, 478–80,508–14,547
creating

airline reservation portals,400
applications

Visual Basic .NET, 868–75
Visual C# .NET, 865–68

ASP.NET, 443–52
clients (Web services), 668–711
collections,72–74, 861–62
COM objects,811
COM+ applications,812
Construction form,679–80
Crystal Reports Designer tool,241–48
customer transaction portal,522–36
databases,446

schemas, 454–64
deployment projects, 587–89
DLL, 816–17
dtCancellations table, 459
dtDepartedFlights table, 459
dtFltDetails table, 457
dtFltStatus table, 458
dtFrequentFliers table, 460
dtPassengerDetails table, 460
dtReservations table, 458
dtUsers table, 457
ERS, 296
Form1, 198–99
forms (MobileCallStatus application), 764–74

frmLogon form,767–69
frmPending form, 771–72
frmSelectOption form, 769–71
frmUnattended form,772–74
interfaces

CustomerForm forms, 168–70
Form1, 165–66
JobDetailsForm forms, 172
mobile Web forms,751–54
ReportsForm forms, 170–72
WorkerForm forms, 167–68

mobile applications,716–18,736–61
Monthly Balancing and Alignment report, 254–55
Monthly Customer Visit reports,251–54
Monthly Worker report, 256–57
Order form,674–77
queues, 826
reports,406
Reports forms, 241–51
Results form,672–74
Search form,677–79
shortcuts,276
tables, 455–60
threads,95–97
user accounts, 403–4
Visual Studio .NET projects,143–45
Web forms, 668

Main forms,669–71
Web methods

AcceptDetails(), 650–53
GenerateOrder(), 653–62
SampleWebService, 635–37
SearchAll(), 645–47
SrchISBN(), 647–50

Web portal for a bookstore, 596
Web services

ASP.NET, 642–65
.NET Framework,632–39

Windows Forms Viewer controls, 248–51
Creative Learning application, 332

case study, 334–35
life cycles, 335–47
Microsoft Word documents,366–71
programming logic,350–63
XML, 371–94

criteria, queries,601
CRM (Customer Relations Management), 718
Crystal Reports Designer tool, 240

creating, 241–48
CTS (common type system), 7–8
custom action editor, 289–90,586
customer details,storing, 702–3
Customer Management application,debugging, 190–95

Index 903

customer transaction portal,creating, 522–36
CustomerForm forms, 131

connecting, 211–23
interfaces, 168–70

Customize dialog box,894–95
customizing

dialog boxes, 287
Visual Studio .NET IDE, 892–95

CustomValidator control, 750

D
data access layer, 623
data availability (Web services), 664–65
data breakpoints,539
data integrity (Web services), 664–65
data layer, 623
data privacy (Web services), 664–65
data types

casting, 22–24
variables,20, 73,852–54

Database Maintenance Plan Wizard, 558
databases

backing up, 553–55
creating, 446
design,117, 127–29,408–15,603–8
exporting, 555–57
logs,557–58
maintenance, 558–60
managing, 552–60
schemas, 414,608–9

relationships,609–11
creating, 454–64
viewing, 464

storing customer details,702–3
trapping incomplete data,179–82
users, 491–92

DataGrid controls,200–5
DataGrid1 Properties dialog box,673
DataSet objects,200
DateTimePicker control, 163–64
DCOM (Distributed Component Object Model),621,

800
dead-letter queues,821
dead-locking, 106
Debug classes,189–90
Debug menu commands, Start, 638
debugging

applications,542–49
Customer Management application,190–95
Visual Studio .NET, 190–91
windows,192–93

declaration statements,28. See also statements
declaring

arrays, 858–59
attributes,84–85
classes, 44–45
COM

coclasses, 811
interfaces, 812

constructors,44–45
destructors, 50–51
DOCTYPE declarations,374–77
methods, 51
namespaces,57–58
pointers, 834–35
properties, 88–89
structs,59
variables, 854–55

decoders,734
decrement operators,37
Default Web Site Properties dialog box, 564
default.aspx form

authentication,484–89
forms, 466–67

defaultRedirect attribute, 562
defaults

attributes,86–88
code

mobile applications,765–67
Web services, 633–35

parameters,56
defining overloaded methods,55
delaying preprocessor directives, 79
delegates,15–16
Delete button,236
Delete statements,122
deleting

accounts, 403–4
user accounts, 494–95

dependency of versions,13
deploying

applications,582–91
ASP.NET applications, 443
projects, 591
Setup wizard,276–79
Windows applications, 260–61

deployment editors,584–86
custom action editors,289–90
file system editors,279–81
launch condition editors,290–91
registry editors,281–86
user interface editors,286–89

deployment projects
creating, 587–89

904 Index

Visual Studio .NET, 261–62
CAB project, 262–68
Merge Module project,274–76
Setup project, 268–74
Setup wizard, 276–79

deployment scenarios, 582–86
derived classes, 46
design

airline reservation portals,407–27
application forms,465–81
databases,117, 127–29,408–15,603–8
forms, 522–33
high-level

Creative Learning application, 336–45
ERS, 299–308

high-level design, 117–23
low-level, 132–37

Creative Learning application, 345–47
ERS,308

mobile applications, 720–26
Mobile Internet Designer, 730
MobileTimeRetriever application,739–51
Web forms, 415–25,611–12

Construction form,615–16
Main form,612
Orders form,613–14
Results form,613
Search form,614–15

designer view, Web services,631
destructors,50–51
details panes, file system editors, 279–81
details,storing, 702–3
developing

COM+ applications,812–13
Web services, 640–65

dialog boxes
Add Files,280
Add New Project,144
Add Project Output Group, 266
adding, 288–89
AddProjectOutputGroup, 589
Authentication Methods,572
Component Selector, 271
Connect to SQL Server, 455
Crystal Report Gallery, 242
Customize, 894–95
customizing, 287
DataGrid1 Properties,673
Default Web Site Properties, 564
Execute Package, 557
Extended Logging Properties,565
Generate Dataset,644
Image Collection Editor, 341

Import Registry File, 283
New Breakpoint,538
Options dialog, 892
Outputs, 267
Register User, 288
Select Backup Destination,554
SQL Server Backup, 554

directives. See also commands
@ Page, 767
preprocessor, 79–82

directories
security, 425–27
UDDI,628

displaying
data in XML documents, 373
documents,385–93
employee

codes,313–16
ListView control, 318–27

entries,383–85
error messages,377–78
notification icons, 367–68

Dispose() method, 51
DispResultForm form,683–93
DLC (development life cycle),719
DLL (Dynamic Link Library), 6,621

creating, 816–17
do-while loop, 34. See also statements
docking windows,891
DOCTYPE declarations,374–77
documents

Creative Learning application, 366–71
extracting data,368–71
Summary.xml, 385–93
WML,735
XML

adding code, 374
displaying data,373

domains, 13
dtCancellations table, 412

creating, 459
DtCatalog table, 605
DTD (Document Type Definition),374–77,

735
dtDepartedFlights table, 411

creating, 459
dtFltDetails table, 409–10

creating, 457
dtFltStatus table, 412–13

creating, 458
dtFrequentFliers table, 414

creating, 460
DTOrders table, 605

Index 905

dtPassengerDetails table, 413
creating, 460

dtReservations table, 410–11
creating, 458

DTS Import/Export Wizard,556
dtUsers table, 408–9

creating, 457
Dynamic Help window (Visual Studio .NET IDE),

886–87

E
e-mail,sending, 492
early binding, 813–15
Edit button, 205–6,214–15
Editor command (View menu), 281,584
editors

custom action editor, 289–90
Custom Actions,586
deployment,584–86
File System,585, 588
file system editors,279–81
File Types, 585
file types editor, 283–86
Launch Conditions, 586
launch conditions editor, 290–91
Registry, 585
registry editors,281–83
user interface editor, 286–89,585

elements
arrays, 21,25
indexers, 75–77

employee codes,viewing, 313–16
emulators, testing, 788–91
enabling Forms authentication,574
encapsulation, 850
encoders,734
Enterprise Manager (SQL Server 2000),553
entries

Event Viewer, 383–85
enumerations (C#),61–62
environments,interoperability, 5
error messages,viewing, 377–78
error pages, configuring, 560–63
ErrorProvider control, 353–56

applying, 183–86
errors, locating, 538–42
ERS (Employee Records System),296

business logic,312–27
case studies, 298
life cycles

analyzing requirements,298–99

high-level design,299–308
low-level design,308

Event Viewer, displaying, 383–85
EventLog component, 378–82

adding, 379–82
events

COM+,807
Created, 366–67

adding code, 367–71
handling, 316–18
logs,377–78

exceptions, 15
handling, 186–90

executable files
adding, 284

Execute Package dialog box, 557
ExecuteNonQuery() method,652
executing C#, 66
Exit Button

code, 363,873–75
functionality, 208–11

explicit data conversions,23
exporting databases, 555–57
expressions,C#,36–38
Extended Logging Properties dialog box, 565
extensions

actions,285–86
associating, 283–84

extracting data from Microsoft Word documents,
368–71

F
features

ASP.NET, 431–32
CLS-compliant,8–9
side-by-side, 13

fields
TextBox controls, 213–14
trapping incomplete data, 179–82

File menu commands, New, 144
file system editors, 279–81,585,588
file types editor, 283–86,585
files

breakpoints, 539
CLR, 260. See also CLR
executable, 284
extensions, 283–84
importing, 282–83
MSI,268–74
MyFileType, 283
options,265–66

906 Index

Web services, 631
XML schemas,306–8

FileSystemWatcher component,357–58
Finalize() method, 50–51
flight details,adding, 404
flights,adding, 545
flowcharts

frmLogon module, 724
frmPending module, 725
frmSelectOption module, 725
frmUnattended module, 726
Web forms, 616–18

Folder command (Add menu),271
Folder option, 271
folders, Application, 271
Fonts and Colors Page, 893–94
for loop, 33. See also statements
foreach loop, 33–34. See also statements
foreign keys,123–24
form load method,351–52
Form control,740
Form1, 130

creating, 198–99
interfaces, 165–66

Format() method,26
formatting

collections,72–73
Creative Learning application, 337
ERS,299
user accounts, 490–94

formLogon form,721
forms

access,498–99
AddFl.aspx,417,500–3
applications, 424–25

design,465–81
authentication,570
business managers,417–19

AddFl.aspx,473–74
coding, 500–8
FreqFl.aspx,477
Reports.aspx,475–77
RequestID.aspx,474–75

CancelRes.aspx, 421,514–16
ChangePassword.aspx, 469–70,498
ConfirmRes.aspx,422,518–19
Construction form

adding code, 710–11
creating, 679–80

CreateRes.aspc,420,508–14,547
Creative Learning application, 337
default.aspx,466–67

authentication, 484–89

design,522–33
DispResultForm form,683–93
ERS, 299
EventLog components, 379–82
FreqFl.aspx,419, 506–8
frmLogon,721, 767–69

adding code, 775–79
frmPending, 722, 771–72

adding code, 782–85,785
frmSelectOption, 722, 769–71

adding code, 779–82
frmUnattended, 723,772–74

adding code, 786–87, 788
line-of-business executives,420–22

CancelRes.aspx, 480
coding, 508–19
ConfirmRes.aspx,481
CreateRes.aspx,478–80
QueryStat.aspx, 480–81

login,416
logoff.aspx, 468,489
Main form

adding code, 680–83
creating, 669–71

ManageDatabases.aspx,424
updating, 495–97

ManageUsers.aspx, 423
mobile, 737–39
MobileCallStatus application,764–74
network administrators,423–24

coding, 490–99
ManageDatabases.aspx,472–73
ManageUsers.aspx,470–72

Order form
creating, 674–77
adding code, 697–700

QueryStat.aspx, 421–22,516–17
Reports.aspx,418–19, 504–6
RequestID.aspx, 417–18,503
Results form,672–74
Search form

adding code, 693–97
creating, 677–79

validating, 182–83
Web forms

ASP.NET, 434–36
design, 415–25

Windows
adding, 151–53
connecting ADO.NET, 198–237
maintenance, 130–32
validating, 176–86

Forms authentication, 574

Index 907

Framework. See .NET Framework
FreqFl.aspx form,419,477,506–8
frequent flier programs,406–7
frmLogon form,775–79

creating, 767–69
frmLogon module, flowcharts,724
frmPending form, 722

code, 782–85
creating, 771–72

frmPending module, flowcharts,725
frmSelectOption form, 722

code, 779–82
creating, 769–71

frmSelectOption module, flowcharts,725
frmUnattended form,723

code, 786–88
creating, 772–74

frmUnattended module, flowcharts, 726
functionality

ASP.NET, 446–52
Back button, 217–23
Cancel Button,208
DataGrid controls,200–5
Edit button, 205–6,214–15
Exit Button,208–11
Save Button,206–8,215–16

functions, 864–65
breakpoints, 539
COM objects,800–1

G
Garbage Collector, 9–10

destructors, 50–51
gateways, 734
General Page, 892–93
Generate Dataset dialog box, 644
GenerateOrder() Web method, creating, 653–62
get accessors,89
goto statements,35. See also statements
GroupBox controls, 158
GUID (globally unique identifier),798

H
handling

events,316–18
exceptions,186–90

heap allocation, 10
Hello World Web service, 634–35
hiding windows,891
hierarchies, System.Messaging+ namespace, 824

high-level design
applications,117–23
Creative Learning application, 336–45
ERS, 299–308
mobile applications,720–23

HTTP (Hypertext Transfer Protocol), 732

I
icons,displaying, 367–68
IDE (interactive development environment), 730,764

Visual Studio .NET IDE, 878–95
identifying validation mechanisms,177–83
IDispatch interface, 799
if-statements,29–30. See also statements
IIOP (Internet Inter-ORB Protocol), 621
IIS (Internet Information Ser ver),291

authentication, 568–69
configuring, 571–73

managing, 560–65
Image Collection Editor dialog box, 341
Image control, 747
ImageList control,340–43
images,adding, 342
implementing

applications,138
business logic,312–27
pointers, 836–37

implicit conversions,22
Import Registry File dialog box,283
importing registry files,282–83
in-process servers,800
indexers,C#, 76–77
indexes, arrays, 24–25
IndexOf() method, 27
IndexOfAny() method, 27
inheritance, 8,44–47

OOP, 850–51
initializing

arrays, 25,860
constructors,48–49
strings,26
variables, 123,856

Insert statements, 122,652
InsertBookerDB() method, adding code, 700–2
installation

MSI, 269. See also MSI
Setup wizard, 276–79
zero-impact,13

instance properties,91
instance variables,20. See also variables
integration, applications,138

908 Index

TEAMFL
Y

Team-Fly®

interaction
databases, 200. See also ADO.NET
Merge Module, 274–76
Microsoft Word documents, 366–71

interfaces
API, 4
C#,62–63
CGI,733
collections,73
COM,797

declaring, 812
CustomerForm forms, 168–70
Form1, 165–66
IDispatch interface, 799
IUnknown interface, 799
JobDetailsForm forms, 172
mobile Web forms,751–54
ReportsForm forms, 170–72
standardizing, 465
user interface editor, 286–89
WorkerForm forms, 167–68

Internet, Windows DNA,802–4
Interop utility, 810
interoperability, 5

clients,810–12
COM+,809–18
languages, 8

invocation of platforms, 810
IP (Internet Protocol), 732
ISBN (International Standard Book Number), 599
iteration statements, 32–33. See also statements
IUnknown interface, 799

J
JIT (Just-in-Time) activation, 808
JobDetails forms, 131,223–37

interfaces,172
joining threads,97–99
journal queues, 821
jump statements,35. See also statements

K
keys, 123–24

managing, 460–63
registry, 282

L
Label control, 156,742–43
labeled statements, 29. See also statements

languages
CLS,8–9
CTS, 7–8
interoperability, 8
support, 5

late binding, accessing, 815–16
Launch Conditions editor, 586
launch conditions editor, 290–91
launching Enterprise Manager (SQL Server 2000),553
layers

business,623
data,623
data access,623
listener, 623

libraries
TlbImp, 810
type, 798

life cycles
Creative Learning application, 335–47
DLC,719
ERS

analyzing requirements,298–99
high-level design, 299–308
low-level design,308

mobile applications,719–26
projects, 115

analyzing requirements,116
construction,137
database design,127–29
foreign/primary keys, 123–24
high-level design,117–23
implementation,138
integration,138
low-level design,132–37
maintenance, 138
normalization,126–27
operations,138
referential integrity, 124–26
testing, 138
user acceptance testing, 138
Windows forms,129–32

limitations of message queues, 819–20
line-of-business executives

forms, 420–22
CancelRes.aspx,480
coding, 508–19
ConfirmRes.aspx,481
CreateRes.aspx,478–80
QueryStat.aspx, 480–81

roles, 402–3
Link control, 744
List control,744–45
ListBox controls, 161–62

Index 909

listener layer, 623
ListView control,303–5

employee details,318–27
Load button,234–35
LOB (line-of-business),498
local variables, 22. See also variables
Locals window, 540
locating errors in applications, 538–42
logging off applications,544
logical operators,38
login forms, 416
Logoff.aspx form, 468, 489
logon/logoff functionality, 484–89
logs

databases,557–58
events,377–78
Web servers, 563–65

loops
do-while, 34
for, 33
foreach, 33–34
try, 652
while, 34

low-level design,132–37
Creative Learning application, 345–47
ERS, 308
mobile applications,723–26

M
Main form,612

code, 680–83
creating, 669–71
flowchart,616

MainMenu controls, 157–58
maintenance

applications,138
C#,114–15
CAB projects,264–68
database schedules,558–60

managed code, 835
CLR. See CLR
pointers, 837–40

ManageDatabases.aspx form,424,472
updating, 495–97

ManageUsers.aspx form, 423,470–72
user accounts

adding, 490–94
deleting, 494–95

managing
databases, 552–60
IIS,560–65

primary keys,460–63
relationships,460–63
Web server logs, 563–65
windows (Visual Studio .NET IDE),891

Mark checked as complete button, adding code, 782–85
marshaling, 798
mechanisms, identifying, 177–83
memory, 732

destructors,50–51
Garbage Collector, 9–10

menu bars (Visual Studio .NET IDE),879–80
Merge Module, 274–76
Merge Module project,582
message boxes, Summary.xml documents,385–93
MessageQueue class,823–26
messaging, 818–26

MSMQ,806–7
queues, 819–20

creating, 826
types of, 821–22

System.Messaging namespace, 822–26
terms, 820–22

meta-data, 7
method call statements,29. See also statements
methods, 850

arrays, 70–71
C#

calling, 52
declaring, 51
modifiers,54–55
overloading, 55–57
passing parameters, 52–53

Close(), 51
Compare(), 26
Dispose(), 51
Finalize(), 50–51
Format(), 26
IndexOf(), 27
IndexOfAny(), 27
InsertBookerDB(), 700–2
modifiers,54–55
Replace(), 27
Sleep(), 100–2
Split(), 27
ToUpper(), 26
Trim(), 26
XmlTextReader class, 314

MFCs (Microsoft Foundation Classes),10
Microsoft IDL (interface definition language),798
Microsoft Mobile Internet Toolkit,729–32
Microsoft Word documents

Creative Learning application, 366–71
extracting data,368–71

910 Index

Mixed Authentication mode, 577
MMC (Microsoft Management Console), 455
mobile applications,728–29

creating, 716–18, 736–61
high-level design,720–23
life cycle, 719–26
low-level design,723–26
Microsoft Mobile Internet Toolkit,729–32
MobileCallStatus application. See MobileCallStatus

application
MobileTimeRetriever application. See

MobileTimeRetriever application
prologues,767
Visual Studio .NET, 765–67
WAP, 732–35
WML, 735

Mobile Explorer Browser option (View menu), 759
Mobile Internet Designer, 730
Mobile Internet Toolkit,736–61
mobile requirements,719–20
mobile Web forms,737–39

MobileTimeRetriever application, 751–54
MobileCallStatus application,722

business logic, 774–88
forms,764–74
testing, 788–91

MobilePage control, 741–42
MobileTimeRetriever application

code, 754–61
design, 739–51
mobile Web forms,751–54

mode attribute, 562
models,threading COM, 801–2
modes

break, 538
Mixed Authentication,577
Windows Authentication,577

modifiers
methods, 54–55
variables,19–20

modifying
properties,153–54
user accounts, 490–94

modules
Creative Learning, 346. See also Creative Learning

application
design,132–37
frmLogon flowcharts, 724
frmPending flowcharts, 725
frmSelectOption flowcharts, 725
frmUnattended flowcharts, 726
Merge Module, 274–76

MonthCalendar controls, 163

Monthly Balancing and Alignment report, creating,
254–55

Monthly Customer Visit reports,creating, 251–54
Monthly Worker report,creating, 256–57
moving. See exporting databases
MSI (Microsoft Windows Installer),268

files,268–74
Merge Module, 276

MSMQ (Microsoft Message Queue Service),806–7
MTS (Microsoft Transaction Server),804
multidimensional arrays,25,68–70
multithreading, 15
MyFileType file, 283

N
namespaces

C#,56–57
accessing, 58
aliases, 58–59
declaring, 57–58

System.Data.SqlClient, 646
System.Messaging, 822–26

naming conventions,12
navigation panes, file system editors,279–81
.NET Framework,810

Microsoft Mobile Internet Toolkit,729–32
overview, 4–14

base classes, 14–16
templates, 145
Web services, 628–39

creating, 632–39
network administrators

forms,423–24
coding, 490–99
ManageDatabases.aspx,472–73
ManageUsers.aspx, 470–72

roles, 402
New Breakpoint dialog box,538
New command (File menu),144
normalization,126–27
notification icons, displaying, 367–68
NotifyIcon control, 358–61

O
ObjectList control,746
objects, 850

collections,71–75
COM,7,800–1

creating, 811
constructors,48–49

Index 911

objects (continued)
DataSet, 200
optional,369
pooling, 806
proxies, 799
remote object proxy, 800
SqlParameterCollectionObject, 648
synchronization, 104–6

ODBC (Open Database Connectivity), 564
OK button, 353–63
OOP (object-oriented programming language),849–52

support, 5–6
opening Crystal Report Gallery, 241
operations,applications,138
operators, 37–38,857–58
optional object, 369
options

Add,271
Add Custom Action,290
Assembly, 271
confirm reservation,529–33
files, 265–66
Folder, 271
Primary Output,267
Project Output, 265,272
view flight status,528–29
view new flights, 525–26
view ticket status,526–27

Options dialog box, 892
Options tab, Customize dialog box,895
Order form,creating, 674–77
ordering books,602
Orders form,613–14

code, 697–700
flowchart, 617

output
adding to deployment projects,589–91
parameters, 21

Outputs dialog box, 267
overloading

methods, 55
operators, 38

overview
base classes, 14–16
.NET Framework,4–14

P
Panel control,740–41
panels,controls,523–24
parameters

arrays, 53

attributes, 86
defaults,56
output, 21
passing, 53–54
references, 21, 52
SelStr, 645
sqlConnection1, 645
values,21, 52

passing parameters, 52–53
Passport authentication,570
PDAs (personal digital assistant),730
PhoneCall control,744
platform invocation,810
pointers, 832–34

arithmetic, 838–39
declaring, 834–35
implementing, 836–37
managed code, 837–40
type casting, 839–40
types of code, 835–36

polymorphism, 851–52
pooling objects,806
populating TreeView controls,312–27
preemptive multitasking, 95
preprocessor directives (C#),79–82
primary keys, 123–24

managing, 460–63
Primary Output option,267
priorities,threads,102–4
private assemblies, 11–12
private queues,821
private system queues,822
procedures, 862–64
processing

client-side, 435–36
server-side, 435
Word documents,368–71

programming logic, adding, 350–63
programs. See applications
Project Output option, 265, 272
projects

airline reservation portals
airline profile, 400–3
creating, 400
design, 407–27
requirements,403–7
security, 425–27

ASP.NET, 444–52
CAB (cabinet), 262–74,583
creating Web portal for a bookstore, 596
Creative Learning application, 332

adding programming logic, 350–63
case study, 334–35

912 Index

interacting with Word documents,366–71
life cycles,335–47
XML, 371–93

deployment,587–89
ERS, 296

implementing business logic,312–27
life cycles,115

analyzing requirements,116
construction,137
database design,127–29
foreign/primary keys,123–24
high-level design, 117–23
implementation, 138
integration,138
low-level design,132–37
maintenance, 138
normalization,126–27
operations,138
referential integrity, 124–26
testing, 138
user acceptance testing, 138
Windows forms,129–32

Merge Module, 274–76,582
Setup, 268–79, 582
Visual Studio .NET, 142–43

console applications, 145–47
creating, 143–45
formatting Windows applications,164–72
Windows applications, 147–64

Web servers, 591
Web setup, 582

prologues,mobile applications, 767
properties

C#
accessors,89–91
declaring, 88–89

Construction form,679–80
ERS forms,300
File System editor, 588
ListView control,303–5
Main form,669–771
modifying Windows form controls, 153–54
Order form,674–77
Results form,672–74
Search form,677–79
TreeView controls, 302
XmlTextReader class, 313

Properties window (Visual Studio .NET IDE), 886
Property Pages command (View menu),264
protocols

HTTP (Hypertext Transfer Protocol), 732
IP (Internet Protocol),732
TCP (Transmission Control Protocol),732

WAP (Wireless Access Protocol),732–35
proxies,799

remote object proxy, 800
public queues, 821

Q
queries,600

based on criteria,601
Select statements, 118–21
status, 405

Query Analyzer, 455–60
Query button,adding code, 779–82
QueryInterface, 799
QueryStat.aspx form, 421–22,480–81,516–17
queues

COM+,806
creating, 826
MessageQueue class,823–26
messages,819–20
system queues,821–22
user-generated queues,821

R
RadioButton controls, 158–60
RAM (random access memory), 732
RangeValidator control, 749
RDBMS (Relational Database Management System),564,

622
read-only properties,90
read-write properties,90
redirect attribute, 563
references, parameters, 21,52
referential integrity, 124–26
Register User dialog box, 288
registration, assemblies, 11
Registry editor, 585
registry editors, 281–83
RegularExpressionValidator control,749
relational operators,38
relationships

database schemas,609–11
managing, 460–63

remote object proxy, 800
Replace() method, 27
Report Experts, 241

Monthly Balancing and Alignment report,254–55
Monthly Customer Visit reports,251–54
Monthly Worker report,256–57
Standard Report Experts, 243–46
Windows Forms Viewer controls, 246–51

Index 913

reports
creating, 406
Monthly Balancing and Alignment report, 254–55
Monthly Customer Visit,251–54
Monthly Worker report, 256–57
queues,821
viewing, 546

Reports forms,131, 241–51
Reports.aspx form,418–19,475–77, 504–6
ReportsForm forms, 170–72
RequestID.aspx form,417–18, 474–75,503
RequiredFieldValidator control,749
requirements

airline reservation portals,403–7
ASP.NET, 431
Creative Learning application, 335–36
development,116
ERS, 298–99
mobile applications,719–20

reservations, 404–5
response queues,821
restricting access to Web forms, 498–99
Results form,613

creating, 672–74
flowchart,617

return statements,35–36. See also statements
RMI (Remote Method Invocation), 621
roles

business managers,401–2
line-of-business executives,402–3
network administrators,402

ROM (read only memory), 632
RPC (Remote Procedure Call),621, 800

S
SampleWebService

creating, 635–37
testing, 638–39

Save Button,206–8, 215–16
saving databases,553–55
scenarios,deployment,582–86
scheduling maintenance (databases),558–60
schemas

databases,414–15,608
creating, 454–64
viewing, 464

XML, 306–8
scope, variables,22,856–57
scripts, compilers, 734
Search form,614–15

code, 693–97

creating, 677–79
flowchart,618

SearchAll() Web method, creating, 645–47
security

applications,11,568–79
ASP.NET, 425–27

authentication,568–70
configuring, 442–43
enabling, 571–78
IIS, 570–71

COM+,805
SQL, 576–78
Web services (ASP.NET),664–65

Select Backup Destination dialog box, 554
Select statements, 118–21
selecting controls (Windows), 177–78
selection statements, 29. See also statements
SelectionList control,746
self-describing assemblies,13
SelStr parameter, 645
sending e-mail, 492
Server Explorer window (Visual Studio .NET IDE),

887–88
server-side processing, 435
servers

controls,436–42
IIS, 560–65
in-process,800
MTS, 804
projects, 591
SQL,576–78

services
COM+,809–10
Web. See Web services

set accessors,89
Setup project, 268–74,582
Setup wizard,276–79
shared assemblies,12
sharing applications (Merge Module),274–76
shortcuts, creating, 276
side-by-side features of assemblies,13
simple statements, 28. See also statements
single inheritance, 46
single-dimensional arrays, 25,68
Sleep() method,100–2
SOAP (Simple Object Access Protocol), 627
software. See applications
Solution Explorer window (Visual Studio .NET IDE),

882–84
specifying actions,285–86
Split() method, 27
SQL (structured query language),455

Enterprise Manager (SQL Server 2000),553

914 Index

security, 576–78
statements, 117–18

SQL Server Backup dialog box,554
SQLCommand class,645
sqlConnection1 parameter, 645
SqlDataAdapter class,646
SqlParameterCollectionObject object, 648
SrchAuthor() Web method,testing, 662–63
SrchCategory() Web method, testing, 663
SrchISBN() Web method, creating, 647–50
SrchTitle() Web method,testing, 664
STA (single threaded apartment),802
standard collections,861
standard interfaces, 799
Standard Report Experts, 243–46
standardizing interfaces, 465
Start command (Debug menu),638
starting

Enterprise Manager (SQL Ser ver 2000), 553
frequent flier programs,406–7

statements
C#,28–36
catch, 187–89
Create, 122–23
Delete, 122
Insert, 122, 652
Select, 118–21
SQL, 117–18
try, 187–89
Update, 122

states,threads, 102
static properties,91
static variables, 20. See also variables
status queries, 405
status areas,367–68
StatusBar control,305–6
statusCode attribute, 563
storing customer details,702–3
strings, 25

C#,26
applying, 26–27
initializing, 26

variables,652
structs, 59–61
stubs,799
StyleSheet control,748
Submit button,775,872–73
summarizing tasks, 407
Summary.xml document, 385–93
support

languages, 5
OOPs, 5–6
Web applications, 6

Web services, 6
suspending threads, 99–100
switch-statements, 30–32. See also statements
synchronization

COM+,808
threads,104–6

synchronous communication,822. See also messaging
system queues,821–22
System.Data.SqlClient namespace, 646
System.Messaging namespace, 822–26

T
tabbed pages,343–45
TabControl control,337–40
tables

BookersCustDetails, 604
BookersOrders, 603–4
BWCatalog, 607
BWOrders, 607–8
creating, 455–60
dtCancellations, 412

creating, 459
DtCatalog, 605
dtDepartedFlights, 411

creating, 459
dtFltDetails, 409–10

creating, 457
dtFltStatus, 412–13

creating, 458
dtFrequentFliers, 414

creating, 460
DTOrders, 605
dtPassengerDetails, 413

creating, 460
dtReservations, 410–11

creating, 458
dtUsers, 408–9

creating, 457
ManageDatabases.aspx form,495–97
tblCustomer, 128
tblJobDetails, 128
tblWorker, 128
workers, 200–211

Task List
applying, 193–95
Visual Studio .NET IDE, 890

tasks,summarizing, 407
tblCustomer table, 128

connecting, 211–23
tblJobDetails table, 128,223–37
tblWorker table, 128

Index 915

TCP (Transmission Control Protocol),732
technologies, Web services, 625–28
templates

CAB projects, 262–68
Crystal Report Gallery, 242
.NET Framework,145
Setup project,268–74

terms, messaging, 820–22
ternary operators,37
testing

applications,138, 533–36,542–49
MobileCallStatus application, 788–91
Web methods

SampleWebService, 638–39
SrchAuthor(), 662–63
SrchCategory(), 663
SrchTitle(), 664

Web services, 662–64,664–65
text

Creative Learning application, 366–71
extracting data,368–71

TextBox control, 157,743
binding, 213–14

TextView control,743–44
threads,15

C#,94–95
aborting, 97–98
creating, 95–97
joining, 98–99
making threads sleep, 100–2
priorities, 102–4
states,102
suspending, 99–100

COM,801–2
COM+, 806
STA,802

time slices,95
TlbImp (type library importer),810
toolbars (Visual Studio .NET IDE),880–82
Toolbars tab, Customize dialog box, 894
Toolbox (Visual Studio .NET IDE),888–90
tools

Crystal Reports Designer tool,240
Interop utility, 810
Microsoft Mobile Internet Toolkit,729–32
Mobile Internet Toolkit,736–61
mobile Web forms, 738

ToolTips,displaying, 367–68
ToUpper() method, 26
Trace classes, 189–90
transactions

automatic transactions,808
dead-letter queues,821

MTS, 804
trapping incomplete data, 179–82
TreeNode class,312
TreeView control, 301–3

employee codes,313–16
populating, 312–27

Trim() method,26
troubleshooting

applications
debugging, 542–49
locating errors,538–42

Customer Management application,190–95
Microsoft Mobile Internet Toolkit,729–32
MobileCallStatus application,788–91

try loops,652
try statements,187–89
type casting pointers, 839–40
type libraries, 798
types

ASP.NET, 432–33
of arrays, 68–70
of code, 835–36
of message queues, 821–22
of operators,37–38
of properties,91
of statements, 28–36
of variables,20–22
of Windows form controls, 155–64
TlbImp, 810

U
UDDI Web services,628
unary operators, 37
unboxing, 77–79
unchecked operators,38
unmanaged API, 810
unmanaged code, 835–36
unsafe code, 832–41

compiling, 840–41
Update button, 236–37
Update statements, 122
updating ManageDatabases.aspx form, 495–97
URL (Uniform Resource Locator),733
user acceptance testing, 138
user accounts

creating, 403–4
deleting, 403–4
ManageUsers.aspx form

adding, 490–94
deleting, 494–95

user interface editor, 286–89,585

916 Index

user threads, 94
user-generated queues, 821
users, adding, 544

V
validation

forms, 182–83
mechanisms,177–83
Windows,176–86

Validation controls, 749–51
ValidationSummary control,750–51
values

parameters,21,52
registry, 282

variables, 852
C#,18–19

data types,20
initializing, 123
modifiers, 19–20
scope, 22
types of, 20–22

data types, 73,852–54
declaring, 854–55
initializing, 856
scope, 856–57
strings,652

versioning, 14
dependency, 13

view flight status option, 528–29
View menu commands

Editor, 281,584
Mobile Explorer Browser option,759
Property Pages, 264

view new flights option,525–26
view ticket status option, 526–27
viewing

data (XML documents),373
databases

logs,557–58
schemas,464

documents, 385–93
employee codes,313–16
employee details,318–27
entries,383–85
error messages,377–78
notification icons, 367–68
reports, 546

views,designer, 631
Visual Basic .NET, 845–49

applications,868–75
arrays, 859

components,852–65
Visual C# .NET, 865–68
Visual C++ .NET, 845–46
Visual Studio .NET, 844

debugging, 190–91
default code, 633–35
deployment editors,584–87

custom action editors,289–90
file system editors, 279–81
launch condition editors,290–91
registry editors,281–86
user interface editors, 286–89

deployment projects,261–62
CAB project,262–68
Merge Module project,274–76
Setup project,268–74
Setup wizard,276–79

mobile application default code, 765–67
projects, 142–43

console applications, 145–47
creating, 143–45
formatting Windows applications, 164–72
Windows applications, 147–64

Task List,193–95
Visual Basic .NET, 845
Visual C# .NET, 845
Visual C++ .NET, 845–46

Visual Studio .NET IDE, 878–95

W
W3C (World Wide Web Consortium), 732
WAP (Wireless Access Protocol),732–35. See also mobile

applications
architecture, 733–35

Watch window, 540
Web application support, 6
Web forms

access,498–99
ASP.NET, 434–36

server controls, 436–42
code, 680–711
Construction form,679–80
creating, 668

Main forms,669–71
design, 415–25,611–12

Construction form,615–16
Main form,612
Orders form,613–14
Results form,613
Search form,614–15

flowcharts,616–18

Index 917

Web forms (continued)
mobile, 737–39
Order form,674–77
Results form,672–74
Search form,677–79

Web methods, 634. See also methods
AcceptDetails(), 650–53
Close(), 648
ExecuteNonQuery(), 652
GenerateOrder(), 653–62
SampleWebService

creating, 635–37
testing, 638–39

SearchAll(), 645–47
SrchAuthor(), 662–63
SrchCategory(), 663
SrchISBN(), 647–50
SrchTitle(), 664

Web pages. See ASP.NET
Web portal for a bookstore, creating, 596
Web servers

logs,563–65
projects, 591

Web services
ASP.NET, 621–23

architecture, 623–24
creating, 642–65
.NET Framework,628–39
security, 664–65
technologies, 625–28
testing, 662–665
workings of, 623–24

clients,668–711
default code, 633–35
designer view, 631
developing, 640–65
files, 631
Hello World,634–35
.NET Framework, 632–39
support, 6

Web Setup project, 582
Web sites

ASP.NET. See ASP.NET
Logoff.aspx form, 489

while loop, 34. See also statements
Windows

ADO.NET, 198–237
applications

deploying, 260–61
Visual Studio .NET, 147–72

authentication,570, 577
controls, 177–78
exceptions,186–90

forms
adding, 151–53
maintenance, 130–32

properties,153–54
validations,176–86

windows
Autos,541
Call Stack,540–41
Command, 541–42
debugging, 192–93
docking, 891
hiding, 891
Locals,540
Visual Studio .NET IDE, 882–88

managing, 891
Watch, 540

Windows DNA (Distributed Internet Applications),
802–4

Windows Forms Viewer controls, 246–51
wizards

Completing the Create Database Diagram Wizard,464
Create database Diagram Wizard, 464
Database Maintenance Plan Wizard, 558
DTS Import/Export Wizard,556
Report Experts,241
Setup wizard,276–79

WML (Wireless Markup Language), 735
Word documents

Creative Learning application, 366–71
extracting data,368–71

worker threads,94
WorkerForm forms, 130,200–211

interfaces, 167–68
workers tables, connecting, 200–211
workings

of COM+ events, 807
of Web services,623–24

wrappers, classes,811
write-only properties,90
writing C#,64–65
WSDL (Web Services Development Language),626–27

X
.xls extensions,specifying actions,285–86
XML (eXtensible Markup Language)

Creative Learning application, 371–93
documents

adding code, 374
displaying data,373

schemas, 306–8
WAP, 734

918 Index

TEAMFL
Y

Team-Fly®

Web services, 622. See also Web services
XmlReader class,372
XmlTextReader class

methods, 314
properties,313

XmlWriter class,373

Z
zero-impact installation,13

Index 919

This page intentionally left blank

ADO.NET Professional Projects
1-931841-54-3
U.S. $49.99 Can. $77.95 U.K. £36.99

ASP.NET Professional Projects
1-931841-21-7
U.S. $49.99 Can. $77.95 U.K. £36.99

C# Professional Projects
1-931841-30-6
U.S. $49.99 Can. $77.95 U.K. £36.99

Dynamic Web Forms Professional Projects
1-931841-13-6
U.S. $49.99 Can. $77.95 U.K. £36.99

J2EE Professional Projects
1-931841-22-5
U.S. $49.99 Can. $77.95 U.K. £36.99

PHP Professional Projects
1-931841-53-5
U.S. $49.99 Can. $77.95 U.K. £36.99

Streaming Media Professional Projects
1-931841-14-4
U.S. $49.99 Can. $77.95 U.K. £36.99

VBA Professional Projects
1-931841-55-1
U.S. $49.99 Can. $77.95 U.K. £36.99

Visual Basic.NET Professional Projects
1-931841-29-2
U.S. $49.99 Can. $77.95 U.K. £36.99

Visual C++.NET Professional Projects
1-931841-31-4
U.S. $49.99 Can. $77.95 U.K. £36.99

The Premier Press Professional
Projects series offers intermediate
to advanced programmers
hands-on guides for accom-

plishing real-world, professional tasks. Each book
includes several projects—each one focusing on
a specific programming concept and based on a
real-world situation. Use the skills developed through-
out the book and modify the projects to fit your
professional needs!

.NET Framework Professional Projects
1-931841-24-1

U.S. $49.99 Can. $77.95 U.K. £36.99

™
Premier Press, Inc.
www.premierpressbooks.com

Call now to order!
1.800.428.7267

Premier Press, Inc.
www.premierpressbooks.com

In a Weekend® Fast & Easy® Linux® For The
Absolute Beginner

Fast & Easy®

Web Development
Administrator’s Guide Professional ProjectsGame Development

Try a Premier Press Series...

To Order Call
1.800.428.7267

NEED A COMPUTER BOOK?
WE’VE GOT YOU COVERED!

™

Don’t spend your time leafing through lengthy manuals looking

for the information you need. Spend it doing what you do best—

Web development. Premier Press’s fast & easy ® web develop-

ment series leads the way with step-by-step instructions and

real screen shots to help you grasp concepts and master skills

quickly and easily.

Less Time. Less Effort. More Development.

Macromedia®
Dreamweaver® 4
Fast & Easy®
Web Development
0-7615-3518-7 ■ CD Included
$29.99 U.S. ■ $44.95 Can. ■ £21.99 U.K.

Macromedia®
Dreamweaver® UltraDev™ 4
Fast & Easy®
Web Development
0-7615-3517-9 ■ CD Included
$29.99 U.S. ■ $44.95 Can. ■ £21.99 U.K.

Macromedia®
Fireworks® 4 Fast & Easy®
Web Development
0-7615-3519-5 ■ CD Included
$29.99 U.S. ■ $44.95 Can. ■ £21.99 U.K.

Macromedia®
Flash™ 5 Fast & Easy®
Web Development
0-7615-2930-6 ■ CD Included
$24.99 U.S. ■ $37.95 Can. ■ £18.99 U.K.

Adobe® LiveMotion™

Fast & Easy®
Web Development
0-7615-3254-4 ■ CD Included
$29.99 U.S. ■ $44.95 Can. ■ £21.99 U.K.

ASP 3 Fast & Easy®
Web Development
0-7615-2854-7 ■ CD Included
$24.99 U.S. ■ $37.95 Can. ■ £18.99 U.K.

CGI Fast & Easy®
Web Development
0-7615-2938-1 ■ CD Included
$24.99 U.S. ■ $37.95 Can. ■ £18.99 U.K.

ColdFusion® Fast & Easy®
Web Development
0-7615-3016-9 ■ CD Included
$24.99 U.S. ■ $37.95 Can. ■ £18.99 U.K.

Macromedia®
Director® 8 and Lingo™

Fast & Easy®
Web Development
0-7615-3049-5 ■ CD Included
$24.99 U.S. ■ $37.95 Can. ■ £18.99 U.K.

HomeSite™ 4.5 Fast & Easy®
Web Development
0-7615-3182-3 ■ CD Included
$29.99 U.S. ■ $44.95 Can. ■ £21.99 U.K.

Java™ 2 Fast & Easy®
Web Development
0-7615-3056-8 ■ CD Included
$24.99 U.S. ■ $37.95 Can. ■ £18.99 U.K.

JavaServer Pages™

Fast & Easy®
Web Development
0-7615-3428-8 ■ CD Included
$29.99 U.S. ■ $44.95 Can. ■ £21.99 U.K.

PHP Fast & Easy®
Web Development
0-7615-3055-x ■ CD Included
$24.99 U.S. ■ $37.95 Can. ■ £18.99 U.K.

XHTML Fast & Easy®
Web Development
0-7615-2785-0 ■ CD Included
$24.99 U.S. ■ $37.95 Can. ■ £18.99 U.K.

Premier Press, Inc.
www.premierpressbooks.com

Call now to order!
1.800.428.7267

®

™

“Game programming is without a doubt the most intellectually challenging field of Computer Science in the world.
However, we would be fooling ourselves if we said that we are ‘serious’ people! Writing (and reading) a game
programming book should be an exciting adventure for both the author and the reader.”

—André LaMothe,
Series Editor

Premier Press, Inc.
www.premierpressbooks.com™

	Contents at a Glance
	Contents
	Introduction
	Part I - Introduction to C#
	Overview of the .NET Framework
	Introduction to the .NET Framework
	Common Language Runtime (CLR)
	Class Library
	Assembly
	Versioning

	An Overview of .NET Framework
	Base Classes
	Exceptions
	Threads
	Delegates

	Summary

	C# Basics
	Introduction to C#
	Variables
	Initializing Variables
	Variable Modifiers
	Variable Data Types
	Types of Variables
	Variable Scope
	Types of Data Type Casting

	Arrays
	Strings
	Initializing Strings
	Working with Strings

	Statements and Expressions
	Types of Statements
	Expressions

	Summary

	Part II - Handling Data
	Components of C#
	Classes
	Declaring Classes
	Inheritance
	Constructors
	Destructors

	Methods
	Declaring a Method
	Calling a Method
	Passing Parameters to Methods
	Method Modifiers
	Overloading a Method

	Namespaces
	Declaring Namespaces
	Accessing Namespaces
	Aliases

	Structs
	Enumerations
	Interfaces
	Writing, Compiling, and Executing
	a C# Program
	Writing a C# Program
	Compiling a C# Program
	Executing a C# Program

	Summary

	More about Components
	Arrays
	Single- Dimensional Arrays
	Multidimensional Arrays
	Methods in Arrays

	Collections
	Creating Collections
	Working with Collections

	Indexers
	Boxing and Unboxing
	Preprocessor Directives
	Summary

	Attributes and Properties
	Attributes
	Declaring Attributes
	Attribute Class
	Attribute Parameters
	Default Attributes

	Properties
	Declaring Properties
	Accessors
	Types of Properties

	Summary

	Threads
	Introduction to Threads
	Creating Threads
	Aborting Threads
	Joining Threads
	Suspending Threads
	Making Threads Sleep
	Thread States
	Thread Priorities
	Synchronization

	Summary

	Part III - Professional Project 1 - Creating a Customer Maintenance Project
	Project Case Study
	Case Study
	Project Life Cycle
	Analyzing Requirements
	High- Level Design
	Primary and Foreign Keys
	Referential Integrity
	Normalization
	Designing a Database
	Designing the Windows Forms Used
	in Customer Maintenance Project
	Low- Level Design
	Construction
	Integration and Testing
	User Acceptance Testing
	Implementation
	Operations and Maintenance

	Summary

	Windows Forms and Controls
	Introduction to Visual Studio
	.NET Projects
	Creating a New Project
	Console Application
	Windows Applications

	Creating a Windows Application for
	the Customer Maintenance Project
	Creating an Interface for Form1
	Creating an Interface for WorkerForm
	Creating an Interface for CustomerForm
	Creating an Interface for ReportsForm
	Creating an Interface for JobDetailsForm

	Summary

	Validations and Exception Handling
	Performing Validations
	Identifying the Validation Mechanism
	Using the ErrorProvider Control

	Handling Exceptions
	Using the try and catch Statements
	Using the Debug and Trace Classes

	Debugging the Customer Management
	Application
	Using the Debugging Features of Visual Studio .NET
	Using the Task List

	Summary

	Database Interaction Using ADO. NET
	Connecting Windows Forms
	to a Data Source Using ADO. NET
	Creating Form1
	Connecting WorkerForm to the Workers Table
	Connecting CustomerForm to the tblCustomer Table
	Connecting the JobDetails Form
	to the tblJobDetails Table

	Summary

	Crystal Reports
	Introduction to the Crystal Reports
	Designer Tool
	Creating the Reports Form
	Creating Crystal Reports
	Creating the Windows Forms Viewer Control

	Creating the Monthly
	Customer Visit Report
	Creating the Monthly Balancing
	and Alignment Report
	Creating the Monthly Worker Report
	Summary

	Deploying a Windows Application
	Introduction to Deploying
	a Windows Application
	Deployment Projects Available in Visual Studio .NET
	Deployment Project Editors

	Summary

	Part IV - Professional Project 2 - Creating the Employee Records System (ERS) Project
	Project Case Study and Design
	Case Study
	Project Life Cycle
	Analyzing Requirements
	High- Level Design
	Low- Level Design

	Summary

	Implementing the Business Logic
	Populating the TreeView Control
	Displaying Employee Codes in the TreeView Control
	Event Handling
	Displaying Employee Details in the ListView Control

	Summary

	Part V - Professional Project 3 - Creating a Creative Learning Project
	Project Case Study and Design
	Case Study
	Project Life Cycle
	Analyzing Requirements
	High- Level Design
	Low- Level Design

	Summary

	Implementing the Programming Logic
	Adding the Programming Logic
	to the Application
	Adding Code to the Form Load() Method
	Adding Code to the OK Button
	Adding Code to the Exit Button

	Summary

	Interacting with a Microsoft Word Document and Event Viewer
	Interacting with a
	Microsoft Word Document
	The Created Event
	Adding Code to the Created Event

	Overview of XML
	The XmlReader Class
	The XmlWriter Class
	Displaying Data in an XML Document
	Displaying an Error Message in the Event Log
	Displaying Event Entries from Event Viewer
	Displaying Data from the Summary. xml Document
	in a Message Box

	Summary

	Part VI - Professional Project 4 - Creating an Airline Reservation Portal
	Project Case Study and Design
	Airline Profile
	Role of a Business Manager
	Role of a Network Administrator
	Role of a Line- of- Business Executive

	Project Requirements
	Creation and Deletion of User Accounts
	Addition of Flight Details
	Reservations
	Cancellations
	Query of Status
	Confirmation of Tickets
	Creation of Reports
	Launch of Frequent Flier Programs
	Summarizing the Tasks

	Project Design
	Database Design
	Web Forms Design
	Enabling Security with the Directory Structure

	Summary

	Basics of ASP. NET Web Applications
	Getting Started with ASP. NET
	Prerequisites for ASP. NET Applications
	New Features in ASP. NET
	Types of ASP. NET Applications

	Exploring ASP. NET Web Applications
	Introducing Web Forms
	Web Form Server Controls

	Configuring ASP. NET Applications
	Configuring Security for ASP. NET Applications
	Deploying ASP. NET Applications

	Creating a Sample ASP. NET Application
	Creating a New Project
	Adding Controls to the Project
	Coding the Application

	Summary

	Designing the Application
	Creating the Database Schema
	Creating Database Tables
	Managing Primary Keys and Relationships
	Viewing the Database Schema

	Designing Application Forms
	Standardizing the Interface of the Application
	Common Forms in the Application
	Forms for Network Administrators
	Forms for Business Managers
	Forms for Line- of- Business Executives

	Summary

	Implementing the Business Logic
	Coding the Logon and Logoff
	Functionality
	The Default. aspx Form
	The Logoff. aspx Form

	Coding the Forms for Network
	Administrators
	The ManageUsers. aspx Form
	The ManageDatabases. aspx Form
	The ChangePassword. aspx Form
	Restricting Access to Web Forms

	Coding the Forms for
	Business Managers
	The AddFl. aspx Form
	The RequestID. aspx Form
	The Reports. aspx Form
	The FreqFl. aspx Form

	Coding the Forms for LOB Executives
	The CreateRes. aspx Form
	The CancelRes. aspx Form
	The QueryStat. aspx Form
	The ConfirmRes. aspx Form

	Summary

	Creating the Customer Transaction Portal
	Designing the Form
	The View New Flights Option
	The View Ticket Status Option
	The View Flight Status Option
	The Confirm Reservation Option

	Testing the Application
	Summary

	Debugging and Testing the Application
	Locating Errors in Programs
	Watch Window
	Locals Window
	Call Stack Window
	Autos Window
	Command Window

	Testing the Application
	Summary

	Administering the Application
	Managing the Databases
	Backing Up the SkyShark Airlines Databases
	Exporting Data from Databases
	Examining Database Logs
	Scheduling Database Maintenance Tasks

	Managing Internet Information Server
	Configuring IIS Error Pages
	Managing Web Server Log Files

	Summary

	Securing the Application
	Security in ASP. NET Applications
	Authentication Mechanisms
	Securing a Web Site with IIS and ASP. NET

	Enabling Authentication
	in SkyShark Airlines
	Configuring IIS Authentication
	Configuring Authentication in ASP. NET
	Securing SQL Server

	Summary

	Deploying the Application
	Deployment Scenarios
	Deployment Editors

	Deploying the SkyShark Airlines
	Application
	Creating a Deployment Project
	Adding the Output of SkySharkDeploy
	to the Deployment Project
	Deploying the Project to a Web Server
	on Another Computer

	Summary

	Part VII - Professional Project 5 - Creating a Web Portal for a Bookstore
	Project Case Study and Design
	Organization Profile
	Project Requirements
	Querying for Information about All Books
	Querying for Information about Books Based on Criteria
	Ordering a Book on the Web Site

	Project Design
	Database Design
	Database Schema
	Web Forms Design
	Flowcharts for the Web Forms Modules

	Summary

	Exploring ASP. NET Web Services
	Introduction to ASP. NET Web Services
	Web Service Architecture
	Working of a Web Service

	Technologies Used in Web Services
	XML in a Web Service
	WSDL in a Web Service
	SOAP in a Web Service
	UDDI in a Web Service

	Web Services in the .NET Framework
	Creating a Simple Web Service
	in the .NET Framework
	The Default Code Generated for a Web Service
	Creating a Web Method in the
	SampleWebService Web Service
	Testing the SampleWebService Web Service

	Summary

	Developing Web Services
	Creating a Web Service for
	Deepthoughts Publications
	Creating the SearchAll() Web Method
	Creating the SrchISBN() Web Method
	Creating the AcceptDetails() Web Method
	Creating the GenerateOrder() Web Method
	Testing the Web Service
	Securing a Web Service

	Summary

	Developing Web Service Clients
	Creating a Web Service Client
	Application for Bookers Paradise
	Creating the Web Forms for
	the Bookers Paradise Web Site
	Adding Code to the Web Forms

	Summary

	Part VIII - Professional Project 6 - Creating a Mobile Application
	Project Case Study and Design
	Case Study
	Project Life Cycle
	Analyzing Requirements
	High- Level Design
	Low- Level Design

	Summary

	Basics of Mobile Applications
	Overview of Mobile Applications
	The Microsoft Mobile Internet Toolkit
	Overview of WAP
	The WAP Architecture
	Overview of WML

	Creating a Simple Mobile Web
	Application by Using the Mobile
	Internet Toolkit
	The Mobile Web Form
	The Design of the MobileTimeRetriever Application
	Creating the Interface for the Mobile Web Forms
	Adding Code to the MobileTimeRetriever Application

	Summary

	Implementing the Business Logic
	Creating the Forms Required for
	the MobileCallStatus Application
	The Default Code Generated by Visual Studio
	.NET for a Mobile Application
	Creating the frmLogon Form
	Creating the frmSelectOption Form
	Creating the frmPending Form
	Creating the frmUnattended Form

	Adding the Business Logic
	to the MobileCallStatus Application
	Adding Code to the Submit Button in the frmLogon Form
	Adding Code to the Query Button
	in the frmSelectOption Form
	Adding Code to the Mark checked as complete
	Button in the frmPending Form
	Adding Code to the Back Button in the frmPending Form
	Adding Code to the Accept checked call(s) Button
	in the frmUnattended Form
	Adding Code to the Back Button
	in the frmUnattended Form

	Testing the MobileCallStatus
	Application in an Emulator
	Summary

	Part IX - Beyond the Labs
	Advanced C# Concepts
	COM+
	What Is COM?
	Windows DNA
	Microsoft Transaction Server (MTS)
	COM+
	.NET Interoperability
	COM Interoperability

	Messaging
	Benefits of Message Queues
	Limitations
	Key Messaging Terms

	Summary

	Part X - Appendixes
	Unsafe Code
	Pointers
	Declaring Pointers
	Types of Code
	Implementing Pointers
	Using Pointers with Managed Code
	Working with Pointers
	Compiling Unsafe Code

	Summary

	Introduction to Visual Basic .NET
	Introduction to the Languages
	of Visual Studio .NET
	Visual C# .NET
	Visual Basic .NET
	Visual C++ .NET

	Overview of Visual Basic .NET
	Features of an Object- Oriented
	Programming Language
	Abstraction
	Encapsulation
	Inheritance
	Polymorphism

	Components of Visual Basic .NET
	Variables
	Constants
	Operators
	Arrays
	Collections
	Procedures
	Arguments
	Functions

	Creating a Simple Visual C# .NET
	Windows Application
	Creating a Simple Application
	in Visual Basic .NET
	Adding Code to the Submit Button
	Adding Code to the Exit Button

	Summary

	Visual Studio .NET Integrated Development Environment
	Introduction to Visual Studio .NET IDE
	Menu Bar
	Toolbars
	Visual Studio .NET IDE Windows
	Toolbox
	The Task List Window
	Managing Windows

	Customizing Visual Studio .NET IDE
	The Options Dialog Box
	The Customize Dialog Box

	Summary
	Index
	Symbols
	A
	B
	D
	E
	I
	G
	J
	K
	L roles, 402 3
	M
	N
	P ASP. NET, 444 52
	Q
	S Setup project, 268 74,582
	T
	V

