

PowerSHAPE 2015 R2

Reference Help
Customising PowerSHAPE

PowerSHAPE
Copyright © 1982 - 2015 Delcam Ltd. All rights reserved.

Delcam Ltd has no control over the use made of the software
described in this manual and cannot accept responsibility for any
loss or damage howsoever caused as a result of using the software.
Users are advised that all the results from the software should be
checked by a competent person, in accordance with good quality
control procedures.

The functionality and user interface in this manual is subject to
change without notice in future revisions of the software.

The software described in this manual is furnished under licence
agreement and may be used or copied solely in accordance with the
terms of such licence.

Delcam Ltd grants permission for licensed users to print copies of
this manual or portions of this manual for personal use only.
Schools, colleges and universities that are licensed to use the
software may make copies of this manual or portions of this manual
for students currently registered for classes where the software is
used.

Acknowledgements
This documentation references a number of registered trademarks
and these are the property of their respective owners. For example,
Microsoft and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States.

Patent Information
Emboss functionality is subject to patent number GB 2389764 and
patent applications US 10/174524 and GB 2410351.

Morphing functionality is subject to patent application GB 2401213.

 PowerSHAPE 2015 R2. Published on 09 March 2015

PowerSHAPE 2015 R2 Reference Help Contents • i

Contents
Customising PowerSHAPE 4

Introduction to customising PowerSHAPE .. 4
Macros .. 5

Creating macros ... 5
Recording macros .. 5
Running macros ... 7
Running a macro one command at a time .. 8
Writing macros ... 10
Using variables in macros .. 12
Creating user-input information into a macro .. 15
Output from a macro .. 21
Assigning values to variables ... 25
Using expressions in macros .. 29
Making decisions in macros ... 34
Repeating commands in macros .. 39
Jumping from one point in the macro to another 42
Defining a path to a directory in a macro .. 46
Running a macro in another macro .. 47
Exporting variables from a macro ... 47
Stepping from within a macro ... 49
Pausing a macro .. 49
Ending a macro .. 50
Useful curve commands ... 50
Skipping command lines... 51

Macro tutorial - Helix ... 52
Introduction to the helix macro ... 52
Recording the helix macro .. 53
Running the macro ... 56
Editing the macro ... 56
Adding variables ... 57
Adding a loop ... 59
Adding comments ... 60
Interacting with the user ... 62
Changing the origin of the helix .. 64
Creating a helix around a cylinder .. 67
Testing input data ... 76

Macros - working examples .. 87
Blanking.. 87
Calculate the volume of each solid in the selection 88
Close all models ... 88
Create a curve from a selection of points ... 88

ii • Contents PowerSHAPE 2015 R2 Reference Help

Create a tapered helix .. 90
Create geometry ... 94
Create normal workplane for each point on a curve 95
Create text in a macro .. 95
Deactivate all solids in a model .. 96
Deleting pcurves ... 97
DO - WHILE loop .. 97
Dynamic sectioning .. 97
Exporting multiple images .. 98
Export using variables .. 99
Importing components from an .xt file .. 100
Move points on a curve .. 101
Select and add object ... 102
Offset surface curves by different distances ... 102
Open psmodels from a directory list ... 103
Open x_t from a directory list .. 104
Using LOOP to print the length of lines to a file 106
Using SWITCH ... 107
Using WHILE loop to create point at centre of arc 107

HTML application tutorial .. 109
Opening a new text file ... 109
Adding controls to the application ... 110
Displaying the HTML file in PowerSHAPE.. 111
Connecting to PowerSHAPE .. 111
Interacting with PowerSHAPE .. 112
Exiting the HTML application .. 117
Entering positions ... 118
Testing your application again .. 121
Selecting objects .. 123
Summary .. 130
Example using Javascript ... 130

Creating OLE applications .. 136
What is a HTML-based application? ... 136
What is an add-in application? ... 137
What are the PowerSHAPE OLE commands? 137
Connecting to PowerSHAPE .. 138
Sending commands to PowerSHAPE .. 139
Getting information from PowerSHAPE .. 140
Getting information about a model ... 140
Showing and hiding the PowerSHAPE window 141
Controlling the window PowerSHAPE ... 141
How do I find the version number of PowerSHAPE? 143
How do I know if PowerSHAPE is busy? .. 143
Add-in example using Visual Basic .. 144
Showing and hiding dialogs when executing commands 145
How do I exit PowerSHAPE using my application? 145
Entering positions ... 146
Selecting objects .. 147
Tips and tricks .. 148
Running a HTML-based application ... 149

PowerSHAPE 2015 R2 Reference Help Contents • iii

Running an add-in application .. 149
PowerSolutionDOTNetOLE control .. 152

Object information ... 153
Introduction to object information ... 153
Arc .. 154
Application paths .. 157
Assembly .. 158
Clipboard .. 163
Composite curve .. 163
Created... 167
Curve .. 169
Dimension .. 173
Drawing .. 178
Drawing view .. 180
Electrode .. 182
Evaluation ... 187
File ... 188
Hatch .. 189
Lateral .. 190
Level ... 190
Line .. 191
Longitudinal .. 193
Model.. 193
Parameter ... 197
Pcurve .. 197
Point ... 200
Printer ... 201
Renderer .. 201
Selection ... 201
Shareddb .. 208
Sketcher ... 208
Solid ... 208
Spine .. 223
Surface ... 223
Symbol ... 243
Symbol Definition ... 245
Text .. 245
Tolerance ... 247
Units ... 247
Updated .. 247
User .. 249
Version ... 249
View ... 249
Window... 250
Workplane .. 251

4 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

You can customise PowerSHAPE functionality by creating:

 Macros

 OLE applications

Customising PowerSHAPE means making PowerSHAPE behave how
you want it to.

As PowerSHAPE is continuously enhanced by adding many great
features, it is impossible to cater for the needs of every single user.
One solution is for you to create your own applications using either
macros or add-in applications.

We encourage you to tell us about any new features you want in
PowerSHAPE.

Introduction to customising
PowerSHAPE

Customising PowerSHAPE divides into two broad sections:

 Macros (see page 5)

 OLE applications (see page 136)

 HTML-based

 Add-in

Macros and add-in applications use object information (see page
153).

There are also two tutorials to help you:

 Macro tutorial (see page 52)

Customising
PowerSHAPE

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 5

 HTML application tutorial (see page 109)

Macros
A macro file is a file stored on disk, which contains commands and
comments. The main use of a macro file is to store often-used or
complicated sequences of commands for repeated use.

When you have mastered writing macro files, you greatly enhance
the power and flexibility of PowerSHAPE and can tailor the software
for your personal use.

For example, you may need to create a number of standard mold
parts such as nuts and bolts in your model. You can write a macro
to create nuts and bolts of any size and at any position. So, any
time you wish to add a nut, you just run the macro and define the
size of the nut and its position.

 In the example macros, it is important to remember the
following:

 Commands are not case-sensitive, so if and IF are
interchangeable.

 Any blank lines start with // or $$ to indicate a comment line.
Any blank lines in the following examples are there to improve
readability.

Creating macros
You can create macros by

 recording sequences of commands as you use PowerSHAPE (see
page 5).

 writing your own macro using a text editor (see page 10).

Recording macros
An easy way to create a macro file is to record the commands as
you are working. When you record macros, you create a set of
commands that are carried out in the order you record them.

6 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

1 Select Macro > Record to display the Record Macro dialog (see
page 7).

2 In the File name text box, enter the name of the file you want to

record to. If you enter the name of an existing file, it is
overwritten with the new commands.

3 Click Save to begin recording the macro.

4 Now work through the set of commands you want to record.

5 To stop recording the macro, select Macro > Record. You can use
any text editor to view and edit a macro.

If you record a macro of Paint Triangles or the commands on the
Mesh Fixing and Editing toolbar, an extra macro file is created. This
file is named with the following convention:
<psmacroname>_cc_<nnnn>.mac

where

<psmacroname> is the name of macro being recorded.

<nnnn> is a four digit number. This number is incremented by
one each time embedded mode is used.

For further information see the Macro tutorial (see page 52)

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 7

Record Macro dialog
Use this dialog to specify or choose a file to record the macro to.

Save in — Select the correct directory.

 — Go up one level in the folder structure.

 — Create a new folder.

 — Display a menu containing options on how to display the files
in the dialog.

File name — Select a file from the drop-down list, or enter the name
of the file.

Save as type — This displays the filter pattern which filters the file
names of the current directory. By default, the pattern is *.mac
which displays all files with the extension .mac.

Save — Save the macro file.

Cancel — Cancel macro recording and close the dialog.

Running macros
Select this option to run a previously recorded macro.

8 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

1 Select Macro > Run to display the Select A Macro To Run dialog.

2 Select the macro you want to run. Its name appears in the File

name text box.

3 Click on Open to run the macro.

 You can run the macro in one go or ‘step through’ the
commands (see page 8).

How do I stop a running macro?
You can abandon a macro while it is running. For example, you may
realise the wrong macro is running or there is an error in your
macro.

Press once. The macro finishes the command it is currently
processing and stops.

Running a macro one command at a time
PowerSHAPE enables you to run a macro one command at a time
and then pauses. You can then run the next command in the macro.
This is known as stepping a macro.

Stepping through a macro enables you to check its commands.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 9

1 Select Macro > Step. The Step Through Macro dialog is displayed.

2 Use the dialog to select the filename of the macro.

3 Click Open to step the macro.

The command window is displayed at the bottom of the screen.

The first command line of the macro is listed in the command
window:

Macro 1: Line 1: command in first line >

4 In the command window, press the Enter key to carry
out the command and continue to the next command.

The next command is printed out in the command window:

Macro 1: Line 2: command in second line >

5 Press the Enter key until the macro finishes.

How do I stop a stepping macro?
To stop stepping through a macro, select Macro > Abandon from the
menu.

10 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Writing macros
When you write your own macros, they can be more elaborate than
recorded macros. For example, you can add comments or add
testing conditions. The following table gives examples of additional
commands that can be added when you write, rather than record, a
macro.
$$
//

add comments to remind you what each
part of the macro does

input allow users to input information whilst the
macro is running

print output information from the macro
 store information in variables
 build up expressions (for example,

5+(6*2)) and assign their values to
variables

if
switch

decide which commands are carried out
next depending on the value of a variable

while repeat a set of commands a number of
times

goto
label

jump from one command line to another

macro run run one macro from within another and
pass information to a macro

export export variables from a macro
execute step
execute run

step a block of commands in a macro while
it is running

execute
command $var

run the command indicated by the variable
(see page 99)

skip skip a block of commands
input free
execute pause

pause a running macro

return end a macro

Use any text editor to create or edit your own macro files:

1 Type your own macro commands into the text editor

2 Save the file in .mac format

3 Run the macro.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 11

Finding out PowerSHAPE commands
When you use PowerSHAPE by entering menu clicks and filling in
dialogs, commands are being sent to the program by the menus
and dialogs. These are the commands that must be entered in your
macro file if you want to drive PowerSHAPE from a macro instead of
from the menus.

To find the commands to use in a macro:
1 Record a macro of the operations you wish to find the commands

for. This records the operations as command lines.

2 Open the macro file using a text editor.

3 Copy the commands into your macro.

Adding comments in macros
It is good practice to put comments into a macro file to explain what
it does. A comment is a line of text which has no effect on the
running of the macro file but will help anyone examining the file to
understand it. Comment lines start with // or $$. For example,
// This macro file deletes any coincident
// Pcurves from a surface.

It is also good practice to have comments explaining what each
section of the macro file does. It may be obvious what each section
does when you write the file but if you examine it in 3 months time
they may be difficult to understand.

A $$ comment can be added only at the beginning of a line. You
cannot put a $$ comment on the same line as a command (except
after a label). For example, this is NOT allowed:
LET $a = ($b*9/360) $$ This calculates the angle

However you are allowed to use this syntax when using the //
comment. For example, this is allowed:
LET $a = ($b*9/360) // This calculates the angle

We suggest that you put the comments to describe commands and
then the commands. For example,
// Calculating the angle
LET $a = ($b*9/360)

Another use of comments is to temporarily remove a command
from a macro. Do this by putting $$ or // at the beginning of the line
which contains the command you wish to remove. For example,
// LET $a = ($b*9/360)
// PRINT $a

12 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

This is known as commenting out a command.

Using variables in macros
A variable enables you to store information for later use. You can
define a variable using a name, for example centre. When you use
variables in an expression, you must add a $ to their name, for
example:
LET $a = ($centre + 1)

A variable name cannot be a valid macro command, for example,
you cannot use $PRINT, where PRINT is a macro command.

Variable types
A variable type is the type of information stored by the variable. A
variable can have only one type. Its type is decided when you first
use the variable and it cannot be changed.

The following types exist:

 INT — integer numbers for example 1, 21, 5008

 REAL — real numbers for example 20.1, -70.5, 66.0

 STRING — for example ‘hello’

 VECTOR

 LIST

 ERROR

Determining the type of a variable or expression
Use the following command todetermine the type of an expression
or variable :

TYPE(...)

The command returns a string that is:

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 13

INT
REAL
STRING
VECTOR
LIST
ERROR

Examples
LET my_var = 17
PRINT TYPE($my_var)
// this prints INT
LET a = 12.345
PRINT TYPE($a)
// this prints REAL
PRINT TYPE('hello')
// this prints STRING

PRINT TYPE([1; 2; 3])
// this prints VECTOR
PRINT TYPE({'a'; 'b'; 'c'; 'd'})
// this prints LIST
PRINT TYPE(SQRT(-57))
// this prints ERROR, because you are trying to take square root
of a negative number.

Converting variable types
You can use the following macro commands to convert a variable
type to another variable type:
INTTOREAL
INTTOSTRING
REALTOINT
REALTOSTRING
STRINGTOINT
STRINGTOREAL

The following example fills variable s with value 10:
INT frame_number = 10
string s = INTTOSTRING($frame_number)

 These macro commands cannot be used with print
commands.

Assigning values
You can define a variable and assign it a value (see page 25). The
following defines variable bolts with type integer and assigns it a
value of 5.

14 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

INT $bolts = 5

You can assign values to variables by performing complex
calculations.

Renaming objects using variables
When an edit dialog is displayed for an object, the VAR_NAME and
NAME commands enable you to rename the object using a variable.

Use VAR_NAME and NAME to rename the following:

 lines

 chamfers

 arcs

 curves

 composite curves

 points

 primitive surfaces

 general surfaces

 primitive solids

 general solids

 workplanes

Example - Using VAR_NAME to change the name of an arc

The following uses the variable $n to name an arc 'joe' when the Arc
edit dialog is displayed.
let $n= 'joe'
create arc full
0 0 0
select
modify
VAR_NAME $n
accept

initialises the $n variable
to 'joe'

names the arc 'joe'

Using environment variables
Environment variables are different from other variables. They can
be written at one macro level and read at a lower macro level.

You can use environment variables in the following ways:

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 15

 Set an environment variable using the setenv variable.
let path = 'e:/tmp'
setenv path
macro run print_path.mac

The macro print_path.mac has access to a copy of the variable
path. The macro called print_path.mac contains the following:
print 'path = ' $path

 Print the contents of the environment using the printenv variable.
select > printenv
path=e:/tmp

 Remove a variable from the environment using the unsetenv
variable.
unsetenv path

 Export a variable (see page 47) into the environment of the
calling macro using the exportenv variable
exportenv path

This allows a called macro to setup the environment for a
number of other macros.

Lower level macros have access to a copy of environment variables.
They can change the contents of the variables, but those changes
are discarded when the macro returns.

Creating user-input information into a macro
Most macro files are written requiring some user interaction. For
example, the you might need to enter the position of an object or
the dimensions of the object. User interaction is stored in a variable
within the macro.

There are two ways to enter values into a macro variable:

 Set all the variables in a macro file before it is run.

This implies that every time you wish to change the variables,
you must open up the file in a text editor and change them. This
can make it difficult for anyone other than the originator to use
it.

 Prompt the user for values when the macro is running.

This is a neater method and you may also input values as part of
the macro’s initiation command.

16 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Prompting the user
The INPUT command is used where you want the user to enter
information. You can ask for the user to enter one of the following:

 point (see page 16)

 selection of items (see page 17)

 number (see page 18)

 string (see page 18)

 yes or no response to a query (see page 19)

Point information
If you want the user to enter a point, use the following command:
INPUT POINT 'string' $variable_name

This command displays a dialog.

The characters in the string are displayed on the dialog and the X,
Y, Z coordinates of the point entered are assigned to three
variables:

variable_name_x,

variable_name_y

variable_name_z.
For example:
INPUT POINT 'Enter a point' $centre_pos

This displays the following dialog when the macro is run.

The user enters a point in one of the following ways:

 clicking on the screen

 entering values into the status bar

 using the Position dialog.

The values of X, Y and Z are then assigned to variables:

centre_pos_x

centre_pos_y

centre_pos_z

Print out the X, Y, Z values of the point you entered using the
following:
print $variable_name_x
print $variable_name_y

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 17

print $variable_name_z

To print out the X value of the point entered above, use
print $centre_pos_x

The value of X will be printed in the command window. To find the
values for Y and Z, substitute y or z for x.

Selection information
If you want the user to select one or more objects for use in the
macro, use the command:
INPUT SELECTION 'string'

This command displays a dialog, which shows the number of objects
selected. The characters in the string are used for the title on the
dialog. When objects are selected, the number of objects selected
are shown in the dialog.

 No objects must be selected before using the input selection
command.

Example
INPUT SELECTION 'Select items'

When a macro containing this command run, the following dialog is
displayed:

When items are selected, the dialog shows the number of objects
that are selected.

When you click OK, the macro can use selection object
information to display the number of selected objects. For example:
print selection.number

prints the number of objects selected.
print selection.object[0]

prints the type and name of the first object in the selection.

You can use the selection object information (see page 153) to
check that the correct number or types of objects are selected.

Example: Select a line and check selection
This example asks the user to select a line. The macro then checks
that a single line is selected. If a single line is not selected, an error
message is displayed.
LET $no_line = 1

18 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

WHILE $no_line {
select clearlist
INPUT SELECTION 'select a line'
IF (selection.number == 1) {
LET $no_line = !(selection.type[0] == 'Line')

}
IF $no_line {
PRINT ERROR 'You must select a single line'

}
}

For further information see:

IF (see page 35)

WHILE loop (see page 40)

Number information
Use this command to let the user enter a number.
INPUT NUMBER 'string' $variable_name

This command displays a dialog where:

 'string' is used as the dialog title.

 variable_name is the label of the text box.

Example
INPUT NUMBER 'Input radius of arc 1' $Radius1

When the macro is run, the following dialog is displayed:

Enter a value and click OK. The value is assigned to variable
Radius1.

String information
Use the following to enter a string:
INPUT TEXT 'string' $variable_name

Like INPUT NUMBER, this command displays a dialog where:

 the 'string' characters are used for the dialog title.

 variable_name is the label of the text box.

Example
INPUT TEXT 'Reverse the surface? Y/N' $Answer

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 19

When the macro is run, the following dialog is displayed:

Enter a value and click OK. Tthe value is assigned to variable
Answer.

Query information
If you want to ask a question that requires a yes or no answer, use:
INPUT QUERY 'string' $variable_name

This command displays a dialog with Yes and No buttons. The
question you want to ask is contained in the string. If the user
selects Yes, then $variable_name becomes 1, otherwise it
becomes 0.

Example
INPUT QUERY 'Do you want to exit the macro?' $prompt

When the macro is run, the following dialog is displayed:

 If you click Yes, the variable $prompt becomes 1.

 If you click No, the variable becomes 0.

Entering values during macro initiation
A user may initiate a macro so that the information required within
the macro is also given.
macro run name_of_file.mac var1 var2 ... varN

where var1, var2, … ,varN are values of variables used in the
macro.

 If the name of a macro file contains spaces, the name must
be included in double quotes. For example,

macro run "name of file.mac" 1 2.4

20 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

To import variables, you must declare them at the start of the
macro using the following syntax.
ARGS{
TYPE variable1
TYPE variable2
.
.
.
TYPE variableN
}
Rest of macro

where TYPE is one of INT, REAL, or STRING.

 To display the command window, select View > Window >
Command or double-click the command box in the status bar.

Example
To run macro test.mac with values 1, variable $two and string
'three', type the following in the command window:
macro run test.mac 1 $two 'three'

In the macro, these values are defined as variables with their types
at the start as:
ARGS{
Int variable1
Real variable2
String variable3
}
Rest of macro

So, in the following macro you must enter values that match the
variable types.
ARGS{
Int i
Real j
String k
}
print $i
print $j
print $k

Start the macro using the following command:
macro run macro1.mac 34 78.7 'mouse'

It will print out

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 21

34

78.7

mouse

 ARG{ and ARG { are both valid formats.

Comments can appear at the start of a macro with
arguments.

Output from a macro
Use the following sections to output informaton from macros:

Displaying information (see page 21)

Displaying values of variables (see page 22)

Using an OUTFILE to display information (see page 22)

Example macro to generate and display a report file (see page
23)

Displaying information
To display a message that does not require any information from
the user, use PRINT command.
PRINT 'Type your message here'

Example
If a user provides an incorrect response, a macro displays an error
message and prompts for another response:
PRINT '***Invalid response. Please try again.***'

You can also display error message dialogs when an invalid answer
has been given, using:
PRINT ERROR '***Invalid response. Please try again.***'

This displays the following error on the screen.

To remove the dialog from the screen, click OK.

22 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Displaying the command window
Messages can be displayed in the command window or in dialogs.
Use one of the following techniques to open the command window:

 Select View > Window > Command

 Double-click the command box in the status bar.

 Users do not normally have the command window displayed.

Displaying values of variables
Use the PRINT command to display the values of variables. For
example,
PRINT 'Lateral ' $lat_no ' does not exist.'

You may need to add spaces in strings to separate items in a print
command.

Examples
PRINT 'Lateral ' $lat_no ' does not exist.'

displays
Lateral 5 does not exist.

PRINT 'Lateral' $lat_no 'does not exist.'

displays
Lateral5does not exist.

The PRINT command works for expressions that evaluate strings,
vectors and lists..

Examples
print concatenate('abc'; 'def')
prints the string
abcdef
print cross([1; 2; 3]
prints the resulting vector
[40; -50.5; 76.23]
print atan2(-30; 40)
prints the arctangent

Using an OUTFILE to display information
Output from the PRINT commands can be sent to an OUTFILE.

To produce a file
1 Open an OUTFILE. This can have a predefined name, or you can

use a name that is entered at run time.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 23

Use one the of the following methods:
 Open an OUTFILE with a given name

let filename = 'e:/homes/fred/report.txt'
FILE OUTFILE OPEN REPLACE $filename

You must give an absolute pathname to the file.

REPLACE gives permission to overwrite any existing file. If the
file exists and REPLACE is omitted then you will be asked to
confirm that the file can be overwritten.

 Open an OUTFILE with a name obtained from the user
FILE OUTFILE OPEN DIALOG
TITLE Create a report file
FILETYPES TXT File (.txt)|*.txt|txf
RAISE

The TITLE and FILETYPES are optional. The FILETYPES
string consists of:

File type name | Regular expression | Default file
extension

Example - to prompt the user to create an HTML file:
FILETYPES HTML File (.html) | *.html | html

2 Generate your report using the PRINT command.
PRINT ...
PRINT 'This file is ' outfile.name '.'
PRINT 'Report generated on ' date ' by ' user.name
'.'
PRINT ...

3 Close the OUTFILE
FILE OUTFILE CLOSE

4 Display the file in the browser
BROWSER SHOW
BROWSER GO $filename

The filename must start with a drive letter.

 The example macro to generate and display a report file (see
page 23) uses the four sections.

Example macro to generate and display a report file
args{
string filename

}
// report_example.mac
//
// An example of how a macro can generate and display a
report file.
// ----------------------------------
//

24 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

// Open an html outfile to hold the report.
let use_dialog = $filename == 'dialog'
if $use_dialog {
file outfile open Dialog
Title Create a graphics report file
FileTypes HTML File (.html)|*.html|html
Raise

} else {
// This must be an absolute filename.
file outfile open replace $filename

}
//
// -------------------------------------
// Print the report.
print '<html>'
print '<head>'
print '<title> Example of a Report File Generated by a
Macro</title>'
print '</head>'
print '<body bgcolor="#CCCC66">'
//
print '<h1> Example of a Report File Generated by a
Macro</h1>'
//
print 'This HTML file was generated and displayed in the
browser window'
print 'by a macro. It shows how'
print 'information about the graphics system can be
generated and'
print 'displayed.<p>'
//
print '<p>'
//
// The values of some graphics properties:
print 'Display lists are ' graphics.displaylists '.
'
print 'Vertical sync is ' graphics.verticalsync '.
'
print 'OpenGL version is ' graphics.openglversion '.
'
//
let red_bits = graphics.intparam.RED_BITS
let green_bits = graphics.intparam.GREEN_BITS
let blue_bits = graphics.intparam.BLUE_BITS
//
let colour_depth = $red_bits + $green_bits + $blue_bits
//
print 'Colour depth is ' $colour_depth '.
'
print 'Z-buffer depth is ' graphics.intparam.DEPTH_BITS
'.
'
//
print 'Window size is ' window[1].size.x ' by '
window[1].size.y ' pixels.<p>'
//

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 25

print 'OpenGL extensions supported are:
<pre>'
//
graphics printextensions
//
print '</pre>'
//
// How to use the timer:
print 'Total test time is ' timer ' seconds.
'
//
print 'Test run by ' user.name ' on ' date '.<p>'
//
// print 'Mailto someone@delcam.com<p
>'
//
let filename = outfile.name
print 'This file is ' $filename '.
'
//
print '</body>'
print '</html>'
//
// --------------------------------------
file outfile close
//
browser show
browser go $filename

Exporting an image file
Use the following macro command in a macro to export an image
file of a rendered image:
Render ToFile [replace] filename

Assigning values to variables
Values are assigned to variables using the following syntax:

LET $variable = expression
The $ in front of the variable is optional.

You can:

 Assign constant values to variables.
LET $new_variable = 45

 Use expressions to assign values to variables.
LET new_variable = 45/36

 You may also use existing variables to assign values to variables.
LET new_variable = $existing_variable/36

26 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 You can use a variable to define a new value to itself. For
example,
LET $a = $a +1

This means add one to variable a.

 You can access individual characters of string variables and
expressions.
LET my_str = 'Delcam'
// Print the first character 'D'
Print (%my_str[1])

 You can get a sub-range of a string or list variable using the
command:
RANGE(<arg1>; <arg2>; <arg3>)

Where:

 <arg1> is a string or list.

 <arg2> is an integer specifying the start index (index starts at
1).

 <arg3> is an integer specifying the number of characters or
list elements to return.

 For further details, see:

Assigning values to variables - advanced users (see page 26)

Using expressions in macros (see page 29)

Assigning values to variables - advanced users
If you are carrying out a command that you are certain does not
expect a number, you can use:
TYPE $variable = expression

where type is one of INT, REAL, STRING

You can also use:
$variable = expression

For example, you must use LET in the following:
create line
LET start_x = 10
LET start_y = 20
LET start_z = -50
$start_x $start_y $start_z
LET end_x = 20
LET end_y = 30
LET end_z = 50

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 27

$end_x $end_y $end_z

 If in doubt, include the LET.

Using object information
You can assign object information to a macro variable (see page
153), for example, at the start point of a line. Object information is
accessed using syntax containing specific details of an object. The
syntax is typically:

a object type

b object name in square brackets

c sub-object names

Suppose you have a line whose name is 2, then all the information
about line 2 is available by referring to line[2].

The start coordinates of line 2 are accessed as follows:
line[2].start retrieves the start coordinates [x, y, z]
of line 2.
line[2].start.x retrieves the x coordinate of the start of
line 2.
line[2].start.y retrieves the y coordinate of the start of
line 2.
line[2].start.z retrieves the z coordinate of the start of
line 2.

Use this object information to assign values to variables.

Example: Create a full arc with its centre point at the start
coordinates of line 2
LET $a = line[2].start.x
LET $b = line[2].start.y
LET $c = line[2].start.z
CREATE ARC
FULL
$a $b $c

Assigning an object to a variable

Use the following syntax to assign an object to a variable.
LET $t = Line[2]

This variable can be used to access information about the object.
The following is the x coordinate of the start point of Line[2].
$t.start.x

28 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Comparing variables
Comparing variables lets you check information. They also allow you
to decide the course of action to take in if and while commands. For
further details, see:

 Making decisions in macros (see page 34)

 Repeating commands in macros (see page 39)

A result of a comparison is either true or false. When it is true, a
value of 1 is output and when false, 0 is output.

A simple comparison may consist of two variables with one of the
following set of opertaors between them:

== is equal to

!= is not equal to

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

Example 1
LET $C = ($A == $B)

C is true if A equals B and is assigned 1. If A doesn't equal B, then C
is false and assigned 0.

 The variables = and == are different. The single equal sign =
means to assign a value, whereas the double equals sign ==
means compare two values for equality.

If you compare the type of an object with a text string, you must
use the correct capitalisation. For example, if you want to check
that selection.type[0] is a composite curve, then you must use:
selection.type[0] == 'Composite Curve'

and not:
selection.type[0] == 'Composite curve'
selection.type[0] == 'composite curve'

Example 2
LET $e = (($a+$b) >= ($c+$d))

Comparing variables - logical operators
Logical operators let you do more than one comparison at a time.
Logical operators are:

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 29

AND
OR
NOT

 Remember that true = 1 and false =0
AND (&)
This outputs 1 if both inputs are 1.
0 & 0 outputs a value 0
0 & 1 outputs a value 0
1 & 0 outputs a value 0
1 & 1 outputs a value 1

Examples of the logical operator AND:

(5 == 2+3) & (10 == 3 * 3) = 0, since (5 == 2+3) is true
but (10 == 3 * 3) is not.

(10 == 2*5) & (CONCAT('abc';'xyz') == 'abcxyz') = 1,
since both are true.

NOT (!)
This outputs the inverse of the input.
!1 outputs a value 0
!0 outputs a value 1

Examples of the logical operator NOT:

!(17 == 10+7) = 0, since (17 == 10+7) is true.

!(19*100 > 2000) = 1, since (19*100 > 2000) is false.
OR (|)
This outputs 1 if either input is 1 or if both are 1.
0 | 0 outputs a value 0
0 | 1 outputs a value 1
1 | 0 outputs a value 1
1 | 1 outputs a value 1

Examples of the logical operator OR:

(5 == 2+3) | (10 <= 3*3) =1, since (5 == 2+3) is true.

(11 == 2*5) | (CONCAT('abc';'xyz') == 'hello') = 0,
since both are false.

Using expressions in macros
An expression is a list of variables, and values with operators (see
page 30)which define a value. In the following example the
operators are +, *, sine() and -.
(5+6)*10

30 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

sine(60)
$size-10

You can use an expression:

 to assign a value to a variable

 to print out its value

 in another command

Examples:
To assign a value to a variable:
LET $result = (5+6)*10

Variable $result is assigned the value 110.
To print the value of an expression:
PRINT sin(30)

0.500000 is displayed in the command window.
To use an expression in another command:
SELECT ADD ARC 'my_arc'
MODIFY
RADIUS $size * 7

 You cannot mix numeric and string variable types within an
expression.

Operators
For each variable type, the operators perform various tasks.

 Spaces may be included on either side of the operators.

Operators for integers and real numbers (see page 30)

Operators for strings (see page 32)

Operators for lists (see page 32)

Operators for vectors (see page 32)

Comparison operators (see page 33)

Logical operators (see page 34)

Variable for arc tangent (see page 34)

Operators for integers and real numbers
Use the following operators for integers and real numbers:

+ addition
- subtraction

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 31

* multiplication
/ division
% modulus; the remainder after

two integers are divided; for
example, 11%3 = 2

^ power of; for example,
2^3=2*2*2=8

sin() sine of an angle
cos() cosine of an angle
tan() tangent of an angle
atan() angle whose tangent is equal to

the given value
acos() angle whose cosine is equal to

the given value
asin() angle whose sine is equal to the

given value
abs() absolute value of a number

(removes any minus signs); for
example,
absolute(-56.98) = 56.98 =
absolute(56.98)

sqrt() square root of a number; for
example,
sqrt (81) = 9

log() output the natural logarithm of
a number; for example, y =
logarithm(7.389056) = 2

exp() outputs the exponential value
of a number with respect to e,
the base of the natural
logarithms; for example, y =
exp(2) = e2 = 7.389056

min(A1; A2; … ; AN) outputs the minimum value of
the list of numbers

max(A1; A2; … ; AN) outputs the maximum value of
the list of numbers

compare (A; B; C) outputs 1 if A and B are equal
within tolerance value C and 0
otherwise

32 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

test ? result_true
: result_false

if test is true then result_true is
assigned to the variable
otherwise result_false is
assigned.

Example
LET $x = $a>=$b ? $a+$b : $a-$b

This assigns a+b to x if a>=b and assigns a-b to x if a<b.

Operators for strings
Use the following operators on strings:

length() outputs the number of
items in a string

concat(string1;
string2; … ; stringN)

outputs a single string
which is a combination of all
the other strings.

Example
LET $name = 'Fred'
LET $greeting = concatenate ('Hello '; $name)
PRINT $greeting

In the command window, this outputs the following
Hello Fred

 The operators work with strings, integers and real numbers

Operators for lists
A list is represented as {a; b; c;...}. The operators for lists are:

{a; b; c;...}[n] outputs the nth element of
the list

length({a; b; c;...}) number of items in the list
concat({a1; a2;...;
an}; {...}; ... ;
{...})

outputs all the elements in
the lists as a single list.

Operators for vectors
Use the following operators on vectors, where A equals vector
[x;y;z] and B equals [a;b;c].

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 33

modulus(A)
This outputs the magnitude of the vector and is calculated as
sqrt((x*x)+(y*y)+(z*z)). For example:
// define tolerance
LET $tol = 0.00001

// find the length of this vector
// (note: could use length($vec))
LET $dist = modulus(line[1].end - line[2].start)

// test if length is less than tolerance
LET $coinc = $dist < $tol

// if true, the two points are coincident
if $coinc {
print "End of line coincident with second line."
}

normal (A)
This outputs the unit vector of vector A. The unit vector has the
same direction as vector A, but its modulus is 1.
// angle between line 1 and the x-axis,
LET $cosine=normal(line[1].end-line[1].start).[1;0;0]
LET $angle = acos($cosine)

print "Angle between line 1 and the x axis is,"
print $angle

length(A)
This is the same as modulus.

(A) . (B)
This outputs the dot product of two vectors. The dot product is
calculated as ((x*a)+(y*b)+(z*c)).

cross()
This outputs the cross product of two vectors. This is the vector that
is perpendicular to the two vectors. For example, the cross product
of the X and Y axes is the Z axis.

print cross([1;0;0]; [0;1;0])
returns [0;0;1]

Comparison operators
Use these operators to compare two given values A and B.

A == B outputs 1 if A equals B and 0 otherwise

34 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

A != B outputs 1 if A does not equal B and 0
otherwise

A < B outputs 1 if A is less than B and 0
otherwise

A <= B outputs 1 if A is less or equal to B and 0
otherwise

A > B outputs 1 if A is greater than B and 0
otherwise

A >= B outputs 1 if A is greater or equal to B and
0 otherwise

Logical operators
Use the logical operators to compare expressions and variables:

A & B outputs 1 if A and B are true and 0 otherwise.
This is known as the AND operator.

A | B outputs 1 if either A or B is true and 0
otherwise. This is known as the OR operator.

! A outputs 1 if A is false and 0 if true. This is
known as the NOT operator.

Arc tangent
Use the following variable to calculate the arc tangent:

atan2(arg1;arg2)

This is useful for finding the azimuth and elevation for a unit vector
[i; j; k]

let azimuth = atan2(j; i)
let elevation = asin(k)

Making decisions in macros
When using the IF (see page 35) command, you can decide which
commands are carried out next depending on the value of a
variable.

If you ask the user to enter a number for the lateral they wish to
move, you do not know what value the user will enter.You can use a
comparison to verify that the value that is entered is valid:

 if the value is valid, continue with the operation on the lateral.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 35

 if the value in invalid, tell the user that their input is invalid and
ask them to enter another value.

IF
When a certain condition is met, the IF command can be used to
execute a series of commands.
$variable = (condition)
IF $variable {
Commands A

}
Commands B

If the conditional test after IF is true then Commands A are
executed followed by Commands B. If the test is false, then only
Commands B are executed.

You must enclose Commands A in brackets {} and the brackets must
be positioned correctly. The following command is not valid:
LET $invalid = ($radius == 3)
IF $invalid PRINT "Invalid radius"

To make this command valid, add the brackets as follows:
LET $invalid = ($radius == 3)
IF $invalid {
PRINT "Invalid radius"
}

 The first bracket must be the last item on the line and on the
same line as the IF. The closing bracket must be on a line by
itself.

36 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

You can also define commands that are only carried out when the
condition is false. These commands are defined using the IF-ELSE
(see page 36) and IF-ELSEIF-ELSE (see page 36) commands.

IF-ELSE
IF $condition {
Commands A

} ELSE {
Commands B

}
Commands C

If the conditional test after IF is true then Commands A are
executed followed by Commands C. If the conditional test fails, then
Commands B are executed followed by Commands C.

IF - ELSEIF - ELSE
IF $condition_1 {
Commands A

} ELSEIF $condition_2 {
Commands B

} ELSE {
Commands C

}
Commands D

The above construct works as follows:

 If condition_1 is true, then Commands A are executed followed
by Commands D.

 If condition_1 is false and condition_2 is true, then
Commands B are executed followed by Commands D.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 37

 If condition_1 is false and condition_2 is false, then
Commands C are executed followed by Commands D.

 ELSE is an optional command. There may be any number of
ELSEIF statements in a block but not more than one ELSE .
ELSEIF may be written as one word or as ELSE IF .

You can perform tests directly in if and elseif commands. So,
let e1 = $error == 1
let e2 = $error == 2
if e1 {
print e1
} elseif e2 {
print e2
}

can also be written as:
if ($error == 1) {
print e1
} elseif ($error == 2) {
print e2
}

Switch
When you compare a variable with a number of possible values and
each value determines a different outcome, it is recommended that
you use the SWITCH command (see page 107).

38 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

The SWITCH statement allows you to define a variable which is
compared against a list of possible values. This comparison
determines which commands are executed.
switch $variable {
case (constant_A)
Commands A

case (constant_B)
Commands B

default
Commands C

}
Commands D

This construct works as follows:

 if variable = constant_A, then Commands A, B, C and D are
executed.

 if variable = constant_B, then Commands B, C and D are
executed.

 if no match is made, then Commands C and D are executed.

 The commands are executed through the switch command.
Once a match is found all the commands in the remaining
case statements are executed. You may prevent this from
happening by using a break statement.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 39

switch $variable {
case (constant_A)
Commands A
break

case (constant_B)
Commands B
break

default
Commands C

}
Commands D

This construct works as follows:

 if variable = constant_A, then Commands A and D are executed.

 if variable = constant_B, then Commands B and D are executed.

 if no match is made, then Commands C and D are executed.

 There may be any number of case statements, but only one
default statement.

Repeating commands in macros
It is useful to repeat a command a number of times, for example,
creating a circle at the start of every line in the model.

40 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Commands that allow you to repeat a set of commands a number of
times are known as loops. There are two loop structures

 WHILE loop (see page 40)

 DO - WHILE loop (see page 40)

WHILE loop
A WHILE loop repeatedly executes a block of commands until its
conditional test is false.
WHILE $condition {
Commands A

}
Commands B

The construct works as follows:

1 If the conditional test after WHILE is true, then Commands A are
executed and the conditional test repeated.

2 Once the conditional test is false, Commands A are no longer
executed and the program executes Commands B.

Within WHILE loops, you can jump to the end of the block of
commands in order to:

 cancel the loop using the BREAK command

 continue with the next iteration using the CONTINUE command.

DO- WHILE loop
The WHILE loop checks its conditional test first to decide whether to
carry out its commands, whereas the DO-WHILE loop carries out its
commands and then checks its conditional test.
DO {

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 41

Commands A
} WHILE $condition
Commands B

This construct works as follows:

1 Commands A are executed, and if the conditional test after
WHILE is true Commands A are repeated.

2 Once the conditional test is false, Commands A are no longer
executed and the program executes Commands B.

Within DO loops, you can jump to the end of the block of commands
in order to:

 cancel the loop using the BREAK command

 continue with the next iteration using the CONTINUE command.

CONTINUE
CONTINUE causes a jump to the conditional test of any one of the
loop constructs WHILE and DO-WHILE in which it is encountered, and
starts the next iteration, if any.

An example is given below.
LET $a = 1
WHILE $a {
INPUT NUMBER 'Input number of holes' $Holes
LET $zerotest = ($Holes <= 0)
IF $zerotest {
Print "***Invalid input***"
Print "Input must be greater than zero"
CONTINUE

}
LET $a = 0

42 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

LET $angle = (360/$Holes)
}

Example
The user is asked to enter the number of holes. Before the
calculation, you need to make sure that the number is valid. Using
the CONTINUE command allows the user to enter the value again.

BREAK
BREAK causes a jump to the statement beyond the end of any one of
the constructs WHILE, DO-WHILE, SWITCH in which it is encountered.

Nested constructs can require multiple breaks.

Jumping from one point in the macro to another
The GOTO command (see page 42) is used in conjunction with a label
(see page 44). This construct:

 lets you jump from one point in a macro to another.

 is used mainly used with error checking ; if an invalid condition is
met, the macro file can be made to jump to an error message.

GOTO
The GOTO string causes a jump to the commands following a label
(see page 44):
The following rules define the use of GOTO:

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 43

 The destination label must be in the same macro as the GOTO.

 Jumps may be made forwards or backwards within the macro.

 Jumps may occur out of constructs (for example, out of an IF-
ELSE, or WHILE block).

 Jumps may not be into constructs.

 If a jump is made out of a construct, the construct is cancelled
appropriately.

GOTO makes a macro more difficult to follow and should be avoided
where possible. However, GOTO can be used to make your macro
clearer if used only as a forward jump, for example:

 to the end of a macro

 to lines near the end for printing error messages.

Example

The following example shows how GOTO can be used. However it is
better practice to use a loop instead of the GOTO command.
GOTO :input
// This jumps to the line in macro which looks like:
// :input
// :input is the label command that defines where the
goto jumps to.
:input
INPUT NUMBER "Lateral point number" $num
LET $test=(1>$num)|($num>surface[1].lateral[1].number)
IF $test {
GOTO Error1

}
.
.
.
return

//Error messages
:Error1
PRINT '**A lateral must have more than 1 point.**'
GOTO input

Example
The previous example could be written more clearly by using a
WHILE loop to check the condition $test.
INPUT NUMBER "Lateral point number" $num
LET $test=(1>$num)|($num>surface[1].lateral[1].number)
WHILE $test {
PRINT '**A lateral must have more than 1 point.**'

44 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

INPUT NUMBER "Lateral point number" $num
LET $test=(1>$num)|($num>surface[1].lateral[1].number)
}
.
.
return

Labels
Labels are used in conjunction with the GOTO command to control
progression through the macro.

Use a label as follows:

 At the beginning of any line in a macro file. They are
alphanumeric prefixed with a colon :. For example:
:draw

The first non-space character defines the label, all other text is
ignored. If text is added after the label it is treated as a
comment. For example:
:draw This text is a comment

 To jump forwards or backwards in the file to a position marked
with a label.

 In macro files; it cannot be used as a typed command in the
command window.

 After a GOTO command:

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 45

 Before a GOTO command

 NOTE:

1. Ensure that a path exists to all the commands in the
macro; otherwise you will have commands which are not
used.

46 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

2. Ensure that you do not create an infinite loop (that is a
loop in the macro which never exits).

Defining a path to a directory in a macro
Use path commands to define directories where a macro looks for
information when it is run. These commands can be used to set the
directory path inside a macro when:

 importing files

 opening models

 running macros

The following commands are available:
PATH DELETE deletes a single path
PATH DELETEALL deletes all pre-defined paths to directories
PATH ADD BACK creates a new path to a directory
PATH LIST lists the paths (in the command window)
PATH QUIT quits the path commands

The following example shows how to run several macros from within
another macro. The macros are stored in C:\Documents and
Settings\xxx\My Documents.
PATH DELETEALL
PATH ADD BACK 'C:\Documents and Settings\xxx\My
Documents'
PATH LIST

MACRO RUN 'test1.mac'
MACRO RUN 'test2.mac'
MACRO RUN 'test3.mac'

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 47

Running a macro in another macro
You can embed an existing, tested, macro inside a new macro. This
saves time on testing and repeating commands.

The command to run a macro from within a macro is:
MACRO RUN pathname_of_macro

 If the name of a macro file contains spaces, the name must
be included in double quotes. For example,

macro run "name of file.mac"

Passing values into a macro
When you initiate a macro from a running macro, you can also pass
values into the macro. The command to do this is described in
Entering values during macro initiation (see page 19).

Passing expressions as arguments
You can pass expressions as arguments in the command line to run
a macro from another macro. The result of the expression must be
real.
macro run create_block.mac $length ($Length/2)
(2*$Length)

If one of the arguments in the command is a variable or an
expression, or you have a negative number, you must take care
with the use of brackets.

If you run the macro with the arguments
10 ($bob) -1

10 will be allocated to $length
($bob) -1 will be evaluated and assigned to the second argument.
This leaves nothing to be assigned to the third variable. So, only
two sides of the block will have lengths assigned to them.

To allocate all three arguments, the correct use of brackets should
be:
10 ($bob) (-1)

 To make certain of the correct use of brackets, you can use
brackets around the individual arguments at run time.

Exporting variables from a macro
You can export variable from a running macro. The command is:
EXPORT $variable_name

48 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

If the macro is running from within another macro, a variable of
that name is either modified or created.

The following example shows how to pass values into a macro and
export from one macro to another.

Macro1 has the following code in it:
LET $a = 50
LET $b = 100
LET $c = 200

MACRO RUN Macro2.mac $a $b $c

PRINT $a
PRINT $b
PRINT $c

PRINT $d
PRINT $e
PRINT $f

Macro2 has the following code:
ARGS{
INT a
INT b
INT c
}

LET $d = $a / 2
LET $e = $b / 2
LET $f = $c / 2

EXPORT $d
EXPORT $e
EXPORT $f

The result as shown in the command window would be:

50

100

200

25

50

100

You also see the following warning display:
Warning variable created

This means that the three variables that were exported from Macro2
have been created in Macro1 so that they can be printed.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 49

Exporting File Names
You can use the following macro command to pad out file export
names in macros.
PADLEADING

The example below fills the variable padded with 00010. This
creates a string of width 5 containing the given string value $s
where the variable s = 10 padded with leading 0s.
string padded = PADLEADING($s; 5; '0')

 This macro command cannot be used with print commands.

Stepping from within a macro
You may wish to step certain commands in a macro whilst the
macro is running.

To switch on stepping mode from within a macro at a particular
point, use the command:
EXECUTE STEP

To switch off stepping, use:
EXECUTE RUN

When the command EXECUTE STEP is processed, the commands
that follow it are stepped until the macro finishes or the command
EXECUTE RUN is reached.

Pausing a macro
A pause temporarily stops a running macro. There are two types of
pauses you can add to a macro:

 a pause that lasts a predefined number of seconds (see page 49)

 a pause that waits for the user to press a button to continue the
macro (see page 50).

Pause for predefined time
You can pause a macro for a set number of seconds. After this
period of time, the macro continues automatically. This command
is useful when macros run too quickly for you to see what is
happening to your model. By pausing the macro for a few seconds,
you can see how the macro is operating on your model.

The command is:
EXECUTE PAUSE integer

50 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

where integer is the number of seconds you wish to pause the
macro.

Pause with a button to continue
Use the INPUT FREE command to pause a macro indefinitely and
display a dialog.

Click Continue to continue running the macro.

Click Abort to terminate the macro.

 While the macro is paused, you can make changes to your
model and then continue running the macro.

Ending a macro
A macro ends in the following cases:

 when it reaches its last command.

 when it executes a RETURN command.

Useful curve commands
 To add a curve at a keypoint,

ADD CURVE fred AT KEYPOINT 2

If the keypoint doesn't exist, nothing will happen

 To add a composite curve,
ADD COMPCURVE fred AT COMPOSITE 3 KEYPOINT 5

If the keypoint doesn't exist, nothing will happen

 To make a span of a curve invisible,
SPAN_INVISIBLE span_number/point_index curve_id
DISPLAY REBUILD

 To make a span of a curve visible,
SPAN_VISIBLE span_number/point_index curve_id
DISPLAY REBUILD

 Use the following commands to control the display of the bad
trimming dialog when exporting:

EXPORTOPTS IGNOREBADTRIMON surpresses the dialog.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 51

EXPORTOPTS IGNOREBADTRIMOFF causes the message dialog to be
displayed

Skipping command lines
In addition to stepping commands, you may also skip blocks of
commands. This is done using the SKIP command. The following
causes 17 lines to be skipped:
SKIP 17

52 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Macro tutorial - Helix
Use the following sections to practise using the the macro
commands :

Introduction to the helix macro (see page 52)

Recording the helix macro (see page 53)

Running the macro (see page 56)

Editing the macro (see page 56)

Adding variables (see page 57)

Adding a loop (see page 59)

Adding comments (see page 60)

Interacting with the user (see page 62)

Changing the origin of the helix (see page 64)

Creating a helix around a cylinder (see page 67)

Testing input data (see page 76)

Introduction to the helix macro
In this example, you will create a macro to create a helix.

We suggest you go through this example before attempting to
create your own macros.

While creating the helix macro, you will edit a macro file to make
changes to it. You can either edit your own file or run a stored file.
The stored files are in the following folder:

c:\dcam\product\powershapexxxx\file\examples\Macro_Writing

where XXXX is the version number of the software and c is the drive
on which the software is installed.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 53

Recording the helix macro
We will record a macro to create the first turn of the helix. By
recording the macro, you can find the commands to use in your
macro. Once you have the basic commands, you can enhance your
macro.

1 Make sure you have a model open.

2 From the main menu, select Macro followed by Record to display
the Select A File To Record To dialog.

Browse to the folder, where you want to save the macro file.

3 In the File name box, type

helix_turn.mac
4 Click Save.

5 From the Main toolbar, click Curve .

6 From the curve creation menu, click Bezier Curve .

54 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

.

This makes sure that the Curve option is selected when you run
the macro.

7 Type in the co-ordinates of the points of the curve in the
graphics window:

0 10 0

-10 10 1

-10 -10 1

10 -10 1

10 10 1

This creates a spiral shape.

8 Click Select . This exits curve creation.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 55

9 From the main menu, select Macro followed by Record to stop
recording the macro. The Record option displayed to indicate a
macro was being recorded.

If you want to use the helix macro to create threads in your models,
a more appropriate macro to use is helix.mac, available in:
c:\dcam\product\powershapexxxx\file\examples\Macro_Writing
where XXXX is the version number of software and c is the drive on
which the software is installed.

For further details, see Running the macro (see page 56).

Viewing the text in the macro
Open the macro in a text editor, for example Notepad.

The command below tells the software to enter curve creation
mode.

create curve
The command below selects the Curve option from the Curve
creation menu.

THROUGH

The command below inputs the co-ordinates of the points on the
curve.

10 0 0

-10 10 1

-10 -10 1

10 -10 1

10 10 1

The command below exits curve creation mode and goes back to
selection mode.

Select

56 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Running the macro
You can run a macro many times to perform the same task. This
saves you time, because you do not have to enter each command
individually in the task.
To run your macro file,
1 Delete the curve in your model.

2 From the main menu, select Macro followed by Run to display the
Select A Macro To Run dialog.

3 Select your macro file.

4 Click Open.

Editing the macro
This example shows how to edit the macro to create a helix with
radius 50 and the distance between each turn (pitch) 20.
1 Open your file in a text editor.

2 Edit the co-ordinates in your macro to:

50 0 0

-50 50 5

-50 -50 5

50 -50 5

50 50 5

3 Save the file.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 57

4 From the main menu, select Macro followed by Run to display the
Select A Macro To Run dialog.

5 Select your macro file.

6 Click Open.

This creates the required helix.

Adding variables
You may want to create a helix using different values. We will
change the co-ordinates values in the macro to use variables.

The macro will then create a helix using the following variables:

 radius, which is set to 10

 pitch, which is the length between each turn and is set to 4
Editing your macro

You can either:

 Edit your macro file

 Open and examine the file helix_variable.mac in the folder:

d:\dcam\product\powershapexxxx\file\examples\Macro_Writing

where XXXX is the version number of the software and d is the
drive on which the software is installed.

The changes are given in bold text.

LET $radius = 10

LET $pitch = 4

58 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

LET $neg_radius = -$radius
LET $zheight = $pitch / 4

create curve
THROUGH

 $radius 0 0
 $neg_radius $radius $zheight
 $neg_radius $neg_radius $zheight
 $radius $neg_radius $zheight
 $radius $radius $zheight

Select

 More information on LET

The LET commands assign values. For example, the following
command assigns 10 to variable $radius.

LET $radius = 10

For each of the co-ordinates, we have replaced the value with a
single variable. For example,

-50 50 5

has become

$neg_radius $radius $zheight
This makes it easier to change the values. Instead of changing all
the co-ordinates each time we want to create a different size helix,
we simply assign new values to the variables.

There are different variable for the negative and positive radius. The
co-ordinate of each point in the curve is of the form:

x_value y_value z_value
where the values are either numbers or single variables. If you want
to use expressions for positions in your macro, you must use the
following:

POSITION

X expression_for_x

Y expression_for_y

Z expression_for_z
ACCEPT

where each expression is a valid expression in PowerSHAPE's macro
language.

For further details, see Using expressions in macros (see page 29).

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 59

Run your macro that includes variables
1 Select your macro file or helix_variable.mac. For further details

see, Running the macro (see page 56).

2 Click Open.

This creates the required helix.

If you want to change the values of the radius and pitch, you simply
open the macro file and edit two values in the macro. This saves
time changing all the co-ordinate values.

Adding a loop
We want the helix to turn 10 times. To do this, we add a while loop.
Editing your macro

You can either:

 Edit your macro file

 Open and examine the file helix_variable.mac in the folder:

d:\dcam\product\powershapexxxx\file\examples\Macro_Writing

where XXXX is the version number of the software and d is the
drive on which the software is installed.

The changes are given in bold text.

LET $radius = 10

LET $pitch = 4
LET $numturn = 10

LET $neg_radius = -$radius
LET $zheight = $pitch / 4

create curve
THROUGH

 $radius 0 0
 WHILE $numturn {
 LET numturn = $numturn - 1

 $neg_radius $radius $zheight
 $neg_radius $neg_radius $zheight
 $radius $neg_radius $zheight
 $radius $radius $zheight

 }
Select

60 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 More information on variable 'numturn'

The variable numturn indicates how many times the helix turns. The
following command assigns a value to this variable.

LET $numturn = 10

The value of numturn is also the condition of the while loop. You can
read the while loop commands as:

While numturn does not equal zero, then carry out the commands in
the brackets, { }.

When the last bracket is reached, PowerSHAPE checks if numturn
equals zero. If numturn does not equal zero, then the commands in
the brackets {} are carried out again. If numturn equal zero then
the commands below the last bracket are carried out.

Run your macro that includes a loop
1 Select your macro file or helix_loop.mac. For further details see,

Running the macro (see page 56).

2 Click Open.
The helix now turns 10 times.

You can change the value of numturn in the command:

LET $numturn = 10

to make the helix turn a different number of times.

Adding comments
You can add comments to your macro to remind you what each
command does.

Two slashes // are put at the start of a line to show it is a comment.
You can also use blank lines to separate blocks of commands.
Editing your macro

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 61

You can either:

 Edit your macro file

 Open and examine the file helix_variable.mac in the folder:

d:\dcam\product\powershapexxxx\file\examples\Macro_Writing

where XXXX is the version number of the software and d is the
drive on which the software is installed.

The changes are given in bold text.
// This macro creates a helix
// Written by: Razia Ghani

// Values to change the size of the helix

LET $radius = 10

LET $pitch = 4

LET $numturn = 10

// Calculating values for the co-ordinates

LET $neg_radius = -$radius
LET $zheight = $pitch / 4

// Creating the helix's curve

create curve
THROUGH

62 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 // The first co-ordinate

 $radius 0 0

 // Using a loop to input the
 // co-ordinates for each turn

 WHILE $numturn {
 LET numturn = $numturn - 1

 $neg_radius $radius $zheight
 $neg_radius $neg_radius $zheight
 $radius $neg_radius $zheight
 $radius $radius $zheight
 }

// Exiting curve creation mode

Select

 More information on adding comments

We have added commands such as:

// Calculating values for the co-ordinates
The two slashes // tell PowerSHAPE that this line contains a
comment. The macro behaves the same with or without these
comments added. The comments can remind you of what a block of
commands does.

Run your macro that includes comments
1 Select your macro file or helix_comments.mac. For further

details see, Running the macro (see page 56).

2 Click Open.

The same helix is created as described in Run your macro that
includes a loop (see page 60).

Interacting with the user
If you don't want to open the macro every time you create a helix
with a difference size, you can display dialogs to enter values.
Editing your macro

You can either:

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 63

 Edit your macro file

 Open and examine the file helix_variable.mac in the folder:
d:\dcam\product\powershapexxxx\file\examples\Macro_Writing

where XXXX is the version number of the software and d is the
drive on which the software is installed.

1 Comment out the following commands in your macro.

// LET $radius = 10

// LET $pitch = 4

// LET $numturn = 10

We don't need these commands, they will be replaced with new
commands. You can leave the commands in your macros as
comments, just in case you decide to use the commands again.

2 Add the following commands before the commands which are
given in Step 1.

// Displays dialogs to input values
INPUT NUMBER 'Radius of helix' $radius
INPUT NUMBER 'Pitch (per turn)' $pitch

INPUT NUMBER 'Number of turns' $numturn

 More information on interacting with the user

The INPUT NUMBER command tells the user to input a number.

When the macro is run, the command

Input NUMBER 'Radius of helix' $radius
displays the dialog shown below.

The string 'Radius of helix' is the title of the dialog. When the user
enters a value, it is assigned to the variable $radius. The name of
the variable is on the left of the data box on the dialog.

Run your macro file that interacts with the user
1 Select your macro file or helix_interact.mac. For further details

see, Running the macro (see page 56).

2 Click Open.

64 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

3 While the macro is running, the first dialog is displayed.

4 Enter a value and click OK.

5 The Pitch dialog is displayed.

6 Enter a value and click OK.

7 Finally the Number of turns dialog is displayed.

8 Enter a value and click OK.

The values are inserted in the macro and the helix is drawn using
the values.

Changing the origin of the helix
In this example, the origin of the helix is the origin of the current
workspace. We want to use any position as the origin.

We will add code so that the user can click a point on the screen to
define the origin.
Editing your macro

You can either:

 Edit your macro file

 Open and examine the file helix_variable.mac in the folder:
d:\dcam\product\powershapexxxx\file\examples\Macro_Writing

where XXXX is the version number of the software and d is the
drive on which the software is installed.

The changes are given in bold text.

// This macro creates a helix

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 65

// Written by: Razia Ghani

// Displays dialogs to input values
INPUT POINT 'Position of centre' $cenpos

INPUT NUMBER 'Radius of helix' $radius
INPUT NUMBER 'Pitch (per turn)' $pitch

INPUT NUMBER 'Number of turns' $numturn

// Values to change the size of the helix

// LET $radius = 10

// LET $pitch = 4

// LET $numturn = 10

// Calculating values for the co-ordinates
LET $neg_radius = -$radius
LET $zheight = $pitch / 4

// Creating the helix's curve
create curve
THROUGH

 // The first co-ordinate
 // $radius 0 0
 LET start_x = $radius + $cenpos_x
 LET start_y = $cenpos_y
 LET start_z = $cenpos_z
 $start_x $start_y $start_z

 // Using a loop to input the
 // co-ordinates for each turn

 WHILE $numturn {
 LET numturn = $numturn - 1

 $neg_radius $radius $zheight
 $neg_radius $neg_radius $zheight

66 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 $radius $neg_radius $zheight
 $radius $radius $zheight
 }

// Exiting curve creation mode
Select

 Further information on changing the origin of the helix

The command:

INPUT POINT 'Position of centre' $cenpos
displays the following dialogue box.

The dialogue box remains dislayed on the screen until the user
enters a point.

The point data is entered into the variable $cenpos. You can obtain
the x co-ordinate of the point using the variable $cenpos_x.
Similarly, the y and z co-ordinates can be obtained.

The following commands enter the first point of the helix relative to
the input position.

 LET start_x = $radius + $cenpos_x

 LET start_y = $cenpos_y

 LET start_z = $cenpos_z
 $start_x $start_y $start_z

Run your macro that changes the origin of the helix
1 Select your macro file or helix_origin.mac. For further details

see, Running the macro (see page 56).

2 Click Open.

The following dialog appears asking for you to input a position.

3 Click a point on the screen.

4 The three dialogs are displayed as described in Run your macro
file that interacts with the user (see page 63).

5 Enter values in each and click Accept.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 67

The helix is drawn on the screen.

Creating a helix around a cylinder
The helix is now constructed relative to a user-defined point. We
want to extend the macro so that the helix is constructed around an
existing primitive cylinder (surface).

When the macro is running, the user will select the cylinder. We will
then ask the user:

 The number of turns to the helix

 The length of the pitch

The helix is then drawn around the cylinder.

The macro will also:

 Let the user select the cylinder.

 Create a temporary workplane at the workplane of the cylinder.
The temporary workplane gives us the centre of the helix and the
orientation of the workplane.

Editing your macro

You can either:

 Edit your macro file

 Open and examine the file helix_variable.mac in the folder:
d:\dcam\product\powershapexxxx\file\examples\Macro_Writing

where XXXX is the version number of the software and d is the
drive on which the software is installed.

The changes are given in bold text.

// This macro creates a helix

// Written by: Razia Ghani

// Clear the selection list
SELECT CLEARLIST

// Selecting a cylinder
INPUT SELECTION 'Select a cylinder'
LET cyl = selection.object[0]

// Displays dialogue boxes to input values
// INPUT POINT 'Position of centre' $cenpos

68 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

// INPUT NUMBER 'Radius of helix' $radius

INPUT NUMBER 'Pitch (per turn)' $pitch

INPUT NUMBER 'Number of turns' $numturn

// Values to change the size of the helix

// LET $radius = 10

// LET $pitch = 4

// LET $numturn = 10

//Creating a temporary workplane
CREATE WORKPLANE
$cyl.origin.x $cyl.origin.y $cyl.origin.z

// Modifying the workplane

MODIFY
NAME tmpwkhelix
XAXIS DIRECTION
X $cyl.xaxis.x
Y $cyl.xaxis.y
Z $cyl.xaxis.z
ACCEPT
YAXIS DIRECTION
X $cyl.yaxis.x
Y $cyl.yaxis.y
Z $cyl.yaxis.z
ACCEPT
ZAXIS DIRECTION
X $cyl.zaxis.x
Y $cyl.zaxis.y
Z $cyl.zaxis.z
ACCEPT
ACCEPT

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 69

// Calculating values for the co-ordinates
LET $radius = abs($cyl.lat[1].point[1].x)
LET $neg_radius = -$radius
LET $zheight = $pitch / 4

// Creating the helix's curve
create curve
THROUGH

 // The first co-ordinate
 $radius 0 0
 // LET start_x = $radius + $cenpos_x
 // LET start_y = $cenpos_y
 // LET start_z = $cenpos_z
 // $start_x $start_y $start_z

 // Using a loop to input the
 // co-ordinates for each turn

 WHILE $numturn {
 LET numturn = $numturn - 1

 $neg_radius $radius $zheight
 $neg_radius $neg_radius $zheight
 $radius $neg_radius $zheight
 $radius $radius $zheight
 }

// Exiting curve creation mode
// and deleting the temporary

// workplane

Select
SELECT CLEARLIST
SELECT ADD WORKPLANE 'tmpwkhelix'

70 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

DELETE

 More information on creating a helix around a cylinder

Before the cylinder is selected, we clear the selection list using the
following command.

SELECT CLEARLIST

The command

INPUT SELECTION 'Select a cylinder'
displays the following dialog.

This dialog tells the user to select objects.

When the user clicks OK, your macro can get the details of what is
selected by accessing the 'selection' object.

The following command assigns the first object in the selection to
the variable cyl.

LET cyl = selection.object[0]
selection.object[0] is the first object in the selection. This object is
assigned to variable cyl.

To find out more information about the selected object, you can use
either:

 selection.object[number].syntax

 cyl.syntax

where syntax is the syntax associated with the selected object. For
further details on the list of syntax for each object, see PowerSHAPE
object information (see page 153).

When you write macros, we advise you to assign the selected
objects you want to use later in your macro to other variables. If
the selection changes, you will obviously lose your selection.

For further details, see: Creating a workplane at the origin of the
cylinder (see page 70)

Creating a workplane at the origin of the cylinder
The following command creates a workplane at the origin of the
cylinder.

CREATE WORKPLANE

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 71

$cyl.origin.x $cyl.origin.y $cyl.origin.z
The variable $cyl is the primitive cylinder. We have used the syntax
of the primitive cylinder to find out its origin.

The commands below edit:

 the name of the workplane

 the direction of each axis of the workplane to match the axis on
the instrumentation of the primitive.

MODIFY

NAME tmpwkhelix

XAXIS DIRECTION

X $cyl.xaxis.x

Y $cyl.xaxis.y

Z $cyl.xaxis.z
ACCEPT

YAXIS DIRECTION

X $cyl.yaxis.x

Y $cyl.yaxis.y

Z $cyl.yaxis.z
ACCEPT

ZAXIS DIRECTION

X $cyl.zaxis.x

Y $cyl.zaxis.y

Z $cyl.zaxis.z
ACCEPT

ACCEPT

The commands to use in your macro may not be obvious. You may
need to:

1 record a macro

2 open the macro in a text editor

3 copy the commands in your macro.

For example, to create and edit a workplane, record a macro to
create a workplane and then edit the properties you want to use in
your macro.

The following command:

LET $radius = abs($cyl.lat[1].point[1].x)

72 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

uses the x co-ordinate of point 1 of lateral 1 of the cylinder to define
the radius.

The command below uses the origin of the workplane to define the
start point of the helix.

$radius 0 0

The following three lines clear the selection, then select and delete
the workplane.

SELECT CLEARLIST

SELECT ADD WORKPLANE 'tmpwkhelix'
DELETE

Adding user selection of the cylinder to the macro
You can either:

 Edit your macro file

 Open and examine the file helix_variable.mac in the folder:

d:\dcam\product\powershapexxxx\file\examples\Macro_Writing

where XXXX is the version number of the software and d is the
drive on which the software is installed.

The changes are given in bold text.

// This macro creates a helix

// Written by: Razia Ghani

// Clear the selection list
SELECT CLEARLIST

// Selecting a cylinder
INPUT SELECTION 'Select a cylinder'
LET cyl = selection.object[0]

// Displays dialogue boxes to input values
// INPUT POINT 'Position of centre' $cenpos
// INPUT NUMBER 'Radius of helix' $radius

INPUT NUMBER 'Pitch (per turn)' $pitch

INPUT NUMBER 'Number of turns' $numturn

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 73

// Values to change the size of the helix

// LET $radius = 10

// LET $pitch = 4

// LET $numturn = 10

//Creating a temporary workplane
CREATE WORKPLANE
$cyl.origin.x $cyl.origin.y $cyl.origin.z

// Modifying the workplane

MODIFY
NAME tmpwkhelix
XAXIS DIRECTION
X $cyl.xaxis.x
Y $cyl.xaxis.y
Z $cyl.xaxis.z
ACCEPT
YAXIS DIRECTION
X $cyl.yaxis.x
Y $cyl.yaxis.y
Z $cyl.yaxis.z
ACCEPT
ZAXIS DIRECTION
X $cyl.zaxis.x
Y $cyl.zaxis.y
Z $cyl.zaxis.z
ACCEPT
ACCEPT

// Calculating values for the co-ordinates
LET $radius = abs($cyl.lat[1].point[1].x)
LET $neg_radius = -$radius
LET $zheight = $pitch / 4

74 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

// Creating the helix's curve
create curve
THROUGH

 // The first co-ordinate
 $radius 0 0
 // LET start_x = $radius + $cenpos_x
 // LET start_y = $cenpos_y
 // LET start_z = $cenpos_z
 // $start_x $start_y $start_z

 // Using a loop to input the
 // co-ordinates for each turn

 WHILE $numturn {
 LET numturn = $numturn - 1

 $neg_radius $radius $zheight
 $neg_radius $neg_radius $zheight
 $radius $neg_radius $zheight
 $radius $radius $zheight
 }

// Exiting curve creation mode
// and deleting the temporary

// workplane

Select
SELECT CLEARLIST
SELECT ADD WORKPLANE 'tmpwkhelix'
DELETE

 More information on creating a helix around a cylinder

Before the cylinder is selected, we clear the selection list using the
following command.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 75

SELECT CLEARLIST

The command

INPUT SELECTION 'Select a cylinder'
displays the following dialog.

This dialog tells the user to select objects.

When the user clicks OK, your macro can get the details of what is
selected by accessing the 'selection' object.

The following command assigns the first object in the selection to
the variable cyl.

LET cyl = selection.object[0]
selection.object[0] is the first object in the selection. This object is
assigned to variable cyl.

To find out more information about the selected object, you can use
either:

 selection.object[number].syntax

 cyl.syntax

where syntax is the syntax associated with the selected object. For
further details on the list of syntax for each object, see PowerSHAPE
object information (see page 153).

When you write macros, we advise you to assign the selected
objects you want to use later in your macro to other variables. If
the selection changes, you will obviously lose your selection.

For further details, see: Creating a workplane at the origin of the
cylinder (see page 70)

Run your macro that creates a helix around a cylinder
1 Create a primitive cylinder (surface).

2 Select your macro file or helix_cyl.mac.For further details see,
Running the macro (see page 56).

3 Click Open.

76 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

4 The following dialog is displayed asking for you to select a
cylinder.

5 Select the primitive cylinder.

6 Click Accept.
7 Two dialogs are displayed, asking for the pitch and the number

of turns.

8 Enter values in each dialog and click Accept.
The helix is drawn around the cylinder.

Testing input data
Many macros fail because the input data is wrong. To make sure
that the correct data is input, you can test the data. If the wrong
data is entered, prompt the user to input the data again.

In our macro, we will check:

 if a single object is selected

 if the single object is a surface

 if the surface is a cylinder

If none of the above are true, we tell the user that a single cylinder
must be selected and then give an option to exit the macro. If the
user decides to continue, they are asked to select a cylinder again.

We will also check if the helix is smaller or larger than the cylinder.

Run your macro file
We will run the macro to check if the tests work.

1 Create different objects in your model to test your macro. Make
sure you have a primitive cylinder.

2 From the Main menu, select Macro followed by Run to display the
Select A Macro To Run dialog.

3 Select your macro file or helix_test.mac.

4 Click Open.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 77

5 The following dialog appears asking for you to select a cylinder.

Select a couple of objects.

6 Click OK

7 The Information dialog appears telling you that a single cylinder
must be selected.

8 Click OK.

9 The Query dialog appears asking if you want to exit the macro.

If you click Yes, the macro exits. If you click No, the Select a
cylinder dialog appears as given in Step 5 above.

10 Click Yes to exit the macro.

11 Run the macro again.

12 Select a couple of objects.

13 This time when you come to the Query dialog asking you whether
to exit the macro, click No.

14 The Select a cylinder dialog appears. Select a cylinder.

15 Click OK.

16 The two dialogs appear as described earlier asking for the pitch
and the number of turns. Enter values in each and click OK

78 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

If the helix is larger than the cylinder the following dialog will
appear.

If the helix is smaller, the following appears.

If the helix fits the cylinder, no dialog is displayed.

In all cases, the helix is created around the cylinder.

17 Run the macro again and input different values for the helix to
test all the options.

Adding tests to your macro
You can either edit your macro file or open and examine the file
helix_test.mac in the folder:

c:\dcam\product\powershapeXXXX\file\examples\Macro_Writing

where XXXX is the version number of the software and c is the drive
on which the software is installed.

The changes are given in bold text.

// This macro creates a helix

// Written by: Razia Ghani

// Asking the user to select a cylinder
// and then checking that the selection
// contains only a cylinder
LET $no_cyl = 1
WHILE $no_cyl {

 // Clear the selection list
 SELECT CLEARLIST

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 79

 // Selecting a cylinder
 INPUT SELECTION 'Select a cylinder'

 // Testing if a single object is selected
 LET $single = selection.number == 1

 IF $single {
 // Testing if the single object is
 // a surface

 The strings Surface and Cylinder must use the correct
capitalisation.

 LET $surf = selection.type[0] == 'Surface'
 IF $surf {
 // Testing if the surface is a cylinder
 LET $no_cyl=!(selection.object[0].type == 'Cylinder')
 }
 }

 IF $no_cyl {
 PRINT ERROR 'You must select a single cylinder'
 INPUT QUERY 'Do you want to exit the macro?' $prompt
 IF $prompt {
 RETURN
 }
 }
}

LET cyl = selection.object[0]

// Displays dialogue boxes to input values
// INPUT POINT 'Position of centre' $cenpos

80 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

// INPUT NUMBER 'Radius of helix' $radius
INPUT NUMBER 'Pitch (per turn)' $pitch

INPUT NUMBER 'Number of turns' $numturn

// Values to change the size of the helix

// LET $radius = 10

// LET $pitch = 4

// LET $numturn = 10

//Creating a temporary workplane
CREATE WORKPLANE

$cyl.origin.x $cyl.origin.y $cyl.origin.z

// Modifying the workplane

MODIFY

NAME tmpwkhelix

XAXIS DIRECTION

X $cyl.xaxis.x

Y $cyl.xaxis.y

Z $cyl.xaxis.z
ACCEPT

YAXIS DIRECTION

X $cyl.yaxis.x

Y $cyl.yaxis.y

Z $cyl.yaxis.z
ACCEPT

ZAXIS DIRECTION

X $cyl.zaxis.x

Y $cyl.zaxis.y

Z $cyl.zaxis.z
ACCEPT

ACCEPT

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 81

// Checking the size of the helix and warning
// the user if too small or too big
LET $helix_height = $pitch * $numturn
LET $length = abs($cyl.long[1].point[2].z)
Let $big = ($helix_height > $length)
IF $big {
PRINT ERROR 'WARNING: helix is longer than cylinder'
}
Let $small = ($helix_height < $length)
IF $small {
PRINT ERROR 'WARNING: helix is smaller than cylinder'
}

// Calculating values for the co-ordinates
LET $radius = abs($cyl.lat[1].point[1].x)
LET $neg_radius = -$radius
LET $zheight = $pitch / 4

// Creating the helix's curve
create curve
THROUGH

 // The first co-ordinate
 $radius 0 0

 // LET start_x = $radius + $cenpos_x

 // LET start_y = $cenpos_y

 // LET start_z = $cenpos_z
 // $start_x $start_y $start_z

 // Using a loop to input the

82 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 // co-ordinates for each turn

 WHILE $numturn {
 LET numturn = $numturn - 1

 $neg_radius $radius $zheight
 $neg_radius $neg_radius $zheight
 $radius $neg_radius $zheight
 $radius $radius $zheight
 }

// Exiting curve creation mode
// and deleting the temporary

// workplane

Select
SELECT CLEARLIST

SELECT ADD WORKPLANE 'tmpwkhelix'
DELETE

 More information on adding tests to your macro

Two tests are added to:

 check if a single object is selected and that it is a cylinder

 check if the helix is smaller or larger than the cylinder

The tests used the IF command to check if the data is valid. With
any test, you must decide what to do if the data is not valid.

The macro will fail if a cylinder is not selected as the first object.
When selecting objects, we cannot always guarantee which is the
first object. We have restricted users to selecting a single cylinder.

 The following command assigns a value of 1 to the variable
no_cyl. This is the condition of the loop and shows that no single
cylinder is selected.

LET $no_cyl = 1

 The While loop continues to perform its commands while no
cylinder is selected.

WHILE $no_cyl {
 Carry out commands within the brackets

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 83

}
 In the loop, the following clear the selection list and ask the user

to select a cylinder.

SELECT CLEARLIST

INPUT SELECTION 'Select a cylinder'
 Test to see if the selection only contains a single object. In the

following command, selection.number is the number of items
selected.

LET $single = selection.number == 1

The following statement:

selection.number == 1

checks if the left and right sides are equal. In our case, we want
to know if 1 object is selected. If this is true, then $single
becomes 1. Otherwise $single becomes zero.

 The following checks the value of $single. If the value is 1, then
the commands within the brackets are carried out.

 IF $single {
 Carry out commands within the brackets

 }
If the value is 0, then the commands after the closing bracket
are carried out.

 These are the commands in brackets:

LET $surf = selection.type[0] == 'Surface'
IF $surf {
 LET $no_cyl=!(selection.object[0].type == 'Cylinder')
}
They check if the single object is a surface and whether that
surface is a primitive cylinder. If the object is a primitive
cylinder, then the variable $no_cyl becomes 0.

 Once we have tested the selection and we still don't have a
single cylinder selected, we want to tell the user that a single
cylinder must be selected and ask whether to exit the macro.

This command checks if $no_cyl is 1 and then displays two
dialogs.

IF $no_cyl {
 The following command displays one of the dialogs.

84 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

PRINT ERROR 'You must select a single cylinder'

This tells you what is wrong. As soon as the user clicks OK, the
following command is carried out.

INPUT QUERY 'Do you want to exit the macro?' $prompt
This displays the following dialog.

If the user clicks Yes, the variable $prompt becomes 1. If the
user clicks No, the variable becomes 0.

If $prompt is 1, then the command RETURN is carried out. This
command exits the macro.

 IF $prompt {
 RETURN

 }
 The second test warns the user if the helix is longer or smaller

than the cylinder. The commands below test the size of the helix
against the length of the cylinder and display warnings where
necessary.

LET $helix_height = $pitch * $numturn

LET $length = abs($cyl.long[1].point[2].z)
Let $big = ($helix_height > $length)
IF $big {
PRINT ERROR 'WARNING: helix is longer than cylinder'
}
LET $small = ($helix_height < $length)
IF $small {
PRINT ERROR 'WARNING: helix is smaller than cylinder'
}

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 85

Running the macro to test that the tests work
Run the macro to check if the tests work.

1 Create different objects in your model to test your macro. Make
sure you have a primitive cylinder.

2 From the Main menu, select Macro followed by Run to display the
Select A Macro To Run dialog.

3 Select your macro file or helix_test.mac.

4 Click Open.

5 The following dialog appears asking for you to select a cylinder.

6 Select a couple of objects.

7 Click OK

8 The Information dialog appears telling you that a single cylinder
must be selected.

9 Click OK.

10 The Query dialog appears asking if you want to exit the macro.

If you click Yes, the macro exits. If you click No, the Select a
cylinder dialog is displayed as shown in step 5 above.

11 Click Yes to exit the macro.

12 Run the macro again.

13 Select a couple of objects.

14 This time when you come to the Query dialog asking you whether
to exit the macro, click No.

15 The Select a cylinder dialog appears. Select a cylinder.

86 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

16 Click Accept.
17 The two dialogs appear as described earlier asking for the pitch

and the number of turns. Input values in each and click OK

If the helix is larger than the cylinder the following dialog will
appear.

If the helix is smaller, the following appears.

If the helix fits the cylinder, no dialog is displayed.

In all cases, the helix is created around the cylinder.

18 Run the macro again and input different values for the helix to
test all the options.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 87

Macros - working examples
Use the following macro examples in your own macros:

Blanking (see page 87)

Calculate the volume of each solid in the selection (see page 88)

Close all models (see page 88)

Create a curve from a selection of points (see page 88)

Create a tapered helix (see page 90)

Create geometry (see page 94)

Create normal workplane for each point on a curve (see page 95)

Create text in a macro (see page 95)

Deactivate all solids in a model (see page 96)

Deleting pcurves (see page 97)

DO - WHILE loop (see page 97)

Dynamic sectioning (see page 97)

Exporting multiple images (see page 98)

Export using variables (see page 99)

Importing components from an .xt file (see page 100)

Move points on a curve (see page 101)

Select and add object (see page 102)

Offset surface curves by different distances (see page 102)

Open psmodels from a directory list (see page 103)

Open x_t from a directory list (see page 104)

Using LOOP to print the length of lines to a file (see page 106)

Using SWITCH (see page 107)

Using WHILE loop to create point at centre of arc (see page 107)

Blanking
Using these macros to blank items.
// Blanking all curves
QUICK QUICKSELECTWIRE
DISPLAY BLANKSELECTED
//
// Blanking all surfaces
QUICK QUICKSELECTSURF

88 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

DISPLAY BLANKSELECTED

Calculate the volume of each solid in the selection
Use this macro to calculate the volume of each solid in the selection
and print the total volume of all the solids.
// This selects all the solids in the model
//
FILTERBUTTON FilterItems
SelectType solid
All
ACCEPT
//
REAL s_total = 0
PRINT 'Start total = '$s_total
//
LET numturn = selection.number
//
WHILE $numturn {
LET $numturn = $numturn - 1
REAL s_vol = selection.object[$numturn].volume
LET s_name = selection.object[$numturn].name
PRINT 'Volume of solid '$s_name ' = '$s_vol
REAL s_total = ($s_total + $s_vol)

}
//
SELECT EVERYTHING PARTIALBOX
SELECT clearlist
//
PRINT 'Total volume of selected solids = '$s_total

Close all models
Use this macro to close all open models.
LET n = window.number
LET w = $n > 0
WHILE $w {
FILE CLOSE SELECTED YES
LET w = window.number

}

Create a curve from a selection of points
Use this macro to create a curve from a selection of points.
// This example uses lists and vectors
// This only works correctly if there are no
// duplicate points. The curve is also created

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 89

// in the order the points are taken from
// the selection list and this is only
// really controlled by the number order they
// are created in. Need a model with points in it

// select all the points in the model
FILTERBUTTON FilterItems
SelectType Point
InvertType
InvertType
All
accept

// Quit if we have no points selected
LET numpts = selection.number
LET e = ($numpts==0)
IF $e {
 PRINT 'No points are selected.'
 return
}

// Create a list of points
LIST all_points = { }
LET i = 0
LET carry_on = ($i < $numpts)
WHILE $carry_on {
 LET point_obj = SELECTION.OBJECT[$i]
 VECTOR pt = $point_obj.POSITION
 LIST_ADD $all_points END $pt
 LET i = $i + 1
 LET carry_on = ($i < $numpts)
}

// Create a curve that goes through all the points
CREATE CURVE THROUGH

90 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

LET i = 1
LET carry_on = ($i <= $numpts)
WHILE $carry_on {
 VECTOR pt = $all_points[$i]
 REAL x = $pt[1]
 REAL y = $pt[2]
 REAL z = $pt[3]
 STRING command = concatenate('abs '; $x; ' '; $y; ' ';
$z)
 EXECUTE COMMAND $command

 LET i = $i + 1
 LET carry_on = ($i <= $numpts)
}

SELECT
EVERYTHING PARTIALBOX

Create a tapered helix
Use this macro to create a tapered helix.
// This macro creates a tapered helix for either an
external or internal thread.
//
// Ask the user to select a workplane and then check that
the selection contains only a workplane,
// the workplane is then made activate.
// The Helix will be created about this workplane, so Z
needs to be aligned at the centre of the screw
//
// Use a while loop to make the correct selection
LET $no_wkp = 1
WHILE $no_wkp {

 // Clear the selection list
 select clearlist

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 91

 // Selecting a workplane
 INPUT SELECTION 'Select a workplane'

 // Testing if a single object is selected
 LET $single = selection.number == 1
 IF $single {
 // Test if the single object is a workplane
 LET $seltype = selection.type[0] == 'Workplane'
 IF $seltype {
 // If the selection is correct activate the
workplane and carry on creating the curves
 pri 'Selection correct'
 Modify ACTIVATE Accept
 let $no_wkp = $no_wkp - 1
 }
 } ELSE {
 // Else ask to exit the macro or make a new selection
 INPUT QUERY 'Do you want to exit the macro?'
$prompt
 IF $prompt {
 // If YES exit the macro
 Print 'Exiting the macro'
 RETURN
 } ELSE {
 // Try selecting again
 select clearlist
 print 'Trying selecting again'
 INPUT SELECTION 'Select a workplane'
 }
 }
}

// Prompt the user to input the values for the number of
turns, radius and height
// Query whether the thread is internal of external
input number 'Number of turns (whole number)' $hn

92 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

input number 'Radius of the helix' $hr
input number 'Height of the helix' $hh
input query 'Is this an external thread?' $yesno

real $hz1 = ($hh / $hn)
real $hz2 = ($hh - ($hh / $hn))

if $yesno {

 // if the thread is external create this curve
 create curve helix
 0
 height ($hh / $hn)
 turns 1
 same off
 radius2 ($hr - 1)
 radius1 ($hr)
 accept
 string $c1 = selection.name[0]
 create curve helix
 0 0 $hz1
 height ($hh - (2*($hh / $hn)))
 turns ($hn - 2)
 same on
 radius1 ($hr)
 accept
 create curve helix
 0 0 $hz2
 height ($hh / $hn)
 turns 1
 same off
 radius1 ($hr - 1)
 radius2 ($hr)
 accept

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 93

} else {

 // if the thread is internal create this curve
 create curve helix
 0
 height ($hh / $hn)
 turns 1
 same off
 radius2 ($hr + 1)
 radius1 ($hr)
 accept
 string $c1 = selection.name[0]
 create curve helix
 0 0 $hz1
 height ($hh - (2*($hh / $hn)))
 turns ($hn - 2)
 same on
 radius1 ($hr)
 accept
 create curve helix
 0 0 $hz2
 height ($hh / $hn)
 turns 1
 same off
 radius1 ($hr + 1)
 radius2 ($hr)
 accept

}

// Create a composite curve from the three separate
curves
select clearlist
create curve compcurve
add curve $c1

94 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

save
checkquit

Create geometry
Use this macro to create geometry to be used in the geometry.
// this creates the geometry to be used in the macro
// Two intersecting planes are created and then a curve
is created from the intersection this will be the created
item
PRINCIPALPLANE XY
create surface PLANE
0
PRINCIPALPLANE ZX
create surface Plane
PLANE
0
SelectAll
create curve INTERSECT
ACCEPT
//
// set the name to be used for the curve
STRING new_name = 'fred'
//
// find out how many items were created
LET c_obj = created.number
PRINT 'Number of created items ' $c_obj
//
// the WHILE loop checks that a composite curve was
created and renames the composite curve
//
WHILE $c_obj {
//
LET $c_obj = $c_obj - 1

//
LET n = created.object[$c_obj].name
LET t = created.type[$c_obj]
IF $t == 'Composite Curve' {
LET $t = 'Compcurve'

}
//
SELECT clearlist

//
LET com = concatenate('add '; $t;' "'; $n; '"')
EXECUTE COMMAND $com
PRINT $com

//
RENAME

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 95

VAR_NAME $new_name
ACCEPT

//
}

Create normal workplane for each point on a curve
The following example creates a normal workplane for each point on
a curve:
// This macro assumes you have already created the curve
in the model
// A dialog is raised to select the curve you want to
use.
// Does not work for composite curves
//
// Selecting a curve
INPUT SELECTION 'Select a curve'
//
// find out the name of the curve
LET name = selection.name[0]
PRINT $name
//
// find out the number of points in the curve
LET numturn = curve[$name].number
PRINT $numturn
select clearlist
//
// create a point at each keypoint of the curve
WHILE $numturn {
select clearlist
create workplane NormalSingle
Position
KEYPOINT
add Curve $name
NUMBEREDPOINT
KEYPTNUMBER $numturn
APPLY
cancel

//
 LET numturn = $numturn - 1

}
//
select

Create text in a macro
Use this macro to create text in the macro.

96 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 When LIVETEXT is on, this macro will not work; you cannot
enter live text using a variable.

// How to create text using a variable in a macro
// Livetext on doesnot work
//
//
TOOLS PREFERENCES
UNITPREFS
TEXTPREFS
TEXT LIVETEXT OFF
ACCEPT
//
STRING fred = 'wibble'
LET MYTEXT = 'fred'
// INPUT TEXT 'Enter some text' $fred
//
CREATE TEXT TEXT HORIZONTAL YES
0 0 0
ScrolledText $fred
Accept
TEXT FONT Delcam Sans SerIF
TEXT HEIGHT 0.3
TEXT PITCH 0.1
SELECT
select clearlist
//
TOOLS PREFERENCES
UNITPREFS
TEXTPREFS
TEXT LIVETEXT ON
ACCEPT
//
LET com = concatenate('''; ($fred); ''')
p $fred
CREATE TEXT TEXT HORIZONTAL YES
20 0 0
EXECUTE COMMAND $com
SELECT

Deactivate all solids in a model
Use this macro to deactivate all solids in a model.
// Need some solids in the model
// Get the name of the currently active solid (this will
return"There is no active solid" if there isn't an active
solid)
//
STRING active_solid_name = SOLID.ACTIVE
// Deactivate the active solid

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 97

LET e = SOLID[$active_solid_name].EXISTS
IF $e {
SELECT CLEARLIST
ADD SOLID $active_solid_name
MODIFY MODIFY DEACTIVATE ACCEPT
SELECT CLEARLIST

}

Deleting pcurves
Use this macro to delete pcurves.
toolbar tools edit
toolbar tools fixing
TRIMREGIONEDIT
//
// The following command was added
//
EDITPCURVE
//
ADD_ALL_CURVES
DELETE
TOOLBAR TREDIT LOWER SELECT
SELECT CLEARLIST

DO - WHILE loop
This macro uses a DO-WHILE loop to create a point and ask a
question.
// Need a model open for this to work
//
DO {
PRINT 'looping'
create point
0 0 0
select
// ask a question to get the 1 or 0 for the exit of the
loop
INPUT QUERY 'Do you want to create another hole?' $fred

} WHILE $fred
PRINT 'finishing'
RETURN

Dynamic sectioning
Use this macro to create a dynamic section.
VIEW CLIPPLANES RAISE
VIEW CLIPPLANES EDGES ON

98 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Exporting multiple images
Use this macro to export images to a file.
// Need to have a 3D object in the model and need to
change the macro to select that object for it to be
rotated
//
// Here's the powershape macro that made the frames
(PowerShape5811 or later):
// The incremental rotation per frame.
INT inc = 60
//
// The maximum angle through which to rotate.
INT max_angle = 360
//
INT frame_number = 0
//
LET true = 1
WHILE $true {
//
// Make the filename for this frame.
LET frame_number = $frame_number + 1
//
// Make a STRING containing the frame number.
STRING frame_name = inttostring($frame_number)
//
// Pad this name with leading zeros to ensure the names
collate correctly.
STRING padded_name = padleading($frame_name; 5; '0')
//
// Make the complete filename.
STRING filename = concatenate('e:xxxx\PRINT\f';
$padded_name; '.png')
//
// Render to the file.
render tofile replace $filename
//
// Have we finished?
LET angle = $inc * ($frame_number - 1)
LET finish = ($angle > $max_angle)
IF $finish {
RETURN

}
PRINT "Angle = " $angle
//
// Rotate the target object.
select add solid '1'
edit rotate
angle $inc
apply

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 99

dismiss
select
select clearlist

}
//
// This macro creates a number of .png files, one per
frame.
// It may be more convenient to create .jpg files.
// You now have to turn these frames into a movie.
// You could use, for example, Microsoft Movie Maker
(doesn't read .png), ImageMagick, or something ELSE.

Export using variables
Use this macro to export to a dgk file using variables.
// need to have a model open with some items in it to
export

// Other conversions
//===================================
// inttoreal
// inttostring
// realtoint
// realtostring
// stringtoint
// stringtoreal
//====================================
//
// set path to export to
//
LET path = 'e:\xxxx\'
//
// Set the value of the INT
INT numturn = 10
//
WHILE $numturn {
// Convert the INT to a STRING
STRING fred = inttostring($numturn)
//
// Do the export using concatentate
selectall
LET com2 = concatenate('file export '; $path; $fred;
'.dgk')
PRINT $com2
EXECUTE COMMAND $com2
//
LET numturn = $numturn - 1

//
}

100 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Importing components from an .xt file
Use this macro to import components from an .xt file.
// The macro will work if you open a New model then
Import the xt file.
// It assumes that there are no previously named levels.
// It also assumes that the objects imported are
components.
//
// Select all the imported components
//==================================
//
selectall
//
// store the number of components
//===================================
//
LET numturn = selection.number
//
// Start the loop
//=====================================
//
WHILE $numturn {
//
// Set some variables
//=================================
LET s_com = $numturn - 1
LET $l_name = selection.name[$s_com]
//
// Set the start number of 501 for the levels
//===============================
LET lev_num = 500 + $numturn
//
// renames the level with the name of the component
//==================================
LET com = concatenate('LEVEL RENAME '; $lev_num;' ';
$l_name)
EXECUTE COMMAND $com
//
//clear the selection so one component can be aded to a
level
//================================
Select clearlist
add Component $l_name
//
// adds the selection to the renamed level
//==================================
LET com = concatenate('LEVEL POPUP RAISE '; $lev_num)
EXECUTE COMMAND $com
Level Popup AddSelection

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 101

//
// select everything again
//=================================
selectall
//
// reset the loop number
//==================================
LET numturn = $numturn - 1

}

Move points on a curve
Use this macro to move points on a curve.
// This relies on the compcurve being created with
// an even number of points in a vertical line.
// The point of the tooth should be the even number.
// The move gradually gets bigger.
//
select clearlist
//
// Selecting the composite
INPUT SELECTION 'Select a composite curve'
LET c_name = selection.object[0].name
select clearlist
INPUT NUMBER 'Enter distance to move point by' $Distance
add compcurve $c_name
//
// number of points in the curve
LET c_num = compcurve[$c_name].point.number
//
// set distance m to move the point
REAL m = 0
WHILE $c_num {
// add the curve
add compcurve $c_name
//
//select point on curve
select_points $c_num
end_select
//
// move the point
$m 0 0
//
// clear the selection
select clearlist
//
// set the new distance value of m
LET m = $m - $Distance
//
// set the new point number

102 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

// even numbers and top of tooth is every two points
LET c_num = $c_num - 2

}

Select and add object
Use this macro to add the selected object.
// adds the first item in the selection
//
SELECTALL
//
LET n = selection.name[0]
LET t = selection.type[0]
//
select clearlist
//
LET com = concatenate('add '; $t;' "'; $n; '"')
EXECUTE COMMAND $com
PRINT $com

Offset surface curves by different distances
Use this macro to offset surface curves by different distances.
// Need to have a powersurface in a open model
//
LET $no_pow = 1
WHILE $no_pow {
// Clear the selection list
SELECT CLEARLIST
// Selecting a powersurface
INPUT SELECTION 'Select a single Powersurface'
// Testing IF a single object is selected
LET $single = selection.number == 1
IF $single {
// Testing IF the single object is a surface.
// The strings Surface and Powersurface must use the
correct capitalisation.
LET $surf = selection.type[0] == 'Surface'
IF $surf {
// Testing IF the surface is a Powersurface
LET $no_pow =! (selection.object[0].type ==
'Powersurface')

}
}
IF $no_pow {
PRINT ERROR 'You must select a single powersurface'
INPUT QUERY 'Do you want to exit the macro?' $prompt
IF $prompt {
RETURN

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 103

}
}

}
//
LET s_name = selection.object[0].name
//
select clearlist
//
INPUT NUMBER 'Enter overall distance to offset furthest
surface curve by' $Distance
//
// number of laterals in the surface
LET s_num = surface[$s_name].nlats
//
select clearlist
//
WHILE $s_num {
// add the surface
add surface $s_name
//
// select a curve on a surface
// have to use the concatenate and EXECUTE COMMAND to
piece together the add lateral command
LET sel_curve = concatenate('select_lats '; $s_num)
EXECUTE COMMAND $sel_curve
//
// move the point
toolbar tools edit
EDIT SUBEDITS ON
edit offset
distance $Distance
select
//
// clear the selection
select clearlist
//
// set the new Distance value to be
LET Distance = $Distance - ($Distance / $s_num)
//
// set the new suface curve number
LET s_num = $s_num - 1

}

Open psmodels from a directory list
Use this macro to open psmodels from a directory list.
// Use directory['pathname'].files['pattern']
// to open all psmodels from a known directory

104 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

// Get list of models in a known directory
let model_list =
directory['E:\homes\clb\xxxx'].files['*.psmodel']

// Set the number of psmodels in the directory
let num_models = LENGTH($model_list)

// Create a while loop to open the psmodels
LET i = 1
LET carry_on = ($i <= $num_models)
WHILE $carry_on {

 // Find the name of the psmodel
 let model_name = $model_list[$i]
 print $model_name

 // Construct command to open the psmodel
 string command = concatenate('name '; $model_name)
 print $command

 // Open the psmodel
 FILE OPEN
 EXECUTE COMMAND $command
 ACCESS READWRITE
 ACCEPT

 // reset the number to loop to the next psmodel
 LET i = $i + 1
 LET carry_on = ($i <= $num_models)

}

Open x_t from a directory list
Use this macro to open all files of type x_t from a know directory.
// Use directory['pathname'].files['pattern']

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 105

// to import all files of type x_t from a known directory
// Each file is imported into it's own psmodel

// Get list of models in directory
let model_list =
directory['E:\homes\clb\xxxx'].files['*.x_t']

// Set number of files in the directory
let num_models = LENGTH($model_list)

// Create a while loop to import all the files
LET i = 1
LET carry_on = ($i <= $num_models)
WHILE $carry_on {

 // open a psmodel to import the file into
 // This line can be commented out if all files
 // are required in the same psmodel
 FILE NEW

 // Find the name of the file
 let model_name = $model_list[$i]
 print $model_name

 // Construct command to open the file
 string command = concatenate('file import ';
$model_name)
 print $command

 //Import the file
 EXECUTE COMMAND $command

 // reset the number to loop to the next file
 LET i = $i + 1
 LET carry_on = ($i <= $num_models)

106 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

}

Using LOOP to print the length of lines to a file
Use this option to print the lengths of lines to a file. The name and
location of the file is specified at run-time.
args{
STRING filename
}
//
// in the command window enter a line like
// macro run E:\testdata\test_macros\loop-to-PRINT-
length-of-lines-to-a-file.mac 'E:xxxx\fred.txt'
// need to have a model open with some lines in it
//
// ---
// Open txt outfile to hold the report.
// ---
LET use_dialog = $filename == 'dialog'
IF $use_dialog {
 file outfile open Dialog
 Title Create a graphics report file
 FileTypes txt File (.txt)|*.txt
 Raise

} ELSE {
 // This must be an absolute filename.
 file outfile open replace $filename

}
//
// Open the file to PRINT to
LET filename = outfile.name
//
// PRINT the name of the file in the file
PRINT 'This file is ' $filename ''
//---------------------------------------
// Find the linegth of the lines
//---------------------------------------
FILTERBUTTON FilterItems
SelectType Line
All
accept
//
LET numturn = selection.number
WHILE $numturn {
 LET s_line = $numturn - 1
 LET l_name = selection.object[$s_line].name
 LET l_len = line[$l_name].length
 PRINT 'Length of line '$l_name ' is '$l_len

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 107

 LET numturn = $numturn - 1
}

EVERYTHING PARTIALBOX
select clearlist
// --
// Close the file you are printing to
file outfile close

Using SWITCH
Use this macro to use SWITCH to define a variable which is
compared against a list of possible values
// you need some objects in the model and some selected
// IF you have two objects selected it will DO case 2 and
the default
STYLE LOWERFORM
LET e = selection.number
PRINT $e
//
STYLE RAISEFORM
SWITCH $e {
//
case 2
PRINT 'selection is 2'
Style Name Blue
//
case 3
PRINT 'selection is 3'
//
case 4
PRINT 'selection is 4'
Style Width 0.7
create arc full
0 0 0
select
//
default
PRINT 'default case'
Style Pattern Dotted
Select clearlist
STYLE LOWERFORM
//

}
PRINT 'you are at the end of the switch'

Using WHILE loop to create point at centre of arc
Use this macro to create a point at the centre of an arc.

108 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

// need a model with some arcs in it
FILTERBUTTON FilterItems
SelectType arc
All
accept
//
LET numturn = selection.number
//
WHILE $numturn {
LET $numturn = $numturn - 1
LET $l_name = selection.name[$numturn]
//
LET s_cenx = selection.object[$numturn].centre.x
LET s_ceny = selection.object[$numturn].centre.y
LET s_cenz = selection.object[$numturn].centre.z
//
select clearlist
//
Create point
$s_cenx $s_ceny $s_cenz
select
//
select clearlist
//
FILTERBUTTON FilterItems
SelectType arc
All
accept

}
//
select clearlist
EVERYTHING PARTIALBOX

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 109

HTML application tutorial
This tutorial shows you how to write an application using HTM to
create the following helix.

It should be possible to work through this tutorial without any prior
knowledge of HTML. Detailed explanations of the HTML codes are
not given; they can be found in any book on HTML.

When creating applications using HTML files, you may need to
record macros to find the commands. It is therefore advisable to
complete the Macro tutorial (see page 52) before working through
the HTML tutorial..

Opening a new text file
To create a new text file to store the HTML codes,

1 Create a new file in a text editor (such as Notepad).

2 Add the following to the text file:

<HTML>

<HEAD>

</HEAD>

<BODY>

</BODY>

</HTML>

3 Save the file as helix.htm.

110 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

This file now contains the basic layout of the HTML file in two
sections:

HEAD - Contains descriptive information about the HTML file as
well as other information such as style rules or scripts.

BODY - The basic HTML commands to define the controls.

Adding controls to the application
To add controls in the HTML file,

1 Add code to the BODY section so that it looks as follows:

<BODY>

<h1>Helix creation</h1>

<FORM NAME=helix>

Radius <INPUT TYPE=text NAME=radius VALUE="10" > <p>

Pitch <INPUT TYPE=text NAME=pitch VALUE="4" > <p>

Turns <INPUT TYPE=text NAME=turns VALUE="10" > <p>

<INPUT TYPE=button VALUE=" Apply " ><p>

</FORM>

</BODY>

2 Save the file.

 More information on FORM and INPUT commands

 The FORM object lets you to add controls that input data. It is
defined as follows.

<FORM NAME=helix>

</FORM>

 The INPUT object lets you add controls inside the form. The code
has added two types of control:
 Text box

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 111

<INPUT TYPE=text NAME=radius VALUE="10" >

This code contains a variable called VALUE. This puts a default
value in the text box.

 Button

<INPUT TYPE=button VALUE=" Apply " >

Displaying the HTML file in PowerSHAPE
We will open the file in Internet Explorer inside PowerSHAPE to see
what the html page looks like.

1 Start up PowerSHAPE.

2 Select View > Windows > Command to display the command
window.

3 In the command window, type:

browser explorer {path}helix.htm

where {path} is the location of helix.htm

You should see the following:

4 You can change the values in the text boxes and click the Apply

button, but as yet this application does nothing in PowerSHAPE.

Connecting to PowerSHAPE
You can use VBscripts to write the code that allows you to
communicate with PowerSHAPE. You can also use other script
languages such as Javascript. For further details see Example using
Javascript (see page 130)

Add code to the HEAD section so that it looks like this:

112 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

<HEAD>

<script language="VBscript">

 // Connect to the PowerSHAPE

 set pshape = Window.external

</script>

</HEAD>

 More information on VBscript

 The line with the two slashes // is a comment.

 The script is enclosed in the following lines of code:

<script language="VBscript">

</script>

The language used by the script is given in the first line.

 The following command connects PowerSHAPE using the object
called pshape.

set pshape = Window.external

Interacting with PowerSHAPE
To make the dialog work with PowerSHAPE:

 Add the commands that communicate with PowerSHAPE to
create a simple helix.

 Add a procedure (see page 112)

 Link the procedure to the Apply button. (see page 116)

Adding the Apply_click() procedure
PowerSHAPE understands the commands used in macros. The best
way to work out the commands to use is by recording a macro.

You are strongly recommended to complete the Macro tutorial (see
page 52) before creating your own HTML applications

The following are commands from the macro in the Macro tutorial,

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 113

LET $radius = 10

LET $pitch = 4

LET $numturn = 10

LET $neg_radius = -$radius
LET $zheight = $pitch / 4

create curve
THROUGH

 $radius 0 0

 WHILE $numturn {
 LET numturn = $numturn - 1

 $neg_radius $radius $zheight
 $neg_radius $neg_radius $zheight
 $radius $neg_radius $zheight
 $radius $radius $zheight
 }

Select
The following steps show you how to convert these commands into
vbscript commands

1 In the script section, add the procedure called Apply_click() as
shown below.

<script language="VBscript">

 // Connect to PowerSHAPE

 set pshape = Window.external

Sub Apply_click()

 //Calculating values for the coordinates
 neg_rad = - document.helix.radius.value
 zheight = document.helix.pitch.value /4

 //Creating the helix's curve

114 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 pshape.Exec "Create curve"

 pshape.Exec "through"

 //First coordinates of the curve
 pshape.Exec "abs " & document.helix.radius.value & " 0 0"

 //Using a loop to input the coordinates from each turn

 Counter = document.helix.turns.value
 Do Until Counter = 0

 Counter = Counter - 1

 pshape.Exec neg_rad & " " & document.helix.radius.value & " " &
zheight
 pshape.Exec neg_rad & " " & neg_rad & " " & zheight
 pshape.Exec document.helix.radius.value & " " & neg_rad & " " &
zheight
 pshape.Exec document.helix.radius.value & " " &
document.helix.radius.value & " " & zheight
 Loop

 //Exiting curve creation mode
 pshape.Exec "Select"

End Sub

</script>

2 Save the file.

 More information on the Apply_click() procedure

The following commands are in the macro:

LET $radius = 10

LET $pitch = 4

LET $numturn = 10

In the HTML file, we have already assigned values to the radius,
pitch and the number of turns when we created their text boxes.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 115

 We assigned values to the variables neg_radius and zheight as in
the macro commands.

The following commands are in the macro:

LET $neg_radius = -$radius
LET $zheight = $pitch / 4

In the HTML file, we use the values from the text boxes of the
radius and the pitch. So for neg_radius,

neg_rad = - document.helix.radius.value
This assigns the negative value of the radius to the variable
neg_rad.

 The command

document.helix.radius.value
defines the elements in the HTML file from which the string is
extracted. The code value extracts the numeric value of the
string in the textbox called radius. There are two other elements,
document and helix:

document denotes the current page;

helix is the name of the form which contains the text box.

 Similarly, a value is assigned to the variable zheight.

zheight = document.helix.pitch.value /4

 For the following macro commands, we use the pshape.Exec
method to replace some of the code.

create curve
THROUGH

 $radius 0 0

 WHILE $numturn {
 LET numturn = $numturn - 1

 $neg_radius $radius $zheight
 $neg_radius $neg_radius $zheight
 $radius $neg_radius $zheight
 $radius $radius $zheight
 }
Select

So, the create curve command line has become:

pshape.Exec "create curve"

116 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 The pshape.Exec method uses strings to communicate with
PowerSHAPE.

$radius 0 0

has now been replaced by

pshape.Exec document.helix.radius.value & " 0 0"

The & joins the strings on either side of it.

So,

document.helix.radius.value & " 0 0"

is a single string containing the contents of the Radius text box
and two zeros. This is equivalent to the macro command:

$radius 0 0

 The while loop in the macro has been replaced by Do Until Loop.
Both loops operate in a similar way.

 The following have been replaced by the pshape.Exec command
and variables containing strings.

$neg_radius $radius $zheight
$neg_radius $neg_radius $zheight
$radius $neg_radius $zheight
$radius $radius $zheight

The strings are combined using & and " " characters.

So, for example

$neg_radius $radius $zheight
becomes

pshape.Exec neg_rad & " " & document.helix.radius.value & " " &
zheight

Linking the procedure to the Apply button
To link the procedure to the Apply button:

1 Add onClick=Apply_click() to the input object for the Apply button
as follows:

<INPUT TYPE=button value=" Apply " onClick=Apply_click() >

2 Save the file.

 More information on the onClick command

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 117

In the string below, the onClick command defines the action when
you click the Apply button. In this case, it calls the procedure
Apply_click(), that was added in the script.

<INPUT TYPE=button value=" Apply " onClick=Apply_click() >

Testing your application
To run your application,

1 Press the right mouse button in the Browser window in
PowerSHAPE to display a context menu.

2 Select Refresh from the context menu to install the latest
helix.htm file in the browser.

3 Click the Apply button in the Browser window to create a helix
using the default values.

4 Change the values in the three text boxes.

5 Click Apply again to create a helix using the new values.

Exiting the HTML application
You can add a Quit button to the form that will open a HTML file
when it is selected.

To add a Quit button on the same line as the Apply button:

1 Remove <p> from the following line in the HTML file:

<INPUT TYPE=button value=" Apply " onClick=Apply_click() ><p>

2 After this line, insert the following.

<INPUT TYPE=button VALUE="Quit" onClick="document.location
= 'http://www.delcam.com'" ><p>

3 Save the file.

 More information on adding the Quit button

The following command adds a button with label Quit on the HTML
page.

<INPUT TYPE=button VALUE="Quit" onClick="document.location =
'http://www.delcam.com'" ><p>

When you click the Quit button, the action is defined by the
following:

onClick="document.location = 'http://www.delcam.com'"

This opens the Delcam home page, providing you have internet
access from your computer. If you don't have internet access,
change the address to any HTML file you can access.

118 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Testing the Quit button
1 Press the right mouse button in the Browser window to display

the context menu and select Refresh.

2 Click the Quit button in the Browser window to displays the

Delcam home page.

3 To go back to the helix application, press the right mouse button
in the Browser window to display the context menu and select
Back.

 More information on adding the Quit button.

The following command adds a button with label Quit on the HTML
page.

<INPUT TYPE=button VALUE="Quit" onClick="document.location =
'http://www.delcam.com'" ><p>

When you click the Quit button, the action is defined by the
following:

onClick="document.location = 'http://www.delcam.com'"

This opens the Delcam home page, providing you have internet
access from your computer. If you don't have internet access,
change the address to any HTML file you can access.

Entering positions
You can change the application to allow you to enter an origin
position for the helix by typing a value or clicking a position on the
screen.

There are two stages to this:

1 Changing the interface (see page 119)

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 119

2 Adding the code (see page 119)

Changing the interface
1 Open the HTML file.

2 Add the following code before the code for the Apply button.

<hr>

Input origin of the helix<p>

<INPUT TYPE=button VALUE=" Click Point " onClick=point_click()
>

<INPUT TYPE=button VALUE=" Read Point " onClick=point_read()
>

<p>

X <INPUT TYPE=text NAME=x_text VALUE="0"> <p>

Y <INPUT TYPE=text NAME=y_text VALUE="0"> <p>

Z <INPUT TYPE=text NAME=z_text VALUE="0"> <p>

<hr>

3 Save the HTML file.

 More information on changing the interface

 The INPUT command was used previously to create buttons and
text boxes. Now you have added two more buttons and three
additional text boxes.

 The <hr> code inserts a horizontal line on the page.

Adding the code
You enter the position for the origin in one of the following ways:

 Click the Click point button and enter a position in PowerSHAPE.
Then click the Read point button to read the coordinates and
display them in the X, Y and Z text boxes.

 Enter the coordinates directly into the X, Y and Z text boxes.

Adding the following script to the HTML file will provide this
functionality.

1 Before the end of the script command </script>, add the following
procedures.

Sub point_click()

120 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 //Send command to ask for user point input
 pshape.Exec "INPUT POINT 'Click origin' $pos"

End Sub

Sub point_read()

 //Extract the position input from the variable $pos
 document.helix.x_text.value = pshape.Evaluate("$pos_x")
 document.helix.y_text.value = pshape.Evaluate("$pos_y")
 document.helix.z_text.value = pshape.Evaluate("$pos_z")

End Sub

2 Save the HTML file.

More information on INPUT POINT command

In the first procedure, the code allows you to click points on the
screen. Remember the following command from the macro tutorial.

INPUT POINT 'Position of centre' $cenpos
This has been used in the application as follows:

pshape.Exec "INPUT POINT 'Click origin' $pos"

pshape.Exec sends the command from the vbscript to PowerSHAPE.

In the second procedure, the next set of commands are of the form:

document.helix.x_text.value = pshape.Evaluate("$pos_x")
pshape.Evaluate extracts values from objects in PowerSHAPE, in this
case, the x coordinate of the input position $pos. The value of the
coordinate is then entered into the X text box using the code:

document.helix.x_text.value

Updating the Apply_Click procedure
We will now update the Apply_Click procedure to use the values
from the X, Y and Z text boxes.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 121

1 Find the following code in the Apply_Click procedure:

//First coordinates of the curve
pshape.Exec "abs " & document.helix.radius.value & " 0 0"

2 Change it to:

//First coordinates of the curve
//pshape.Exec "abs " & document.helix.radius.value & " 0 0"

start_x =(document.helix.radius.value +
0)+(document.helix.x_text.value + 0)
pshape.Exec "abs " & start_x & " " & document.helix.y_text.value & "
" & document.helix.z_text.value

3 Save the HTML file.

 More information on the Apply_Click procedure

You will notice that we added a zero to some of the variables, for
example.

document.helix.rad_text.value
This variable is a string, that represents a number. By adding the
zero to the variable, the string is converted into a number and used
in the expression.

Instead of removing the following command, we have turned it into
a comment by placing // in front of it.

//pshape.Exec "abs " & document.helix.radius.value & " 0 0"

This lets you to use the command again later.

Testing your application again
You are now ready to test your application. Complete the following
tests:

1 Defining the origin of the helix by entering values for X, Y and Z
(see page 122)

2 Defining the origin of the helix using the mouse (see page 122)

122 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Defining the origin of the helix by entering values for X, Y
and Z

1 Click the right mouse button in the Browser window and select
Refresh from the context menu.

2 Enter some values for X, Y and Z to define the origin of the helix.

3 Change the Radius, Pitch and Number of turn values if you want.

4 Click Apply. A helix is created with its origin at the X, Y, Z
position that you entered.

Defining the origin of the helix using the mouse
1 Change the Radius, Pitch and Number of turn values if you want.

2 Click the Click Point button.

3 Click a position in the graphics window.

4 Click the Read Point button. This enters the position coordinates
into the X, Y and Z text boxes.

5 Press Apply. A helix is created with its origin at the point you
selected.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 123

Selecting objects
To extend the application so that it can create a helix around a
selected cylinder, you need to add a button to the interface.

1 Go back to the HTML file.

2 Add the following code before the Apply button.

Create helix around a cylinder<p>

<INPUT TYPE=button VALUE="Select Cylinder"
onClick=cyl_select() >

<hr>

3 Save the HTML file.

Boolean variable called cylinder
In some commands, you will need to know if a cylinder is selected
or not. You can use a Boolean variable called cylinder to indicate if a
cylinder is selected or not. When the program is run, the cylinder
variable needs to be set to false. Once a cylinder is selected and
used in the HTML application, the cylinder variable is set to true.

1 At the start of the script, find the following lines:

// Connect to PowerSHAPE

set pshape = Window.external
2 After these lines, add the following:

//No cylinder selected

cylinder = false
This sets the cylinder variable to false as soon as you display the
HTML file.

3 Save the HTML file.

Adding code for the cyl_select() procedure
The user will select a cylinder and then click the Select cylinder
button. The cyl_select procedure that this button calls needs to be
added.

1 Before the end of the script command </script>, add the
following lines.

Sub cyl_select()

124 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 //Check if a single cylinder is selected

 If pshape.Evaluate("selection.number") = "1" Then

 If pshape.Evaluate("selection.object[0].type") = "Cylinder" Then

 //Cylinder selected

 cylinder = True
 End If
 End If

 If cylinder = False Then

 //Tell user that 1 cylinder must be selected

 //and exit the procedure
 MsgBox ("1 cylinder must be selected!")
 Exit Sub

 End If

 pshape.Exec "Let cyl = selection.object[0]"

 //Extract the origin of the cylinder and put in X, Y, and Z boxes
 document.helix.x_text.value = pshape.Evaluate("$cyl.origin.x")
 document.helix.y_text.value = pshape.Evaluate("$cyl.origin.y")
 document.helix.z_text.value = pshape.Evaluate("$cyl.origin.z")
 //Extract the radius of the cylinder
 document.helix.radius.value = pshape.Evaluate("$cyl.radius")

End Sub

2 Save the HTML file.

 More information on the cyl_select() procedure

 The first part of the procedure uses the pshape.Evaluate
command to check if a single cylinder is selected. This command
extracts information from PowerSHAPE. For example, the
following extracts the number of objects selected.

pshape.Evaluate("selection.number")
 If a single cylinder is selected, the cylinder variable is set to true.

This indicates that a cylinder is selected.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 125

If a single cylinder is not selected, a message box appears telling
the user and the procedure is terminated. The following
command terminates the procedure:

Exit Sub

 The following command assigns the name and identity of the first
object in the selection to the variable cyl in PowerSHAPE:

pshape.Exec "Let cyl = selection.object[0]"

 The next set of commands extract the coordinate values from the
origin of the cylinder and put the values in the X, Y and Z boxes
on the form:

document.helix.x_text.value=pshape.Evaluate("$cyl.origin.x")
document.helix.y_text.value=pshape.Evaluate("$cyl.origin.y")
document.helix.z_text.value=pshape.Evaluate("$cyl.origin.z")

 The command below extracts the radius of the cylinder and
enters the value in the Radius box on the form:

document.helix.radius.value = pshape.Evaluate("$cyl.radius")

Temporary workplane
To create the helix in the right direction along the cylinder, we use a
temporary workplane.

In the Apply_click procedure, the commands can be updated to

 Create a temporary workplane (see page 125)

 Input the first point of the helix relative to the temporary
workplane (see page 127)

 Delete the temporary workplane (see page 128)

Creating a workplane
1 At the beginning of the Apply_click procedure, add the following:

If cylinder = True Then

 //create a workplane and modify it
 pshape.Exec "create workplane" & vbCrLf _

 & "$cyl.origin.x $cyl.origin.y $cyl.origin.z" & vbCrLf _

 & "MODIFY" & vbCrLf _

 & "NAME tmpwkhelix" & vbCrLf _

 & "XAXIS DIRECTION" & vbCrLf _

126 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 & "X $cyl.xaxis.x" & vbCrLf _

 & "Y $cyl.xaxis.y" & vbCrLf _

 & "Z $cyl.xaxis.z" & vbCrLf _

 & "ACCEPT" & vbCrLf _

 & "YAXIS DIRECTION" & vbCrLf _

 & "X $cyl.yaxis.x" & vbCrLf _

 & "Y $cyl.yaxis.y" & vbCrLf _

 & "Z $cyl.yaxis.z" & vbCrLf _

 & "ACCEPT" & vbCrLf _

 & "ZAXIS DIRECTION" & vbCrLf _

 & "X $cyl.zaxis.x" & vbCrLf _

 & "Y $cyl.zaxis.y" & vbCrLf _

 & "Z $cyl.zaxis.z" & vbCrLf _

 & "ACCEPT" & vbCrLf _

 & "ACCEPT"

End If
2 Save the HTML file.

 More information on creating a workplane

 Check if the cylinder variable is true. This variable is only true if
a cylinder is selected and the Select cylinder button is clicked. If
the cylinder variable is true, a workplane is created using the
following PowerSHAPE commands from the macro tutorial:

//Creating a temporary workplane
CREATE WORKPLANE

$cyl.origin.x $cyl.origin.y $cyl.origin.z

// Modifying the workplane

MODIFY

NAME tmpwkhelix

XAXIS DIRECTION

X $cyl.xaxis.x

Y $cyl.xaxis.y

Z $cyl.xaxis.z

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 127

ACCEPT

YAXIS DIRECTION

X $cyl.yaxis.x

Y $cyl.yaxis.y

Z $cyl.yaxis.z
ACCEPT

ZAXIS DIRECTION

X $cyl.zaxis.x

Y $cyl.zaxis.y

Z $cyl.zaxis.z
ACCEPT

ACCEPT

 When executing PowerSHAPE commands, we use the
pshape.Execute command.

If you have many pshape.Execute commands to send, using a
single command saves time communicating with PowerSHAPE.

In this example, there is only one pshape.Execute.
To send extra lines of commands with the single pshape.Execute,
you can use the following syntax.

pshape.Exec "command line 1" & vbCrLf _

& "command line 2" & vbCrLf _

& "command line 3" & vbCrLf _

& "command line 4"

You cannot include any comments between the lines in the above
syntax.

First point relative to workplane
The first coordinate of the helix is going to be different, depending
on whether a cylinder is selected or not.

1 In the Apply_click procedure, find the following code for the first
coordinate.

//First coordinates of the curve
//pshape.Exec "abs " & document.helix.radius.value & " 0 0"

start_x =(document.helix.radius.value +
0)+(document.helix.x_text.value + 0)

128 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

pshape.Exec "abs " & start_x & " " & document.helix.y_text.value & "
" & document.helix.z_text.value

2 Change the code to the following.

//First coordinates of the curve
If cylinder = True Then

 pshape.Exec "abs " & document.helix.radius.value & " 0 0"

Else
 start_x =(document.helix.radius.value +
0)+(document.helix.x_text.value + 0)
 pshape.Exec "abs " & start_x & " " & document.helix.y_text.value &
" " & document.helix.z_text.value
End If

3 Save the HTML file.

 More information on the first point relative to the workplane

If you have selected a cylinder, the helix needs to start at the
coordinates in relation to the temporary workplane. Otherwise the
coordinates need to be relative to the coordinates in the X, Y and Z
boxes.

You are already familiar with the new commands added here

Deleting the workplane
You need to add commands to the Apply_Click procedure that will
delete the temporary workplane.

1 Find the following code in the Apply_Click procedure:

//Exiting curve creation mode
pshape.Exec "Select"

2 Add the following lines after the code:

//Delete the temporary workplane
If cylinder = True Then

 pshape.Exec "select clearlist"

 pshape.Exec "select add workplane 'tmpwkhelix'"

 pshape.Exec "delete"

 cylinder = False
End If

3 Save the HTML file.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 129

 More information on deleting the temporary workplane

Once the helix is created, the temporary workplane is deleted and
the cylinder variable is changed to false. This indicates no cylinder is
selected.

We have used the PowerSHAPE commands from the macro tutorial.

Testing the new code
You are now ready to test your application.

1 Save your HTML file.

2 Click the right mouse button in the Browser window and select
Refresh from the context menu.

3 Create a cylinder surface. We will use the cylinder to create a

helix.

4 In PowerSHAPE, select the cylinder.

5 Click the Select Cylinder button on the Helix creation form.

130 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

The Radius and the X, Y and Z boxes now contain values from
the cylinder.

6 Change the Pitch and Number of turn values if you want.

7 Click Apply. A helix is created around the cylinder.

Summary
You have now created an application using HTML. You could further
enhance the application by adding,

 tests to check the input data.

 and to indicate if a cylinder is selected or not.

Example using Javascript
You can use other script languages instead of vbscript.

The Javascript version of the final code of the helix example is given
below.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 131

<HTML>

<HEAD>

<script language="javascript">

 // Connect to PowerSHAPE

 var pshape = window.external;

 //No cylinder selected

 cylinder = false

function Apply_click()
{
 if (cylinder == true)
 {
 //create a workplane and modify it
 pshape.Exec ("create workplane");
 pshape.Exec ("$cyl.origin.x $cyl.origin.y $cyl.origin.z");
 pshape.Exec ("MODIFY");
 pshape.Exec ("NAME tmpwkhelix");
 pshape.Exec ("XAXIS DIRECTION");
 pshape.Exec ("X $cyl.xaxis.x");
 pshape.Exec ("Y $cyl.xaxis.y");
 pshape.Exec ("Z $cyl.xaxis.z");
 pshape.Exec ("ACCEPT");
 pshape.Exec ("YAXIS DIRECTION");
 pshape.Exec ("X $cyl.yaxis.x");
 pshape.Exec ("Y $cyl.yaxis.y");
 pshape.Exec ("Z $cyl.yaxis.z");
 pshape.Exec ("ACCEPT");
 pshape.Exec ("ZAXIS DIRECTION");
 pshape.Exec ("X $cyl.zaxis.x");
 pshape.Exec ("Y $cyl.zaxis.y");

132 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 pshape.Exec ("Z $cyl.zaxis.z");
 pshape.Exec ("ACCEPT");
 pshape.Exec ("ACCEPT")
 } //end if

 //Calculating values for the coordinates
 neg_rad = - document.helix.radius.value;
 zheight = document.helix.pitch.value /4;

 //Creating the helix's curve
 pshape.Exec ("Create curve");
 pshape.Exec ("through");

 //First coordinates of the curve
 if (cylinder == true)
 {
 pshape.Exec ("abs " + document.helix.radius.value + " 0 0");
 } //end if
 else
 {
 start_x = parseFloat(document.helix.radius.value) +
parseFloat(document.helix.x_text.value);
 pshape.Exec ("abs " + start_x + " " + document.helix.y_text.value + "
" + document.helix.z_text.value);
 } //end else

 //Using a loop to input the coordinates from each turn

 Counter = document.helix.turns.value;
 while (Counter > 0)
 {
 Counter = Counter - 1;

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 133

 pshape.Exec (neg_rad + " " + document.helix.radius.value + " " +
zheight);
 pshape.Exec (neg_rad + " " + neg_rad + " " + zheight);
 pshape.Exec (document.helix.radius.value + " " + neg_rad + " " +
zheight);
 pshape.Exec (document.helix.radius.value + " " +
document.helix.radius.value + " " + zheight)
 } //end while

 //Exiting curve creation mode
 pshape.Exec ("Select");

 //Delete the temporary workplane
 if (cylinder == true) {
 pshape.Exec ("select clearlist");
 pshape.Exec ("select add workplane 'tmpwkhelix'");
 pshape.Exec ("delete");
 cylinder = false
 } //end if

} //end of function apply_click

function point_click()
{
 //Send command to ask for user point input
 pshape.Exec ("INPUT POINT 'Click origin' $pos")
} // end of function point_click

function point_read()
{
 //Extract the position input from the PowerSHAPE

134 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 //variable $pos
 document.helix.x_text.value = pshape.Evaluate("$pos_x");
 document.helix.y_text.value = pshape.Evaluate("$pos_y");
 document.helix.z_text.value = pshape.Evaluate("$pos_z")
} // end of function point_read

function cyl_select()
{
 //Check if a single cylinder is selected

 if (pshape.Evaluate("selection.number") == "1") {
 if (pshape.Evaluate("selection.object[0].type") == "Cylinder")
 //Cylinder selected

 cylinder = true
 }

 if (cylinder == false)
 {
 //Tell user that 1 cylinder must be selected

 //and exit the procedure
 window.alert ("1 cylinder must be selected!");
 return

 } //end if

 pshape.Exec ("Let cyl = selection.object[0]");
 //Extract the origin of the cylinder and put in X, Y, and Z boxes
 document.helix.x_text.value = pshape.Evaluate("$cyl.origin.x");
 document.helix.y_text.value = pshape.Evaluate("$cyl.origin.y");
 document.helix.z_text.value = pshape.Evaluate("$cyl.origin.z");
 //Extract the radius of the cylinder
 document.helix.radius.value = pshape.Evaluate("$cyl.radius")

} // end of function cyl_select

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 135

</script>

</HEAD>

<BODY>

<h1>Helix creation</h1>

<FORM NAME=helix >

Radius <INPUT TYPE=text NAME=radius VALUE="10" > <p>

Pitch <INPUT TYPE=text NAME=pitch VALUE="4" > <p>

Turns <INPUT TYPE=text NAME=turns VALUE="10" > <p>

<hr>

Input origin of the helix<p>

<INPUT TYPE=button VALUE=" Click Point "
onClick="point_click();" >

<INPUT TYPE=button VALUE=" Read Point "
onClick="point_read();" >

<p>

X <INPUT TYPE=text NAME=x_text VALUE="0"> <p>

Y <INPUT TYPE=text NAME=y_text VALUE="0"> <p>

Z <INPUT TYPE=text NAME=z_text VALUE="0"> <p>

<hr>

Create helix around a cylinder<p>

<INPUT TYPE=button value="Select Cylinder"
onClick="cyl_select();" >

<hr>

136 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

<INPUT TYPE=button VALUE=" Apply " onClick="Apply_click();"
>

<INPUT TYPE=button VALUE="Quit" onClick="document.location
= 'http://www.delcam.com'" ><p>

</FORM>

</BODY>

</HTML>

Creating OLE applications
You can use the PowerSHAPE OLE server to create applications
which communicate with PowerSHAPE.

There are two types of OLE applications:

 HTML-based

 add-in

These applications allow you to:

 perform commonly used operations

 create easy-to-use interfaces

Both types of applications use the same OLE commands.

What is a HTML-based application?
A HTML-based application is one which is made from html pages
and runs in the browser window in PowerSHAPE. It also
communicates commands with PowerSHAPE.

You can write html pages using various html or text editors. In the
html page, you can add scripts using languages such as vbscript
and javascript. The OLE commands in the scripts allow you to
communicate with PowerSHAPE.

In our examples for HTML-based applications, we use vbscript. You
can download documentation on vbscript from:

http://www.microsoft.com (http://www.microsoft.com)

The HTML application tutorial introduces you to creating HTML-
based applications using vbscripts.

http://www.microsoft.com/

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 137

What is an add-in application?
An add-in application is one which runs outside PowerSHAPE, but
communicates commands with PowerSHAPE.

If you have purchased third party software such as Visual Basic, you
can create applications using that software and add them into
PowerSHAPE. Hence the name add-in applications.

You can write add-in applications using programming languages
such as Microsoft Visual Basic and Microsoft Visual C++. The OLE
commands in the programs allows you to communicate with
PowerSHAPE.

Using Visual Basic
In our examples for add-in applications, we use Visual Basic. The
creation of add-in applications using Visual Basic requires
fundamental knowledge of VB.NET

You can find full details on automating PowerSolution products on
our web site: http://www.delcam.com (http://www.delcam.com)

The sections you will find useful are:

Introduction
(http://www.delcam.com/vb/DOTNet/Introduction.htm)

Using VBdotNet With PowerSolution
(http://www.delcam.com/vb/DOTNet/Using_VBdotNET_With_Po
werSolution_Products.pdf)

What are the PowerSHAPE OLE commands?
The OLE commands are the same regardless of the programming
language.

The following sections use HTML examples. If you are using VB.NET,
you should refer to the relevant section of our web site

http://www.delcam.com/vb/DOTNet/Using_VBdotNET_With_PowerS
olution_Products.pdf
(http://www.delcam.com/vb/DOTNet/Using_VBdotNET_With_Power
Solution_Products.pdf)

The commands are covered in more details in the following
sections:

 Sending commands to PowerSHAPE

 Getting information from PowerSHAPE

 Getting information about a model

 Showing/hiding the PowerSHAPE window

http://www.delcam.com/
http://www.delcam.com/vb/DOTNet/Introduction.htm
http://www.delcam.com/vb/DOTNet/Using_VBdotNET_With_PowerSolution_Products.pdf
http://www.delcam.com/vb/DOTNet/Using_VBdotNET_With_PowerSolution_Products.pdf
http://www.delcam.com/vb/DOTNet/Using_VBdotNET_With_PowerSolution_Products.pdf
http://www.delcam.com/vb/DOTNet/Using_VBdotNET_With_PowerSolution_Products.pdf

138 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 Controlling the PowerSHAPE window

 Finding the version number of PowerSHAPE

 How do I know if PowerSHAPE is busy?

 Showing/hiding dialogs when executing commands

 Exiting PowerSHAPE using my application

 Selecting objects

 Running run a HTML-based application

 How do I run an add-in application?

We also show you how to input points and select objects using the
OLE commands.

 Before you can use the PowerSHAPE OLE server, you must
connect to an existing PowerSHAPE session. For further
details see Connecting to PowerSHAPE (see page 138)

Connecting to PowerSHAPE
You can connect to an existing PowerSHAPE session. How you
connect to PowerSHAPE will depend on whether your application is
HTML-based or an add-in.

For HTML-based applications, use:

set pshape = window.external
For add-in applications, use:
Set pshape = Getobject(,"PowerSHAPE.Application")
Both methods create the object pshape, that is connected to an
existing PowerSHAPE session.

With these methods, when you quit the applications, the
PowerSHAPE session remains open.

HTML example using vbscript
<script language="vbscript" >

set pshape = window.external
...
...
...
</script>

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 139

Sending commands to PowerSHAPE
The following method sends commands to the connected
PowerSHAPE session.

pshape.Exec Command

where Command is a string expression containing a macros (see
page 10) command to run in PowerSHAPE.
Example

In this example, when the command button cmdCreateLine is
clicked, a single line is produced between the coordinates entered in
four text boxes txtX1, txtY1, txtX2, txtY2.

'When the command button is clicked....
Sub cmdCreateLine_Click()

 'Set PowerSHAPE into single line mode
 pshape.Exec "CREATE LINE SINGLE"

 'Enter the origin of the line
 pshape.Exec txtX1.Text & " " & txtY1.Text

 'Enter the incremental move required

 pshape.Exec (txtX2.Text - txtX1.Text) & _

 " " & (txtY2.Text - txtY1.Text)

 'Set PowerSHAPE back to select mode
 pshape.Exec "SELECT"

End Sub

You can split a command into two lines by using an underscore
character "_" as a separator. For example, the following commands:

 pshape.Exec (txtX2.Text - txtX1.Text) & _

 " " & (txtY2.Text - txtY1.Text)
are the same as the command:

pshape.Exec (txtX2.Text - txtX1.Text) & " " & (txtY2.Text -
txtY1.Text)

140 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Getting information from PowerSHAPE
If you can print the value of something in PowerSHAPE, you can
also extract its value using the Evaluate command. The server will
return a VARIANT variable, which means the result can be a
number, a string, or even a vector (an array of numbers).

To use the Evaluate method, the syntax is:

V = pshape.Evaluate(value_string)
where value_string is a string containing the object you require the
information on.

For example, you can use the following to extract the number of
selected objects:

V = pshape.Evaluate("selection.number")
For a list of strings for each object, see PowerSHAPE object
information (see page 153)

Getting information about a model
You can use the following method to get information about an open
model:

pshape.activedocument
This method is assigned to an object using the following commands:

Dim psmodel As Object
Set psmodel = pshape.activedocument

When you set this object, it becomes associated with the current
active model. You can use this object to check if the model is active
or editable using the following properties:

psmodel.active
psmodel.editable

If the model associated with psmodel is active, then the active
property will return true, otherwise it will return false. Similarly, if
the model is editable, then the editable property will return true,
otherwise it will return false.

 All PowerSHAPE commands automatically operate on the
active model and some commands fail if Editable is false.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 141

Example
While your application is running, the user can have more than one
model open. You can restrict the commands in your add-in
application to just one model. The active document method allows
you to observe a model, you can then check if the model is active.

<script language = "vbscript">

set pshape = window.external
Set psmodel = pshape.activedocument

Private Sub Apply_Click()

 If psmodel.active Then

 If psmodel.editable Then

 MsgBox ("Model editable!")
 Else
 MsgBox ("Model not editable!")
 End If
 Else
 MsgBox ("Original model not active!")
 End If

End Sub

</script>

Showing and hiding the PowerSHAPE window
To show the PowerSHAPE window:

pshape.Visible = True
To hide the PowerSHAPE window:

pshape.Visible = False

Controlling the window PowerSHAPE
You can do the following to the PowerSHAPE window:

 minimise

142 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 maximise

 normalised

 bring to foreground

The WindowState property sets the state of the PowerSHAPE
window.

pshape.WindowState = value
You can input value as a number from the following table.

Value Description
1 This is the state when you can resize and position

the window.

2 Maximise window.

4 Minimise window to the taskbar.

8 Bring window to the foreground.

HTML example using vbscript
The following minimises the PowerSHAPE window to the taskbar,
carries out some commands and then maximises the window again.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 143

<script language="VBscript">

Set pshape = window.external

 // This minimise the PowerSHAPE window,
 // carries out some commands, and

 // maximises the window again

 Sub Minimise_Click()
 pshape.windowstate = 1

 //Carry out some commands
 ...
 ...
 ...

 pshape.windowstate = 2

 End Sub

</script>

How do I find the version number of PowerSHAPE?
The following property returns a string containing the version
number of PowerSHAPE that your application is currently connected
to:

pshape.Version

If you are not connected to PowerSHAPE, an error is returned.

How do I know if PowerSHAPE is busy?
The following property checks if the connected PowerSHAPE session
is busy:

pshape.busy

If PowerSHAPE is busy, this property will return True, otherwise it
will return False.

PowerSHAPE will be registered as busy in the following conditions:

 the Import or Export dialogs are open

 the Print dialog is open

144 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

 any PowerSHAPE dialog is displayed

This property is most useful when waiting for a user to input a
position in an add-in application. For an example of this, see Add-in
example using Visual Basic (see page 144)

Add-in example using Visual Basic
This example will wait for a point input in PowerSHAPE after clicking
a button called cmdIndicate. It will then extract its coordinates into
three text boxes txtX, txtY, and txtZ.

<script language="VBscript">

Set pshape = window.external
Private Sub cmdIndicate_Click()
 'Send command to ask for user point input
 'While waiting for point input, PowerSHAPE

 'will be registered as Busy

 pshape.Exec "INPUT POINT 'Click Origin' $pos"

 'Wait until point has been input
 Do

 Loop Until pshape.Busy = False

 'Extract the position input from the PowerSHAPE

 'variable $pos which was used

 txtX.Text = pshape.Evaluate("$pos_x")
 txtY.Text = pshape.Evaluate("$pos_y")
 txtZ.Text = pshape.Evaluate("$pos_Z")
End Sub

</script>

If the do…loop was not included, the program would not wait until
the point is entered. Therefore you would try to extract values that
have not yet been set. Try removing this loop to see what happens!

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 145

Showing and hiding dialogs when executing
commands

To access certain functions, (for example changing the name of an
arc), you need to display the Arc dialog. When using the OLE server
however, you do not normally want to see the dialog; you only want
to access the functions within it.

The following commands control the display of the user interface
and dialogs:

 Use ShowForms property to hide and display the dialogs when
sending OLE command.

pshape.ShowForms = False
turns off the PowerSHAPE interface updates until the state of
the property is changed.

pshape.ShowForms = True
restarts the display of dialogs.

 Use the following PowerSHAPE commands for one-off control of
display of toolbars:

FORMUPDATE
updates the interface to current state. The state of
ShowForms is unchanged.

FORMUPDATE ON
restarts the display of dialogs (same as ShowForms=True).

FORMUPDATE OFF

stops the display of dialogs (same as ShowForms = False).

 Use the following PowerSHAPE commands for one-off control of
the display of the dialogs. The state of ShowForms is
unchanged:

DIALOG ON

displays the dialog.

DIALOG OFF

hides the dialog.

How do I exit PowerSHAPE using my application?
Use this command to exit the PowerSHAPE session you are
connected to:

pshape.exit
No confirmation dialog will appear before PowerSHAPE quits.

146 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Entering positions
You can click positions in PowerSHAPE and then read the position
data into your application.

Use the INPUT POINT command from the PowerSHAPE macro
language in a pshape.Exec command.

For example,

pshape.Exec "INPUT POINT 'Click origin' $pos"

When the position is clicked, its coordinates are assigned to the
following variables: $pos_x, $pos_y and $pos_z.

You can access these variables using pshape.Evaluate command.

HTML example using vbscript
Sub point_click()

 //Send command to ask for user point input
 pshape.Exec "INPUT POINT 'Click origin' $pos"

End Sub

Sub point_read()

 //Extract the position input from the PowerSHAPE

 //variable $pos
 document.helix.x_text.value = pshape.Evaluate("$pos_x")
 document.helix.y_text.value = pshape.Evaluate("$pos_y")
 document.helix.z_text.value = pshape.Evaluate("$pos_z")

End Sub

You can't put the commands in the two procedures above into one
procedure. If you do, the following will happen when you use the
application.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 147

 While the user is clicking the position, the application will
automatically go to the next command line without receiving the
$pos data from PowerSHAPE.

 If you pause the application using the pshape.busy property, it
will get stuck in an infinite loop.

Selecting objects
We will now show you how to use selected objects in your
application.

You can select objects to use in your application in two ways:

 Before it is run.

 As soon as the application is run, you can immediately use the
selection object information to interrogate the selection and then
operate on the selection.

 While it is running.

You need some method of telling the application that the objects
are selected. One way is to add a button to the application. When
you have selected the required objects, you simply click the
button to say the selection is complete. You can then use the
selection object information to interrogate the selection and
operate on the selection.

For further details on the selection of object information, see
Introduction to object information (see page 153)
Example

148 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Private Sub Cmd_cyl_Click()

'Check if a single cylinder is selected

If pshape.Evaluate("selection.number") = "1" Then

 If pshape.Evaluate("selection.object[0].type") = "Cylinder" Then

 'Cylinder selected

 cylinder = True

 End If

Else

 'Tell user that 1 cylinder must be selected

 'and exit the procedure
 MsgBox ("1 cylinder must be selected!")
 Exit Sub

End If

pshape.Exec "Let cyl = selection.object[0]"

'Extract the origin of the cylinder and put in X, Y, and Z boxes
Txt_x.Text = pshape.Evaluate("$cyl.origin.x")
Txt_y.Text = pshape.Evaluate("$cyl.origin.y")
Txt_z.Text = pshape.Evaluate("$cyl.origin.z")

End Sub

Tips and tricks
Each command in your add-in application communicates to
PowerSHAPE using the Windows interpreter. Therefore, running
each command results in a very short delay. If you have many
PowerSHAPE commands, this delay can last a few seconds.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 149

To minimise the delay, we recommend that where you have a block
of PowerSHAPE commands, you use a single execute command.
Each line of PowerSHAPE commands must be separated by a special
character.

You can type the pshape.Exec command as follows:

pshape.Exec "command line 1" & vbCrLf _

& "command line 2" & vbCrLf _

& "command line 3" & vbCrLf _

& "command line 4" & vbCrLf _

& "command line 5" & vbCrLf _

& "command line 6"

Another way is to create a macro containing the block of
commands. You can then run the macro in an Exec command.

Running a HTML-based application
Once you have created a HTML-based application, you can run it in
the PowerSHAPE browser window.

1 Start PowerSHAPE.

2 Select View > Window > Command

3 From the command window type:

browser explorer {path_of_html_file}
where {path_of_html_file} is the path to the file. This displays the
HTML file in the browser window in PowerSHAPE.

4 Use the HTML-based application.

Running an add-in application
Once you have created or downloaded an add-in application, you
can run it either inside or outside PowerSHAPE. When you run your
application, it starts executing its commands.

How do I run my add-in application outside PowerSHAPE?
You can run your application in in one of the following ways:

 Use the Run command from the Start menu.

 Double click your application's icon in Windows Explorer.
You can also add shortcuts to your application from the Desktop or
the Start menu. For further details see the Microsoft Windows Help
documentation supplied with your operating system.

150 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Running your add-in application in PowerSHAPE
You can use the Add-in Manager in PowerSHAPE to create a link to
your application. This lets you to run your application from within
PowerSHAPE.

For further information, select from the following:

 Adding an add-in application to PowerSHAPE (see page 150)

 Running an add-in application in PowerSHAPE (see page 151)

 Changing the name of an item in the Add-in menu (see page
152)

 Changing the order of the items in the Add-in menu (see page
152)

 Deleting an item from the Add-in menu (see page 152)

Adding an add-in application to PowerSHAPE
1 From the Module menu, select Add-Ins followed by Manager to

display the Add-In Manager dialog.

2 Click the Add button on the dialog.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 151

This adds a new item called Add-in in the list. This item is
highlighted, ready for you to change its name.

3 Change the name of the item to something suitable. This name

will appear in the Add-ins menu from the Module menu.

4 In the Command box, type the path where your application is
stored. You can also click the Browse button to display the
Open dialog, to search for your application .

5 In the Arguments box, input any arguments you want your
application to use when it starts up.

6 In the Start in box, type the default path where you want your
application to run.

7 If there are other items in the list and you want to change the

position of the new item, use the Move Item Up button.

8 Click Apply. This adds the item to the Add-Ins menu (available
from the Module menu).

9 Add other applications if you want.

10 Click Close to remove the dialog from the screen.

 Add-in applications are only available on the Add-Ins menu for
the user who added them.

Running an add-in application in PowerSHAPE
1 From the Module menu, select Add-ins

2 Select your application.

 You must add your application to PowerSHAPE before you can
run it in PowerSHAPE. For further details, see Adding an add-
in application to PowerSHAPE (see page 150)

152 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Changing the name of an item in the Add-in menu
1 Display the Add-in Manager dialog.

2 Select the item.

3 Press the F2 key.

4 Edit the name.

5 Click Apply to change the name.

Changing the order of items in the Add-in menu
1 Display the Add-in Manager dialog.

2 Select the item you want to move.

3 Use the Move Item Up and Move Item Down buttons to
change the position of the selected item.

4 Click Apply to change the order.

Deleting an item from the Add-in menu
1 Display the Add-in Manager dialog.

2 Select the item you want to delete.

3 Click the Delete button .

4 Click Apply to delete the item.

PowerSolutionDOTNetOLE control
This control allows you to use a special set of OLE commands in
your application. This set of commands is designed to make
programming easier in VB.NET

For details on using the PowerSolutionDOTNetOLE control, see our
web site :
http://www.delcam.com/vb/DOTNet/UsingTheClassLibrary.html
(http://www.delcam.com/vb/DOTNet/UsingTheClassLibrary.html)

http://www.delcam.com/vb/DOTNet/UsingTheClassLibrary.html

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 153

Object information
You can access information about objects using special macro
commands. These commands help you identify precisely which
feature of an object you wish to retrieve and investigate.

Information on the different objects can be found in the following
sections:
Arc (see page 154) Assembly (see page 158)

Clipboard (see page 163) Composite curve (see page 163)

Created (see page 167) Curve (see page 169)

Dimension (see page 173) Drawing (see page 178)

Drawing view (see page 180) Electrode (see page 182)

Evaluation (see page 187) File (see page 188)

Hatch (see page 189) Lateral (see page 190)

Level (see page 190) Line (see page 191)

Longitudinal (see page 193) Model (see page 193)

Parameter (see page 197) Pcurve (see page 197)

Point (see page 200) Printer (see page 201)

Renderer (see page 201) Selection (see page 201)

Shareddb (see page 208) Sketcher (see page 208)

Solid (see page 208) Spine (see page 223)

Surface (see page 223) Symbol (see page 243)

Symbol Definition (see page
245)

Text (see page 245)

Tolerance (see page 247) Units (see page 247)

Updated (see page 247) User (see page 249)

Version (see page 249) View (see page 249)

Window (see page 250) Workplane (see page 251)

Introduction to object information
You can access information about PowerSHAPE objects using special
macro commands. These commands help you identify precisely
which feature of an object you wish to retrieve and investigate.

154 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

For example, the command to access the start coordinates of a line
is:

line[name].start
This retrieves the start coordinates [x, y, z] of the line called name.

For the x coordinate of the start position of this line, the syntax is:

line[name].start.x

In the syntax, name appears (in italics) as object[name]. This is the
name of the object on the left of the square bracket [].

Sometimes, name appears more than once as

object1[name].object2[name].
name of object 1 does not necessarily equal name of object 2.

 PowerSHAPE allocates a unique identity number to each
object. You can substitute the name of an object for its
unique identity number. For example, you can use either:

line[id 75].start.x, where 75 is the unique identity number of
the line.

or

line[1].start.x, where 1 is the name of the line.

Arc
The following groups of arc commands are available:

Identity number of arc (see page 155)

Start position of arc (see page 155)

End position of arc (see page 155)

Mid position of arc (see page 155)

Radius of arc (see page 156)

Centre position of arc (see page 156)

Length of arc (see page 156)

Centre mark of arc (see page 156)

Angles of arc (see page 156)

Style of arc (see page 157)

Level of arc (see page 157)

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 155

Arc exists
arc[name].exists
1 if arc exists. 0 otherwise.

Identity number of arc
arc[name].id
unique identity number of the arc in the model.

Name of arc
arc[id n].name
name of the arc that has the given identity number.

Start position of arc
arc[name].start
coordinates [x, y, z] of the start position of the arc.

arc[name].start.x
x coordinate of the start position of the arc.

arc[name].start.y
y coordinate of the start position of the arc.

arc[name].start.z
z coordinate of the start position of the arc.

End position of arc
arc[name].end
coordinates [x, y, z] of the end position of the arc.

arc[name].end.x
x coordinate of the end position of the arc.

arc[name].end.y
y coordinate of the end position of the arc.

arc[name].end.z
z coordinate of the end position of the arc.

Mid position of arc
arc[name].mid
coordinates [x, y, z] of the mid position of the arc.

arc[name].mid.x
x coordinate of the mid position of the arc.

156 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

arc[name].mid.y
y coordinate of the mid position of the arc.

arc[name].mid.z
z coordinate of the mid position of the arc.

Radius of arc
arc[name].radius
radius value of the arc.

Centre position of arc
arc[name].centre
coordinates [x, y, z] of the centre position of the arc.

arc[name].centre.x
x coordinate of the centre position of the arc.

arc[name].centre.y
y coordinate of the centre position of the arc.

arc[name].centre.z
z coordinate of the centre position of the arc.

Length of arc
arc[name].length
length of the circumference of the arc.

Centre mark of arc
arc[name].centre_mark
the centre mark type. For each type of centre marker, the standard
number is given below:

0 for none

1 for dot

2 for cross

Angles of arc
arc[name].start_angle
start angle of the arc.

arc[name].end_angle
end angle of the arc.

arc[name].span_angle
span angle of the arc.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 157

Style of arc
arc[name].style.colour
colour number of line style used to draw the arc.

arc[name].style.color
color (USA) number of line style used to draw the arc.

arc[name].style.gap
gap of line style used to draw the arc.

arc[name].style.weight
weight of line style used to draw the arc.

arc[name].style.width
width of line style used to draw the arc.

Level of arc
arc[name].level
level on which the arc exists.

Application paths
app.paths

Path information for some of directories that PowerSHAPE uses.
Output from using this command will look something like this:

Program : C:\Program
Files\Delcam\PowerSHAPExxxx\sys\exec\powershape.exe
Document : C:\Program Files\Delcam\PSDocxxxx\help

Pre-config macro : C:\Program
Files\Delcam\powershapexxxx/lib/macro/preconfig.mac
Post-config macro : C:\Program
Files\Delcam\powershapexxxx/lib/macro/postconfig.mac
Login macro : C:\Program
Files\Delcam\powershapexxxx/lib/macro/login.mac
Temp : C:\Documents and Settings\xxx\Local Settings\Temp

Shareddb : C:\Documents and Settings\All Users\Shared
Documents\Delcam\shareddb

Parts : C:\Documents and Settings\All Users\Shared
Documents\Delcam\parts
Local config : C:\Documents and Settings\xxx\Application
Data\PowerSHAPE\
Home : C:\Documents and Settings\xxx\Application Data\

158 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Assembly
Definitions:
comassembly component "c_name" property set "name" "value"
set/change value of property.

comassembly component "c_name" property remove "name" "value"
remove property.

comassembly component "c_name" property remove all
remove all properties.

comassembly definition defn_name thumbnail_view_dir direction
sets the view for the thumbnail that is displayed in the component
library window.
where

defn_name is the name of the component definition
direction is a view direction. This may have the following values:
top
bottom
right
left
front
back
iso1
iso2
iso3
iso4

Checks:
comassembly component c_name property list
print list of properties and their values.

component ["c_name"].property["name"].value
check value of property.

component ["c_name"].property["name"].exists
check if the property present. Returns 1 if the component exists, 0
if it does not exist.

comassembly definition ["c_name"] property list
print list of properties of component definition and their values.

comassembly component_defn["cd_name"].property["name"].exists
The command returns 1 if the component exists. 0 if it does not
exist.

Actions:
comassembly definitions imported refresh
refreshes imported definitions. The command is only available when
a model is open.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 159

COMASSEMBLY DEFINITION "definition name" HIDE_IN_LIBRARY
COMASSEMBLY DEFINITION "definition name" SHOW_IN_LIBRARY
Hide/display the component definitions in the component library
window:

Relationships
relationship['"assembly_name" "relation_name"'].exists
1 if relationship exists. 0 otherwise.
relationship['"assembly_name" "relation_name"'].gen_type
returns the type of the relationship.

0 plane/plane
1 point to point
2 plane/point
3 point/plane
4 line/line
5 line/point
6 point/line
7 plane/line
8 line/plane

relationship['"assembly_name" "relation_name"'].add_type
returns additional type of the relationship.
relationship['"assembly_name" "relation_name"'].distance
distance value.
relationship['"assembly_name" "relation_name"'].alignment
the alignment of the relationship.
relationship['"assembly_name" "relation_name"'].attachment_master
master attachment name of the relationship.
relationship['"assembly_name" "relation_name"'].attachment_slave
slave attachment name of the relationship.
relationship['"assembly_name" "relation_name"'].component_master
master component name of the relationship.
relationship['"assembly_name" "relation_name"'].component_slave
slave component name of the relationship
relationship['"assembly_name" "relation_name"'].is_broken
1 if relationship is broken. 0 otherwise.
relationship['"assembly_name" "relation_name"'].has_distance
1 if the relationship has a distance parameter. 0 otherwise.
relationship['"assembly_name" "relation_name"'].tree_name
tree browser name of the relationship.

160 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Attachment
attachment[name].exists
1 if exists, 0 otherwise.
attachment[name].point
returns point of given attachment
attachment[name].vector
vector of the given attachment
attachment[name].is_default
1 if true, 0 if false.

External attachments on component definitions
comassembly create plane_attachment $attachment_name $posx
$posy $posz $vecx $vecy $vecz on definition $def_name

comassembly create plane_attachment $attachment_name $posx
$posy $posz $vecx $vecy $vecz on instance $inst_name

comassembly create line_attachment $attachment_name $posx $posy
$posz $vecx $vecy $vecz on definition $def_name

comassembly create line_attachment $attachment_name $posx $posy
$posz $vecx $vecy $vecz on instance $inst_name

comassembly create point_attachment $attachment_name $posx
$posy $posz on definition $def_name

comassembly create point_attachment $attachment_name $posx
$posy $posz on instance $inst_name

Component
component[name].min_range_w
minimum range of the component with respect to the world
workplane.

component[name].max_range_w
maximum range of the component with respect to the world
workplane.

component[name].min_range
minimum range of the component with respect to the active
workplane.

component[name].max_range
maximum range of the component with respect to the active
workplane.

component[name].size
size of the component.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 161

component[name].exists
1 if component exists. 0 otherwise.

component[name].level
level value of component.

component[name].status
status of component

0 - free state
1 - undefined
2 - fully defined
3 - over-defined
4 - error position

Parameter
parameter[name].expression
parameter expression.

parameter[name].dimension
parameter dimension.

parameter[name].dep_items
item(s) dependent on the parameter.

parameter[name].hidden
value of the HIDDEN flag.

parameter[name].expfl
value of the EXPRESSION flag.

parameter[name].main
value of the MAIN flag.

parameter[name].automatic
value of the AUTOMATIC flag.
parameter.number
number of non-hidden and non-automatic parameters in the model.
This is the number of entries in the drop down list in the Parameter
Editor dialog.

Component definitions
component_defn[name].exists
1 if component definition exists, 0 otherwise

component_defn[name].num_components
number of components using the component definition

component_defn[name].is_active
1 if the component definition is an active assembly. 0 otherwise

162 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

component_defn[name].is sub_assembly
1 if the component definition is a sub-assembly. 0 otherwise

component_defn[name].num_poi_attachments
number of point attachments.

component_defn[name].num_lin_attachments
number of linear attachments.

component_defn[name].num_pla_attachments
number of plane attachments.

component_defn[name].is_imported
1 if the component definition is imported. 0 otherwise.

component_defn[name].is_model_defn
1 if component definition is a model component definition, 0
otherwise.

component_defn[name].num_solids
returns number of solids.

component_defn[name].num_axis_attachments
number of axis attachments.

component_defn[name].num_attachments
number of attachments.

component_defn[name].is_parametric
1 if component definition is parametric. 0 otherwise.

component_defn ['assembly_name'].cog
returns the centre of gravity of the assembly

component_defn ['component_name'].cog
returns the centre of gravity of the component.
preserve_params on
preserves the global parameters when registering a component
definition.

component_defn["name "].attachment["name "].surface...
where ….. can be any property of a surface.
For example:

print component_defn["name"].attachment["name"].surface.name
print component_defn["name"].attachment["name"].surface.area

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 163

Power Features
component_defn[assembly_name].pfsummary.source[source
path].feature[feature_name].target[target_path].exists
returns the stored power features summary data for required
source, feature, target.
component_defn[assembly_name].pfsummary.source[source
path].feature[feature_name].target[target_path].flag
returns the value of power features summary flag for required
source, feature, target.

TU-coordinates
comassembly insert attachment linked_by_tu ["name of defn"] ["name
of attachment"] ["surface's name"]/surface ID POINT/PLANE t-value u-
value
inserts new attachment linked to surface by tu-coordinate.

component_defn[name].attachment[name].is_linked_by_tu
1 if attachment is linked to surface by tu-coordinates. 0 otherwise.

component_defn["name"].attachment["name"].t
get t-value stored in attachment.

component_defn["name"].attachment["name"].u
get u-value stored in attachment.

Tool Solid
solid['ToolSolid'].hide

1 if the solid is owned by another item and not displayed. 0 if the
solid is hidden.

Clipboard
clipboard.valid
1 if there is something on the clipboard and 0 otherwise.

Composite curve
Commands for composite curves can take either of the following
forms:

compcurve[name]……

composite curve[name]…..
To avoid duplication, the format compcurve[name] is used
throughout.

compcurve[name].exists
1 is the composite curve exists. 0 otherwise.

164 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

compcurve[name].id
unique identity number of the composite curve in the model.

compcurve[id n].name
name of the composite curve that has the given identity number.

compcurve[name].description
the description of the curve is stored in the database.

compcurve[name].closed
1 if the composite curve is closed. 0 otherwise.

Points in composite curve
compcurve[name].point.number
number of points in the composite curve.

compcurve[name].point[number]
coordinates [x, y, z] of the composite curve's point.

compcurve[name].point[number].x
x coordinate of the composite curve's point.

compcurve[name].point[number].y
y coordinate of the composite curve's point.

compcurve[name].point[number].z
z coordinate of the composite curve's point.

Tangent direction at a point
compcurve[name].point[number].entry_tangent
unit vector of the tangent direction entering the point.

compcurve[name].point[number].entry_tangent.x
x value of the unit vector which defines the tangent direction
entering the point.

compcurve[name].point[number].entry_tangent.y
y value of the unit vector which defines the tangent direction
entering the point.

compcurve[name].point[number].entry_tangent.z
z value of the unit vector which defines the tangent direction
entering the point.

compcurve[name].point[number].exit_tangent
unit vector of the tangent direction leaving the point.

compcurve[name].point[number].exit_tangent.x
x value of the unit vector which defines the tangent direction
leaving the point.

compcurve[name].point[number].exit_tangent.y
y value of the unit vector which defines the tangent direction
leaving the point.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 165

compcurve[name].point[number].exit_tangent.z
z value of the unit vector which defines the tangent direction
leaving the point.

Azimuth and elevation angles at a point
compcurve[name].point[number].entry_tangent.azimuth
azimuth angle of the tangent entering the point.

compcurve[name].point[number].entry_tangent.elevation
elevation angle of the tangent entering the point.

compcurve[name].point[number].exit_tangent.azimuth
azimuth angle of the tangent leaving the point.

compcurve[name].point[number].exit_tangent.elevation
elevation angle of the tangent leaving the point.

Magnitude at a point
compcurve[name].point[number].entry_magnitude
magnitude entering the point.

compcurve[name].point[number].exit_magnitude
magnitude leaving the point.

Items in composite curve
compcurve[name].item.number
number of items that make up the composite curve.

Length of composite curve
compcurve[name].length
length of the composite curve.

compcurve[name].length_between(a; b)
length along the composite curve between key points a and b.

Area of composite curve
compcurve[name].area
area of the composite curve.

If the composite curve is closed and planar, the area is the enclosed
area.

If the composite curve is open, it is closed with a straight line for
the area measurement.

166 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

If the composite curve is non-planar, PowerSHAPE tries to construct
a plane from the first few items. If this fails, the current principal
plane is used. The composite curve is projected onto the plane and
the area is measured from the projected curve.

Bounding box around composite curve
compcurve[name].size
size of the bounding box around the composite curve.

compcurve[name].size.x
size in the x direction of the bounding box around the composite
curve.

compcurve[name].size.y
size in the y direction of the bounding box around the composite
curve.

compcurve[name].size.z
size in the z direction of the bounding box around the composite
curve.

compcurve[name].min_range
minimum coordinates of the bounding box around the composite
curve.

compcurve[name].min_range.x
x coordinate of the minimum coordinates of the bounding box
around the composite curve.

compcurve[name].min_range.y
y coordinate of the minimum coordinates of the bounding box
around the composite curve.

compcurve[name].min_range.z
z coordinate of the minimum coordinates of the bounding box
around the composite curve.

compcurve[name].max_range
maximum coordinates of the bounding box around the composite
curve.

compcurve[name].max_range.x
x coordinate of the maximum coordinates of the bounding box
around the composite curve.

compcurve[name].max_range.y
y coordinate of the maximum coordinates of the bounding box
around the composite curve.

compcurve[name].max_range.z
z coordinate of the maximum coordinates of the bounding box
around the composite curve.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 167

Centre of gravity of composite curve
compcurve[name].cog
coordinates [x, y, z] of the centre of gravity of the composite curve.

compcurve[name].cog.x
x coordinate of the centre of gravity of the composite curve.

compcurve[name].cog.y
y coordinate of the centre of gravity of the composite curve.

compcurve[name].cog.z
z coordinate of the centre of gravity of the composite curve.

Filleting a composite curve
compcurve[name]
will fillet the composite curve, where name is the name of the
composite curve.

Style of composite curve
compcurve[name].style.colour
colour number of line style used to draw the composite curve.

compcurve[name].style.color
color (USA) number of line style used to draw the composite curve.

compcurve[name].style.gap
gap of line style used to draw the composite curve.

compcurve[name].style.weight
weight of line style used to draw the composite curve.

compcurve[name].style.width
width of line style used to draw the composite curve.

Level of composite curve
compcurve[name].level
level on which the composite curve exists.

Created
You can use this group of commands to query which objects were
created as a result of the last operation. These objects are accessed
from the creation list.

Created objects exist (see page 168)

Number of items created (see page 168)

Identity of item created

168 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Clearlist (see page 168)

Interrogating created items (see page 168)

Created objects exist
created.exists
1 if at least one item is in the creation list. 0 otherwise.

Number of items created
created.number
number of items in the creation list.

Clearlist
created.clearlist
clears the creation list.

Interrogating created items
created.object[number]
object type and its name in the creation list. For example, Line[4],
Arc[1].

If n items are created, then number is the item's number in the
creation list. created.object[number].syntax
object information as specified by the syntax for object
created.object[number]. The syntax you can use is given under
each type of object.

For example, if created.object[1] is Line[2], then you can specify the
syntax as any syntax after Line[name]. For further details see Line
(see page 191) .

For the x coordinate of the start of the line, you can use
created.object[1].start.x where start.x is the syntax.

created.type[number]
type of an object in the creation list. For example, Line, Arc.

If n objects are created, then number is the item's number in the
creation list. number is from 0 to (n-1).

 If you compare the type of an object with a text string, you
must use the correct capitalisation. For example, if you want
to check that created.type[0] is a composite curve, then you
must use:

created.type[0] == 'Composite Curve'
and not:

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 169

created.type[0] == 'Composite curve'
created.type[0] == 'composite curve'

created.name[number]
name of an item in the creation list.

If n items are created, then number is the item's number in the
creation list.

 In all cases, number is from 0 to (n-1).

Curve
curve[name].exists
1 if curve exists. 0 otherwise.

curve[name].id
unique identity number of the curve in the model.

curve[id n].name
name of the curve that has the given identity number.

curve[name].description
the description of the curve is stored in the database.

Type of curve
curve[name].type
checks the curve and returns one of the following strings:

Bezier

Bspline

Number of points in curve
curve[name].number
number of points in the curve.

Closed curve
curve[name].closed
1 if the curve is closed. 0 otherwise.

Start and end positions of curve
curve[name].start
start coordinates [x, y, z] of the curve.

curve[name].start.x
x coordinate of the start of the curve.

170 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

curve[name].start.y
y coordinate of the start of the curve.

curve[name].start.z
z coordinate of the start of the curve.

curve[name].end
end coordinates [x, y, z] of the curve.

curve[name].end.x
x coordinate of the end of the curve.

curve[name].end.y
y coordinate of the end of the curve.

curve[name].end.z
z coordinate of the end of the curve.

Points in a curve
curve[name].point[number]
coordinates [x, y, z] of the point.

curve[name].point[number].x
x coordinate of the point.

curve[name].point[number].y
y coordinate of the point.

curve[name].point[number].z
z coordinate of the point.

curve[name].point[number].selected
1 if the point is selected. 0 otherwise.

curve[name].point[number].dependent
1 if the point is dependent. 0 otherwise.

Tangent direction at a curve point
curve[name].point[number].entry_tangent
unit vector of the tangent direction entering the point.

curve[name].point[number].entry_tangent.x
x value of the unit vector which defines the tangent direction
entering the point.

curve[name].point[number].entry_tangent.y
y value of the unit vector which defines the tangent direction
entering the point.

curve[name].point[number].entry_tangent.z
z value of the unit vector which defines the tangent direction
entering the point.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 171

curve[name].point[number].exit_tangent
unit vector of the tangent direction leaving the point.

curve[name].point[number].exit_tangent.x
x value of the unit vector which defines the tangent direction
leaving the point.

curve[name].point[number].exit_tangent.y
y value of the unit vector which defines the tangent direction
leaving the point.

curve[name].point[number].exit_tangent.z
z value of the unit vector which defines the tangent direction
leaving the point.

Selected points
The following variables have been added in PowerSHAPE 2015 R2:

curve.selected.points
Returns the number of currently selected points on a wireframe
curve (an INT).
compcurve.selected.points
Returns the number of currently selected points on a wireframe
composite curve (an INT).

Azimuth and elevation angles at a curve point
curve[name].point[number].entry_tangent.azimuth
azimuth angle of the tangent entering the point.

curve[name].point[number].entry_tangent.elevation
elevation angle of the tangent entering the point.

curve[name].point[number].exit_tangent.azimuth
azimuth angle of the tangent leaving the point.

curve[name].point[number].exit_tangent.elevation
elevation angle of the tangent leaving the point.

Magnitude at a curve point
curve[name].point[number].entry_magnitude
magnitude entering the curve's point.

curve[name].point[number].exit_magnitude
magnitude leaving the curve's point.

Length of curve
curve[name].length
length of the curve.

172 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

curve[name].length_between(a; b)
length along the curve between key points a and b.

Area of curve
curve[name].area
area of the curve.

If the curve is closed and planar, the area is the enclosed area.

If the curve is open, it is closed with a straight line for the area
measurement.

If the curve is non-planar, the curve is projected onto the current
principal plane and the area is measured from the projected curve.

Bounding box around curve
curve[name].size
size of the bounding box around the curve.

curve[name].size.x
size in the x direction of the bounding box around the curve.

curve[name].size.y
size in the y direction of the bounding box around the curve.

curve[name].size.z
size in the z direction of the bounding box around the curve.

curve[name].min_range
minimum coordinates of the bounding box around the curve.

curve[name].min_range.x
x coordinate of the minimum coordinates of the bounding box
around the curve.

curve[name].min_range.y
y coordinate of the minimum coordinates of the bounding box
around the curve.

curve[name].min_range.z
z coordinate of the minimum coordinates of the bounding box
around the curve.

curve[name].max_range
maximum coordinates of the bounding box around the curve.

curve[name].max_range.x
x coordinate of the maximum coordinates of the bounding box
around the curve.

curve[name].max_range.y
y coordinate of the maximum coordinates of the bounding box
around the curve.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 173

curve[name].max_range.z
z coordinate of the maximum coordinates of the bounding box
around the curve.

Centre of gravity of curve
curve[name].cog
coordinates [x, y, z] of the centre of gravity of the curve.

curve[name].cog.x
x coordinate of the centre of gravity of the curve.

curve[name].cog.y
y coordinate of the centre of gravity of the curve.

curve[name].cog.z
z coordinate of the centre of gravity of the curve.

Style of curve
curve[name].style.colour
colour number of line style used to draw the curve.

curve[name].style.color
color (USA) number of line style used to draw the curve.

curve[name].style.gap
gap of line style used to draw the curve.

curve[name].style.weight
weight of line style used to draw the curve.

curve[name].style.width
width of line style used to draw the curve.

Level of curve
curve[name].level
level on which the curve exists.

Dimension
The following groups of dimension command are available:

174 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Dimension exists (see page 174)

Identity number of dimension (see page 174)

Name of dimension (see page 174)

Dimension value (see page 174)

Position of the dimension (see page 174)

Diameter of dimension (see page 176)

Leader of dimension (see page 176)

Annotation of dimension (see page 176)

Witness of dimension (see page 177)

Tolerance of dimension (see page 177)

Style of dimension (see page 178)

Level of dimension (see page 178)

Dimension exists
dimension[name].exists
1 if dimension exists. 0 otherwise.

Identity number of dimension
dimension[name].id
unique identity number of the dimension in the model.

Name of dimension
dimension[id n].name
name of the dimension that has the given identity number.

Dimension value
dimension[name].value
value of dimension.

Position of the dimension
A dimension is defined by its text position and various other
positions, depending on the type of dimension. The text position
(position.text) is at the centre of the text. There are three other
possible positions: position.one, position.two and position.three.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 175

A linear dimension is defined as shown below. It has a text position
(position.text), position.one and position.two

An angular dimension has a text position (position.text),
position.one, position.two and position.three.

A radial dimension has a text position (position.text), position.one,
position.two and position.three.

dimension[name].position.text
coordinates [x, y, z] of the position of the text of the dimension.

dimension[name].position.one
coordinates [x, y, z] of position.one of the dimension.

dimension[name].position.two
coordinates [x, y, z] of position.two of the dimension.

dimension[name].position.three
coordinates [x, y, z] of position.three of the dimension.

176 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Diameter of dimension
dimension[name].diameter
1 if the dimension measures a diameter. 0 otherwise.

Leader of dimension
dimension[name].leader.style
style name of the leader of the dimension

dimension[name].leader.trim
1 if the option Trim leader to text is on. 0 otherwise. The Trim leader
to text option trims the leader to the position of the dimension
annotation.

dimension[name].leader.keep
1 if the option Internal leaders on small dimensions is on. 0
otherwise.

When you have a dimension with leaders placed on either side of
the dimension, the Internal leaders on small dimensions option adds a
line so that no gap exists between the arrows of the leader.

dimension[name].leader.marksize
size of the mark on the leader of the dimension.

dimension[name].leader.marktype
standard number indicating the type of marker. For each type of
marker, the standard number is given below.

Dot - 1

Slash - 10

Cross - 5

Filled circle - 11

Circle - 4

Filled arrow - 9

Arrow - 8

Annotation of dimension
dimension[name].annotation.style
style name of the annotation of the dimension.

dimension[name].annotation.height
height of the annotation.

dimension[name].annotation.embed
1 if the annotation is embedded. 0 otherwise.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 177

dimension[name].annotation.horizontal
1 if the annotation is set to horizontal. 0 otherwise.

dimension[name].annotation.proportional
1 if the annotation is set to proportional. 0 otherwise.

dimension[name].annotation.italic
1 if the annotation is set to italic. 0 otherwise.

dimension[name].annotation.gap
gap between the text and the leader.

dimension[name].annotation.fraction
1 if decimal part of the dimension is set to a fraction. 0 otherwise.

dimension[name].annotation.denom
denominator of the fraction.

dimension[name].annotation.angleformat
number to indicate the type of angle format. For each type of angle
format, the number is given below:

1 - Decimal

2 - Degrees

3 - Degrees - Minutes

4 - Degrees - Minutes - Seconds

dimension[name].annotation.decimal
number of decimal places of the dimension.

Witness of dimension
dimension[name].witness.style
style name of the witness line of the dimension.

Tolerance of dimension
dimension[name].tolerance.style
style name of the tolerance of the dimension.

dimension[name].tolerance.value1
value 1 of the tolerance range.

dimension[name].tolerance.value2
value 2 of the tolerance range.

dimension[name].tolerance.height
height of the tolerance text.

dimension[name].tolerance.alignment
number to indicate the type of tolerance alignment. For each type of
tolerance alignment, the number is given below:

178 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

1 - alignment

2 - alignment

3 - alignment

dimension[name].tolerance.decimal
number of decimal places of the tolerance.

Style of dimension
dimension[name].style.colour
colour number of line style used to draw the dimension.

dimension[name].style.color
color (USA) number of line style used to draw the dimension.

dimension[name].style.gap
gap of line style used to draw the dimension.

dimension[name].style.weight
weight of line style used to draw the dimension.

dimension[name].style.width
width of line style used to draw the dimension.

Level of dimension
dimension[name].level
level on which the dimension exists.

Drawing
The following groups of drawing commands are available:

Drawing exists (see page 179)

Drawing description (see page 179)

Identity number of drawing (see page 179)

Name of drawing (see page 179)

Drawing dimensions (see page 179)

Drawing templates used (see page 179)

Number of views (see page 180)

Number of objects (see page 180)

Updating (see page 180)

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 179

Drawing exists
drawing[name].exists
1 if drawing exists. 0 otherwise.

Drawing description
drawing[name].description
description of the drawing.

Number of drawings
drawing.number
the number of drawings

Identity number of drawing
drawing[name].id
unique identity number of the drawing.

Name of drawing
drawing[id n].name
name of the drawing that has the given identity number.

drawing.name[index]
returns a drawing name where index is greater than 0 and less than
or equal to the number of drawings.

Drawing dimensions
drawing[name].width
width of the drawing.

drawing[name].height
height of the drawing.

Drawing templates used
drawing[name].template_model
name of the model containing the template_drawing used by the
drawing.

drawing[name].template_drawing
name of the template drawing used by the drawing.

drawing[name].tmpl_model_invalid
1 if the model, containing the template drawing used by the
drawing, exists in the database. 0 otherwise.

180 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

drawing[name].tmpl_drawing_invalid
1 if the template drawing, used by the drawing, exists. 0 otherwise.

Number of views
drawing[name].views
number of views on the drawing.

drawing[name].view.name[N]
name of the Nth view on the drawing, where
0 < N <= number of views

Number of objects
drawing[name].no_of_items
number of objects on the drawing.

Updating
drawing[name].view[view_name].needs updating

1 if the view needs updating, 0 otherwise

Drawing view
Drawing view commands are only available in conjunction with
Drawing commands as indicated in the following sections:

Extent of drawing view (see page 180)

Scale of drawing view (see page 181)

Origin of drawing view (see page 181)

Number of objects (see page 181)

Transform of drawing view (see page 181)

Converting between drawing view and world space (see page
181)

Extent of drawing view
drawing[name].view[name].xmin_extent
x coordinate of the minimum extent of the view on the drawing.

drawing[name].view[name].xmax_extent
x coordinate of the maximum extent of the view on the drawing.

drawing[name].view[name].ymin_extent
y coordinate of the minimum extent of the view on the drawing.

drawing[name].view[name].ymax_extent
y coordinate of the maximum extent of the view on the drawing.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 181

Scale of drawing view
drawing[name].view[name].scale
scale of the view.

Origin of drawing view
drawing[name].view[name].origin
coordinates [x, y, z] of the origin of the view.

Number of objects
drawing[name].view[name].no_of_items
number of objects in the view.

Transform of drawing view
drawing[name].view[name].transform[number]
the elements of the rotation matrix and the translation vector of the
view in relation to the model space.

The value of number determines the elements:

 0, 1, 2 defines the elements of the first row of the rotation
matrix.

 4, 5, 6 defines the elements of the second row of the rotation
matrix.

 7, 8, 9 defines the elements of the third row of the rotation
matrix.

 12, 13, 14 defines elements of the translation vector.

Converting between drawing, view and world space
Use the following variables to convert between drawing, view and
world space:

DRAWING[drawing_name].VIEW[view_name].DRAWING_TO_VIE
W[x ; y ; z]
DRAWING[drawing_name].VIEW[view_name].DRAWING_TO_WO
RLD[x ; y ; z]
DRAWING[drawing_name].VIEW[view_name].VIEW_TO_DRAWIN
G[x ; y ; z]
DRAWING[drawing_name].VIEW[view_name].WORLD_TO_DRAW
ING[x ; y ; z]

You can also use X/Y/Z modifiers with these variables:

182 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

DRAWING[drawing_name].VIEW[view_name].DRAWING_TO_VIE
W[x ; y ; z].X

returns the x-ordinate of the converted point.

Electrode
The following groups of line commands are available:

General (see page 182)

List (see page 184)

Datum (see page 185)

Blank (see page 185)

Holder (see page 185)

Burn region (see page 186)

Quantity (see page 186)

Undersize (see page 186)

Frames (see page 187)

 In some of the electrode commands, you can specify the
name of the electrode.

For example:
electrode[name].exists

In these commands, you can also enter index n, where n is
the nth electrode created in the model.

Use the following to find out if the first electrode exists:
electrode[index 1].exists

General (Electrode)
electrode.number
number of electrodes in the model.
electrode[name].exists
1 if the electrode exists and 0 otherwise.
electrode[name].id
identity number of the electrode in the model.

electrode[id n].name
name of the electrode that has the given identity number.

electrode[name].level
level on which the electrode exists.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 183

electrode[name].rotation
the rotation of the electrode from the workplane of the electrode.

electrode[name].sparkgap
spark gap of the electrode.

electrode[name].burn_depth
distance in z from the bottom of the electrode to the top of the burn
region.

electrode[name].surface_finish
the surface finish selected on the electrode family page of the
wizard for that electrode.

electrode[projected_area]
area of the burn region as projected onto the XY plane.

electrode[name].solid.solid_attributes
attributes of the solid depending on the value of solid_attributes.
For example,

electrode[name].solid.volume
volume of the solid. For a complete list of attributes, see Solid (see
page 208)

electrode[name].base_height
height of the base of the electrode can be defined using the variable

electrode[name].active_solid
the solid that the electrode was extracted from

electrode[name].active_workplane
the workplane that was active when the electrode was created.
(These are only available for electrodes that are extracted, not
those that are copied)

electrode[name].fillins
electrode[name].fillin.number
number of fill-in surfaces associated with this electrode.

electrode[name].fillin(n)
electrode[name].fillin(n).name
name of nth fillin surface for this electrode (n starts at 1).

electrode[name].fillin(n).id
ID of nth fillin surface for this electrode.

electrode[name].details(1)
the first additional description field for the electrode. By default this
is the "Job No." entry.

184 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

electrode[name].details(2)
the second additional description field for the electrode. By default
this is the "Works Order" entry.

electrode[name].details(3)
the third additional description field for the electrode. By default this
is the "Description" entry.

electrode.number.all
number of all electrodes.
electrode.number.originals
number of electrodes, excluding copies.
electrode.number.copies
number of electrode copies .

electrode[name].is_copy
1 if an electrode is a copy. 0 if not a copy.

electrode[name].parent
the name of parent if the electrode is a copy.

electrode[name].copies
the number of copies of this electrode.

electrode[name].list
a list of copies of this electrode.

electrode[name].angle.a
angle of rotation of the extraction vector in XY.

electrode[name].angle.b
angle from the vertical.

electrode[name].angle.c
rotation around the vector defined by a and b.

electrode[name].burn_vector
vector representing the extraction direction.

electrode[name].vector_clearance
distance the electrode is cleared from the part along the burn vector
before it is moved in Z.

List
electrode.list
electrode.list.all
list of all electrode names.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 185

electrode.list.originals
list of electrode names, excluding copies.
electrode.list.copies
list of electrode names of electrode copies.

Datum
electrode[name].datum
coordinates [x, y, z] of the origin of the electrode's datum.

electrode[name].datum.x
x coordinate of the origin of the electrode's datum.

electrode[name].datum.y
y coordinate of the origin of the electrode's datum.

electrode[name].datum.z
z coordinate of the origin of the electrode's datum.

Blank
electrode[name].blank.name
name of the electrode's blank

electrode[name].blank.rectangular
1 if the blank is rectangular. 0 if it is circular.

electrode[name].blank.length
length of the electrode's blank.

electrode[name].blank.width
width of the electrode's blank.

electrode[name].blank.diameter
diameter of the electrode's blank.

electrode[name].blank.height
height of the electrode's blank.

electrode[name].blank.material
material of the electrode's blank.

Holder
electrode[name]holder.catalogue
name of holder catalogue.
electrode[name]holder.base
name of base holder.

electrode[name]holder.edm
name of additional EDM holder

186 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

electrode[name]holder.machining
name of additional Machining holder

electrode[name].holder.<base|machining|edm>.items
electrode[name].holder.<base|machining|edm>.item.number
number of items that make up base, machining or edm holder.

electrode[name].holder.<base|machining|edm>.item(n)
electrode[name].holder.<base|machining|edm>.item(n).name
name of nth item that makes up base, machining or edm holder.

electrode[name].holder.<base|machining|edm>.item(n).id
ID of nth item that makes up base, machining or edm holder.

electrode[name].holder.<base|machining|edm>.item(n).type
type of nth item that makes up base, machining or edm holder
(Solid or Symbol).

Burn region
electrode[name].burn_region.surfaces — Returns the number
of surfaces in an electrode's burn region.

electrode[name].burn_region.attached — Checks if a new burn
region has been attached to an electrode. Returns 1 for electrodes
that are part of a multi-impression burn.

electrode[name].burn_region.surface[n] — Zero-indexed
access to the surfaces in an electrodes burn region. Normal surface
attributes can be accessed, for example:
electrode[name].burn_region.surface[0].id.

Quantity
electrode[name].quantity.rough
the number of roughers in the electrode family

electrode[name].quantity.semi
the number of semi-finishers in the electrode family

electrode[name].quantity.finish
the number of finishers in the electrode family

Undersize
electrode[name].undersize.rough
the undersize of the rougher (in the current units)

electrode[name].undersize.semi
the undersize of the semi-finisher (in the current units)

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 187

electrode[name].undersize.finish
the undersize of the finisher (in the current units)

Frames
Use the following macro variables for electrode frames:

electrode[...].frame.exists
returns 1 if the electrode has a frame, 0 otherwise
electrode[...].frame.length
returns the length of electrode frame.
electrode[...].frame.width
returns the width of electrode frame.
electrode[...].frame.height
returns the height of electrode frame.
electrode[...].frame.has_chamfer
returns 1 if the electrode frame has a chamfer, 0 otherwise.
electrode[...].frame.chamfer_size
returns the size of chamfer on the electrode frame.

Evaluation
evaluation
1 if evaluation copy of software is being used. 0 otherwise.

188 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

File
file move file "pathname_from" "pathname_to"
move a file to another location

file copy file "pathname_from" "pathname_to"
copy a file to another location

file move dir "pathname_from] [pathname_to"
move a directory to another location

file copy dir "pathname_from" "pathname_to"
copy a directory to another location

file create dir "pathname"
create a new directory

file[name].exists
1 if file exists. 0 otherwise.

file[name].readable
1 if file is readable. 0 otherwise.

file[name].writeable
1 if file is writeable. 0 otherwise.

file[name].size
returns file size in bytes

file[name].mode
0 if file does not exists
1 if file
2 if directory

directory[name].exists
1 if directory exists. 0 otherwise.

directory[name].readable
1 if directory is readable. 0 otherwise.

directory[name].writeable
1 if directory is writeable and 0 otherwise.

directory[name].mode
0 is directory does not exists
1 if file
2 if directory

directory['pathname'].files['pattern']
returns a list of files in a directory

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 189

Hatch
The following groups of hatch commands are available:

Hatch exists (see page 189)

Identity number of hatch (see page 189)

Name of hatch (see page 189)

Crossed hatch (see page 189)

Filled hatch (see page 189)

Hatch angle (see page 189)

Hatch spacing (see page 190)

Hatch boundaries (see page 190)

Style of hatch (see page 190)

Level of hatch (see page 190)

Hatch exists
hatch[name].exists
1 if drawing exists. 0 otherwise.

Identity number of hatch
hatch[name].id
unique identity number of the hatch in the model.

Name of hatch
hatch[id n].name
name of the hatch that has the given identity number.

Crossed hatch
hatch[name].cross
1 if hatch is crossed. 0 otherwise.

Filled hatch
hatch[name].fill
1 if hatch is filled. 0 otherwise.

Hatch angle
hatch[name].angle
first angle of hatch.

190 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

hatch[name].angle1
first angle of hatch.

hatch[name].angle2
second angle of hatch.

Hatch spacing
hatch[name].spacing
spacing of hatch.

Hatch boundaries
hatch[name].boundaries
number of boundaries enclosing the hatch.

Style of hatch
hatch[name].style.colour
colour number of line style used to draw the hatch.

hatch[name].style.color
color (USA) number of line style used to draw the hatch.

hatch[name].style.gap
gap of line style used to draw the hatch.

hatch[name].style.weight
weight of line style used to draw the hatch.

hatch[name].style.width
width of line style used to draw the hatch.

Level of hatch
hatch[name].level
level on which the hatch exists.

Lateral
Lateral commands are only available in conjunction with a surface
command. For information see Laterals and longitudinals (see page
230).

Level
level.number
the number of used levels

level[number].used
1 if the level is used. 0 otherwise.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 191

level[id n].name
name of the level that has the given identity number.

level[number].active
1 if the level is on. 0 otherwise.
level.filtered.number
number of filtered levels.
level.filtered[n].index
level number for the nth filtered level, where n is an integer
between 0 to (level.filtered.number)-1.
level.filtered.used
1 if the used filter is set. 0 otherwise.
level.filtered.named
1 if the named filter is set. 0 otherwise.
level.filtered.on
1 if the on filter is set. 0 otherwise.

Line
The following groups of line commands are available:

Start coordinates of a line (see page 191)

End coordinates of a line (see page 192)

Line exists (see page 192)

Identity number of line (see page 192)

Name of line (see page 192)

Length of line (see page 192)

Style of line (see page 192)

Level of line (see page 193)

Start coordinates of a line
line[name].start
start coordinates [x, y, z] of the line.

line[name].start.x
x coordinate of the start of the line.

line[name].start.y
y coordinate of the start of the line.

line[name].start.z
z coordinate of the start of the line.

192 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

End coordinates of a line
line[name].end
end coordinates [x, y, z] of the line.

line[name].end.x
x coordinate of the end of the line.

line[name].end.y
y coordinate of the end of the line.

line[name].end.z
z coordinate of the end of the line.

Line exists
line[name].exists
1 if line exists. 0 otherwise.

Identity number of line
line[name].id
unique identity number of the line in the model.

Name of line
line[id n].name
name of the line that has the given identity number.

Length of line
line[name].length
length of the line.

Style of line
line[name].style.colour
colour number of line style used to draw the line.

line[name].style.color
color (USA) number of line style used to draw the line.

line[name].style.gap
gap of line style used to draw the line.

line[name].style.weight
weight of line style used to draw the line.

line[name].style.width
width of line style used to draw the line.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 193

Level of line
line[name].level
level on which the line exists.

Angles of a line
Use the following variables for finding the apparent and elevation
angles of a line (these are the same values as shown on the line
editing form).

The commands return a REAL value, with the angle in the current
units - degrees or radians).

LINE[xxx].APPARENT
returns the apparent angle of the line using the current working
plane of the currently active workspace
LINE[xxx].ELEVATION
returns the angle of elevation that the line makes using the
current principal plane of the currently active workspace.

You can optionally specify which principal plane to use:
LINE[xxx].APPARENT.XY
LINE[xxx].APPARENT.YZ
LINE[xxx].APPARENT.ZX
LINE[xxx].ELEVATION.XY
LINE[xxx].ELEVATION.YZ
LINE[xxx].ELEVATION.ZX

Longitudinal
Longitudinal commands are only available in conjunction with a
surface command. For information see Laterals and longitudinals
(see page 230)

Model
The following groups of model commands are available:

194 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Selected model (see page 194)

Model exists (see page 194)

Identity number of model (see page 194)

Name of model (see page 194)

Model open (see page 195)

Number of objects in model (see page 195)

Model file size (see page 195)

Access rights (see page 195)

Model path (see page 196)

Locked (see page 196)

Changed (see page 196)

Corrupted (see page 196)

File Doctor (see page 196)

Version (see page 197)

Updated (see page 197)

Selected model
model.selected
name of the selected model.

model[name].selected
1 if the named model is selected. 0 otherwise.

Model exists
model[name].exists
1 if the named model exists. 0 otherwise.

Identity number of model
model[name].id
unique identity number of the model.

Name of model
model[id n].name
name of the model that has the given identity number.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 195

Model open
model[name].open
1 if the named model is open. 0 otherwise.

Number of objects in model
The following give the number of objects in the selected model.
model.lines
model.arcs
model.curves
model.compcurves
model.surfaces
model.solids
model.workplanes
model.dimensions
model.hatches
model.symbols
model.texts
model.pcurves
model.boundaries
model.components

Model file size
model.filesize
the size (in bytes) of the selected model's database.

model[name].filesize
the size (in bytes) of the named model's database. Note that the
model must be open. If the model is closed, model[name].filesize is
assigned -1.

 The collective size of the model's files in its directory will be
slightly larger by about 500bytes. The size can be even larger
if untruncated files exist. The command Tools - Compress
Model can sort out untruncated files as well as reducing the
actual database size too.

Access rights
model[name].open.read
1 if the named model has read access. 0 otherwise.

model[name].open.write
1 if the named model has write access. 0 otherwise.

196 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Model path
model.path
pathname of the currently selected model.

model[name].path
pathname of the named model

For example, model[mouse].path returns the pathname
D:/dcam/parts/m142.

Locked
model.locked
1 if the currently selected model is locked. 0 otherwise.

model[name].locked
1 if the named model is locked. 0 otherwise.

Changed
model.changed
1 if the currently selected model has changed. 0 otherwise.

model[name].changed
1 if the named model has changed. 0 otherwise.

Corrupted
model.corrupt
1 if the currently selected model is corrupted. 0 otherwise.

model[name].corrupt
1 if the named model is corrupted. 0 otherwise.

File Doctor
model.file_doctor.all
number of errors found for general attributes, trimming, arcs and
names.
model.file_doctor.gen_attributes
number of errors found for general attributes.
model.file_doctor.deps
number of errors found for dependencies.
model.file_doctor.trimming
number of errors found for trimming.
model.file_doctor.arcs
number of errors found for arcs.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 197

model.file_doctor.names
number of errors found for names.
model.file_doctor.solids
returns the number of errors found by the File Doctor solid checker.
model.file_doctor.orphans
returns the number of errors found by the File Doctor orphaned
items checker.

Version
model.version
current model version
model.previous_version
version of model prior to upgrade when the model was opened

Updated
model.upgraded
1 if the model was upgraded on opening, 0 otherwise.

Parameter
parameter[name].value
value of parameter.

parameter[name].exists
1 if parameter exists and 0 otherwise.

parameter[name].id
unique identity number of the parameter in the model.

parameter[id n].name
name of the parameter that has the given identity number.
parameter.number
returns the number of non-hidden and non-automatic parameters in
the model. This is the number of entries in the drop down list in the
Parameter Editor dialog.

Pcurve
pcurve[name].exists
1 if pcurve exists. 0 otherwise.

pcurve[name].number
number of points in the pcurve.

pcurve[name].level
level on which the pcurve exists.

198 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

pcurve[name].closed
1 if the pcurve is closed. 0 otherwise.

pcurve[name].id
unique identity number of the pcurve in the model.
pcurve[id n].name
name of the pcurve that has the given identity number.

pcurve[name].edge
1 if the pcurve is on the edge of a surface. 0 otherwise.

pcurve[name].parent.name
name of the surface on which the pcurve lies.

pcurve[name].parent.id
unique identification number of the surface on which the pcurve lies.

pcurve[name].in_boundary
1 if the pcurve exists in any boundary. 0 otherwise.

Start coordinates of a pcurve
pcurve[name].start
coordinates [x, y, z] of the start position in the pcurve.

pcurve[name].start.xyz
coordinates [x, y, z] of the start position in the pcurve.

pcurve[name].start.x
x coordinate of the start position in the pcurve.

pcurve[name].start.y
y coordinate of the start position in the pcurve.

pcurve[name].start.z
z coordinate of the start position in the pcurve.

pcurve[name].start.tu
tu coordinates [t, u, 0] of the start position in the pcurve.

pcurve[name].start.t
t coordinate of the start position in the pcurve.

pcurve[name].start.u
u coordinate of the start position in the pcurve.

pcurve[name].start.exists
1 if the start coordinates of the pcurve exists and 0 otherwise.

End coordinates of a pcurve
pcurve[name].end
coordinates [x, y, z] of the end position in the pcurve.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 199

pcurve[name].end.xyz
coordinates [x, y, z] of the end position in the pcurve.

pcurve[name].end.x
x coordinate of the end position in the pcurve.

pcurve[name].end.y
y coordinate of the end position of the pcurve.

pcurve[name].end.z
z coordinate of the end position in the pcurve.

pcurve[name].end.tu
tu coordinates [t, u, 0] of the end position in the pcurve.

pcurve[name].end.t
t coordinate of the end position in the pcurve.

pcurve[name].end.u
u coordinate of the end position in the pcurve.

pcurve[name].end.exists
1 if the end coordinates of the pcurve exists and 0 otherwise.

Coordinates of a point on a pcurve
pcurve[name].point[number]
coordinates [x, y, z] of the pcurve's point.

pcurve[name].point[number].xyz
coordinates [x, y, z] of the pcurve's point.

pcurve[name].point[number].x
x coordinate of the pcurve's point.

pcurve[name].point[number].y
y coordinate of the pcurve's point.

pcurve[name].point[number].z
z coordinate of the pcurve's point.

pcurve[name].point[number].tu
tu coordinates [t, u, 0] of the pcurve's point.

pcurve[name].point[number].t
t coordinate of the pcurve's point.

pcurve[name].point[number].u
u coordinate of the pcurve's point.

pcurve[name].point[number].exists
1 if the pcurve's point exists and 0 otherwise.

200 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Point
point[name].exists
1 if the point exists. 0 otherwise.

point[name].id
unique identity number of the point in the model.

point[id n].name
name of the point that has the given identity number.

point[name].description
description of the point as stored in the database.

Position of point
point[name].position
coordinates [x, y, z] of the point.

point[name].position.x
x coordinate of the point.

point[name].position.y
y coordinate of the point.

point[name].position.z
z coordinate of the point.

Style of point
point[name].style.colour
colour number of line style used to draw the point.

point[name].style.color
color (USA) number of line style used to draw the point.

point[name].style.gap
gap of line style used to draw the point.

point[name].style.weight
weight of line style used to draw the point.

point[name].style.width
width of line style used to draw the point.

Level of point
point[name].level
level on which the point exists.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 201

Printer
printer[name].exists
1 if the printer exists. 0 otherwise.

printer[name].id
unique identity number of the printer.

printer[id n].name
name of the printer that has the given identity number.

printer[name].image_string_set
1 if the image command set and 0 otherwise.

printer[name].image_string
image command for this printer.

printer[name].plot_string_set
1 if the plot command set. 0 otherwise.

printer[name].plot_string
plot command for this printer.

printer[name].initialised
1 if the printer is initialise and 0 otherwise.

printer[name].num_pens
number of pens stored for this printer.

printer[name].pen[n].colour
colour number of pen n on this printer.

printer[name].pen[n].width
width of pen n on this printer.

printer[name].pen[n].active
1 if pen n is active. 0 otherwise.

Renderer
renderer.has_hardware_triangles
1 if the hardware supports triangles. 0 otherwise.
renderer.has_depth_cueing
1 if the hardware supports depth cueing. 0 otherwise.
renderer.has_anti_aliasing
1 if the hardware supports anti-aliasing. 0 otherwise.

Selection
selection.exists
1 if at least one item is selected . 0 otherwise.
selection.id
unique identity number of the selection in the model.

202 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

selection.number
selection.magnitude
number of selected items.

selection[name].description
description of the selection as stored in the database.
SELECTION.TYPES
Returns a list of strings such as { 'Line'; 'Arc'; 'Solid'};one string
per selected item
SELECTION.NAMES
Returns a list of string such as { '1'; '1'; 'fred' };one string per
selected item

Other selection options
Interrogating selected items (see page 202)

Selection positions (see page 203)

Bounding box around individual objects (see page 206)

Number of selected surface curves/surface curve points (see
page 207)

Interrogating selected items
selection.object[number]
object type and its name in the selection. For example, Line[4],
Arc[1].

If there are n items selected, then number is the item's number in
the selection. selection.object[number].syntax
object information as specified by the syntax for object
selection.object[number]. The syntax you can use is given under
each type of object.

For example, if selection.object[1] is Line[2], then you can specify
the syntax as any syntax after Line[name]. For further details see
Line (see page 191) .

For the x coordinate of the start of the line, you can use
selection.object[1].start.x where start.x is the syntax.

selection.type[number]
type of an object in the selection. For example, Line, Arc.

If there are n objects selected, then number is the item's number in
the selection.

 If you compare the type of an object with a text string, you
must use the correct capitalisation. For example, if you want
to check that selection.type[0] is a composite curve, then you
must use:

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 203

selection.type[0] == 'Composite Curve'
and not:

selection.type[0] == 'Composite curve'
selection.type[0] == 'composite curve'

selection.name[number]
name of an item in the selection.

If there are n items selected, then number is the item's number in
the selection.

 In all cases, number is from 0 to (n-1).

Selection positions
Currently, the selection position is only calculated if there is only
one object in the selection. Therefore, the number in brackets [] is
always zero.
selection.key_point[0]
the number of the selected keypoint in a surface or curve.

For a curve, if the keypoint is the nth point, then
selection.key_point[0] is n.

For a surface, we will use the following surface to describe how the
numbers are worked out.

204 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

The keypoints are numbered consecutively across the laterals as
shown below.

If a spine point is selected, then selection.key_point[0] is the
number of points in the surface plus its number in the spine. For
example, if a surface has 16 points and the third spine point is
selected, then selection.key_point[0] is 19.
selection.nearest_end[0]
the number of end position nearest the position of selection in a line
or arc, where 1 is the start point and 2 is the end point.
selection.composite_item[0]
the number of the object selected in a composite curve. If the third
object in the composite curve is selected, then
selection.composite_item[0] is 3.

Bounding box around selection
selection.size
size of the bounding box around the selection.
selection.size.x
size in the x direction of the bounding box around the selection.
selection.size.y
size in the y direction of the bounding box around the selection.
selection.size.z
size in the z direction of the bounding box around the selection.
selection.min_range
minimum coordinates of the bounding box around the selection.
selection.min_range.x
x coordinate of the minimum coordinates of the bounding box
around the selection.
selection.min_range.y
y coordinate of the minimum coordinates of the bounding box
around the selection.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 205

selection.min_range.z
z coordinate of the minimum coordinates of the bounding box
around the selection.
selection.max_range
maximum coordinates of the bounding box around the selection.
selection.max_range.x
x coordinate of the maximum coordinates of the bounding box
around the selection.
selection.max_range.y
y coordinate of the maximum coordinates of the bounding box
around the selection.
selection.max_range.z
z coordinate of the maximum coordinates of the bounding box
around the selection.
selection.min_range_exact
minimum coordinates of the bounding box around the selection. The
bounding box ignores the centre of arcs and only takes into account
the trimmed region of surfaces.
selection.min_range_exact.x
x coordinate of the minimum coordinates of the bounding box
around the selection. The bounding box ignores the centre of arcs
and only takes into account the trimmed region of surfaces.
selection.min_range_exact.y
y coordinate of the minimum coordinates of the bounding box
around the selection. The bounding box ignores the centre of arcs
and only takes into account the trimmed region of surfaces.
selection.min_range_exact.z
z coordinate of the minimum coordinates of the bounding box
around the selection. The bounding box ignores the centre of arcs
and only takes into account the trimmed region of surfaces.
selection.max_range_exact
maximum coordinates of the bounding box around the selection.
The bounding box ignores the centre of arcs and only takes into
account the trimmed region of surfaces.
selection.max_range_exact.x
x coordinate of the maximum coordinates of the bounding box
around the selection. The bounding box ignores the centre of arcs
and only takes into account the trimmed region of surfaces.
selection.max_range_exact.y
y coordinate of the maximum coordinates of the bounding box
around the selection. The bounding box ignores the centre of arcs
and only takes into account the trimmed region of surfaces.

206 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

selection.max_range_exact.z
z coordinate of the maximum coordinates of the bounding box
around the selection. The bounding box ignores the centre of arcs
and only takes into account the trimmed region of surfaces.

Bounding box around individual objects
selection.size[n]
size of the bounding box around the nth object in the selection.

selection.size[n].x
size in the x direction of the bounding box around the nth object in
the selection.

selection.size[n].y
size in the y direction of the bounding box around the nth object in
the selection.

selection.size[n].z
size in the z direction of the bounding box around the nth object in
the selection.

selection.min_range[n]
minimum coordinates of the bounding box around the nth object in
the selection.

selection.min_range[n].x
x coordinate of the minimum coordinates of the bounding box
around the nth object in the selection.

selection.min_range[n].y
y coordinate of the minimum coordinates of the bounding box
around the nth object in the selection.

selection.min_range[n].z
z coordinate of the minimum coordinates of the bounding box
around the nth object in the selection.

selection.max_range[n]
maximum coordinates of the bounding box around the nth object in
the selection.

selection.max_range[n].x
x coordinate of the maximum coordinates of the bounding box
around the nth object in the selection.

selection.max_range[n].y
y coordinate of the maximum coordinates of the bounding box
around the nth object in the selection.

selection.max_range[n].z
z coordinate of the maximum coordinates of the bounding box
around the nth object in the selection.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 207

selection.min_range_exact[n]
minimum coordinates of the bounding box around the nth object in
the selection. The bounding box ignores the centre of arcs and only
takes into account the trimmed region of surfaces.

selection.min_range_exact[n].x
x coordinate of the minimum coordinates of the bounding box
around the nth object in the selection. The bounding box ignores
the centre of arcs and only takes into account the trimmed region of
surfaces.

selection.min_range_exact[n].y
y coordinate of the minimum coordinates of the bounding box
around the nth object in the selection. The bounding box ignores
the centre of arcs and only takes into account the trimmed region of
surfaces.

selection.min_range_exact[n].z
z coordinate of the minimum coordinates of the bounding box
around the nth object in the selection. The bounding box ignores
the centre of arcs and only takes into account the trimmed region of
surfaces.

selection.max_range_exact[n]
maximum coordinates of the bounding box around the nth object in
the selection. The bounding box ignores the centre of arcs and only
takes into account the trimmed region of surfaces.

selection.max_range_exact[n].x
x coordinate of the maximum coordinates of the bounding box
around the nth object in the selection. The bounding box ignores
the centre of arcs and only takes into account the trimmed region of
surfaces.

selection.max_range_exact[n].y
y coordinate of the maximum coordinates of the bounding box
around the nth object in the selection. The bounding box ignores
the centre of arcs and only takes into account the trimmed region of
surfaces.

selection.max_range_exact[n].z
z coordinate of the maximum coordinates of the bounding box
around the nth object in the selection. The bounding box ignores
the centre of arcs and only takes into account the trimmed region of
surfaces.

Number of selected surface curves/surface curve points
SURFACE.SELECTED.CURVES
Returns the number of currently selected surface curves (an INT).

208 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

SURFACE.SELECTED.POINTS
Returns the number of currently selected surface curve points (an
INT).

Shareddb
shareddb.path
pathname of the shared database that is being used, for example,
c:/dcam/shareddb.

Sketcher
sketch
1 if Sketcher is on. 0 otherwise.

Solid
The following groups of solid commands are available:

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 209

Solid exists (see page 209)

Solid active (see page 210)

Identity number of solid (see page 210)

Name of solid (see page 210)

Active (see page 210)

Ghost (see page 211)

Type (see page 211)

Surfaces in a solid (see page 211)

Bounding box around solid (see page 211)

Origin of primitive and extruded solids only (see page 212)

Workplane of primitive (see page 213)

Dimensions of primitive and extruded solids only (see page 212)

Surface area (see page 213)

Volume of solid (see page 213)

Watertight (see page 213)

Closure (see page 214)

Centre of gravity (see page 214)

Moment of inertia (see page 214)

Linked edges (see page 214)

Valid boundaries (see page 214)

Connected (see page 215)

Features (see page 215)

Material (see page 221)

Style of solid (see page 221)

Scaling Constraints - solids (see page 222)

Solid name
SOLID[<solid-name>].CLOSEST_FACE(<x>; <y>; <z>
returns a string representing the name of the closest face of a solid
to a given point. The point is entered in current units and absolute
coordinates.

Solid exists
solid[name].exists
1 if the solid exists. 0 otherwise.

210 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Owner
The following macro variables determine the owner of an entity.

XXXX[entity_name].owner
returns the Owner string.

XXXX[entity_name].owner.id
returns the Owner ID.

XXXX[entity_name].owner.name
returns the Owner Name

XXXX[entity_name].owner.type
returns the Owner Type.

where XXXX is a solid.

Solid active
solid_active
retrieves the id of the active solid
solid.active
returns the name of the currently active solid.

Identity number of solid
solid[name].id
unique identity number of the solid in the model.

Name of solid
solid[id n].name
name of solid that has the given identity number.

Solid version
solid[N].parasolid
returns 1 if the solid is a parasolid, else 0.
solid[N].v8
returns 1 if the solid is a version 8 solid, else 0.

Active
solid[name].active
1 if the solid is active. 0 otherwise.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 211

Ghost
solid[name].ghost
1 for a ghost solid. 0 for a normal solid.

Type
solid[name].type
checks the solid and retrieves one of the following strings:

Plane

Block

Sphere

Cylinder

Cone

Torus

Extrusion

GeneralSolid

Revolution

ShoeLast

Surfaces in a solid
solid[name].surfaces
number of surfaces in the solid.

solid[name].surface[number]
name of the surface in the solid.
solid[N].surface[M].id
returns the id number of the Mth surface of solid N, or the
representation number if a parasolid solid.
solid[N].surface[M].name
returns the name of the Mth surface of solid N. This is the same as
solid[N].surface[M].

Bounding box around solid
solid[name].min_size
minimum coordinates of the bounding box around the solid.

solid[name].max_size
maximum coordinates of the bounding box around the solid.

212 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Origin of primitive and extruded solids only
solid[name].origin
origin of the solid.

solid[name].origin.x
x coordinate of the origin of the solid.

solid[name].origin.y
y coordinate of the origin of the solid.

solid[name].origin.z
z coordinate of the origin of the solid.

Dimensions of primitive and extruded solids only
solid[name].radius
radius of a cylinder or a sphere.

solid[name].length
length of one of the following primitives: block; cylinder; cone;
extrusion; plane.

solid[name].width
width of a block or a plane.

solid[name].diameter
diameter of solid.

solid[name].height
height of a block.

solid[name].neglength
negative length of an extrusion

solid[name].base_radius
radius of a cone on the base of its workplane.

solid[name].top_radius
radius of a cone furthest from the base of its workplane.

solid[name].major_radius
major radius of a torus.

solid[name].minor_radius
minor radius of a torus.

solid[name].draft_angle
draft angle of an extrusion.

solid[name].angle
angle of primitive revolution

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 213

Workplane of primitive (solid)
The following return the X, Y or Z unit axis vector of the primitive's
workplane. The vector is defined in relation to the currently active
workplane:

SOLID[<name>].XAXIS
SOLID[<name>].YAXIS
SOLID[<name>].ZAXIS

The following return the X, Y or Z entity of the unit axis vector of
the primitive's workplane. The vector is defined in relation to the
currently active workplane:

SOLID[<name>].XAXIS.X
SOLID[<name>].XAXIS.Y
SOLID[<name>].XAXIS.Z
SOLID[<name>].YAXIS.X
SOLID[<name>].YAXIS.Y
SOLID[<name>].YAXIS.Z
SOLID[<name>].ZAXIS.X
SOLID[<name>].ZAXIS.Y
SOLID[<name>].ZAXIS.Z

Examples
PRINT SOLID[1].XAXIS

PRINT SOLID[1].XAXIS.Z

Surface area
solid[name].area
surface area of the solid.

Volume of solid
solid[name].volume
volume of the solid.

Watertight
solid[name].watertight
1 if the solid is watertight within tolerance. 0 otherwise.

214 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Closure
solid[name].closed
1 if the solid is closed. 0 otherwise.

Centre of gravity
solid[name].cog
coordinates [x, y, z] of the centre of gravity of the solid.

solid[name].cog.x
x coordinate of the centre of gravity of the solid.

solid[name].cog.y
y coordinate of the centre of gravity of the solid.

solid[name].cog.z
z coordinate of the centre of gravity of the solid.

Moment of inertia
solid[name].moi
coordinates [x, y, z] of the moment of inertia of the solid.

solid[name].moi.x
x coordinate of the moment of inertia of the solid.

solid[name].moi.y
y coordinate of the moment of inertia of the solid.

solid[name].moi.z
z coordinate of the moment of inertia of the solid.

Linked edges
solid[name].nlinks
number of linked half edges of a solid, where a half edge is a
segment of a boundary of a face.

solid[name].tolerance
tolerance to which the half edges are known to link, where a half
edge is a segment of a boundary of a face.

Valid boundaries
solid[name].trimming_valid
1 if boundaries in the solid are valid. 0 otherwise.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 215

Connected
solid[name].connected
1 if the surfaces which define the solid connect together within
tolerance. 0 otherwise.

Features
solid[name].feature[fname].exists
feature[fname].exists
1 if the feature exists. 0 otherwise.

solid[name].feature[fname].id
feature[fname].id
the integer id of the feature.

solid[name].feature[fname].exists
feature[fname].exists
1 if the feature exists. 0 otherwise.

solid[name].feature[fname].name
feature[fname].name
name of the feature.

solid[name].feature[fname].type
feature[fname].type
type of feature (for example, " fillet", "boss").

solid[name].feature[fname].suppressed
feature[fname].suppressed
1 if the feature currently suppressed. 0 otherwise.

solid[name].feature[fname].error
feature[fname].error
1 if the feature error suppressed. 0 otherwise.

solid[name].feature[fname].surfaces
feature[fname].surfaces
number of visible surfaces in the feature.

solid[name].feature[fname].length
feature[fname].length
the length/depth/height of the cut/boss feature.

solid[name].feature[fname].angle
feature[fname].angle
angle of the cut/boss/bulge feature.

solid[name].feature[fname].radius
feature[fname].radius
radius of the fillet feature.

In addition, the following groups of feature commands are
available:

216 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Holes (see page 216)

Feature selected (see page 218)

Feature suppressed (see page 218)

Feature error (see page 218)

Feature exists (see page 218)

Identity number of feature (see page 218)

Workplane of feature (see page 219)

Name of solid (see page 210)

Type (see page 211)

Number of surfaces (see page 219)

Name of surface (see page 220)

Length of feature (see page 220)

Angle of feature (see page 220)

Radius of feature (see page 220)

Pre-machined status (see page 220)

Existed at birth flag (see page 220)

Scaling constraints - features (see page 220)

Holes
solid[name].feature[fname].origin
origin of the hole

solid[name].feature[fname].main_depth
depth of the hole's main section

solid[name].feature[fname].main_diameter
diameter of the hole's main section

solid[name].feature[fname].bore_depth
depth of the hole's bore section (if any)

solid[name].feature[fname].bore_diameter
diameter of the hole's bore section (if any)

solid[name].feature[fname].sink_diameter
diameter of the hole's sink section (if any)

solid[name].feature[fname].tap_depth
depth of the hole's tap section (if any)

solid[name].feature[fname].tap_diameter
diameter of the hole's tap section (if any)

solid[name].feature[fname].tap_pitch
pitch of the hole's tap section (if any)

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 217

Pockets and protrusions
You can use the following commands to determine the dimensions
of pockets and protrusions. The commands return the required
dimension and take the form,

feature[name].length

The following commands are available for pockets and protrusions:

length - Length of the pocket

width - Width of the pocket

height - Height of the protrusion. This will return the same value
as depth

depth - Depth of the pocket. This will return the same value as
height
angle1 - Draft angle of top wall

angle2 - Draft angle of right wall

angle3 - Draft angle of bottom wall

angle4 - Draft angle of left wall

radius - Radius of joining fillet

radius1 - Radius of top left corner fillet

radius2 - Radius of top right corner fillet

radius3 - Radius of bottom right corner fillet

radius4 - Radius of bottom left corner fillet

radius5 - Radius of base fillet of pocket, or top fillet of a
protrusion

You can use the existing hole commands to determine the
dimensions of the hole in the corner(s) of the pocket. For example,
the following command will return the main diameter of the hole in
the corner of the pocket.

print feature[name].main_diameter

Number of features
solid[name].children
solid[name].features
number of features on the solid.

solid[name].children.all
solid[name].features.all
number of features on the solid, including sub-branches on the
feature tree.

218 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

solid[name].children.selected
solid[name].features.selected
number of selected features on the solid.

feature[name].children
feature[name].features
number of features in the sub-branch. It can be used with Boolean
and Group features.

In the example below, print feature['1'].children will return the
value 4.

feature[name].features.all
number of features, including all sub-branches.

Feature selected
feature[name].selected
1 for a selected feature. 0 otherwise.

Feature suppressed
feature[name].suppressed
1 for suppressed feature . 0 otherwise.

Feature error
feature[name].error
1 for an error state for a feature. 0 otherwise.

Feature exists
feature[name].exists
1 if the solid feature exists. 0 otherwise.

Identity number of feature
feature[name].id
unique identity number of the solid feature in the model.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 219

Workplane of feature
The following return the X, Y or Z unit axis vector of the feature's
workplane. The vector is defined in relation to the currently active
workplane:

FEATURE[<name>].XAXIS
FEATURE[<name>].YAXIS
FEATURE[<name>].ZAXIS

The following return the X, Y or Z entity of the unit axis vector of
the feature's workplane. The vector is defined in relation to the
currently active workplane:

FEATURE[<name>].XAXIS.X
FEATURE[<name>].XAXIS.Y
FEATURE[<name>].XAXIS.Z
FEATURE[<name>].YAXIS.X
FEATURE[<name>].YAXIS.Y
FEATURE[<name>].YAXIS.Z
FEATURE[<name>].ZAXIS.X
FEATURE[<name>].ZAXIS.Y
FEATURE[<name>].ZAXIS.Z

Examples
PRINT FEATURE[1].XAXIS

PRINT FEATURE[1].XAXIS.Y

Name of solid
feature[id n].name
name of solid feature that has the given identity number.

Type
feature[name].type
checks the solid feature and retrieves a string indicating the type of
feature.

Number of surfaces
feature[name].surfaces
number of visible surfaces that make up the feature.

220 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Name of surface
feature[name of feature].surface[n]
the name of the nth surface of a solid feature, where n is the
number of the surface of the solid feature.

Length of feature
feature[name].length
length of the feature - applies to cut and boss features only.

Angle of feature
feature[name].angle
angle of the feature - applies to cut, boss and bulge features only.

Radius of feature
feature[name].radius
radius of feature - applies to fillet feature only.

Pre-machined status
feature[feature name].machine
1 if feature is to be machined. 0 otherwise.

feature[feature name].pre_machined
1 if feature is pre-machined, 0 otherwise.

Existed at birth flag
feature[feature name].existed_at_birth
1 if feature was present in the original solid (for example, a feature
existing in a manufacturer standard moldbase component). 0 if the
feature was added later.

Scaling constraints (features)
feature.constraint.exists
1 if scaling constraint exists. 0 otherwise.
feature.constraint.type
returns Fixed Size or Fixed Distance to indicate the type of scaling
constraint.
feature.constraint.origin
returns the coordinates of the scaling constraint plane origin.
feature.constraint.xaxis
returns a vector representing the X axis of the scaling constraint
plane.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 221

feature.constraint.yaxis
returns a vector representing the Y axis of the scaling constraint
plane.
feature.constraint.zaxis
returns a vector representing the Z axis of the scaling constraint
plane.

Material
solid[name].material.polish
polish value of the material used on the solid.

solid[name].material.emission
emission value of the material used on the solid.

solid[name].material.transparency
transparency value of the material used on the solid.

solid[name].material.reflectance
reflectance value of the material used on the solid.

solid[name].material.colour
rgb colour values of the material used on the solid.

solid[name].material.name
name of the material used for the solid.

Style of solid
solid[name].style.colour
colour number of line style used to draw the solid.

solid[name].style.color
color (USA) number of line style used to draw the solid.

solid[name].style.gap
gap of line style used to draw the solid.

solid[name].style.weight
weight of line style used to draw the solid.

solid[name].style.width
width of line style used to draw the solid.

Level of solid
solid[name].level
level on which the solid exists.

222 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Scaling Constraints (solids)
solid.constraint.exists
1 if scaling constraint exists. 0 otherwise.
solid.constraint.type
Fixed Size or Fixed Distance to indicate the type of scaling
constraint.
solid.constraint.origin
the coordinates of the scaling constraint plane origin.
solid.constraint.xaxis
vector representing the X axis of the scaling constraint plane.
solid.constraint.yaxis
vector representing the Y axis of the scaling constraint plane.
solid.constraint.zaxis
vector representing the Z axis of the scaling constraint plane.

Picking faces of a solid
When in face selection mode, you can use commands to pick the
faces of a selected solid.

 Use the following commands to replace the currently selected
faces with named faces:
PICK FACE NAME <face_name>
PICK FACE <face_name>
PICK FACE REPLACE NAME <face_name>
PICK FACE NAME <face_name>

 This is the same as using the mouse to select the faces.

 Use the following commands to add the named face to the
current selection:
PICK FACE ADD NAME <face_name>
PICK FACE ADD <face_name>

 This is the same as holding down the SHIFT key and
clicking the left mouse button.

 Use the following commands toggle the named face into/out of
the current selection:
PICK FACE TOGGLE NAME <face_name>
PICK FACE TOGGLE <face_name>

 This is the same as holding down the CTRL key and clicking
the left mouse button.

<face_name> can be a word, string, integer or variable.. The
following are all valid:

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 223

PICK FACE fred
PICK FACE 'fred'
PICK FACE 23
STRING face_name = 'fred'
PICK FACE $face_name

The commands are also available during the following operations:

 Multiple-face selection modes; if you are in convex face selection
mode, several faces will be selected, spreading out from the
named face.

 Solid Draft Face
 Solid Replace Face
 Solid Divide Face

Spine
Spine commands are only available in conjunction with a surface
command. For details see Spines (see page 239).

Surface
The following groups of surface commands are available:
General (see page
224)

Reference direction
(see page 224)

Primitives (see page
224)

Trimmed surface (see
page 227)

Minimum block size
(see page 227)

Surface type (see
page 228)

Area of surface (see
page 228)

Diameter of surface
(see page 229)

Volume of surface
(see page 229)

Centre of gravity of
surface (see page
229)

Evaluate position (see
page 229)

Evaluate normal (see
page 229)

Evaluate curvature
(see page 230)

Nearest t and u
parameters (see page
230)

Laterals and
longitudinals (see
page 230)

Owner (see page
239)

Material (see page
239)

224 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Spines (see page
239)

Trim regions (see
page 242)

Boundaries (see page
242)

Pcurves (see page
242)

Style of surface (see
page 242)

Level of surface (see
page 243)

The following commands can also be used:

Number of selected surface curves/surface curve points (see
page 207)

General surface commands
surface[name].exists
1 if the surface exists. 0 otherwise.

surface[name].id
unique identity number of the surface in the model.

surface[id n].name
name of surface that has the given identity number.

surface[name].description
description of the surface as stored in the database
surface[1].tangentpoint(1;2;3;4;5;6)
A point on a surface such that if viewed from an outside point, the
line joining the two points will be tangent to the surface. The first 3
coordinates are a point outside the surface and the last 3 are the
initial guess point on the surface.

Reference direction
surface[name].direction
unit vector of the reference direction of the surface.

surface[name].direction.x
x value of the unit vector of the reference direction of the surface.

surface[name].direction.y
y value of the unit vector of the reference direction of the surface.

surface[name].direction.z
z value of the unit vector of the reference direction of the surface.

Primitives
Surface syntax in this section applies to primitive surfaces (including
extrusions). It outputs data about the surface's dimensions and
workplane instrumentation.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 225

Dimensions of surface (see page 225)

Origin of surface (see page 225)

Axes directions of primitive (see page 226)

Workplane of primitive (see page 227)

Dimensions of surface
surface[name].radius
radius of a cylinder or a sphere.

surface[name].length
length of one of the following primitives: block; cylinder; cone;
extrusion; plane.

surface[name].width
width of a block or a plane.

surface[name].height
height of a block.

surface[name].base_radius
radius of a cone on the base of its workplane.

surface[name].top_radius
radius of a cone furthest from the base of its workplane.

surface[name].major_radius
major radius of a torus.

surface[name].minor_radius
minor radius of a torus.

surface[name].neglength
negative length of an extrusion

surface[name].draft_angle
draft angle of an extrusion.

Origin of surface
surface[name].origin
coordinates [x, y, z] of the origin of the primitive's workplane
instrumentation.

surface[name].origin.x
x coordinate of the origin of the primitive's workplane
instrumentation.

surface[name].origin.y
y coordinate of the origin of the primitive's workplane
instrumentation.

226 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

surface[name].origin.z
z coordinate of the origin of the primitive's workplane
instrumentation.

Axes directions of primitive
surface[name].xaxis
unit vector which defines the orientation of the X-axis of the
primitive's workplane instrumentation.

surface[name].xaxis.x
x value of the unit vector which defines the orientation of the X-axis
of the primitive's workplane instrumentation.

surface[name].xaxis.y
y value of the unit vector which defines the orientation of the X-axis
of the primitive's workplane instrumentation.

surface[name].xaxis.z
z value of the unit vector which defines the orientation of the X-axis
of the primitive's workplane instrumentation.

surface[name].yaxis
unit vector which defines the orientation of the Y-axis of the
primitive's workplane instrumentation.

surface[name].yaxis.x
x value of the unit vector which defines the orientation of the Y-axis
of the primitive's workplane instrumentation.

surface[name].yaxis.y
y value of the unit vector which defines the orientation of the Y-axis
of the primitive's workplane instrumentation.

surface[name].yaxis.z
z value of the unit vector which defines the orientation of the Y-axis
of the primitive's workplane instrumentation.

surface[name].zaxis
unit vector which defines the orientation of the Z-axis of the
primitive's workplane instrumentation.

surface[name].zaxis.x
x value of the unit vector which defines the orientation of the Z-axis
of the primitive's workplane instrumentation.

surface[name].zaxis.y
y value of the unit vector which defines the orientation of the Z-axis
of the primitive's workplane instrumentation.

surface[name].zaxis.z
z value of the unit vector which defines the orientation of the Z-axis
of the primitive's workplane instrumentation.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 227

Workplane of primitive (surface)
The following return the X, Y or Z unit axis vector of the primitive's
workplane. The vector is defined in relation to the currently active
workplane:

SURFACE[<name>].XAXIS
SURFACE[<name>].YAXIS
SURFACE[<name>].ZAXIS

The following return the X, Y or Z entity of the unit axis vector of
the primitive's workplane. The vector is defined in relation to the
currently active workplane:

SURFACE[<name>].XAXIS.X
SURFACE[<name>].XAXIS.Y
SURFACE[<name>].XAXIS.Z
SURFACE[<name>].YAXIS.X
SURFACE[<name>].YAXIS.Y
SURFACE[<name>].YAXIS.Z
SURFACE[<name>].ZAXIS.X
SURFACE[<name>].ZAXIS.Y
SURFACE[<name>].ZAXIS.Z

Examples
PRINT SURFACE[1].YAXIS

PRINT SURFACE[1].YAXIS.Z

Trimmed surface
surface[name].trimmed
1 if the surface's local trim flag is set. 0 otherwise.

Minimum block size
surface[name].min_size
coordinates [x, y, z] of the minimum point of the smallest box that
fully encloses the surface.

surface[name].min_size.x
x coordinate of the minimum point of the smallest box that fully
encloses the surface.

surface[name].min_size.y
y coordinate of the minimum point of the smallest box that fully
encloses the surface.

228 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

surface[name].min_size.z
z coordinate of the minimum point of the smallest box that fully
encloses the surface.

surface[name].max_size
coordinates [x, y, z] of the maximum point of the smallest box that
fully encloses the surface.

surface[name].max_size.x
x coordinate of the maximum point of the smallest box that fully
encloses the surface.

surface[name].max_size.y
y coordinate of the maximum point of the smallest box that fully
encloses the surface.

surface[name].max_size.z
z coordinate of the maximum point of the smallest box that fully
encloses the surface.

Surface type
surface[name].type
checks the surface and retrieves one of the following strings:

Plane

Block

Sphere

Cylinder

Cone

Torus

Extrusion

Revolution

Powersurface

BCP

NURB

PDGS

Area of surface
surface[name].area
area of the surface.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 229

Diameter of surface
surface[name].diameter
diameter of surface.

Volume of surface
surface[name].volume
volume of the surface.

Centre of gravity of surface
surface[name].cog
coordinates [x, y, z] of the centre of gravity of the surface.

surface[name].cog.x
x coordinate of the centre of gravity of the surface.

surface[name].cog.y
y coordinate of the centre of gravity of the surface.

surface[name].cog.z
z coordinate of the centre of gravity of the surface.

Evaluate position
surface[name].evaluate(t; u).position
coordinates [x, y, z] of the position on the surface defined by the t
and u parameters.

surface[name].evaluate(t; u).position.x
x coordinate of the position defined on the surface by the t and u
parameters.

surface[name].evaluate(t; u).position.y
y coordinate of the position defined on the surface by the t and u
parameters.

surface[name].evaluate(t; u).position.z
z coordinate of the position defined on the surface by the t and u
parameters.

Evaluate normal
surface[name].evaluate(t; u).normal
unit vector of the normal to the surface at the position defined by
the t and u parameters.
surface[name].evaluate(t; u).normal.x
x value of the unit vector of the normal to the surface at the
position defined by the t and u parameters.

230 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

surface[name].evaluate(t; u).normal.y
y value of the unit vector of the normal to the surface at the
position defined by the t and u parameters.
surface[name].evaluate(t; u).normal.z
z value of the unit vector of the normal to the surface at the
position defined by the t and u parameters.

Evaluate curvature
surface[name].evaluate(t; u).curvature.min
minimum curvature at the position on the surface defined by the t
and u parameters.
surface[name].evaluate(t; u).curvature.max
maximum curvature at the position on the surface defined by the t
and u parameters.

Nearest t and u parameters
surface[name].near(x; y; z)
t and u parameters on the surface nearest to the coordinates [x, y,
z].

For complicated surfaces, you can supply guessed t and u values
close to the coordinates to speed up the calculations. The guessed
values are added in the brackets as shown below.

surface[name].near(x; y; z; guess_t; guess_u)
surface[name].near(x; y; z).t
t parameter on the surface nearest to the coordinates [x, y, z].

surface[name].near(x; y; z).u
u parameter on the surface nearest to the coordinates [x, y, z].

Laterals and longitudinals
Click one of the following:

Closed laterals and longitudinals (see page 231)

Number of laterals and longitudinals (see page 231)

Number of selected surface curves/surface curve points (see
page 207)

Laterals

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 231

Start and end positions of lateral (see page 232)

Number of points in lateral (see page 232)

Length of lateral (see page 232)

Identity number of lateral (see page 232)

Name of lateral (see page 232)

Lateral points (see page 233)

Tangent magnitude at lateral points (see page 233)

Tangent direction at lateral points (see page 233)

Azimuth and elevation angles at lateral points (see page 234)

Normal at lateral points (see page 234)

Centre of gravity at lateral (see page 234)
Longitudinals

Start and end positions of longitudinal (see page 235)

Number of points in longitudinal (see page 235)

Length of longitudinal (see page 235)

Identity number of longitudinal (see page 235)

Longitudinal points (see page 236)

Tangent magnitude at longitudinal points (see page 236)

Tangent direction at longitudinal points (see page 237)

Azimuth and elevation angles at longitudinal points (see page
237)

Normal at longitudinal points (see page 237)

Centre of gravity at longitudinal (see page 238)

Flare and twist (see page 238)

Closed laterals and longitudinals
surface[name].lat_closed
1 if the surface's laterals are closed. 0 if open.

surface[name].lon_closed
1 if the surface's longitudinals are closed. 0 if open.

Number of laterals and longitudinals
surface[name].nlats
number of laterals in the surface.

surface[name].nlons
number of longitudinals in the surface.

232 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Start and end positions of lateral
surface[name].lateral[number].start
coordinates [x, y, z] of the start position of the lateral.

surface[name].lateral[number].start.x
x coordinate of start position of the lateral.

surface[name].lateral[number].start.y
y coordinate of start position of the lateral.

surface[name].lateral[number].start.z
z coordinate of start position of the lateral.

surface[name].lateral[number].end
coordinates [x, y, z] of the end position of the lateral.

surface[name].lateral[number].end.x
x coordinate of end position of the lateral.

surface[name].lateral[number].end.y
y coordinate of end position of the lateral.

surface[name].lateral[number].end.z
z coordinate of end position of the lateral.

Number of points in lateral
surface[name].lateral[number].number
number of points in the lateral.

Length of lateral
surface[name].lateral[number].length
length of the lateral.

surface[name].lateral[number].length_between(a; b)
length along the lateral between lateral points a and b.

Lateral exists
surface[name].lateral[number].exists
1 if lateral exists and 0 otherwise.

Identity number of lateral
surface[name].lateral[number].id
unique identity number of the lateral.

Name of lateral
surface[name].lateral[number].name
name of the lateral.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 233

Lateral points
surface[name].lateral[number].point[number]
coordinates [x, y, z] of the position of the lateral's point.

surface[name].lateral[number].point[number].x
x coordinate of the position of the lateral's point.

surface[name].lateral[number].point[number].y
y coordinate of the position of the lateral's point.

surface[name].lateral[number].point[number].z
z coordinate of the position of the lateral's point.

Tangent magnitude at lateral points
surface[name].lateral[number].point[number].entry_magnitude
magnitude entering the lateral's point.

surface[name].lateral[number].point[number].exit_magnitude
magnitude leaving the lateral's point.

Tangent direction at lateral points
surface[name].lateral[number].point[number].entry_tangent
unit vector of the tangent direction entering the lateral's point.

surface[name].lateral[number].point[number].entry_tangent.x
x value of the unit vector which defines the tangent direction
entering the lateral's point.

surface[name].lateral[number].point[number].entry_tangent.y
y value of the unit vector which defines the tangent direction
entering the lateral's point.

surface[name].lateral[number].point[number].entry_tangent.z
z value of the unit vector which defines the tangent direction
entering the lateral's point.

surface[name].lateral[number].point[number].exit_tangent
unit vector of the tangent direction leaving the lateral's point.

surface[name].lateral[number].point[number].exit_tangent.x
x value of the unit vector which defines the tangent direction
leaving the lateral's point.

surface[name].lateral[number].point[number].exit_tangent.y
y value of the unit vector which defines the tangent direction
leaving the lateral's point.

surface[name].lateral[number].point[number].exit_tangent.z
z value of the unit vector which defines the tangent direction
leaving the lateral's point.

234 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Azimuth and elevation angles at lateral points
surface[name].lateral[number].point[number].entry_tangent.azimuth
azimuth angle of the tangent entering the point.

surface[name].lateral[number].point[number].entry_tangent.elevation
elevation angle of the tangent entering the point.

surface[name].lateral[number].point[number].exit_tangent.azimuth
azimuth angle of the tangent leaving the point.

surface[name].lateral[number].point[number].exit_tangent.elevation
elevation angle of the tangent leaving the point.

Normal at lateral points
surface[name].lateral[number].point[number].entry_normal
unit vector of the normal entering the lateral's point.

surface[name].lateral[number].point[number].entry_normal.x
x value of the unit vector of the normal entering the lateral's point.

surface[name].lateral[number].point[number].entry_normal.y
y value of the unit vector of the normal entering the lateral's point.

surface[name].lateral[number].point[number].entry_normal.z
z value of the unit vector of the normal entering the lateral's point.

surface[name].lateral[number].point[number].exit_normal
unit vector of the normal leaving the lateral's point.

surface[name].lateral[number].point[number].exit_normal.x
x value of the unit vector of the normal leaving the lateral's point.

surface[name].lateral[number].point[number].exit_normal.y
y value of the unit vector of the normal leaving the lateral's point.

surface[name].lateral[number].point[number].exit_normal.z
z value of the unit vector of the normal leaving the lateral's point.

Centre of gravity at lateral
surface[name].lateral[number].cog
coordinates [x, y, z] of the centre of gravity of the lateral.

surface[name].lateral[number].cog.x
x coordinate of the centre of gravity of the lateral.

surface[name].lateral[number].cog.y
y coordinate of the centre of gravity of the lateral.

surface[name].lateral[number].cog.z
z coordinate of the centre of gravity of the lateral.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 235

Start and end positions of longitudinal
surface[name].longitudinal[number].start
coordinates [x, y, z] of the start position of the longitudinal.

surface[name].longitudinal[number].start.x
x coordinate of start position of the longitudinal.

surface[name].longitudinal[number].start.y
y coordinate of start position of the longitudinal.

surface[name].longitudinal[number].start.z
z coordinate of start position of the longitudinal.

surface[name].longitudinal[number].end
coordinates [x, y, z] of the end position of the longitudinal.

surface[name].longitudinal[number].end.x
x coordinate of end position of the longitudinal.

surface[name].longitudinal[number].end.y
y coordinate of end position of the longitudinal.

surface[name].longitudinal[number].end.z
z coordinate of end position of the longitudinal.

Number of points in longitudinal
surface[name].longitudinal[number].number
number of points in the longitudinal.

Length of longitudinal
surface[name].longitudinal[number].length
length of the longitudinal.

surface[name].longitudinal[number].length_between(a; b)
length along the longitudinal between longitudinal points a and b.

Longitudinal exists
surface[name].longitudinal[number].exists
1 if longitudinal exists. 0 otherwise.

Identity number of longitudinal
surface[name].longitudinal[number].id
unique identity number of the longitudinal.

Name of longitudinal
surface[name].longitudinal[number].name
name of the longitudinal.

236 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Longitudinal points
surface[name].longitudinal[number].point[number]
coordinates [x, y, z] of the position of the longitudinal's point.

surface[name].longitudinal[number].point[number].x
x coordinate of the position of the longitudinal's point.

surface[name].longitudinal[number].point[number].y
y coordinate of the position of the longitudinal's point.

surface[name].longitudinal[number].point[number].z
z coordinate of the position of the longitudinal's point.

Surface tangent vector at any (T,U) value
There are variables to calculate the surface tangent vector at any
(T, U) value.

 Tangent vector U, direction before/after (around lateral) of the
specified (T,U) point on the surface
surface[entity_name].evaluate(T; U).udirb
surface[entity_name].evaluate(T; U).udira

 Tangent vector T, direction before/after (along longitudinal) of
the specified (T,U) point on the surface
surface[entity_name].evaluate(T; U).tdirb
surface[entity_name].evaluate(T; U).tdira

 Coordinates of the specified (T,U) point on the surface
surface[entity_name].evaluate(T; U)

 Coordinates of the specified (T,U) point on the surface
surface[entity_name].evaluate(T; U).position

 Normal direction of the specified (T,U) point on the surface
surface[entity_name].evaluate(T; U).normal

 Draft angle of the surface at specified (T,U) point
surface[entity_name].evaluate(T; U).draft_angle

 Minimum curvature of the surface at specified (T,U) point
surface[entity_name].evaluate(T; U).curvature.min

 Maximum curvature of the surface at specified (T,U) point
surface[entity_name].evaluate(T; U).cuvature.max

Tangent magnitude at longitudinal points
surface[name].longitudinal[number].point[number].entry_magnitude
magnitude entering the longitudinal's point.

surface[name].longitudinal[number].point[number].exit_magnitude
magnitude leaving the longitudinal's point.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 237

Tangent direction at longitudinal points
surface[name].longitudinal[number].point[number].entry_tangent
unit vector of the tangent direction entering the longitudinal's point.

surface[name].longitudinal[number].point[number].entry_tangent.x
x value of the unit vector which defines the tangent direction
entering the longitudinal's point.

surface[name].longitudinal[number].point[number].entry_tangent.y
y value of the unit vector which defines the tangent direction
entering the longitudinal's point.

surface[name].longitudinal[number].point[number].entry_tangent.z
z value of the unit vector which defines the tangent direction
entering the longitudinal's point.

surface[name].longitudinal[number].point[number].exit_tangent
unit vector of the tangent direction leaving the longitudinal's point.

surface[name].longitudinal[number].point[number].exit_tangent.x
x value of the unit vector which defines the tangent direction
leaving the longitudinal's point.

surface[name].longitudinal[number].point[number].exit_tangent.y
y value of the unit vector which defines the tangent direction
leaving the longitudinal's point.

surface[name].longitudinal[number].point[number].exit_tangent.z
z value of the unit vector which defines the tangent direction
leaving the longitudinal's point.

Azimuth and elevation angles at longitudinal points
surface[name].longitudinal[number].point[number].entry_tangent.azim
uth
azimuth angle of the tangent entering the point.

surface[name].longitudinal[number].point[number].entry_tangent.eleva
tion
elevation angle of the tangent entering the point.

surface[name].longitudinal[number].point[number].exit_tangent.azimut
h
azimuth angle of the tangent leaving the point.

surface[name].longitudinal[number].point[number].exit_tangent.elevati
on
elevation angle of the tangent leaving the point.

Normal at longitudinal points
surface[name].longitudinal[number].point[number].entry_normal
unit vector of the normal entering the longitudinal's point.

238 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

surface[name].longitudinal[number].point[number].entry_normal.x
x value of the unit vector of the normal entering the longitudinal's
point.

surface[name].longitudinal[number].point[number].entry_normal.y
y value of the unit vector of the normal entering the longitudinal's
point.

surface[name].longitudinal[number].point[number].entry_normal.z
z value of the unit vector of the normal entering the longitudinal's
point.

surface[name].longitudinal[number].point[number].exit_normal
unit vector of the normal leaving the longitudinal's point.

surface[name].longitudinal[number].point[number].exit_normal.x
x value of the unit vector of the normal leaving the longitudinal's
point.

surface[name].longitudinal[number].point[number].exit_normal.y
y value of the unit vector of the normal leaving the longitudinal's
point.

surface[name].longitudinal[number].point[number].exit_normal.z
x value of the unit vector of the normal leaving the longitudinal's
point.

Centre of gravity at longitudinal
surface[name].longitudinal[number].cog
coordinates [x, y, z] of the centre of gravity of the longitudinal.

surface[name].longitudinal[number].cog.x
x coordinate of the centre of gravity of the longitudinal.

surface[name].longitudinal[number].cog.y
y coordinate of the centre of gravity of the longitudinal.

surface[name].longitudinal[number].cog.z
z coordinate of the centre of gravity of the longitudinal.

Flare and twist
surface[name].lateral[number].point[number].entry_tangent.flare
flare angle of the longitudinal entering the point.

surface[name].lateral[number].point[number].entry_tangent.twist
twist angle of the longitudinal entering the point.

surface[name].lateral[number].point[number].exit_tangent.flare
flare angle of the longitudinal leaving the point.

surface[name].lateral[number].point[number].exit_tangent.twist
twist angle of the longitudinal leaving the point.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 239

surface[name].longitudinal[number].point[number].entry_tangent.flare
flare angle entering the point.

surface[name].longitudinal[number].point[number].entry_tangent.twist
twist angle entering the point.

surface[name].longitudinal[number].point[number].exit_tangent.flare
flare angle leaving the point.

surface[name].longitudinal[number].point[number].exit_tangent.twist
twist angle leaving the point.

Owner
The following macro variables determine the owner of an entity.

XXXX[entity_name].owner
returns the Owner string.

XXXX[entity_name].owner.id
returns the Owner ID.

XXXX[entity_name].owner.name
returns the Owner Name

XXXX[entity_name].owner.type
returns the Owner Type.

where XXXX is a surface.

Material
surface[name].material.polish
polish value of the material used on the surface.

surface[name].material.emission
emission value of the material used on the surface.

surface[name].material.transparency
transparency value of the material used on the surface.

surface[name].material.reflectance
reflectance value of the material used on the surface.

surface[name].material.colour
RGB colour values of the material used on the surface.

surface[name].material.name
name of the material used for the surface.

Spines
Click one of the following:

240 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Spine exists (see page 240)

Identity number of spine (see page 240)

Name of spine (see page 240)

Number of spine points (see page 240)

Length of spine (see page 240)

Start position of spine (see page 240)

End position of spine (see page 241)

Position of the spine points (see page 241)

Tangent direction at a spine point (see page 241)

Azimuth and elevation angles at spine points (see page 241)

Spine exists
surface[name].spine.exists
1 if the spine exists. 0 otherwise.

Identity number of spine
surface[name].spine.id
unique identity number of the spine.

Name of spine
surface[id n].spine.name
name of the spine that has the given identity number.

Number of spine points
surface[name].spine.number
number of spine points.

Length of spine
surface[name].spine.length
length of the spine.

surface[name].spine.length_between(a; b)
length along the spine between spine points a and b.

Start position of spine
surface[name].spine.start
start coordinates [x, y, z] of the spine.

surface[name].spine.start.x
x coordinate of the start of the spine.

surface[name].spine.start.y
y coordinate of the start of the spine.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 241

surface[name].spine.start.z
z coordinate of the start of the spine.

End position of spine
surface[name].spine.end
end coordinates [x, y, z] of the spine.

surface[name].spine.end.x
x coordinate of the end of the spine.

surface[name].spine.end.y
y coordinate of the end of the spine.

surface[name].spine.end.z
z coordinate of the end of the spine.

Position of the spine points
surface[name].spine.point[number]
coordinates [x, y, z] of the spine point.

surface[name].spine.point[number].x
x coordinate of the spine point.

surface[name].spine.point[number].y
y coordinate of the spine point.

surface[name].spine.point[number].z
z coordinate of the spine point.

Tangent direction at a spine point
surface[name].spine.point[number].tangent
unit vector of the tangent direction through the spine point.

surface[name].spine.point[number].tangent.x
x value of the unit vector of the tangent direction through the spine
point.

surface[name].spine.point[number].tangent.y
y value of the unit vector of the tangent direction through the spine
point.

surface[name].spine.point[number].tangent.z
z value of the unit vector of the tangent direction through the spine
point.

Azimuth and elevation angles at spine points
surface[name].spine.point[number].entry_tangent.azimuth
azimuth angle of the tangent entering the spine point.

surface[name].spine.point[number].entry_tangent.elevation
elevation angle of the tangent entering the spine point.

242 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

surface[name].spine.point[number].exit_tangent.azimuth
azimuth angle of the tangent leaving the spine point.

surface[name].spine.point[number].exit_tangent.elevation
elevation angle of the tangent leaving the spine point.

Trim regions
surface[name].trimming_valid
1 if the trim boundaries on the surface form a valid trim region. 0
otherwise.

Boundaries
surface[name].boundaries
number of boundaries on the surface.

Pcurves
surface[name].pcurves
number of pcurves on the surface.

surface[name].pcurve[number]
name of the pcurve on the surface. Each pcurve on the surface has
a unique number, where number ranges from 1 to the value of
surface[name].pcurves.

Style of surface
surface[name].style.colour
colour number of line style used to draw the surface if it is one of
the basic 16 colours or -1 if it is an RGB colour.

The following variables exist to check the RGB colour of items

surface[name].style.colour.red
surface[name].style.colour.green
surface[name].style.colour.blue
surface[name].style.colour.rgb
surface[name].style.colour.r
surface[name].style.colour.g
surface[name].style.colour.b

surface[name].style.color
color (USA) number of line style used to draw the surface.

surface[name].style.gap
gap of line style used to draw the surface.

surface[name].style.weight
weight of line style used to draw the surface.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 243

surface[name].style.width
width of line style used to draw the surface.

Level of surface
surface[name].level
level on which the surface exists.

Symbol
The following groups of symbol commands are available:

Symbol exists (see page 243)

Identity number of symbol (see page 243)

Name of symbol (see page 243)

Pins (see page 243)

Style of symbol (see page 244)

Level of symbol (see page 244)

Area and volume of symbols (see page 244)

Scaling Constraints - symbols (see page 244)

Symbol exists
symbol[name].exists
1 if the symbol exists. 0 otherwise.

Identity number of symbol
symbol[name].id
unique identity number of the symbol in the model.

Name of symbol
symbol[id n].name
name of the symbol that has the given identity number.

Pins
symbol[name].position[pin number]
coordinates [x, y, z] of the named pin.

symbol[name].position[pin number].x
x coordinate of the named pin.

symbol[name].position[pin number].y
y coordinate of the named pin.

244 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

symbol[name].position[pin number].z
z coordinate of the named pin.

symbol[name].number
number of pins in the symbol.

Style of symbol
symbol[name].style.colour
colour number of line style used to draw the symbol.

symbol[name].style.color
color (USA) number of line style used to draw the symbol.

symbol[name].style.gap
gap of line style used to draw the symbol.

symbol[name].style.weight
weight of line style used to draw the symbol.

symbol[name].style.width
width of line style used to draw the symbol.

Level of symbol
symbol[name].level
level on which the symbol exists.

Area and volume of symbols
symbol[name].area
area of triangulated symbols.

symbol[name].volume
volume of triangulated symbols.

Scaling Constraints - symbols
symbol.constraint.exists
1 if scaling constraint exists. 0 otherwise.
symbol.constraint.type
Fixed Size or Fixed Distance to indicate the type of scaling
constraint.
symbol.constraint.origin
the coordinates of the scaling constraint plane origin.
symbol.constraint.xaxis
a vector representing the X axis of the scaling constraint plane.
symbol.constraint.yaxis
a vector representing the Y axis of the scaling constraint plane.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 245

symbol.constraint.zaxis
a vector representing the Z axis of the scaling constraint plane.

Symbol Definition
symbol_def[name].exists
1 if the symbol definition exists. 0 otherwise.

symbol_def[name].id
unique identity number for the symbol definition.

symbol_def[id n].name
name of the symbol definition that has the given identity number.

Text
text[name].exists
1 if the text exists. 0 otherwise.

text[name].id
unique identity number of the text in the model.

text[id n].name
name of the text that has the given identity number.

text[name].string
text string.

Unstripped text
text[name].string.unstripped
text string with format characters.
text[text_name].string.unstripped.length
returns length of unstripped text.

text[text_name].string.unstripped.char[ipos]
returns the character at the specified position in unstripped text
string, where ipos is greater or equal to 0 and less than the string
length

Stripped text
text[name].string.stripped
text string without format characters.

text[text_name].string.stripped.length
returns length of stripped text.

text[text_name].string.stripped.char[ipos]
returns the character at the specified position in stripped text string,
where ipos is greater or equal to 0 and less than the string length.

246 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

text[text_name].string.stripped.locate[string]
returns the location of string in stripped text string. If string isn't
found, -1 is returned.

text[name].font
name of the font used by the text.

text[name].origin
the origin of the text is output as one of the following strings:

Bottom Left
Bottom Centre
Bottom Right
Centre Left
Centre
Centre Right
Top Left
Top Centre
Top Right

text[name].position
coordinates [x, y, z] of the position at which the text was placed.

text[name].position.x
x coordinate of the position at which the text was placed.

text[name].position.y
y coordinate of the position at which the text was placed.

text[name].position.z
z coordinate of the position at which the text was placed.

text[name].char_height
height of the characters.

text[name].char_spacing
spacing between individual characters (pitch).

text[name].angle
angle of the text.

text[name].line_spacing
spacing between lines of text.

text[name].justification
justification of the text is output as one of the following strings:

Left
Centre
Right

text[name].horizontal
1 if text characters are horizontal. 0 otherwise.

text[name].italic
1 if text is italic. 0 otherwise.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 247

Text editor
text[name].livetext
1 if text created using PowerSHAPE standard text editor. 0 for
DUCT editor.

Colour of text
text[name].colour
number of the colour used by the text.

Level of text
text[name].level
level on which the text exists.

Tolerance
tolerance.general
value of general tolerance.
tolerance.drawing
value of drawing tolerance.

Units
unit[type].name
name of the units for type. For example, type length's output can
be mm.

unit[type].factor
number by which the default unit is multiplied by to give the units in
unit[type].name.

For example, type length has default units mm. If unit[length].name is
inches, then the unit[length].factor is 0.039370.

Updated
You can use the commands in this group to query which objects
were updated as a result of the last operation. These objects are
accessed from the updated list.

Updated objects exist (see page 248)

Clear the updated list (see page 248)

Number of items updated (see page 248)

Interrogating updated items (see page 248)

248 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

Updated objects exist
updated.exists
1 if at least one item is in the updated list. 0 otherwise.

Clear the updated list
Updated.clearlist
Objects are removed from the updated list.

Number of items updated
updated.number
number of items in the updated list.

Interrogating updated items
updated.object[number]
object type and its name in the updated list. For example, Line[4],
Arc[1].

If n items are updated, then number is the item's number in the
updated list.

updated.object[number].syntax
object information as specified by the syntax for object
updated.object[number]. The syntax you can use is given under each
type of object.

For example, if updated.object[1] is Line[2], then you can specify the
syntax as any syntax after Line[name]. For further details see Line
(see page 191). For the x coordinate of the start of the line, you can
use updated.object[1].start.x where start.x is the syntax.

updated.type[number]
type of an object in the updated list. For example, Line, Arc.

If n objects are updated, then number is the item's number in the
updated list.

 If you compare the type of an object with a text string, you
must use the correct capitalisation. For example, if you want
to check that updated.type[0] is a composite curve, then you
must use:

updated.type[0] == 'Composite Curve'
and not:

updated.type[0] == 'Composite curve'
updated.type[0] == 'composite curve'

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 249

updated.name[number]
name of an item in the updated list.

If n items are updated, then number is the item's number in the
updated list.

 In all cases number is from 0 to (n-1).

User
user
details of the user currently using PowerSHAPE. It is output in the
following form:
user login : user name : start macro : security level
user.login
login of the user currently using PowerSHAPE.
user.name
name of the user currently using PowerSHAPE.
user.macro
pathname of the login macro of the user currently using
PowerSHAPE.
user.security
security level of the current user using PowerSHAPE.

Version
version
version of PowerSHAPE that is being used, for example, 7240
version.major
first digit of the version of PowerSHAPE being used. For example, if
you are using 7240, version.major would return 7.
version.minor
second digit of the version of PowerSHAPE being used. For example,
if you are using 7240, version.minor would return 2.
version.revision
last two digits of the version of PowerSHAPE being used. For
example, if you are using 7240, version.revision would return 40.
version.has.excel
tests if MS Excel is installed.

View
view[name].exists
1 if the view exists. 0 otherwise.

250 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

view[name].id
unique identity number of the view.

view[id n].name
name of the view that has the given identity number.

view[name].rotation_centre
[x y z] coordinates of the rotation centre of the view

view[name].rotation_centre.x
x coordinate of the rotation centre of the view.

view[name].rotation_centre.y
y coordinate of the rotation centre of the view

view[name].rotation_centre.z
z coordinate of the rotation centre of the view.

Window
cwindow clear
clears the command window
window.selected
number of the selected window.
window.number
number of windows opened.

window[name].exists
1 if the window exists. 0 otherwise.

window[name].id
unique identity number of the window.

window[name].size
size of the window in x and y

window[name].size.x
size of the window in x

window[name].size.y
size of the window in y

window[name].type
type of the window from one of the following: model, drawing, or
render.

window[name].model
name of the model opened in the window.

window[name].drawing
name of the drawing if opened in the window and a blank string
otherwise.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 251

Workplane
 If you don't specify the name of the workplane, the active one

is used, for example, workplane.origin returns the origin of the
active workplane. An error is given if there is no active
workplane.

The following groups of workplane commands are available:

Active (see page 251)

Axes directions (see page 251)

Workplane exists (see page 252)

Identity number of workplane (see page 252)

Name of workplane (see page 252)

Level of workplane (see page 252)

Locked (see page 253)

Origin of workplane (see page 253)

Style of workplane (see page 253)

Active
workplane[name].active
1 if the workplane is active. 0 otherwise.
workplane.active
name of the active workplane. If no workplane is active, World is
returned, even in a foreign language.

Axes directions
workplane[name].xaxis
unit vector which defines the orientation of the X-axis of workplane
from its origin.

workplane[name].xaxis.x
x value of the unit vector which defines the orientation of the X-axis
of workplane from its origin.

workplane[name].xaxis.y
y value of the unit vector which defines the orientation of the X-axis
of workplane from its origin.

workplane[name].xaxis.z
z value of the unit vector which defines the orientation of the X-axis
of workplane from its origin.

252 • Customising PowerSHAPE PowerSHAPE 2015 R2 Reference Help

workplane[name].yaxis
unit vector which defines the orientation of the Y-axis of workplane
from its origin.

workplane[name].yaxis.x
x value of the unit vector which defines the orientation of the Y-axis
of workplane from its origin.

workplane[name].yaxis.y
y value of the unit vector which defines the orientation of the Y-axis
of workplane from its origin.

workplane[name].yaxis.z
z value of the unit vector which defines the orientation of the Y-axis
of workplane from its origin.

workplane[name].zaxis
unit vector which defines the orientation of the Z-axis of workplane
from its origin.

workplane[name].zaxis.x
x value of the unit vector which defines the orientation of the Z-axis
of workplane from its origin.

workplane[name].zaxis.y
y value of the unit vector which defines the orientation of the Z-axis
of workplane from its origin.

workplane[name].zaxis.z
z value of the unit vector which defines the orientation of the Z-axis
of workplane from its origin.

Workplane exists
workplane[name].exists
1 if the workplane exists. 0 otherwise.

Identity number of workplane
workplane[name].id
unique identity number of the workplane in the model.

Name of workplane
workplane[id n].name
name of the workplane that has the given identity number.

Level of workplane
workplane[name].level
level on which the workplane exists.

PowerSHAPE 2015 R2 Reference Help Customising PowerSHAPE • 253

Locked
workplane[name].locked
1 if the workplane is locked. 0 otherwise.

Origin of workplane
workplane[name].origin
coordinates [x, y, z] of the origin of the workplane.

workplane[name].origin.x
x coordinate of the origin of the workplane.

workplane[name].origin.y
y coordinate of the origin of the workplane.

workplane[name].origin.z
z coordinate of the origin of the workplane.

Style of workplane
workplane[name].style.colour
colour number of line style used to draw the workplane.

workplane[name].style.color
color (USA) number of line style used to draw the workplane.

workplane[name].style.gap
gap of line style used to draw the workplane.

workplane[name].style.weight
weight of line style used to draw the workplane.

workplane[name].style.width
width of line style used to draw the workplane.

	Customising PowerSHAPE
	Introduction to customising PowerSHAPE
	Macros
	Creating macros
	Recording macros
	Record Macro dialog

	Running macros
	How do I stop a running macro?

	Running a macro one command at a time
	How do I stop a stepping macro?

	Writing macros
	Finding out PowerSHAPE commands
	Adding comments in macros

	Using variables in macros
	Variable types
	Assigning values
	Renaming objects using variables
	Using environment variables

	Creating user-input information into a macro
	Prompting the user
	Point information
	Selection information
	Number information
	String information
	Query information

	Entering values during macro initiation

	Output from a macro
	Displaying information
	Displaying values of variables
	Using an OUTFILE to display information
	Example macro to generate and display a report file

	Exporting an image file

	Assigning values to variables
	Assigning values to variables - advanced users
	Using object information
	Comparing variables
	Comparing variables - logical operators

	Using expressions in macros
	Operators
	Operators for integers and real numbers
	Operators for strings
	Operators for lists
	Operators for vectors
	Comparison operators
	Logical operators
	Arc tangent

	Making decisions in macros
	IF
	IF-ELSE
	IF - ELSEIF - ELSE

	Switch

	Repeating commands in macros
	WHILE loop
	DO- WHILE loop
	CONTINUE
	BREAK

	Jumping from one point in the macro to another
	GOTO
	Labels

	Defining a path to a directory in a macro
	Running a macro in another macro
	Passing values into a macro
	Passing expressions as arguments

	Exporting variables from a macro
	Exporting File Names

	Stepping from within a macro
	Pausing a macro
	Pause for predefined time
	Pause with a button to continue

	Ending a macro
	Useful curve commands
	Skipping command lines

	Macro tutorial - Helix
	Introduction to the helix macro
	Recording the helix macro
	Viewing the text in the macro

	Running the macro
	Editing the macro
	Adding variables
	Run your macro that includes variables

	Adding a loop
	Run your macro that includes a loop

	Adding comments
	Run your macro that includes comments

	Interacting with the user
	Run your macro file that interacts with the user

	Changing the origin of the helix
	Run your macro that changes the origin of the helix

	Creating a helix around a cylinder
	Creating a workplane at the origin of the cylinder
	Adding user selection of the cylinder to the macro
	Run your macro that creates a helix around a cylinder

	Testing input data
	Adding tests to your macro
	Running the macro to test that the tests work

	Macros - working examples
	Blanking
	Calculate the volume of each solid in the selection
	Close all models
	Create a curve from a selection of points
	Create a tapered helix
	Create geometry
	Create normal workplane for each point on a curve
	Create text in a macro
	Deactivate all solids in a model
	Deleting pcurves
	DO - WHILE loop
	Dynamic sectioning
	Exporting multiple images
	Export using variables
	Importing components from an .xt file
	Move points on a curve
	Select and add object
	Offset surface curves by different distances
	Open psmodels from a directory list
	Open x_t from a directory list
	Using LOOP to print the length of lines to a file
	Using SWITCH
	Using WHILE loop to create point at centre of arc

	HTML application tutorial
	Opening a new text file
	Adding controls to the application
	Displaying the HTML file in PowerSHAPE
	Connecting to PowerSHAPE
	Interacting with PowerSHAPE
	Adding the Apply_click() procedure
	Linking the procedure to the Apply button
	Testing your application

	Exiting the HTML application
	Testing the Quit button

	Entering positions
	Changing the interface
	Adding the code
	Updating the Apply_Click procedure

	Testing your application again
	Defining the origin of the helix by entering values for X, Y and Z
	Defining the origin of the helix using the mouse

	Selecting objects
	Boolean variable called cylinder
	Adding code for the cyl_select() procedure
	Temporary workplane
	Creating a workplane
	First point relative to workplane
	Deleting the workplane
	Testing the new code

	Summary
	Example using Javascript

	Creating OLE applications
	What is a HTML-based application?
	What is an add-in application?
	Using Visual Basic

	What are the PowerSHAPE OLE commands?
	Connecting to PowerSHAPE
	HTML example using vbscript

	Sending commands to PowerSHAPE
	Getting information from PowerSHAPE
	Getting information about a model
	Example

	Showing and hiding the PowerSHAPE window
	Controlling the window PowerSHAPE
	HTML example using vbscript

	How do I find the version number of PowerSHAPE?
	How do I know if PowerSHAPE is busy?
	Add-in example using Visual Basic
	Showing and hiding dialogs when executing commands
	How do I exit PowerSHAPE using my application?
	Entering positions
	HTML example using vbscript

	Selecting objects
	Tips and tricks
	Running a HTML-based application
	Running an add-in application
	How do I run my add-in application outside PowerSHAPE?
	Running your add-in application in PowerSHAPE
	Adding an add-in application to PowerSHAPE
	Running an add-in application in PowerSHAPE
	Changing the name of an item in the Add-in menu
	Changing the order of items in the Add-in menu
	Deleting an item from the Add-in menu

	PowerSolutionDOTNetOLE control

	Object information
	Introduction to object information
	Arc
	Arc exists
	Identity number of arc
	Name of arc
	Start position of arc
	End position of arc
	Mid position of arc
	Radius of arc
	Centre position of arc
	Length of arc
	Centre mark of arc
	Angles of arc
	Style of arc
	Level of arc

	Application paths
	Assembly
	Relationships
	Attachment
	External attachments on component definitions
	Component
	Parameter
	Component definitions
	Power Features
	TU-coordinates
	Tool Solid

	Clipboard
	Composite curve
	Points in composite curve
	Tangent direction at a point
	Azimuth and elevation angles at a point
	Magnitude at a point

	Items in composite curve
	Length of composite curve
	Area of composite curve
	Bounding box around composite curve
	Centre of gravity of composite curve
	Filleting a composite curve
	Style of composite curve
	Level of composite curve

	Created
	Created objects exist
	Number of items created
	Clearlist
	Interrogating created items

	Curve
	Type of curve
	Number of points in curve
	Closed curve
	Start and end positions of curve
	Points in a curve
	Tangent direction at a curve point
	Selected points
	Azimuth and elevation angles at a curve point
	Magnitude at a curve point

	Length of curve
	Area of curve
	Bounding box around curve
	Centre of gravity of curve
	Style of curve
	Level of curve

	Dimension
	Dimension exists
	Identity number of dimension
	Name of dimension
	Dimension value
	Position of the dimension
	Diameter of dimension
	Leader of dimension
	Annotation of dimension
	Witness of dimension
	Tolerance of dimension
	Style of dimension
	Level of dimension

	Drawing
	Drawing exists
	Drawing description
	Number of drawings
	Identity number of drawing
	Name of drawing
	Drawing dimensions
	Drawing templates used
	Number of views
	Number of objects
	Updating

	Drawing view
	Extent of drawing view
	Scale of drawing view
	Origin of drawing view
	Number of objects
	Transform of drawing view
	Converting between drawing, view and world space

	Electrode
	General (Electrode)
	List
	Datum
	Blank
	Holder
	Burn region
	Quantity
	Undersize
	Frames

	Evaluation
	File
	Hatch
	Hatch exists
	Identity number of hatch
	Name of hatch
	Crossed hatch
	Filled hatch
	Hatch angle
	Hatch spacing
	Hatch boundaries
	Style of hatch
	Level of hatch

	Lateral
	Level
	Line
	Start coordinates of a line
	End coordinates of a line
	Line exists
	Identity number of line
	Name of line
	Length of line
	Style of line
	Level of line
	Angles of a line

	Longitudinal
	Model
	Selected model
	Model exists
	Identity number of model
	Name of model
	Model open
	Number of objects in model
	Model file size
	Access rights
	Model path
	Locked
	Changed
	Corrupted
	File Doctor
	Version
	Updated

	Parameter
	Pcurve
	Start coordinates of a pcurve
	End coordinates of a pcurve
	Coordinates of a point on a pcurve

	Point
	Position of point
	Style of point
	Level of point

	Printer
	Renderer
	Selection
	Interrogating selected items
	Selection positions
	Bounding box around selection
	Bounding box around individual objects
	Number of selected surface curves/surface curve points

	Shareddb
	Sketcher
	Solid
	Solid name
	Solid exists
	Owner
	Solid active
	Identity number of solid
	Name of solid
	Solid version
	Active
	Ghost
	Type
	Surfaces in a solid
	Bounding box around solid
	Origin of primitive and extruded solids only
	Dimensions of primitive and extruded solids only
	Workplane of primitive (solid)
	Surface area
	Volume of solid
	Watertight
	Closure
	Centre of gravity
	Moment of inertia
	Linked edges
	Valid boundaries
	Connected
	Features
	Holes
	Pockets and protrusions
	Number of features
	Feature selected
	Feature suppressed
	Feature error
	Feature exists
	Identity number of feature
	Workplane of feature
	Name of solid
	Type
	Number of surfaces
	Name of surface
	Length of feature
	Angle of feature
	Radius of feature
	Pre-machined status
	Existed at birth flag
	Scaling constraints (features)

	Material
	Style of solid
	Level of solid
	Scaling Constraints (solids)
	Picking faces of a solid

	Spine
	Surface
	General surface commands
	Reference direction
	Primitives
	Dimensions of surface
	Origin of surface
	Axes directions of primitive
	Workplane of primitive (surface)

	Trimmed surface
	Minimum block size
	Surface type
	Area of surface
	Diameter of surface
	Volume of surface
	Centre of gravity of surface
	Evaluate position
	Evaluate normal
	Evaluate curvature
	Nearest t and u parameters
	Laterals and longitudinals
	Closed laterals and longitudinals
	Number of laterals and longitudinals
	Start and end positions of lateral
	Number of points in lateral
	Length of lateral
	Lateral exists
	Identity number of lateral
	Name of lateral
	Lateral points
	Tangent magnitude at lateral points
	Tangent direction at lateral points
	Azimuth and elevation angles at lateral points
	Normal at lateral points
	Centre of gravity at lateral
	Start and end positions of longitudinal
	Number of points in longitudinal
	Length of longitudinal
	Longitudinal exists
	Identity number of longitudinal
	Name of longitudinal
	Longitudinal points
	Surface tangent vector at any (T,U) value
	Tangent magnitude at longitudinal points
	Tangent direction at longitudinal points
	Azimuth and elevation angles at longitudinal points
	Normal at longitudinal points
	Centre of gravity at longitudinal
	Flare and twist

	Owner
	Material
	Spines
	Spine exists
	Identity number of spine
	Name of spine
	Number of spine points
	Length of spine
	Start position of spine
	End position of spine
	Position of the spine points
	Tangent direction at a spine point
	Azimuth and elevation angles at spine points

	Trim regions
	Boundaries
	Pcurves
	Style of surface
	Level of surface

	Symbol
	Symbol exists
	Identity number of symbol
	Name of symbol
	Pins
	Style of symbol
	Level of symbol
	Area and volume of symbols
	Scaling Constraints - symbols

	Symbol Definition
	Text
	Text editor
	Colour of text
	Level of text

	Tolerance
	Units
	Updated
	Updated objects exist
	Clear the updated list
	Number of items updated
	Interrogating updated items

	User
	Version
	View
	Window
	Workplane
	Active
	Axes directions
	Workplane exists
	Identity number of workplane
	Name of workplane
	Level of workplane
	Locked
	Origin of workplane
	Style of workplane

