Тема: Функциональные составляющие (подсистемы) ЧПУ
Для того чтобы сделать из обычного станка с ручным управлением станок с ЧПУ необходимо внедрить определенные компоненты в его конструкцию. Не достаточно просто подключить станок к компьютеру, чтобы он работал по программе - необходимо модернизировать механическую и электронную "начинку" станка. Давайте посмотрим, как устроена система чпу (СЧПУ) на большинстве современных станков
Условно счпу можно разделить на три подсистемы:
подсистему управления
подсистему приводов
подсистему обратной связи
Подсистема управления
Центральной частью всей ЧПУ является подсистема управления. с одной стороны она читает управляющую программу и отдает команды различным агрегатам станка на выполнение тех или иных операций. С другой стороны взаимодействует с человеком, позволяя оператору станка контролировать процесс обработки.
Сердцем подсистемы управления является контроллер (процессор), который обычно расположен в корпусе стойки чпу. Сама стойка имеет набор кнопок и экран (все вместе называется пользовательским интерфейсом) для ввода и вывода необходимой информации.
Системы управления могут быть как закрытыми, так и открытыми, пк - совместимыми. Закрытые системы управления имеют собственные алгоритмы и циклы работы, собственную логику. Производители таких систем, как правило, не распространяют информацию об их архитектуре. Скорее всего, вы не сможете самостоятельно обновить программное обеспечение и редактировать настройки такой системы. У систем закрытого типа есть важное преимущество - они, как правило, имеют высокую надежность, так как все компоненты системы прошли тестирование на совместимость.
В последнее время стало появляться все больше открытых. ПК - совместимых систем управления. их аппаратная начинка практически такая же, как и у вашего домашнего персонального компьютера. Преимущество такого метода - в доступности и дешевизне электронных компонентов, большинство из которых можно приобрести в обычном компьютерном магазине. однако есть и недостаток. пока считается, что надежность таких систем ниже, чем у закрытых систем управления.
рис. 1.5.
Подсистема приводов
Подсистема приводов включает в себя различные двигатели и винтовые передачи для окончательного выполнения команд подсистемы управления — для реализации перемещения исполнительных органов станка.
Высокоточные ходовые винты
Важными компонентами подсистемы приводов являются высокоточные ходовые винты. Вы наверное, знаете, что на станке с ручным управлением рабочий, вращая рукоятку, соединенную с ходовым винтом, перемещает рабочий стол. На днище стола укреплена гайка таким образом, что при повороте винта происходит линейное перемещение стола.
Усовершенствованный ходовой винт станка с чпу позволяет выполнять перемещение исполнительного органа с минимальным трением и практически без люфтов. Устранение люфта очень важно по двум причинам.
Во-первых, это необходимо для обеспечения сверхточного позиционирования.
Во-вторых, только при соблюдении этого условия возможно нормальное попутное фрезерование.
Двигатели
Второй составляющей подсистемы является двигатель (а точнее - несколько двигателей). Вращение вала двигателя приводит к повороту высокоточного ходового винта и линейному перемещению рабочего стола или колонны. В конструкции станков используются шаговые электродвигатели и серводвигатели.
Шаговый электродвигатель - это электромеханическое устройство, преобразующее электрический сигнал управления в дискретное механическое перемещение. Существует несколько основных видов шаговых двигателей, отличающихся конструктивным исполнением:
шаговые двигатели с переменным магнитным сопротивлением.
шаговые двигатели с постоянным магнитным сопротивлением.
гибридные двигатели.
Принцип работы у всех этих двигателей примерно одинаков и достаточно прост.
Шаговый двигатель с переменным магнитным сопротивлениемимеет несколько полюсов на статоре и ротор из магнитно-мягкого материала(реактивный ротор). На рисунке 1.6 показан двигатель, имеющий шесть полюсов на статоре, ротор с четырьмя зубьями и три независимые обмотки, каждая из которых приходит на противоположные полюса статора.
При подаче электрического тока в одну из обмоток, ротор стремиться занять положение, при котором возникший магнитный поток будет замкнут.
То есть зубья ротора будут находиться прямо напротив тех полюсов статора, на обмотки которого подан ток. Если выключить ток в этой обмотке и подать его в следующую обмотку, то ротор повернется, чтобы в очередной раз замкнуть магнитный поток своими зубьями. для непрерывного вращения ротора необходимо попеременно подавать электрический ток в 1. 2 и 3 обмотки, при этом шаг вращения для представленного двигателя составит 30 градусов.
Шаговый двигатель с постоянными магнитами состоит из статора с обмотками и ротора с постоянными магнитами. На рисунке 1.7 показан двигатель. имеющий две пары полюсов статора и три пары полюсов ротора. При подаче электрического тока в одну из обмоток, ротор займет положение, при котором разноименные полюса статора и ротора буду находиться напротив друг друга. Для непрерывного вращения ротора необходимо попеременно подавать электрический ток в 1 и 2 обмотки, при этом шаг вращения составит 30 градусов.
Большинство современных шаговых электродвигателей являются гибридными, то есть сочетают достоинства двигателей с переменным магнитным полем и двигателей с постоянными магнитами, имеют гораздо большее число полюсов статора и зубьев ротора, что обеспечивает меньший шаг вращения.
Когда подсистема у правления посылает шаговому двигателю электрический импульс, то происходит поворот на определенный угол, который зависит от конструкции двигателя (например. 0.7 град). Если ходовой винт имеет шаг 1 мм, то один импульс заставит исполнительный орган станка линейно переместиться на 0.7/360 x 1=0.0019 мм. Эта величина называется разрешением системы или ценой импульса. Нельзя переместить исполнительный орган на величину меньшую, чем разрешение системы. Таким образом, вы видите, что существует прямая взаимосвязь между двигателем, ходовым винтом и точностью перемещений станка.
Простота конструкции и легкость у правления сделали шаговые электродвигатели очень популярными. Основным минусом двигателей этого типа является их толчковая или дискретная работа, которая может привести к ухудшению качества чистовой обработки поверхностей и эффекту "ступенек" при выполнении обработки по наклонной прямой или дуге. Однако шаговые двигатели могут работать без использования дорогостоящей и сложной обратной связи. это позволяет создавать недорогие, пускай и не высокоточные станки.
Самые современные станки с ЧПУ очень редко оснащаются шаговыми двигателями. На смену им пришли серводвигатели, которые имеют более сложную конструкцию. Серводвигатели, в отличие от шаговых двигателей, работают гладко, имеют лучшие характеристики, но ими тяжелее управлять.
Для работы с серводвигателем необходимо наличие специальных контроллеров и устройств обратной связи, что естественно приводит к увеличению стоимости станка.
Подсистема обратной связи
Подсистема обратной связи главным образом призвана обеспечивать подсистему управления информацией о реальной позиции исполнительного органа станка и о скорости двигателей. Подсистема обратной связи может быть открытого или замкнутого типа.
Системы открытого типа регистрируют наличие или отсутствие сигнала из подсистемы управления. к сожалению, они не могу т дать информации о реальной позиции исполнительного органа и скорости двигателей, поэтому в современных станках с чпу практически не используются.
Системы замкнутого типа используют внешние датчики для проверки необходимых параметров.